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In the past couple of decades, many in-vehicle features have been invented

and deployed in order to make modern vehicles which not only safer and more re-

liable but also connected, smarter, and intelligent. Meanwhile, vehicular ad-hoc

networks (VANETs) are proposed to provide communications between vehicles and

road-side stations as the foundation of the intelligent transportation system to pro-

vide efficient and safe transportation. To support these updated functions, a large

amount of electronic equipment has been integrated into the car system. Although

these add-on functions around vehicles offer great help in driving assistance, they

inevitably introduced new security vulnerabilities that threaten the safety of the on-

board drivers, passengers and pedestrians. This has been demonstrated by many

well-documented attacks either on the in-vehicle bus system or on the wireless vehic-

ular network communications. In this dissertation, we design and implement several

hardware-oriented solutions to the arousing security issues on vehicles. More specif-

ically, we focus on three important and representative problems: (1) how to secure



the in-vehicle Controller Area Network (CAN), (2) how to secure the communication

between vehicle and outside, and (3) how to establish trust on VANETs.

Current approaches based on cryptographic algorithms to secure CAN bus

violate the strict timing and limited resource constraints for CAN communications.

We thus emphasize on the alternate solution of intrusion detection system (IDS) in

this dissertation. We explore monitoring the changes of CAN message content or

the physical delay of its transmission to detect on the CAN bus. We first propose a

new entropy-based IDS following the observation that all the known CAN message

injection attacks need to alter the CAN identifier bit. Thus, analyzing the entropy

changes of such bits can be an effective way to detect those attacks. Next, we develop

a delay-based IDS to protect the CAN network by identifying the location of the

compromised Electronic Control Unit (ECU) from the transmission delay difference

to two terminals connected to the CAN bus. We demonstrate that both approaches

can protect the integrity of the messages on CAN bus leading to a further improve

the security and safety of autonomous vehicles.

In the second part of this dissertation, we consider Plug-and-Secure, an in-

dustrial practice on key management for automotive CAN networks. It has been

proven to be information theoretically secure. However, we discover side-channel

attacks based on the physical properties of the CAN bus that can leak almost the

entire secret key bits. We analyze the fundamental characteristics that lead to such

attacks and propose techniques to minimize information leakage at the hardware

level.

Next, we extend our study from in-vehicle secure CAN communication to the



communication between vehicle and outside world. We take the example of the

popular GPS spoofing attack and show how we can use the rich information from

CAN bus to build a cross-validation system to detect such attacks. Our approach

is based on the belief that the local driving data from the in-vehicle network can be

authenticated and thus trusted by secure CAN networks mechanisms. Such data can

be used to cross-validate the GPS signals from the satellite which are vulnerable to

spoofing attacks. We conduct driving tests on real roads to show that our proposed

approach can defend both GPS spoofing attacks and location-based attacks on the

VANETs.

Finally, we propose a Blockchain based Anonymous Reputation System (BARS)

to establish a privacy-preserving trust model for VANETs. The certificate and re-

vocation transparency is implemented efficiently with the proofs of presence and

absence based on the extended blockchain technology. To prevent the broadcast

of forged messages, a reputation evaluation algorithm is presented relying on both

direct historical interactions of that vehicle and indirect opinions from the other

vehicles.

This dissertation features solutions to vehicle security problems based on hard-

ware or physical characteristics, instead of cryptographic algorithms. We believe

that given the critical timing requirement on vehicular systems and their very lim-

ited resource (such as the bandwidth on CAN bus), this will be a very promising

direction to secure vehicles and vehicular network.
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Chapter 1: Introduction

1.1 Overview of Automobile Security

Over the past few years, an increase in the number of connectivity interfaces

is added to the traditional automobile to improve safety and convenience. To assist

those fantasy computerized functions, sensors with electronic control unit (ECU)

are increasingly demanded in modern vehicles. For example, approximately 50-100

ECUs are deployed in a modern vehicle nowadays. Each ECU is assigned with some

specific functions and will be communicated to each other through the well-known

controller area network (CAN). CAN protocol is the de-facto standard for in-vehicle

networks and this adoption has been mandated in all cars manufactured since 2008.

Despite the high reliability and widespread implementation of the CAN protocol, it

is not surprising that vehicles can be hacked owing to vulnerabilities on the CAN

bus. Moreover, the potential for interference in such attacks is exacerbated by the

increasing external connections with the in-vehicle control network, including USB

ports, WiFi, Bluetooth, and the mandatory on-board diagnostic (OBD-II) port. As

a result, the lack of security fundamental protections of the CAN makes the in-

vehicle CAN bus networks vulnerable to attacks. In 2010, researchers provided the

first evidence showing that it is possible to control the vehicle by simply delivering

1



compromising CAN messages [3]. By injecting these malicious CAN messages, they

could cause intentional malfunction of a wide of components including the engine,

instrument panel, radio, heating lights brakes and locks. Later on, several high

profile attacks have been demonstrated on modern car by academic and industrial

researchers, e.g. [4, 5, 6]. These attacks are primarily facilitated by the lack of

security (authentication, encryption) in the existing architecture of CAN.

On the other side, as the plenty of smart functions have been added on the ve-

hicles, vehicles increasingly evolve into an intelligent system. The intelligent vehicles

equipped with radio communications interfaces will exchange data with neighbor-

ing vehicles or the other entities through the vehicular ad-hoc networks (VANETs).

However, some unique features such as high mobility, short connection times and

short-range connection make conventional network security mechanisms are not al-

ways effective on VANETs. As a result, the vehicular network systems are much

more vulnerable to security threats and restricted on the network conditions. As

proved in paper [7], the recently aroused security attacks on the communication

channel and sensors would cause significant instability in the communication of ve-

hicle systems. Furthermore, those communication disabilities will influence the other

applications as well, i.e, cooperative driving and autonomous driving [8]. Therefore,

the security challenges need to be solved in order to make such networks safety

usable in practice. To solve the security problem in the next generative vehicular

networks, several frameworks to guarantee the security credential management for

vehicular communications are proposed [9]. On the other hand, when communicat-

ing through the VANETs, the drivers’ privacy needs to be protected as well. In

2



particular, the other entities and casual observers should not be able to track down

the vehicle’s trajectory in the long term. It is also of great importance providing the

anonymous authentication with preserved privacy for the VANETs. Several works

have been published focusing on this problem [10, 11].

1.2 Inter-vehicular Network: CAN

ECUs installed in the vehicle need to communicate and exchange information

through the in-vehicle bus system follows CAN protocol [12]. CAN is the most

commonly used protocol in the vehicle industry and it has a fast reaction time and

proper transmission reliability [13]. It is a multi-master message broadcast system

with a maximum signal rate of 1Mbps. It allows the ECU to control the vehicle

maneuvers by sending and sharing messages through its bus system with the guar-

antee of timing predictability and fault-tolerance for communication. As a result,

CAN is commonly used for vehicles’ core control systems like body systems, engine

management, and transmission control. Compared to the traditional networks, such

as USB and Ethernet, CAN does not send large data blocks under the supervision

of a central master. In a CAN network, many short messages are broadcasted to the

entire network, which provides data consistency in every node of the system [14].

1.2.1 CAN Frame

The CAN message, also known as CAN frame, contains fields as identifier

(ID), data length code (DLC), data field, cyclic redundancy check (CRC) and other
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control bits as shown in Fig 1.1 [15]. The messages sent out on the CAN bus are

distributed based on the identifier preceding the CAN frame. For the base frame

format, the identifier contains 11 bits and it has 29 bits for the extended frame

format. However, the ID in the CAN frame is neither the sender address nor the

receiver address. The first function of the identifier is to represent the priority

of the message. As we discussed before, CAN is a broadcast protocol and each

ECU could request the transmission without any central arbitration. To make sure

the transmissions are in sequence, the ID serves as the flag of the priority of that

message. Instead of the priority, the ID also represents the function of the message.

For example, the ID as 0x21 may represent the vehicle speed while the other ID

such as 0x13 may represent the tire pressure information. This function-mapping is

defined by the automobile manufacturer and is usually not disclosed to the public.

In practice, automotive designers assign a set of IDs for each ECU and one ID could

be assigned to several ECUs as well. The overlap in using message IDs makes CAN

messages are easily forged and difficult to be traced [16].

The data field contains a maximum of 8 bytes to be transmitted within the

message frame. Usually, the transmitted data is either the instructions of the ECUs

or the readings from the installed sensors on the vehicles. Usually 8 bytes could meet

the basic requirement of communication on the CAN bus and guarantee the real-

time simultaneously. However, recently aroused vulnerabilities from the CAN bus

may require security protections which implementing the cryptographic algorithms

with longer bit-length, i.e, the message authentication code usually needs 256-bit

payload. The payload of CAN frame seriously hinders the application of crypto-
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graphic algorithms [17] and protocols [18, 19] on the CAN. Those cryptographic

protocols based methods that send additional messages for message authentication,

will lead to a rapid increase in the bus load (to more than 50%). As a result, there

are arousing discussions and proposals to replace the CAN network by the Ethernet

[20] which mainly because the Ethernet packets have enough pay-load for complex

cryptographic protocols. The control field contains some control flags of the frame,

e.g, the length of the data field and the reserved bit. The fault tolerant of the CAN

data frame is realized by the cyclic redundancy check (CRC) code which is appended

after the data field. The CRC field is designed to detect any error in the data packet

caused by transmission. And after CRC, two bits are assigned for acknowledgment.

The acknowledgment field confirms the receipt of a valid CAN packet.

Figure 1.1: CAN-frame in base format

1.2.2 Arbitration Mechanism of CAN Bus

CAN bus is a broadcast medium consisting of a series of nodes connected via a

twisted-pair cable with termination impedance at the end. It has two logical states,

the dominant 0 state, where the bus is driven by a voltage, and the recessive 1 state,

where the bus is grounded. CAN data transmission uses this bit-wise arbitration

method to decide which message should be sent on the CAN bus when multiple
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messages request the bus simultaneously. The arbitration rule is that the dominant

(logical 0) bits can always overwrite recessive bits (logical 1). More specifically,

CAN protocol implements the arbitration relied on the identifier field of the frame

with high-priority ID will win the bus arbitration while the node with low-priority

ID will be grounded because of losing the capability in transmission. The node with

lower priority who fails to transmit in the last time would automatically attempt to

re-transmit six bit clocks after the end of the last message. This makes CAN bus

system very suitable as a real-time prioritized communication system. Also, this

arbitration method requires all nodes on the CAN network to be synchronized on

the CAN network at the same time [21].

Since the CAN bus follows the bit-wise arbitration rule, the ID allocation is

very important because the arbitration is decided by the first 11-bit identifier. As

each frame starts with the 11-bit ID, the dominant bits overwrite the recessive pri-

ority bits of other frames transmitted at the same time. Only the highest priority

frame is received by all the connected nodes, while a lower priority device automat-

ically backs off when a recessive bit has been overwritten by somebody else. At

first, message IDs must be unique when transmitted on the CAN bus, otherwise,

two nodes would continue transmission beyond the end of the arbitration field (ID)

causing an error. Next, the manufactures should consider the message priority when

they allocate the IDs through the CAN bus. For example, they should assign those

critical real-time messages with high priority (the lower numerical ID). As a result,

bus usage can be achieved before any messages deadlines are missed [22]. A sender

ECU may include its unique ID number in the packet, and a receiver ECU retrieves
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the packet by identifying the ID of the sender. Thus CAN packet has no explicit

destination field.

The modern automobile may have up to 100 ECUs for diverse subsystems. An

ECU controls the specific maneuvers for his subsystem by sending out the messages

orderly and receiving the sensor data by decoding the messages through the CAN

bus. The messages sent out on CAN bus are distributed based on the ID preceding

the CAN frame. However, the ID is not the sender address nor the receiver address.

The ID represents the function of the message, and this function-mapping is defined

by the automobile manufacturer and is not disclosure to public. In practice, auto-

motive designers assign a set of IDs for each ECU and one ID could be assigned to

several ECUs as well. The overlaps in using message IDs would arouse a challenge

for the detection system, even the detection mechanism could find out the malicious

message based on the ID, he may fails in knowing who is actually sending this.

Thus, it is difficult to identify the malicious attacker just with the knowledge of the

message IDs.

1.2.3 CAN Bus Network Typology

CAN bus has different standardized speeds ranging from 5 to 1000 kBit/s.

Most common are 500 kBit/s and 100 kBit/s, while 500 kBit/s networks have higher

demands in terms of cables and CAN bus transceiver chips. Depending on the make

and model, there are several CAN buses in a modern car. The most prominent

reason for having more than one CAN bus is to guarantee the clear separation
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for safety in order to hold fault-tolerance in case one bus fails. The other benefit

is that using multiple buses could reduce cost as deploying the lower speed CAN

buses where high-speed CAN buses are not needed. Because of the difference in

the speed, there are two types of CAN bus layout, the high-speed CAN and the

low-speed CAN [5, 23]. Notice that for both high-speed and low-speed CAN, the

speed of the transition is faster when a recessive to dominant transition occurs since

the CAN wires are being actively driven.

ISO 11898-2 is the most used physical layer standard for high-speed CAN

networks. The data rate is defined up to 1M bit/s with a required bus length of

40 m at 1M bit/s. As shown in Figure 1.2, the high-speed CAN uses a linear bus

terminated at each end with 120Ω resistors. The high-speed standard specifies a

two-wire differential bus whereby the number of nodes is limited by the electrical

busload. The two wires are identified as CAN H and CAN L. The common mode

voltage ranges are from -2 V on CAN L to +7 V on CAN H. The node can be a

simple I/O device or an embedded controller with the CAN interface. The node may

also be a gateway allowing a standard computer to communicate over the USB or

Ethernet port to the devices on a CAN network. The linear topology CAN network

is usually used as a high-speed CAN bus for the critical automotive applications,

e.g, the engine and transmission.

The layout of low-speed CAN bus network is regulated in the ISO 11898-3

standard. It is also called fault tolerant CAN, uses a star bus and is terminated at

each node by a fraction of the overall termination resistance. Fault tolerant CAN

is often used where groups of nodes need to be connected together forming a sub-
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Figure 1.2: High-speed CAN Network ISO 11898-2

network. Since for this specification a short network was assumed, the problem

of signal reflection is not as important as for long bus lines. This makes the use

of an open bus line possible which indicates that low-speed drivers can be used for

networks with very low power consumption and the bus topology is no longer limited

to a linear structure. It is possible to transmit data asymmetrically over just one

bus line in case of an electrical failure of one of the bus lines. ISO 11898-3 defines

data rates up to 125 kbit/s with the maximum bus length and up to 32 nodes per

network are specified. The common mode voltage ranges are between -2 V and +7

V. The power supply is defined at 5 V. The low-speed CAN bus is usually used on

some non-critical applications, such as the entertainment system or display unit of

the vehicle.

In a real vehicle, both the two types of bus layout will be applied. Moreover,

the length of the bus network will be extended to 3-10 meters based on the scale

and design of the real vehicle. The physical layout of ECUs will not be altered after

manufacturing, even under cyber attacks where the attacker could easily achieve
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access on the bus but have no capability in changing the physical layout of the CAN

bus.

Figure 1.3: Low-speed CAN Network ISO 11898-3

1.2.4 CAN with Flexible Data Rate

CAN with Flexible Data Rate (CAN-FD) is an extension to the classic CAN

bus protocol. It is an improved CAN-based communication protocol, with higher

communication bandwidth (up to 8 Mbps for the payload) and increased payload

size (up to 64 Bytes) [24]. The CAN-FD protocol is designed with the goal to

increase the bandwidth while keeping unchanged most of the software and hardware

(especially the physical layer).

The CAN-FD protocol realizes the requirement for “real time” by minimizing

of delays between instruction and transfer of data (latency) with higher bandwidth.

CAN-FD also allocates more data capacity in the CAN-frame. As aforementioned,

the classic CAN has the capacity as 8 bytes in the data field, while CAN-FD can
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hold up to 64 bytes. This is accomplished through a decrease in relative overhead

and improvements to software simplicity and efficiency when transmitting large

data. CAN-FD also has decreased the number of undetected errors by improving

the performance of the CRC algorithm. In addition, CAN-FD is compatible with

the existing CAN networks, allowing the new protocol applied on the same network

as classic CAN. CAN-FD has been estimated to transmit data up to 30 times faster

than the classic CAN. Besides, CAN-FD protocol controllers can take part in normal

CAN communication. This allows a gradual introduction of CAN-FD nodes into

existing CAN systems.

1.3 Vehicular Ad-hoc Networks

Intelligent Transportation Systems (ITSs) [1, 25] have gained lots of popu-

larity in both industry and academia. In addition, to provide entertainment ser-

vices, the main motivation of ITS is to improve road safety and driving conditions

[7]. For example, by enrolling in the ITS, some critical driving conditions detected

by the in-vehicle embedded sensors could be shared with nearby vehicles or facil-

ity. Usually, VANETs are established with two types of communication, namely

Vehicle-to-Vehicle (V2V) communication and Vehicle-to-Infrastructure (V2I) com-

munication [26]. In V2V communication, vehicles communicate with nearby vehicles

to exchange information. Similarity, vehicles communicate with the infrastructure

installed along the road directly by the V2I communication. Dedicated short-range

communication (DSRC) radio [27] is the commonly used communication protocol
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for V2V and V2I communications in VANETs.

1.3.1 System Structure of VANETs

Figure 1.4: System model of VANETs

The architecture of VANETs involves various hardware and software compo-

nents. As shown in Figure 1.4, the VANET system consists of three major compo-

nents: OBU (On Board Unit), RSU (Road Side Unit) and trusted authority (TA).

OBU of each vehicle is connected with a sensor network to gather information such

as velocity, breaking information, etc. It can communicate with RSUs and OBUs of

other vehicles [28]. All RSUs along the road are interconnected with each other. TA

is connected to all the RSUs through a wired connection with the role in managing

the entire VANETs.

1) On Board Unit: Each vehicle is equipped with an OBU as a transceiver to
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communicate with RSUs and the other vehicles. OBU consists of resource command

processor (RCP), read/write storage, network device, and sensors. Sensors such as

global positioning system (GPS), tamper proof device (TPD), event data recorder

(EDR), speed sensor will collect information and send those readings back to the

OBU. Then OBU monitored and gathered the information to form messages, which

will be sent to neighboring vehicles and RSUs through wireless medium [28].

2) Roadside Unite: RSUs are generally stationary devices installed along the

roadside or at dedicated locations such as at intersections or parking spaces [29]. The

RSUs are equipped with network devices for dedicated short-range communication

with the OSU on vehicles as well as communication with the infrastructural network.

The main functions of RSUs include: (i) Extending the communication range of

VANETs by relaying the messages to other OBUs and RSUs. (ii) Running safety

applications such as traffic condition reporting or accident warning. (iii) Providing

Internet connectivity to OBUs.

3) Trusted Authority: TA is responsible for the trust and security man-

agement of the entire VANETs including verifying the authenticity of vehicles and

revoking nodes in the case of broadcasting fake messages or performing malicious

behavior [28]. Thus, the TA has high computational capability and sufficient storage

capability.

The ITS aims to provide solutions to road safety and the traffic congestion

problems. It improves the driving conditions by integrating information technology

in transport systems. Efficient communication channels play an essential role for the

ITS. Here, we will distinguish two possible types of communications in the VANETs:
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• Vehicle To Vehicle: V2V is communication between vehicles in the ad-hoc

mode. In this mode, a vehicle can receive, transmit or exchange valuable traffic

information such as traffic conditions and road accidents.

• Vehicle To Infrastructure: V2I is used to broadcast messages between

the network infrastructure and vehicles. It is usually for exchange of useful

information about road conditions and sensor measurements to be taken into

account. In this mode, a vehicle first establishes a connection with the RSU

and then communicates with external networks such as the Internet.

As a new emerging technology in transportation, VANETs differs from the

other ad-hoc networks as the basic entity in this network is fast moving vehicles.

To sum up, VANETs have the following unique characteristics compared to other

types of networks, :

1. Mobility: Vehicles in VANETs are normally moving at high speed. Therefore,

a little delay in V2V/V2I communication can result in many problems [30].

2. Dynamic Network Topology: The topology of VANETs is changing quickly

due to high mobility of the vehicles. This makes the VANETs vulnerable to

attacks and difficult to identify malicious vehicles.

3. Real-time Constraints: The transmission of information in VANETs has a

particular time limit range. This is designed to give the receiver sufficient

time to make decisions and take corresponding actions promptly.

4. Computing and Storage Capability: It is ordinary to process a large amount
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of information among vehicles and infrastructures in VANETs. Thus, the

computing and storage capability are absolutely a challenging issue.

5. Volatility: It is normal that the connections between two nodes in VANETs

just occur once because of their mobility. The connections between nodes

would remain for a limited period of time within a few wireless hops [31]. Thus,

it would be difficult to ensure the security of personal contacts in VANETs.

1.3.2 Security Issues for VANETs

The driving force behind VANETs is to provide comfort and safety to drivers

and passengers. Here, we outline the effective security mechanisms which should be

designed to ensure the appropriate operations of VANETs. The key security services

are availability, confidentiality, authenticity, data integrity and non-repudiation [28].

In Figure 1.5, the services and their corresponding threats are listed, which will be

elaborated next in this section.

Security Service in VANETs

Availablity Confidentiality Authenticity Integrity Non-repudiation

Deneial of Service (DoS) 
attack Jamming attack                 

Malware attack               
Broadcast tampering attack   

Black hole and gray hole 
attack Greedy behavior attack

Eavesdropping attack     
Traffic analysis attack 

Sybil attack               
Tunneling attack                

GPS spoofing          
Free-riding attack 

Message suppression attack 
Masquerade attack       

Replay attack
Repudiation attack

Threats and attacks

Figure 1.5: Security services in VANETs and the corresponding threats and attacks
[1]
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• Availability: Availability is a critical security requirement for VANETs. It

ensures that the network and applications remain operational even in the

presence of faulty or malicious conditions [32]. Several attacks are designed

to break the availability of the VANETs. In this category, the most famous is

the Denial of Service (DoS) attacks [33]. Inside or outside attackers perform

the DoS by jamming the communication channel or overriding the resources

in VANETs. The attackers may be distributed, which is the Distributed De-

nial of Service (DDoS) [34]. When malware is installed to operate the OBUs

and RSUs, attackers can penetrate into the VANETs to disrupt the normal

functionality.

• Confidentiality: Confidentiality guarantees that the data can be accessed

only by designated recipients who are not able to understand confidential

information that pertains to each entity [30]. If a mechanism lacks confiden-

tiality for the exchanged data in a vehicular network, exchanged messages are

particularly vulnerable to attacks such as the improper collection of clear in-

formation [35]. In these cases, the attacker can gather information about the

location of the vehicle or its routes, which may affect the privacy of individ-

uals. It is difficult to detect this kind of attack since it is virtually passive

and user currently is not aware of the collection. The typical example which

threatens confidentiality is the eavesdropping attack [36]. Eavesdropping is

the intentional attempt to get confidential information about the protected

data. The attacker could steal identity information or collect location data
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of a target vehicle in order to track that vehicle. The attacker may listen

to the message transmission and then analyze the frequency and duration of

messages to gather confidential information.

• Authenticity: Authentication is a mechanism to protect the VANETs against

the malicious entities, which is considered to be the first line of defense against

various attacks in VANETs [28]. All existing entities in the network must au-

thenticate before accessing available services. Any violation or attack involving

the process of identification or authentication exposes all the network to se-

rious consequences. Ensure authenticity in a vehicular network is to protect

the authentic nodes from outside or inside attackers infiltrating the network

using a falsified identity [35]. The importance of identificationauthentication

process comes from the fact that it is frequently used whenever a vehicle needs

to join the network or service. There are several types of attacks in this cat-

egory. For example, in Sybil attack, a malicious node forges a large number

of fake identities in order to disrupt the proper functioning of applications in

VANETs [37]. It makes an illusion to other vehicles that there is a traffic

jam and enforces them to change their routes so that the road will be left

clear. The authenticity is also threatened by the GPS spoofing attack. An

attacker can generate false GPS signals stronger than the original signals from

the trusted satellites to fool the vehicles to think that it is available in a dif-

ferent location [38]. In cooperative authentication scheme, vehicles may take

advantages of others’ authentication contributions and rarely make their own.
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Such selfish behavior is referred to as free-riding attack [39], which will pose a

serious threat to cooperative message authentication.

• Integrity: Integrity ensures that the content of a message is not modified dur-

ing transmission, which protects against the unauthorized creation, destruc-

tion or modification of data. The integrity might be hindered by the following

attacks. The most common is the message suppression/fabrication/alteration

attack. The attacker alters some part of the transmitting message to bring

about an unauthorized effect [40]. The masquerading attacker enters into the

VANETs system as a valid user with stolen passwords and creates false mes-

sages [41]. The attackers may continuous re-inject previously received beacons

and messages back on to the network, which will confuse the traffic authorities

when identifying the vehicles in emergency incidents [42].

• Non-repudiation: Non-repudiation in security means the ability to verify

that the sender and the receiver are the entities who claim to have respectively

sent or received the message [43]. The non-repudiation of data origin proves

that data has been sent and the non-repudiation of arrival proves that they

were received. In the VANETs’ context, since the manipulated data related

to the safety and privacy of the users, it should be always possible to verify all

hardware and software changes of security settings and applications (update,

modification, addition, etc.) [44].
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1.3.3 Trust Models for VANETs

Trust management is an inherent issue in VANETs. Various authentication

methods are developed to ensure the messages are sent from legitimate vehicles.

However, it cannot prevent a legitimate or internal vehicle from broadcasting bogus

or altered messages malevolently. These bogus or altered messages may not only

decrease transportation efficiency but also will cause accidents that may threaten

human’s life [45]. For example, vehicle A broadcasts a warning message to notice

the vehicles behind it that vehicle A is out of control. When vehicle B receives this

warning, it is crucial for B to determine the trustworthiness of the message and take

a quick response. In this case, it is impractical to ask neighbor vehicles or trusted

third party (TTP) for help due to the urgent time constraint. If this warning message

is bogus, it is dangerous for vehicle B to brake hard. As a result, how to establish

trust among authenticated vehicles becomes a serious issue. It is desirable that each

vehicle in VANETs can detect dishonest vehicles and the malicious messages sent

by them.

Because of the unique characteristics of VANETs, some challenges are pre-

sented for trust management such as decentralization and scalability [46]. More-

over, it is common that two vehicles may interact with each other just for one time

and there is no guarantee to meet in the future [47]. Thus, it is impossible to de-

pend on centralized systems such as TTP to build long-term relationships. Here,

we summarized the popular trust models applied in VANETs.

• Entity-centric Trust Models: Entity-centric trust models focus on evalu-
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ating the trustworthiness of vehicles by establishing a reputation system or

making a decision according to the opinions of neighbors. Several typical

works based on this scheme have been proposed. Minhas et al. [48] develop

a multifaceted trust modeling approach to detect entities that are generating

malicious data. This method incorporates role-, experience-, priority-, and

majority-based trust to make real-time decisions. Mrmol et al. [49] propose

a trust and reputation infrastructure-based proposal (TRIP) for VANETs to

quickly and accurately distinguish malicious or selfish nodes with the help of

RSUs. TRIP takes into account three different sources of information when

calculating the reputation score for each node: direct previous experiences

with the targeting node, recommendations from other surrounding vehicles

and, when available, the recommendation provided by a central authority.

Haddadou et al. [50] propose a distributed trust model to allocate credits to

nodes and securely manage these credits. It creates self-selection among the

network’s nodes and exhausts the credit for those nodes with bad behavior.

Generally, the correctness of data from other vehicles can be guaranteed. Due

to the high mobility of vehicles, it is difficult to collect enough information to

calculate the reputation score of a specific node. Moreover, how to ensure the

security of the reputation system itself is another critical issue that has not

been resolved.

• Data-centric Trust Models: Data-centric trust models focus on proving the

trustworthiness of the received data. In order to verify the trustworthiness of
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the received data accurately, the models need cooperative information from

various sources such as neighbor vehicles or RSUs. Gurung et al. [51] propose

a trust model to directly evaluate the trustworthiness of a message based on

various factors such as content similarity, content conflict, and route similar-

ity. Huang et al. [52] develop a voting system with different voting weights

according to the distance from the event. The opinion from the vehicle closer

to the event possesses higher weight when evaluating the trustworthiness of

a message. Rawat et al. [53] propose a deterministic approach to evaluate

the trust level of the received message by using received signal strength (RSS)

for determining the vehicle’s geolocation (position coordinate). Hussain et al.

[54] suggest email-based trust and social network based trust to establish and

manage data level trust. The main limitations of data-centric trust models

are latency and data sparsity. Respectively, a large number of data from vari-

ous sources may contain redundant information, which will increase latency or

overwhelm the significant information. On the contrary, data sparsity is preva-

lent in VANETs. It is unrealistic for data-centric trust models to perform well

without enough information.

• Combined Trust Models: Both entity and data based trustworthiness are

considered in this category. Combined trust models not only evaluate the trust

level of vehicles but also calculate the trustworthiness of data [55]. Thus, these

models inherit both the benefits and drawbacks of entity-centric and data-

centric trust models. Attack-resistant trust management scheme proposed by
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Li et al. [55] evaluates the trustworthiness of both data and mobile nodes to

cope with malicious attacks in VANETs. Trustworthiness of data is evaluated

based on the received data from multiple vehicles. Trustworthiness of a node

is determined based on functional trust and recommendation trust, which

respectively indicates whether a node can fulfill its function and what is the

trust level of it.

1.4 Hardware Assisted Solutions for Automobile Security

1.4.1 Motivations of the Dissertation Research

Nowadays, automobiles have evolved from mechanical devices to connected

communication platforms. Approximately 50-100 ECUs are installed in vehicles

nowadays and they are no longer isolated from the outside world. Indeed, smart

features such us adaptive cruise control, autonomous steering/parking, lane keep-

ing etc. are enabled by ECU controller and widely deployed in the vehicle system.

Each ECU is assigned with several functions and should be able to connect and

share messages through the bus system. CAN is the most commonly used proto-

col which allows the ECU to control the vehicle maneuvers by sending and sharing

messages through its bus system with the guarantee of timing predictability and

fault-tolerance for communication. Unfortunately, CAN has no mechanism for sup-

porting security protocols or for ensuring message confidentiality and integrity by

primary design. The lack of security in CAN bus has aroused much attention in

both industry and research. Moreover, the potential for interference in such attacks

22



is exacerbated by the increasing external connections with the in-vehicle control

network, including USB ports, Bluetooth, the mandatory OBD-II port and the ex-

tended connection to the VANETs [56].

Come to the VANETs related applications, GPS spoofing attack on vehicle

is a typical example. Nowadays, each vehicle of the VANETs is required to be

equipped with a positioning system (receiver) to achieve the applications in com-

munication and data sharing. GPS is typically used by the vehicle or the driver

for self-localization and navigation but the technology is also used for remote traf-

fic surveillance and collision avoidance on the VANETs. Despite for the in-vehicle

threatens, The major goal of spoofing attacks on an automobile GPS system is to

produce erroneous position signals to fool the navigation systems. Since many of the

functions and applications in VANETs are dependent on the civilian GPS signals

to locate and synchronize in the network, successful GPS spoofing attack can not

only hinder the location based applications but also facilitates other cyber attacks

as well (i.e., Sybil attack on VANETs). Besides, it is crucial for the VANETs to

prevent internal vehicles from broadcasting forged messages while simultaneously

preserving the privacy of vehicles against tracking attacks. However, there are some

challenges aroused by the intrinsic features of the VANETs, as the high mobility

makes it unpractical to build long-term interaction among vehicles. As a result, the

topology always changes rapidly in VANETs as well, which require an efficient but

low-cost verification for the enrolled vehicles of the network.

To mitigate those serious attacks aroused or to solve the bottlenecks of ensur-

ing security around vehicles, several techniques have been proposed for integrating
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security into the current CAN architecture and the VANETs [57, 58]. Similar to

traditional secure systems, these techniques rely on secure provisioning cryptogra-

phy algorithms, e.g., adding MAC scheme on CAN bus, applying encryption on the

GPS signal and establishing trust model based on cryptographic algorithms. How-

ever, using those standard and traditional cryptographic techniques to protect data

originality and integrity may violate timing constraints for both CAN and VANETs

communications. As a result, in this dissertation, we focus on searching some light-

weight schemes to handle those security vulnerabilities around the vehicles.

Specifically, we start from investigating the features of CAN protocol and pro-

posed automotive Intrusion Detection Systems (IDS) can be applied without causing

computational and communication overhead in the CAN protocol. Because of its

self-adaptive nature, IDS can be easily adapted in the automotive domain as a seam-

less extension to new vehicles. We then take use the CAN infrastructure to assist the

originality in GPS spoofing detection without any further hardware costs on equip-

ment. Besides, we also brought up a blockchain based trust management system.

Blockchain is believed to be a secure and decentralized computational infrastruc-

tures, which could provide a disruptive solutions for the problems of centralization,

privacy and security when storing, tracking, monitoring and sharing data. The veri-

fication process assisted by blockchain is light-weight thus it is a promising candidate

for implementing the certification verification on VANETs. We exploit the features

of block-chain to establish distributed trust management while simultaneously pro-

tect the privacy of vehicles for the VANETs.
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1.4.2 Contributions of the Dissertation Research

To address these security issues aroused around the vehicles, we are aiming to

find security solutions for the automobiles in this dissertation. Specifically, we are

focusing on several security primitives: IDS, side channel attacks, spoofing attacks,

trust models and blockchains.

In sum, the contributions of this work are highlighted as the following:

• First, we present two effective IDSs for the CAN network. The first IDS relies

on monitoring the entropy changes on the identifier field of the CAN frame.

This entropy-based IDS is designed to cover the common CAN messages injec-

tion attacks. The other one is based on the physical layout of CAN network

which could detect compromised ECUs by identifying the changes of delay.

These physical property-based IDS could identify injection attacks as well as

impersonation attacks by fingerprinting the sender ECU.

• Then, we study the vulnerabilities along with the PnS-CAN protocol. We

identify that the characteristics of CAN bus can be utilized to extract the

secret key during execution of the protocol. To demonstrate this, we have

launched successfully side-channel attacks on this protocol.

• Next, we move the scope from the internal vehicle CAN bus protocol to exter-

nal vehicle applications. By making use of the informative CAN bus data, we

proposed a low-cost GPS spoofing detection method. Besides, the data col-

lected from the in-vehicle network is believed to be authenticated and trusted
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by the IDS we proposed, which does not need any interference by the third

parties.

• Finally, we exploit the features of block-chain to establish distributed trust

management while simultaneously protect the privacy of vehicles for the VANETs.

All the messages are recorded in the blockchain as persistent evidence to fur-

ther evaluate the reputation score. The reputation score provides an incentive

for internal vehicles to prevent misbehaviors.

1.4.3 Organization of the Dissertation Research

In this dissertation, we first propose two kinds of IDS on the CAN bus sys-

tem and demonstrate their functions to detect three types of regular attacks on

bus. The details of this work are illustrated in Chapter 2. In Chapter 3, we study

the new key exchange protocol, i.e, the Plug-and-Secure protocol with CAN bus

(PnS-CAN), and investigate the physical leakage on this protocol. Besides, by uti-

lizing the rich in-vehicle data, we build a GPS spoofing detector for automobile

applications as illustrated in Chapter 4. In Chapter 5, We design a trust model to

improve the trustworthiness of messages sent on the VANETs, which is based on the

blockchain technology. At last, we conclude in Chapter 6, with future work direc-

tions in machine learning based IDS solutions and high-efficient blockchain solution

for VANETs .
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Chapter 2: Intrusion Detection Systems for CAN bus

2.1 Introduction

With the recent aggressive push of autonomous vehicles, many ECUs are intro-

duced for data processing and communications between inside the vehicle network

(through the CAN bus) and the VANETs [59]. Moreover, the applications of the

vehicle network make the vehicle as a connected device to the Internet of Things

(IoT), not just a traditional physical part. As vehicles adopt more connectivity func-

tions to the external network, security threats on electronic controllers of vehicles

are highly rising. With safety remains the most important concern for automakers,

security is now gaining lots of attention because a compromised ECU or faked com-

munication messages can cause fatal failures just like mechanical problems. It has

been shown that attacks can be successfully launched on cars to cause severe impacts

on the normal driving behaviors [3, 5]. Indeed, the security level of vehicles should

be set higher than those for other smart devices because cars could become critical

threats to human life once they are attacked. By injecting malicious CAN messages

through those ports, the attacker could cause intentional malfunctions to a wide set

of components including the engine, instrument panel, radio, heating, lights, brakes,

etc. These attacks are primarily facilitated by injection from the connecting ports
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to the CAN bus network. Despite the injection attack on the CAN bus, another

kind of attack as the masquerade attack has gained increasing attention nowadays.

This kind of attack is more severe than the regular injection attack as the attacker

hide his identity when launching the intrusion which is difficult for the system to

discover. To efficiently defend this, one possible method is to find out the real sender

by fingerprinting the sender ECU.

When the in-vehicle serial communication network was designed in the late

1980s, there was only about 1% electronic equipment in the vehicle system. Thus

the original design requirements of such network at that time were merely to connect

the limited in-vehicle ECUs. A simple message broadcasting based communication

protocol, known as the CAN, was used for this purpose without any consideration

of security. Not surprisingly, due to its lack of security concerns and protection,

CAN’s vulnerabilities are exposed to the attackers and become a major target for

a variety of threat models. Those successful attacks demonstrate that without the

intrusion detection or authentication methods, it becomes very challenging for the

CAN-based communication network to defend emerging attacks such as message

replays, injections, and modification [60, 61]. Nevertheless, the important role that

CAN plays in the communication of vehicular systems has made it an irreplaceable

component and thus the research community has continued its efforts in seeking

secure and efficient protection method for the CAN network.

28



2.2 Countermeasures and Current Status of IDS

As discussed above, the simple design of CAN bus makes it vulnerable to cyber

attacks from the outside and security has become the primary issue. Generally

speaking, there are two kinds of countermeasures to defend against attacks on CAN

bus: message authentication and intrusion detection.

Message authentication code (MAC) has been successfully used in other se-

curity applications, but it is highly restricted by the nature of CAN that was not

designed for security. Several cryptographic techniques have been proposed for in-

tegrating security into the current architecture [57, 58, 62]. Similar to traditional

secure systems, these techniques rely on secure provisioning of symmetric keys within

the nodes on the CAN bus. However, secure and robust provisioning, maintenance

and update of cryptographic keys within the automotive supply chain can incur

significant overhead and may require changes to the automotive manufacturing and

servicing facilities. The implementation is also limited by the payload of the CAN

message which is only 64 bits. For example, if we want to implement SHA256 with

CAN bus payload, it will need 8 messages to finish an authentication code. Obvi-

ously, it will introduce inevitable delays for the whole system. This stems from the

fact that the CAN protocol allows only for 64 bits to be used for payload. That

is, implementing the SHA256, for example, using the CAN protocol will lead to an

overhead of eight messages to carry the computed SHA256 code; an 800% increase

in the communication bandwidth. This large increase in the communication band-

width will degrade the performance of the system in terms of its ability to satisfying
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the required hard timing constraints. When the message is safety critical, such as

emergency stop, this could result in a life-threatening incident.

To ensure the security of the CAN bus and reduce the complexity introduced

by cryptographic algorithms, intrusion detection systems are proposed to employed

with the CAN protocol. The aim to develop IDS is to detect anomalies on the

messages and alert the system when monitoring the bus transmissions. Existing

automotive IDSs can be summarized into two categories: message-content (data)

based IDS and physical-based IDS. First, data-based IDS usually focuses on the

messages transmitted through the bus to find any abnormal in the contents or

sequence. The data contents would be changed if the attacker presents includes the

message ID [63], the payload [64] and the frequency [65] or message sequences [66].

By taking use of information theory models or machine learning models [67], the

changes from the contents could be detected. The advantage of data-based IDS is

that it is easy to detect data alteration/fabrication attacks and spoofing attacks with

appropriate pre-learned models. But the drawbacks are that it could not efficiently

identify the impersonation attacks. For example, if ECU A shuts down ECU B

using bus-off attack, and then he could impersonate ECU B by sending malicious

messages on the bus, which is difficult to be detected by the content-based IDSs. On

the contrary, the other main kind of IDSs, the physical-based attacks, are monitoring

the changes of physical related properties on the bus, e.g., the clock-skew, the voltage

level and the transmission delays. By exploring the clock-skew of different ECUs,

it could fingerprint the sender of the malicious messages [68]. The other voltage-

based attacker identification takes use of the voltages changes on the network to
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identify the attacker ECU. The first proposed voltage based scheme is called Viden,

which exploits the voltage measurements to construct and update the transmitter

ECUs’ voltage profiles as their fingerprints [69]. VoltageIDS is also a voltage-based

IDS, it is the first automotive IDS capable of distinguishing between errors and the

bus-off attack [70]. Those physical-based IDS would require attack samples about

measurements to training its model. Hence, it ends up being unpractical since it is

not feasible to apply with the vehicle system.

2.3 Adversary Models and Attack Scenarios

Before introducing the IDS framework, we first define and elaborate the ad-

versary models in this section. Specifically, we would describe the attack interfaces

which the adversary would take advantage use and also the specific attack scenarios

we try to tackle for the proposed IDS work.

2.3.1 Attack Interfaces

The main goal of the adversary is to transmit malicious CAN messages inten-

tionally causing malfunctions of the vehicle without being suspected by the detection

mechanism. Car hacking experiments show that the attack interfaces the adversary

could get access to the in-vehicle communication network are restricted to several

locations. Usually, the adversary would invade the in-vehicle network through two

common physical attack surfaces: either by directly plugging into the OBD-II port

or using remote wireless communication interface. As shown in Figure 2.1, both the
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OBD-II port under the driving panel and the antenna on the roof are circled. For

the directly wired insertion, the attacker can insert his device to collect CAN log

data through the OBD-II port. For the wireless connection, the attacker can use the

wireless channel to inject messages through the ECU attached to the antenna. In

most cases, the positions the adversary uses are fixed on the vehicle during the at-

tack. Once set up the attack interface, it is unnecessary for the adversary to change

it. For the accessibility of the adversary model, we assume that the adversary can

compromise an in-vehicle ECU through numerous attack surfaces, and thus gain its

control. Once an ECU is compromised, we consider the adversary to be capable of

performing at least the following malicious actions. The adversary can inject mes-

sage with forged IDs or his legal IDs, change the frequency of the messages. Also,

since CAN is a broadcast bus, the adversary can sniff messages on the CAN bus.

Figure 2.1: The attack interfaces of CAN bus and the CAN bus layout in real vehicle
[2]
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All the facts discussed above are considered as the general adversary model

for our proposed two kinds of IDS. For the entropy-based IDS which relies on mon-

itoring the changes on the contents, we consider the attacker can take use of both

the physical connection and wirelessly connected interfaces, there are no significant

differences for which interface the attacker applied, since the behavior we try to

monitor belongs to digital signal (i.e., whether this bit is 0 or 1).

For the delay-based physical IDS, which relies on the physical location to de-

tect the adversary. We consider an adversary that is capable of injecting malicious

messages on the CAN bus through the fixed ports. However, we assume that the

adversary has no capability in modifying the physical layout of the CAN bus. The

only method he could modify the layout is by breaking into the vehicle, which could

make it discovered easily. Also, even though he could break into the layout and

install the malicious ECU, he could not dynamically change the location of the ma-

licious ECU. During the injection, the adversary can only modify the identifier and

the contents of the messages, which is the same as the general injection assumption.

2.3.2 Specific Attack Types

2.3.2.1 Injection Attack

A straightforward yet quite threatening attack on the CAN bus is the message

injection attack. To achieve this, the adversary first connects to the in-vehicle

network through the interface and then starts to inject malicious messages onto the

CAN bus. The proposed injection attack typically involves injecting fake packets
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with modified identifiers and phony data values. This injection attack is the main

focus for the contents based IDS, which refers to our first proposed entropy-based

IDS. Therefore, when discussing the content-based IDS, we would like to elaborate

on this type of attack by two sub-groups: the strong injection attack and the weak

injection attack. Meanwhile, we propose four specific injection attack scenarios

to test the effects of our entropy-based IDS which naturally falls into these two

categories. The practicability of such an adversary model has already been proved

and demonstrated in [22, 68].

For the weak adversary model as shown in Figure 2.2, the comprised ECU

can only send out messages with the specific IDs assigned to it. That is to say, the

attacker is restricted in selecting CAN IDs for malicious messages. This mechanism

relies on the transmitter filter installed outside of the ECU to stop the malicious

messages without valid ID sending on the CAN bus. To hamper the communications

on the CAN bus, a weak attacker can only send messages with limited IDs, which

are legal to the filter.

Under this weak adversary injection model, we design one specific attack which

would be tested in the entropy-based IDS.

(Weak Adversary Model - Messages Injection with Fixed CAN ID): This

scenario is categorized as week model because the attackers can only control the

ECU, but cannot control the transmitter filter. That is to say, the attacker can

only transmit the fraudulent messages with assigned IDs. Even though the control

power is limited in the weak model, the attacker can also break the availability of the

CAN bus system by sending out useless massive messages into the bus system. That

34



Figure 2.2: Weak attack model for the CAN bus. Here, the attacker can only send
ID A0 on the bus

happens when the dummy messages sent by the attacker are dominant the original

messages transmitted at this time. By manipulating the frequency of messages, the

attacker can gain the bus control just using a limited number of CAN IDs.

In contrast, for the strong attack model, the attacker could send out messages

with any IDs on the CAN bus, which is illustrated in Figure 2.3. Thus, the attacker

with strong capabilities would realize in hampering the communication on CAN bus

by two purposes. First, the adversary could send malicious messages with higher

priority IDs (leading zeros are in the front, e.g. 0000XXX) to override any periodic

messages sent by a legitimate safety-critical ECU. Those malicious messages might

be targeted to some operational receivers as the victim ECUs. As a result, the

receiver ECUs would get distracted, inoperable or executing errors. Second, by

sending messages with higher priority IDs, the compromised ECU could win the

bus arbitration for a period of time and stop the legal ECUs sending their regular
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messages, which indeed hinders the regular operations of the CAN bus. In other

words, the adversary could maliciously stress the bus and compromise the usability

of the other users just like flooding attacks.

By considering this strong attack capability, we designed three corresponding

specific attack scenarios listed as follows,

(Strong Adversary Model - Flooding Message Injection): In this scenario,

the attacker aims to break the availability of the CAN bus by sending out useless

massive messages on the bus. The attacker could completely control a compromised

ECU in this scenario. This kind of attack is usually accomplished by injecting CAN

messages containing the most dominant identifier, i.e. 0x00. But this assumption is

challenged by the CAN transceivers have the detection mechanism for zero overloads

on the CAN bus. Specifically, if the transceiver sees the bus is always transmitting

0 (high voltage), it will automatically shut down the transmission by pulling the

high voltage to low. A more efficient strategy for the attacker which avoids being

exposed to the transceiver detection mechanism could be an attempt in sending

messages with changeable IDs. This modified flooding attack mislead the detection

mechanism and is difficult to be discovered by the transceivers. Besides, as there

are no specific receivers for those malicious messages on the bus, which makes the

abnormal traffics could not be reported by the victim receivers as well. As a result,

the attacker should make a trade-off between the number of injected IDs and expo-

sure to the detection system. For instance, if the attacker keeps sending flooding

messages with changeable IDs, those messages will overwhelm the regular commu-

nications and cause significant changes on the CAN bus. On the other hand, the
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attacker will expose himself to the detection scheme by making obvious changes on

the CAN bus. As a sequence, if the compromised ECU is easy to be found out and

shut down forever, it cannot mount attacks on the CAN bus anymore.

(Strong Adversary Model - Message Injection with Single CAN ID): In

contrast to the flooding scenario discussed above, the attacker could narrow down the

number of IDs he uses to conceal himself from the abnormal detection schemes. Let

us suppose in this scenario, the attacker injects the malicious messages with single

CAN ID for two purposes: first, he wants to win the bus arbitration from the other

low priority IDs thus stopping the transmission of useful messages on the bus; second,

the malicious attacker could manipulate the contents of messages meaningfully and

send them out with the fixed ID which would disturb the functions of the receiver

ECUs. From the above discussion, we can find out that the second task is the

following extension of the first one. The attacker can choose from those two tasks

according to his purpose. If he only focuses on disturbing the CAN bus as the first

task, he can arbitrarily select the injected ID from the whole ID set. Otherwise, if he

wants to achieve both the first task and the second, he needs to carefully select the

injected ID from the ID set and use it for a targeted function. As mentioned before,

the distribution of CAN ID is assigned by the vehicle manufacturer and only around

10% to 20% IDs are used in the CAN network, e.g. for the 2016 Ford Fusion we used

for testing, only 223 IDs are valid, which takes 10.88 % of the whole ID set (2048

in total). The other IDs are never used by any ECUs in this car. For this scenario,

we assume that the injected IDs are picked from the valid CAN ID pool. From the

other aspect, this attack can be categorized as the increasing frequency attack [22],

37



which the specific IDs are sending out with higher rates. And the author proposed

to counting the time interval of each ID to detect the injection. However, collecting

and calculating the time interval of all ECUs would introduce delay overhead, it is

infeasible for the device to respond in real-time.

(Strong Adversary Model - Message Injection with Multiple IDs): The

same attack set-up as the second scenario, but this time we assume that there

are multiple attackers with different injected IDs, or the attacker chooses to inject

messages with multiple IDs. That is to say, the balance of the bus would be disturbed

by two or more CAN IDs. This makes inferring the faked IDs more difficult as the

multiple sources would influence the ID distribution together and it is not easy to

figure out who is the malicious ID. But on the contrary, multiple participated IDs

may also cause entropy changing tremendously on the CAN bus, which makes the

alert detection more confident.

Figure 2.3: Strong attack model for the CAN bus. Here, the attacker can send
arbitrary ID on the bus
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The physical IDS will be able to detect those aggressive injection attack dis-

cussed above. However, since it could be also detected by the other contents based

IDS instances as well, we would put this kind of attack on low priority and would em-

phasize the superior detection capability for the other, more sophisticated attacks,

discussed as follows.

2.3.2.2 Masquerade Attack

Masquerade attack is a kind of sophisticated in-vehicle attack first proposed

and demonstrated in [68]. The objective of a masquerade attack is to manipulate

an ECU that is in charge of a safe-critical function while hiding the fact that the

ECU is compromised. To mount a masquerade attack without being detected, an

adversary needs to suspend a target ECU and then inject malicious CAN messages

without notice by the other ECUs. When a legitimate ECU is incapacitated, the

masquerading ECU would broadcast fake packets in its place at the same frequency

or it takes other action to cover any broadcast time-shifts. In fact, for the masquer-

ade attack, the CAN ID and message contents may not change based on the attack

strategy, thus making it difficult to be detected by the contents based IDS. How-

ever, after taking over the transmission of the legitimate ECU, the attacker starts

to transmit malicious messages at a different physical location. Therefore, another

detection option considered in this chapter is proposed to detect the masquerade

attack by utilizing the information from the physical layer of transmission.
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2.3.2.3 Bus-off Attack

The bus-off attack is proposed by [22]. In this attack, an adversary who has

an remote access to the in-vehicle network performs simultaneous transmission of

bits in fields other than the identifier field. Due to this simultaneous transmission,

a target ECU will enter the bus-off mode with loss of the bus transmission. As a

result, the bus-off attacker can intentionally suspend the target ECU. The bus-off

attack could be achieved with both the wireless injection and the direct attached

injection through the OBD-II port. No matter which attack interface is applied,

the location for the injection is fixed on the bus. Also to launch the bus-off attack,

it usually requires several cycles (128 or 256) to make the counter overflow thus

entering into the bus-off mode. To tackle this bus-off attack, one solution is to

distinguish the transmitters even though they simultaneously transmit the message

bits. The counter capacity in terms assist to accumulate the delay changes over the

cycles. Our proposed delay-based plug-in-monitor IDS could achieve this by finding

the delay difference of the two transmitters, as the bad ECU is supposed to transmit

at a different location from the legitimate ECU. Accordingly, we could detect the

malicious messages generated from the attack ECU in the bus-off attack as well.
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2.4 Entropy-based Approach

2.4.1 Framework of Entropy-based Intrusion Detection System

Our proposed entropy-based IDS is deploying on the 11-bit identifier part of

the CAN frame. We will discuss the implementation details in this section.

2.4.1.1 ID Binary Entropy Definition

The identifier (11 bits) in CAN frame represents the message’s priority as well

as its functions, but without the transmitter or receiver information. For example,

a message containing wheel speed values might have ID=0x31, and the message

which contains the engine temperature values has the other ID such as ID=0x20.

Notice that the IDs are assigned by the manufacturers, and even are distinct among

different models from the same manufacturer. Only one ECU is assigned to transmit

a given ID at a time, but one ECU could have multiple assigned IDs for different

functions. Besides, several ECUs might be allowed to transmit the same ID, but not

at the same time. That is to say, a specific ID is not unique for one ECU and could

be received by different receivers as well. Indeed, traffic in automotive networks is

much more restricted. Every packet in a vehicular CAN network and its possible

data content are specified. The permitted value range is defined as well as the length

of every signal and the packet function. The basic frame format has an 11-bit ID,

whereas an extended format has a 29-bit ID. We will use the basic CAN ID format

(11-bit) because it is much more prevalent, however, the detection method proposed
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here is not dependent on the type of format, and it could also be applied to the

extended format.

We use the probability of ‘1’ occurrence at each bit to represent the distribution

of that bit. As defined in the following,

Definition: pi = # of messages where Bit i is 1/total number of messages.

The range of pi is from [0,1]. The binary entropy function H(p) is defined as the

entropy of a Bernoulli process with probability p. If Pr(X == 1) = p, then Pr(X ==

0) = 1− p and the entropy of X in Shannon is given by

H(X) = Hb(p) = −p log2 p− (1− p) log2(1− p) (2.1)

Our proposed entropy-based IDS is deploying on the 11-bit identifier part of the

CAN frame. We will discuss the implementation details in this section.

2.4.1.2 Entropy-based Detection Scheme

The first step of the ID entropy detection approach is to generate the golden

template by calculating the binary entropy in regular communications. Data col-

lected from the real CAN bus in a 2016 Ford Fusion vehicle shows that the entropy

values are steady under normal driving maneuvers. The raw CAN data we collected

are from different driving situations, e.g. turning the audio on, turning the light on,

driving with cruise control and so on. We observe that the entropy distribution on

each bit of ID field only changes slightly in these different testing scenarios. The

variation is small (e.g., from the range 1e−8 to 9e−8) which is confident to prove
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that the entropy is steady under normal driving. Therefore, we build the golden

model based on the normal CAN bus data which later can be used to compare with

the CAN bus data under attack. If the entropy value changes significantly from the

golden template, it will be classified as being attacked. The golden entropy value

of the in-vehicle network is generated from 35 different real road tests on the 2016

Ford Fusion, including the road tests and the engine tests.

Let Ĥ = {H1H2H3 · · ·H11} be the binary entropy vector measured from the real

CAN log data. We get the golden template Ĥtemp by averaging 35 measurements

from diverse driving behaviors. For each bit in the template as Hi ∈ Ĥtemp, we

calculate the range of it as max(Hi)−min(Hi). And the threshold for detection can

be acquired as a positive multiple of the range, expressed as Th = κ(max(Hi) −

min(Hi)), where κ is the coefficient which determines the margin of the threshold.

The value of κ is chosen from κ = [3, 10] empirically. In this experiment, we choose

κ =5. The golden template extracted from the regular communications on CAN bus

is shown in Figure 2.4. The template is an 11-bit vector as we measure the binary

entropy for each bit.

In the detection procedure, we compare the binary entropy to the template

and calculate the entropy change bit by bit. If the entropy change is larger than

the threshold, we will suspect that the CAN bus is under intrusion attack, and the

system will send an alert signal. If the entropy change is below the threshold, this

change will be treated as a normal drift.

Figure 2.4 illustrates one example of binary entropy changes due to the injec-

tion attack. The golden template is represented in left side colored in red and the
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Figure 2.4: Golden template and an example when injection attack causes changes
on the identifier bit

entropy result under attack is shown on the right side. First, it is evident to figure

out some changes of bits, e.g., Bit 6, Bit 7 and Bit 11. On the occurrence changes at

some specific bits, we attempt to infer the malicious ID from the difference between

the test entropy and the golden template. As Figure 2.4 shows, Bit 11 changes in

positive direction, i.e., from 0 to 1. As a result, we can infer that the injected ID

would be 1 on Bit 11. On the contrary, negative values would indicate that this

bit of malicious ID is probably to be 0. Therefore, we could eventually infer the

malicious IDs by monitoring the bit changes in several positions. For example, the

most possible injected ID, in this case, could be xxxxx00xxx1 (x means unknown

for this bit). From this clue, we could narrow down the space for searching the

malicious ID.
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2.4.2 Evaluation and Experimental Results

In this section, we first discuss and define the metrics used to evaluate the

detection system. And then we present our experimental results got from tested in

the attack scenarios discussed before, which demonstrate that our entropy detection

system is effective on the discussed types of attacks.

2.4.2.1 Experiment Set-up

For the application of the information-theoretic measures introduced above,

access to the network traffic of a vehicle is required. In our set-up, we use the

Vehicle Spy 3 Professional software tool connecting a 2016 Ford Fusion internal

CAN network through the OBD-II port. And the baud rate is set as the standard

for the CAN network: 125M bit/s for the middle-speed CAN and 500M bit/s for the

high-speed CAN. We conduct our tests and experiments on the data acquired from

the middle-speed CAN bus in this section, however, our detection method would

also work for high-speed CAN bus.

2.4.2.2 Injection Rate and Detection Rate

We define the Injection rate Ir as the proportion of successfully injected mes-

sages on the bus over the total number of messages the malicious ECU sends to

compete for the bus arbitration. The injection rate is relevant to the priority of the

message which represents its capability to mount the CAN bus. As the CAN bus’s

arbitration relies on the numeric of ID, different IDs would win the bus arbitration
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with different probabilities. For example, if the regular message transmitting on the

bus has a higher priority ID, the attacker would fail to send his malicious message

on the CAN bus. The number of times the attacker win the bus over the total times

he tries in a fixed period of time should be a good metric to evaluate the capability

of the CAN ID, which is the injection rate defined here. On the other hand, if the

attacker wants to accomplish his attack, he needs to select the proper ID in assisting

him to win the bus arbitration. For instance, if the attacker chooses the IDs with

higher priority (smaller value in decimal), he would have more chances to win the

bus arbitration, which in turn results in increasing the number of injected messages

overall.

We calculate the injection rate defined above and select some typical IDs from

the CAN log data and the results are shown in Figure 2.5. The Injection rate is

high when the numeric value of ID is smaller and will decrease with the numeric

value of ID increases. That is due to the arbitration scheme of CAN bus as on bit

level bit 0 always dominants bit 1. The injection rate is significant as it represents

the destructive power of the attacker and also it highly relates to the detection rate

which we will explain in the following.

The detection rate as Dr in our intrusion system is defined as the proportion of

successfully detected attacks over the total number of attacks. In a period evaluation

time (e.g., 5s), if the detection system observes the entropy changes is above the

threshold, it will treat this attack as detected. That is to say, the detection rate is

the proportion of attacks that are correctly identified.

Obviously, the detection rate is highly related to the entropy changes on the
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Figure 2.5: Injection and detection results for different identifiers

CAN bus. And the entropy change is influenced by the number of injected messages.

Moreover, the number of injected messages depends on three parameters: the injec-

tion rate Ir of a specific ID, the injection frequency f . Thus, the total number of

successfully injected messages can be expressed as a product shown in the formula

#of injected messages = Ir × f (2.2)

If the malicious attacker attempts to increase the success rate of injection

during a fixed period of time, he should either choose the ID with higher injection

rate or increase the injection frequency. To demonstrate the relationship between

injection rate and detection rate, we test 15 selected IDs under the same injection

frequency f and evaluation period T0.

As the results are shown in Figure 2.5, the detection rate (blue line) decreases
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along with the injection rate. That is because the total number of injected messages

on the CAN bus would decrease which makes the entropy changes imperceptible. As

a result of this, the detection rate of this scenario would decrease. The conclusion

is that for just single ID injection attack, if we keep the inject frequency the same,

the detection rate (sensitivity) is positively correlated to the injection rate.

2.4.2.3 Inferring Malicious IDs

The entropy-based IDS we designed will accomplish two tasks: 1) Detect the

entropy changes and demonstrate the evidence of the attack; 2) Find out the injected

IDs along the messages and alert to the system for those malicious IDs. Here, we

will discuss how to infer the malicious IDs based on the changes of the entropy

observed on CAN bus.

Continued with the example discussed before, if we observe the first bit of ID

(Bit 1) changes, we can infer the corresponding bit based on the direction of changes.

Assume the Bit 1 changes in negative direction (decreases), the corresponding bit

of the ID will be 0 of high probability. Then we can select those IDs in the ID pool

whose first bit is 0 as the candidates. By continuing this procedure and combined

observed changes on the other the bits, the range of candidates would be narrow

down. However, this inference is non-deterministic as we have no clues on the other

unchanged bit, which could be either 0 or 1. As a result, we propose a rank selection

method to evaluate the accuracy of the hit rate when searching the malicious ID.

The procedure works as follows, we select the first n rank IDs as the candidates
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which meet the constraints derived from the entropy changes. If the malicious one

is in the candidate set, we will mark this detection as a hit. We use the hit rate to

evaluate the efficiency of the inferring. Due to the arbitration rule in CAN bus; the

ID would be more powerful in the injection if the most significant bits are 0. As a

result, we sort the IDs in ascending order, which means the preceding elements in

the sorted list would have a greater probability to be the malicious target. Then,

we search the target from the candidate set. If there is a hit, we will mark this

as a successful detection. By calculating the hit rate, we can evaluate the success

and effectiveness of our IDS system. The results of hit rate (inferring accuracy) for

different attack scenarios are shown in Table 2.1. For all the tests in our experiment,

we set rank=10, which indicates each time we select the first 10 identifiers as the

candidates.

2.4.2.4 Results Analysis of Different Attack Scenarios

We evaluate the feasibility of the proposed IDS on the four attack scenarios

discussed above. First, we evaluate the detection rate of different scenarios to verify

the accuracy and efficiency, and then we discuss on the tractability for the malicious

ID under different attack scenarios.

In the evaluation procedure, we test the detection rate under several circum-

stances, which is with randomly flooding injection, single message injection, and

multiple messages injection, restricted ID message injection in weak mode (WI) with

different injection frequencies (i.e., 100Hz, 50Hz, 20Hz and 10Hz). The detection
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rates averages from different frequencies for the 4 basic scenarios are summarized in

Table 2.1.

Attack scenarios Detection rate Inferring accuracy
Flood 100% —-

Single Injection 91% 97.2%
Multiple Injection 2 97% 91.8%
Multiple Injection 3 97.2% 88.5%
Multiple Injection 4 99.97% 69.7%

Weak Injection 93% 96.6%

Table 2.1: Results of detection rate and inferring accuracy from different injection
attack scenarios for the entropy-based IDS

In the flooding attack scenario, the attacker’s aim is to hamper the bus com-

munication with many faked messages. It would cause dramatic entropy changes

and thus this attack is the easiest one for detection. However, as the attacker arbi-

trary chooses the injected IDs without clear preference, it is infeasible to infer the

injected IDs based on the random changeable entropy. But if the attacker keeps

sending flooding messages with different IDs, it will be easily detected by the filter

in the gateway. Besides, it will leak some side-channel information to the internal

detection sensor of this system as it is mounted on the bus for such a long period

of time. For example, the power consumption and the requests for communication

will be distinct for this attacked ECU.

For the single message injection, the attacker injected one specific ID with

the purpose of influencing the target ECU. First of all, this injection would cause

entropy changes on the CAN bus and our intrusion system would have in average

91% rate to figure out this attack. Note this result is the average on every test

CAN IDs including those with lower injection rate. For those CAN IDs with higher
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injection rate, the detection rate could be as high as 100%. In this scenario, it

is easier to infer the malicious ID based on the entropy changes, so the inferring

accuracy is as high as 97.2%.

Then, we test and evaluate for multiple ID injections where the attacker would

inject messages with multiple IDs randomly selected from the ID pool. First, in this

scenario, messages with multiple CAN IDs are injected into the CAN bus causing

such complex changes than the single message injection. The basic approach to

detect the multiple injection messages starts with extracting the clues for inferring

the ID based on a combination of the entropy changes. To achieve the purpose, we

need to analyze not only the change direction but also the changing rate of each

bit. We modified the selected algorithm to derive new constraint for the selection.

Compared with the result in the single ID injection, the average detection rate is

higher as multiple IDs are used, which is due to the increase of the injection rate.

However, the accuracy of inferring malicious IDs decreases when having multiple

injected IDs. That is reasonable as the disturbance of multiple sources makes the

algorithm difficult to select the exact combination of malicious IDs. Moreover, the

inferring accuracy would decrease with adding more IDs which is also demonstrated

in Table 2.1. We test the multiple injection attacks with 2, 3 and 4 injected IDs

respectively and the injection rate keeps going up as we enlarge the number of IDs

while the inference accuracy goes down because of the disturbance of multiple IDs.

As we mentioned above, the multiple ID injection is restricted by the filter and in

real applications, it is challengeable for the attacker to have a fully-compromised

ECU on the CAN bus. With 4 and more injection IDs, the compromised ECU would
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be easily figured out by the gateway filter which is similar to the flood attack.

We also complete the same test on the weak adversary model, which the at-

tacker is restricted by the sender filter. Thus he can only send the messages with

the ID assigned to him. The detection result is same as the single message injection,

however, the inferring accuracy is a bit lower than the single ID injection, because

the attacker is not restricted to inject single ID on the bus, he can manipulatively

change the entropy by using multiple IDs he could legally send.

From results discussed above, we could find out that the success detection

rates are all above 90% for all the scenarios. And the inferring accuracy for several

scenarios is all above 90% as well. Moreover, with our golden entropy model, we

are able to successfully detect almost all the attacks (the 2nd column in Table 2.1)

and locate the malicious message ID except the flooding attack (the 3rd column in

Table 2.1).

2.5 Delay-based Approach

2.5.1 Framework of Delay-based Intrusion Detection System

To cope with the sophisticated attacks targeted on the in-vehicle CAN bus, we

propose a delay-based plug-in-monitor IDS which takes use of the unaltered property

of the physical topology of the CAN network. The fundamental observation from

the monitor is that each ECU outputs a characteristic signal delay difference when

monitoring on the two selected points. During the attack, the attacker would use the

attack interface different from the original ECU on the CAN bus which will cause
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the measurement of delay changing from the original observations when messages

are transmitted by the legitimate ECU. Therefore, we can identify those malicious

messages sent from the transmitter out of the expected range, thus distinguishing

the compromised ECU from the legitimate one.

2.5.1.1 The Physical Layout of the CAN bus Network

In this section, we will describe the physical layout of the CAN bus as well

as the signal transmission properties on the bus, which are relative to the delay

measurement in our set-up. As aforementioned, the electrical CAN signals fall into

two states: a dominant state (logic 0) and a recessive state (logic 1). For both

high-speed and low-speed CAN network frameworks, the transition is faster when

a recessive to dominant transition occurs since the CAN wires are being actively

driven. The speed of the dominant to recessive transition depends primarily on the

length of wire and the capacitance of the wire used.

Figure 2.6: High Speed CAN Network ISO 11898-2 with the IDS monitor

CAN is a multi-master serial bus standard for connecting ECUs also known
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as nodes. The ISO 11898-2 standard provides guidelines for the layout of high-

speed CAN network. As shown in Figure 2.6, the high speed CAN uses a linear bus

terminated at each end with 120 Ω resistors. Two or more nodes join to the linear

CAN network to communicate. The complexity of the node can range from a simple

I/O device up to an embedded computer with a CAN interface and sophisticated

software. The node may also be a gateway allowing a standard computer to com-

municate over a USB or Ethernet port to the devices on a CAN network. The linear

topology CAN network is usually used as a high speed CAN bus for automotive

applications.

The other layout of CAN bus network is regulated in the ISO 11898-3 standard

shown as Figure 2.7. It is also called low speed or fault tolerant CAN, uses a

star bus and is terminated at each node by a fraction of the overall termination

resistance. Fault tolerant CAN is often used where groups of nodes need to be

connected together forming a sub-network.

In a real vehicle, both the two types of the layout will be applied. Moreover,

the length of the bus network will be extended to 3-10 meters based on the scale

and design of the vehicle. The physical layout of ECUs will not be altered after

manufacturing, even under cyber attacks where the attacker could easily achieve

access on the bus but have no capability in changing the physical layout of the CAN

bus.
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Figure 2.7: Low Speed CAN Network ISO 11898-3 with the IDS monitor

2.5.1.2 Effects of Transmission Delay

The cause for the latency of the message transmitting on CAN bus could be

summarized as the speed of different CAN controllers and transceivers, gateway

processing delays, propagation delay of wire, propagation delay of connectors and

the clock drift or skew of the oscillators. In our work, all of the delays discussed

above will count for the final delay difference captured by the monitor.

Implementing a CAN node requires a CAN transceiver and a CAN controller

or processor with the appropriate protocol stack. In either case, the CAN controller

must be configured to reconcile the data rate and timing on the bus with the hard-

ware oscillator used for the controller. The different implementation of the CAN

node might cause observable delay differences on the CAN bus. As cable length
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increases, the high-frequency content of the signal is attenuated, so data rates are

limited for long distances. Propagation delay, which also increases with cable length,

can interfere with the synchronization and arbitration between nodes. The typical

propagation delay of a twisted pair cable for the CAN bus is 5 ns/m. Thus, for a

traditional network of length up to 50 m (the maximum length for CAN bus), the

difference in the time the transmitter drives (or releases) the bus and an observer

observes a signal transition can be up to 250 ns. Though such delays are accom-

modated within the CAN bit timing specification for a correct sampling of the bit

value, they can be exploited by the monitor to identify the transmitter. Except for

the typical propagation delay caused by the cable length, the relative bit timing dif-

ference observed by a monitor for two transmitters can be augmented by the other

delays along the transmission path as well.

The objective of our work is to fingerprint the transmitter ECU by the delay

difference from the victim ECU to the attack ECU. The two kinds of bus topology

with the IDS are shown as in Figure 2.6 for High-speed CAN and Figure 2.7 for Low-

speed CAN. We place the monitor connecting to the CAN bus network through

two wires directly attached to the bus. The monitor would watch the messages

transmitted on the bus and calculate the delay difference from his two plug-in points.

Thus, it is crucial to choose the monitor plug-in positions to enlarge the coverage of

detection for the bus system. We propose the following specific rules based on the

layouts of the CAN bus network.

1. The first rule is to maximize the delay difference of ECUs in the network in
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order to distinguish them. For the high-speed CAN network, the best position

to cover the maximum number of ECUs in supervision is at the end of the

bus network. This is naturally because if the monitor is inserted not at the

terminations, the two points will be fallen into one side of some ECUs, and the

delay difference calculated accordingly will be constant. Those ECUs would

not be covered in monitoring for this IDS. For the fault tolerant CAN network,

the best strategy is to place the two monitor points in two separated clusters

of the network as shown in Figure 2.7. If the network only has one central

cluster, the two points can be placed in any two edges of the star network.

2. The second rule is to keep the distribution distinguishable. If we place the

plug-in points much far away from the observation network, the monitor would

not tell the delay difference for the sub-network. Thus, considering the sub-

CAN network structure, we design the monitor which is responsible for a

number of 5 to 20 ECUs in the sub-network.

2.5.1.3 Electrical CAN Signal Measurement and Reprocessing

More specifically, we design the procedure of the plug-in-monitor IDS into

three phases, which are respectively the delay measurement, learning parameter

settings, and the final intrusion detection.

• Phase I : Profiling the delay differences for each ECU. The first step

is to measure the delay difference and register the legitimate ECUs based on

the measurements when the vehicle is in normal mode. The delay difference
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from the transmitter ECU to the two plug-in points would be recorded with

its ID into the system. Then, for each message ID transmitted on the bus,

the system has the location of its legal transmitters. The profiling information

will be used by the IDS to determine whether or not the message originated

from the legitimate transmitters in the following step. Phase I runs as the

initialization and registration step of IDS and will update the record of ECU

when it is necessary.

• Phase II: Exploiting the threshold of the delay differences. Based on

the data collected during the profiling stage, the IDS can build the distribution

map for each message ID with its legitimate transmitters. Further analyzing

the statistical distribution, the system will decide the threshold for each ID to

distinguish between legitimate transmitters and malicious transmitters. The

details in setting the threshold will be discussed in section 5.

• Phase III: Attack detection. For each transmitted message, only one ECU

is assigned to its transmission in most cases and the position of the ECU is

fixed unless the vehicle is broken into. Based on the timing delay difference,

the IDS could estimate the transmission range of the ECU and further decide

whether it is legitimate or not.

2.5.2 Evaluation and Experimental Results

We now evaluate the practicability and efficiency of the IDS in achieving an

accurate attacker identification on the CAN bus. At first, we will demonstrate the
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delay difference existence on the prototype of CAN bus. Then, we will show how

the IDS could identify the transmitter based on the delay difference and detect the

attack consequently.

2.5.2.1 Experiment Set-up

Our experimental setup utilizes the Arduino UNO with a seeed studio CAN

bus shield to prototype the ECU. The CAN bus shield consists of a microchip MCP

2515 CAN controller and a MCP 2551 CAN transceiver to provide the can bus

communications. The micro-controllers are connected via the standard CAN twist

pair cable with a terminal resistor.

The typical CAN architecture consists of several sub-networks of ECUs con-

nected by one or more powerful nodes that act as gateway (GW). However, for our

system, the nodes are connected in a single chain with the GW at one end. This

setup closely emulates one subnet of the network found in most modern cars. We

use another micro-controller as a monitor to probe the bus and record the delay

time for both online and offline processing.

2.5.2.2 Delay Profiling

First, we use three Arduino UNO boards to prototype the propagation delay

related to the distance. One Arduino UNO board is regarded as the master, and

other two are slaves to it. A laptop is used to monitor the CAN bus communication

and activities, so all three Arduino UNO boards are connected to the same laptop.
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Regarding the communication part, we majorly use the communication library pro-

vided by Seeed studio to achieve the message delivery in the CAN bus system. The

whole system starts by sending messages from the master with time-stamps (t1).

Then the slave who receives the message will echo a message back to the master to

confirm it already received the message. When the master receives the echo-back

message (time-stamp t2), we calculate the difference of t2 − t1 which is the delay

of the whole echo-back communication. During the time-stamp process, the timer

(16MHz) inside the Arduino is used but we add the interrupt function to improve

the time resolution. Hence, the time-stamp accuracy can be reached up to 1
16

mi-

crosecond in our system. The distinguishable delay difference is shown in the Figure

2.8, we measure it at length from 0.5m, 1m, 2m, and 4m. Notice that this delay

contains the initial processing delay of the micro-controller which is estimated as

190ns in this case. The real prorogation delay should be the absolute value shown

in the figure minus the baseline delay. As the resolution for the timer of the micro-

controller is limited, we need to accumulate multiple tests in order to generate the

concrete results. The results shown in the figure are averaged by 1000 echo-back

traces.

In practice, there is enough statistical dispersion for two ECUs, as depicted

in the Figure 2.9. From this histogram, we can see the delay of two slaves (t2 − t1)

is distinguishable. Based on this, it is possible to build a mapping between the

observed characteristics and their associated IDs. And later we could classify the

messages to the transmitter ECUs based on the delay difference. We also test the

delay when the message content is modified. According to the data, the message
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Figure 2.8: Delay changes over length of the cable

with all 0 has the largest delay. The reason for this is because zero padding messages

tend to have more stuffing bits. In our future work, we will test the delay difference

between two slaves under different temperatures, and also nd which specic range is

the most distinguishable.

2.5.2.3 Attack Detection

A distance profile represents the ECU behavior of the message transmission.

The IDS would exploit every newly derived message to construct the range of mes-

sage transmitter. Although the monitor is triggered on each message and associated

with message ID, if messages originate from the same transmitter, their results are

near-equivalent. Thus, the IDS could detect the presence of malicious attackers by

monitoring the delay difference in the network, where the delay difference indicates

the location of the transmitter.
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Figure 2.9: Histogram of delay difference from Near-end ECU and Far-end ECU

In the attack experimental set-up, we continually used the delay profiling

acquired from the first stage. Specifically, we have two ECUs and one is deployed in

the far-end and the other is in the near-end. First we assign the ECU1 with ID 0x01

and ECU2 with ID 0x02. In the clean stage, they are transmitting their messages

with their assigned IDs normally. After the delay profiling procedure discussed

before, the IDS is accomplishing in collecting the difference of the delay to form the

range of transmitters for each message. Then we design the attack as the ECU1

would send with his assigned ID as normal but ECU2 would try to impersonate

ECU1 by sending messages with IDs as both 0x01 and 0x02. When the messages

are transmitted on the can bus, the IDS would refer to the profile stored and make a

comparison on the record. If the delay difference falls outside the legitimate range,

it will trigger the system an injection attack. As the monitor finds out that some

messages with ID 0x01 are not sent from the registered location, so it will trigger
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an alert to the system.

The precision, recall and the F-1 score of the tests are shown in the Table2.2.

Precision measures the percentage of true positive over the sum of true positive

and false positive. Precision gives us the clue that the proportional of real labeled

attack to some falsely diagnosed attack. While recall measure the corresponding

true positive over the sum of true positive plus false negative. The false negative of

attack alert means that the attack do exists but it is not discovered by the IDS. F-1

score is the average of precision and recall. To make a confident decision, we could

take a threshold as the mismatch rate to generate a confidential alert of the system.

Precision Recall F1-score
Benign 0.98 0.97 0.97
Attack 0.97 0.98 0.97

avg/total 0.97 0.97 0.97

Table 2.2: Results on attack detection from physical-based IDS

2.5.2.4 Detection Error Rate Analysis

The detection rate of the IDS discussed above is based on the physical layout

of the ECU testbed. Eventually, the result relies on the distance of the attack ECU

from the victim ECU. Here we will use a statistical method to analyze the detection

error rate of the IDS.

First, based on the experimental results, we figure out the delay variances obey

the Gaussian distribution as N (µ, σ2). Assume there are two ECUs on the bus, and

each would have the distribution as N (µ0, σ
2
0), N (µ1, σ

2
1). First, the decision is

made by the threshold th, and the delay is represented as variable d. As a result,
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the decision rule for two ECUs could be summarized as

• If d > th, then the message is sent by ECU 0

• If d < th, then the message is sent by ECU 1

Figure 2.10: An example for delay distribution and the error region

If the means are close to each other µ0 ≈ µ1, there will be an overlap of the decision

boundary as the Figure 2.10 shows, the threshold is drawn in the vertical line. The

decision boundary is used to determine the source of the message follows the rule

described above. The error region is drawn in red, based on the distribution we can

derive the error probability is

BER = Pr(b = 0)

∫ Th

−∞
p0(x)dx+ Pr(b = 1)

∫ ∞
Th

p1(x)dx (2.3)

We need to choose the threshold such that the error rate is minimized.

∂BER

∂Th
= 0⇒ p0(Th) = p1(Th) (2.4)
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where, the probability density is p(x) = 1
σ
√

2π
e
−(x−µ)2

2σ2 . If the distribution of ECUs

is identical, the best threshold line would be in the middle of the cross area. The

best case is that the two ECUs are apart to each other and there is no overlap

for densities. In phase II, the decision boundary should be chosen as the optimum

threshold and record it in the system.

2.6 Summary

More and more stealthy attacks targeted on in-vehicle network threaten the

confidentiality of the regular messages transmitting on the bus. In this chapter, we

propose two novel IDS to defend the cyber attacks on the CAN bus. The first IDS

is based on monitoring the entropy changes on the bus, which is a lightweight and

non-intrusive security framework that can protect CAN bus without modifying its

protocols and implementation. Our proposed IDS is capable of restricting attackers

from injecting a large number of malicious messages with higher priority identifiers,

as well as finding out the malicious identifiers. Further, we use the measurement of

delay difference between two monitor points when transmitting messages to finger-

print the ECUs on bus. We successfully demonstrated our proposed idea on CAN

bus prototype built on Arduino micro-controllers and CAN bus shields. This pro-

posed method only requires the installation of a monitor on the CAN bus network

without any modification of the protocol and ECU functions.
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Chapter 3: Probing Attacks on Physical Layer Key Agreement for

CAN Network

3.1 Introduction

Over the past few years, an increase in the number of connectivity interfaces

on a traditional automobile has drawn the attention of the security community.

Several high profile attacks have been demonstrated on the modern car by academic

and industrial researchers, e.g. [4, 71, 72]. These attacks are primarily facilitated by

the lack of security (authentication, encryption) in the existing architecture of the

CAN. Concurrently, several techniques have been proposed for integrating security

into the current architecture [57, 62, 73, 74].

Similar to traditional secure systems, several of these techniques rely on secure

provisioning of symmetric keys within the nodes on the CAN bus. However, secure

and robust provisioning, maintenance and update of cryptographic keys within the

automotive supply chain can incur significant overhead, and may require changes to

the automotive manufacturing and servicing facilities. Several commercial systems

to enable such a process have been proposed, e.g. in [75].

Dynamic generation and distribution of keys in a secure manner can provide
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an alternative (or reduce the functional requirements) of traditional provisioning

systems. One promising approach, Plug-and-Secure for CAN, has been recently

proposed towards this goal, in [76, 77]. A key advantage of the Plug-and-Secure

scheme is the utilization of inherent physical layer properties of the CAN bus to

provide security guarantees for key agreement between groups of nodes.

Cryptographic systems that are provably secure in the computational model

have often been compromised by exploiting characteristics of their physical imple-

mentation. Physical characteristics such as timing differences, power leakage, and

other features can provide a covert communication medium, side-channels, leaking

system information to an adversary. Several attacks have been demonstrated on tra-

ditional systems using side channels [78, 79]. Comprehensive analysis of a system to

identify and exploit such side-channels can be difficult. It has been observed from

traditional systems that prevention of such attacks can add significant overhead to

system design and negatively impact performance.

In this chapter, we demonstrate that the properties of the physical layer of

the CAN bus can be utilized to violate the security of the PnS-CAN system by

an adversary capable of probing the CAN bus. Here we discuss several voltages,

timing and transient characteristics based side-channels that can be used to attack

the system and partially extract the secret keys. We demonstrate those attacks on

CAN bus test-bed and also discuss several solutions as countermeasures for those

side channel attacks.

We investigate the side-channels for the two-party PnS-CAN protocol proposed

in [76]. Our contributions are as follows,
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1. We identify characteristics of the CAN bus that can be utilized to extract the

secret key during execution of the PnS-CAN protocol. We outline a general

methodology to map existing CAN identification techniques to attack our

scheme. We further demonstrate the attack of the system due to one of the

non-trivial feature, i.e. timing characteristics.

2. We propose countermeasures that can be included in the transceiver hardware

or the CAN controller to minimize such leakage.

3.2 System Models

3.2.1 Property of CAN bus Physical Layer

CAN bus, the primary communication network for most modern cars, is a

broadcast medium consisting of a series of nodes connected via a twisted-pair cable

with termination impedance at either end. It has two logical states, the dominant

‘0’ state, where the bus is driven by a voltage, and the recessive ‘1’ state, where the

bus is grounded. If two nodes transmit a bit simultaneously, the effective state of

the bus is ‘0’ if any of the nodes transmits the dominant bit. Thus, the bus acts as

a logical AND gate between inputs from the nodes.

The CAN bus utilizes differential signaling to transmit the data. In the CAN

standard, when transmitting the dominant bit 0 on the bus, the output pins of the

nodes, CANH and CANL, are driven to different voltage levels, and the difference

from CANH to CANL is the output of the CAN bus. Similarly, transmission of a
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recessive bit 1 occurs when CANH and CANL are not driven, and will have similar

voltage levels.

As this work focuses on attacking the PnS-CAN protocol, it inherits the sys-

tem requirements for successfully building that system, as enumerated in [77]. We

expect the typical automotive network (CAN) to be comprised of heterogeneous

nodes, i.e. nodes from different manufacturers or families. Since the PnS-CAN pro-

tocols are based on simultaneous transmission by two nodes, all write operations on

the bus during the key agreement phase use ECU pairs. Thus, the ECUs require

modified CAN controllers that allow simultaneous transmission of data during this

phase. However, during regular operation, the network operates in a CAN-compliant

manner, and hence has only single node transmitting during a frame.

3.2.2 PnS-CAN Scheme

The PnS-CAN scheme described in [76, 77], enables key agreement between

multiple nodes connected to the CAN bus. For completeness, here we present a

brief overview of the fundamental operations of the two-party key exchange scheme.

We include specific implementation aspects, that aid our attacks, in the protocol

definition. For detailed discussion about the security aspects of the original scheme,

the reader is referred to [77].

The PnS-CAN scheme between two nodes utilizes the wired AND property of

the CAN bus to mask the bits simultaneously transmitted by the nodes. The security

of this scheme is based on the inability of an eavesdropper to differentiate between
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transmissions that result in the same logical output on the bus,i.e. combinations that

result in the dominant (0) output. The operation of the basic two party protocol

between nodeN1 and nodeN2 , using random seeds r1, r2. In this, a secret bit is

generated between nodeN1 and nodeN2 when one of the nodes transmits a logical

0 (dominant bit) while the other transmits a logical 1 (recessive bit). Note that

an ideal adversary is unable to identify which of the two nodes, nodeN1 or nodeN2

transmitted the dominant bit. The group key scheme described in [77] utilizes the

PnS-TwoParty protocol between successive nodes to form a PnS chain. It was

demonstrated that pairwise interactions between consecutive ECUs are sufficient to

share the key with the group. We note that in systems, where the adversaries only

have high-level (software) access to the nodes, they can only observe the logical

output of the bus as determined by a single transceiver samples. Thus, though

perfect obfuscation of the bit values in PnS-TwoParty is theoretically possible, it

cannot be guaranteed for most practical systems where the adversaries may observe

multiple high-resolution bus samples.

3.2.3 Adversary Model for PnS-CAN

We consider an arbitrarily powerful adversary that is capable of observing

the variation of CAN bus signals with high voltage precision and timing resolution.

Such an adversary can be simply realized by an eavesdropper who accesses the wires

directly using a high precision oscilloscope. An alternate means could be through

a regular ECU connected to the CAN bus with a high precision analog-to-digital
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(A/D) converter at the input and a modified CAN controller capable of sampling

the bus at a high frequency. In a car, such nodes can be connected to the OBD-

II diagnostics port. A representation of the CAN bus with adversarial presence is

illustrated in Figure 3.1.

Figure 3.1: Representation of a typical CAN bus with 3 nodes and an eavesdropping
adversary

The goal of this work is to demonstrate the existence of side-channels. Even

though such powerful adversaries are capable of actively injecting or modifying sig-

nals, we consider the adversarial behavior to be restricted to passive observations.

However, we assume that the adversary is capable of observing the system for an

arbitrarily long time. During regular system operation, we assume that the adver-

sary is capable triggering the ECU of its choice to transmit. However, we assume

that such selective modifications cannot be made during execution of the PnS-CAN

protocol. Further, we assume that the adversary cannot control the content of the

transmissions.

Here we limit the adversarial access to a single point on the network. It should

be noted that multiple points of observation can undoubtedly increase the leakage.
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However, since in an unmodified system, a single adversary is sufficient for complete

compromise, we leave the consideration of multiple probes to future analysis. For

our attacks, we assume the location of the adversary to be carefully selected and

fixed. An adversary can theoretically improve its observations by adaptive changing

its observation point.

3.3 Attacks on PnS-CAN

To illustrate the properties that can be exploited to mount a successful attack,

consider the PnS-TwoParty system. As described before, a secret bit will be

generated when one of the nodes transmits the dominant bit 0, i.e. drives the

bus, and the other node transmits the recessive bit 1, i.e. performs no action. Even

though, in the PnS-CAN system, nodes transmit messages as full frames, for each bit

of significance (secret bit), only a single node is driving the bus. Thus identification

of the transmitting node effectively leaks the bit, as the bit is 0 if the driving node

is primary participant and 1 otherwise.

For example, consider a PnS interaction between nodeN1 and nodeN2 using the

random sequences {0, 1, 1, 0} and {1, 0, 0, 1} respectively. This results in 4 shared

secret bits, i.e. key = 0110. The bit observations on the bus corresponding to

these would comprise of 8 bits (random bits interleaved with the complement).

(b1, b2); · · · ; (b7, b8), bi = 0. Here, b1 results from nodeN1 transmitting a dominant

bit and nodeN2 a recessive bit. Thus if the adversary can identify nodeN1 as the

active node during b1, it can learn that the first secret bit is 0. Next, we describe the
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phenomenon that can be used to differentiate between various transmitters based

on physical properties of the CAN bus.

3.3.1 Experiment Set-up

Our experimental setup utilizes an FPGA (Altera Cyclone-V) based implemen-

tation of PnS-TwoParty scheme, implemented into a modified CAN controller.

The modified controller generates fully compliant CAN 2.0 frames that can be ac-

cepted by any traditional CAN controller. The test network consists of 16 nodes,

using custom designed transceiver boards that utilize the FPGA digital outputs,

connected via the standard CAN twisted pair cable.

The typical CAN architecture, consists of several sub-networks of ECUs con-

nected by one or more powerful nodes that act as gateway nodes. However, for our

system, the nodes are connected in a single chain with the GW at one end. This

setup closely emulates one subnet of the network found in most modern cars. We

use a commercial USB-CAN module to monitor the bus traffic. We use an Agilent

6012A oscilloscope to probe the bus and record the samples for offline processing.

3.3.2 Generalized Attack

Each PnS interaction occurs between two nodes in the network. As discussed

earlier, the attack on the PnS-CAN system simply reduces to identification of the

transmitting node for each individual bit of the frame. Since there are just two

nodes in each PnS-CAN round, the adversary simply needs to distinguish between
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the signals transmitted from the two nodes (binary hypothesis testing). Here, we

present a general outline of the attack methodology that the an attacker may follow.

(Data Collection) The adversary can observe the signal transmission on the bus

for a long duration prior to the attack. Note that the any CAN-compatible node

can synchronize to the transmitter and identify and sample individual bits in a

transmitted frame. Consider that the adversary samples each bit k times. We

denote these bit observations by T = x−∞, · · · , x0, where xi ∈ Xk = Rk is a vector

of samples of the bit from the bus. We assume that the system has M ECUs

connected to the bus. Thus the observations xi correspond to transmissions from

any of the M ECUs over a period of time. For traditional CAN networks, such data

is not labeled as the packets do not contain identifying information. However, an

adversary can generate labels for the data by activating known ECUs and observing

their output.

(Classifier Training) An adversary trains classification functions, DNi,Nj :X n
k →

{0, 0̄}n, for each pair of labels Ni, Nj, that estimate the the sequence of transmitters

based on the input observations. We note that using {0, 0̄} represents the process of

differentiating between the transmitters, rather than identification. This represents

a larger class of classifiers, as any classifier that can correctly assign the labels, can

also differentiate between the transmitters. The adversary can train the classification

functions directly from T , using a variety of supervised or unsupervised techniques,

e.g. binary support vector machines (SVM), Long short-term memory (LSTM),

Convolutional Neural Networks [80].

For scenarios where the node does not have knowledge cannot acquire knowl-
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edge of the participating nodes or where the training data is unlabeled, the node

may train a generalized decision function D0,0̄:X n
k → {0, 0̄}, that uses a classification

function preceded by a selection approach (such as maximum likelihood based esti-

mator) select the best function. Clearly, the performance of a generalized classifier

is sub optimal compared to the classifier for a particular pair of nodes. Thus an

adversary, without priory knowledge of the transmitters has a significant disadvan-

tage.

(PnS-CAN compromise) During PnS-CAN operation, for an adversary to extract

the key, it does not require perfect identification of the node identity. Since the PnS

system involves just two ECUs at any time, its task is to simply distinguish between

the transmissions from the two participating ECUs. Consider the scenario where two

nodes Ni, Nj execute the PnS protocol to produce n bits. The adversary observes the

k sample values for each of the n bits as xi = {s1(i), s2(i), ..., sk(i)}, 1 ≤ i ≤ n and

uses the classifier DNi,Nj (or general classifier in scenarios where Ni, Nj is unknown)

and obtains a sequence of estimates (T̂1, T̂2, · · · T̂n) ∈ {0, 0̄}n.

For PnS-CAN, classification without correct labeling of the nodes still reveals

the complete secret (or its inverse). Thus the disadvantage of the weaker adversary

is simply 1 bit of entropy, which is insignificant and results in violation of system

security. We note that methods from CAN identification literature, e.g. from [67,

68, 81, 82], can be directly mapped to this generalized outline to attack the PnS-

CAN scheme. However, the accuracy may be lower since the identification is for a

single bit rather than a group of bits (frame).
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3.3.3 Attack Procedure

The detailed attack is be described as Attack PnS-TwoParty. We utilized this

to identify the secret key for 12 pairs of nodes in our setup. With minor modification

of the threshold parameters between different iterations, we were able to successfully

identify all the secret bits exchanged between each pair.

Attack: PnS-TwoParty

1. The adversary synchronizes to the first 1 to 0 transition, i.e. start of frame

bit (SOF). The transmitting node is the referred to as the primary node.

2. The adversary utilizes the first 19 bits of the header to estimate the expected

variation parameters of transition times (µp, σp).

Start of the PnS data frame

3. If the bit value has changed, compute the transition time. Compute the bit

triggering the transition by comparing the transition time to a threshold τ ,

where τ is a function of (µp, σp).

4. If bit value has not changed,

(a) If this is corresponding to the first bit (non-inverted), then the possible

transitions are 0 − 0 → 0 − 1, 0 − 1 → 1 − 0, 0 − 0 → 1 − 0, and vice

versa. If the current voltage level is higher than the previous bit ((b) in

Figure 3.2), both nodes transmitted a dominant value for the current bit.

76



Otherwise, if the level decreases, nodes transitioned to a 0 − 1 or 1 − 0

configuration. Utilize the next bit to compute the current value.

(b) If this is corresponding to the second bit, it could have only resulted from

a 0− 1→ 1− 0 transition or vice versa. If a dip is detected at the start

of the frame ((a) in Figure 3.2), the primary node was transmitting a

dominant bit in the previous frame. Otherwise, if an increase is detected

((c) in Figure 3.2), the secondary node was transmitting the 0.

Soft synchronization

5. If the secondary node ever triggers a recessive to dominant transition, re-

synchronize to the secondary node and switch the roles of the primary and

secondary nodes. This is depicted by (r) in Figure 3.2.

Figure 3.2: Snapshot of bus observations for PnS-CAN protocol
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3.3.4 Observations on Physical Layer of CAN Bus

Similar to other electrical systems, in an automotive network will have dif-

ferences in characteristics of the driver and network between an observer and the

transmitters. We illustrate 3 phenomena that can be utilized to differentiate be-

tween bits transmitted by different nodes. One of the advantages of using differential

signaling for CAN transmissions, is that it enables devices with varying electrical

characteristics to be utilized on the same bus without any additional compensation

circuitry. While this improves the design and robustness of the bus, the different

characteristics also enables identification of the transmitter, leading to leakage of

the bits. For a transmitted bit, differences in steady state characteristics can be

attributed to several factors.

3.3.4.1 Difference in Driver Circuits

Transceivers from different manufacturers (or even different models of the same

manufacturer) can have different drive characteristics and output voltage range of

the CANH and CANL pins. This can be due to different circuits, components or

load impedance. Thus an adversary measuring the absolute voltage on CANH and

CANL lines with respect to a common ground reference can distinguish between the

dominant transmissions from different nodes.

For example, consider a realization of the CAN network using Microchip

(MCP2551) for nodeN1 and NXP (TJA1040) for nodeN2 . The ideal specified range

for the CANH pin for MCP2551 is between 2.75V and 4.5V , while the same range
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Figure 3.3: Observations for scenario of 2 nodes, A:MCP2551, B:TJA1040

for TJA1040 is between 3V and 4.25V . In Figure 3.3, we illustrate the voltage

observations of the adversary for a sequence of bits corresponding to the generation

of a secret bit in the PnS-CAN protocol, i.e. transition from a 0-1 scenario to a 1-0

scenario. The adversary can clearly distinguish between the dominant transmission

by nodeN1 and nodeN2.

3.3.4.2 Different Operating Voltages

The differential signaling of the CAN bus allows interoperability of nodes with

different supply voltage, without scaling circuits. For example, typical automotive

networks contain ECUs with both 5V and 3.3V operating voltage. Though these

nodes have similar differential voltage between the CANH and CANL lines, the

absolute voltage level on each line, during bit transmission, is different. An adversary

can utilize this identify the node transmitting the dominant bit during PnS-CAN.
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3.3.4.3 Different Physical Locations

Even nodes with identical drivers and operating voltages can seem different

from the view of an intermediate observer in the network. This is due to the differ-

ences in the effective impedance of the network segment between the two transceivers

and the observer point. For a typical CAN bus scenario, several factors can con-

tribute to these differences, e.g. different length of wires between the nodes and the

observer, or different number of intermediate nodes. In Figure 3.4, we illustrate the

differential voltage of two nodes at varying distances (over 1m difference) from the

observer. In a typical CAN network, the difference in distance can be over 30m.

Though this difference appears small in comparison to other phenomenon, it can be

useful in many scenarios.

Figure 3.4: Observations of two identical transmitters located at different distances
from the adversary
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3.3.5 Evaluation and Experimental Results

We demonstrate an attack on the PnS-CAN scheme using the characteristics

described before. We utilize the oscilloscope to obtain samples of the differential bus

voltage at 125Msamp/s. The transitions are identified by as points of large change

in bus voltage (greater than the CAN trigger) followed by a steady state over at

least half the bit width. We utilize the 50% point of the transition to compute the

rise time, fall time and latency.

Node Delay (ns) Node Delay (ns)
ID Min Max Mean Std ID Min Max Mean Std
1 138 166 151.8 12.6 9 118 154 135.2 15.7
2 140 168 153.4 12.5 10 118 154 135.0 15.3
3 140 168 153.8 12.6 11 122 156 139.1 14.7
4 140 172 156.2 12.9 12 124 158 140.9 14.6
5 130 162 144.4 14.2 13 116 146 130.6 12.6
6 130 160 144.8 14.0 14 118 146 131.2 12.3
7 132 164 147.1 13.7 15 118 152 135.4 14.8
8 136 164 148.7 12.4 16 122 154 137.2 13.3

Table 3.1: Signal delays between nodes and observer

First, we investigate the separability of the nodes by measuring the propa-

gation delays of the nodes synced with respect to the observation point. In Table

3.1, we enumerate the propagation delays from each node. Intuitively, nodes that

have similar propagation delay would be difficult to differentiate (in the perfectly

synchronized scenario). Further, in Table 3.2, we enumerate combinations of nodes

have the least (and maximum) overlap. Such nodes pairs correspond to the nodes

with the largest (and smallest) adversarial advantage.

In Figure 3.2, we illustrate a snapshot of the CAN protocol between two nodes

as observed by an adversary. Intuitively, the attack exploits the difference in propa-
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Interval overlap N1 N2

6.00 2 13
6.00 2 14
6.00 3 13
32.00 11 12
34.00 9 15
34.00 10 15
36.00 9 10

Table 3.2: Maximum and minimum overlaps of propagation delay

gation delays by synchronizing to one of the transceivers and estimating the trans-

mitter based on the rise and fall time offset. There are two key features of the

PnS-CAN implementation that aid our analysis.

1. The initiating node transmits the PnS header and the secondary node synchro-

nizes to the initiating node. Since only a single node is transmitting during the

header phase, it is easy to estimate the timing variation for the synchronous

bits.

2. As described before, the random bits are interleaved with the inverted bits.

This introduces dependence in successive transmissions as it enables only cer-

tain transitions during the PnS phase. This can be utilized to estimate the

bits in some cases. The detailed attack is be described as Attack PnS-

TwoParty. We utilized this to identify the secret key for 12 pairs of nodes

in our setup. With minor modification of the threshold parameters between

different iterations, we were able to successfully identify all the secret bits

exchanged between each pair.
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3.4 Countermeasures for PnS-CAN

As discussed, the PnS-CAN module is susceptible to a range of characteriza-

tion attacks due to consistency of the features of the physical signals from individual

nodes. While this is good for robustness of the system, the CAN standard allows

for significant variation of these properties. Thus, intuitively, we design the coun-

termeasures to add controlled noise to the physical signals, such that signals from

different nodes are indistinguishable for an adversary. The goal of the noise addition

is to minimize the adversarial advantage between nodes.

Here, we propose mitigation at different levels of abstractions, namely the

transceiver hardware level, CAN controller level and the system level. At the hard-

ware and controller level, the goal is to minimize the adversarial advantage between

all ECUs either by adding noise or improving cooperation between the nodes. At the

system level, the goal is to minimize adversarial advantage by restricting interaction

between highly identifiable nodes. It should be noted that the performance of the

countermeasures proposed here is highly dependent on the CAN properties. Thus,

they are proposed with the goal of minimizing the leakage, rather than provably

eliminating it. We leave as an open problem, the design of countermeasures that

can formally shown to be effective against the adversaries treated here.

The voltage observed by an adversary is a function of strength of the current

source and impedance of the network between the observer and the current source.

For a non-uniform network, this directly relates to the physical positions of source

and the observer. To prevent identification by the adversary, voltage can be varied
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for each transmission of the dominant bit by using a random number of current

sources, located at different points in the network.

Our experimental results demonstrate that the observations at a single point

due to dominant bits from multiple transceivers is different. Such a phenomenon

can also be observed in box (c) of Figure 3.2. In Table 3.3, we enumerate the

output at the observer due to simultaneous transmissions from different transceivers

connected to the bus. For increased variations, we performed experiments using

3 different transceiver families, i.e. nodeN1 (MCP2551), nodeN2 (TJA1040) and

nodeN3 (TJA1041).

nodeN1 nodeN2 nodeN3 Vout
0 0 0 2.4230
0 0 1 2.1281
0 1 0 2.1197
0 1 1 1.8208
1 0 0 2.3400
1 0 1 1.7710
1 1 0 1.7629
1 1 1 0.0000

Table 3.3: Vout for dominant tx by multiple nodes

Similar to variation in sources, adding a random number of sink nodes may

vary the observation by an adversary. In the regular setting, each node on the

bus that is not transmitting acts as a sink. Thus, we can vary the number of

sinks on the bus by adding the capability of electrical isolation of non-participating

nodes. Thus any transceiver with such a capability can be in 3 distinct modes,

i.e. transmitting a dominant signal, transmitting a recessive bit (or just passive),

or electrically isolated. In Table 3.4, we outline the voltage observations of the

adversary for different states of the tristate nodes. The ‘X’ denotes a transceiver
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that is electrically isolated. Ideally, with N transceivers, we can obtain 3N − 2N

different voltage levels. The variation of voltage levels with a bit can decrease the

probability of its identification. We outline a few architectures to utilize this feature

to prevent adversarial information leakage.

nodeN1 nodeN2 nodeN3 Vout
X 0 0 2.5842
X 0 1 2.1174
X 1 0 2.0923
0 0 X 2.3159
0 1 X 1.9647
1 0 X 2.1493
0 X 0 2.2957
0 X 1 1.9599
1 X 0 2.1415

Table 3.4: Vout for dominant tx by multiple nodes with isolation

3.5 Summary

While the PnS-CAN scheme is a promising mechanism for generating group

keys, it is highly susceptible to probing attacks by even simple adversaries. We

presented a general methodology for attacking the system and demonstrated a simple

timing based attack. We discussed several sources of physical identifiers that can

be used by an adversary. We proposed several mechanisms to mask these identifiers

at the hardware, CAN controller and system level. This work serves as a proof-of-

concept for the existence of attacks on the PnS-CAN schemes and the the ability of

the system designer to prevent them.
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Chapter 4: GPS Spoofing Detection Methods on the Edge

4.1 Introduction

Nowadays, most of the modern automobiles are equipped with GPS module

to assist location relative functions such as smart navigation, emergency assistance,

and traffic information service. With the rapid developments of autonomous driv-

ing, the algorithms for self-driving rely on the GPS system as a critical fallback to

ensure accurate timing and location. Moreover, as more and more vehicles becoming

connected to join the VANETs in assistance of driving, GPS signals have also been

widely applied in VANETs for precise positioning, message time stamping as well as

other real-time network applications [56, 59]. However, from the security perspec-

tive, the civilian GPS signals are very vulnerable to outside attackers because they

are not encrypted and can easily be spoofed [83]. The GPS spoofing attack could

deceive a receiver by broadcasting counterfeit GPS signals that are stronger than

the real GPS signals. The same kind of GPS spoofing attacks could also take place

on vehicles and this kind of spoofing attacks will cause severe risks on the vehicles

because the locations of vehicles are critical and supposed to be reliable and integral

for the navigation systems. The situation would become more severe for this attack

on the self-driving vehicles because the safety or security-critical decisions and pro-
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cesses of autonomous driving highly rely on the sensor data including the position

data from the GPS.

Once the GPS signal gets spoofed, the central control system for navigation

would be the first to be misled by the malicious attackers. The urgent task for

the reliability of the navigation system is to detect the spoofing attacks as soon

as possible after the attack took place. There have been several authentications

and anti-spoofing techniques for this propose. One of the straightforward meth-

ods is to use multiple receivers, i.e, the antennas to cross-check the signal [84, 85].

When adding multiple receivers to check the incoming signals, the slight changes

introduced by the spoofed source could be captured by the out of receivers. How-

ever, sophisticated attackers could replicate the spoofed signal with phase-aligned

to two and more GPS receivers. These sophisticated spoofing attacks are hard to

be detected by multi-receivers because it synthesizes spoofing signals for multiple

satellites in a way that initially overlays them on top of the true signals. The other

methods to detect GPS spoofing leverage on the analysis of the signals as a time

of arrival or received strength [86]. While these detection methods would require

equipment to capture the characteristics of the signals and may not be flexible on a

vehicular system.

Since data is increasingly produced and generated at the edge of the network,

it becomes natural to consider processing the data at the edge. Under this cir-

cumstance, edge computing is proposed to be an efficient method to support lots of

applications. With the push from the edge computing, our proposed GPS validation

could be applied at the edge of the network, i.e, the vehicle. Besides, edge comput-
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ing is also believed to have the potential to address the concerns of data safety and

privacy.

Driven by the increasing threat and the lack of realistic short-term solutions,

we develop a low-cost validation mechanism for detecting GPS spoofing attacks on

vehicles based on the driving information acquired through the in-vehicle CAN bus.

Our proposed method relies on the key insight that the data from the inner vehi-

cle network are trusted and demonstrated by the in-vehicle authentication methods

[16, 21, 23, 69]. Unlike previous attempts to secure GPS, our proposed method nei-

ther requires any updates of the GPS infrastructure nor of the vehicle’s receivers. In

contrast, our proposed mechanism would detect the spoofing attacks by reconstruct-

ing the GPS position from continuously analyzes the information recorded on the

CAN bus, such as the vehicle speed and the steering angle. Moreover, we proposed

this cross-check GPS spoofing detection method as a paradigm of edge computing,

since all the computations are processed at the edge of the network.

This chapter makes the following contributions:

1. A low-cost method on the edge

Compared to several other approaches proposed to detect the spoofing attacks

such as the cross-correlation of encrypted signals [84], calibration with multi-

ple antennas [87] and the methods rely on inertial high-stability clocks [86],

our cross-validation method has significant advantages on the cost. First, our

method does not require any extra devices such as the additional antenna or

receiver which might be too heavy to carry on and not practical in vehicles.
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Second, our method focuses on the plain GPS signals and does not need any

encryptions and decryptions on the GPS signals. Therefore, our method could

avoid aligning with military signals for civilian vehicles which may arouse per-

mission issues on the commercial vehicles. That is because the United States

GPS also includes the military signals that have encrypted on the spreading

codes and the legacy code. And those codes can be predicted only with a

secret encryption key. Spreading the secret key to civilian vehicles is not ap-

plicable. At last, to solve the bottleneck as data transportation through the

VANETs, our detection method would take place at the edge side (i.e., the

vehicle) and take use of the already deployed micro-controllers in the vehicle.

Those controllers have comparable computing power to process the data from

numerous sensors and fulfill the GPS spoofing detection.

2. Trust and Privacy are validated by the in-vehicle network

Some methods for positioning rely on the collaboration of the neighbor vehicles

in the network, thus arouse the problem of privacy risk for the locations [88].

First, the assisting car might not want to share position to the lost car due to

the privacy consideration. Moreover, the assisting car might misbehave to fake

false signals to cheat the lost car. Those aroused problems might be solving

by the proposed privacy-preserving location, however, need much more efforts

to set-up the communications, which will inevitably add influential delays

to the system [89]. However, our proposed method uses the local on-board

signal which does not need any extra communications from the outside of
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vehicles. Moreover, the signals collected on board are proved by the in-vehicle

authentication communications which are believed to be trusted without any

interference by the third-parties [90]. Besides, since the data are collected

and processed on the edge side, the privacy of the vehicle and the driving

information could be guaranteed as the interactions to the cloud vulnerabilities

are cut-off.

3. Applicable on autonomous vehicles

As cars become increasingly autonomous, and self-driving vehicles move from

the test markets to the main streets, security will become the primary challenge

for automakers. The more connected a vehicle is, the more susceptible it

becomes to potentially deadly cyber attacks. Our proposed cross-validate

method could be applied to autonomous vehicles with trivial efforts. Besides,

autonomous cars take use of a variety of sensors to perceive their surroundings,

including radar, laser light, GPS and computer vision modules, which could

provide our system with rich sensory data as free of charge.

4.2 Preliminaries

4.2.1 GPS Signal and Spoofing

GPS is the world’s premier Global Navigation Satellite System (GNSS), con-

sisting of 31 satellites launched by the U.S. military and made available for civilian

and commercial use as well. GPS-capable receivers can determine their position
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and time by picking up time-stamped signal data from a minimum of four overhead

satellites. By using the time stamps to calculate the time of arrival, a receiver can

calculate a triangulated position. The time of arrival measurements are affected by

a range of errors resulting in typical localization uncertainty of σ = 4m (mean error

is about 7m) [91]. Ordinarily, GPS is believed to be precise and reliable, so that

lots of geographic positioning systems including the navigation system for vehicles

are dependent on GPS signals. However, problems and attacks with this system

have become increasingly evident. The reason is that civilian GPS signal is un-

encrypted, and it has no proof-of-origin or authentication features, so the system

remains extremely susceptible to fraud, spoofing, jamming, and cyberattack. As a

result, civilian (public) GPS signals can be decoded by everyone, including airplanes,

vehicles, ships and the other systems required location services. Attacks on the GPS

signal are usually performed by an adversary by either jamming or spoofing one or

both radio channels. For the jamming attack, an adversary transmits overwhelming

radio interference over the band. For spoofing attacks, the adversary mimics the

legitimate signals by intentionally alter data received by a victim receiver with the

purpose of modifying the localization or time result of the victim. Since civilian GPS

signals are not encrypted and the structure of the signal is well known, spoofing at-

tacks are relatively straightforward to execute using a commercial signal generator

and RF transmitter. Over the years, the price to perform GPS spoofing attacks

has dramatically dropped. Nowadays, mobile commercial GPS spoofing devices are

available for less than $1000 with publicly software tools installed which enables any

parties to generate faked GPS signals.
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To tackle down those spoofing attacks on GPS, several authentication and

anti-spoofing techniques for GNSS signals have been developed in recent years.

These techniques can be broadly categorized as signal and data-level authentica-

tion. For signal authentication, received signal characteristics of the civilian signal

may be verified against encrypted GPS transmissions. Additionally, the plane-of-

polarization and angle-of-arrival can be measured to validate the signal as well.

Paper [92] proposed to justify the directional characteristics and polarization of the

received signal. The strength of a received GPS signal is typically less than -150

dBW and presence of substantially stronger signals for a single satellite or over the

entire frequency band can be a sign of attack in progress. However, it is possi-

ble for a spoofing attacker to adjust power levels to evade detection limiting the

usefulness of the threshold detection mechanism in practice [92]. Similarity, using

directional characteristics of the receiver antenna to cross-validate received signals

from each satellite requires specialized phase tracking hardware to detect directional

variations. Similarly, signal polarization characteristics have been shown to be an

effective authentication aid [93]. However, dedicated receiver front ends and signal

processing is required to implement the approach efficiently.

Data-level spoofing detection uses demodulated GPS data to detect spoofing.

GPS data can be validated with known position data or otherwise obtained time to

detect attacks [94]. For example, a stationary receiver can check its known position

with the position-solution of the receiver. Since trilateration position error can

be 10 meters, the position solution is a weak measure of credibility. It has been

recently demonstrated by Jiang et al. [95] that attackers can use this uncertainty
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to induce a phase angle error of 52 degrees in a Phasor Measurement Unit (PMU)

receiver by using simple optimization based evasion algorithms. Data-level spoofing

detection methods can also be applied with assistance by cryptographic techniques

[96]. Those methods propose to authenticate signals from satellites with additional

signals encrypted by the secret key. However, these techniques are not resistant to

replay attacks and would require a costly upgrade of the GPS infrastructure.

Monitoring jumps in the time reported by the GPS signals is another pos-

sible GPS spoofing countermeasure. One can deploy accurate clocks to measure

time deviation between the reported GPS clock and the onboard clock. However,

precise clocks (such as atomic clocks etc.) are expensive and not used in practice

for commercial purposes. For IoT components, one can also compare the GPS time

with networked time protocols such as Network Time Protocol (NTP). However, the

approach can suffer when the network is down. Moreover, the resolution of attack

detection is limited by the accuracy of the networked clocks.

4.2.2 GPS Usage in Vehicles

Nowadays, each vehicle of the VANETs is required to be equipped with a po-

sitioning system (receiver) to achieve the applications in communication and data

sharing [1]. GPS is typically used by the vehicle or the driver for self-localization and

navigation but the technology is also used for remote traffic surveillance and collision

avoidance on the VANETs. In the latter use-cases, vehicles are required to periodi-

cally broadcast position and velocity to inform the neighboring vehicles and the road
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assistant controllers through the VANETs. VANETs can achieve effective communi-

cation between moving node by using different ad-hoc networking short-range radio

technologies such as Wifi IEEE 802.11 b/g, WiMAX IEEE 802.10, Bluetooth, IRA.

Irrespective of any transmission interfaces used, these transmitted messages contain

a position that is directly derived from the on-vehicle GPS receivers. Although the

GPS receiver has widely been used for conventional automotive applications, it does

not guarantee reliability and continuity of position data.

The major goal of spoofing attacks on an automobile GPS system is to produce

erroneous position signals to fool the navigation systems. The vehicles under attack

may result in deviate to wrong places or loss of GPS signals. Since the GPS signals

used by vehicles are not encrypted, an attacker can easily spoof the RF antenna

input of a GPS receiver using a signal generator and RF transmitter. Consequently,

the on-road vehicles are vulnerable to GPS spoofing attacks, where an attacker

transmits fake signals that imitate signals from satellites but higher power and at

different time delays. The false signal is designed to cause the GPS receiver to report

an incorrect position solution. As vehicles become more autonomous, robust GPS

positioning will be an invaluable resource if threats like spoofing can be successfully

abated. Since many of the functions and applications in VANETs are dependent

on the civilian GPS signals to locate and synchronize in the network, successful

GPS spoofing attack can facilitate other cyber attacks as well (i.e., Sybil attack on

VANETs).

Some methods of spoofing detection on vehicles have been proposed which

concentrate on the raw signal observations like signal power and clock offsets in
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identifying an attack. Since receiver spoofing detection methods to be able to detect

some attacks, but most sophisticated spoofing techniques are extremely difficult to

be detected without external information. An inertial measurement may assist in

calibrating the GPS signals using filters benefit [87]. Even though these detection

approaches do not require changes to the GPS infrastructure, they still have a

crucial drawback. They assume more specialized GPS receivers increasing, e.g., the

complexity and power requirements. The major problem is that it is urgent to find

a low-cost GPS spoofing detection method without disclosing the privacy of the

vehicle. In paper [89], the author proposed a spoofing detection and mitigation

system relies on an existing cooperative adaptive cruise control system to provide

inter-vehicle ranging and data sharing. However, this work takes use of the cruise

control system and requires multiple vehicles to collaborate on the detection.

Instead of threats from spoofing attacks, lost of GPS signal can also cause

malfunctions of the navigation system. GPS receiver depends on weak satellite

signals from about 22000 km away in space, which is very easy to interfere with

the other signals. Besides, The GPS requires at least four beacon signals to be

overhead and the urban density and skyscrapers also cause difficulties in receiving

four messages and the issue of multi-path signals occurs within the vicinity of high

rise buildings. Further, the mobility of the vehicles makes it even worse to receive

precise and continuous GPS signals. As a result, some vehicles may occur temporary

loss of GPS signals due to the cover of the terrains.
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4.2.3 Edge Computing

The development of IoT and the success of cloud services have pushed the

horizon of a new computing paradigm, edge computing, which calls for processing

the data at the edge of the network [97]. Now with the arrival in the edge computing

era, where there will be a large quality of data generated by the end devices, and

a lot of applications will also be deployed at the edge to consume these data [98].

Some applications would require very short response time, some may involve private

data, and some might produce a large quantity of data which could be a heavy load

for network communications. Under those circumstances, cloud computing is not

always efficient enough to support these applications. As a result, edge computing

is believed to have the potential to meet the requirements as the response time

requirement, battery life constraint, bandwidth cost saving, as well as data safety

and privacy [99].

In summary, there are mainly two reasons for the growing demand on the edge

computing. First and foremost, since data is increasingly produced at the edge of the

network, it would be more efficient to process and filter the data at the edge where

also allocated enough computing power nowadays. The rationale of edge computing

is that computing should happen at the proximity of data sources. Here we define

“edge” as any computing and network resources along the path between data sources

and cloud data centers. In our application, a smart vehicle is an edge between the

vehicle sensors and the network cloud (i.e., VANETs). Modern vehicles are usually

equipped with 50-100 micro-controllers to process the maneuvers of vehicles. One of
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the main function of those controllers is to process the data generated or collected

by the sensors. Those controllers have the comparable computing power to process

the data at the edge which generate the “decision” from the numerous sensor data.

That is why the edge computing paradigm worked on modern vehicles.

Secondly, with the growing quantity of data generated at the edge, speed of

data transportation is becoming the critical bottleneck for the cloud-based comput-

ing paradigm. For example, about 5 Gigabyte data will be generated by a Boeing

787 every second, but the bandwidth between the airplane and either satellite or

base station on the ground is not large enough for data transmission. Consider an

autonomous vehicle as another example. One Gigabyte data will be generated by

the car every second and it requires real-time processing for the vehicle to make

correct decisions. If all the data needs to be sent to the cloud for processing, the re-

sponse time would be too long [72]. Not to mention that current network bandwidth

and reliability would be challenged for its capability of supporting a large number

of vehicles in one area. In this case, the data needs to be processed at the edge

for shorter response time, more efficient processing and smaller network pressure.

As an example, cameras in an autonomous vehicle capture a huge amount of video

data, which the system must process in real time to yield good driving decisions.

If the vehicle must send the data to the cloud for processing, the response time

would be too long. And a large number of autonomous vehicles in one area would

further strain network bandwidth and reliability. Processing data at the network

edge would yield shorter response times, more efficient processing, and less pressure

on the network.
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Figure 4.1: Edge computing paradigm for connected vehicles

In the cloud computing paradigm, the end devices at the edge usually play

as a data consumer. As the example shown in Figure 4.1, the end vehicle usually

receive the GPS signal from the cloud which is either the satellite network or the

central VANETs facilities [100]. Nowadays, smart vehicles deployed with multiple

sensors can also produce data. The change from a data consumer to data pro-

ducer/consumer requires more function placement at the edge. For example, it is

very normal for the vehicle to report the location or share traffic data through a

cloud service every single minute. However, the volume of data could be fairly large

and it would occupy a lot of bandwidth for uploading. In this case, there is a possi-

bility that the data could be processed or calculated adjusted to suitable resolution

at the edge before uploading to the cloud network. Another benefit from edge com-
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puting is privacy preserving. Since the physical data collected by the things at the

edge of the network is usually private, processing the data at the edge could protect

user privacy better than uploading raw data to cloud [101].

4.3 Threat Model in GPS Spoofing

In the past, incidents were reported where spoofs successfully interfered with

the integrity of the GPS system on vehicles. Based on common assumptions on the

attacker’s capabilities, we assess the threat model in this section. First, we clarify

our considered adversary model. Second, we reason about key assumptions that our

proposed GPS spoofing detectors.

4.3.1 Threat Model

The motivation of the attacker is to interfere the vehicle safety by injecting

false positioning information into the GPS system. An attacker may first want to

stop the navigation system or the other position based function of the vehicle to

hinder the vehicle’s system. He can achieve to divert the vehicle to somewhere else

without notice by the vehicle. Moreover, the attacker can destroy VANETs commu-

nication by manipulating the GPS signal of the victim vehicle. For those VANETs

protocols which use the position as authentication proofs, the victim vehicle will

result in failure to prove the location, thus cannot get any service or partition into

the VANETs.

In our adversary model, the attacker is able to use specially crafted signals
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with a higher power to the victim receiver. The attacker aims at spoofing a moving

vehicle from a position on the ground. Since the availability and cost of the GPS

transponders, we decide to use the simulation for GPS spoofing validation in this

chapter of dissertation. We assume the GPS spoof changed the receiver’s signal by

using higher power at the target location, thus resulting in changing the decoded

GPS signal. Here, we assume the attacker’s aim is to divert the vehicle to the other

location, so he will continuously inject false GPS signals into the navigation system.

4.3.2 Validation of Assumptions

Our proposed method relies on two key assumptions which we validate in this

section. First and foremost, the vehicle would know correct start GPS location when

the vehicle’s engine starts. We assume this would be achieved by other mechanism

such as cryptographic location authentication but cannot be authenticated with

high frequency. While this is considered as one-time per journey authentication,

it would not engage too much cost in communication and calculation. The second

assumption is that the spoofing attacker will only affect the GPS signal but has

no capability in changing the other signals in the vehicle, i.e, the vehicle speed or

the steering wheel angle. The confidential of those signals are guaranteed by the

in-vehicle security mechanism. We validate these two assumptions with controlled

lab experiments and simulations with real-world vehicle data.
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4.4 Reconstruction of GPS Signals on the Edge

We propose a mechanism to cross-validate the GPS signals received by the au-

tomobiles with an edge computing process on the trusted data from the in-vehicle

network. Our proposed mechanism would serve as an independent system infras-

tructure on the vehicle which continuously analyzes the contents generated through

the vehicle behaviors. Furthermore, our proposed method could also be applied

in predicting the location of the vehicle when the on-board GPS signal is unavail-

able. The data used in the GPS spoofing detection system are mainly from the vast

majority of sensors installed and operated on the modern vehicles, especially the

autonomous vehicles, are equipped with a variety of sensors for driving assistance.

Rich information such as vehicle speeds, locations, and time stamps are commonly

recorded by the central control system of the vehicle. It is almost no cost by using

the existing rich data from the in-vehicle sensors. As a result, our proposed method

is considered to be a lightweight method to detect GPS spoofing. We proposed

to apply our two developed algorithms to realize the purpose on the vehicle, the

computing edge, which would save the communication times and overload. Also, we

use downloaded map information to further improve the accuracy on reconstruction

GPS signals, which is also operated on the edge side.

As discussed previously, detecting GPS spoofing attacks with extra hardware

extensions is of high-cost and not feasible for vehicles. It is obviously unnecessary

to find a place to install extra antennas or receivers in a compact vehicle.
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4.4.1 Method I: Non-holonomic Car-like Robot Demo (Kinematic

Model)

As previously stated, the main aim of the attacker is to trick the GPS receiver

into reporting an inaccurate position without identifying the failure. To defeat

the attacker’s purpose, the first proposed spoofing detection approach leverages the

driving information data and the physical model of vehicle to reconstruct the loca-

tion information. Specifically, the method takes use of the non-holonomic kinematic

model to calculate the trajectory of the vehicle and reports the spoofing attacks if

any inconsistencies found.

Figure 4.2: Generalized Coordinates of a car-like robot

The movements of the vehicle can be modeled by the kinematic equations of

a car-like robot [102]. The kinematic model is derived from the physical feature of

a mobile wheel with the presence of non-holonomic constraints due to the rolling
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without slipping condition between the wheels and the ground. The symbol of the

kinematic model of vehicle is shown in Figure 4.2. For simplicity, we assume that

two wheels on each axle collapse into a single wheel located at the mid-point of the

axle. For a front-drive vehicle, we assume that the front wheel can be steered while

the rear wheel orientation is fixed. The generalized coordinates are q = (x, y, θ, φ),

where x and y are Cartesian coordinates of the rear wheel, θ measure the orientation

of the car body with respect to the x axis and φ is the steering angle. The derived

front-wheel driving model is obtained as
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Where v1 is the driving velocity refers to the front wheel and v2 is the steering

velocity input.

Note that the input v2 in the dynamics is the angular velocity of the wheel,

however, our dataset does not provide this measurement. But the dataset has

recorded the steering wheel angle status with time stamps which could be used

to calculate the steering velocity. Specifically, the steering wheel angle is recorded

in degree and the range apart from the normal reference is from -900 degrees to 900

degrees. Based on the mechanical structure of the vehicle, the turning of the steering

is proportional to the actual turning of the wheels. Based on vehicle manufacture
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books, the ratio is varying among different models and it usually falls in between 12:1

to 24:1. Thus, to calculate the dynamics of the vehicle with the steering velocity,

we should derive the appropriate steering ratio of the test vehicle. For example,

the steering ratio is r and the turning of the steering wheel is Φ, the actual change

of the wheel would be φ = Φ/r. And the angle velocity discussed above can be

modeled as v2 = dφ
dt

. The other input of the dynamic functions v1 could be acquired

directly from the dataset. Each state of vehicle is represented as q = (x, y, θ, φ) and

the coordinates of the position are calculated by the inputs and the transit state of

the function. Based on all the transit states derived from the dynamics equation,

the transitory of the vehicle is achieved.

In the kinematic model discussed above, we make approximations when simu-

lating the dynamics of the model. For example, we treat the two wheels as a single

axis in the middle but a practical model should also consider the rotation angles of

each wheel as generalized coordinates. Furthermore, an accurate model should also

account for the presence of actuators and sensors on the wheel axis as well as for

typical non-ideal such as tire deformation. For example, at higher speeds or with

sharp steering, the no-wheel-slip assumption breaks down due to the lateral force.

Besides, the above system is assumed to be drift less, i.e, no motion takes place

under zero input that there are fewer control inputs than generalized coordinates.

But the real road test would be totally different and it is not trivial to establish a

complicated mathematical model for the real road condition. Moreover, some pa-

rameters to model the dynamics of the vehicle is confidential of the manufacture and

not disclosed to the public. As a result, we choose to use a simple one. However,
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we shall admit the existence of errors when using an approximate model.

4.4.2 Method II: Regression Model

As an alternative to mitigate the error generates by approximate modeling,

we derive a regressive algorithm to describe the relationship of the steering wheel

angle and heading of the vehicle. More specifically, we calculate the next coordinates

based on the current location, current velocity, and the steering-wheel angle. For

example, we calculate the next coordinate based on the length of the route (l) and

the heading angle (θ) from the previous coordinate. The length of routes can be

achieved easily by assuming uniform motion in a small period of time, i.e, l = v · t,

where v is the sampled velocity of this period and t stands for the time interval.

Thus, we could acquire the changes on the coordinated from the following equations,


∆x = l cos θh

∆y = l sin θh

(4.2)

with δx represents the changes from the X coordinate and δy denotes the changes

on the Y coordinate. Since the distance l is calculated by the speed and time, the

only unknown variable is the moving direction (heading) as the θh. Since then,

the problem can be formulated as a regression problem to find the relationship of

the heading θh based on the current and past steering wheel angles. Intuitively, we

would think that the steering wheel controls the heading of the vehicle and it should

follow an equation as θh = f(θw). As a result, the key aim of this method is to use
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regression algorithm in finding the best fit function f and then applying the function

to reconstruct the vehicle trajectory. Figure 4.3 shows the regression results on the

heading versus the change of the steering wheel angle θw(tn)−θw(tn−1). The strict line

indicates the linear relationship between the steering angle changes and the heading.

The spots in the figure are the sampled data from the test drive. Using the derived

function f to calculate the heading of the vehicle from the known steering wheel

angles, we can construct the next coordinates when plugging into Equation 4.2. One

evident advantage of Method II is that it avoids the complex states and parameters

calculated in Method I. The exact model as to whether a front wheel is driven or

rear wheel driven is not necessary to be defined with Method II in reconstructing.

As a result, we could skip the approximated assumption in the mechanical model.

Besides, the result from the second method should be more accurate than Method I

as it is calculated on from real data which is not from the approximate formulation.

One of limitation of Method II is that as a regression process it would require lots

of data points for a training process to derive the exact function f , which might be

restricted on the edge device. As a result, we propose the training phase (regression

analysis) should be an off-line procedure, which is implemented on the other devices

and the final output, function f , is reported to the vehicle later.

4.4.3 Combined with Map Information

Not limited to the data collected by the sensors in the vehicle, the public

map data can also be used to locate the vehicle, which in terms validates the GPS
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Figure 4.3: Regression results on the heading versus steering wheel angle

signal. In this scenario, we consider the GPS validation is processed on the edge

part and the map information is considered as off-line data which would not add

extra communications on the edge. The third method makes use of the information

from the map to match the constructing coordinates acquired previously to a real

location along the road. In particular, we perform a comparison from the calculated

positions to the stored map positions. When the differences from those two positions

are small, we will assume this vehicle is on those routes. By continuously monitoring

several locations, we can infer the trip of the vehicle and compare the physical GPS

locations of the route with the received GPS signal.

In this experiment, we collect the road information from the Open Street Map

(OSM) which is a collaborative free editable map. The OSM contains the data

from GPS receivers, which makes it proper for assisting the GPS validation scheme.

Open Street Map uses a topological data structure, with four core elements listed
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as follows.

• Nodes are points with a geographic position, stored as coordinates (pairs

of a latitude and a longitude). A set of nodes are used to represent a way,

besides they are used to represent map features without a size, such as points

of interest or mountain peaks.

• Ways are ordered lists of nodes, representing a polyline, or possibly a polygon

if they form a closed loop. They are used both for representing linear features

such as streets and rivers, and areas, like forests, parks, parking areas, and

lakes.

• Relations are ordered lists of nodes, ways, and relations, where each member

can optionally have a “role”. Relations are used for representing the relation-

ship between existing nodes and ways. Examples include turn restrictions on

roads, routes that span several existing ways (for instance, a long-distance

motorway), and areas with holes.

• Tags are key-value pairs. They are used to store metadata about the map

objects (such as their type, their name, and their physical properties). Tags

are not free-standing but are always attached to an object: to a node, a way

or a relation.

After GPS signals are reconstructed by the previously proposed algorithms,

we use map information to locate the route. This is the following step to confirm the

GPS signal spoofing in order to take appropriate action. The procedure to extract
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Figure 4.4: OSM of College Park metro area, the selected area is 5.56 km (horizontal)
× 6.92 km (vertical)
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Figure 4.5: Extracted roads from OSM of College Park metro area, the total number
road extracted is 252
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the useful roads information and combine them to validate the GPS signal is listed

as follows,

1. In the first step, the map including all the data (e.g, the roads as well as the

other geographic features such as the parks, forests and lakes) in the nearest

area is downloaded from the cloud, as shown in Figure 4.4. The example map

shown represents an area of 5.56 km × 6.92 km.

2. Next, we extract the valid roads from the raw map data where the vehicles

could present. The extracted lanes are drawn as in Figure 4.5 and the other

useless regions or markers are removed from the map. After this filtering, the

remaining ways only consist of sets of nodes stored as a pair of latitude and

longitude g(lat, long). We will use these sets of GPS positions from the map

to validate the GPS constructed signals from the previous procedure. For the

example, there are in total 252 valid road segments are extracted from the

map area and drawn with different colors as shown in Figure 4.5. This step

can also be implemented off-line or parallel with the procedure as constructing

the GPS signals. Once we know a rough location of the vehicle from the range

of GPS, we could extract the roads information in advance.

3. The following step is to locate the vehicle on the extracted routes, the specific

calibration process is described in Algorithm 1. Based on the calculated GPS

signal from the former methods, we calibrate the exact GPS positions along

the route, which could lower the error rate and quickly detect any spoofing on

the GPS signal. The specific details are described as, first, we acquire a list
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of GPS signals as input g(g0, g1, · · · , gt). We iterate on this list, for each node

gi, we try to find the nearest routes along this node based on the threshold τ

as dist(gi, rj) ≤ τ . We collect those routes rj in the selected set as R. Keep

updating R, we will find the final route R which consists of a set of GPS

signals. Comparing the GPS location from the routes R as gr with the GPS

signal from the receiver ĝ, we can detect the spoofing if big differences exist.

Algorithm 1: Mapping calibration process

Input: (r0, r1 · · · , rk)← extracted roads and reconstructed GPS signals g(lat; long)
Output: a set of routes r

for a GPS signal gi from the set g(g0, g1, · · · , gn) do
for rj from the road set do

calculate the distance from gi to rj
end for
find the nearest route r∗ for the signal gi
updated data for corresponding route r = r

⋃
{r∗}

end for

4.5 Evaluation and Experimental Results

Have discussed the above methods that use driving information to cross-

validate the GPS signal and detect any spoofing attacks, we now design a series

of experiments to validate our initial hypothesis. First, we collect the driving infor-

mation as well as the GPS signals from real road tests. With the OpenXC module

assisted, we collect 15 driving trips from the same vehicle. The testing routes are

designed as 10-20 minutes long, and tried to cover all kinds of driving scenarios, in-

cluding left turn, right turn, driving around curved road and etc. With the OpenXC

111



hardware demo plug into the vehicle, we collect the data from the OBD-II board and

record it on the cellphone App. Then, we construct the route based on the driving

information using the two methods we discussed above. At last, we need to estab-

lish whether the cross-validation method could detect the GPS spoofing attacks.

This can be accomplished by emulating an attack with misleading GPS signals with

respect to spoofing scenarios. To evaluate the applicability of our proposed GPS

detection method to real world vehicle data, we assess its performance in terms of

spoofing detection and detection time.

4.5.1 Driving Information Data Set

The driving data set we collected from the in-vehicle bus is extremely im-

portant to our proposed GPS spoofing detection methods. Here we will shortly

introduce the data acquirement methods and the type of data from the set. We ac-

quire the driving data by using the OpenXC platform which is a pluggable module

have hardware and software that lets the customer extend the vehicle’s applications.

It uses a standard and well-known tool to open up a wealth of data from the vehi-

cle to developers, even beyond OBD-II. OpenXC allows consumer devices, such as

smartphones, to access data from any vehicles. Using OpenXC, users can monitor

and read out data from many of the sensors on a vehicle, enabling new and inno-

vative vehicle-centric applications. The OpenXC provides a rich dataset including

the speed, steering positions, brake positions and the GPS signals from the sensor.

This plentiful dataset assists the GPS spoofing detection scheme proposed in our
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paper. Here, we mainly use the OpenXC vehicle interface, which is plugged into a

Ford 2017 vehicle through the OBD-II board to collect the in-vehicle information

needed. The signal format and specification used to construct the GPS signal are

listed in the below Table 4.1.

Name Range Frequency
steering wheel angle -600 to +600 degrees 10 Hz

vehicle speed 0 to 655 km/h 10 Hz
accelerator pedal position percentage 10 Hz

latitude -89.0 to 89.0 degrees 1 Hz
longitude -179.0 to 179.0 degrees 1 Hz

Table 4.1: OpenXC dataset

4.5.2 Model Validation

From the above discussions, the key parameters to model the driving behavior

of the vehicle should be determined before we reconstruct the GPS signal. As a

result, the first step is to validate the default parameter of the test vehicle based

on the driving data as well as the GPS signals without attacks for reference. For

Method I, we need to yield the steering ratio r from the training routes in advance.

Since lack of design details to calculate the ratio, we try to find the fitted steering

ratio for the test vehicle by sweeping mechanical reasonable range, i.e, from 11 to

20. Figure 4.6 displays an example of the constructed routes with a set of ratio

values and the corresponding true GPS signals (marked in a star) for reference. The

figure shows visually the third curve with r = 13 is the closest trajectory to the real

route. We further narrow down the range and verify the best-fit steering ratio of

the test vehicle is 12.4. We will use r = 12.4 in the following experiments on GPS
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spoofing detection.

Similar for Method II, the preliminary step is to model the relationship be-

tween the steering θw and the heading θh. We use the Matlab curve fitting toolbox

automatically find the best fit for the relationship. By trying different regression

methods (e.g, linear, polynomial and Fourier), we derive a linear relationship be-

tween the steering and the heading from 5000 single data points for training, as

shown in the Figure 4.3.

Figure 4.6: Reconstructed GPS Routes with different ratio, range of r is from 11 to
20 and the best fit is r = 13

4.5.3 Reconstruction of GPS Signals

We propose the implementation of two methods to reconstruct the GPS signal

from the in-vehicle dataset. The test performs a cross-check between the reported

GPS positions from the receiver and the estimated positions from our reconstruc-
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tion methods. While we have confirmed that the two methods could construct the

trajectory based on the driving information with an accepting error range, we now

focusing on constructing our detector. The most important factor of a well-defined

detector is the threshold for detection.

We check for each incoming position report whether dist(gi, ĝi) < τ holds,

where gi is the calculated GPS position and ĝi is the position reported by the receiver.

dist() is the Euclidean distance function, and τ denotes a predefined threshold

which tolerates measurement errors. Choosing the right threshold τ depends on the

accuracy of the underlying reconstruction method. Smaller τ lead to higher false

positive rates, while larger τ create more space for the spoofer.

More specifically, to make the signals consistent in formal representation, we

map the GPS signal from degrees to relative displacement by calculating the great-

circle distance from the latitude and longitude. Therefore, the coordinates of GPS

location can be expressed as Pg(xg, yg) in meter. Correspondingly, the reconstructed

location is expressed as Pr(xr, yr). Then, the errors can be defined as dist(Pr−Pg) =√
(xr − xg)2 + (yr − yg)2, which is represented in meter. We evaluate the error (m)

for route reconstruction by applying the two methods discussed above as shown in

Table 4.2. For all the test routes, the average error is 10.13m for Method I and

6.25m for Method II. By considering the route distance from the real road situation,

a thresh hold as small as 15m is appropriate to detect the spoofing attacks. Note

that the maximum error from Method I is above the threshold. To cope with the

false alert for Method I, we consider a sequence of 10 consecutive test points above

the threshold as a valid detection of spoofing. In addition, the average error of
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Method II is 6.25 m which achieves 38% decrease from the Method I. Therefore,

with lower error, Method II will achieve better performance in spoofing detection

and positioning.

Method 1 Method 2
Applications Max error Average error Max error Average error

route#1 18.03 10.49 13.90 6.95
route#2 19.01 10.67 13.28 6.75
route#3 19.02 10.71 11.73 5.90
route#4 18.68 9.54 12.91 5.58

average 18.57 10.13 12.92 6.25

Table 4.2: Statistical results from route reconstruction

4.5.4 Calibration with Map Information

With the two GPS reconstruction methods discussed above, we achieve the

best errors from Method II as 6.25 m. This accuracy is acceptable when the road

network is sparse in some rural areas. However, the result needs to be improved

when coming to the dense area in the city, where the distance between two roads

might be less than 5 meters. To improve GPS spoofing detection accuracy, we

identify an additional optimization technique that helps to lower the error rate. As

the open source maps contain GPS signals as fixed locations, this allows to better

predict the vehicle’s location by incorporating the discussed construction methods

with routes information extracted from maps.

Based on the former calculation, the maximum errors usually occurred when

the vehicle takes turns. This is because the steering signal changed frequently and

sharply when taking turns and the errors from the real signal are large when taking

use of our heading estimation method. As shown in the Figure 4.7 (a), the vehicle
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Figure 4.7: (a) Reconstructed GPS signal using Method II (b) Reconstructed GPS
signal with map information

is making right turns along the route, the reconstructed GPS signal aligns the route

well before the turn. However, the calculated path deviates from real GPS coordi-

nates and the mismatches accumulated with time. As clearly shown after the right

turn, a large margin is seen from the reconstructed positions to the real positions.

Since this margin will definitely influence accuracy as well as the threshold set for

spoofing detection, we consider making use of the map information to further cal-

ibrate the GPS signals. For example, we extracted the route information at that

intersection and figured out the vehicle is taking right turn based on several obser-

vations after the turn. As a result, the reconstructed GPS signal aligns the path

with the real signal, which is shown in Figure 4.7 (b). We conduct the same map

calibration on the training routes. Results also demonstrated that the errors drop

from 6-10 meters to 1.21 meters with the map information, which achieves 10 times

accuracy. With these achievements, the threshold for detection could be narrow

down and the false negatives for detection would decrease.
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4.5.5 GPS Spoofing Detection

With the definition of the valid detector discussed above, we now seek to

emulate a GPS spoofing attack and measure the effects. We compared our two

spoofing detection tests with regard to the detection rate and detection delay.

As we stated before, conducting legitimate GPS spoofing attacks in the wild

on the road test is challenging. We, therefore, use the simulated GPS spoofing

attacks to test the baseline of our expectations. The goal of these experiments is

to demonstrate that the vehicle could be misled form the route by emulated GPS

attacks consisted of wrong GPS signals. To simulate how real GPS spoofing attacks

impact the GPS signals on board, we designed several routes deviate from the real

location to simulate the GPS receiver is under spoofing. The speed of the fake

routes keeps the same as the one for the real route. The attacks would take place at

the intersections. For example, when the vehicle turns right, however, the designed

spoofing signals indicate it turning left.

From Table 4.3, we could find out that the detection accuracy for the simulated

spoofing attacks is 100%. And the response time of Method II is a bit faster than

Method I because it does not evaluate consecutive points to make a decision. Overall,

our results confirm that the faked GPS signal can be detected using construction

methods from in-vehicle measurements.

Applications Detection rate Detection time(s)
Method I 100% 18
Method II 100% 15

Table 4.3: Detection results from GPS spoofing
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4.6 Summary

GPS spoofing attacks threaten the confidentiality of the navigation and posi-

tion applications in vehicles. In this chapter, we propose a cross-validate a low-cost

method for detecting the spoofing of civilian GPS signals received by vehicles. Us-

ing driving information collected from the real routes, we demonstrate the ability to

detect such GPS spoofing attacks with high accuracy. We believe that our proposed

add-ons can easily be included in the future vehicles, and represents the best means

of reliability detect such attacks in the short and medium terms.
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Chapter 5: Blockchain-based Anonymous Reputation System for Trust

Management in VANETs

5.1 Introduction

Recently, VANETs are suggested as the foundation of intelligent transporta-

tion system to improve the efficiency of transportation and ensure the safety of both

vehicles and pedestrians. Two types of communications, namely vehicle-to-vehicle

and vehicles-to-infrastructure are established in VANETs to assist in sharing the

valuable driving information through the network [26]. Through dedicated short

range communication radio, vehicles exchange messages with nearby vehicles as

V2V and communicate directly with roadside units as V2I.

However, some unique characteristics of VANETs such as high mobility and

volatility [31] make it vulnerable to various kinds of attacks. Security, privacy, and

trust are becoming more and more critical when designing the VANETs. Although

some security services have been well-studied in other fields can provide secure

communication channels against external attackers, trust management and privacy

protection for vehicles are still open issues for VANETs. Specifically, it is difficult

to deal with mis-behaviors and forged messages from authenticated vehicles. These
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forged messages could not only decrease the transportation efficiency, but also cause

traffic accidents which threaten human life [45]. And in other case, internal attackers

can easily track other vehicles or profile the drivers’ actions by analyzing all the

broadcast messages in VANETs.

To mitigate those attacks from both internal and outside, a trust communi-

cation environment should be proposed to evaluate the trustworthiness of messages

based on both direct historical interactions and indirect opinions about the senders

[103]. An effective trust model should have the following properties:

1. Efficiency. It should determine the trustworthiness of a warning message in

both congestion and sparsity situations.

2. Privacy. It should not reveal any sensitive information about the senders

without permission, i.e, the identity of the senders.

3. Robustness. It should be resistant to those attacks aiming at deceiving the

trustworthiness evaluation or disabling the trust model.

Blockchain is the underlying technology of Bitcoin protocol emerged in 2008

[104]. It is a distributed and public ledger scheme encrypted with Merkel tree and

hash function. It reaches the consensus based on the proof of work (PoW) algorithm

[105]. These significant features of blockchain make it potential for constructing the

desirable trust model in VANETs. All the broadcast messages and actions of vehicles

will be written into the immutable and unforgeable record, which can be verified and

audited by every entity in the network later. However, the essential transparency
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of blockchain makes the privacy not protected. By checking the ledger, any actions

made with any public key are traceable.

In this chapter, we propose a blockchain-based anonymous reputation system

(BARS) to establish distributed trust management while simultaneously protect the

privacy of vehicles. First, we exploit the features of blockchain and extend conven-

tional public key infrastructure (PKI) with an efficient privacy-preserving authen-

tication mechanism. The linkability between the public key and the real identity

of a vehicle is eliminated when certificate authority (CA) operates the certificate

issuance and revocation. All the actions of CA are recorded in blockchain trans-

parently without sensitive information about vehicles so that the public key can be

used as an authenticated pseudonym. Law enforcement authority (LEA) is respon-

sible for managing BARS and keeping the pairs of public key and real identity in

case of dispute. Second, we design a reputation management algorithm to evaluate

the trustworthy of each vehicle from the authenticity of broadcast messages and

opinions from the other vehicles. Since all the messages are recorded in blockchain

as persistent evidence, it is easy for LEA to evaluate the reputation score for each

vehicle. The reputation score could provide incentive for internal vehicles to prevent

misbehaviors and mitigate the usage of forged messages.

5.2 Preliminaries

Before elaborating how BARS works, we will first introduce the concept of

blockchain and how it works to maintain the security. Then we investigate the
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problems of conventional PKI and explain the conception of certificate transparency.

5.2.1 Blockchain

Blockchain is a computational paradigm as the core component for the Bitcoin

[104]. It is a distributed ledger containing all transactions ever executed within the

network. The ledger is enforced with cryptography and carried out collectively in a

peer-to-peer system. As a secure and decentralized computational infrastructure, it

is widely acknowledged as a disruptive solution for the problems of centralization,

privacy and security when storing, tracking, monitoring, managing and sharing data

[106].

In blockchain, asymmetric cryptography is exploited to guarantee the security

of transactions through shared channels. The digital signature generated with the

sender’s private key provides authentication, integrity, and non-repudiation. The

transactions can be accessed and verified by all the participant nodes in the network,

which is called mining. The participant nodes in the network are given incentives

in the form of Bitcoins for performing the mining operations. Miners compete to

solve a complex mathematical computation and the winner will earn Bitcoins as a

reward. Figure 5.1 presents the structure of a blockchain, each block contains the

hash value of the previous block, the timestamp, the nonce, and the root of a Merkle

tree. Miners compete to generate a new block by solving a complex mathematical

computation. A block is valid only if it contains PoW with a given difficulty. In the

PoW algorithm, miners should find a nounce so that the result is below a certain
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difficulty threshold. The time consumption for finding a new block can be controlled

by manipulating the difficulty. The block of successful PoW miner is selected to be

next block in the blockchain. Once a winner’s block is selected, all other nodes

update to that new block [107].

Figure 5.1: Structure of a blockchain, each block contains current and pervious
blockhash, nonce, timestamp and the Merkle root

Blockchain realizes a secure network with untrusted parties which is desirable

for VANETs with numerous nodes. PoW is a key component of Bitcoin, which

is difficult to solve, but trivial to verify. It often boils down to a random process

of trying to find a solution to a mathematical puzzle, like a partial hash collision

[108]. In VANETs, the RSUs with relatively high computing power can behave

as the miners. First, RSUs are responsible for verifying the messages to prevent

Sybil attack. Second, RSUs will collect those verified messages and record them

in blockchain. In this dissertation, we assume that attackers cannot control the

majority of the RSUs.

RSUs implement the PoW scheme by finding a nonce that gives the block’s

hash the required zero bits. Once the computing effort has been expended to make
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it satisfy the PoW, the block cannot be changed without redoing the work [104].

Whoever attempts to change one block has to redo all the blocks after it. If the

majority of computing power is controlled by normal RSUs, the honest chain will

grow the fastest and outpace any competing chains. To modify a past block, an

attacker would have to redo the PoW of all blocks after it and surpass the work of

normal RSUs, which is not practical in VANETs with thousands of RSUs. Therefore,

all the broadcast messages in VANETs are tamper-proof and cannot be repudiated.

The lack of central control of blockchain ensures scalability and robustness by

using resources of all participating nodes and eliminating many-to-one traffic flows,

which in turn decreases delay and overcomes the problem of a single point of failure

[109]. The block header incorporates a Merkle root [110], which is the root of a hash

tree containing hash values of all messages in VANETS. It allows nodes to verify

that a message is part of a block by starting at the respective leaf and traversing the

branches up to the root [108]. If the final hash and the Merkle root are identical, the

message must be part of the block. For the verification, distributed nodes request

just a list of intermediary hashes instead of the whole block with all messages. Since

the block headers containing the Merkle root are secured, valid intermediate hashes

cannot be faked easily. Thus, the existence of a message can be efficiently and

reliably verified with this approach.
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5.2.2 Certificate Transparency

Certificate transparency [111] is invented by Google aiming to prevent trans-

port layer security (TLS) certificate authorities from issuing public key certificates

for a domain without being visible to the owner of the domain. The technology

is being built into Google Chrome aiming at website certificates. The core idea of

certificate transparency is that a public log is maintained to show all the certifi-

cates that have been issued [112]. The log is append-only. Anyone can append a

certificate to the log. Auditors can obtain two types of proofs: (a) a proof that

the log contains a given certificate, and (b) a proof that a snapshot of the log is an

extension of another snapshot (i.e., only appends have taken place between the two

snapshots).

Abstractly, a certificate is a signed pair (subj, pksubj), asserting that a subject

subj’s public key is pksubj . In certificate transparency, the CA’s database of certifi-

cates is maintained as a Merkle tree in which these pairs are stored left-to-right in

chronological order at the leaves of the tree. Items are added chronologically, by

extending the tree to the right. A certificate is accepted by a browser only if it is

accompanied by a proof that the subject’s key pair has been inserted into the log.

Observers can verify that the log is maintained append-only. To perform such a ver-

ification, the observer submits to the CA the hash value of the log at two different

times. The CA returns a proof that the log corresponding to the later hash value

is an extension of the log at the earlier time. The properties of Merkle trees ensure

the insertion into the log, and both proofs can be done in time/space O(logN).
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It is vital for the log to be a single linear record. If the log maintainer can

create different versions of the log to different users, the security is broken. Linearity

is guaranteed in two ways. First, whenever a user interacts with the log, it requests

proof that the current snapshot is an extension of the previously cached snapshot.

In order to avoid that a version constructed for a particular user is being used

before, it should be performed before authentication. Second, gossip protocols can

be used to disseminate values of the log, which means that the users of the log need

to find a method to exchange with other users the hash value of the log that they

have received. At any time, a user can request proof that the snapshot currently

offered by the log is an extension of a previous snapshot received through direct

communication with other users.

In certificate transparency, one can prove that a certificate is in the log, but

there is no proof of whether it is still current. Revocation transparency [113] is

an extension of certificate transparency aiming to deal with revocation. Two re-

lated methods for revocation transparency are proposed. The first method stores

revocations in a data structure called a sparse Merkle tree, which is a transformed

Merkle tree in which most of the leaves are zero. A 256 bit-length path in this tree

is used to represent the hash of a certificate. The path ends in a 1 or 0 accord-

ing to whether the certificate is revoked or not. Thus, the tree is a kind of binary

tree with 2256 leaves. However, because it is sparse, these leaves do not have to

be stored individually. To revoke a certificate, one alters the sparse Merkle tree

so that the relevant path terminates in 1, and one enters a record of this action

in the certificate-transparency append-only log. Unfortunately, checking whether a
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certificate has been revoked is inefficient. The second method is to track the revoca-

tions by a separate mechanism, which is related to the number of revocations that

in turn can be assumed proportional to the number of issued certificates. Alterna-

tively, one can check the entire certificate-transparency log for revocation records.

However, this is again linear in the number of issued certificates that proofs require

linear space and time with data sizes measured in tens or hundreds of gigabytes.

Therefore, this method is impractical.

5.3 Framework of BARS and Anonymous Authentication

Anonymous authentication is fundamental for trust communication and pri-

vacy protection. We first introduce the main components of BARS along with their

corresponding functions of anonymous authentication. In BARS, CA and LEA can

help in realizing the anonymous authentication by implementing three major tasks:

system initialization, certificate update, and public key revocation. We then re-

spectively present the three tasks and elaborate the process of privacy-preserving

authentication.

5.3.1 Components of BARS

Law Enforcement Authority (LEA). The functions of LEA include reg-

istration, monitoring behaviors of vehicles, and evaluating the reputation scores of

each vehicle. LEA authorizes CA for certificates issuance and revocation and keeps

the database that contains correlation between vehicles’ public keys and the real
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identities with high-level security.

Certificate Authority (CA). CA issues and revokes certificates only if it

gets the warrant from LEA. All the actions of CA will be recorded transparently in

the blockchain and can be verified by every entity in VANETs.

Certificate. The certificate contains the expiration date, the public key, and

the reputation score but no real identity so that privacy of the vehicle is protected.

Blockchain for certificates (CerBC). CerBC acts as the public ledgers

for all the issued certificates. It provides efficient proof of presence for received

certificates.

Blockchain for revoked public keys (RevBC). RevBC acts as the public

ledgers for all revoked public keys. It provides efficient proof of absence for the

senders public key.

Blockchain for messages (MesBC). All the broadcast messages will be

recorded in MesBC as persistent evidence in case of disputes.

Roadside Unit (RSU). The global consensus is based on the proof of work

(PoW) provided by RSUs. As long as more than half of the RSUs are not compro-

mised, the security of BARS can be guaranteed.

Vehicle. On one hand, vehicles can check the CA and LEA by verifying all

the messages recorded in blockchains. On the other hand, vehicles can also verify

each other to prevent misbehaviors and forged messages.
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5.3.2 System Initialization

At beginning, each entity generates a pair of private and public keys. When

vehicle A entering the network, it uses the secure channel to submit LEA its initial

public key and materials to prove its legal identity. LEA will send a signed warrant

to CA if the materials are valid. Next, CA will issue an initial certificate to vehicle

A.

Note that the submitted material contains the vehicle A’s private information.

Thus, only LEA preserves them in the database with high-security level, which will

be used for verifying the vehicle’s real identity when a dispute happens.

5.3.3 Certificate Update

Vehicle A will send a request to LEA for updating certificate in the following

situations: a) before the current certificate expires. b) if the security of its private

key is threatened. c) if it requests to replace its public key for privacy consideration.

The public key, reputation score, and expiry date are updated in a new certificate.

Figure 5.2 illustrates the steps to update certificate anonymously.

We also elaborate the detailed steps for certificate updating as following.

Step 1. Vehicle A generates a new pair of public key and private key {pknA, sknA}.

Step 2. Vehicle A sends LEA certificate update request encrypted with LEA’s

public key pkLEA. The request includes the vehicle A’s current public key pkn−1
A ,

updated public key pknA, proofs of real identity, and the signature SigA generated

by A’s current private key skn−1
A .
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Figure 5.2: Certificate update process. CA, LEA and vehicle involve in this process

Step 3. If vehicle A’s request is verified, LEA will send CA a signed war-

rant. For the purpose of privacy protection, the linkability between A’s current and

updated public keys is unknown by CA.

Step 4. CA will verify the signature in the warrant. Then, an updated

certificate containing the updated public key pknA, A’s reputation score RptA, and

the expiration time TA will be issued to vehicle A publicly and will be recorded into

CerBC. The message contains the following components.

Cn
A =

〈
pkCA, SigCA, pkLEA, SigLEA, pk

n
A, RptA, TA

〉
(5.1)

5.3.4 Certificate Revocation

In general, Vehicle A’s public key should be revoked before its expiry date or

A’s misbehavior is discovered by LEA. In order to provide revocation transparency,

LEA sends a signed revocation instruction to CA that contains the revoked public
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key pkrev and the revocation time Trev. Then CA broadcasts the revocation messages

that contains the revoked public key, the timestamp, signatures of CA and LEA:

Rev =
〈
pkCA, SigCA, pkLEA, SigLEA, pkrev, Trev

〉
.

The RSUs will verify all the revocation messages in a predefined interval, delete

the expired public key, and lexicographically insert revoked public keys into RevBC.

RevBC is constructed with a lexicographical Merkle tree [114] also called LexTree

that can provide efficient proof of absence. The idea is that we can group all the

information about a subject into a single node of the binary search tree, and while

being able to efficiently generate and verify the proof of absence. We consider an

order on bitstrings denoted ≤. This order could be the lexicographic order in the

ASCII representations but it could also be defined anything else. A LexTree LT is

a binary search tree of pairs of bitstrings:

• For two pairs (d, h) and (d′, h′) of bitstrings in LT , (d, h) is left of the occur-

rence of (d′, h′) if and only if d ≤ d′ lexicographically;

• For all nodes n ∈ LT , n is labeled with the pair (d,H(d, hl, hr)), where d

denotes the bistring and (dl, hl) (resp. (dr, hr)) is the label of its left child

(resp. right child) if it exists; otherwise it would be the constant null.

In this way, it prevents CA or LEA from arbitrarily revoking any public keys

because RevBC keeps the persistent evidence of all the revoking operations. Addi-

tionally, LexTree makes it very efficient for a vehicle to prove its public key is not

in the RevBC, which means this public key is valid (if the associated certificate is
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in CerBC).

5.3.5 Authentication Process

Vehicle A’s certificate CA is used for authentication. As shown in Figure 5.3,

when vehicle B receives CA, it first checks whether the certificate is expired. If not,

B will look up in the CerBC and RevBC to make sure CA is present in CerBC but

pkA is absent in RevBC, which means pkA is issued and not revoked by CA. Then we

will give the details of proof of presence and proof of absence in the authentication

process.

Figure 5.3: The process of anonymous authentication in the BARS
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5.3.5.1 Proof of Presence in CerBC

Figure 5.4 illustrates how to prove a certificate C4 is present in the CerBC.

A tuple (dir, hash) is used to prove the presence for C4 in the CerBC, in which

dir = left, left, right and hash = h3, h12, h58. The receiver can get the root hash

value using the tuple. If this root hash value is equal to the root recorded in CerBC,

it indicates that C4 and the associated public key is valid.

Figure 5.4: An example to show the proof of presence for a certificate

5.3.5.2 Proof of Absence in RevBC

It is unreasonable to force a vehicle to demonstrate that its public key is

revoked. Thus, a proof of absence is necessary for a vehicle to convince others its

public key is valid. As shown in Figure 5.5, all the revoked public keys (not expired)

are recorded in the data structure based on lexicographical Merkle tree. Vehicle A

should prove that two adjacent public keys (pk7, pk8) exist in the left-right traversal

of the tree meanwhile pk7 ≤ pkB ≤ pk8 lexicographically.
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pk1

h1=H(pk1)

pk3

h3=H(pk3)

pk2

h2=H(pk2||h1||h3)

pk5

h5=H(pk5)

pk4

h4=H(pk4||h2||h5)

pk7

h7=H(pk7)

pk9

h9=H(pk9)

pk8

h8=H(pk8||h7||h9)

pk11

h11=H(pk11)

pk12

h12=H(pk12||h11||null)

pk10

h10=H(pk10||h8||h12)

pk6

h6=H(pk6||h4||h10)

Proof of absence

Figure 5.5: An example of proof of absence for a public key

A tuple (pk, hash) is used for proof of absence, in which pk = pk7, pk8, pk10, pk6

and hash = h9, h12, h4. Similarly, if the hash value calculated using the tuple is same

as h6 that is recorded in RevBC, it means that A’s public key is absent in RevBC.

5.4 Reputation Management

We present the BARS as a decentralized, efficient and robust trust model

in VANETs. BARS relies on the reputation score of a vehicle to determine the

trust level of broadcast messages. The reputation score is the incentives for vehicles

to share safety information and monitor each other so that misbehavior can be

prevented and the spread of forged messages from internal vehicles can be mitigated.

It is an essential issue but out of the scope of this dissertation to associate the

reputation score with a vehicle’s actual benefit.

BARS evaluates the reputation of a vehicle based on the authenticity of broad-

cast messages and opinions of other vehicles. The reputation evaluation mechanism
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consists of penalty and reward algorithms. Sharing authentic safety messages and

disclosing misbehavior or spread of forged messages will increase a vehicle’s rep-

utation score. Contrarily, some bad operations such as performing misbehavior,

broadcasting forged messages, and maliciously accusing other vehicles will decrease

its reputation score.

In this section, we will elaborate how BARS can provide a trust communication

environment meanwhile protect privacy of the vehicles.

5.4.1 Different Types of Messages

There are three types of messages involved in the VANETs communications:

beacon messages, alert messages, and disclosure messages. Periodically, vehicles

broadcast beacon messages containing driving status for traffic management. Alert

messages will be broadcast when an emergency happens such as hard braking or

losing of control. If any vehicles dispute the authenticity of the received message

or witnesses misbehavior, they can send disclosure messages to LEA. Next, LEA

will make a judgment on whether this will affect the reputation scores of related

vehicles. According to the critically of emergency, alert messages have three levels.

Level 1. When vehicle A loses control, it will broadcast level 1 alert message

to avoid potential collisions automatically.

Level 2. This level of alert message is used for forewarning nearby vehicles

before the sender changes its driving status, including braking, lane changing and

etc.
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Level 3. In case of poor road conditions such as obstruction or road damage,

passing vehicles will broadcast level 3 alert messages to alert vehicles behind to keep

caution.

5.4.2 Reputation Evaluation Algorithm

The reputation evaluation algorithm consists of two aspects: reward mecha-

nism and punishment mechanism. Based on our observations, there are two kinds

of behaviors of the VANETs will be rewarded. First, the vehicle broadcasts alter

messages honesty and actively. Second, the vehicle sends disclosure messages to

LEA when it witnesses misbehavior or receives forged messages. On the contrary,

there are also two actions will be punished. First, vehicle will get punished if it

is disclosed for misbehavior or broadcasting forged messages. Second, the vehicle

abuses disclosure messages to slander other vehicles.

There are several factors affecting the evaluation of reputation scores as follows.

For example, if an alert message is life-critical and is received by more vehicles, the

earlier one to report and broadcast is considered to given more contribution. Thus,

the more reward the sender will get in terms of reputation scores. We list the factors

would influence the reputation score as follows.

L: The level of alert messages, e.g., L = 1, 2, 3.

Dr: The relative density of vehicles which denotes as Dr = D/Daver. In this

chapter, Daver is set to 20 vehicles per km.

S: The sequence of the senders, S = 0, 1, ..., n. The first vehicle to broadcast
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alert message will be set to S = 0.

In addition, we set reward coefficient α and penalty coefficient β in formula

5.2 and 5.3 to implement reward mechanism and penalty mechanism.

R(L, S,Dr) = α ·Dr ·
1

eS · L
(5.2)

P (L, S,Dr) = (−1) · β ·Dr ·
1

eS · L
(5.3)

As illustrated in Algorithm 2, if no receiver disputes the authenticity of an

alert message, the reputation score will increase base on reward mechanism. On

the contrary, if any receivers send disclosure messages to dispute the authenticity of

the alert message, LEA will collect evidence to make a judgment. The vehicles who

broadcast forged alert messages will be punished heavily. Whereas, the vehicles who

abuse disclosure messages will also get punished.
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Algorithm 2: Reputation Management Algorithm

Input: MA: Alert message broadcast by vehicle Vi(i = 1, 2...n); MD: Denounce-
ment message broadcast by vehicle Vj(j = 0, 1...m); R

′
i, R

′
j: Current reputation

of Vi and Vj; Si, Sj: The sequence in which messages are sent; Dr: The relative
traffic density at the location of the event.

Output: Ri, Rj: Updated reputation of Vi and Vj.
1: if j = 0 then
2: for each Vi do
3: Ri.honesty ← R

′
i.honesty + (100−R′i.honesty)· R(MA.type, Si, Dr)

4: Ri.cooperation← R
′
i.cooperation+ 100· R(MA.type, Si, Dr)

5: end for
6: else
7: if MA is true then
8: for each Vi do
9: Ri.honesty ← R

′
i.honesty + (100−R′i.honesty)· R(MA.type, Si, Dr)

10: Ri.cooperation← R
′
i.cooperation+ 100· R(MA.type, Si, Dr)

11: end for
12: for each Vj do
13: Rj.surveillance← R

′
j.surveillance+ 25·P(MA.type, Si, Dr)

14: end for
15: else
16: for each Vi do
17: Ri.honesty ← R

′
i.honesty · (1+ P(MA.type, Si, Dr) )

18: Ri.cooperation← R
′
i.cooperation · (1+ P(MA.type, Si, Dr) )

19: end for
20: for each Vj do
21: Rj.surveillance← R

′
j.surveillance+ 50·R(MA.type, Si, Dr)

22: end for
23: end if
24: end if
25: return Ri, Rj
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5.5 Results and Analysis

5.5.1 Security Analysis

1. Security of Certificates. RSUs verify the signatures of CA and LEA in the

certificate issuance or revocation messages and record them into CerBC and

RevBC respectively. The global consensus is provided by the PoW of RSUs

to guarantee that each vehicle has the identical public ledgers that consist of

authenticated certificates and revoked public keys. As long as more than half

of all the RSUs are not compromised, the CerBC and RevBC are unforgeable

and immutable.

2. Security of Broadcast Messages. Proof of presence in CerBC and proof of

absence in RevBC ensure the authentication of the public key of vehicle A.

Then, vehicle A will use its private key skA to generate a signature for each

broadcast message and receivers can use A’s public key pkA to verify the sig-

nature. RSUs and vehicles cooperatively recorded all the broadcast messages

into the chronological MesBC, which is the persistent evidence when a dispute

happens.

3. Privacy of Vehicles: Vehicle A uses public key as the pseudonym to hide the

linkability between the public key and real identity. For the trade-off between

security and privacy, the database of identity-public key pairs is stored with

high-security level in LEA. It means only LEA knows the real identity of

the public keys so that LEA is able to track the malicious vehicle when it
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performs misbehavior or broadcasts forged messages. A vehicle can get several

certificates in one request and change its public key at particular locations to

enhance its privacy.

5.5.2 Validation of Reputation Evaluation

We consider three vehicles perform different behaviors in 100 hours. As Figure

5.6 presents, from T1 to T2 and T3 to T4, vehicle A and B actively broadcasts

authentic messages and their reputation scores increase correspondingly. From T2

to T3, vehicle B broadcasts five forged messages and is disclosed by A. Thus, A’s

reputation score increases whereas B gets punishment. From T4 to T5, vehicle B

abuses five disclosure messages to slander other vehicles. As a result, B’s reputation

score decreases. Vehicle C refuses to participate in the BARS. The results show that

the reputation score effectively reflects vehicles’ behaviors.

Figure 5.6: Reputation score changes of three vehicles when they behave differently
in the BARS
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5.5.3 Performance Evaluation

In BARS, receivers authenticate the public key of the sender based on proof

of presence in CerBC and proof of absence in RevBC. We first evaluate the perfor-

mance of anonymous authentication for vehicles in terms of storage and transmission

overhead and computational overhead. The implementation of anonymous authen-

tication is based on SHA-256. All the experiments are conducted using 2.5 GHz

Intel Core i5 and 8 GB 1600 MHz DDR3. The time consumption to compute a

SHA-256 is less than t1 = 0.01 ms per 1 KB of input.

Storage and Transmission Overhead: A block header would take about 80 bytes

[104]. Suppose that blocks are generated every 10 minutes, the storage overhead for

one blockchain is 80 bytes× 6× 24× 365 = 4.2 MB per year.

An authentication packet for a public key consists of the associated certificate

(about 100 bytes), the tuple for proof of presence in CerBC, and the tuple for proof

of absence in RevBC. Suppose there are n issued certificates and m revoked public

keys, the total storage overhead of an authentication packet is S = 100 bytes +

32 bytes× log2n + (32 bytes + 8 bytes)× log2m. After authentication, only the valid

public keys (8 bytes for each) will be stored for the future communication.

As mentioned before, alert messages are broadcast only when an emergency

happens. The main source of transmission overhead is the authentication pack-

ets and beacon messages (about 100 bytes for each). Suppose that vehicle A re-

ceives i authentication packets per second from nearby vehicles, in which there are
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j new public keys. A will automatically discard the rest of authentication packets

if the public key is in the list of authenticated vehicles. Thus, the total trans-

mission overhead is Tran = 100 × (i − j) + S × j bytes per second. If we set

i = 100, j = i× 10%, n = 1, 000, 000,m = n× 10%, the total transmission overhead

is about 0.177M/s. The result shows that the storage and transmission overhead of

anonymous authentication is acceptable.

Computation Overhead: The proof of presence and proof of absence are based

on SHA-256 and can be done in time and space O(logn) (n is the number of ele-

ments in the Merkle tree). Theoretically, the time consumption to authenticate one

public key is T = t1 × (log2n + log2m). We assume that m = n × 10%,i.e. 10% of

the public keys are revoked. Figure 5.7 illustrates the time consumption of anony-

mous authentication in different scales of VANETs. The logarithmic-size proofs of

presence and absence provide efficient authentication in large scale network.

Figure 5.7: Time consumption of authentication. The time increases with the num-
ber of vehicles of the VANETs
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5.6 Summary

In this chapter, we address the issues of trust and privacy in VANETs. In order

to prevent the distribution of forged messages from authenticated vehicles meanwhile

protecting the identity privacy of vehicles, a blockchain-based anonymous reputation

system (BARS) is proposed for anonymous authentication and trust communication

for VANETs. Vehicles use two blockchains (CerBC and RevBC) for authentication,

which is based on proofs of presence and absence. Additionally, public keys act

as the pseudonyms for anonymous communication and the linkability between real

identity and the public key is broken to protect vehicles’ privacy. On the other

hand, all the broadcast messages are recorded in MesBC as persistent evidence to

evaluate each vehicle’s reputation. A reputation management algorithm is designed

for trust communication to prevent the spread of forged messages and incent vehi-

cles to expose misbehavior. Finally, we analyze the security and validity of BARS

and evaluate the performance. The results show that BARS effectively improve

the trustworthiness of broadcast messages and protect vehicle privacy with high

efficiency.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In this dissertation, we proposed solutions to deal with the emerging security

concerns on vehicles. Specifically, we started from the in-vehicle network bus com-

munications and proposed two IDSs correspondingly to protect the in-vehicle CAN

bus by hardware-dependent techniques. Those two IDSs combined could discover

both content changes on the messages identifiers and the physical voltage changes

observed on the bus.

Then we have investigated a commercial key agreement system for CAN bus

and proposed physical side-channel attacks to break this key sharing protocol ef-

ficiently. Meanwhile, we have demonstrated that the in-vehicle information could

be applied to detect spoofing on the GPS signal which is critical to the localization

system of VANETs. At last, we have established a trust management mechanism

among vehicles while protecting the privacy meantime which could be realized by

blockchain techniques. The details in conclusion for each aspect are summarized as

follows.

• We first developed a novel IDS scheme relied on checking the entropy changes
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of the CAN ID, which can be used to alert the CAN bus system when under

attacks. We implemented the proposed IDS and validated its effectiveness on

real bus data collected from a Ford Fusions internal CAN network through

the OBD-II port. Our approach does not require modification on the message

contents or frame structures. Thus, it is applicable to any implementation

of CAN protocols, including CAN-FD. Besides, our proposed IDS does not

require much computation overhead which could be implemented on the ECU.

• We then proposed an idea to fingerprint the ECUs on bus for solving those im-

personate attacks. Our proposed scheme overcomes the blind spots of content-

based IDS by monitoring the physical layer and is feasible to be deployed on

a CAN network by adding minimal hardware to the existing CAN bus. We

have demonstrated our proposed idea on CAN-bus prototype built on Arduino

micro-controllers.

• We have demonstrated that several physical features including voltages, timing

and so on can be used to probe the PnS-CAN scheme. We identify the funda-

mental characteristics that lead to such attacks and propose countermeasures

to minimize the information leakage at the hardware level.

• We have demonstrated that a low-cost method to validate the GPS signal on

the edge using the in-vehicle dataset. Specifically, we proposed two methods

(i.e., the Kinematic model and Regression model) respectively to reconstruct

the GPS signal from the driving maneuvers and we also take use of the off-line

map information to further calibrate the GPS signals.
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• We addressed the issue of trust and privacy in VANETs by proposing the

BARS: A Blockchain-based Anonymous Reputation System. Two blockchains,

CerBC and RevBC, make the activities of authority transparent for all enti-

ties in the VANETs. The blockchain implemented proof of presence and proof

of absence provide anonymous authentication with high efficiency. Moreover,

BARS also provided an effective reputation evaluation algorithm as an incen-

tive for the vehicles participating in the trust management system.

6.2 Future Work

We also envision the implications and possible future directions of this disser-

tation work.

6.2.1 Security of CAN

6.2.1.1 Futher Discussions on Attacks and Countermeasures

The goal of the security discussion in this dissertation on CAN bus is twofold.

Firstly, it demonstrates that even simple physical features can be utilized to compro-

mise the CAN bus system, i.e., the PnS-CAN scheme. Secondly, it illustrates that

detection techniques can be applied by monitoring the changes to protect the CAN

bus from attacks. We emphasize that neither of these investigations is intended to

represent the comprehensive attack vectors or defense mechanisms.

For example, given the robustness of the CAN protocol, one can imagine that

there are a series of fundamental component variations that can be utilized to add
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noise to the characteristics extracted which may influence the detection rate of the

IDS. However, future results in classification and learning theory can improve the

performance of the detection method beyond what has been discussed. As a result,

several open questions remain with the IDS discussed above. Further, improved de-

tection countermeasures can be developed by digging and combining more physical

features. While we have studied certain empirical dependencies, a comprehensive

analysis can yield better insight into the identification of dominant physical char-

acteristics. For our attacks and countermeasures, we utilized a simple laboratory

set-up to emulate the CAN system. A real deployment of the system is subject to

far more noisy conditions and many subtle electrical effects, e.g. transmission line

phenomenon, that is not accurate in our setup.

Moreover, there are fundamental trade-offs that can be investigated between

the IDS and the efficiency of the communications on the bus. For example, the

addition of monitors or IDS for detection, while maintaining featured samples be-

tween the farthest nodes may require the operation of the system at a lower speed.

However, this will decrease the bus efficiency also increase the observability of the

adversary.

6.2.1.2 Immigration from CAN to Ethernet

Except for the security discussion around CAN bus, there is an aroused debate

to replace the CAN network by the Ethernet, which has higher bandwidth, more

flexible and already has security protocols (i.e., the MAC code) [20]. The motiva-
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tion for this replacement is first intrigued by the communication and bandwidth

requirements increase as more and more new and complex applications appear in

the car for the use-cases as autonomous driving and entertainments. However, not

only for the bandwidth consideration, existing vehicle control networks like the LIN,

CAN and FlexRay standards are not designed to cover these increasing demands

in terms of security. However, it is non-trivial to push the transfer as future net-

working technology should re-use as much as possible from the previous deployment

while taking into account the automotive-specific requirements [115]. This includes

hardware components as well as software stacks updated, which require huge efforts.

Specifically, in-vehicle networking architecture appears as a heterogeneous system

as a result of its historically grown nature. The usage of Ethernet in the car means

a paradigm shift in the design of next-generation in-vehicle networking systems:

connecting different domain networks, transporting different kinds of data (control

data, streaming, etc.) and fulfilling the stringent robustness demands in terms of

extended temperature range and EMC performance. It is necessary to decrease the

heterogeneity of today’s in-vehicle communication systems, that consist of several

CAN, FlexRay or MOST busses connected via gateways, by aggregating several

systems into one Ethernet-based communication network [116].

Come back to our proposed IDS schemes for the in-vehicle network, it is curious

to find out the transferable property of them from the CAN to the Ethernet. For

the content-based IDS by checking the 11-bit identifier, which takes use of the

unique characteristics of the CAN bus arbitration, it is not directly applicable on

the Ethernet. However, the general idea about the content-based IDS may also be
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applied with the Ethernet frame, but need to investigate the details of the Ethernet

format. For the physical-based IDS, no matter what kind of protocols are used for

the in-vehicle network, the physical probability would always exist and could be

utilized. Thus, the applicability of physical IDS could immigrate to the Ethernet

protocol as well. The only concerns left for this open question is the method to

analyze the physical feature extracted may need modification due to a different

arbitration protocol.

6.2.2 Cross-check Validation among Sensor Data

Various kinds of sensors are installed on the modern vehicle to guarantee the

functionality and automation, as vehicles heavily rely on their sensor readings. At-

tackers can compromise one or more of the in-vehicle network sensors by changing

the sensor readings to confuse the driver. Hence, anomalous sensor readings caused

by either malicious cyber-attacks or faulty malfunction of sensors can result in dis-

ruptive consequences, and possibly lead to fatal crashes. Redundancy can be used

to address the compromised sensors but adding extra sensors will increase the cost

per vehicle and is therefore less attractive.

To balance the need for security and cost-efficiency, the natural redundancy in

the sensor readings could be used to tackle the attacks on the sensor. By definition,

natural redundancy occurs when the same physical phenomenon causes symptoms in

multiple sensors. For instance, pressing the accelerator pedal will cause the engine to

pump faster and increase the speed of the vehicle simultaneously. Engine revolutions
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per minute (RPM) and vehicle speed are multiple sensors which respond in a related

fashion to the same cause of the accelerator pedal. The challenge is identifying

the relationship between similar but different sensors under normal operation and

detecting anomalous behavior accurately. It is similar to the cross-check method

we proposed for detecting the GPS spoofing. We begin with the observation that

sensors within the vehicle are naturally correlated.

As stated before, falsified sensor values have a significant impact on the safety

and security of the vehicle as it can confuse the driver, and even cause the vehicle to

misbehave. Several gaps are apparent in the literature. First, most of the detection

method focuses on the pairwise correlation of two signals [117], while ignoring the

other facts from the other signals as well. Some correlations between variables

are evident as the fundamental similarity. For example, vehicle speed from the

inertial measurement unit (IMU) sensor and from the GPS sensor are identical speed

calculation. It is almost the same as using redundant sensors [118]. However, a lack

of studying the other correlated values may give the chance for colluding sensor

attacks. Second, most of the validation work focuses on the correlation at a specific

time, without taking into the previous sensor value for consideration. The previous

value might also correlate to the present value. To correlate the lag window data

with the current value could also provide more evidence when detecting the anomaly.

Last, to the best of our knowledge, there is a lack of deep learning implementations

in anomaly detection and identification for multiple variants. Data are becoming

more readily available and deep learning models are renowned for their performance

using large datasets.
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Here, we present a similar cross-check system as the GPS spoofing detection

which targets on cross-checking the readings of sensors. In our approach, we pro-

posed to use regression models to integrate correlations from multiple sensors and

estimate a targeted sensor value using other correlated parameters in real time. The

difference between the estimated value and observed value of this sensor data is used

as a signal for detecting anomalies. First, we use a VAR model as a regression learn-

ing approach which estimates certain parameters by using correlated/redundant

data. The estimated values are compared to observe ones to identify abnormal con-

texts that would indicate an intrusion. Then we try to use a deep learning technique

called long short-term memory network (LSTM) to detect and identify anomalous

behaviors of sensors in the vehicle. In this approach, a deep recurrent network model

is trained to integrate correlations from multiple sensors with a time window and

estimate a targeted sensor value later for anomaly detection. The integration of

multiple heterogeneous sensors increases the attacker’s difficulty of bypassing this

detection scheme, while making the detection more stable under different scenarios.

In addition, the major components (e.g., anomaly detection module) are embedded

in edge computing devices, which make the anomaly detection be more efficient and

privacy-preserving.

In order to detect anomalies, it is first necessary to estimate a targeted sen-

sor value using other correlated parameters. It can be formulated as a prediction

problem and modeled using regression models in machine learning. In the training

phase, a set of correlated signals values are used to train a regression model M .

Given a trained regression model M and a set of time-series parameters at time t,
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expressed as V (t) = v1(t), v2(t), · · · vn(t) (e.g., v1 = speed, v2 = acceleration, v3 =

engine speed) extracted from the CAN bus messages. After learning the relationship

among the multi-variable, we can predict the upcoming variable V (tm)′ at time tm.

For the n variables, we select the targeted value for forecast as vi(tm)′ which is being

estimated (e.g, speed). Meantime, the real measurement from the sensor is recorded

as vi(tm). Then anomalies can be flagged by comparing vi(tm)′ with observed vi(tm).

We propose to perform correlation modeling among continuous time-series

variables from Table 6.1. The variables are divided into two classes sensors within

the vehicle which are broadcast on the CAN bus, and sensors from an external

GPS system. Correlating both internal and external sensors gives us additional

redundancy and robustness of the system. In order to successfully fool the system,

the attacker has to compromise both internal and external systems, thus increasing

the difficulty for a successful attack.

Name Range Frequency
steering wheel angle -600 to +600 degrees 10 Hz

torque at transmission -500 to 1500 Nm 10 Hz
engine speed 0 to 16382 RPM 10 Hz
vehicle speed 0 to 655 km/h 10 Hz

accelerator pedal position percentage 10 Hz
odometer 0 to 16777214.000 km 10 Hz

fuel consumed since restart 0 - 4294967295.0 L 10 Hz

latitude -89.0 to 89.0 degrees 1 Hz
longitude -179.0 to 179.0 degrees 1 Hz

Table 6.1: Time-series dataset
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6.2.3 Efficient Blockchain System for Trust Management

For the trust management, we proposed in this dissertation, all the certifi-

cates and transactions are requiared to be recorded permanently and immutably on

the blockchain to make the activities of the authorities transparent and verifiable.

However, the experimental results show that to implement the anonymous authen-

tication it inevitably adds the storage and transmission overhead for the VANETs.

Therefore, it remains a challenge on how to use such blockchain effectively for au-

thentication in real driving scenarios (e.g., high speed or a large number of messages

during congestion) [119].

Another problem of the existing BARS system is the privacy-preserving suffers

from several drawbacks. First, the activities of TA are not transparent to all the

vehicles. TA may arbitrarily authorize some vehicles to join in the VANETs without

being monitored. Second, the receivers need to query a Certificate Revocation prior

to the message authentication to check whether the sender’s public key has been

revoked or not. With the rapid increase in the number of vehicles, this certificate

updates requires a large amount of storage space and such query incurs high compu-

tation overhead. Those unsolved problems push the updates of the blockchain-based

privacy-preserving authentication scheme to integrate the semi-trusted authorities

with the emerging blockchain technology using carefully designed data structures.

A novel data structure named the Merkle Patricia Tree (MPT) might be a future

direction as it extends the conventional blockchain structure to provide a distributed

authentication scheme without the revocation list. Meanwhile IBM’s Hyperledger
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Fabric (HLF) platform v1.1, which is a permissioned blockchain that securely tracks

the execution history in an append-only replicated data structure without build-in

cryptocurrency is a good candidate to implement the trust system on VANETs.
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