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Abstract

We introduce a binary additive communication channel with memory. The noise
process of the channel is generated according to the contagion model of George Polya; our
motivation is the empirical observation of Stapper et. al. that defects in semiconductor
memories are well described by distributions derived from Polya’s urn scheme. The
resulting channel is stationary but not ergodic, and it has many interesting properties.

We first derive a maximuin likelihood (ML) decoding algorithm for the channel; it
turns out that ML decoding is equivalent to decoding a received vector onto either the
closest codeword or the codeword that is farthest away, depending on whether an “appar-
ent epidemic” has occurred. We next show that the Polya-contagion channel is an “aver-
aged” channel in the sense of Ahlswede (and others) and that its capacity is zero. We then
demonstrate that the Polya-contagion channel is a counter-example to the adage, “mem-
ory cannot decrease capacity”; the capacity of the Polya-contagion channel is actually
less than that of the associated memoryless channel. Finally, we consider a finite-memory
version of the Polya-contagion model; this channel is (unlike the original) ergodic with a,

non-zero capacity that increases with increasing memory.
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1 Introduction: Communication via Contagion

We consider a discrete communication channel with memory in which errors spread in a fashion
similar to the spread of a contagious disease through a population. The errors propagate
through the channel in such a way that the occurrence of each “unfavorable” event (i.e., an
error) increases the probability of future unfavorable events.

One motivation for the study of such channels is the “clustering” of defects in silicon;
Stapper etf. al. [1] have shown that the distribution of defects in semiconductor memories
fits the Polya-Eggenberger (PE) distribution much better than the commonly used Poisson
distribution. The PE distribution is one of the “contagious™ distributions that can be generated
by George Polya’s urn model for the spread of contagion [2,3]. More generally, real-world
communication channels often have memory; a contagion-based model offers an interesting
alternative to the Gilbert model and others.

We begin by introducing a communication channel with additive noise modeled according
to the Polya contagion urn scheme. The channel is stationary but not ergodic. We then
present a maximum likelihood (ML) decoding algorithm for the channel; ML decoding for
the Polya-contagion channel is shown to be equivalent to mapping the received vector onto
either the codeword that is closest to the received vector o1 the codeword that is farthest away
— depending on which possibility is more extreme. We then show that the Polya-contagion
channel is in fact an “averaged” channel in the sense of Ahlswede and others [4,5]; - i.e., the
block transition probability for the contagion channel is the average of the block transition
probabilities of a class of binary symmetric channels, where the expectation is taken with
respect to the beta distribution. Using De Finetti’s results on exchangeability, we note that
binary channels with additive exchangeable noise processes are averaged channels with binary
symmetric channels as components.

Using the results of Ahlswede we show that the capacity of the Polya channel is zero; this
result gives us a counter-example to the adage “memory can only increase capacity”. We note
that this adage applies only to stationary ergodic channels, and that for stationary non-ergodic
channels, memory may increase or decrease capacity.

Finally, we consider a finite-memory version of the Polya-contagion model. The resulting
channel is a stationary ergodic Markov channel with memory M: its capacity is positive and
increases with M. As M increases, the finite-memory channel converges in distribution to the
original Polya channel; however the capacity of the finite-memory channel does not converge

to the capacity of the Polya channel.



2 Polya-Contagion Communication Channel

Consider a discrete binary additive communication channel - i.e., a channel for which the i
output ¥; € {0,1} is the modulo-two sum of the i** input X; € {0,1} and the :** noise symbol
Z; € {0,1}; more succinctly, ¥; = X; & Z;, for i = 1,2,3, ...

We assume that the input and noise sequences are independent of each other. The noise
sequence {Z;}22, is drawn according to the Polya contagion urn scheme [6], as follows: An urn
originally contains 7" balls, of which R are red and S are black (T'= R+ 5); let p = R/T
and 0 =1 —p = 5/T. We make successive draws from the urn; after each draw, we return
to the urn 1 4+ A balls of the same color as was just drawn. Note that il A = 0, we get the
classic case of independent drawings with replacement. In our problem we will assume that
A > 0 (contagion case) and that p < o —i.e. p < 1/2. Furthermore, we denote 6 = N/T. Our
sequence {Z;} corresponds to the outcomes of the draws from our Polya urn with parameters

p and 6, where:
7 — { 1, if the ¢** ball drawn is red;

0, if the s** ball drawn is black.

In Polya’s model, a red ball in the urn represents a sick person in the population and a black

ball in the urn represents a healthy person.

2.1 Block Transition Probability of the Channel

Definition 1 (Channel state) We define the state of the channel after the n'* transmission

to be the total number of red balls drawn after n trials:

»S'n d__('if Z] + Z2 + T + Zn, — ‘—gn—l + Z‘u
SQ =0

The possible values of S, are the elements of the set {0,1,...,n}. Therefore the channel at
time n has n + 1 possible states. Furthermore, note that the sequence of states {S,}><, form

a Markov chain, i.e.

P(Sn = 8y | Sn—l = Sp—1- Sn_z = Sy ey Sl = 5‘1) — P(Sn = Sy | Sn——l == Sn—l)



For a given input block X = [X;. X5,..., X, ] and a given output block ¥ = [¥}, Y, .. ., Yol

the block transition probability of the channel is given by

7

PY=y|X=z)=]] PYi=yi | Xi =i, Sic1 = si_1)
7=1
where
¥, G, . : 11—y, ba,)
- p+ Sz'_lé Y o+ (‘l —1 - Si_q )(S
PY; =y | Xy =2, 54 =5) = | ———— — .
(Yi=y Bir Sim1 = i) [1—{-(1—1)6] [ L+ (i—1)6

We thus obtain:

plp+6)---(p+(d—=1)8)o(c+8) (o + (n—d—1)d)
(L4801 +28)--- (14 (n—1)8)

or

PY=y|X=ux)=

r(d) I'(%+d) F( +n—c/) @)
5)

where d = d(y,z) = weight(z = y & ) = s, and ['(-) is the gamma function, I'(z) =
Joot" e dt for @ > 0. To obtain equation (2) from equation (1), we used the fact that

(x4 1) = @ I'(2) which leads to the following identity:

n—l ] F(“ +n)
a4+ R
};[o( 18) =1 ey

2.2 Properties of the Channel

Before analyzing the characteristics of the channel, we state from [7] the folbwing definitions

and lemma.

Definition 2 A finite sequence of random variables {7}, Zy, - - -, Z,} is said to be exchangeable
if the joint distribution of {Zy, 75, -, Z,} is invariant with respect to permutations of the

indices 1,2,---,n.

Definition 3 An infinite sequence of random variables {Z;}7°, is said to be exchangeable if

for every finite n, the collection {Z;,Z;,, -+, 7, } is exchangeable.



Lemma 1 Exchangeable random processes are strictly stationary.

Exchangeability was investigated by De Finetti (1931) who recognized its fundamental role
for Bayesian statistics and modern probability. The main interest in adopting this concept is to
use exchangeable random variables as an alternative to independent identically distributed (iid)

random variables. Note that iid random variables are exchangeable. However, exchangeable

random variables are dependent in general but symmetric in their dependence.

We now can study the properties of the channel:

1. Symmetry:

The channel is symmetric. By this we mean that P(Y = y | X = z) depends only on

zdysince P(Y =y | X =2)=P(Z =y©dzx) Due to the symmetry, il we want to
maximize the mutual information 7(X;Y') over all input distributions on X, the result

is maximized for equiprobable input n-tuples.

2. Stationarity:

From equation (1) and the above definitions, we can conclude that the noise process
{Z:}32, forms an exchangeable random process. The noise process is thus strictly station-

ary (by Lemma 1) and thus identically distribuied. We get:
PZi=1)=p=1—-P(Z;=0) Vi=1.,2,3,...
and the correlation coefficient

/’ ( Z“ Z é . .
Cor(Z. 7)) = —o 2 Zi)  _ S0 Vi
VVar(Z) Var(Z;) 1496

indicates the positive correlation among the random variables of the noise process.

3. Non-Ergodicity : {5,/n} is a martingale [8]; using the martingale convergence theo-

rem, we obtain that Z % lim,_ . S, /n exists almost surely. It is shown in [6] that Z
has the beta distribution with parameters p/§ and o /6. Thus the noise process {Z;}22,

is not ergodic since its sample average does not converge to a constant.

[



3 Maximum Likelihood (ML) Decoding

Suppose M codewords are possible inputs to the channel with transition probability P(Y =
y|X = z); the codebook is given by C = {zy,z,,...,2zp}, with each x;, € {0,1}". For a given
received vector y € {0,1}" the maximum likelihood estimate of the transmitted codeword is
= argmax{P(Y = y|X = z,) : z, € C}.
From equation (2), we can rewrite the transition probability of the channel as:
PY =

y |

[

=) =g(d(z,y))

IK

where ¢ : [0,n] — [0, 1] is defined by

g(cl):A-F(§+d> F<%+n—d>

and A is a constant depending on n, p, and é.

Recall that a positive-valued function f(-) is log-convex il log[f(+)] is a convex function; log-
convex functions are convex functions, and they’re closed under addition and multiplication [9].
Furthermore, I'(+) is strictly log-convex, meaning that ¢(-) defined above is strictly log-convex

on the interval [0,n]. This observation leads to the following result.

Proposition 1 The transition probability function P(Y =y | X = &) of the Polya-contagion

channel is strictly log-convex in d(z,y) and has a unique minimum at

n n L—2p
2 26

(l() =

Furthermore, P(Y =y [ X = x) is symmetric in d(z,y) about dy.

Proof 1 As above, define g(d) = P(Y = y|X = z) for any x,y such that d(z,y) = d; then

g(-) is strictly log-convex. For do = (n/2) + ((1 — 2p)/26), we obtain

g(do +¢) = g(do —¢) = AI( +%+6>F< +%_;>

for any ¢; therefore ¢(-) is symmetric about dy and the strict convexity of ¢(-) means that a

unique minimum occurs there. |



Decoding Algorithm: From the results above, the ML decoding algorithm for the channel

is as follows:
. : def .
1. For a given n-tuple y received at the channel output, compute d; = d(y,a;), for 1 =
def def .
L,..., M. Compute also dpe; = maxicicp{di} and dyin = mini<icar{di}.

2. If |dmae — do| < |dpin — do|, map y onto a codeword r; for which d; = dp,. Tn this case

ML decoding <= minimum distance decoding.

3. If |dmas — do| > |dpin — do|, map y onto a codeword z; for which d; = d,,,. In this case

ML decoding <= maximum distance decoding.

g(d)

0 min{di} do max{di} n

Figure 1: Transition probability function vs Hamming distance d

In Figure 1, we have that

(L I'(Z +n L(3) I'(% +n)
a (j(()) F(%) ‘F(% -+—“) (l;l—ld .{/(77) F(%)) 1\(% "|_'N)

-1



Observations:

o Insight into the decoding rule:

— We can rewrite d; as:

1 /T

<

Note that n/2 is (of course) the distance the received n-tuple would be from the
transmitted codeword if half of the bits get flipped; note also that (1'/2 — R) is the
initial offset from having an equal number of red balls and black balls in the urn.

Thus dy may be thought of as an equilibrium point.

— The best estimate is then specified by the value of d; that is furthest away from the
equilibrium point dy. In other words, the best decision is based on the following
reasoning: either many errors occurred during transmission -- an apparent epidemic,
to use the contagion interpretation — or very few errors occured - an apparently

healthy population.

o We note that if, dy > n — 0.5, then condition (2) in the above algorithm is always
satisfied — meaning minimum distance decoding is optimal. The requirement dy > 1 —0.5
1s equivalent to the condition

1—=2p

b < \
n—1

so if the parameter 6 = A/T is sufficiently small - i.e., there is sufficiently little memory
in the system — minimum distance decoding is optimal. In particular, if § = 0, the draws
from the urn are independent and the channel reduces to a binary symmetric channel
with crossover probability p. Thus this observation is consistent with the fact that,
for a BSC with crossover probability less than one-half, minimum-distance decoding is

maximum likelihood decoding.

4 Averaged Communication Channels

Averaged channels with discrete memoryless components were first introduced by Jacobs [4]
and then were analyzed by Ahlswede [5] and Kieffer [10], who investigaled their capacity. We
will show that the Polya-contagion channel is an averaged channel with components that are

binary symmetric channels (BSC’s).

oo



Consider a family of stationary ergodic channels parameterized by 0:
(WP =yl X=z)s,0ec0}

where Y and X are respectively the input and output blocks of the channel, each of length n.

Wén) () is the block transition probability of the stationary ergodic channel specified by the
parameter 0 € O.

Definition 4 We say a channel is an “averaged” channel with stationary ergodic components
if its block transition probability is the expected value of the transition probabilities of a class

of stationary ergodic channels parameterized by § —i.e., if it’s of the form:

WY =y | X=2) = /@ WMy =y | X =) dG(0)

avg

= EWMY =y | X =) (3)

~

|

where (0,0(0), ) is the probability space on which the random variable 8 is defined.

Note that an averaged channel is stationary and may have memory. One way an averaged
channel may be realized is as follows: From among the stationary ergodic components, nature
selects one according to some probability distribution (. This component is then used for the

entire transmission. However the selection is unknown to both the encoder and the decoder.

We will show that the Polya channel - and indeed any non-ergodic additive channel —
belongs to this class of channels. But first we need to recall some results from [11,12]:

Notation: Consider a discrete time random process with alphabet D, o-field o(D>) con-
sisting of subsets of the space D™ of sequences w = (uy,uy,...), u; € D, a probability measure
(¢ on the space (D, o( D)) forming a probability space (D, o(D>), ) and a coordinate or
sampling function U, : D> — D defined by U, (u) = u,. The sequence of random variables
{U,;in =1,2,...} is a discrete time random process. As convenient., random processes will be

denoted by either {U,} or by [D, u. U].

Lemma 2 (Ergodic Decomposition) Let [D, i, U] be a stationary, discrete time random
process. There exists a class of stationary ergodic measures {ug;0 € O} and a probability

measure (¢ on an event space of @ such that for every event I' C o( D) we can write:

p(F) = /@ te(F) dG ()



Remark: The ergodic decomposition theorem states that, in an appropriate sense, all
stationary non-ergodic random processes are a mixture of stationary ergodic processes; if we
are viewing a stationary non-ergodic process, we are viewing a stationary ergodic process
selected by nature according to some probability measure (. Therefore, by directly applying

the ergodic decomposition theorem we get the following result:

Proposition 2 Any discrete channel with stationary (non-ergodic) additive noise is an aver-

aged channel with channels with additive stationary ergodic noise as components.

Proof 2 Let {Z;} be the (non-ergodic) noise sequence. Then the ergodic decomposition theo-
rem states that P(Z = z) = P(Z; = z,..., Z, = z,) may be written as the expected value of
the distribution of a class of stationary ergodic processes; since the noise and input sequences
are independent, we have T/V(")()_’_': = g{i =)= PZ =y~ 2)and so Wy = yl.X = 2)

may likewise be expressed as the expected value of the transition probabilities of a class of

stationary ergodic additive noise channels. [ |

Proposition 3 The binary Polva-contagion channel is an averaged channel; its components
are BSC’s with crossover probability 8, where 6 is a beta-distributed random variable with

parameters p/é and o /9.

Proof 3 We showed in Proposition 2 that the Polya channel is an averaged whose components
are channels with additive stationary ergodic noise. To prove the rest of the proposition we
just note that, if we let fo(8) be the pdf of a beta-distributed random variable with parameters

p/d and o /b —i.e.,

I'(1/6)
Jo(0) =< T(p/6)T(c/6)

0, otherwise,

0,)/6—1(1 _ 0)0/@—& H0<h<1;

then

1
/ 9=V (1 — 9)" 1D fo (0)d = P(Y = y|X = a),

where P(Y
|

= y|X = x) is the transition probability of the Polya-contagion channel from (2).

Observation: We could have proved part of Proposition 3 by using De Finetti’s results on

exchangeability, since the additive noise process of the Polya channel is a binary exchangeable

10



random process. De Iinetti’s results are summarized in the following theorem and corollary

[8,13]:

Theorem 1 (De Finetti) For an infinite sequence of random variables, the concept of ex-
changeability is equivalent to that of conditional independence with a common marginal dis-
tribution; i.e. if 7y, Z5, ... is an infinite sequence of exchangeable random variables, then there
exists a o-field F and a distribution G such that, given F, the random variables Z,, 7Z,, ... are

conditionally independent with distribution function G.

Corollary 1 For every infinite sequence of exchangeable random variables {Z;} such that
Z; € {0,1}, there corresponds a probability distribution ' concentrated on the interval (0, 1)

such that:

1
P2y = ey, 2y = e L= e,) = | OF (1 —0)""F dC(D)

0
where k =e;+ey+ -+ ¢, and ¢; € {0,1} for ¢ =1.2,...,n.
This brings us to the {following more general result:

Proposition 4 Any binary channel with an exchangeable additive noise process is an averaged

channel with binary symmetric channels (BSC’s) as its components.

5 Capacity of Averaged Communication Channels

Strong vs Weak Capacity: We briefly describe what we mean by the weak (or operational)
capacity and the strong capacily of a communication channel.
Consider a discrete (not-necessarily memoryless) channel with common input and output

alphabet A; let W () = Y

X = z) be the block transition probability describing the channel.
Definition 5 An {M.n.c) code for this channel is a collection of M pairs
{(2. By)s (25, Bs)s - - - (27, Bas)}

where

o v, € A" for ¢ = 1,2,..., M; these are the codewords.

11



o B, C A" such that B, B; = 0 for 1 # j; these are the decoding sets for the code - i.c.,

if an element of B; is received then it will be assumed that », was sent.

e The maximum decoding error probability is given by ¢; that is, if we let Y, be the random
n-tuple appearing at the channel output when the codeword 2, is transmitted — and so

PY,=y)= I/V(”)(EIL-) — then
max{P(Y, & B;):i=1,2,...,M} < e

The rate of an (M,n,€) code is R = (1/n)log,(M).

A rate R is admissable if, for any € > 0, there exists (for sufficiently large n) an (M, n, ¢) code
with M > 2" We define the weak capacity of a channel as the supremum of all admissable
rates. We establish that a particular nonnegative number ', (resp., ('y) is the weak (strong)
capacity of a given channel by proving a coding theorem and a weak (strong) converse.

onlt

Coding Theorem For any R < (', there exists a sequence of (27,1, ¢,) codes such that

limy,—.oe €, = 0. Here (" vepresents either (', or (', according to the capacity sought.
I w ) g L Y

Weak Converse Given any sequence of (2% n, €,) codes with R > (', there exists an
¢ > 0 such that for sufficiently large n, ¢, > ¢.

onR

Strong Converse Given any sequence of (2%, n,¢,) codes with & > 'y, m,,_ ¢, = 1.

Weak Capacity of Averaged Channels: The strong capacity of an averaged channel
does not in general exist [5], since the strong converse to the channel coding theorem may not
hold. However it was shown by Ahlswede [5] that the weak converse holds [or these channels.

We now give the formula of the weak capacity of an averaged channel [10]:

Lemma 3 Consider the averaged channel with stationary ergodic components described b

3 ! Y
(3); assume common input and output alphabets A and “averaging” distribution G/(-), which
may be either discrete or continuous.

Then the weak capacity of the averaged channel is given by

("avg, = 112(1) ('((1‘) (l)
where
((a) = max sup inf 2(Q; 1), (5)

Q (BEco(®): G(E)>1-a} 9EE

12



1 n
i(Q; W) = lim —I1(QM: w /™)

n—o0 N
and
Wiy | x)
1QWswy™)y = 3 Wiy | 2) QW) log, s
o Seen Wiy | £)Q0) (&)

Capacity of the Polya Channel: We use the above lemma to compute the capacity of
the Polya channel. Since the additive noise is independent of the input, the maximization over
the input distribution @ in equation (5) is realized by the uniform input distribution. We can

therefore interchange the inf and max in (5) and get:

max 1(Q; Wy) =1 — h(Wy)

The resulting capacity of the channel is:
Cpolya = 1 — essg sup h(Wy) (6)

where

e the noise entropy rate h(Wy) is given by

1 n , -(n
BWo) == lim — 3 Wy | 2) Q") log, W (y]x)

e and the essential supremum is defined by
esse sup f(0) g [r:dG(f(0) <r)=1]

We know that the stationary ergodic components of the Polya channel are BSC’s; therefore
the noise entropy rate is given by H(W;) = hy(0), where hy(2) = —a logy(@)—(1—a)log,(1—2).

Equation (6) then yields the weak capacity of the channel:
Cpolya = 1 — essg sup hy(8)

Since 0 has the beta distribution on [0,1], we obtain essg sup hy(0) = 1 which, in turn, implies

CPolya = 0.

13



Comments: The zero-capacity of the Polya channel is duc to the fact that ¢ can occur
in any neighborhood of the point 1/2 with positive probability. This channel behaves like a
compound channel and the capacity of compound channels is defined from a pessimistic point

of view as the worst case achievable rate.

The zero capacity result suggests that the Polya channel might not be a good model for a
realistic channel. However in Section 7 we will consider a finite-memory channel that approxi-
mates the Polya channel as memory increases, but with a capacity that does not approach zero.
Before we do so, however, we first point out that the Polya channel provides a counterexample

to the adage “memory increases capacity”; this is the subject of the next section.

6 Effect of Memory on the Capacity of the Polya Chan-

nel

Pinsker and Dobrushin [14] showed that “for a wide class” ol channels, the capacity of a
channel with memory is not less than the capacity of the “equivalent™ memoryless channel.
They considered a channel with input alphabet A, output alphabet B, and n-fold transition
probability WU (yy, ...y | 21,.. ., 20), 20 € A, y; € B, such that:

M/(n"l)(yh ey Y1 | @1y Tay) = Z T/V(“)(yh R T I I o (
yn€B

-1

Specifically, they considered such channels with an operational capacily given by

1
C=lm —(, (8)

N— 00 'n
where

Cp= sup T((Xy,...., X0 (Y1,....Y)

They then defined the memoryless channel associated with this channel to have n-fold
y

transition probability

W™y, ..., Yn|T1y .oy &) = H W}(yi);v,),
=1

where

Wiy | e)= > W90,y e e) (9)

Y1y~ 1 €B

14



and the left-hand side of (9) is assumed to be independent of (ay,....w,—;). Thus the one-step
transition probabilities of the memoryless channel are equal to the per-letter marginals of the
channel with memory. The capacity of the associated memoryless channel is denoted by C

and they showed that:

Co>Cr4Cot o+ G
By “a wide class of channels”, they made some implicit assumtions:

e The channels are non-anticipatory and historyless. The non-anticipatory property can

be seen from equation (7), where it is implicitely assumed that

WO ettty ) = WO gy e ).

IFurthermore, equation (9) assumes the distribution on the n'* channel output given the

h

first n channel inputs depends only on the n' input — i.e., the original channel has no

input memory; it is historyless.

e The channels are asymptotically mean stationary [15] and ergodic. since otherwise equa-

tion (8) may not represent the operational capacity.

If we restrict ourselves to stationary channels, then W*n(yn | 2,) = U( Yy | @) for all n and so
C, > nCN', where C’l = (:72 =...= C’n = . Thus we get (' > C
In [16] Ahlswede showed that there are averaged channels for which the introduction of
memory decreases capacity. We briefly show that the Polya-contagion channel is such a channel.
We showed in the previous section that the capacity of the Polya channel is zero. Now, let
us compute C, the capacity of the associated memoryless channel. The transition probability

of the associated memoryless channel W(-) is

W (Y, = ya] X, = 2,) = S WY =y X = a) dG(0)

. ] -
YlyeenrYn—1 G{le}

- /O > WM = ylX = x) dC(0)

Y1yeesYn—1 E{OJ}

- /@ WOV, = gl X = a) dCi(H)

15



1
= / Hyn DT (1-— 9)1—(%%.7:”) fol0) do
0

pynGBrn (1 - p)l"‘(yn@l'n)

where O = [0,1], and dG(0) = fo(0) db is the beta distribution with parameters p/é and o /6
given in Proposition 3.

Thus we observe that the memoryless channel equivalent to the Polya channel is a BSC
with crossover probability p; this leads us to the conclusion that, for p # 1/2, the memory in
the Polya channel decreases capacity.

Finally, we can find examples of stationary non-ergodic channels for which memory increases
capacity [17]; this leads us to conclude that for stationary non-ergodic channels, memory may

increase or decrease capacity.

7 Finite-Memory Contagion Channel

An unrealistic aspect of the Polya channel is its infinite memory. Consider, for instance, the
millionth ball drawn from Polya’s urn; the very first ball drawn from the urn and the 999,999’th

ball drawn from the urn have an identical effect on the outcome of the millionth draw. In the

context of a communication channel, this is not reasonable; we would assume that the effects
of the “disease” fade in time. We now consider a more realistic model for a contagion channel
with {inite memory, where the noise in the additive channel is generated according to a modified
version of the Polya urn scheme.

Consider a discrete binary additive non-anticipatory communication channel described by
the following equation: Y; = X, Z;, for ¢« = 1,2.3,... where & 1s modulo-two addition, and
X:, Z; and Y; are respectively the " input, noise and output symbols of the channel.

We assume, as for the Polya channel, that the input and noise sequences are independent of
each other. The sequence of random variables {Z;}%2, of the noise process is modeled according
to the following urn scheme: An urn contains originally 7" balls, of which R are red and S are
black (T'= R+ S). At the j’th draw, j = 1.2,..., we select a ball from the urn and replace it
with 1 + A balls of the same color (A > 0); then, M draws later - alter the (7 + M)'th draw
- we retrieve from the urn A balls of the color picked at time j. Here also. we let p = R/T.

og=1—p=5/T and 6 = A/T. Furthermore, we assume that p < 1/2. The noise process
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{Z;} corresponds to the outcomes of the draws from the urn, where:

7oL if the ¢** ball drawn is red:
" 10, if the ¢** ball drawn is black.

Observation: With this modification of the original Polya urn scheme, the total number of

balls in the urn is constant (7" + M A balls) after an initialization period of M draws. It also

limits the effect of any draw to M draws in the future.

7.1 The Distribution of the Noise

During the initialization period (n < M), the process {Z;} of the finite-state channel is identical
to the Polya noise process discussed earlier. We now study the noise process for n > M + 1.
Let R, bhe the number of red balls in the urn after n draws, 7, be the total number of balls

in the urn after n draws, and r,, = R, /T},. Then T,, =T 4+ M\ for n > M + 1, and so

R + (Zn + Z’I’L'—] + -+ Zn—/\1+l)A
T+ MA

P + (Zn + Zn—] + -+ Zn—]\r[—i—l)é
1+ M6

We now have that:

— ey b e )6
P(Zn:HZ’l261,...,Zn_1:enwl) — P+(6 1+ €en—2+ + e ]\[)

14+ M6
Tp—1
- ])(Zn = l[Zn—]\[ = Cpe M-y Lp1 = en——l)
where ¢; = 0 or 1, for ¢« = 1,2,...,n — 1 and where n > M + 1. Thus the noise process

{Z:}22 041 18 @ Markov process of order M. The resulting channel is thus a Markov channel
with memory A; we shall refer to it as the finite-memory contagion channel.
For an input block X = [Xy,X,,...,X,] and an output block ¥ = [¥},Y,,...,Y,], the

block transition probability of the resulting binary channel is as follows:

e [or blocklength n < M, the block transition probability of this channel is identical to

that of the Polya-contagion channel given by equations (1) and (2).
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o Forn > M + 1, we obtain:

PM(XZQ|LZQQ) = P(Z=¢)

T
= [l PZi=ei| Zici=€icr,.... Zics = €ipp)
=1

_ 7 ﬁ [P + Si—lél “ [U-l- (M — 5i—1)5j| o (10)

=M1 1+ M6 14+ M6
where
e; = i Dy,
LIS+ i) 150 + o)
M 1(1—|—F(§) ’
k=e+- +enm,
and

Sie1 = €im1 o T €

By examining the above equation we see that the noise process (and thus the channel) is

stationary.

Observation: Obviously, as M grows, the finite-memory contagion channel converges in
distribution to the Polya-contagion channel, i.e. Py (-) — Ppopya().

We now consider the properties of the M’th order stationary Markov noise process. De-
fine {W,} to be the process obtained by M-step blocking the process {Z,} — ie. W, =
(Zny Zosts Zntzy -« o Zngna—1). Then {W,} is a one-step Markov process with 2% states; we
denote each state by its decimal representation; i.e. state 0 correspouds to state (0---00),
state 1 corresponds to state (0---01), ..., and state (2 — 1) corresponds to state (1---11).

Tedious calculations [17] reveal the following properties about the process {W, }.

e {IW,} is a homogeneous stationary Markov process with stationary distribution II =
(70,1, ..., moae_y], where m; is computed as follows. Let w(i) denote the number of 1’
in the binary representation of the decimal integer i. Then

wiz)— M-1—w(s)
p—}-]5 H (o + ko)

k=0

<

j=

= M-1

1] (14 ¢5)

=1
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o If we let {p;;} be the one-step transition probabilities, then

ot (ll\jf_};g(z))é’ if 3 = 2¢ (modulo 2M);

Pig = p1+—uj"(/;()§§7 if j = (20 + 1) (modulo 2M); (1)
otherwise.

?

Finally, from these transition probabilities, we clearly see that any state can reach any
other state with positive probability in a finite number of steps. Therefore the Markov
process W, is irreducible. Furthermore it is aperiodic; thus it is strongly mizing ( and
hence ergodic) [19].

Since the additive noise process is stationary and mixing, the resulting additive noise

channel is therefore ergodic [20, p. 205].

7.2 Capacity of the Finite-Memory Contagion Channel
Using the results in the previous section, we arrive at the following proposition.

Proposition 5 The capacity C'y of M-memory contagion channel is non-decreasing in M. It

is given by:

M Y
, M p+ ké .
C,M:1_§:( . )Lkhb<1+Mé> (12)

k=0
where

[12 (p+8) TG (0 4 45)
M-l 4 mé)

m=1

Ly =

and hy{-) is the binary entropy function.

Proof 5 The capacity is given by

Cv = 1=H{(Zysr | Znys Zna—ry o0 Z1)

2M
= 1+ > mpy log,pi
1.7=0
M
M p+ ko
E( k) ' b<1+Mé>
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The monotonicity of C'yr in M follows from the fact that conditioning can only decrease entropy.
|

Recalling that, if we let M grow, our finite-memory contagion channel converges in distri-

bution to the original Polya-contagion channel, we obtain the following result.

Proposition 6 The following equality holds:

Jim Cyy =1 _/01 ho(=) f2(2)dz (13)

where fz(z) is the beta(p/d, o/6) pdf given in Proposition 3 and hj(-) is the binary entropy
function.

. . M . . , .
Proof 6 If we examine the quantity k Ly in the formula of ('y;, we note that it is equal

to the probability that Sy, = k, where Sy is the state of the original Polya-contagion channel

after the M’th draw, as defined in Section 2.1. We thus have:

, p+ké .
7 M — 1_ h P»b :l{,
Cn = 1= Y (L) Pisu=

i 76 S,
= |- Z }Lb<1\§____+j__>P< ]\[:T>
re{k/Mk=0,1,.,M} iR M

L2 4 Thyb
e [ (),

where Thy = Sy /M. We know by Property 3 in Section 2.2, that Ty, = Sy//M converges

i

almost surely to a beta-distributed random variable Z with parameters p/é and o/é. T'his
almost surely convergence implies convergence in distribution; furthermore, since hy(+) is a

bounded and continuous function, the “weak equivalence” theorem [18] implies that

. + 46
Jm For,, [/lb (A[—A_;—Kﬂ = Ez[h(7Z)]

- /1 ho(z) fz(2)dz,
Jo

which proves the proposition.



Observation: As the memory grows, the (ergodic) finite-memory contagion channel con-
verges in distribution to the (non-ergodic) Polya-contagion channel, but the capacity Cyy of
the finite-memory channel does not converge to the capacity of the Polya-contagion channel
(which is zero). On the contrary, Cps increases in M and converges to 1 — [ hy(2) fz(2)dz
In addition, it can be shown [17] that, if we let I(X;Y ) denote the mutual information be-

tween the input vector X and output vector ¥ connected over the original (non-ergodic) Polya

channel, then

lim 2 sup I(X;Y) _1~/ ho(2) f2(=)dz (14)
n—oop  y
The left side of equation (14) is called the information rate capacity of the Polya channel; we
have thus demonstrated that, as we let the memory in the finite-memory contagion channel
increase, not only does the channel converge in distribution to the Polya channel, but the
information rate capacities also converge to that of the Polya channel. However, there is no
convergence in the weak capacity — the operational capacity. It seems reasonable to assume
that this is due to the non-ergodic nature of the Polya channel. In the following proposition

we examine this question.

Proposition 7 Consider a sequence of non-anticipatory stationary ergodic channels; lel the

n-fold transition probability of the M channel be denoted i A ()

X =u). Let Uy

denote the (weak) capacity of the M* channel. Finally, suppose this sequence of channels
satisfies the following conditions.

1. As M grows, they converge in distribution to a non-anticipatory stationary channel -

., if we let WM (Y = =y | X = z) denote the n-fold transition probability of the Jimiting

channel, then for any real n-tuples x and y,

lim U/M ()—:l

Moo

=2)=WI(Y =y | X =)

2. The “information rate capacities” of the channels converge to that of the limiting channel
—i.e.,if In;(X;Y) denotes the n-fold mutual information between the inputs and outputs

of the M" channel, and I,(X;Y) denotes the same for the limiting channel, then

1 1
lim hm —sup ]M(X Y )7 Lim —$up] (\ Y )

Moo n—oe 0 ; n—no N

21



Let €', denote the (weak) capacity of the limiting channel; then a sufficient but nol necessary
condition that

Jim, G =C.
is that the limiting channel be ergodic.

Proof 7 The proof that ergodicity is sufficient is trivial. All the channels are ergodic, so the
information rate capacities are equal to the corresponding operational capacities; condition
(2.) says the information rate capacities converge, and so the operational capacities must too.

To see that ergodicity is not necessary, we briefly sketch a counter-example. Let {UM}22,
be a stationary, mixing binary Markov process indexed by the parameter M; assume that

PUY =0) = P(UM =1) = 1/2 and that UM has one-step transition matrix

2—-]\[ 1 — 2~1\1

Qus = (1 —9=M 9-M > :
We create a noise process { ZM}22, by two-blocking the process {UM} —i.e.. ZM = (Z}, ZM) =
(UM, U?/H) for: = 0,1,2,.... Then {ZM} is a one-step Markov chain with four states and

transition matrix

.)—2]\[ 2-1\1(1 _ 2~M) (1 . 2—1\1 )2 Z_M(l _ E_M)
Q _ Q—M(l 2~M) (1 = 2—]\/[)2 2~]\l(1 _ Z_M) 2—2M
ZM = 9-2 Z_M(l - 2—]V[) (1— 2—1\[)2 2-1\1(1 _ 2-/\/1)
2—]\[(1 . 2-—1\/[) (J _ 2—]\/1)2 2—]\[(1 . 2—]\/[) 2—2]\/[

Now consider the channel with input/output alphabet {00,01,10,11}, where the ** input
Xi = (Xi1, Xip) is related to the " output Y; = (Y;1.Yiy) by ¥; = (Xy & ZN, X5y b Z2).
{ZM} is a stationary mixing process; thus the channel is stationary ergodic [20]. For finite
M, the capacity — both operational and information rate — is given by Cyy = 2 — H(Z3|ZM)
bits/channel use. I'rom () we observe that limas ... H(Zé” !Z{”) = 0; thus, imy; . Chy = 2
bits/channel use.

As M increases, the process { ZM} converges in distribution to a stationary non-ergodic pro-
cess {Z7} with two equiprobable components ~ {01,01,01,01,...} and {10,10,10,10,...}. The
information rate capacity of this — that is, limy,_—. maxy (1/n)0.(X;Y) -~ is two bits/chanuel

use. Thus both of the conditions above are met. However, this limiting channel is a mixture of
two deterministic channels, and its operational capacity is also two bits per channel use. Thus
the ergodicity of the limiting channel is not a necessary conditiou.

[S]
[N]



8 Summary

In this paper we considered a discrete channel with memory in which ervors spread like the
spread of a contagious disease through a population. We analyzed a communication channel
with additive noise modeled by Polya’s model for the spread of contagion. The channel is sta-
tionary and non-ergodic. We first presented a maximum likelihood (ML) decoding algorithm
for the channel, and then showed that this channel is in fact an “averaged” channel, and its
capacity is zero. Using De Finetti’s results on exchangeability, we noted that binary chan-
nels with additive exchangeable noise processes are averaged channels with binary symmetric
channels as components. The zero capacity result illustrates a counter-example to the adage
“memory can only increase capacity”.

Finally, we considered a finite-memory version of the Polya-contagion model. The resulting
channel is a stationary ergodic Markov channel with memory M; its capacity is positive and
increases with M. As M increases, the finite-memory contagion channel converges in distribu-
tion to the original Polya-contagion channel, but its capacity does not converge to the capacity

of the Polya channel.
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