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Shape, Appearance and Motion are the most important cues for analyzing

human movements in visual surveillance. Representation of these visual cues should

be rich, invariant and discriminative. We present several approaches to model and

integrate them for human detection and segmentation, person identification, and

action recognition.

First, we describe a hierarchical part-template matching approach to simul-

taneous human detection and segmentation combining local part-based and global

shape-based schemes. For learning generic human detectors, a pose-adaptive repre-

sentation is developed based on a hierarchical tree matching scheme and combined

with an support vector machine classifier to perform human/non-human classifi-

cation. We also formulate multiple occluded human detection using a Bayesian

framework and optimize it through an iterative process. We evaluated the approach

on several public pedestrian datasets.

Second, given regions of interest provided by human detectors, we introduce

an approach to iteratively estimates segmentation via a generalized Expectation-



Maximization algorithm. The approach incorporates local Markov random field con-

straints and global pose inferences to propagate beliefs over image space iteratively

to determine a coherent segmentation. Additionally, a layered occlusion model and

a probabilistic occlusion reasoning scheme are introduced to handle inter-occlusion.

The approach is tested on a wide variety of real-life images.

Third, we describe an approach to appearance-based person recognition. In

learning, we perform discriminative analysis through pairwise coupling of training

samples, and estimate a set of normalized invariant profiles by marginalizing likeli-

hood ratio functions which reflect local appearance differences. In recognition, we

calculate discriminative information-based distances by a soft voting approach, and

combine them with appearance-based distances for nearest neighbor classification.

We evaluated the approach on videos of 61 individuals under significant illumination

and viewpoint changes.

Fourth, we describe a prototype-based approach to action recognition. During

training, a set of action prototypes are learned in a joint shape and motion space via

k-means clustering; During testing, humans are tracked while a frame-to-prototype

correspondence is established by nearest neighbor search, and then actions are rec-

ognized using dynamic prototype sequence matching. Similarity matrices used for

sequence matching are efficiently obtained by look-up table indexing. We experi-

mented the approach on several action datasets.
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Chapter 1

Introduction

Human movement analysis is a long-studied, but still important and challeng-

ing research area in visual surveillance. It involves many fundamental problems in

computer vision such as human detection, segmentation and tracking, and higher

level problems such as human gesture, action and event recognition. In computer

vision, shape, appearance and motion have been the most-studied and widely-used

visual cues for human movement analysis. Methods to effectively represent and

integrate these cues with pattern classification techniques is crucial for analyzing

human movements under challenging real-world situations.

1.1 Shape-based Human Detection

Human detection is the first step for analyzing human movements. It can

provide an initialization for human segmentation. More importantly, robust human

tracking and identification are highly dependent on reliable detection and segmenta-

tion in each frame, since better segmentation can be used to estimate more accurate

and discriminative appearance models. Although the problem of human detection

has been well-studied in vision, it still remains challenging due to highly articu-

lated body postures, viewpoint changes, varying illumination conditions, occlusion,

and background clutter. Combinations of these factors result in large variability of

1



human shapes and appearances in images. We present a shape-based hierarchical

part-template matching approach and use it to derive an articulation-insensitive fea-

ture extraction method for pedestrian classification and generic human detection.

We also extend the approach to detect and segment multiple occluded humans by

an iterative occlusion analysis. A preliminary version of this approach has been

published in [66,67].

1.2 Appearance-based Human Segmentation

In video surveillance, people often appear in small groups, which yields oc-

clusion of appearances due to the projection of the 3D world to 2D image space.

Given initial detections, in order to track people or to recognize them based on their

appearances, it would be useful to be able to accurately segment the groups into

individuals and build their appearance models. The problem is to segment images

into foreground and background, and further to segment the foreground regions

into individuals. When the humans of interest and the background have similar

color or texture, when the humans are in a cluttered background, or when humans

appear under occlusion, the segmentation problem becomes especially challenging.

We present an iterative approach to appearance-based human segmentation by in-

corporating both local and global shape constraints. A preliminary version of this

approach has been published in [68].
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1.3 Appearance-based Person Recognition

Appearance-based, full-body person recognition is closely related to object

recognition, and very important for understanding human movements/activities in

video surveillance. Appearance information is crucial not only in tracking, but also

for identifying persons across space, time, and cameras. Pose articulation, viewpoint

variation, and illumination change are common factors which affect the performance

of appearance recognition systems. Also, when the number of people increases,

ambiguities between them become significant, and consequently, more and more

sophisticated and discriminative approaches are needed. We present an approach

to improve the scalability of appearance recognition systems to larger number of

individuals by exploring both intra-class and inter-class invariance in a pairwise

comparison framework. A preliminary version of this approach has been published

in [65].

1.4 Prototype-based Action Recognition

Action recognition is also an important problem in vision and has many po-

tential applications such as human-computer interaction, virtual reality and multi-

media retrieval. Frame-to-frame matching and nearest neighbor classification-based

schemes have been standard for action recognition. However, for large-scale action

recognition, where the training database consists of thousands of action videos, such

a matching scheme may require tremendous amount of computation due to exhaus-

tive distance computation between a test action frame and all training action frames.
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In contrast to previous work which assumes static backgrounds, recognizing actions

viewed against a dynamic varying background is another important challenge. We

present a very accurate and efficient approach to action recognition based on action

prototypes learned in a joint shape and motion space.

1.5 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we introduce our shape-based

generic human detection approach and its extension to multiple occluded human de-

tection. In Chapter 3, we describe our iterative pose-assisted and appearance-based

segmentation approach. In Chapter 4, we present our appearance-based person

recognition approach. In Chapter 5, we address our approach to combine shape and

motion cues for efficient and accurate action recognition. Finally, in Chapter 6, we

conclude the thesis and discuss possible future extensions.
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Chapter 2

Shape-based Human Detection

2.1 Introduction

Our approach to human movement modeling and recognition, describing sub-

sequently in chapter 2 and chapter 3 involves first detecting and approximately

segmenting people in each frame of a video. In this chapter, we discuss our ap-

proach to human detection. There has been a significant amount of prior research

on the problem of human detection. These previous approaches can be classified into

two categories: shape-based approaches and blob-based approaches. Shape-based

approaches can be used for human detection in either still images or videos. Shapes

have been modeled as local curve segments in [34, 82, 127, 129], modeled directly as

a global shape model hierarchy in [39, 40, 138], or implicitly represented by local or

global descriptors in [22,61,71,98,131]. For highly articulated objects like humans,

part-based representations have been shown to be very efficient for detection. For

example, Mikolajczyk et al. [71] use local features for part detection and assemble

the part detections probabilistically. Wu and Nevatia [127] introduce edgelet fea-

tures for human detection. They extend this approach to a general object detection

and segmentation approach by designing local shape-based classifiers [129]. Shet

et al. [102] propose a logical reasoning-based method for efficiently assembling part

detections. One problem with these part-based detection approaches is that in very
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cluttered images too many detection hypotheses may be generated, and a robust

assembly method (e.g. boosting) is thus needed to combine these detections. On

the other hand, Gavrila and Philomin [39,40,138] use on a more direct hierarchical

template matching approach for global shape-based pedestrian detection. These

shape-based detection methods can also be combined with appearance cues for si-

multaneous detection and segmentation [58,126,138]. Shape-based approaches have

the advantage that they do not require background subtraction, but they need to

scan whole images and can generate many false alarms in cluttered regions.

From a learning perspective, many of these shape-based approaches model hu-

man detection as a binary classification problem and rely on sliding-window scan-

ning schemes. These approaches can be further divided into two categories in terms

of shape modeling schemes. The first category models human shapes globally or

densely over image locations, e.g. an over-complete set of Haar wavelet features

in [83], rectangular features in [115], histograms of oriented gradients (HOGs) in [22],

locally deformable Markov models in [131] or covariance descriptors in [113]. Global

approaches such as [22, 113] are designed to tolerate certain degrees of occlusions

and shape articulations with a large number of samples and have been demonstrated

to achieve excellent performance with well-aligned, more-or-less fully visible train-

ing data. The second category of approaches uses local feature-based approaches

to learn body part and/or full-body detectors based on sparse interest points and

descriptors as in [61, 71], from predefined pools of local curve segments [82, 106], k-

adjacent segments [33], or edgelets [127]. In [75], several part detectors are trained

separately for each body part, and combined with a second-level classifier. Com-
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pared to the global approaches, part (or local feature)-based approaches [61, 127]

are more adept in handling partial occlusions, and flexible in dealing with shape

articulations. Shape cues are also combined with motion cues for human detection

in [23,116], simultaneous detection and segmentation in [100]. Dalal and Triggs [22]

introduced HOG features and provided an extensive experimental evaluation us-

ing linear and gaussian-kernel SVMs as the test classifiers. Later, Zhu et al. [142]

improved its computational efficiency significantly by utilizing a boosted cascade of

rejectors. Recently, Tuzel et al. [113] reported better detection performance than [22]

on the INRIA dataset. They use covariant matrices as image descriptors and clas-

sify patterns on Riemannian manifolds. Similarly, Maji et al. [70] also demonstrate

promising results using multi-level HOG descriptors and faster (histogram intersec-

tion) kernel SVM classification. In [92], two-fold adaboost classifiers are adopted

for simultaneous part selection and pedestrian classification. Ref. [128] combines

different features in a single classification framework.

In contrast, blob-based approaches are computationally more efficient but have

a common problem that the results depend crucially on background subtraction or

motion segmentation. These approaches are mostly developed for detecting and

tracking humans under occlusion. Some earlier methods [50,110] model the human

tracking problem by a multi-blob observation likelihood given a human configura-

tion. Zhao and Nevatia [141] introduce an MCMC-based optimization approach

to human segmentation from foreground blobs. They detect heads by analyzing

edges surrounding binary foreground blobs, formulate the segmentation problem

in a Bayesian framework, and optimize by modeling jump and diffusion dynamics
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in MCMC to traverse the complex solution space. Following this work, Smith et

al. [108] propose a similar trans-dimensional MCMC model to track multiple hu-

mans using particle filters. Later, an EM-based approach was proposed by Rittscher

et al. [88] for foreground blob segmentation. Zhao and Tao [140] use a part-based

human body model to fit binary blobs and track humans.

Few of the previous approaches explicitly model human shape articulations us-

ing part model deformations, and/or formulate human detection by unifying shape

and region (or motion blob) information in a single probabilistic framework. Hierar-

chical template matching [39,40] is a convenient way to efficiently integrate detection

and segmentation of shapes, but it is computationally expensive due to the necessity

of collecting and matching with a large number of global shape templates. More-

over, previous discriminative approaches mostly train a binary classifier on a large

number of positive and negative samples where humans are roughly center-aligned.

These approaches represent appearances by concatenating information along 2D im-

age coordinates for capturing spatially recurring local shape events in training data.

However, due to highly articulated human poses and varying viewing angles, a very

large number of (well-aligned) training samples are required; moreover, the inclu-

sion of information from whole images inevitably makes them sensitive to biases in

training data (in the worst case, significant negative effects can occur from arbitrary

image regions), consequently the generalization capability of the trained classifier

can be compromised.

We introduce a hierarchical part-template matching approach [67] for detecting

and segmenting humans simultaneously. The approach takes advantages of both
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local part-based and global template-based human detectors by decomposing global

shape models and constructing a part-template tree to model human shapes flexibly

and efficiently. Shape observations (edges or local gradient orientations) are matched

to the part-template tree efficiently to determine a reliable set of human detection

hypotheses. Shapes and poses are estimated automatically through synthesis of part

detections.

Using the hierarchical part-template matching scheme, we extract features

adaptively in the local context of poses, ı.e. we propose a pose-invariant feature

extraction method [66] for for better discriminating humans from non-humans. The

intuition is that pose-adapted features produce much better spatial repeatability

of local shape events. Specifically, we segment human poses on both positive and

negative samples1 and extract features adaptively in local neighborhoods of pose

contours, i.e. in the pose context. The set of all possible pose instances are mapped

to a canonical pose, such that points on an arbitrary pose contour have one-to-one

correspondences to points in the canonical pose. This ensures that our extracted

feature descriptors correspond well to each other, and are also invariant to varying

poses.

For multiple occluded human detection problems, a set of detection hypotheses

are estimated by our generic human detector and is iteratively optimized under a

Bayesian MAP framework based on global likelihood re-evaluation and fine occlusion

analysis. For meeting the requirement of real-time surveillance systems, we also

combined the approach with background subtraction to improve efficiency, where

1For negative samples, pose estimation is forced to proceed even though no person is in them.
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region information provided by foreground blobs is combined with shape information

from the original image in a joint likelihood model.

Our main contributions are summarized as follows:

• A part-template tree model and its automatic learning algorithm are intro-

duced for simultaneous human detection and pose segmentation. The ap-

proach combines popular local part-based object detectors with global shape

template-based schemes.

• A fast hierarchical part-template matching algorithm is used to estimate hu-

man shapes and poses by matching local image cues such as gradient mag-

nitudes and/or orientations. Human shapes and poses are represented by

part-based parametric models, and the estimation problem is formulated and

optimized in a probabilistic framework.

• Estimated optimal poses are used to impose spatial priors (for possible hu-

mans) for encoding pose-invariant features in nearby local pose contexts. One-

to-one correspondence is established between sets of contour points of an ar-

bitrary pose and a canonical pose.

• A Bayesian MAP framework is utilized to formulate and solve multiple oc-

cluded human detection and segmentation problems. Optimization is per-

formed in a greedy fashion composed of iterative processes of global likelihood

re-evaluation and fine occlusion analysis.
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Figure 2.1: Generation of global shape models by part synthesis, decomposition of
global silhouette and boundary models into region and shape part-templates.

2.2 Hierarchical Part-Template Matching

We take advantages of local part-based and global shape template-based ap-

proaches by combining them in a unified top-down and bottom-up search scheme.

Specifically, we extend the hierarchical template matching method in [39,40] by de-

composing the global shape models into parts and constructing a new part template-

based tree which captures appearance correlations between part models from the

training database of human shapes.

2.2.1 Tree-Structured Part-Template Hierarchy

We generate a flexible set of global shape models by part synthesis using a

simple pose generator and construct a part-template hierarchy using a body-part

decomposer. Some examples of global generated global shape models are shown in

Figure 2.1. For modeling human side views and front/back views individually, we
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represent the body with six part regions - (head, torso, pair of upper-legs, pair of

lower-legs). Each part region is modeled by a horizontal parallelogram (five degrees

of freedom) characterized by its position, size and orientation parameters. Thus,

the total number of degrees of freedom is 5 × 6 = 30. For initial tree construction,

global shapes are modeled using only six degrees of freedom (head position, torso

width, orientations of upper/lower legs) given the torso position as the reference, and

other parameters can treated as hidden variables estimated only in online reasoning

phases. Heads and torsos are simplified to vertical rectangles (fixed orientations)

with rounded shapes at corners. The selected six parameters are discretized into

{3, 2, 3, 3, 3, 3} values. Finally, the part regions are independently collected and

grouped to form 3 × 2 × 3 × 3 × 3 × 3 = 486 global shape models.

Next, silhouettes and boundaries are extracted from the set of generated global

shape models and decomposed into three parts (head-torso, upper legs and lower

legs) as shown in Figure 2.1. The parameters of the three parts ht, ul, ll are denoted

as θht, θul and θll, where each parameter represents the index of the corresponding

part in the part-template tree. Then, the tree-structured part-template hierarchy is

constructed by placing the decomposed part regions and boundary fragments into a

tree as illustrated in Figure 2.2. The tree has four layers denoted as L0, L1, L2, L3,

where L0 is the (empty) root node, L1 consists of side-view head-torso templates

L1,i, i = 1, 2, 3 and front/back-view head-torso templates L1,i, i = 4, 5, 6, and simi-

larly, L2 and L3 consists of upper and lower leg poses for side and front/back views.

Hence, Each part in the tree can be viewed as a parametric model, where part lo-

cation and sizes are the model parameters. As shown in the figure, the tree consists
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Figure 2.2: An illustration of the part-template tree model. Each part in the tree
is characterized by both shape and region information.

of 186 part-templates, i.e. 6-12 head-torso (ht) models, 18 upper-leg (ul) models,

18 lower-leg (ll) models, and organized hierarchically based on the layout of human

body parts in a top-to-bottom manner. Due to the tree structure, a fast hierarchi-

cal shape (or pose) matching scheme can be applied using the model. For example,

using hierarchical part-template matching (which will be explained later), we only

need to match 24 part-templates to account for the complexity of matching 486

global shape models using the method in [40], so it is extremely fast.

2.2.2 Learning the Part-template Tree

In order to more efficiently and reliably estimate human shapes and poses

in the image, we learn the part-template tree model in Figure 2.2 and embed its

hierarchical matching algorithm in a probabilistic optimization framework. The
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learning is done by matching the tree to a set of annotated human silhouette images.

Specifically, we estimate the distributions of part model parameters in each of the

tree layers for handling a wider range of articulations of people.

We learn the part-template tree model in Figure 2.2 based on a training set

of about 800 320× 240 binary silhouette images (white foreground and black back-

ground). Each of the training silhouette images is sent through the tree from the

root node to leaf nodes and the degree of coverage (both foreground and background)

consistency between each part template Tθj
, j ∈ {ht, ul, ll} and the observation is

measured. Here, each part-template is considered to be covered by a binary rect-

angular image patch M (see Figure 2.5(b) for an example). The degree of coverage

consistency ρ(θj|S) between a part-template Tθj
and a silhouette image S is de-

fined as the pixel-wise similarity of the part-template coverage image M(θj) and the

binary sub-silhouette Sj (corresponding to the same region as the part-template),

i.e.

ρ(θj|S) = 1 −
∑

x |Si(x) − M(θj,x)|
n

, (2.1)

where n is the total number of pixels in the rectangular part-template region. Then,

we can estimate the best set of part models θ∗ = {θ∗j} for the training silhouette S

by maximum likelihood estimation:

θ∗j = arg max
θj∈Θj

ρ(θj|S), (2.2)

where Θj denotes the set of all possible part template parameters. This process is
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Figure 2.3: A comparison of the average of all training silhouettes (left) and the
average of our 486 learned global shape models (right).

repeated for all training silhouettes and the ranges of part template models are esti-

mated based on the statistics of each part-template’s model parameters. The ranges

of parameters are evenly quantized to produce the final tree model.2 Figure 2.3 val-

idates our tree learning approach by showing that the average of our learned global

shape models (composition of parts) is very similar to the average of all training

silhouettes.

2.2.3 Object Likelihood Model

We formulate the pose and shape estimation problem probabilistically as max-

imization of a global (pseudo) object likelihood L. In order to quickly evaluate the

likelihood for a global pose (i.e. different parameter combinations of part models),

the object likelihood is simply modeled as a summation of matching scores of part-

template models in all tree layers. We can think of L as a log-likelihood and the

summation of the matching scores over different parts is equivalent to multiplication

of probabilities. Given an image I (either training or testing sample) and a candi-

2The learned tree model can be downloaded from http://terpconnect.umd.edu/∼zhelin/

part-template-model.zip.
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date global pose model θ = {θj} (including part-template indices and their locations

and scales), in the simplest case, if we assume independence between part-template

models θj in different layers, the object likelihood can be simply represented as

follows:

L(θ|I) = L(θht, θul, θll|I) =
∑

j∈{ht,ul,ll}

L(θj|I). (2.3)

For the purpose of pose estimation, we should jointly consider different parts θj

for optimization of L. Hence, based on the layer structure of the tree in Figure 2.1,

the likelihood L is decomposed into conditional likelihoods as follows:

L(θ|I) = L(θht|I) + L(θul|θht, I) + L(θll|θht, θul, I)

= L(θht|I) + L(θul|θht, I) + L(θll|θul, I)

= L(θht|I) + L(θul|I)R(θul, θht) + L(θll|I)R(θll, θul), (2.4)

where R(a, b) = 1 if a is a descendent of b, R(a, b) = 0 otherwise, and the decom-

position is performed in a top-to-bottom order of the layers, and independence is

assumed between the two non-joining layers, ht and ll. We use Equation 2.4 as our

optimization model discussed in the following.

2.2.4 Part Likelihood Model

A part template Tθj
(defined by model parameters θj) is characterized by its

boundary curve segments (see Figure 2.1) and edge orientations (or normal direc-

tions) along the boundary segments. We match individual part-templates using a
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method similar to Chamfer matching [40]. Matching scores of each sample point

along the part-template contour can be measure from different cues such as distance

transforms or dominant edge orientations.

More formally, the likelihood L(θj(x, s)|I) of a part template-Tθj
at location

x and scale s is modeled as follows:

L(θj(x, s)|I) =
1

|Tθj
|

∑

t∈Tθj

d
′

I(x + st), (2.5)

where |Tθj
| denotes the length of the part-template, and t denotes the relative

position of individual contour points along the template. Exact models of distances

d′ and part-template likelihoods are discussed in the next section.

2.2.5 Optimization

The structure of our part-template model and the form (summation) of the

global object likelihood L suggest that the optimization problem can be solved by

dynamic programming to achieve globally optimal solutions. But, this algorithm is

computationally too expensive for dense scanning of all windows for detection. For

efficiency, we perform the optimization, i.e. the maximization of L, by a fast k-fold

greedy search procedure. Algorithm 1 illustrates the overall matching (optimization)

process. We keep scores for all nodes (k = 1, 2...K) in the second layer (i.e. the torso

layer) instead of estimating the best k in step 1 of the algorithm. In the following

steps, a greedy procedure is individually performed for each of those K nodes (or

threads).
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Algorithm 1: Probabilistic Hierarchical Part-Template Matching

1) For a set of locations x and scales s, match all K head-torso
part-templates in layer L1 with the image and compute their part-template
likelihoods L(θk

ht(x, s)|I), k = 1, 2...K.
2) For k = 1...K, repeat the following steps (3)-(4), and select k = k∗ and
θ = θ∗ with the maximum L(θ|I).
3) According to the part-template model θk

ht of Layer L1, estimate the
maximum conditional-likelihood leg models θ∗ul|θk

ht in L2 and θ∗ll|θ∗ul, θ
k
ht in L3

using a greedy search algorithm along the tree.
4) Given the above part-template’s model estimates, compute the current
global object likelihood based on Equation 2.4.
5) Return the global pose model estimates θ∗ = {θk

ht, θ
∗
ul, θ

∗
ll}.

Figure 2.4: An illustration of shape/pose segmentation. Top: Best part-template
estimates (three images on the left side designated by a path from L0 to L3) are
combined to produce final global shape and pose segmentations (two images on the
right side); Bottom: example pose (shape) segmentation on positive and negative
examples.

Pose model parameters estimated by the hierarchical part-template matching

algorithm are directly used for pose segmentation by part-synthesis (region con-

nection). Figure 2.4 shows the process of global pose (shape) segmentation by the

part-template synthesis.
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2.3 Pose-Adaptive Image Description

For applying our part-template tree model and hierarchical matching algo-

rithm to discriminative human detection, we introduce a pose-adaptive feature com-

putation method for detecting humans from images using standard machine learning

techniques such as SVMs and Adaboost.

2.3.1 Overview of the Approach

In our training and testing datasets, training and testing samples all con-

sist of 128 × 64 image patches. Negative samples are randomly selected from raw

(person-free) images, positive samples are cropped (from annotated images) such

that persons are roughly aligned in location and scale. For each training or test-

ing sample, we first compute a set of histograms of (gradient magnitude-weighted)

edge orientations for non-overlapping 8× 8 rectangular regions (or cells) evenly dis-

tributed over images. Motivated by the success of HOG descriptors [22] for object

detection, we employ coarse-spatial and fine-orientation quantization to encode the

histograms, and normalization is performed on groups of locally connected cells,

i.e. blocks. Then, given the orientation histograms, the probabilistic hierarchical

part-template matching technique is used to estimate shapes and poses based on an

efficient part-based synthesis approach under a probabilistic framework. Given the

pose and shape estimates, block features closest to each pose contour point are col-

lected; finally, the histograms of the collected blocks are concatenated in the order

of pose correspondence to form our feature descriptor. As in [22], each block (con-
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(a) (b) (c) (d) (e) (f)

Figure 2.5: Overview of our feature extraction method. a) A training or testing im-
age, b) Part-template detections, c) Pose and shape segmentation, d) Cells overlaid
onto pose contours, e) Orientation histograms and cells overlapping with the pose
boundary, f) Block centers relevant to the descriptor.

sisting of 4 histograms) is normalized before collecting features to reduce sensitivity

to illumination changes. The one-to-one point correspondence from an arbitrary

pose model to the canonical one reduces sensitivity of extracted descriptors to pose

variations. Figure 4.1 shows an illustration of our feature extraction process.

2.3.2 Low-Level Feature Representation

For pedestrian detection, histograms of oriented gradients (HOG) [22] ex-

hibited superior performance in separating image patches into human/non-human.

These descriptors ignore spatial information locally, hence are very robust to small

alignment errors. We use a very similar representation as our low-level feature de-

scription, i.e. (gradient magnitude-weighted) edge orientation histograms.

Given an input image I, we calculate gradient magnitudes |GI| and edge orien-

tations OI using simple difference operators (−1, 0, 1) and (−1, 0, 1)t in horizontal-x

and vertical-y directions, respectively. We quantize the image region into local 8×8

non-overlapping cells, each represented by a histogram of (unsigned) edge orien-

tations (each surrounding pixel contributes a gradient magnitude-weighted vote to
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Figure 2.6: Examples of two training samples and visualization of corresponding
(un-normalized and L2-normalized) edge orientation histograms.

the histogram bins). Edge orientations are quantized into Nb = 9 orientation bins

[k π
Nb

, (k + 1) π
Nb

), where k = 0, 1...Nb − 1. For reducing aliasing and discontinuity ef-

fects, we also use trilinear interpolation as in [22] to vote for the gradient magnitudes

in both spatial and orientation dimensions. Additionally, each set of neighboring

2 × 2 cells form a block. This results in overlapping blocks where each cell is con-

tained in multiple blocks. For reducing illumination sensitivity, we normalize the

group of histograms in each block using L2 normalization with a small regularization

constant ε to avoid dividing-by-zero. Figure 2.6 shows example visualizations of our

low-level HOG descriptors.

The above computation results in our low-level feature representation consist-

ing of a set of raw (cell) histograms (gradient magnitude-weighted) and a set of

normalized block descriptors indexed by image locations. As will be explained in

the following, both unnormalized cell histograms and block descriptors are used for

inferring poses and computing final features for detection.
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2.3.3 Computing Part-Template Likelihoods

Given the low level feature representations, the part template likelihoods are

measured by magnitudes of corresponding orientation bins in local edge orientation

histograms. The matching scores are measured using location-based look-up tables

for speed. Magnitudes from neighboring histogram bins are weighted to reduce

orientation biases and to regularize the matching scores of each template point.

Suppose the dominant orientation around contour point t is O(t), its cor-

responding orientation bin index B(t) is computed as: B(t) = [O(t)/(π/9)] ([x]

denotes the maximum integer less-or-equal to x), and the un-normalized (raw) ori-

entation histogram at location (x+ st) is H = {hi}. Then, the individual matching

score d
′

I at contour point t is expressed as:

d
′

I(x + st) =
δ

∑

b=−δ

w(b)hB(t)+b, (2.6)

where δ is a neighborhood range, and w(b) is a symmetric weight distribution3.

2.3.4 Representation using Pose-Invariant Descriptors

In our implementation, the global shape models (consisting of 3 part-template

types) are represented as a set of boundary points with corresponding edge orien-

tations. The range of the number of those model points are from 118 to 172. In

order to obtain a unified (constant dimensional) description of images with those

different dimensional pose models, and to establish a one-to-one correspondence be-

3For simplicity, we use δ = 1, and w(1) = w(−1) = 0.25, w(0) = 0.5 in our experiments.
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Figure 2.7: An illustration of pose alignment by one-to-one contour point correspon-
dence. Only a subset of key contour points are shown here.

tween contour points of different poses (Figure 2.7), we map the boundary points

of any pose model to those of a canonical pose model. The canonical pose model

is assumed to be occlusion-free, so that all contour points are visible. For human

upper bodies (heads and torso), the boundaries are uniformly sampled into 8 left

side and 8 right side locations; and the point correspondence is established between

poses based on vertical y coordinates and side (left or right) information. For lower

bodies (legs), boundaries are uniformly sampled into 7 locations vertically with 4

locations at each y value (inner leg sample points are sampled at 5 pixels apart from

outer sample points in the horizontal direction). Figure 2.5(f) shows an example of

how the sampled locations are distributed).

Associated with each of those sample locations is a 36-dimensional feature

vector (L2-normalized histogram of edge orientations of its closet 2× 2 block in the

image). Hence, this mapping procedure generates a (8 × 2 + 7 × 4) × 36 = 1584

dimensional feature descriptor. Figure 4.1 illustrates the feature extraction method.

Note that only a subset of blocks are relevant for the descriptor, and a block might
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be duplicated several times based on the frequency of contour points lying inside

the block.

2.4 Detecting and Segmenting Multiple Occluded Humans

Pose-invariant descriptors discussed in the previous section are mainly devel-

oped for the purpose of detecting fully visible humans from images. However, real

world images can be crowded and it is common that humans can occlude each other

significantly. This is more obvious in visual surveillance scenarios where videos

are usually captured in crowded public places, e.g. shopping malls, airports, etc.

In these complex cases, our generic detector based on our pose-adaptive features

should be used to provide initial sets of human hypotheses (by reducing thresholds

to ensure low miss rates) and then more detailed occlusion analysis and optimiza-

tion should be performed. Below, we introduce a unified Bayesian framework for

detecting and segmenting multiple occluded humans in still images and videos.

2.4.1 Bayesian Problem Formulation

We model the detection and segmentation problem as a Bayesian MAP opti-

mization:

c∗ = arg max
c

P (c|I), (2.7)

where I denotes the image observation, c = {h1,h2, ...hn} denotes a human con-

figuration (a set of human hypotheses), and n denotes the number of humans in

the configuration. {hi = (xi, θi)} is an individual hypothesis which consists of
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foot position4 xi and corresponding human model parameter θi. Using Bayes Rule,

Equation 2.7 can be decomposed into a joint likelihood P (I|c) and a prior P (c) as

follows:

P (c|I) =
P (I|c)P (c)

P (I)
∝ P (I|c)P (c). (2.8)

For human detection, we assume a uniform prior, hence the MAP problem reduces

to maximizing the joint likelihood. Note that the prior is non-uniform and should

be modeled based on previous states in tracking problems.

Previous approaches [50, 110, 141] model the human detection and tracking

problem by a multi-blob observation likelihood based on object-level and configuration-

level likelihood. In [127], the joint likelihood is modeled as the probability of part-

detection responses given a set of human hypotheses. We decompose the image ob-

servation, I, into shape observation Is (edge image or edge orientation histograms)

and region observation Ir (binary foreground image from background subtraction)

assuming independence between the shape and region information. Then, the joint

likelihood P (I|c) is modeled as:

P (I|c) = P (Is|c)P (Ir|c), (2.9)

where P (Is|c) and P (Ir|c) denote shape likelihood and region likelihood respectively.

The region observation is optional and we set P (Ir|c) = 1 or equivalently P (I|c) =

P (Is|c) when background subtraction is not used.

4Here, we choose the foot point as a reference to represent and search for human shapes. A
foot point is defined as the bottom center point of a human bounding box.
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(a) (b) (c)

Figure 2.8: An illustration of part-template likelihood computed using multiple cues.
(a) Shape information is measured by Chamfer matching, (b) region information is
measured by foreground coverage density, (c) Part detectors.

2.4.2 Extended Part-Template Likelihood Model

In the multiple cue framework, a part-template is characterized by its bound-

ary and coverage region. We match individual part-templates using both shape and

region information (when region information is available from background subtrac-

tion). Shape information is measured by chamfer matching and region information

is measured by part foreground coverage density. Figure 2.8(a) and 2.8(b) show how

shape and region information is measured.

For a foot candidate pixel x in the image, the likelihood P (I|x, θj) for a part

template-Tθj
, j ∈ {ht, ul, ll} is decomposed into the part-shape likelihood P (Is|x, θj)

and the part-region likelihood P (Ir|x, θj) as follows:

P (I|x, θj) = P (Is, Ir|x, θj) = P (Is|x, θj)P (Ir|x, θj). (2.10)
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(a) (b) (c) (d)

Figure 2.9: An example of detection process without background subtraction. (a)
Initial set of human detection hypotheses, (b) Human shape segmentations, (c)
Detection result, (d) Segmentation result (final occlusion map).

This can be transformed to the form of log-likelihoods as:

L(θj(x)|I) = L(θj(x)|Is) + L(θj(x)|Ir). (2.11)

where L(θj(x)|Is) can be directly obtained by the method discussed earlier in Sec-

tion 2.2 or by Chamfer matching, i.e. the likelihood can be computed either from

edge orientation histograms or distance transforms of canny edge maps. If region

(or blob) information is available, the part region likelihood is computed by the

part foreground coverage density γ(x, θj) which is defined as the proportion of the

foreground pixels covered by the part-template Tθj
at pixel x, otherwise, we set

P (Ir|x, θj) = 1 (or equivalently L(x(θj)|Ir) = 0).

2.4.3 Generating Initial Human Hypotheses

The generic human detectors trained using our pose-adaptive features and

SVM classifier can provide reliable sets of initial human hypotheses for detecting

humans from still images. However, for crowded videos, a set of simpler part detec-

tors can be more accurate than a single full body detector due to severe occlusion
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between humans. Hence, here we introduce an alternative method for generating

initial human hypotheses for surveillance scenarios.

Hierarchical part-template matching provides estimates for the model param-

eters θ∗(x) for every foot candidate pixel x in the image. We define a likelihood

function for evaluating likelihood for any part or part combinations. The object-level

likelihood function L(x|I) for foot candidate pixel x is expressed as:

Lw(x|I) =
∑

j

wjL(θ∗j (x)|I), (2.12)

where w = {wj, j = ht, ul, ll} is an importance weight vector to calculate a like-

lihood value for different parts or part combinations. For example, {wht = wul =

wll = 1/3} corresponds to a full body detector and {wht = 0, wul = wll = 1/2}

corresponds to a leg detector. The importance weights are normalized to satisfy

∑

j wj = 1. We have seven part or part-combination detectors (Figure 2.8(c), and if

the head-torso is decomposed further into head-shoulder and torso, the number of

detectors can be as high as 15. Suppose we use K part detectors, Dk, k = 1, 2...K

corresponding to K weight vectors wk, k = 1, 2...K for each foot candidate pixel

x in the image. The likelihoods for these part detectors are calculated with the

object-level likelihood function (Equation 2.12).

In practice, we can use our generic human detector to reduce the search space

into a small subset and boost it by searching additional hypotheses using the above

part detectors. We threshold each of the final likelihood maps generated from the

part detectors, merge nearby weak responses to strong responses and adaptively
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select modes. This step can also be performed by local maximum selection after

smoothing the likelihood image. The union of the maxima forms the set of human

hypotheses:

O = {o1, o2, ...oN} =

{(x1, θ
∗(x1)), (x2, θ

∗(x2)), ...(xN , θ∗(xN))}, (2.13)

and the corresponding likelihoods are denoted as L(oi), i = 1, 2...N .

2.4.4 Optimization: Maximizing the Joint Likelihood

Suppose we have an initial set of human hypotheses O = {o1, o2, ...oN} ob-

tained from hierarchical part template matching. The remaining task is to estimate

its best subset through optimization. This is equivalent to maximizing the joint

likelihood P (I|c) (Equation 2.9) with respect to the configuration, c.

2.4.4.1 Modeling the Joint Likelihood

If region information is not available, we set the region likelihood as P (Ir|c) =

1, otherwise, it is calculated by the global coverage density of the binary foreground

regions:

P (Ir|c) =
Γ(c)

Γfg

, (2.14)

where Γfg denotes the area of the foreground regions and Γ(c) denotes the area

of the foreground regions covered by the configuration c. Intuitively, the more the
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foreground is covered by the configuration c, the higher the probability P (Ir|c).

Areas covered by the hypotheses and located outside the foreground regions are not

penalized here, but considered in foot candidate region detection in Section 2.5.2. In

fact, the region likelihood (Equation 2.14) has a bias towards more detections, but

the bias is compensated for by the shape likelihood (Equation 2.15) (which involves

a direct multiplication of individual likelihoods), since adding redundant hypotheses

will decrease the shape likelihood.

The shape observation Is now can be reduced to o1, o2, ..., oN since we only

select the best subset from this initial set of hypotheses. This allows us to further

decompose the shape likelihood as a product of likelihoods (assuming independence

between each observation oi given the configuration c):

P (Is|c) = P (o1, o2, ..., oN |c) =
N
∏

i=1

P (oi|c). (2.15)

For evaluating the conditional probability P (oi|c), we need to model the oc-

clusion status between different hypotheses in the configuration c. For simplicity,

we assume a known or fixed occlusion ordering for c. Directly using the object-

level likelihood L(oi) to model P (oi|c) will have problems since it only represents

the strongest part response. We need to globally re-evaluate the object-level likeli-

hood of each hypothesis oi based on fine occlusion analysis; that is, we calculate the

global shape likelihood only for the un-occluded parts when calculating the cham-

fer scores. This occlusion compensation-based likelihood re-evaluation scheme is

effective in rejecting most false alarms while retaining the true detections.
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Since we aim to select the best subset of O as our optimization solution, c∗,

we assume hj ∈ O, j = 1, 2...n. We can treat the individual conditional probability

P (oi|c) as a decision likelihood with oi as the observation and c as the decision.

Suppose the set of hypotheses O consists of ntp true positives (tp), ntn true nega-

tives (tn), nfp false positives (fp), and nfn false negatives (fn). The decision rules

(for the detection threshold T ) for each observation oi are defined as follows:

1. P (oi|c) = ptp if oi ∈ c and L(oi|Iocc) ≥ T ;

2. P (oi|c) = pfp if oi ∈ c and L(oi|Iocc) < T ;

3. P (oi|c) = ptn if oi /∈ c and L(oi|Iocc) ≥ T ;

4. P (oi|c) = pfn if oi /∈ c and L(oi|Iocc) < T ,

where Iocc denotes the occlusion map generated from the configuration c and L(oi|Iocc)

denotes the occlusion-compensated (re-evaluated) object-level likelihood. The prob-

abilities ptp, pfn, pfp, and ptn are set to ptp = pfn = α and pfp = ptn = 1 − α

(where α > 0.5) for the current implementation. Finally, the shape likelihood

(Equation 2.15) can be expressed as: P (Is|c) = p
ntp

tp p
nfp

fp pntn

tn p
nfn

fn = α(ntp+nfn)(1 −

α)(nfp+ntn).

2.4.4.2 Optimization based on Likelihood Re-evaluation

We sort the hypotheses in decreasing order of vertical (or y) coordinate as

in [127]. This is valid for many surveillance videos with ground plane assumption,

since the camera is typically looking obliquely down towards the scene. For no-

tational simplicity, we assume o1, o2, ..., oN is such an ordered list. Starting from
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an empty set, the optimization is performed based on iterative addition of humans

based on occlusion compensation and likelihood re-evaluation.

An example of the detection and segmentation process is shown in Figure 2.15.

Note that initial false detections are rejected in the final detection based on likelihood

re-evaluation, and the occlusion map is accumulated to form the final segmentation.

Algorithm 2: Optimization algorithm

Given an ordered list of hypotheses o1, o2, ..., oN ,
initialize the configuration as c = φ, the occlusion map Iocc as empty (white
image), and the joint likelihood as P (I|c) = 0.
for i = 1 : N
1. re-evaluate the object-level likelihood of hypothesis oi based on the current
occlusion map Iocc, i.e. calculate L(oi|Iocc).
2. if L(oi|Iocc) ≥ T and P (I|oi ∪ c) > P (I|c), oi 7→ c.
3. update the occlusion map Iocc using the current configuration c.
endfor
return the configuration c and occlusion map Iocc.

2.5 Combining with Calibration and Background Subtraction

We can also combine the shape-based detector with background subtraction

and calibration in a unified system.

2.5.1 Scene-to-Camera Calibration

If we assume that humans are moving on a ground plane, ground plane ho-

mography information can be estimated off-line and used to efficiently control the

search for humans instead of searching over all scales at all positions. A similar

idea has been explored by Hoiem et al. [48] combining calibration and segmenta-

tion. To obtain a mapping between head points and foot points in the image, i.e.
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Figure 2.10: Simplified scene-to-camera calibration. Left: Interpretation of the
foot-to-head plane homography mapping. Right: An example of the homography
mapping. 50 sample foot points are chosen randomly and corresponding head points
and human vertical axes are estimated and superimposed in the image.

to estimate expected vertical axes of humans, we simplify the calibration process

by estimating the homography between the head plane and the foot plane in the

image [88]. We assume that humans are standing upright on an approximate ground

plane viewed by a distant camera relative to the scene scale, and that the camera is

located higher than a typical person’s height. We define the homography mapping

as f = P h
f : F 7→ H, where F,H ∈ P

2. Under the above assumptions, the mapping f

is one-to-one correspondence so that given an off-line estimated 3×3 matrix P h
f , we

can estimate the expected location of the corresponding head point ph = f(pf ) given

an arbitrary foot point pf in the image. The homography matrix is estimated by the

least squares method based on L >> 4 pairs of foot and head points pre-annotated

in some frames. An example of the homography mapping is shown in Figure 2.10.

2.5.2 Combining with Background Subtraction

Given the calibration information and the binary foreground image from back-

ground subtraction, we estimate the binary foot candidate regions Rfoot as follows:
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: An example of the detection process with background subtraction. (a)
Adaptive rectangular window, (b) Foot candidate regions Rfoot (lighter regions),
(c) Object-level (foot-candidate) likelihood map by the hierarchical part-template
matching (where red color represents higher probabilities and blue color represents
lower probabilities), (d) The set of human hypotheses overlaid on the Canny edge
map in the augmented foreground region (green boxes represent higher likelihoods
and red boxes represent lower likelihoods), (e) Final human detection result, (f)
Final human segmentation result.

we first find all foot candidate pixels x with foreground coverage density γx larger

than a threshold ξ. Given the estimated human vertical axis −→v x at the foot can-

didate pixel x, γx is defined as the proportion of foreground pixels in an adaptive

rectangular window W (x, (w0, h0)) determined by the foot candidate pixel x. The

foot candidate regions Rfoot are defined as: Rfoot = {x|γx ≥ ξ}. The window cov-

erage is efficiently calculated using integral images [115]. We detect edges in the

augmented foreground regions Rafg which are generated from the foot candidate

regions Rfoot by taking the union of the rectangular regions determined by each foot

candidate pixel pf ∈ Rfoot, adaptively based on the estimated human vertical axes.
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Figure 2.11 shows an example.

2.6 Experimental Results

We first presents results using our generic human detector on two public pedes-

trian datasets and then discuss results of our multiple occluded human detector on

three crowded image and video datasets.

2.6.1 Detection and Segmentation using Pose-Invariant Descriptors

We evaluate our generic human detector (learned based on pose-invariant de-

scriptors) mainly using the INRIA person dataset5 [22] and the MIT-CBCL pedes-

trian dataset6 [75, 83]. The MIT-CBCL dataset contains 924 front/back-view pos-

itive images (no negative images), and the INRIA dataset contains 2416 positive

training samples and 1218 negative training images plus 1132 positive testing sam-

ples and 453 negative testing images. Comparing to the MIT dataset, the INRIA

dataset is much more challenging due to significant pose articulations, occlusion,

clutter, viewpoint and illumination changes.

2.6.1.1 Detection Performance

We evaluate our detection performance and compare it with other approaches

using Detection-Error-Tradeoff (DET) curves, plots of miss rates versus false posi-

tives per window (FPPW).

5http://lear.inrialpes.fr/data
6http://cbcl.mit.edu/software-datasets/PedestrianData.html
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Training. We first extract pose-invariant descriptors for the set of 2416 pos-

itive and 12180 negative samples and batch-train a discriminative classifier for the

initial training algorithm. We use the publically available LIBSVM tool [18] for

binary classification (RBF Kernel) with parameters tuned to C=8000, gamma=0.04

(as the default classifier).

For improving performance, we perform one round of bootstrapping procedure

for retraining the initial detector. We densely scan 1218 (plus mirror versions)

person-free photos by 8-pixel strides in horizontal/vertical directions and 1.2 scale

(down-sampling) factors (until the resized image does not contain any detection

window) to bootstrap false positive windows. This process generates 41667 ‘hard’

samples out of examined windows. These samples are normalized to 128 × 64 and

added to the original 12180 negative training samples and the whole training process

is performed again.

Testing. For evaluation on the MIT dataset, we chose its first 724 image

patches as positive training samples and 12180 training image images from the

INRIA dataset as negative training samples. The test set contains 200 positive

samples from the MIT dataset and 1200 negative samples from the INRIA dataset.

As a result, we achieve 1.0% true positive rate, and a 0.00% false positive rate even

without retraining. Direct comparisons on the MIT dataset are difficult since there

are no negative samples and no separation of training and testing samples in this

dataset. Indirect comparisons show that our result on this dataset are similar to the

performance achieved previously in [22].

For the INRIA dataset, we evaluated our detection performance on 1132 pos-

36



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
Detection Error Tradeoff (DET) curves

False Positives Per Window (FPPW)

M
is

s
 R

a
te

 

 

Pose−inv descriptor

Class. on Riemannian Man.

Dalal&Triggs, Ker. HoG

Dalal&Triggs, Lin. HoG

Zhu et al. Cascade of Rej.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
Detection Error Tradeoff (DET) curves

False Positives Per Window (FPPW)

M
is

s
 R

a
te

 

 

Pose−inv descriptor, single scale
(1132 pos and 898016 neg windows)

Pose−inv descriptor, multiple scales
(1132 pos and 2156585 neg windows)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000
Confidence Distribution of Positive Test Samples

Positive probability (Confidence)

F
re

q
u

e
n

c
y

 

 

Positive test samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Confidence Distribution of Negative Test Samples

Positive probability (Confidence)
F

re
q

u
e

n
c
y

 

 

Single scale

Multiple scales

Figure 2.12: Detection performance evaluation on INRIA dataset. Top-Left: The
proposed approach (testing on single scale) is compared to Kernel HOG-SVM [22],
Linear HOG-SVM [22], Cascaded HOG [142], and Classification on Riemannian
Manifold [113]. The results of [22] are copied from the original paper, and the
results of [113,142] are obtained by running their original detectors on the same test
data. Top-Right: Performance comparison w.r.t. the number of negative windows
scanned. Bottom: Distribution of confidence values for positive and negative test
windows.

itive image patches and 453 negative images. Negative test images are scanned

exhaustively in the same way as in retraining. The detailed comparison of our de-

tector with current state of the art detectors on the INRIA dataset is plotted using

the DET curves as shown in Figure 3.7. The comparison shows that our approach is

comparable to state of the art human detectors. The dimensionality of our features

is less than half of that used in HOG-SVM [22], but we achieve better performance.
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Another advantage of our approach is that it is capable of not only detecting but

also segmenting human shapes and poses. In this regard, our approach can be fur-

ther improved because our current pose model is very simple and can be extended to

cover a much wider range of articulations. Figure 2.13 shows examples of detection

on whole images and examples of false negatives and false positives from our exper-

iments. Note that FNs are mostly due to unusual poses or illumination conditions,

or significant occlusions; FPs mostly appeared in highly-textured samples (such as

trees) and structures resembling human shapes. Figure 2.14 shows qualitative com-

parisons of our pose-invariant descriptors with HOG descriptors [22] on detecting

humans in natural images. Our detector successfully detected very difficult poses

while the HOG-based detector missed them.

2.6.1.2 Segmentation Performance

Figure 2.15 shows some qualitative results of our pose/shape segmentation

algorithm on the INRIA dataset. Our pose model and probabilistic hierarchical

part-template matching algorithm give very accurate segmentations for most images

in the MIT-CBCL dataset and on over 80% of 3548 training/testing images in the

INRIA dataset. Significantly poor pose estimation and segmentation are observed in

about 10% of the images in the INRIA dataset, and most of those poor segmentations

were due to very difficult poses and significant misalignment of humans.

Our detection and segmentation system is implemented in C++ and the cur-

rent running time (on a machine with 2.2GHz CPU and 3GB memory) is as follows.
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Figure 2.13: Detection results. Top: Example detections on the INRIA test images,
nearby windows are merged based on distances; Bottom: Examples of false negatives
(FNs) and false positives (FPs) generated by our detector.

Both pose segmentation and feature extraction for 800 windows takes less than 0.2

second; classifying 800 windows with the RBF-Kernel SVM classifier takes less than

10 seconds; initial classifier training takes about 10 minutes and retraining takes

about two hours. The computational overhead is only due to the kernel SVM clas-

sifier which can be replaced with a much faster boosted cascade of classifiers [115]

(which we have implemented recently and runs at 3 frames/second on a 320 × 240

image scanning 800 windows); this is comparable to [113] (reported as less than 1

second scanning 3000 windows).
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Figure 2.14: Qualitative comparisons of our pose-invariant descriptor (PID) with
the HOG descriptors. Results of the ‘HOG+SVM’ method [22] are copied from the
author’s thesis.

2.6.2 Detection and Segmentation of Multiple Occluded Humans

In order to quantitatively evaluate the performance of our detector, we use the

overlap measure defined in [61]. The overlap measure is calculated as the smaller

value of the area ratios of the overlap region and the ground truth annotated re-

gion/detection region. If the overlap measure of a detection is larger than a certain

threshold η = 0.5, we regard the detection as correct.
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Figure 2.15: Example results of pose/shape segmentation.

2.6.2.1 Results without Background Subtraction

We compared our human detector with Wu and Nevatia [127] and Shet et

al. [102] on USC pedestrian dataset-B [127] which contains 54 grayscale images

with 271 humans. In these images, humans are heavily occluded by each other and

partially out of the frame in some images. Note that no background subtraction is

provided for these images. Figure 2.16 shows some example results of our detector

and Figure 3.7(a) shows the comparison result as ROC curves. Our detector ob-

tained better detection performance than the others when allowing more than 10

false alarms out of total of 271 humans, while detection rate decreased significantly

when the number of false alarms was reduced to 6 out of 271. Proper handling of

edge sharing problem would reduce the number of false alarms further while main-

taining the detection rates. The running time of [127] for processing an 384 × 288
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Figure 2.16: Detection and segmentation results (without background subtraction)
for USC pedestrian dataset-B.

image is reported as about 1 frame/second on a Pentium 2.8GHz machine, while

our current running time for a same sized image is 2 frames/second on a Pentium

2GHz machine.

2.6.2.2 Results with Background Subtraction

We also evaluated our detector on two challenging surveillance video sequences

using background subtraction. The first test sequence (1590 frames) is selected from

the Caviar Benchmark Dataset [1] and the second one (4836 frames) is selected from

the Munich Airport Video Dataset [3].7 The foreground regions detected from back-

ground subtraction are very noisy and inaccurate in many frames. From example

results in Figure 2.18, we can see that our proposed approach achieves good perfor-

mance in accurately detecting humans and segmenting the boundaries even under

7The selected data can be downloaded from ftp://ftp.umiacs.umd.edu/pub/zhelin/

iccv07/dataset.
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Figure 2.17: Performance evaluation on three datasets. (a) Evaluation of detection
performance on USC pedestrian dataset-B (54 images with 271 humans). Results
of [127] and [102] are copied for the comparison purpose. (b) Evaluation of detection
performance on two test sequences from Munich Airport dataset and Caviar dataset.

severe occlusion and very inaccurate background subtraction. Also, from the results,

we can see that the shape estimates automatically obtained from our approach are

quite accurate. Some misaligned shape estimates are generated mainly due to low

contrast and/or background clutter.

We evaluated the detection performance quantitatively on 200 selected frames

from each video sequence. Figure 3.7(b) shows the ROC curves for the two se-

quences. Most false alarms are generated by cluttered background areas incorrectly

detected as foreground by background subtraction. Misdetections (true negatives)

are mostly due to the lack of edge segments in the augmented foreground region

or complete occlusion between humans. Our system is implemented in C++ and

currently runs at about 2 frames/second (without background subtraction) and

5 frames/second (with background subtraction) for 384 × 288 video frames on a

Pentium-M 2GHz Machine.
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Figure 2.18: Detection and segmentation results (with background subtraction) for
Caviar data [1] (first row) and Munich Airport data [3] (second and third rows).
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Chapter 3

Appearance-based Human Segmentation

3.1 Introduction

Human segmentation can be regarded as a category-specific object segmen-

tation problem and can be solved by combining traditional image segmentation

techniques with high-level knowledge or constraints such as human poses. We first

briefly review previous work on object segmentation, and present our approach to

better solving this problem combining local and global shape constraints.

In foreground/background segmentation, pairwise potential-based approaches

perform figure-ground discrimination by clustering features based on pairwise costs,

e.g. Normalized Cut [104]. In contrast, object-centered clustering approaches group

features with learned parametric or nonparametric densities; typical examples in-

clude the k-means clustering, and the EM-based clustering with mixtures of Gaus-

sians [17]. EM-based approaches are sensitive to initialization and require appropri-

ate selection of the number of mixture components. It is well known that finding a

good initialization and choosing a generally reasonable number of mixtures for the

traditional EM algorithm remain difficult problems. In [139], the KDE-EM approach

is introduced by applying nonparametric kernel density estimation method in EM-

based color clustering. Graph-cut approaches combine the pairwise potential-based

scheme with object-centered appearance representation in a unified energy mini-
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mization paradigm, e.g. Interactive Graph-Cuts [15], and its generalized version,

GrabCut [91].

Object segmentation without any prior knowledge is well-known to be an ill-

posed problem. Recently a few approaches have concentrated on enforcing global

shape priors, top-down reasoning or other higher level knowledge to make the seg-

mentation problem well posed. Object category-specific MRF [58] or pose-specific

MRF [16] combines local contrast-dependent MRF with a layered pictorial struc-

ture model in [58] or a stickman model in [16] to provide strong global priors.

Hence, the resulting segmentations resemble objects of interest. In [125], bottom-up

cues are combined with global top-down knowledge for object class learning with

unsupervised segmentation. In [87], an appearance learning-based method is pro-

posed for articulated body segmentation and pose estimation; however it focuses

on pose estimation and does not compute object segmentation explicitly. In [13],

top-down shape cues are used to merge bottom-up over-segmentation to generate

an object-like segmentation. In [138], the KDE-EM approach is combined with a

shape template-based detection method for object segmentation. Recently, in [126],

a layout-consistent random field is employed to provide a preliminary solution to

segmentation in the presence of occlusion.

We propose an alternative, more efficient approach to human segmentation

capable of handling inter-occlusion between humans. We incorporate local contrast-

dependent MRF constraints and global shape priors iteratively into the KDE-EM

framework [139] to estimate segmentations and poses simultaneously. There are four

important contributions in this paper. First, we represent kernel densities of fore-
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ground and background in a joint spatial and color space and update assignment

probabilities recursively instead of using the direct update scheme in KDE-EM;

this modification of feature space and update equations results in faster conver-

gence and better segmentation accuracy. Second, we incorporate contrast-dependent

MRF constraints into the KDE-EM scheme to regularize and smooth the segmen-

tation within object and background regions. Third, we build and train a human

pose model and perform pose inferences in the iterative clustering stages to enforce

global shape priors throughout the segmentation process. This encourages the seg-

mentation of human-like shapes and allows us to optimize segmentations and poses

simultaneously. Fourth, and most importantly, we generalize the approach to a

multiple occluded object segmentation by explicitly modeling and reasoning about

occlusion.

3.2 Modified KDE-EM Approach

KDE-EM [139] uses nonparametric kernel density estimation [97] for repre-

senting feature distributions of foreground and background and performs iterative

segmentation using EM. The log-likelihood objective function is similar to the one in

the traditional EM-based segmentation, i.e. summation of log likelihoods of all pix-

els in the image, except that the likelihoods (assignment probabilities) are calculated

from kernel densities.

Given a set of sample pixels {xi, i = 1, 2...N} (with a distribution P), each

represented by a d-dimensional feature vector as xi = (xi1, xi2..., xid)
t, we can esti-
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mate the probability P̂ (y) of a new pixel y with feature vector y = (y1, y2, ..., yd)
t

belong to the same distribution P as

P̂ (y ∈ P) =
1

Nσ1...σd

N
∑

i=1

d
∏

j=1

k(
yj − xij

σj

), (3.1)

where the same kernel function k(·) is used in each dimension (or channel) with dif-

ferent bandwidth σj. It is well known that a kernel density estimator can converge

to any complex-shaped density with sufficient samples. Also due to its nonparamet-

ric property, it is a natural choice for representing the complex color distributions

that arise in real images [19].

For enhancing the compactness and efficiency of the segmentation, we ex-

tend the color feature space in KDE-EM to incorporate spatial information. This

joint spatial-color feature space has been previously explored for feature space clus-

tering approaches such as [19, 43]. Each pixel is represented by a feature vector

x = (X t, Ct)t in a 5D space, R
5, with 2D spatial coordinates X = (x1, x2)

t and

3D normalized rgs color1 coordinates C = (r, g, s)t. The separation of chromaticity

from brightness in the rgs space allows the use of a much wider kernel with the s

variable to cope with the variability in brightness due to shading effects. On the

other hand, the chromaticity variables r and g are invariant to shading effects and

therefore much narrower kernels can be used in these dimensions, which enables

more powerful chromaticity discrimination [139]. In Equation 3.1, we assume in-

dependence between channels and use a Gaussian kernel k(t) = 1/
√

(2π)exp{−t2}
1r = R/(R + G + B), g = G/(R + G + B), s = (R + G + B)/3
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for each channel. The kernel bandwidths are estimated from the original image as

in [97,139].

KDE-EM employs a soft-labelling procedure and weighted kernel density es-

timation to update the assignment probabilities. For adapting the nonparametric

kernel density estimation to the EM algorithm, a sampling step is substituted for

the M-step in EM. In each iteration, samples are independently drawn from a uni-

form distribution and weighted by the assignment probabilities estimated from the

previous iteration. The foreground/background assignment probabilities F t(y) and

Bt(y) are updated directly by weighted kernel densities. We modify this by updat-

ing F t(y) and Bt(y) recursively on the previous assignment probabilities F t−1(y),

Bt−1(y) with weighted kernel densities (Equations 3.4 and 3.5). This modification

results in faster convergence and better segmentation accuracy. An example of the

modified KDE-EM approach is shown in Figure 3.5.

3.3 Pose-Assisted Segmentation

KDE-EM treats individual pixels separately, hence, the resulting segmentation

usually has holes or isolated small regions. In order to obtain a coherent and object-

like segmentation, we use higher-order dependencies between pixels. The higher-

order dependencies can be exploited in the form of local and global MRFs. Instead

of incorporating these priors in the energy function [10,15,16,58,91], we apply them

iteratively and recursively in a single process to force the segmentation result to be

a human-like shape. This avoids the need for an extra optimization step such as
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Algorithm 3: Modified KDE-EM

Given a set of sample pixels {xi, i = 1, 2...N} from the image, we iteratively
estimate the assignment probabilities F t(y) and Bt(y) (t = 0, 1, 2...) of a
pixel y belonging to the foreground F and background B as follows:
Initialization : Assign initial probabilities to pixels based on a 2D
anisotropic Gaussian distribution. The parameters of the distribution are
determined by the expected location and sizes (which are assigned via user
interaction) of the foreground object.

F 0(y) = e−1/2(Y −Y0)tV −1(Y −Y0), (3.2)

B0(y) = 1 − F 0(y), (3.3)

where Y denotes the spatial coordinates of y, Y0 denotes expected object
center coordinates, and V denotes a 2 × 2 (diagonal) covariance matrix. The
diagonal elements of V are set proportional to the expected sizes of the
object.
M − Step : (Random Pixel Sampling) Randomly sample a set of pixels
from the image to estimate foreground and background appearances
represented by weighted kernel densities. For computational efficiency, we
sample η = 5% of the pixels from the image for density estimation.
E − Step : (Soft Probability Update)

F t(y) = cF t−1(y)
N

∑

i=1

F t−1(xi)
d

∏

j=1

k(
yj − xij

σj

), (3.4)

Bt(y) = cBt−1(y)
N

∑

i=1

Bt−1(xi)
d

∏

j=1

k(
yj − xij

σj

), (3.5)

where N is the number of samples and c is a normalizing factor such that
F t(y) + Bt(y) = 1.

Segmentation : The iteration is terminated when
∑

y
{|F t(y)−F t−1(y)|}

n
< ε,

where n is total number of pixels in the image. F (y) and B(y) denote the
final converged assignment probabilities. The segmentation is finally
estimated as: y ∈ F if F (y) > B(y), y ∈ B otherwise.
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graph-cut and achieves simultaneous segmentation and pose estimation efficiently.

Also, our approach maintains soft labelling throughout the optimization process,

while graph-cut is a discrete (labelling) optimization scheme.

3.3.1 Incorporating Local MRF Constraints

Let Ψt
F and Ψt

B represent the probabilities of a pixel y being labelled as the

foreground and background according to local contrast-dependent MRF constraints

which are defined as:

Ψt
F(y) =

∑

z∈Ny

φ(I|y, z)F t−1(z), (3.6)

Ψt
B(y) =

∑

z∈Ny

φ(I|y, z)Bt−1(z), (3.7)

where I denotes the original image, Ny denotes the neighborhood (8-neighborhoods)

of pixel y, and φ(I|y, z) represents the contrast-dependent MRF induced likelihood

for pixel y. The likelihood φ(I|y, z) is defined as:

φ(I|y, z) =
1

dist(y, z)
e
− 1

2

(

(
rz−ry

σr
)2+(

gz−gy

σg
)2+(

sz−sy

σs
)2

)

. (3.8)

To incorporate the local contrast-dependent MRF constraints into our itera-

tive segmentation scheme, the recursive assignment probability update step (Equa-

tions 3.4 and 3.5) is extended by the local MRF terms (Equations 3.9 and 3.10).

This can be explained as follows: the current foreground/background assignment

probabilities are updated recursively by combined evidence from the spatial neigh-
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(a) PS pose
model

(b) Tree-like structure (c) PS pose model fitting

Figure 3.1: An illustration of the pose model and training examples. (a) 10-parts
PS model, (b) Simplified tree-like structure, (c) Examples of the training images,
hand-segmented silhouettes, and PS pose model fitting results.

borhood and current foregournd/background appearance estimates (weighted ker-

nel densities); in other words, the local MRF terms are incorporated to smooth

the pixel-wise soft labelling at each iteration. We refer to this modified approach

as CDMRF-KDE-EM. An example of the CDMRF-KDE-EM approach is shown in

Figure 3.5.

3.3.2 Enforcing Global Shape Priors by Poses

We next describe how to incorporate prior shape information into the seg-

mentation process. We build a Pictorial Structure (PS) pose model similar to the

model in [32] and enforce global shape priors based on adaptive pose inference on

soft segmentations at each iteration.
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3.3.2.1 PS Pose Model

We chose 808 images from the INRIA person dataset [2] as training images

(some of them are shown in Figure 3.1(c)). Human poses are modeled as a 10-part

pictorial structure (Figure 3.1(a)) of which each part is represented as a horizontal

parallelogram with five degrees of freedom (position p, orientation α, sizes s). Hence,

the model (represented by parameters θ) has a total of 5×10 = 50 degrees of freedom.

For simplicity, we assume independence between head, arms and legs and assume

the pair of arms are also independent (the pair of legs are still correlated). This

enables us to simplify the model to a tree-like structure (Figure 3.1(b)) on which

the root node is chosen as the torso.

The PS model has many degrees of freedom and the parameter space is huge,

while possible human poses form a low-dimensional manifold in this space. Hence,

for efficiently searching the parameter space, we train the pose model and esti-

mate its joint parameter distribution l(θ) from the set of best matching poses which

are estimated using MLE by fitting the PS pose model to the binary silhouette

images (obtained by manual segmentation of the training images) individually (Fig-

ure 3.1(c)). In our implementation, based on the above independence assumption,

the joint distribution is marginalized as a set of individual joint distributions for

different parts (head, torso, arms and legs). Hence, as a result of training, l(θ) is

represented as a set of probability mass functions on low dimensional parameter

spaces.
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3.3.2.2 Training the Pose Model from Silhouettes

The degree of fitting ρ(θ|S) is defined as the similarity of the silhouette image S

and the binary model coverage image M(θ), i.e. ρ(θ|S) = 1−
∑

x
‖S(x)−M(θ,x)‖

n
, where

n is the total number of pixels in the image. Then, the problem of model fitting

can be formulated as a maximum likelihood estimation: θ∗i = arg maxθ∈Θ ρ(θ|Si),

where Θ denotes the set of all possible model parameters, and θ∗i is the maximum

likelihood estimate for the binary silhouette image Si, i ∈ {1, 2, ..., Nt} (Nt is the

number of training images).

In training, we assume a uniform prior over Θ. According to the model in

Figure 3.1(b), there are only loops between the pair of legs in the simplified tree-like

graph structure. Optimization for matching the PS model to images is performed

by belief propagation similar to [32] which is known to achieve globally optimal

solutions for tree-structured acyclic graphs. In our approach, parameters for pair of

legs are jointly optimized for handling the cases of occlusion between legs. Finally,

the configuration corresponding to the maximum overall fitting score is returned as

the estimate θ∗. Figure 3.1(c) shows some examples of PS model fitting results.

3.3.3 Pose-Assisted Segmentation

Now, we combine the modified KDE-EM scheme with local MRF constraints

and global pose priors to form a single iterative algorithm: pose-assisted segmenta-

tion. The global shape prior is enforced by iteratively fitting the trained PS model

to the current foreground assignment probability map and updating the probabil-
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ity map with the binary model coverage image as an adaptive weighted sum. The

segmentation and pose estimation are performed in an interleaved and cooperative

manner (Figure 3.5).

Algorithm 4: Pose-Assisted Segmentation

Initialization : As in KDE-EM.
M − Step : As in KDE-EM.
E − Step I : Incorporating local MRFs.

F t(y) = cF t−1(y)Ψt
F(y)

N
∑

i=1

F t−1(xi)
d

∏

j=1

k(
yj − xij

σj

), (3.9)

Bt(y) = cBt−1(y)Ψt
B(y)

N
∑

i=1

Bt−1(xi)
d

∏

j=1

k(
yj − xij

σj

), (3.10)

E − Step II : Adaptive pose inference on the soft segmentation and
assignment probability update by the estimated poses.
1. Fit the PS model θ ∈ Θ to the current foreground probability map F t to
find the maximum a posteriori (MAP) solution as: θ∗t = arg maxθ∈Θ l(θ)ρt(θ),
where ρt(θ) is calculated as the similarity of the foreground assignment
probability F t and the binary model coverage image M(θ):

ρt(θ) = 1 −
∑

x ‖F t(x) − M(θ,x)‖
n

. (3.11)

Similar to the PS model fitting scheme, we employ the belief propagation
algorithm in the reduced search space for estimating the best fitting model θ∗t .
2. Use the binary model coverage image M t = M(θ∗t ) to update the
foreground probability map F t as follows:

F t
new = (1 − ωt)F

t + ωtM
t, F t

new 7→ F t, (3.12)

Bt = 1h×w − F t, (3.13)

where 1h×w is an all-1 matrix and ωt = βtρt(θ)
γ is an adaptive weight to

control the iteration based on the current model fitting score.
Segmentation : As in KDE-EM.
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Figure 3.2: The iterative process of pose-assisted segmentation. Each frame repre-
sents the current soft segmentation overlaid with MAP fitted pose.

3.4 Segmentation of Multiple Occluded Objects

For the case of multiple objects, Elgammal and Davis [29] introduce a proba-

bilistic framework for human segmentation assuming a single video camera. In this

approach, appearance models must first be acquired and used later in segmenting

occluded humans. Mittal and Davis [73] deal with the occlusion problem by a multi-

view approach using region-based stereo analysis and Bayesian pixel classification.

But this approach needs strong calibration of the cameras for its stereo reconstruc-

tion. Other multi-view-based approaches [35,54,56] combine evidence from different

views by exploiting ground plane homography information to handle more severe

occlusions. We aim to segment and build appearance models from a single view

even if people are occluded in every frame.

Here, we assume an initial set of detection hypotheses (characterized by rough

bounding boxes) is provided by an automatic detection system [71, 127] or inter-

actively as in [15, 91]. Given an image I and a set of initial human hypotheses,

(xk, sk), k = 1, 2, ...K, where xk and sk denote the location and scale of each human,

the problem of segmentation is the (K +1)-class (K humans and background) pixel

labelling problem. The label set is denoted as F1,F2, ...FK ,B. Given a pixel y, we
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denote the probability of the pixel y belonging to human-k as F t
k(y), and the prob-

ability of the pixel y belonging to the background as Bt(y), where t = 0, 1, 2... is

the iteration index. The assignment probabilities F t
k(y) and Bt(y) are constrained

to satisfy the condition:
∑K

k=1 F t
k(y) + Bt(y) = 1. When the camera is fixed, we

can segment foreground regions based on background subtraction [55, 56], and the

problem reduces to segment foreground into K individuals.

3.4.1 Layered Occlusion Model

We introduce a layered occlusion model into the initialization step for segmen-

tation of multiple occluded objects. Layered representation have been used in [57]

for motion segmentation. The background is assumed to be in the farthest back

layer. Given a hypothesis of an occlusion ordering, we build our layered occlusion

representation iteratively by calculating the foreground probability map F 0
k for the

current layer and its residual probability map R0
k for pixel y. Suppose the occlusion

order (from front to back) is given by F1,F2, ...FK ,B; then the initial probability

map (Figure 3.3) is calculated recursively as follows:

Algorithm 5: Initialization by Layered Occlusion Model

initialize R0
0(y) = 1 for all y ∈ I

for k = 1, 2, ...K
− for all y ∈ I
− F 0

k (y) = R0
k−1(y)e−1/2(Y −Y0)tV −1(Y −Y0)

− R0
k(y) = 1 − ∑k

j=1 F 0
j (y)

endfor
return F 0

1 , F 0
2 , ..., F 0

K and B0 = R0
K
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3.4.2 Pose-Assisted Segmentation for Multiple Occluded Objects

We generalize the single-human segmentation scheme presented in the previ-

ous sections. We first incorporate the contrast-dependent MRF to regularize the

probability maps in the E − Step I, and perform the PS pose model inference on

individual probability maps F t
k for each object and update the probability maps in

the E−Step II. Based on the pose inference on individual probability maps, we ex-

plicitly reason about occlusion status between humans by comparing the assignment

probabilities of the pixels in the occluded regions. Our pose-assisted segmentation

approach performs segmentation, pose estimation and occlusion reasoning simulta-

neously in an interleaved, iterative process where occlusion reasoning is applied as

a prior to update the assignment probability maps at each iteration.

Occlusion reasoning: the initial occlusion ordering is determined by sorting the

hypotheses by their vertical coordinates and the layered occlusion model is used to

estimate initial assignment probabilities. The occlusion status is updated at each

iteration after the E−step I by comparing the evidence of occupancy in the overlap

area between different object hypotheses. For two object hypotheses Hi and Hj, if

they have overlap area OHi,Hj
, we estimate the occlusion ordering between the two

as: Hi occlude Hj if
∑

x∈OHi,Hj
Fi(x) >

∑

x∈OHi,Hj
Fj(x) (i.e. Hi better accounts for

the pixels in the overlap area than Hj), Hj occlude Hi otherwise, where F t
i and F t

j

are the foreground assignment probabilities of Hi and Hj. At each iteration, every

pair of hypotheses that have a non-empty overlap area is compared in this way.

The whole occlusion ordering is updated by exchanges if and only if the estimated
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Figure 3.3: The process of pose-assisted segmentation for multiple occluded objects.

pairwise ordering differs from the previous ordering. Similar reasoning scheme have

been explored in [57] using αβ-swap and α-expansion algorithms.

3.5 Experiments and Evaluation

In this section, we first present experiments on initialization sensitivity and

then discuss qualitative and quantitative results for both single and multiple oc-

cluded human segmentation. In the experiments, the segmentation accuracy γ[%]

is defined as the proportion of pixels correctly classified as foreground or back-

ground by comparing the binary segmentation result with the ground truth: γ =

(

1 −
∑

x
|F (x)−H(x)|

n

)

× 100%, where F is the binary segmentation image and H is

the hand-segmented ground truth. The constants β and γ are set to β = 0.9, γ = 4,

and remained constant during the experiments.
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Algorithm 6: Pose-Assisted Segmentation for Multiple Occluded Objects

Initialization : By the layered occlusion model.
M − Step : As in KDE-EM.
E − Step I : Assignment probability updates for multiple foreground objects
and background.

F t
k(y) = cF t−1

k (y)Ψt
Fk

(y)
N

∑

i=1

F t−1
k (xi)

d
∏

j=1

k(
yj − xij

σj

), (3.14)

Bt(y) = cBt−1
k (y)Ψt

B(y)
N

∑

i=1

Bt−1(xi)
d

∏

j=1

k(
yj − xij

σj

), (3.15)

where c is a normalizing constant such that
∑K

k=1 F t
k(y) + Bt(y) = 1.

E − Step II : Adaptive pose inference on the soft segmentation and
assignment probability update by the estimated poses.
1. Update the occlusion ordering
2. Fit the PS pose model θ ∈ Θ to the current foreground probability map F t

k

to find the maximum a posteriori (MAP) estimation as:
θ∗k,t = arg maxθ∈Θ l(θ)ρk,t(θ), where

ρk,t(θ) = 1 −
∑

x ‖F t
k(x) − M(θ,x)‖

n
. (3.16)

We perform MAP optimization for each hypothesis to estimate the set of best
fitting models θ∗k,t, k = 1, 2, ...K for the current iteration step t.
3. Use the set of binary model coverage images M t

k = M(θ∗k,t), k = 1, 2, ...K
to update the foreground probability maps F t

k, k = 1, 2, ...K as follows:

Fk
t
new = (1 − ωt)F

t
k + ωtM

t
k, Fk

t
new 7→ F t

k, (3.17)

Bt = 1h×w −
∑

k

F t
k, (3.18)

where ωt = βtρk,t(θ)
γ.

Segmentation : The iteration is terminated when
∑

k

∑

y
{|F t

k
(y)−F t−1

k
(y)|}

n
< ε.

We denote Fk(y) and B(y) as the final converged assignment probabilities.
Then the final segmentation is determined as: pixel y belong to human-k, i.e.

y ∈ Fk, k = 0, 1, ...K (where k = 0 corresponds to background F0 = B), if
k = arg maxk∈{0,1,...K} F t

k(y).
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3.5.1 Initialization Sensitivity

The sensitivity of segmentation accuracy with respect to the initialization bias

(scale, shift-x, shift-y) is tested for various images and results for a typical example

are shown in Figure 3.4. (Note that results for other examples are very similar). The

sensitivity curves show that segmentation accuracy decreases monotonically (but

very slowly) with respect to scale and horizontal/vertical shifts. Specifically, the

best segmentation accuracy is above 98% which is achieved with the true bounding

box, and the accuracy is above 96% when the scale factor is in the range [0.75 1.25],

when the horizontal shift factor is below 0.4, and when the vertical shift factor

is below 0.42. Also, the accuracy remains above 90% when the scale factor is in

the range [0.5 1.5], and remains above 92% and approximately above 90% when

the horizontal and vertical shift factors increase from 0 to 0.5. We only consider

sensitivity in these intervals since the initialization rectangle will have less than 50%

overlap with the object region for more severe biases. Horizontal shifts tend to be

less sensitive than scale change and vertical shifts.

3.5.2 Results on Single-human Segmentation

We have tested our approach to single-human segmentation on the INRIA

person dataset [2]. Figure 3.5 shows comparison of the segmentation performances

for GrabCut, KDE-EM, CDMRF-KDE-EM, and the proposed approach. KDE-

EM resulted in a very inaccurate segmentation with many holes and isolated small

regions. GrabCut obtained coherent segmentations but the results are very sensitive
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(b) Initialization Sensitivity Analysis

Figure 3.4: Experiments on initialization sensitivity. (a) Ground truth and biased
bounding boxes, (b) Sensitivity w.r.t. scale, shift-x, and shift-y.

to the initialization and does not guarantee a human-like segmentation. CDMRF-

KDE-EM obtained a coherent segmentation but incorrectly included background

regions in the segmentation. In contrast, with the local MRF and global shape

priors provided by the PS pose model inference, our approach achieved the best

result, and the segmentation accuracy almost reached the ground truth (98.71%)

for this example. Results for more difficult examples are shown in Figure 3.6.

We also quantitatively evaluated the proposed segmentation approach on a

subset of 100 test images from the INRIA person dataset [2] and compared it with

KDE-EM [139]. The set of test images are chosen to avoid redundancies of mirror

images and overlap with the training set. Figures 3.7(a) and 3.7(b) show some ex-

amples of test images and the quantitative comparison results. The distribution of
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(a) GrabCut

(b) KDE-EM

(c) CDMRF-KDE-EM

(d) Pose-Assisted Segmentation

Figure 3.5: Example processes of segmentation approaches. (a) GrabCut [91] seg-
mentation for three different initializations, (b) KDE-EM: EM soft-labelling using
weighted kernel density estimation, (c) CDMRF-KDE-EM: KDE-EM combined with
local contrast-dependent MRF constraints, (d) Pose-assisted segmentation.

the performance is evaluated by sorting the images by segmentation accuracy and

number of iterations. The result shows that our proposed approach outperformed

KDE-EM significantly in segmentation accuracy. For the number of iterations to

convergence 3.7(c), our approach achieved slightly better convergence (fewer itera-

tions) than KDE-EM (this is mainly due to the recursive soft probability update).
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Figure 3.6: Results for more test images with increasing complexity. From left to
right are original image with selected bounding boxes, result using GrabCut, result
using KDE-EM, and segmentation and pose estimation results using our proposed
method. Note that in these examples, we assume there is single foreground object
and only segment the human in the center of the image.

3.5.3 Results on Multi-human Segmentation

We compared our multi-human segmentation approach to G-KDE-EM (KDE-

EM generalized to the case of multiple objects) on a variety of test images. Figure 3.8

shows some results on our segmentation and pose estimation results for images with

multiple occluded humans. Our approach achieved good segmentation and pose

estimation results even with severe inter-occlusions between humans, while KDE-

EM resulted in poor segmentations with few human-like segmentations. This is as

expected since KDE-EM does not enforce any prior knowledge in the segmentation.

Finally, the running time and the number of iterations needed for our multi-human

segmentation algorithm are similar to the cases of single human segmentation.
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Figure 3.7: Quantitative performance evaluation. (a) Sample test images, (b) Com-
parison of segmentation accuracy, (c) Comparison of convergence rates.

Figure 3.8: Comparison of segmentation and pose estimation for occluded cases.
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Chapter 4

Appearance-based Person Recognition

4.1 Introduction

A central problem in multi-camera surveillance system is tracking people

through gaps in observation - possibly due to occlusion or to people moving through

areas not within the field of regard of any camera. This problem is typically ad-

dressed by building models of people’s appearance or gait, since in most surveillance

situations there is insufficient resolution on face to utilize face recognition. We for-

mulate appearance-based full-body person matching as a multiclass learning and

classification problem where each person (or appearance) is considered to be a class

and instances of his/her appearances are considered to be class samples.

Learning discriminative classifiers such as LDA and SVM for a large number

of classes is a challenging problem due to increased ambiguities between classes.

Instead of building multiclass discriminative classifiers, we aim to learn invariance

between classes in a discriminative manner, and apply it to classification. Specif-

ically, we propose a multiclass learning and classification framework to maximally

explore such inter-class information present in training data for improving the scal-

ability of classifiers to larger number of categories. In order to better handle the

scalability (i.e. number of classes) problem, we propose a pairwise coupling-based

multiclass learning and classification framework, and apply it to appearance-based
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Figure 4.1: Outline of the approach. In learning, normalized invariant profiles are
estimated for every pair of training samples in a discriminative way. In recogni-
tion, (direct) appearance-based distances are combined with (indirect) discrimina-
tive information-based distances for nearest neighbor classification.

person recognition (Figure 4.1).

Our motivation is summarized as follows. (1) A small region (or a feature)

can be crucial in recognition because it might be the only distinguishing element

to discriminate two otherwise very similar appearances, (2) Discriminative features

are much easier to train in a pairwise scheme than in a one-against-all scheme, (3)

Discriminative features are generally different for different pairs of persons, and (4)

Pairwise discriminative properties remain invariant under pose, viewpoint and il-

lumination changes. Based on these observations, we aim to incorporate pairwise

discriminative information-based evidence into a traditional nearest neighbor clas-

sifier to reduce the distances of a query to prototypes from the same class, while

magnifying distances to prototypes from different classes, i.e. to increase the ex-

pected relative margins.

There are numerous approaches to multiclass learning and recognition. In
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instance-based learning, nearest neighbor (NN) and k-NN [21] are the most com-

monly used nonparametric classifiers. These classifiers are simple and perform well

for large number of training samples. In discriminative learning, linear discriminant

analysis (LDA) [8] is a well-known linear dimensionality reduction technique which

has been successfully applied to many problems, including face recognition. Sup-

port vector machine (SVM) [84] is a popular discriminative technique to linearly

separate multiclass patterns in a high-dimensional feature space through nonlinear

kernel mapping. There are several schemes to decompose a multiclass classification

problem into a set of binary classification problems. For example, one-against-

all [76], pairwise coupling [46, 90, 130], error correcting output codes [24, 137], deci-

sion trees [6], probabilistic boosting trees [112], etc. Different schemes for combining

binary SVM classifiers were tested in [76] and performance was compared to k-NN

classifiers. In [74], a multiclass classification problem was transformed into a binary

classification problem by modeling intra-personal and extra-personal distributions.

Recently, more sophisticated approaches have been developed for applying

discriminative learning techniques to image and object category classification. k-

NN and SVM are combined in [136] by performing a multiclass SVM only for a set

of neighbors and query. Random forests and ferns classifier [14] and local ensemble

kernel SVM [64] employ multiclass-SVM for object category recognition based on

the one-against-all scheme. Also, a number of approaches have been proposed in

the machine learning community for learning locally or globally adaptive distance

metrics [26,47,99,122,132] by weighting features based on labeled training data. To

simplify the one-against-all discrimination task for a huge number of categories, a
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triplet-based distance metric learning framework was proposed in [96], and later was

extended by learning weights for every prototype in [36, 37] for image retrieval and

recognition. However, fixed weighting for each prototype can be inefficient for a very

large number of classes, especially when ambiguities between classes are significant.

Only a few works [42,45,76] have addressed multiclass classifiers for full-body person

recognition, but these approaches have focused on comparing traditional classifiers

such as k-NN, complex RBF neural networks, and one-against-all multiclass-SVMs.

Most previous approaches to multiclass classification have focused on designing

good classifiers with large separation margins and good generalization properties, or

on learning discriminative distance metrics. Our work is different in that, instead of

building discriminative classifiers between categories, we explore invariant informa-

tion for each pair of categories in a discriminative way, and apply it to classification

by calculating distances of a query to training samples from both intra-class and

inter-class invariant information. Here, the intra-class invariance is based on com-

mon appearance information in each class, i.e. appearance information that does not

change dramatically for each individual as pose, viewpoint and illumination change.

The inter-class invariance is based on the observation that any pair of examplars

EA and EB from two different classes A and B share certain common discriminative

properties. For example, in the context of person appearance recognition, if person

1 and person 2 have different jacket colors, then any variants of person 1 and person

2 will probably also have different jacket colors.
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4.2 Appearance Representation and Matching

4.2.1 Appearance Model

Color and texture are the primary cues for appearance-based object recogni-

tion. For human appearances, the most common model is the color histogram [20].

Spatial information can be added by representing appearances as a function of

height [56,73] or in a joint color-spatial feature space [28,135]. Other representations

include color structure descriptors [45], spatial-temporal appearance modeling [41]

by interest points and model fitting-based methods, spatial and appearance con-

text modeling [119], part-based appearance modeling [63], panoramic appearance

map-based modeling [38], and gait/motion-based modeling [9].

We build appearance models of individuals based on nonparametric kernel den-

sity estimation [97]. It is well known that a kernel density estimator can converge to

any complex-shaped density with sufficient samples. Also due to its nonparametric

property, it is a natural choice for representing the complex color distributions that

arise in real images.

Given a set of sample pixels, represented by d-dimensional feature vectors

{si = (si1...sid)
t}i=1...Ns

, from a target appearance a, we estimate the probability of a

new feature vector z = (z1, z2, ..., zd)
t from the same appearance a using multivariate

kernel density estimation as:

p̂a(z) =
1

Nsσ1...σd

Ns
∑

i=1

d
∏

j=1

k(
zj − sij

σj

), (4.1)
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where the same kernel function k(·) is used in each dimension (or channel) with

different bandwidth σj. The kernel bandwidths can be estimated as in [97]. We

assume independence between channels and use a Gaussian kernel for each channel.

The kernel probability density function (PDF) p̂a(z) in (Equation 4.1) is referred to

as the model of the appearance a.

As in [28], we extend the color feature space to incorporate spatial informa-

tion in order to preserve color structure in appearances. Assuming people are in

approximate upright poses, we encode each pixel by a feature vector (c, h)t in a 4D

joint color-height space, R
4, with 3D color feature vector c and 1D height feature

h (represented by vertical image coordinate y). We decide to use only the y coordi-

nate instead of using 2D spatial coordinates (x, y) for handling viewpoint and pose

variations, while preserving vertical color structures. For dealing with illumination

changes, we use the following two illumination insensitive color features.

Normalized Color Feature : [28] 3D normalized rgs color1 coordinates are

commonly used as illumination insensitive features since the separation of chro-

maticity from brightness in the rgs space allows the use of a much wider kernel with

the s variable to cope with the variability in brightness due to shading effects.

Color Rank Feature: [135] The features are encoded as the relative rank2

of intensities of each color channel R, G and B for all sample pixels. Color rank

(rR, rG, rB) features ignore the absolute values of colors by reflecting relative color

rankings instead. Ranked color features are invariant to monotonic color transforms

1r = R/(R + G + B), g = G/(R + G + B), s = (R + G + B)/3.
2The rank is quantized in the interval [1, 100].
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and are very stable under a wide range of illumination changes.

4.2.2 Appearance Matching

Appearance models represented by kernel PDFs (Equation 4.1) can be com-

pared by information theoretic measures such as the Battacharyya distance [20] or

the Kullback-Leibler (KL) divergence (or distance) [28] for tracking and matching

objects in video.

Suppose two appearances a and b are modeled as kernel PDFs p̂a and p̂b in

the joint color-height space. Assuming p̂a as the reference model and p̂b as the test

model, the similarity of the two appearances can be measured by the KL distance

as follows:

DKL(p̂b||p̂a) =

∫

p̂b(z)log
p̂b(z)

p̂a(z)
dz. (4.2)

Note that the KL distance is a nonsymmetric measure in that DKL(p̂b||p̂a) 6=

DKL(p̂a||p̂b). For efficiency, the distance is calculated using only samples instead

of the whole feature set. Given Na samples {si}i=1...Na
from appearance a and Nb

samples {tk}k=1...Nb
from appearance b, Equation 4.2 can be approximated by the

following form given sufficient samples from the two appearances:

DKL(p̂b||p̂a) =
1

Nb

Nb
∑

k=1

log
p̂b(tk)

p̂a(tk)
, (4.3)
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where

p̂a(tk) =
1

Na

Na
∑

i=1

d
∏

j=1

k(
tkj − sij

σj

), (4.4)

p̂b(tk) =
1

Nb

Nb
∑

i=1

d
∏

j=1

k(
tkj − tij

σj

). (4.5)

Let Φab denote the log-likelihood ratio function, i.e. Φab(u) = log p̂b(u)
p̂a(u)

, where

u is a d-dimensional feature vector in the color-height space. Since we sample test

pixels only from appearance b, p̂b is evaluated by its own samples, so p̂b is generally

equal to or larger than p̂a for all test samples tk. Note that a few noisy (ambiguous)

samples tk from appearance b can be better matched by the reference model PDF

p̂a than the test model pdf p̂b so that p̂b(tk) < p̂a(tk), and, consequently, the log-

likelihood ratio Φab(tk) can be slightly less than zero. For minus log-likelihoods

generated from those noisy samples, we force them to zeros (positive correction).

Then, Equation 4.3 can be written as:

D+
KL =

1

Nb

Nb
∑

k=1

[Φab(tk)]+, (4.6)

[Φab(tk)]+ = max
(

Φab(tk), 0
)

. (4.7)

The positively corrected KL distance D+
KL is guaranteed to be nonnegative for all

samples: D+
KL(p̂b||p̂a) ≥ 0 , where equality holds if and only if two density models

are identical for all test samples.

The direct appearance-based distance Da(q, pj) from a query q to a prototype
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pj is defined as:

Da(q, pj) = D+
KL(p̂q||p̂j). (4.8)

In conventional NN classification, Da(q, pj) is evaluated for all prototypes {pj}j=1...N

and the minimum is chosen for classification.

4.3 Discriminative Learning of Pairwise Invariant Properties

For classifying large number of classes, it has been noted previously in [46,

90, 137] that a one-against-all scheme has difficulty separating one class from all

of the others and often very complex classification models (probably leading to

overfitting) are used for that purpose. In contrast, pairwise coupling is much easier

to train since it only needs to separate one class from an other. For handling the

scalability problem, we perform more detailed analysis of discriminative features

between classes by estimating invariant information from pairwise comparisons.

4.3.1 Learning Pairwise Invariant Profiles

As discussed above, the KL distances are calculated as an average of log-

likelihood ratios (Equation 4.3) over all samples from the test appearance. In

addition to averaging the log-likelihood ratios to evaluate distances between two

appearances, we can observe an interesting property. As seen in Figure 4.2, if we

densely sample pixels in the target appearance b, the resulting log-likelihood ratio

function Φab(x, y)3 exactly reflects differences of two appearances; that is, the log-

3We can treat Φab as a function of image pixel location (x, y) as Φab(u) = Φab (u(x, y)) =
Φab(x, y), where u is the feature vector of pixel (x, y).
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Figure 4.2: The log-likelihood ratio from a to b is calculated for all pixels (x, y) in
the test appearance b to obtain the log-likelihood ratio function (or image) Φab(x, y).
And, Φab(x, y) is marginalized over the x-axis and normalized to obtain an invariant
profile φab(y) from a to b. The profile φba(y) from b to a is obtained in the same
way. Here, normalized color-height features are used to generate the profiles.

likelihood ratio function quantitatively reflects discriminating regions (or features)

between two appearances. This motivates us to conjecture that if we had variations

of these two appearances, denoted by a′ and b′, which might be captured from dif-

ferent cameras or at different times, the difference between those new appearances

would be very similar to the case of a and b. Consequently, the log-likelihood ratio

function would be similar, i.e. Φa′b′(x, y) ' Φab(x, y). For dealing with shape vari-

ations due to viewpoint and pose variations and to estimate invariant information

between two appearances, we project the 2D log-likelihood ratio function Φab(x, y)

onto the y-axis (or marginalize the function over the x-axis), and normalize the

projected 1D function to have unit length (Figure 4.2).

φab(y) = C

∫ x0

0

[Φab(x, y)]+dx, (4.9)

where x0 is the width of appearance b and C is a constant such that

‖φab‖2 =

∫ y0

0

[φab(y)]2dy = 1, (4.10)
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Figure 4.3: An illustration of the invariance of pairwise normalized profiles, and a
comparison of direct, indirect, and combined distances for an example of 10 proto-
types (with different labels) and one query. Top: it can be observed that the current
test profiles of appearance q are very similar to the learned profiles of appearance
c (which is the true classification of q) while largely different for the case of other
appearances such as a and b. Bottom: distances Da, Dsv, D1, D2 from q to all pro-
totypes are evaluated and the relative margins are compared. We can see that all
distance measures result in correct top one recognition, while the combined distance
measures D1 and D2 result in larger relative margins than Da and Dsv.

and y0 is the height of appearance b. We define the 1D function φab as the normalized

invariant profile from a to b (Figure 4.2).

4.3.2 All-Pairs Training

Suppose we have N training samples (prototypes) {pi}i=1...N labeled as n dif-

ferent appearances. We learn normalized invariant profiles for every pair of the

prototypes. Hence, we produce N × N normalized invariant profiles indexed by

{(i, j)}i,j=1...N . Note that for two identical prototypes with index i = j, the log-

76



likelihood ratio function φii(y) = φjj(y) = 0 for ∀y ∈ (0, y0), hence we set the

profiles as uniform φii(y) = φjj(y) = 1/
√

y0 for this case. While we can see that φij

and φji are different for i 6= j, they are very similar in shape.

We next discuss why we calculate all N2 normalized profiles and how they can

be used for classification.

4.4 Discriminative Information-based Distances

Given a query q, we want to match it to prototypes {pi}i=1...N using the learned

set of profiles {φij}i,j=1...N . We first calculate a likelihood ratio function Φiq from

every prototype pi to query q, and perform normalization (as in the learning step) to

obtain a set of query profiles {φiq}i=1...N . The idea is to vote for the ID of q (which

is unknown) by matching a query profile φiq to a learned profile φij for which the

corresponding ID j is known. The distance D(j, q|i) between the query profile φiq

and the learned profile φij is defined as follows:

D(j, q|i) =

∫ y0

0

[φiq(y) − φij(y)]2dy. (4.11)

The intuition here is that the smaller the distance D(j, q|i), the more similar the

two profiles are, consequently, the more confident to vote for j as the ID of q. For

each i, we calculate D(j, q|i) for all j = 1...N and then vote for the ID of q. We

perform such a voting procedure for all training samples {pi}i=1...N .

We can vote for the ID of q based only on the best matching profile φij∗ for

each prototype pi, i.e. the one for which j∗i = arg minj D(j, q|i), then assign one
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vote for j∗i : V (j∗i ) + 1 7−→ V (j∗i ). This is referred to as hard voting.

The voting can be performed either in a soft manner, i.e. we vote for the ID

of q based on the evidence from all profiles {φij}i,j=1...N , instead of only choosing

the best matching ID j∗ (corresponding to the lowest profile distance) for each i.

The soft voting-based distance Dsv(q, pj) from query q to prototype pj is defined as:

Dsv(q, pj) =
1

N

N
∑

i=1

D(j, q|i). (4.12)

Compared to hard voting, soft voting is less sensitive to ambiguities and noise

effects since it collects all possible evidence for calculating final voting-based dis-

tances instead of choosing the top one match as in hard voting. From experiments,

we verify that soft voting gives better performance in recognition rate. Based on the

above reasoning, we define the (indirect) discriminative information-based distance

from the a query q to a prototype pj as:

Dd(q, pj) = Dsv(q, pj). (4.13)

4.5 Classification and Recognition

As discussed previously, traditional nearest neighbor or k-NN methods di-

rectly use Da as the distance from a query to a prototype, and the classification

is performed by finding the minimum distance or by majority voting for k nearest

neighbors. Da only considers information between a query and a prototype, while

Dd only considers inter-relations between different training samples; that is, the
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two distances are based on independent information. This leads to the idea that

combining the two would boost recognition performance.

We tested two parameterized distance measures D1 and D2 involving linear

and nonlinear combinations:

D1(q, pj) = (1 − α)Da(q, pj) + αDd(q, pj), (4.14)

D2(q, pj) = D1−β
a (q, pj)D

β
d (q, pj). (4.15)

We learn the parameters α and β by evaluating the overall recognition rates using

a large number of labeled testing samples. Experiments shows that the optimal

parameter estimates are as listed in Table 4.1. The parameters can be selected

flexibly around the optimal values (±0.1) without performance degradation.

Given a query q, we want to estimate its unknown class label (person ID)

by calculating the distances between the query and all labeled prototypes. Clas-

sification is done by the nearest neighbor rule using one of the combined distance

measures D1 and D2 as:

j∗ = arg min
j

Dcombine(q, pj). (4.16)
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Feature Space Training (cam1) Training (cam2)
Testing (cam2) Testing (cam1)

Normalized Color α = 0.23 α = 0.25
+ Height β = 0.18 β = 0.22

Color Rank α = 0.90 α = 0.60
+ Height β = 0.40 β = 0.20

Table 4.1: Learned optimal parameter values for combined distance measures D1

and D2. Total of 180 labeled test samples are used against 180 training samples of
different appearances for learning the parameters α and β.

Feature Space Channel Bandwidth

Normalized Color σr = σg = 0.02, σs = 20
+ Height σh = 1

Color Rank σrR = σrG = σrB = 4
+ Height σh = 1

Table 4.2: Bandwidths estimated and used for our experiments.

4.6 Implementation Details

The bandwidths for each dimension of the 4D feature spaces are listed in

Table 4.2. The bandwidths are generally estimated as 2% of the ranges of the

corresponding channel and adjusted slightly by repeated trial-and-error procedures.

We resize image patches of a person to have fixed height of 50 pixels y0 = 50. Note

that all the parameters including bandwidths for different feature spaces, height

sampling rate, distance model parameters α and β are fixed to the listed values

throughout the experimental evaluation.

For efficiently matching people in video, we select key frames (appearances)

as prototypes of training and testing sequences and recognize appearances based on

the prototypes. The purpose is to represent all of the appearance information from
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Figure 4.4: Left: three key frames (147, 159, 172) are obtained for a 30 frame
example sequence. Right: the plot shows the KL distances of each frame to the
closest key frame.

a person’s track using as few representative frames as possible. The process is as

follows. The first frame (t = 0) is automatically selected as the first key frame K1.

Then, we calculate the symmetric KL distances of the subsequent frames (t = 1, 2...)

to all current key frames {Kj}j=1...i. The symmetric KL distance is defined as:

DsKL(p̂b, p̂a) = min(D+
KL(p̂b||p̂a), D+

KL(p̂a||p̂b)). (4.17)

For the current frame t ≥ 1, if all symmetric KL distances {DsKL(p̂t, p̂Kj), j = 1...i}

are greater than a fixed threshold4 τ = 1.5, frame t becomes the next key frame

Ki+1, and is added to the set of current key frames. In this way, those frames with

large information gain or having new information are selected, and those not selected

can be explained by the key frames with a bounded deviation from one of the key

frames in the symmetric KL distance. Figure 4.4 shows key frames selected from

an example sequence. We preprocess the videos by background subtraction [55] and

neighborhood-based noise removal to obtain single connected component for each

frame. Person sub-images (rectangular patches) are extracted from bounding box

4the threshold is estimated such that on average, three key frames are selected for each track
of about 30 frames.
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Appearances from camera1

Appearances from camera2

Figure 4.5: List of sample appearances taken under two overlapping and widely
separated cameras.

of foreground regions.

4.7 Experimental Results

We use the Honeywell appearance datasets for experimental evaluation. The

classification and recognition performance is quantitatively analyzed in terms of

Cumulative Match Curve (CMC) and Expected Relative Margin. The expected

relative margin δ is defined as a geometric mean of relative margins for all test

samples:

δ = (

NT
∏

i=1

di
2

di
1

)1/NT , (4.18)
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Figure 4.6: Recognition performance with respect to the increasing number of per-
sons (N = 10, 20, 30, 40, 50, 60, 61) involved in training and testing. Here, only the
cases for 30 and 61 persons are listed. (‘norm’: normalized color feature, ‘rank’:
color rank feature, ‘direct’: appearance-based distance Da, ‘soft voting’: discrimi-
native information-based distance Dd = Dsv, ‘combine1’ and ‘combine2’: combined
distances D1, D2.)

where NT denotes the number of test samples, di
1 denotes the distance of query qi

to the correct (same class) prototype, and di
2 denotes the distance of query qi to

the closest incorrect (different class) prototype. Our test data include videos of 61

individuals taken by two overlapping cameras widely separated in space. Figure 4.5

shows samples from all 61 appearances. We can observe that the dataset has many

appearance ambiguities because a limited number of people were used to create a

large number of ‘appearance’ classes by a partial change of clothing for each person.

Also there are significant illumination, viewpoint and pose changes across the two

cameras.

Scalability: To show the scalability of our voting-based and combined ap-

proaches, we evaluated cumulative recognition rates and expected relative margins
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Figure 4.7: Recognition performance with respect to the changing number of training
samples (prototypes) per class.

for increasing number (N = 10, 20, 30, 40, 50, 60, 61) of individuals involved in train-

ing and testing (Figure 4.6). For each of the 61 individuals, we select one key frame

from a camera for training and one key frame from another camera for testing, and

evaluated the performance using different features and different training-testing data

(cam1 to cam2, cam2 to cam1). The results show that our combined approaches

consistently perform better than the direct appearance-based method. More impor-

tantly, we note that our voting-based approach and combined approaches only have

very small degradations with increasing numbers of people, while direct methods re-

sulted in large degradation in recognition performance. This is more obviously seen

for the case of color rank features. We can see that our discriminative information-

based combined distances are more useful in recognizing large number of classes

than the direct appearance-based distances.

Effects of Number of Training Samples: We compared recognition per-

formance over the number of training samples per class (Figure 4.7). We select three

key frames for each of 30 individuals from camera 2 as training samples and three

key frames for each of 30 individuals from camera 1 as test samples. The figure

shows that increasing the number of training samples per class improves cumulative
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Avg. Recog.
Approaches Rate

direct comparisons -

norm-direct-appearance 61 persons 0.56
norm-soft voting 61 persons 0.35
norm-combine1 61 persons 0.59
norm-combine2 61 persons 0.61
rank-soft voting 61 persons 0.71
rank-direct-appearance 61 persons 0.84
rank-combine1 61 persons 0.88
rank-combine2 61 persons 0.89
[135] rank-path length 61 persons 0.85

indirect comparisons -

[41] model fitting 44 persons 0.59
[119] shape & appear. c. 99 persons 0.82

Table 4.3: Direct and indirect comparisons of top one recognition rates to state of
the art work. Our combined approaches with (color rank + height) features are
marked as ‘bold’.

recognition rates and relative margins significantly.

Comparison with Other Approaches: We also compared the performance

of our voting-based and combined approaches to the direct appearance-based ap-

proach in terms of average top one recognition rates on 61 individuals. Both cases of

(Normalized Color + Height) and (Color Rank + Height) feature spaces show that

our combined approaches improve top one recognition rates of direct appearance-

based method by 5-6% (equivalently, the error rate is reduced by 31%) (Table 4.3).

Results on the same dataset with a same number of individuals are compared to

Yu et al. [135]5. Using similar number of pixels (500 samples) per appearance, our

combined approach obtained 4% better top one recognition rate (equivalently, the

5The result of [135] is obtained from their most recent experiments.
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error rate is reduced by 27%) and is 5-10 times faster than [135]. This is because

computing path-length features for all samples significantly slows down the process.

We used the much simpler normalized height feature to achieve better performance.

Indirect comparisons (Table 4.3) to Gheissari et al. [41] and Wang et al. [119]6 on

datasets with similar number of people show that our approach is comparable to

state of the art work on person recognition.

Computational Complexity: The computational complexity7 of our learn-

ing algorithm is O(N2), while the complexity of our testing algorithm for a single

query image is O(N), which is the same as the traditional nearest neighbor method.

6In [41,119], Datasets (which are publicly unavailable) of 44 and 99 individuals are used.
7Using about 500 samples per appearance, the learning time for 61 appearances is about 2

minutes, and the time for matching a single query image to 61 prototypes is less than 2 seconds
in C++ on a Intel Xeon CPU 2.40GHz machine.
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Chapter 5

Prototype-based Action Recognition

5.1 Introduction

Recently, action recognition has been a popular research topic in the vi-

sion community due to its wide applicability to multimedia analysis and video

surveillance. It is the most primitive element in human movement analysis and

event/activity analysis. Shape and motion have been shown to be the most impor-

tant and useful visual cues for human action recognition.

Many studies have been performed on visual cues and features for robust

action recognition. They can be roughly classified into three categories: geometry-

based [62], motion-based [27,31,120,121], appearance-based [28,62,111], and space-

time feature-based [52, 79, 80, 89, 95, 101, 133]. The geometry-based approaches

recover information about human body configuration, but they heavily rely on

object segmentation and tracking, which is typically difficult and time consum-

ing. The motion-based approaches extract optical flow features for recognition,

but they rely on segmentation of the foreground for reducing effects of background

flows. The appearance-based approaches use shape and contour information to

identify actions, but they are vulnerable to cluttered complex backgrounds. The

space-time feature-based approaches either characterize actions using space-time vol-

umes [12,44,52,53,89,101,133] or using space-time interest points [25,59,60,79,80,95].
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Acquisition of the space-time volumes usually requires foreground/background seg-

mentation, which is itself a difficult problem in real scenarios (e.g. moving cameras).

Space-time interest points are suitable only when there is significant variation of im-

age intensity values in space and time dimension, so it is not particularly suitable for

capturing smooth motions. Ref. [5] used trajectories of a finite number of (manually

assigned) body interest points (called landmarks) to model and recognize human

actions, however, it is hard to automatically obtain these landmarks in practical

applications.

Recently, there have been approaches, e.g. [4,49,51,60,69,72,77,94,103], com-

bining multiple features to detect and recognize actions. Laptev and Perez [60] used

shape and motion cues to detect drinking and smoking actions. Jhuang et al. [51]

introduced a biologically inspired action recognition system which used a hierarchy

of spatial-temporal feature detectors. Liu et al. [69] combined quantized vocabular-

ies of local spatial-temporal volumes and spin images. Shet et al. [103] combined

shape and motion exemplars in a unified probabilistic framework to recognize ges-

tures. Holte et al. [49] presented a view-invariant gesture recognition approach

using depth and intensity information. Schindler and Gool [94] extracted both form

and motion features from an action snippet to modeling and recognizing actions.

Niebles and Fei-Fei [77] introduced a hierarchical model and a hybrid usage of static

shape features and spatial-temporal features for action classification. Ahmad and

Lee [4] combined shape and motion flows to classify actions from multi-view image

sequences. Mikolajczyk and Uemura [72] extracted a large set of low dimensional

local features to learn many vocabulary trees to allow efficient action recognition
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and perform simultaneous action localization and recognition.

On the other hand, some approaches represented a human action as a sequence

of basic units called exemplars [28, 103, 123, 124] or primitives [111]. Elgammal et

al. [28] viewed an action as a sequence of leaned shape exemplars and imposed tem-

poral constraints between different exemplars by Hidden Markov Model (HMM) [85].

Later, Shet et al. [103] extended this approach by including motion cues to improve

recognition results. Weinland and Boyer [123] represented an action as a set of

distances from silhouette exemplars to the frames of the action sequence and then

classified the action sequence using a standard Bayes classifier. In Weinland et

al. [124], 3D exemplars are projected onto a 2D image plane so that they can be

directly compared to image observations. Thurau et al. [111] represented actions

by histograms of pose primitives and then performed action recognition by match-

ing histograms of pose primitives. Souvenir and Babbs [109] provided a compact

representation of primitive action for view-variant action recognition using manifold

learning. Wang et al. [121] introduced a hierarchical probabilistic model of human

actions based on a bag of motion words, where each frame corresponds to a motion

word.

Categorization methods are mostly based on machine learning or pattern

recognition techniques. Ref. [28, 103] incorporated temporal constraints between

examplars using HMM, but it required a large training set and it is difficult to

choose appropriate examplars and HMM parameters (such as number of states for

each action category). Holte et al. [49] used an edit distance to identify which of the

learned gestures best explains a query sequence of pose primitives, but the require-
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ment of pose estimation and primitive matching limits the approach’s applicability.

The method in [111] used n-Gram models to represent local temporal context and

recognized actions based on histogram comparisons. However, local temporal con-

text modeling of the n-Gram model is insufficient for handling complex actions since

temporal consistency cannot be globally guaranteed. Efros et al. [27] computed

motion-to-motion similarity matrices and then used a k-NN classifier for classifying

a query action. Schuldt et al. [95] combined local space-time features with a Support

Vector Machine (SVM) classifier for action recognition. Fanti et al. [30] presented a

hybrid probabilistic model for human motion recognition and modeled the human

motion as a triangulated graph. But this approach can be highly dependent on the

quality of point tracking. Sminchisescu et al. [107] integrated discriminative Con-

ditional Random Field (CRF) and Maximum Entropy Markov Models (MEMM) to

recognize human actions. Shi et al. [105] combined semi-Markov model and HMM

to conduct human action segmentation and recognition. Vitaladevuni et al. [117]

presented a Bayesian framework for action recognition from psych-kinesiological ob-

servations that ballistic movements are the basic units of human movements. Wang

and Suter [118] used kernel principal component analysis (KPCA) to get a low-

dimensional embedded space by performing nonlinear dimensionality reduction and

then explored factorial conditional random field (FCRF) to classify human actions

in the embedded space.

Previous work mostly relied on high dimensional descriptors for modeling ac-

tion frames and used nearest neighbor (NN) or k-nearest neighbor (k-NN) classifiers

for database frame (or examplar) retrival and action recognition, e.g. Gorelick and
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Blank et al. [11,44] and Efros et al. [27]. This can be expensive when the size of the

examplar database is large. On the other hand, existing approaches [86,134] mostly

assumed simple backgrounds or static cameras, and did not explicitly consider the

challenging cases of dynamic backgrounds and the presence of other moving objects.

In contrast, we introduce a very efficient, prototype-based approach for ac-

tion recognition. Our approach extracts rich information from observations but

performs recognition efficiently via prototype matching and look-up table indexing.

In addition, it has an advantage of tolerating complex dynamic backgrounds by

probabilistic model fitting instead of brute force search of pose space.

The block diagram of our system is shown in Figure 5.1. During training,

background subtraction segments a person and localizes an action interest region

around the person from which shape-motion descriptors are computed. Next, action

prototypes are learned via k-means clustering. During testing, humans are detected

and tracked using appearance information, and a frame-to-prototype correspondence

is established by nearest neighbor search. Finally, actions are recognized based on

dynamic prototype sequence matching. Similarity matrices used for the matching

are rapidly obtained by look-up table indexing, which is an order of magnitude

faster than the brute-force computation of frame-to-frame distances. Our main

contributions are three-fold:

• Actions are modeled by learning their prototypes in a joint shape-motion space

via k-means clustering.

• Frame-to-frame distances are rapidly estimated via fast look-up table indexing.
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Figure 5.1: Overview of our approach.

• A probabilistic framework is introduced for robustly detecting and matching

prototypes, and recognizing actions against dynamic backgrounds.

5.2 Action Representation

For representing and describing actions, action interest regions should be de-

fined precisely around an actor (or human) so that the representation can be location

and scale invariant.
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5.2.1 Action Interest Region

We define an action (or gesture) interest region as a (square) region around

a reference point (e.g. the center of the square) in the human body. For full-body

actions, the reference point is defined as the center of the bounding box1 around the

localized person. The side-length of the square region is proportional to the height

of the bounding box. For gestures, similarly, the reference point is defined as a point

on the bounding box’s center-vertical axis. For the gesture dataset, the reference

point is at a distance of 1/8 of the box’s height from the top of the box, while it is at

the center of the bounding box for the action dataset. The side-length of the square

region is proportional to the height of the bounding box. Since we compute action

descriptors in each frame solely from its action interest region, robustly detecting

and tracking human bounding boxes (under dynamic backgrounds) is critical for

overall action recognition performance. We will discuss details of localization and

tracking in Sec. 5.4. Examples of action interest regions are illustrated in Figure 5.2.

5.2.2 Shape-Motion Descriptor

A shape descriptor for an action interest region is represented as a feature vec-

tor Ds = (s1...sns
) ∈ Rns by dividing the action interest region into ns square grids

(or sub-regions) R1...Rns
. The i-th component of a raw shape descriptor measures

occupancy moments (averages of intensities) of that region Ri. In the training phase,

1Note that a ”bounding box” here means a human bounding box, so is different from action
interest region. An action interest region is derived from a ”bounding box” by a one-to-one
mapping.
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(a) A gesture interest region from the
Keck gesture dataset

(b) Action interest region from the Weiz-
mann action dataset

(c) Action interest region from the KTH
action dataset

Figure 5.2: Examples of gesture and action interest regions.

shape observations are binary silhouettes obtained by background subtraction; and

in the testing phase, the shape observations are either binary silhouettes from back-

ground subtraction (under static backgrounds) or normalized part-appearance-based

likelihood maps (under dynamic backgrounds).

A motion descriptor for an action interest region is represented as a feature

vector Dm = (QFb+
x , QFb−x , QFb+

y , QFb−y ) ∈ Rnm , where ‘QFb’ refers to quantized,

blurred flow. We use the robust motion flow feature introduced in [27] to compute

the motion descriptor as follows. The optical flow field F of an action interest re-

gion is divided into horizontal and vertical components, Fx and Fy, each of which

is then half-wave rectified into four non-negative channels F+
x , F−

x , F+
y , F−

y . These
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(a) Optical flow F (b) Fx, Fy (c) Fb+,−
x , F b+,−

y

(d) QFb+,−
x , QFb+,−

y (e) Gs

Figure 5.3: Visualization of the shape and motion descriptors. (a) An optical flow
field of an action interest region. (b) Motion flow features in horizontal and vertical
directions. (c) Gaussian blurred motion observation for four channels. (d) The
motion descriptor. (e) The shape descriptor.

channels are blurred with a Gaussian kernel to form the low-level motion observa-

tions (Fb+
x , F b−x , F b+

y , F b−y ). Then, as in computing shape descriptors, we map each

channel of the motion observations into low resolution by averaging them inside

uniform grids overlaid on the interest region. The resulting four channel descriptors

are L2 normalized independently and concatenated to form the motion descriptor

Gm = (QFb+
x , QFb−x , QFb+

y , QFb−y ). Figure 5.3(a), 5.3(b), and 5.3(c) show the pro-

cess of computing motion observations, and Figure 5.3(d) and 5.3(e) illustrate the

final motion and shape descriptors, respectively.

We concatenate shape and motion descriptors Ds and Dm to form joint shape-
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motion descriptors: Dsm = (Ds, Dm) ∈ Rnsm , where nsm = ns +nm is the dimension

of the combined descriptor. The distance between two gesture frames, i.e. two

shape-motion descriptors, Da
sm and Db

sm, is computed using the Euclidean distance

metric.

Based on the relative importance of shape and motion cues, we can learn a

weighting scheme for the shape and motion components of Dsm = (wsDs, wmDm)

(where the weights are chosen such that w2
s + w2

m = 1), where the optimal weights

ws, wm can be estimated using a validation set by maximizing the recognition rate.

5.2.3 Learning Shape-Motion Prototypes

Following the idea of [28, 111], we represent an action as a set of basic action

units. We refer to these action units as action prototypes. More formally, an action,

G of length n (the number of frames in G), is represented as a sequence of prototypes

G = (g1...gn), where each prototype gi is represented as a high-dimensional feature

vector consisting of a shape component gsi and a motion component gmi.

Given the set of shape-motion descriptors from all action frames of the training

set, we perform k-means clustering in a joint shape-motion space using the Euclidean

distance. Since both of our shape and motion descriptors are vector quantization of

original shape and motion observations, the Euclidean distance metric is reasonable

for clustering the joint shape-motion descriptors. From experiments, we found that a

simple k-means clustering algorithm is sufficient for learning prototypes in the joint

shape and motion space. The cluster centers are then used as the action prototypes,
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(a) Shape components of prototypes (b) Motion components of prototypes

Figure 5.4: Visualization of shape and motion components of learned prototypes
for k = 20. The shape component is represented as 16 × 16 grids and the motion
component is represented as four (orientation channels) 8 × 8 grids. In the mo-
tion component, grid intensity indicates motion strength and ‘arrow’ indicates the
dominant motion orientation at that grid.

hence action prototypes are also called shape-motion prototypes. Examples of the

shape and motion components of our learned action prototypes are visualized in

Figure 5.4. A merit of representing an action with the above representation is that

we can construct a prototype-to-prototype distance matrix (computed off-line in the

training phase) use it as a look-up table to speed up the action recognition process.

5.3 Action Recognition

The action recognition process is divided into two steps. The first step is frame-

to-prototype matching, and the second step is prototype-based sequence matching.
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5.3.1 Probabilistic Framework for frame-to-prototype matching

Let random variables V = (V ap, V mf ) (where V ap and V mf denote appearance

and motion flow observations, respectively) be observations from an image frame, θ

be a prototype random variable chosen from a set of k learned shape-motion proto-

types Θ = (θ1, θ2...θk), and α denote the location (x, y) and scale s parameters of the

actor. Then, the frame-to-prototype matching problem is equivalent to maximiz-

ing the joint likelihood p(V, θ, α) of the image observation, prototype, and location.

Assuming V has a uniform prior (i.e. p(V ) is a uniform distribution), based on

the Bayes rule, we can decompose the joint likelihood p(V, θ, α) into likelihoods of

person localization term and frame-to-prototype matching as follows:

p(V, θ, α) ∝ p(θ, α|V )

= p(θ|V, α)p(α|V )

= p(θ|V (α))p(α|V ), (5.1)

where V (α) denotes localized observation, i.e. observation specified by the localized

interest region. For simplicity, we maximize p(V, θ, α) sequentially by separating

optimization of localization and action prototypes. Maximization of this likelihood

p(α|V ) is exactly the problem of object localization, and given α, maximization of

p(θ|V (α)) is the problem of frame-to-prototype matching.
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5.3.2 Independent Frame-to-Prototype Matching

Then, given the localized observations V (α) (assuming known localization α),

the prototype likelihood p(θ|V (α)) is evaluated and maximized via shape-motion

prototype matching. Assuming α is given, we perform the likelihood decomposition

as follows:

p(θ|V (α)) ∝ p(V (α)|θ)p(θ). (5.2)

In practice, the prior probability p(θ) can be explicitly estimated by count-

ing occurrences of prototypes in the training set. Here, for simplicity we assume

p(θ) is uniform, hence we estimate the optimal match, shape-motion prototype θ∗,

according to maximum likelihood estimation (MLE) as:

θ∗ = arg max
θ∈Θ

p(θ|V (α)) = arg max
θ∈Θ

p(V (α)|θ). (5.3)

We only search using the space (set) of learned action prototypes θ ∈ Θ in-

stead of the entire high-dimensional pose space, making the method computationally

efficient. Maximizing the prototype likelihood p(θ|V (α)) is equivalent to minimiz-

ing the distance d between the descriptor determined by observations V (α) and a

prototype precomputed in the training phase, since the prototype likelihood can be

modeled as p(θ|V (α)) = exp(−d), where the distance d is directly computed as the

Euclidean distance between joint shape-motion descriptor D(V ) = (Ds(V ), Dm(V ))

and a prototype descriptor D(θ) = (Ds(θ), Dm(θ)).
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5.3.3 Prototype-based Sequence Matching

5.3.3.1 Dynamic Time Warping

We use the dynamic time warping algorithm [93] to measure the distance

between actions. Suppose we have two actions Gx and Gy of lengths |X| and |Y |,

Gx = x1, x2, ..., x|X| and Gy = y1, y2, ..., y|Y |.

Finding the best match of these two sequences is equivalent to finding a

minimum-cost path through a cost matrix to align these two sequences in time.

The warping path is defined as W = w1, w2, ..., wK , where K is the length of path

and satisfies max(|X|, |Y |) ≤ K ≤ |X| + |Y |. The cost matrix is constructed by

computing all the distance d(xi, yj) between every pair of frames xi and yj from

the action sequences Gx and Gy. The distance Dist(Gx, Gy) between two actions

Gx and Gy is given as the average of distances on the minimum-cost-path obtained

from dynamic time warping:

Dist(Gx, Gy) = min

(

K
∑

k=1

dist(xk,i, yk,j)/K

)

, (5.4)

where dist(xk,i, yk,j) is the distance between two frames xk,i and yk,j at the k-th

element of the warping path. Distance d(xk,i, yk,j) can be computed via direct

Euclidean distance or look-up table of distances between any two prototype. This is

also the reason for the computation difference between feature-to-feature distance-

based approach and prototype-based approach.
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(a) Same gestures performed by different persons

(b) Different gestures performed by different persons

Figure 5.5: Gesture matching results by dynamic time warping. Columns and rows
with low variation in intensities indicate that the corresponding frame is static, i.e.

the average magnitude of motion flows is very small.

5.3.3.2 Sequence Matching

We first compute the cost (or frame-to-frame distance) matrix between a test

action G and each of the model actions {Mt}t=1...n in the training set, and then use

dynamic time warping to compute the distances {Dt}t=1...n, where Dt = D(G,Mt).

Then, we find the optimal match G∗
t using the minimum distance (or k-nearest

neighbor) classification.

To efficiently compute the frame-to-frame distance matrices, we represent a

test action G as a sequence of closest (nearest neighbor) shape-motion prototypes

learned in the training phase. Then, the distance between two actions can be repre-
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sented as the distance between two sequences of prototypes instead of two sequences

of feature descriptors; and consequently the look-up table constructed in the training

phase can be used to speed up the computation of descriptor-based frame-to-frame

distance matrices.

Figure 5.5 shows examples of gesture matching using the dynamic time warping

algorithm. The result shows that if the test action is matched correctly to a model

action, the red (dynamic time warping) path in the Figure 5.5(a), as expected, is

close to diagonal; otherwise, it can be arbitrary, as shown in Figure 5.5(b).

Two different versions of our approach used to obtain action-to-action distance

d(xi, yi) are: (1) Descriptor distance-based approach directly computes frame-to-

frame distances, (2) Prototype-based approach approximates frame-to-frame dis-

tances by indexing the look-up table (of prototype-to-prototype distances) precom-

puted during training. Frame-to-prototype distances are only used to find nearest

prototypes for test frames in the prototype-based approach. We reject non-modeled

gestures by thresholding action-to-action distances, where the threshold is estimated

via cross-validation.

5.4 Action Localization

For different test datasets, we use different available appearance information

for detecting and tracking the person (or gesturer) in the sequence. We first detect

the person in the first frame and then track his bounding box through subsequent

frames.
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More formally, assuming observations V ap, V mf are independent, and p(α) is

uniform, the location probability is represented as:

p(α|V ) ∝ p(V |α)

∝ p(V ap|α)p(V mf |α)

∝ p(V ap|α). (5.5)

In order to maximize p(α|V ), now we only need to maximize p(V ap|α). We use

foreground segmentation maps or foreground color-likelihood maps to model the

location likelihood p(V ap|α).

For test datasets created with fixed cameras, such as the Weizmann dataset

and the KTH dataset, we use the codebook model-based background subtraction [55]

to obtain binary foreground images, and then use integral images [115] to evaluate

the coverage information for arbitrary rectangular regions. The resulting foreground

images might be noisy depending on the quality and contrast of input video data.

In contrast, for test datasets created with moving cameras, such as the Keck

gesture dataset, tracking is primarily based on appearance information. The location

likelihood P (V ap|α) is expressed as:

p(V ap|α) =
∏

j∈{h,t,l}

p(V ap(j)|α), (5.6)

where h, t, and l denote the three parts, head, torso, and legs, respectively. Taking

103



Figure 5.6: Examples of action localization result on the Keck Gesture dataset. Our
localization method can avoid the influence of a sceondary person moving around
in the background and a moving camera.

logs to both sides, the equation becomes:

L(V ap|α) =
∑

j∈{h,t,l}

L(V ap(j)|α), (5.7)

where, L(V ap(j)|α) is modeled as the difference of average appearance-based likeli-

hood between the inside and the outside of a rectangle surrounding a hypothetical

part location. Intuitively, this is like a generalized Laplacian operator and favors

situations in which the person matches well inside a detection window, but not co-

incidentally because the image locally mimics the color distribution of the person.

We efficiently compute the coverage information using integral images [115]. We use

a generic human detector such as [22] for locating the person in the first frame, then

build the color appearance model of the person and use it throughout. We employ

a tracker such as particle filter [7, 81] for tracking the person in 3D (location and

scale) space. The likelihood in Equation 5.7 is used as the observation model of the

tracker.

For building human appearance models, we divide the human body into three
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Figure 5.7: Examples of action localization and tracking results on the KTH dataset.
Our localization method effectively handled influences of shadows, fast camera move-
ments, low contrast, poor background subtraction, and even missing human silhou-
ettes for a short period of time.

parts, head, torso, and legs. Each part’s appearance model is represented by a

color/grayvalue distribution. Here, we assume color information is available and

build color-appearance models for tracking. To allow multi-modality of the un-

derlying density, kernel density estimation is used to obtain the color distribution.

Given a set of pixels {xi}i=1...N from an image region, where xi is a d-dimensional

feature vector representing a color, we can calculate the probability that an observed
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(a) The Keck Gesture Dataset (b) The Weizmann Action Dataset

(c) The KTH Action Dataset

Figure 5.8: Datasets. (a) The Keck gesture dataset consisting of 14 different ges-
tures, (b) The Weizmann action dataset consisting of 10 different actions, (c) The
KTH action dataset consisting of 6 different actions collected under 4 different sce-
narios.

pixel y belongs to that image region as [56]:

p(y) =
1

N

N
∑

i=1

d
∏

j=1

Kσj
(yj − xij). (5.8)

where the function K(·) is a kernel function and dimension j of the feature vector

has bandwidth σj. To tolerate illumination variability, the normalized rgs color

space(r = G
R+G+B

, g = G
R+G+B

, s = R+G+B
3

) is used. We chose the Gaussian as K(·)

in our experiment, and the channel bandwidths are set to σr = 0.02, σg = 0.02 and

σs = 20.

Figure 5.6 shows some examples of our localization results on the Keck Gesture

Dataset. There is a secondary person continuously moving around in the background

and the camera is often moving fast. Our localization approach can get rid of these

influences. Figure 5.7 presents some examples of the localization results on the KTH
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Figure 5.9: Confusion matrix for gesture recognition against a static background.

Table 5.1: Feature-based recognition result (leave-one out procedure).

method recog. rate (%)

motion only 92.86

shape only 92.86

joint shape and motion 95.24

dataset. From our experiments, we found that our localization method can detect

and track objects even with very poor silhouettes from background subtraction due

to the robustness of our tracking algorithm. That is to say, our approach can be

applied to poor binary silhouettes, which is very useful for practical applications.

5.5 Implementation details

In this section we give implementation details of our recognition approach

in order to guarantee the reproducibility of results of our approach. The stan-

dard deviation σ of the gaussian kernel for blurring the four non-negative channels
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Table 5.2: Prototype-based recognition result (leave-one out procedure). Joint mo-
tion and shape descriptors are used for the evaluation. The average time is computed
as the average of computing an action-to-action similarity matrix.

method recog. rate(%) avg. time (ms)

Our method: descriptor dist. 95.24 154.5

Our method: look-up(20 prot.) 90.48 21.8
Our method: look-up(40 prot.) 90.48 22.2
Our method: look-up(60 prot.) 90.48 22.6
Our method: look-up(80 prot.) 90.48 23.2
Our method: look-up(100 prot.) 92.86 25.6
Our method: look-up(120 prot.) 90.48 22.3
Our method: look-up(140 prot.) 92.86 22.7
Our method: look-up(160 prot.) 95.24 23.2
Our method: look-up(180 prot.) 95.24 25.6

Shet et al. [103] 83.7 N/A

Table 5.3: Feature-based recognition result using a moving camera viewing a dy-
namic background.

method recog. rate (%)

motion only 87.5

shape only 53.57

joint shape and motion 91.07

F+
x , F−

x , F+
y , F−

y is set to 5. Before concatenating a shape descriptor Gs and a motion

descriptor Dm to form a joint shape-motion descriptor Dsm, the shape descriptor

Ds and motion descriptor Dm are normalized by L2 norm, respectively. We found

that this independent channel normalization scheme is crucial for obtaining high

recognition rates. In the training phase, we exclude frames (or descriptors) with

no motion or shape information from the k-means clustering input data, i.e. those

frames of which L2-norm of raw shape and motion descriptors are excluded.

In the testing phase, computation of shape descriptor Ds is different for dif-
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Table 5.4: Prototype-based recognition performance using a moving camera viewing
a dynamic background. The average time is the average of the time needed to
compute an action-to-action similarity matrix.

method recog. rate (%) avg. time (ms)

descriptor dist. 91.07 96.5

look-up(20 prot.) 55.36 7.2
look-up(40 prot.) 75 7.3
look-up(60 prot.) 76.79 7.4
look-up(80 prot.) 82.14 7.2
look-up(100 prot.) 80.36 7.2
look-up(120 prot.) 89.29 7.2
look-up(140 prot.) 82.14 7.3
look-up(160 prot.) 82.14 7.7
look-up(180 prot.) 89.29 7.8

Table 5.5: Feature-based recognition result on the Weizmann dataset.

method recog. rate (%)

motion only 88.89

shape only 81.11

joint shape and motion 100

ferent datasets used in our experiments. For the Keck gesture dataset, we use the

normalized color-part-appearance-based likelihood maps to compute the shape de-

scriptors because this dataset can not simply use background subtraction to obtain

binary silhouettes. For the Weizmann action dataset and the KTH action dataset,

we perform background subtraction for each action sequence and simply compute

the shape descriptors using the resulting binary silhouettes.

Our recognition approach classifies an action by matching it to any of the

model actions in the training set and then performing k-NN classification. The

range of k in k-means clustering was set by cross-validation on a validation set
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(a) Descriptor-based approach (b) Prototype-based approach (k = 180)

Figure 5.10: Confusion matrices for gesture recognition using a moving camera
viewing gestures against dynamic backgrounds.

during training. Typically, the optimal k is assigned to the value which achieves

the best overall recognition rate on the validation set. It is highly dependent on

the characteristics of individual datasets. For the Keck gesture dataset and Weiz-

mann dataset, varying k from 80 to 180 results in stable recognition rates from our

experiments, while for the KTH dataset, the optimal range of k is from 200 to 300.

Because the action-to-action similarity matrix is symmetric, we only compute

its elements in the upper or lower triangle for speeding up the recognition process.

5.6 Experiments

We evaluated our approach both on a gesture dataset and two action datasets

in terms of recognition rate and computation time. The shape-motion descriptor is

512-dimensional which consists of a 256-dimensional shape descriptor and a 64×4 =
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256-dimensional motion descriptor.

5.6.1 Evaluation on the Keck Gesture Dataset

Similar to [103], we collected a dataset consisting of 14 different gesture classes

which are a subset of military signals [114]. Because we collected the dataset in our

Keck laboratory, we named it the Keck Gesture Dataset. Figure 5.8(a) shows sam-

ple training frames of the gesture data. Compared to the dataset used in [103]

which assumes a static camera and simple background both for training and test-

ing, our dataset has the same classes of gestures but much more challenge due to

moving cameras, moving objects and dynamic backgrounds. These challenges are

very common for human-robot interaction.

The gesture dataset is collected using a color camera with 640×480 resolution.

Each of the 14 gestures is performed by three people. In each sequence, the same

gesture is repeated three times by each person. Hence there are 3 × 3 × 14 = 126

video sequences for training which are captured using a fixed camera with the person

viewed against a simple, static background. There are 168 video sequences for testing

which are captured from a moving camera and in the presence of background clutter

and other moving objects.

5.6.1.1 Gesture Recognition against a Static Background

We evaluated our recognition approach based on a leave-one-out experiment

using the training data. The confusion matrix is shown in Figure 5.9. Table 5.1
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shows that the recognition rate of our approach using the joint shape-motion de-

scriptor outperforms using the shape only feature descriptor or motion only feature

descriptor. The recognition rate of our approach is 95.24% which is much better

than Shet et al. [103] which reported an overall recognition rate of 83.7% on a simpler

gesture dataset than ours.

Table 5.2 shows that the prototype-based approach achieves the same recogni-

tion rate as using the more computationally demanding descriptor-based approach.

When k = 160or180, the prototype-based approach obtained 95.24% recognition

rate which is the same as the result of the descriptor-based approach, but the com-

putational cost of the prototype-based approach is much lower that of the descriptor-

based approach.

5.6.1.2 Gesture Recognition against a Dynamic Background

This experiment was performed using a moving camera viewing the gesturer

against a dynamic background, where one person (who is regarded as the gesturer)

performed the specified fourteen gestures in a random order and the other person

(who is regarded as ‘noise’) moved continuously around the gesturer making recog-

nition more challenging. The experimental results using different features are shown

in

Table 5.3. The joint shape-motion descriptor outperforms pure shape and

motion-based features. Pure shape-based features obtained poor performance. This

is because appearance-based likelihood maps were too noisy, probably due to the
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strong color similarity between the gesturer and some parts of the background and

the distracting person at times. On the other hand, because the distracting person

did not always overlap with the gesturer, the camera motion was not always rapid.

So there are many frames with small background flows. the pure motion-based

approach obtained quite good performance due to the robustness of the motion

descriptors to small background flows in many gesture frames.

As shown in Table 5.4, the prototype-based approach achieved an accuracy

similar to the descriptor-based approach, but is an order of magnitude faster. Fig-

ures 5.10(a) and 5.10(b) show the confusion matrices for both the descriptor-based

and the prototype-based approaches.

5.6.2 Evaluation on the Weizmann Action Dataset

The Weizmann dataset [44] contains 90 videos of 10 actions performed by 9

different people. Example frames of the this dataset are shown in Figure 5.8(b).

We used background subtraction to obtain a single largest foreground blob and lo-

calize the person. We performed leave-one-out experiments using nearest neighbor

classification to evaluate both the joint shape-motion descriptor and the prototype-

based recognition method. Table 5.5 shows comparative results of our joint shape-

motion descriptors with ‘shape only’ and ‘motion only’ descriptors in terms of av-

erage leave-one-out recognition rate. The joint shape-motion descriptors obtained

100% recognition while ‘shape only’ and ‘motion only’ descriptors obtained much

lower recognition rates.
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Figure 5.11: Confusion matrices on the Weizmann dataset using the prototype-based
approach (k = 180).

We also evaluated the performance of the prototype-based approach with re-

spect to the number of prototypes k from 20 to 180, and compared these to the

brute force descriptor-based apporach. As shown in Table 5.6, the prototype-based

approach achieved an average recognition rate - 98.52%, and is robust to the selec-

tion of k. The recognition rate reached 100% at k = 140, 180 which is the same

as the descriptor-based approach. Comparing the computation times, the proto-

type and look-up table-based method is almost 26 times faster than the brute force

descriptor-based approach but with only a slight 1− 2% degradation of recognition

rate. The confusion matrix of look-up table indexing-based approach is shown in

Figure 5.11. We have compared the experimental results with state of the art action

recognition approaches [5, 11, 31, 51, 69, 77, 79, 111, 118] in Table 5.6. Our approach

achieved the same perfect recognition rate as Fathi and Mori [31] and outperformed

all the other approaches significantly.
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Table 5.6: Prototype-based recognition performance on the Weizmann dataset. The
recognition rate is averaged based on leave-one-out experiments and the average time
is computed as the average of computing an action-to-action similarity matrix. The
results of [5, 11,31,51,69,77,79,111,118] are copied from the original papers.

method recog. rate (%) avg. time (ms)

Our method: descriptor dist. 100 13.4

Our method: look-up(20 prot.) 82.22 0.5
Our method: look-up(40 prot.) 91.11 0.6
Our method: look-up(60 prot.) 94.44 0.5
Our method: look-up(80 prot.) 96.67 0.5
Our method: look-up(100 prot.) 97.78 0.5
Our method: look-up(120 prot.) 97.78 0.6
Our method: look-up(140 prot.) 100 0.5
Our method: look-up(160 prot.) 98.89 0.6
Our method: look-up(180 prot.) 100 0.5

Fathi & Mori [31] 100 N/A
Thurau et al. [111] 94.40 N/A
Niebles et al. [79] 90 N/A

Ali et al. [5] 92.6 N/A
Jhuang et al. [51] 98.8 N/A

Liu et al. [69] 89.26 N/A
Niebles & Fei-Fei [77] 72.8 N/A

Wang et al. [118] 97.78 N/A
Blank et al. [11] 99.61 N/A

5.6.3 Evaluation on the KTH Action Dataset

The KTH Action Dataset [95] includes 2391 sequences of six action classes:

‘boxing’, ‘hand clapping’, ‘hand waving’, ‘jogging’, ‘running’ and ‘walking’, per-

formed by 25 actors in four scenarios: outdoors (s1), outdoors with scale variation

(s2), outdoors with different clothes (s3) and indoors (s4). Example images from

this dataset are shown in Figure 5.8(c). The KTH dataset is known to be more

challenging than the Weizmann dataset due to non-colored grayscale input videos,

low contrastness, frequent shadows, scale variations, etc. Previous work regarded

the dataset either as a single large set (all scenarios in one) or as four different sub-

115



(a) s1 scenario using descriptors (b) s2 scenario using descriptors

(c) s3 scenario using descriptors (d) s4 scenario using descriptors

Figure 5.12: Confusion matrices for individual scenarios using the descriptor-based
approach.

datasets (individual scenarios as one sub-dataset trained and tested separately). We

perform experiments using both of these settings for better evaluating our approach

in the context of other results reported on this dataset.

We evaluated our descriptor-based approach and prototype-based approach

using leave-one-out experiments, where one action sequence performed by an actor

is as the test sequence and all remaining action sequences performed by other ac-
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(a) s1 scenario using prototypes (k = 240) (b) s2 scenario using prototypes (k = 300)

(c) s3 scenario using prototypes (k = 200) (d) s4 scenario using prototypes (k = 240)

Figure 5.13: Confusion matrices for individual scenarios using the prototype-based
approach.

tors are as the training sequences. Table 5.7 presents that our recognition results

under four different scenarios using joint shape-motion descriptor, ‘shape only’, and

‘motion only’ descriptor. As a result, joint shape-motion descriptor achieved better

recognition rates than ‘shape only’ and ‘motion only’ descriptors in all four sce-

narios. Figure 5.12 shows the confusion matrices for action recognition using our

descriptor-based approach. From this figure, we can observe that most recognition
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(a) Descriptor-based approach (b) Prototype-based approach (k=220)

Figure 5.14: Confusion matrices for the ‘all-in-one’ experiments.

errors are produced by ‘Jogging’ and ‘Running’ actions. This is reasonable because

even human eyes are difficult to discriminate the two. Misclassifications between

‘Boxing’, ‘Running’, and ‘Jogging’ are possibly caused by inaccurate detection and

localization of actors.

In addition, we evaluated the performance of our prototype-based approach

using different number of prototypes, k = 200, 220, 240, 260, 280, 300, and compared

it to the descriptor-based approach. The experimental results in Table 5.8 show that

our prototype-based approach can get similar recognition rates as the descriptor-

based approach, but is approximately 17 times faster. We also compared our results

with state of art action recognition approaches [4, 51, 94]. Both versions of our

method achieved the highest recognition rates under the s1, s2 and s3 scenarios,

and the results are comparable to these approaches under the s4 scenario. More-

over, our average recognition rate for all four scenarios is 95.77%. To the best of our

knowledge, this is the highest among all published results on the KTH dataset. Fig-
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Figure 5.15: Examples of frame-to-prototype matching. Top: The Keck gesture
dataset. Notice that the background against which the gesturer is viewed changes
as we move through the figure, as does the location of the gesturer in the frame.
Middle: The Weizmann dataset. Bottom: The KTH dataset.

ure 5.13 presents confusion matrices for action recognition using the prototype-based

approach. Misclassified cases are similar to that of the descriptor-based approach.

Finally, we evaluated our approach in the context of ‘all-in-one’, i.e. all sce-

narios in a single set. We compared our approach with state of art approaches [25,

31, 52, 78, 80, 95, 121] in terms of recognition accuracy, as shown in Table 5.8. The

results show that our descriptor-based approach achieved the highest recognition

rates. Compared to descriptor-based approach, the prototype-based approach re-
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Table 5.7: Feature-based recognition result on the KTH dataset.The unit for recog-
nition rate is percentage.

method/recog. rate/scenario s1 s2 s3 s4

motion only 92.82 78.33 89.39 83.61

shape only 71.95 61.33 53.03 57.36

joint shape and motion 98.83 94 94.78 95.48

sulted in slight degradation (about 5− 6%) in the recognition rate, but it is almost

14 times faster and outperformed most of the current state of art approaches. Fig-

ure 5.14 shows confusion matrices of both version of our method from the ‘all-in-one’

experiments. Similar to the experiments on the individual scenarios, misclassifica-

tions here are also mainly occurred between ‘Jogging’, ‘Running’, and ‘Walking’,

which is reasonable considering similarity of these three actions.

Figure 5.15 shows some qualitative results of frame-to-prototype matching for

the Keck gesture dataset, the Weizmann action datset, and the KTH action dataset.

5.6.4 Discussions

We experimented with three different datasets in order to show the effective-

ness and the robustness of our approach. Our method is shown to be quite successful

for recognizing actions under dynamic backgrounds. While it has several limitations

to be handled in our future work. Firstly, it performs frame-to-prototype matching

using nearest-neighbor search which is based on the assumption that frame obser-

vations are independent and identically distributed. But for many applications, this
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Table 5.8: Prototype-based recognition performance on the KTH dataset. The
recognition rate is averaged based on leave-one-out experiments and the average
time is computed as the average of computing an action-to-action similarity matrix.
The results of [4, 25, 31, 51, 52, 69, 78, 80, 94, 95, 121] are copied from the original
papers.

recognition rate (%) / time (ms)

method s1 s2 s3 s4 avg. all-in-one

Our method: descriptor dist. 98.83 / 15.2 94 / 19.3 94.78 / 14.5 95.48 / 16.7 95.77 / 16.43 93.43 / 15.2
Our method: look-up(200 prot.) 96.83 / 0.9 85.17 / 1.2 92.26 / 0.8 85.79 / 1.1 90.01 / 1.0 87.54 / 1.1
Our method: look-up(220 prot.) 96.33 / 0.9 83.33 / 1.3 92.09 / 0.8 86.79 / 1.1 89.76 / 1.0 88.04 / 1.1
Our method: look-up(240 prot.) 97.50 / 0.9 83.50 / 1.3 91.08 / 0.8 90.30 / 1.1 90.6 / 1.0 87.70 / 1.1
Our method: look-up(260 prot.) 96.33 / 0.9 84.17 / 1.2 90.74 / 0.8 87.96 / 1.1 89.8 / 1.0 87.37 / 1.1
Our method: look-up(280 prot.) 96.83 / 0.9 85.67 / 1.2 90.40 / 0.8 86.79 / 1.1 89.92 / 1.0 87.29 / 1.2
Our method: look-up(300 prot.) 96.66 / 0.9 86.17 / 1.2 90.07 / 0.8 89.97 / 1.1 90.72 / 1.0 87.49 / 1.2

Schindler & Gool snip.1 [94] 90.9 / N/A 78.1 / N/A 88.5 / N/A 92.2 / N/A 87.43 / N/A 88 / N/A

Schindler & Gool snip.7 [94] 93.0 / N/A 81.1 / N/A 92.1 / N/A 96.7 / N/A 90.73 / N/A 90.9 / N/A

Ahmad & Lee [4] 90.17 / N/A 84.83 / N/A 89.83 / N/A 85.67 / N/A 87.63 / N/A 88.83 / N/A

Jhuang et al. [51] 96.0 / N/A 86.1 / N/A 89.8 / N/A 94.8 / N/A 91.68 / N/A N/A

Liu & Shah [69] N/A N/A N/A N/A 94.15 / N/A N/A

Niebles et al. [78] N/A N/A N/A N/A N/A 81.5 / N/A

Dollar et al. [25] N/A N/A N/A N/A N/A 81.17 / N/A

Schuldt et al. [95] N/A N/A N/A N/A N/A 71.72 / N/A

Ke et al. [52] N/A N/A N/A N/A N/A 62.96 / N/A

Fathi & Mori [31] N/A N/A N/A N/A N/A 90.50 / N/A

Nowozin et al. [80] N/A N/A N/A N/A N/A 87.04 / N/A

Wang et al. [121] N/A N/A N/A N/A N/A 92.43 / N/A

assumption is a poor one. This is the reason why matching results for some ac-

tion sequences are non continuous and possibly random. Secondly, in the training

phase, we learned the shape-motion prototype by k-means clustering in the joint

shape-motion space. When the dataset and the value k are very large, k-means

clustering is very slow. Thirdly, in the testing phase, when there is no color infor-

mation for a person of interest, we detect and track him using part’s appearance

likelihood maps or the silhouette information from background subtraction. When

the person’s cloth color is very similar to background or there is no pure back-

ground available, the background subtraction is not applicable. Finally, although

good overall recognition performance is achieved, our feature representation still has
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difficulties differentiating some classes of actions due to large variability of actions

performed by different individuals. Discriminative analysis of features between dif-

ferent actions might mitigate this issue to some degree. In spite of these limitations,

the experimental results have shown that our approach can meet the needs of action

recognition in practical applications.
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Chapter 6

Conclusion and Future Work

We described a probabilistic hierarchical part-template matching approach to

match human shapes with images to detect and segment humans simultaneously.

Local part-based and global shape-template based approaches are combined to de-

tect and segment humans from images. Based on the shape matching approach,

we first introduced a pose-invariant (articulation-insensitive) image descriptor for

learning a discriminative classifier for challenging problems of detecting and seg-

menting humans in generic photos. The descriptor is computed adaptively based

on human poses instead of concatenating features along 2D image locations as in

previous approaches. Specifically, we estimate the poses using a fast hierarchical

matching algorithm based on a learned part-template tree. Given the pose estimate,

the descriptor is formed by concatenating local features along the pose boundaries

using a one-to-one point correspondence between detected and canonical poses. The

pose-adaptive descriptors are trained using kernel SVM classifiers to discriminate

humans from nonhumans. For applying the tree matching approach to multiple

occluded human detection in crowded surveillance scenarios, we also introduce a

Bayesian approach to iteratively optimize human configurations in images.

The results demonstrate that the proposed part-template tree model captures

the articulations of the human body, and detects humans robustly and efficiently.
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Although our approach can handle the majority of standing human poses, many of

our misdetections are still due to pose estimation failures. This suggests that the de-

tection performance could be further improved by extending the part-template tree

model to handle more difficult poses and to cope with alignment errors in positive

training images. We are also investigating the addition of color and texture informa-

tion to our local contextual descriptor to improve the detection and segmentation

performance.

The KDE-EM framework has fast convergence and achieves accurate results

for color-based segmentation. The incorporation of local contrast-dependent MRF

and PS pose model inference shows the combined local and global priors give very

accurate segmentations, while human poses are estimated simultaneously. The pose-

assisted segmentation approach is also generalized to the case of multiple occluded

human segmentation based on a layered occlusion model and a probabilistic occlu-

sion reasoning method. Experiments show that our approach improves KDE-EM

to a large extent while preserving the basic computational cost and running time.

Currently our approach can deal with most standing human poses (front/back and

side views) but has limitations on handling self-occlusion and performing inference

on more difficult poses. We need to extend our system to incorporate in-process

user adjustments (e.g. correcting orientation of arms) to handle pose inference in

these these cases. Another future direction is to generalize the approach to the cases

of other object categories.

We introduced a pairwise comparison-based learning and classification frame-

work for appearance-based recognition. We used a learned set of pairwise invari-
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ant profiles to adaptively calculate distances from a query to prototypes so that

the expected relative margins can be improved. The combined distances from ap-

pearance and discriminative information lead to significant improvements over pure

appearance-based nearest neighbor classification. We also experimentally validated

the scalability of our approach to larger number of categories. We are currently gen-

eralizing the framework for matching and recognizing people under occlusion. Also,

we want to apply the approach to real-time person recognition in multi-camera sys-

tems by considering specific appearance database management schemes including

appearance addition, removal and update schemes.

The experimental results demonstrate that our gesture and action recognition

approach is both accurate and efficient, even when the action is viewed by a mov-

ing camera and against a possibly dynamic background. Our future work includes

investigation of more robust frame-to-prototype matching methods. For example,

using HMM to incorporate temporal constraints on the prototype sequence estima-

tion. Although we introduced a fast and efficient action recognition approach, it is

still based on separate and independent detection and recognition schemes. Hence,

we are extending it to simultaneous action detection and segmentation in order

to handle more challenging cases such as the presence of multiple different actions

performed simultaneously by multiple actors. We are also exploring discriminative

feature learning algorithms for improving our recognition performance.

Even though robust performance can be obtained in these fundamental prob-

lems, there are still many unsolved problems in integrating these fundamental com-

ponents into a robust surveillance system capable of automatic human movement
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analysis and event/activity analysis. Fore example, the incorporation of scene-

specific cues or high-level spatial or temporal contexts would make human movement

analysis more reliable and accurate. In the future, we aim to combine our approaches

to human detection, segmentation, person and action recognition in a unified system

framework for application in challenging real-world scenarios.
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