
ABSTRACT

Title of dissertation: GEOMETRIC ISSUES IN SPATIAL INDEXING

Houman Alborzi, Doctor of Philosophy, 2006

Dissertation directed by: Professor Hanan Samet
Department of Computer Science

We address a number of geometric issues in spatial indexes. One area of interest is

spherical data. Two main examples are the locations of starsin the sky and geodesic data.

The first part of this dissertation addresses some of the challenges in handling spherical

data with a spatial database. We show that a practical approach for integrating spherical

data in a conventional spatial database is to use a suitable mapping from the unit sphere to

a rectangle. This allows us to easily use conventional two-dimensional spatial data struc-

tures on spherical data. We further describe algorithms forhandling spherical data. In

the second part of the dissertation, we introduce the areal projection, a novel projection

which is computationally efficient and has low distortion. We show that the areal projec-

tion can be utilized for developing an efficient method for low distortion quantization of

unit normal vectors. This is helpful for compact storage of spherical data and has applica-

tions in computer graphics. We introduce the QuickArealHexalgorithm, a fast algorithm

for quantization of surface normal vectors with very low distortion. The third part of the

dissertation deals with a CPU time analysis of TGS, an R-tree bulkloading algorithm. And

finally, the fourth part of the dissertation analyzes the BV-tree, a data structure for storing

multi-dimensional data on secondary storage. Contrary to the popular belief, we show that

the BV-tree is only applicable to binary space partitioning of the underlying data space.

GEOMETRIC ISSUES IN SPATIAL INDEXING

by

Houman Alborzi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fullfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Hanan Samet, Chair
Professor Larry Davis
Professor Shunlin Liang
Professor David Mount
Professor Amitabh Varshney

c© Copyright by

Houman Alborzi

2006

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to many people whose friendship and support I re-

lied on during my years at the University of Maryland. I thankmy friend Jagan Sankara-

narayanan, for his commitment in proofreading my dissertation. I thank my friends Jaime

Montemayor, Pedram Hovareshti, Banafsheh Keshavarzi, Mehdi Kalantari-Khandani, Nargess

Memarsadeghi, Guity Mohammadi, David Omer Horvitz, Bujor Silaghi, and Gabriel Rivera

for their encouragement and support to finish my dissertation. I am thankful to my advi-

sor Professor Hanan Samet for his unconditional support of my research and his personal

friendship. I would also like to thank Professors Larry Davis, Shunlin Liang, David Mount,

and Amitabh Varshney for serving on my advisory committee. In addition, I would like to

thank my many teachers from whom I learned much during my years in graduate school.

Moreover, I am thankful to Fatima Bangura and Nilo Rubin, as well as other staff member

at the University of Maryland who were always eager to help mein one way or another.

I also like to thank my father Shokrollah Alborzi, my mother Ghodsieh-Soltan Javadi-

Jahromi, my brother Kamran Alborzi, and my sister Marjan Alborzi for they were my first

teachers. And last, but not least, I would like to thank my wife, Maliheh Poorfarhani, for

her love, friendship, and emotional support.

iii

Contents

1 Introduction 1

1.1 Spatial Indexing Methods .. 2

1.1.1 PMR Quadtree . 3

1.1.2 R-tree . 3

1.2 SAND: Spatial and Non-spatial Database 4

2 Spherical SAND 6

2.1 Introduction . 6

2.2 Spatial Data Structure to Support Spherical Data 7

2.2.1 The first method of mapping using a cube10

2.2.2 The second method of mapping using a cube11

2.2.3 Criteria for of an appropriate mapping 12

2.2.4 Mapping using Lambert’s cylindrical equal area projection 12

2.2.5 Mapping using Flattened Octahedron 12

2.3 Spatial Objects in Spherical SAND and Spherical Algorithms 13

2.3.1 Preliminaries and Notations .13

2.3.1.1 Vectors . 13

2.3.1.2 Spherical point . 14

2.3.1.3 Planes and circles . 15

iv

2.3.1.4 Projection of a great circle on the plane of another great

circle . 16

2.3.1.5 Projection of a small circle on a great circle plane 16

2.3.1.6 Spherical line . 17

2.3.1.7 Small arc . 17

2.3.1.8 Spherical Polygon . 18

2.3.1.9 Excess of a Small Arc 20

2.3.1.10 Lambert Rectangle . 24

2.4 Geometrical Operation on Spherical Objects 25

2.4.1 Intersection of Two Spherical Points 25

2.4.2 Distance between Two Spherical Points 25

2.4.3 Distance between a Spherical Point and a Circle 27

2.4.4 Distance of a point set to a circle 27

2.4.5 Distance between a Spherical Point and a Spherical Line 28

2.4.6 Intersection of a Spherical Point and a Spherical Line. 29

2.4.7 Intersection of a Spherical Point and a Spherical Polygon 30

2.4.8 Distance between a Spherical Point and a Spherical Polygon 32

2.4.9 Intersection of two Spherical Lines 32

2.5 Extensions to the SAND Browser . 32

3 Low distortion normal vector quantization 34

3.1 Introduction . 34

3.2 Related Work . 36

3.3 Quantization Methods .39

3.3.1 Octahedral Quantization . 39

3.3.1.1 Similar Methods . 41

3.3.2 Delta Encoding . 43

3.3.3 Hexagonal Cells . 44

v

3.3.4 Projections for Octahedral Quantization 46

3.3.4.1 Gnomonic Projection 46

3.3.4.2 Areal Projection . 47

3.3.4.3 Buss-Fillmore Projection 49

3.3.4.4 Tegmark Projection . 49

3.3.5 QuickAreal Algorithm . 49

3.3.6 Quantization Using a Nearest Neighbor Finding Algorithm 51

3.3.6.1 Random Points . 51

3.3.6.2 Saff-Kuijlaars Method 51

3.3.6.3 Spherical Centroidal Voronoi Tessellations (SCVT) .. . 52

3.3.7 Table of Quantization Methods .52

3.3.8 QuickArealHex Algorithm . 53

3.4 Lower Bounds . 55

3.4.1 A Tighter Lower Bound . 57

3.5 Comparison of Quantization Methods 60

3.5.1 Encoding and Decoding Times . 64

3.6 Rendering a Perfect Sphere .66

3.7 Summary and Conclusion . 69

4 Execution time analysis of a top-down R-tree construction algorithm 87

4.1 Introduction . 87

4.2 Background . 89

4.3 TGS Bulk Loading Algorithm . 92

4.4 Bottom-up Packing Versus Top-Down Packing Algorithms 95

4.5 Analysis . 98

4.6 Concluding Remarks . 101

vi

5 BV-trees, axis aligned rectangles, and binary space partitioning 103

5.1 Introduction . 103

5.2 Description of the BV-tree data structure 105

5.3 BV-trees and axis-aligned rectangles 105

5.4 Cordial regions and binary space partitioning 107

6 Conclusion and future work 113

6.1 Directions for future work .. 114

A 116

A.1 Derivation of the Areal Projection 116

vii

List of Tables

3.1 The four extensions of a point(a,b) in different quadrants of the square. . . 44

3.2 A Summary of Quantization Methods 53

viii

List of Figures

2.1 Flattening a cube on the plane. .. . 11

2.2 The length of a spherical line. 17

2.3 An example of a spherical triangle. 18

2.4 Excess of a spherical arc (shown in thicker line) betweenspherical points

A andB. The thin lines are great circle arcs. 20

2.5 An example of a Lambert rectangle. 25

2.6 Finding the distance of a point to a circle. 28

2.7 Example of the distance from a spherical point to a spherical line. 30

3.1 A block diagram of Octahedral Quantization, the proposed method for sur-

face normal quantization. 39

3.2 Arrangement of eight right-angled triangles in a square. 41

3.3 Pattern of representative points for an even number of bits. 42

3.4 Pattern of representative points for an odd number of bits. 42

3.5 Extension of Figure 3.2 to a larger square. 44

3.6 First step in constructing the hexagonal pattern for an even number of bits. . 45

3.7 Second step in constructing the hexagonal pattern for aneven number of bits. 46

3.8 Hexagonal pattern of representative points for an even number of bits. . . . 46

3.9 The pointN inside spherical triangle△XYZ. 48

3.10 The neighborhood search of the QuickArealHex algorithm. 54

3.11 Cross section of the unit sphere centered atO. 56

ix

3.12 Tighter lower bounds. .. 58

3.13 Different error statistics of the Deering, the Geographic, the OQ-Gnomonic,

the OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark quantization

methods. (a,b) Maximum Quantization Error. (c,d) Average Quantization

Error. (e,f) Root Mean Square Quantization Error. 71

3.14 Different statistics of the Geographic, the OQ-Gnomonic-Hex, the OQ-

Areal-Hex, the OQ-Buss-Fillmore-Hex, and the OQ-Tegmark-Hex quan-

tization methods. (a,b) Maximum Quantization Error. (c,d)Average Quan-

tization Error. (e,f) Root Mean Square Quantization Error. 72

3.15 Different statistics of the NN-Deering, the NN-Geographic, the NN-OQ-

Areal, the NN-OQ-Buss-Fillmore, and the NN-OQ-Tegmark, quantization

methods. (a,b) Maximum Quantization Error. (c,d) Average Quantization

Error. (e,f) Root Mean Square Quantization Error. 73

3.16 Different statistics of the NN-Deering, the NN-Geographic, the NN-OQ-

Gnomonic-Hex, the NN-OQ-Areal-Hex, the NN-OQ-Buss-Fillmore-Hex,

and the NN-OQ-Tegmark-Hex quantization methods. (a,b) Maximum Quan-

tization Error. (c,d) Average Quantization Error. (e,f) Root Mean Square

Quantization Error. 74

3.17 Different error statistics of the NN-OQ-Gnomonic-Hex, the NN-OQ-Areal-

Hex, the NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NN-Saff-Kuijlaars,

and the NN-SCVT quantization methods. (a,b) Maximum Quantization Er-

ror. (c,d) Average Quantization Error. (e,f) Root Mean Square Quantization

Error. 75

3.18 The quantization time of different quantization methods. (a) Encoding

time. (b) Decoding time. 76

x

3.19 Rendering a perfect sphere with normals quantized with 8bits, using the

Geographic, the NN-Geographic, the Deering, and the NN-Deering quanti-

zation methods. The spheres in the top row have been rotated in the bottom

row in order to show the tessellations from a different viewpoint. 76

3.20 Rendering a perfect sphere with normals quantized with 8bits, using the

OQ-Gnomonic, the NN-OQ-Gnomonic, the OQ-Tegmark, and the NN-

OQ-Tegmark quantization methods. The spheres in the top rowhave been

rotated in the bottom row in order to show the tessellations from a different

viewpoint. 77

3.21 Rendering a perfect sphere with normals quantized with 8bits, using the

OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-OQ-

Buss-Fillmore quantization methods. The spheres in the top row have been

rotated in the bottom row in order to show the tessellations from a different

viewpoint. 78

3.22 Rendering a perfect sphere with normals quantized with 7bits, using OQ-

Gnomonic, NN-OQ-Gnomonic, OQ-Tegmark, and NN-OQ-Tegmarkquan-

tization methods. The spheres in the top row have been rotated in the bot-

tom row in order to show the tessellations from a different viewpoint. . . . 79

3.23 Rendering a perfect sphere with normals quantized with 7bits, using the

OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-OQ-

Buss-Fillmore quantization methods. The spheres in the top row have been

rotated in the bottom row in order to show the tessellations from a different

viewpoint. 80

3.24 Rendering a perfect sphere with quantized normals at 8 bits, using the OQ-

Areal, the NN-OQ-Areal, the OQ-Areal-Hex, and the NN-OQ-Areal-Hex

quantization methods. The spheres in the top row have been rotated in the

bottom row in order to show the tessellations from a different viewpoint. . . 81

xi

3.25 Rendering a perfect sphere with quantized normals usingthe NN-Random,

the NN-Saff-Kuijlaars, the NN-SCVT, and the NN-OQ-Areal-Hex quanti-

zation methods. The spheres in the top row have been rotated in the bottom

row in order to show the tessellations from a different viewpoint. 82

3.26 Rendering a perfect sphere with normals quantized with the Deering and

the NN-OQ-Areal-Hex quantization methods with different bits of quanti-

zation. The spheres in the top row are quantized using the Deering method,

and the spheres in the bottom row are quantized using the NN-OQ-Areal-

Hex. 82

3.27 Rendering of a sphere with specular highlight. 83

3.28 Rendering the sphere in Figure 3.27(a) with surface normals quantized with

14, 16, 18, and 20 bits using the Deering, the OQ-Gnomonic-Hex, the NN-

OQ-Areal-Hex, and the NN-SCVT quantization methods. 84

3.29 A comparison of the Deering and QuickArealHex methods.(a) Normalized

Maximum Quantization Error. (b) Encoding time. 86

4.1 Arrangement of bounding boxes. (a) A set of five boxes. (b)One bounding

box for boxes (A, C) and one for (B, D, E). (c) One bounding box forboxes

(A, B) and one for (C, D, E). 90

4.2 Result of applying the TGS bottom-up packing bulk loadingalgorithm to

bulk load a packed R-tree using a cost function that minimizes(a) the over-

lap area, and (b) the total area. .98

4.3 Result of applying the top-down packing TGS bulk loading algorithm to

bulk load an R-tree using a cost function that minimizes (a) the overlap

area, and (b) the total area. 99

5.1 A pathological example of axis-aligned rectangles thatleads to violation of

the BV-tree design assumptions. 106

xii

5.2 Example of a BV-tree with intervals as regions. The BV-tree, shown on the

right, has a page capacity of three. Data points and the regions are shown

on the left. The regions corresponding to level 0 nodes, level 1 nodes,

and level 2 nodes are drawn in solid lines, dash-dot lines, and dash-dot-dot

lines, respectively. 108

5.3 Example illustrating the definition ofR0
S. The regionS is the outer rectan-

gle, and the setsRS andR0
S consist of the inner rectangles. 112

xiii

List of Algorithms

2.1 DOESINTERSECTPOINTPOINT(p1, p2) 26

2.2 DISTPOINTPOINT(p1, p2) . 26

2.3 DISTPOINTL INE(p, l) . 29

2.4 DOESINTERSECTPOINTL INE(q, l) . 30

2.5 DOESINTERSECTPOINTPOLYGON(p,g) 31

2.6 INTERSECTIONPOINTSOFPLANES(p,q) 31

2.7 DISTPOINTPOLYGON(p,g) . 32

2.8 DOESINTERSECTL INEL INE(l1, l2) . 33

4.1 BULK LOAD(D) . 93

4.2 BULK LOADCHUNK(D,h) . 94

4.3 PARTITION(D,m) . 94

4.4 BESTBINARY SPLIT(D,m) . 95

4.5 COMPUTEBOUNDINGBOXES(D,m) . 96

4.6 SPLITONKEY(D,s, t) . 96

1

Chapter 1

Introduction

We address a number of geometric issues in spatial indexes. One area of interest is spherical

data which consists of geometric objects lying on a sphere. Two main examples are the

locations of stars in the sky and geodesic data. The first partof this dissertation addresses

some of the challenges in handling spherical data with a spatial database. We show that a

practical approach for integrating spherical data in a conventional spatial database is to find

a mapping from the unit sphere to a rectangle. This allows us to easily use conventional

two-dimensional spatial data structures on spherical data. We further describe algorithms

for handling spherical data.

In the second part of the dissertation, we introduce the areal projection, a novel pro-

jection which is computationally efficient and has low distortion. We show that the areal

projection can be utilized for developing an efficient method for low distortion quantiza-

tion of unit normal vectors. This is helpful for compact storage of spherical data and has

applications in computer graphics. We discuss different normal quantization methods and

provide an in-depth comparison of the methods. We introducethe QuickArealHex algo-

rithm, a fast algorithm for quantization of surface normal vectors with very low distortion.

In the third part of the dissertation, a detailed CPU execution-time analysis and imple-

mentation are given for a bulk loading algorithm to construct R-trees due to Garcı́a, López,

2

and Leutenegger [31] which is known as the top-down greedy split (TGS) bulk loading

algorithm. The TGS algorithm makes use of a classical bottom-up packing approach. In

addition, an alternative packing approach termed top-downpacking is introduced which

may lead to improved query performance, and it is shown how toincorporate it into the

TGS algorithm. A discussion is also presented of the tradeoffs of using the bottom-up and

top-down packing approaches.

The fourth part of the dissertation analyzes the BV-tree, a data structure for storing

multi-dimensional data on secondary storage. Contrary to the popular belief, we show that

the BV-tree is only applicable to binary space partitioning of the underlying data space.

In the rest of this chapter, we provide some background material about spatial indexes.

We further introduce SAND, a software for spatial database management.

1.1 Spatial Indexing Methods

The B-tree and its variants (Comer [15] provides a comprehensive survey) are the data

structure of choice for implementing indexes for databases. The B-tree design assumes that

there is a total ordering of the keys, and hence, stores the keys in order on secondary storage.

The B-tree recursively splits the data into smaller blocks. Associated with each blockB is

a key range(k−,k+), such thatB contains all data elements with keyk : k− ≤ k≤ k+. A

nice property of the B-tree is that it also allows efficient range searches. Moreover, if the

each key is associated with a point of a one dimensional line,then the ordering of keys also

preserves their proximity. That is, the closest key to each key is either its predecessor or its

successor in the ordering. Spatial data, usually referringto geometric data in a 2-d or 3-d

space, is not inherently suitable to be stored using the B-tree, as there does not exist a total

ordering on spatial data that also preserves proximity. Hence, a few data structures have

been designed to overcome the difficulties of efficiently organizing spatial data. Some of

these spatial data structures, such as the linear quadtree [32], use a B-tree as an underlying

3

data structure. Nevertheless, almost all spatial data structures use similar concepts as the

B-tree. Each data block is an aggregate of smaller data blocks. And each data blockB

with a regionR of the space, called a bounding object ofB. The data blocks which are not

subdivided any further are called leaf nodes. Samet [65] provides an extensive survey of

spatial data structures.

1.1.1 PMR Quadtree

The PMR quadtree [54] is a variant of the region quadtree [43,46,62] that can handle spatial

objects of arbitrary dimensionality (i.e., including 2-d and 3-d). For example, in a two-

dimensional space, the PMR quadtree subdivides the underlying rectangular spacer into

four congruent rectangular areas whenever the number of objects overlappingr exceeds

a predefined values, termed the splitting threshold. Each of the resulting areas contains

references (via pointers) to the spatial descriptions of the objects that overlap it. The PMR

quadtree is different from other bucketing methods. In particular, when the number of

objects that overlapr exceeds the splitting threshold, thenr is only subdivided once even

though some of the resulting areas, saya, may still be overlapped by more thans objects.

The areaa will be subdivided the next time an object is inserted that overlaps it. This way,

regions are not repeatedly subdivided when more thansobjects lie very close to each other.

1.1.2 R-tree

The R-tree [39], originally designed for handling rectangles, is now widely used for in-

dexing all kinds of spatial data. Associated with each data block of R-tree is a bounding

rectangleR such that the spatial extents of all data in that the block arecontained inR.

The bounding rectangles associated with the children of a data block may overlap. Con-

sequently, searches on an R-tree may involve traversing morethan one path of the data

structure.

4

1.2 SAND: Spatial and Non-spatial Database

SAND [20,21,66] is an interactive spatial database and browser developed at the University

of Maryland. SAND combines a graphical user interface with aspatial and non-spatial

database engine. It supports queries on both spatial and non-spatial data. Examples of

queries are spatial selections and spatial joins. SAND supports the PMR quadtree, the

R-tree, and the PK-tree [78] spatial indexing methods, and uses the B+-tree index for non-

spatial data. Although some of the SAND’s spatial operations (e.g., selections and joins)

are only implemented for few spatial indexing methods, mostof the spatial operations are

supported by the PMR quadtree.

Spatial selections in SAND involve finding all data objects whose spatial attribute over-

laps the search region. Of particular interest are spatial range queries in SAND where a

user queries the data set for objects whose distance from another data object is within a

given distance range. For example, this feature enables a user to find all warehouses that

are between 100 and 200 miles of a particular retail store. Another query feature of SAND

allows users to search for all objects that have a certain orientation with respect to another

data object. For example, a user can locate all warehouses that are north of a given location.

SAND also supports the join operation. There are many variants of this operation.

The operation generates a subset of the Cartesian product of the two given relationsR and

S that satisfy a specified join condition. When the join condition is imposed on spatial

attributes, the operation is known as aspatial join. The join condition often restricts tuples

to lie within a given distance of each other. In particular, thedistance join[40] orders the

resulting tuples according to their spatial proximity. Thedistance semi-join[40] is a special

case of the distance join in which each element of setR is paired up only with the closest

member of setS. The resulting tuples are ordered by the distance between their constituent

spatial attributes. For example, consider two data setsR andS, such thatR contains the

locations of the warehouses of a merchant, andS contains the locations of retail stores

of the merchant. Using the distance semi-join, a user can findthe closest warehouse for

5

each retail store. SAND implements distance semi-joins using anincrementalalgorithm

developed by Hjaltason and Samet [42].

6

Chapter 2

Spherical SAND

2.1 Introduction

This chapter discusses the design and implementation of a spherical data model for SAND.

SAND is a spatial database developed at University of Maryland that combines a graphical

user interface with a spatial and non-spatial database engine. SAND supports geometric

operations on a few common geometric objects, such as points, lines, rectangles, and poly-

gons. Operations that are supported on these objects are (i)measuring distance between

two objects; (ii) determining if two objects intersect; and(iii) determining if an object con-

tains another object. Additionally, SAND can compute the length of a line, and the areas

of rectangles and polygons. These geometric operations arefundamental to SAND as the

spatial indexes and the spatial queries support by SAND are constructed with these geo-

metric operations. The geometric objects of SAND were originally implemented for data

lying in a 2-d or a 3-d space.

We extended SAND to support geometric objects that lie on a sphere as SAND was

not able to correctly handle spherical data such as data thatlie on the surface of the Earth.

In particular, SAND was not able to correctly calculate the distance between data objects

on the surface of the Earth, and the planar data model only provided reasonably accurate

7

responses to a small portion of the Earth. The main shortcoming of SAND was that the

distance function did not take into account the curvature ofthe Earth. The addition of a

spherical data model gives SAND the ability to correctly perform queries on a spherical

data model,i.e., data that represent features on the surface of the Earth.

The rest of this chapter is organized as follows. Section 2.2discusses the different con-

siderations that were taken into account in designing the spatial data structure that supports

spherical data. Section 2.3 presents the spatial objects that are needed in spherical SAND.

Section 2.4 describes the algorithms needed to deal with spherical geometry, specially com-

puting distances between spherical primitives, while Section 2.5 indicates changes that

were made to the SAND Browser to enable its use for viewing spherical data.

2.2 Spatial Data Structure to Support Spherical Data

In this section, we describe the various approaches that we undertook to extend SAND

to support spherical data. Earlier versions of SAND supported data primitives such as

polygons, lines, and points on a plane. We enhanced the SAND data objects to support

spherical polygons, spherical lines, and points on a sphere. SAND consists of a large code-

base that supports spatial data structures for two-dimensional and three-dimensional spaces.

Instead of redesigning all the spatial data structures and operations for the spherical data,

we focused on different ways in which a sphere could be mappedto a two-dimensional

space (plane). In the following discussion, we use the termdata spaceto describe the

space in which the data resides, andgrid spacefor the space in which the data structure

manipulations take place. For example, if the sphere is mapped onto a planep, and a

quadtree decomposition is subsequently performed on the plane, then the planep is the

‘grid space’. Obviously, there should exist amappingbetween the data space and the grid

space. Ideally, the mapping would need to permit efficient operations on the data.

There are two ways to implement the mapping. One is to immediately map the data ob-

8

jects onto the grid space whenever they are modified or inserted into the database. Using the

above method requires computing a mapping of spherical shapes into planar shapes upon

performing insertion or update operations. This approach could be advantageous when the

required geometric operations are more expensive to perform in the data space than they

are in the grid space. An alternative approach is to map the partitions on the grid space

into the data space. In our example, this approach requires finding spherical curves which

when mapped to the grid space form the quadtree partitions ofthe plane. This approach

is advantageous if the geometric operations performed in the grid space are more complex

than the same operations performed in the data space. In the first approach, an object in the

data set must be mapped from the data space onto the grid space, whereas in the second

approach only the grid partitions must be mapped from the grid space onto the data space.

Assuming that there are more data objects than partition lines, it appears that mapping the

grid space onto the data space is cheaper from a computational complexity standpoint than

mapping the data space onto the grid space. This is especially true if the geometric oper-

ations performed in the grid space maps the data back to the data space. For example, a

possible algorithm for determining the intersection of twospherical lines mapped as planar

lines on the grid space, maps the planar lines back to sphere and determines the intersection

on sphere.

Mapping the grid space onto the data space can be made more efficient by storing the

result of the mappings of the grid space onto the data space inthe data structure. For ex-

ample, in the case of a quadtree-like subdivision in the gridspace, we can maintain the

result of mapping the partition lines from the grid space to the data space in the data struc-

ture. In addition, we should bear in mind that even for a database with a few insertions

or updates, mapping data objects onto the grid space may not be computationally feasible.

For example, in the case of mapping a sphere into a plane, a spherical line may not neces-

sarily be mapped onto a line on the plane. Hence, performing computations on the result

of the mappings is not a straightforward task. Similar problems can be encountered when

9

designing a mapping from the grid space onto the data space. The mappings of partitions

of the grid should make use of simple geometrical primitiveswhere geometrical algorithms

to compute the distance and intersection between objects are easy to implement.

In the case of spherical SAND, we use the second approach where we map the grid

into the data space. In fact, we map the data structure grid onto the data space, and per-

form the geometrical operations directly in the data space.We investigate four different

mappings between the data space and the grid space. The first two approaches are based

on embedding a cube in the sphere and projecting points on thecube to the sphere, or vice

versa as they are equivalent since the mappings are one-to-one and onto. The map of a

point P on the sphere in this approach is calculated by shooting a rayfrom the center of

sphere toP, the intersection of the ray with the cube is the map ofP. These approaches

were based on the ideas proposed by Scott [67]. A cube is a polyhedron with the property

that all faces of it are squares and are regular polygons. A polyhedron such that all faces

are equal regular polygons is called a Platonic solid. Thereare only five platonic solids,

namely thetetrahedronwith four triangle faces and four vertices of degree three, thecube

with six square faces and eight vertices of degree three, theoctahedronwith eight triangle

faces and six vertices of degree four, thedodecahedronwith twelve pentagon faces and

twenty vertices of degree three, and theicosahedronwith twenty triangle faces and twelve

vertices of degree five. Notice that if we take the cube and replace each face by a vertex

in the middle of the face, and connect the vertices whose corresponding adjacent faces are

adjacent, we will obtain an octahedron. Hence, we consider the cube and the octahedron as

duals. Similarly, the dodecahedron and the icosahedron areduals, while the tetrahedron is

the dual of itself. Projecting a sphere into a platonic solidis a common practice in spatial

data structures [23,33,80].

The third approach is based on an equal area cylindrical projection of the plane onto

the sphere (also known as Lambert’s cylindrical equal area projection [69]). Tobler and

Chen [12,74] have used the same approach for building spherical quadtrees.

10

A fourth approach presented here is based on projecting a sphere into an octahedron

and then flattening the octahedron into a square. Praun and Hoppe [55] suggest mapping a

sphere into flattened octahedron as well. We independently came up with the same scheme

for the purpose of projecting spherical data into a square.

2.2.1 The first method of mapping using a cube

In the first approach that we tried, we mapped the sphere onto the cube based on an idea

developed by Scott [67]. We modeled each face of the resulting cube with a quadtree

data structure thereby using six quadtree structures. It should be noted that Scott’s method

for calculating the mapping between the subdivisions of cubical faces and their spherical

counterparts is incorrect. In particular, Scott uses a parallel projection that results in certain

portions of the sphere not being covered on the cube. We solved this problem by projecting

through the center of the sphere (i.e., Gnomonic projection). This mapping has the property

that any line on a face of the cube maps to a spherical line on the sphere (i.e., a great

circle arc). Therefore, we only needed to implement geometrical algorithms dealing with

spherical lines. However, lines parallel to the Equator, when projected onto the cube will

not be a line anymore.

Another interesting feature of this mapping is that the spherical polygons are mapped

as polygons on the cube, and by storing the projection of eachdata object we can use

faster planar geometric algorithms instead of the spherical ones. However, a drawback of

this mapping is that it is not an equal area projection. This means that data uniformly-

distributed in the data space are not uniformly-distributed after projection into the grid

space.

Even though implementing this approach appears straightforward, we encountered con-

siderable difficulties when we tried to modify many parts of SAND to incorporate it. For

example, in the case of a general spatial join, we would have to perform 36 pairwise inter-

sections — one for every possible pair of faces of the two cubes that correspond to the two

11

joined sets. Moreover, in many of the standard functions in SAND there is an implicit as-

sumption that the data is stored in a single quadtree. Finding and debugging all the related

code seemed impractical for this task.

2.2.2 The second method of mapping using a cube

Observing the infeasibility of using six quadtrees for any dataset, we used an alternative

approach where we flattened the cubic faces on a plane. In other words, the grid space

was considered to be a single rectangle which contains all resultant six faces of result of

projecting the sphere onto the cube (see Figure 2.1). This approach allowed us to reuse

many of the SAND routines with no extra effort. However, the main drawback of this

approach was that some of the regions in the grid space did nothave a corresponding region

(i.e., were undefined) in the data space. Thus some of the algorithms in SAND failed to

work properly without further modification. In particular,not every connected region in

the grid space had a corresponding connected region on the sphere. This was a problem

because some of the operations in SAND examined every block spanned by the region in

the grid space and some of these blocks were not well defined onthe sphere, and hence

difficult to deal with. The dotted rectangle in Figure 2.1 shows such a block.

Figure 2.1: Flattening a cube on the plane.

12

2.2.3 Criteria for of an appropriate mapping

Based on our experience with the first two approaches, we concluded that an appropriate

mapping for SAND should have the following properties:

1. Maps the sphere into a single rectangle,

2. Any axis-aligned rectangle on the plane should be mapped to a simple shape on the

sphere.

2.2.4 Mapping using Lambert’s cylindrical equal area projection

We use Lambert’s cylindrical equal area projection as the mapping. This mapping is also

an equal area projection and hence preserves the uniformityof data points. However, it has

singularities at the poles, where the poles will be mapped into lines in the grid space. A

side effect is that data primitives around the poles will be elongated in the projection. A

horizontal line in this mapping maps to an arc of a small arc onthe sphere and a vertical line

in this mapping maps to an arc of great circle on the sphere. Hence, using this mapping,

a rectangle in the grid space will be mapped to a spherical quadrilateral, such that two

of its edges are small arcs (see Section 2.3.1.7) and the other two are spherical lines (see

Section 2.3.1.6).

2.2.5 Mapping using Flattened Octahedron

In Section 3.3.1 we describe how an octahedron can be flattened to a square. We also

introduce the Areal projections. Using the flattened octahedron in combination with using

either the Gnomonic projection or the Areal projection satisfy our criteria for a suitable

mapping. If we use the Gnomonic projection line in one of the eight triangle of the square

map to a spherical line on the unit sphere. Thus, any polygon,including a rectangle, in

the grid space will map to a polygon in the data space. However, if we use the Areal

13

projection, then only the vertical and horizontal lines andthe diagonal lines parallel to the

partition lines of Figure 3.4 will map to small arcs of the sphere.

In the sections that follow, we present more details about spherical data primitives and

geometrical algorithms needed for the implementation.

2.3 Spatial Objects in Spherical SAND and Spherical Al-

gorithms

This section introduces the spatial objects in the Spherical SAND. The spherical objects

include spherical points, spherical lines, spherical polygons, and Lambert rectangles. In

the following section, we describe the spherical objects and some of their properties. We

follow by describing the algorithms that operate on spherical objects.

2.3.1 Preliminaries and Notations

All objects in spherical SAND reside on the surface of asphereof unit radius. LetO denote

the center of the sphere which is also the origin of the coordinate system.S2 denotes the

surface of the sphere. While all the objects reside onS2, it is convenient to also use three-

dimensional Euclidean spaceR3 whenever needed. We freely use a Cartesian coordinate

system, and/or a spherical coordinate system, to specify the coordinates of objects. The

triple (x,y,z) and the pair(λ ,φ) denote a point in Cartesian and spherical coordinate sys-

tems respectivelyλ is known as thelongitudeof the point, andφ is known at itslatitude.

For p andq points inR
3, |pq| denotes the Euclidean distance betweenp andq.

2.3.1.1 Vectors

For two vectors~u and~v,~u·~v denotes their dot product and~u×~v denotes their cross product.

NORMALIZE(~v) denotes the unit vector corresponding to~v. The cosine of angle∠~u,~v

14

between two unit vectors~u and~v is equal to the dot product of the unit vectors. Equally,

∠~u,~v = arccos(~u·~v).

2.3.1.2 Spherical point

The basic unit of data is aspherical pointwhich is a point onS2, the surface of the unit

sphere. There is a one-to-one mapping between points onS2 and the unit vectors inR3.

The corresponding unit vector fromO to a pointp is denoted by~p. For any pointP with

coordinates(x,y,z), its antipodalpoint is the pointP with coordinates(−x,−y,−z). A

point, its antipodal, andO are collinear. Furthermore, the distance from a pointP to O

equals the distance fromP’s antipodal pointP to O, or formally |OP| = |OP|. Given a

spherical pointP with Cartesian coordinates(x,y,z), and spherical coordinates(λ ,φ), the

following relationships hold,

λ = arctan(y,x) (2.1)

φ = arcsinz (2.2)

x = cosλ cosφ (2.3)

y = sinλ cosφ (2.4)

z = sinφ (2.5)

1 = x2 +y2 +z2. (2.6)

Recall thatλ is also known as the longitude of the spherical point, andφ is known

at its latitude. Notice that the spherical coordinates defined here are different from the

convention in adopted in some calculus textbooks, wherez = cosδ , and δ = π
2 − φ is

called thecolatitude.

For spherical pointsp andq, DISTPOINTPOINT(p,q) denotes the spherical distance

betweenp andq, which is the length of the shortest arc of the unit sphere connectingp and

q.

15

2.3.1.3 Planes and circles

The intersection of the unit sphere with a plane forms a circle. If the plane passes through

the center of the sphere, then the intersection is called agreat circle, and it has a unit radius.

If the center of the sphere does not occur on the intersectingplane, the resulting circle is

termed asmall circle. A plane can be represented as(~n,d) where~n is its normal vector and

d is its distance to the originO, such that a pointp is on the plane if and only if~p ·~n = d.

Notice that both(~n,d) and(−~n,−d) represent the same plane. The plane(~n,d) and the

unit sphere intersect, if and only if,d ≤ 1. Notice that, in cased = 0, the circle is a great

circle; and otherwise it is a small circle. The small circle will be called a small circle of

displacementd or a small circle of radiusr. The intersection of the plane(~n,d) with the

unit sphere is a circle with radiusr =
√

1−d2. Note that the radius of a a great circle is

always 1. For the planeq = (~n,d), NORMALVECTOR(q) denotes~n its normal vector and

DISPLACEMENT(q) denotesd its distance toO. Fir a circlec, PLANE(c) denotes the plan

containingc. Moreover, CENTER(c) and RADIUS(c) denote the center and the radius of

the circle respectively. We also use DISPLACEMENT(c) and NORMALVECTOR(c) to refer

to DISPLACEMENT(PLANE(c)) and NORMALVECTOR(PLANE(c)) respectively.

Any three non-collinear points inR3 specify one and only one plane passing through

them. Hence, the center of the sphere and any two non-antipodal pointsp andq on the

sphere specify exactly one plane whose normal is NORMALIZE(~p×~q) and hence, exactly

one great circle of the sphere. A small circle can be specifiedby the plane normal~n and a

point p on it. The distanced of the small circle to the great circle parallel to it is|~p·~n|. The

centero of a small circle isd~n. Or,

CENTER(c) = DISPLACEMENT(c)NORMALVECTOR(c).

In case we are representing a great circle only, we can omit the parameterd to save storage.

It is interesting to notice that a great circle and a spherical point are duals. Where, the

16

dual of a spherical pointp is the great circle with normal~p. In fact, any two antipodal

spherical points share the same great circle as their duals.Based on this observation, we

may as well defineoriented great circles. Every great circle overlaps two directional great

circles with their directions going in opposite directions.

2.3.1.4 Projection of a great circle on the plane of another great circle

The projection of a great circlec1 on the plane of a great circlec2 is an ellipse centered at

O and having two radiir1 andr2 such that

r1 = 1

and

r2 = r1|NORMALVECTOR(c1) ·NORMALVECTOR(c2)|.

2.3.1.5 Projection of a small circle on a great circle plane

The projection of a small circlec on the plane of a great circleC is an ellipse centered atq

and having two radiir1 andr2 such that

q = CENTER(c)− (CENTER(c) ·NORMALVECTOR(C))NORMALVECTOR(C)

r1 = RADIUS(c)

r2 = r1|NORMALVECTOR(c) ·NORMALVECTOR(C)|

The ellipse is spread along the vector NORMALVECTOR(C) × NORMALVECTOR(c).

The ellipse has no intersection with the great circle if and only if RADIUS(c) <

|NORMALVECTOR(C) ·NORMALVECTOR(c)|

17

2.3.1.6 Spherical line

A spherical lineis the collection of all points on the sphere on the shortest path between

two spherical points that are termed its two endpoints. Notethat if the two endpoints of

a spherical line are antipodals, then there are many spherical lines defined by them. Any

two non-antipodal spherical points specify a unique spherical line. The great circle formed

by two non-antipodal spherical points is divided into two arcs of non-equal length where

the spherical line is the shorter arc. Figure 2.2 shows two spherical pointsA andB and the

circle of radiusr is the circle passing throughO, A andB. The length of the arc (drawn

using bold line) is 2α.

The endpoints of a spherical linel , are specified by ENDPOINTONE(l) and

ENDPOINTTWO(l). As each spherical linel is an arc of a great circle, we can also specify

the plane PLANE(l) that containsl . The spherical line between two spherical pointsA and

B is denoted by LINE(A,B).

r

A

B

O

α

Figure 2.2: The length of a spherical line.

2.3.1.7 Small arc

There are many small circles passing through two spherical points p andq. The shortest

arc betweenp andq on a small circle of displacementd and radiusr =
√

1−d2 is called

a small arcof displacementd betweenp andq. DISTPOINTPOINT(p,q,d) denotes the

length of such an arc. Consider the small circle of radiusr containing the small arc as in

18

Figure 2.2. We have

DISTPOINTPOINT(p,q,d) = 2rα = 2r arcsin
|pq|/2

r
.

For γ = arcsind = arccos(r), andβ = arccos(~p·~q), using Equation 2.11, we obtain

DISTPOINTPOINT(p,q,d) = 2cosγ arcsin
sinβ/2

sinγ
. (2.7)

2.3.1.8 Spherical Polygon

A spherical polygonis a closed region on the sphere bounded by non-intersectingspherical

lines. We represent a spherical polygon by a circular list ofspherical points ordered in such

a way that two adjacent spherical points in the list specify aspherical line (edge) bounding

the spherical polygon. Figure 2.3 shows an example of a spherical triangle. For a spherical

polygong, NSIDES(g) denotes the number of edges ofg which is also equal to the number

of vertices ofg. Moreover, SIDE(g, i) denotes theith edge ofg.

A

C

OB

Figure 2.3: An example of a spherical triangle.

The angle between two intersecting spherical lines is defined as the angle between the

tangents of the great circles of the spherical lines that pass through the intersection point.

If the intersection point of two adjacent spherical line segments of a spherical polygon is

denoted byB and the other endpoints of the spherical line segments are denoted byA and

19

C, then the angle at vertexB of the spherical polygon is equal to the angle between the

planes containing the great circles of the spherical lines,which is

π−arccos(NORMALIZE(~A×~B) ·NORMALIZE(~B×~C)). (2.8)

Girard’s spherical excess formula [79] derives the area of aspherical polygon using to the

sum of its angles. Assume the spherical polygon hasn verticesv1 . . .vn. Let αi denote

internal angle of vertexvi. Then,

Area=
n

∑
i=1

αi− (n−2)π (2.9)

A spherical polygon divides the sphere in two parts, one assumed to be the interior of the

polygon, and the other one the exterior of the polygon. Thereare many ways to designate

interior of a polygon, for example, one may assume that the inside area of a polygon should

always be of smaller area than the outside area. However, this may cause ambiguities in

cases where the polygon divides the sphere into two equal area sections. Considering that

the area of the unit sphere is 4π, this representation implies that the area of a spherical

polygon is always less than 2π. This approach is used in the current implementation of

spherical SAND. We term this representationsmall area spherical polygonor SA spherical

polygon.

Another way to designate the interior of a spherical polygonis to associate a spherical

point p such thatp is properly inside the spherical polygon. This requires storing an ad-

ditional spherical point for each spherical polygon. We term this representation asexplicit

interior point spherical polygonor EIP spherical polygon.

A better option that does not require any additional data stored is to defineside-oriented

spherical polygonsor SO spherical polygonsby proper ordering of the polygon vertices.

Consider a person walking along the spherical polygon starting from the first vertex in

the list, moving to the second vertex, and so on. The interiorof the spherical polygon

20

is defined to be on the left hand side of the observer. In case wewant to complement a

spherical polygon, we need to change the order of spherical points in its representation.

However, a more efficient scheme is to assign a binary flag indicating whether the interior

of the spherical polygon is at the left hand side of the observer or at right hand side of the

observer.

We can also allow small arcs as edges of a spherical polygon, which is especially useful

in modeling areas of the Earth between two parallels. In order to compute the area of a

spherical polygon where some of its edge are small arcs, we first calculate the area of the

spherical polygon assuming all its edges are spherical lines, we then compute a small arc

excess as defined in Section 2.3.1.9 for each small arc edge and add it to (or subtract it

from) the area of the spherical polygon.

2.3.1.9 Excess of a Small Arc

The excess of small arcwith endpointsA andB and displacementd is the area of lune

bounded between the spherical lineA and B and the small arc of displacementd with

endpointsA andB. The excess of small arc is denoted byS(A,B,d).

B

C

b

a

c

A

Figure 2.4: Excess of a spherical arc (shown in thicker line)between spherical pointsA and
B. The thin lines are great circle arcs.

Song et. al [70] describe a method for derivingS(A,B,d) using spherical coordinates.

We use the method described by Song et. al [70] to deriveS(A,B,d) using Cartesian co-

ordinates. Let the plane of small circle be(~C,d). PointC is on the unit sphere and its

21

projection on the small circle is the center of the small circle (see Figure 2.4).Scap, the

area of the spherical cap betweenC and the small circle is 2π(1−d). S2, the area of the

part of this spherical cap which is between spherical linesCA andCB is ∠C
2π of Scap, we

haveS2 = (1−d)∠C.

We haveS(A,B,d) = S2−S1, whereS1 is the area of spherical triangle△ABC andS2

is the area of the spherical section bounded between spherical linesAC, BC and small arc

AB.

Let the edges of the spherical triangle△ABCbea, b andc. We have∠A = ∠B, a = b,

cos∠C = p−d2

1−d2 whered = cosa, p = cosc = ~A·~B.

Using law of cosines [79] for the spherical angles we get:

cos∠C = −cos2∠A+sin2
∠Acosc

cos∠C = sin2
∠A−1+ psin2

∠A

cos∠C = sin2
∠A(1+ p)−1.

Hence,

sin2
∠A =

1+cos∠C
1+ p

. (2.10)

On the other hand,

S1 = ∠A+∠B+∠C−π

= 2∠A+∠C−π

S2 = (1−d)∠C

S(A,B,d) = S2−S1.

22

Hence,

S(A,B,d) = 2
(π

2
−∠A

)

−d∠C

= arccos
(

cos
(

2
(π

2
−∠A

)))

−d∠C

= arccos
(

2cos2
(π

2
−∠A

)

−1
)

−d∠C

= arccos
(

2sin2
∠A−1

)

−d∠C

= arccos

(

2
1+cos∠C

1+ p
−1

)

−d∠C

S(A,B,d) = arccos



2
1+ p−d2

1−d2

1+ p
−1



−d∠C

= arccos



2
1+ p−d2

1−d2

1+ p
−2+1



−d∠C

= arccos



2





1+ p−d2

1−d2

1+ p
−1



+1



−d∠C

= arccos



2
1+ p−d2

1−d2 −1− p

1+ p
+1



−d∠C

23

S(A,B,d) = arccos



2
p−d2

1−d2 − p

1+ p
+1



−d∠C

= arccos



2
p−d2−p+pd2

1−d2

1+ p
+1



−d∠C

= arccos



2
−d2+pd2

1−d2

1+ p
+1



−d∠C

= arccos



2
(p−1)d2

1−d2

1+ p
+1



−d∠C

= arccos

(

2
d2

1−d2

p−1
p+1

+1

)

−d∠C.

S(A,B,d) can be further simplified in terms of trigonometric functions:

S(A,B,d) = arccos

(

2
d2

1−d2

p−1
1+ p

+1

)

−d∠C

= arccos

(

2
cos2a

sin2a

cosb−1
cosb+1

+1

)

−d∠C

= arccos

(

2
cos2a

sin2a

1−2sin2 b
2−1

2cos2 b
2−1+1

+1

)

−d∠C

= arccos

(

2
cos2a

sin2a

−2sin2 b
2

2cos2 b
2

+1

)

−d∠C

= arccos

(

−2
tan2 b

2

tan2a
+1

)

−d∠C

However, we know that, arccos(1−2x2) = 2arcsin(x), and also that sinC2 =
sin f

2
sina . Hence:

S(A,B,d) = arccos



1−2

(

tanb
2

tana

)2


−d∠C

= 2arcsin
tanb

2

tana
−d∠C

= 2arcsin
tanb

2

tana
−2cosaarcsin

sinb
2

sina
.

24

2.3.1.10 Lambert Rectangle

In the two-dimensional SAND, the space is divided into rectangles. Rectangular subdivi-

sions have two desirable properties. First of all, it is relatively easy to test for inclusion of

a point in a rectangle. Second, it is easy to subdivide them into smaller rectangles. Re-

examining Equation 2.9 in Section 2.3.1.8, we see that a four-sided spherical polygon with

four right angles has an area of 0. In other words, a sphericalrectangle with four sides

covers just a single point of sphere. In other words, a right angled quadrilateral cannot be

defined non-trivially on a sphere. To overcome this, we definea rectangle in an appropriate

planar projection of sphere. We used Lambert’s cylindricalequal-area projection [69] to

define such a rectangle, which we term aLambert rectangle.

A Lambert rectangleis a collection of spherical points with their longitudes and lati-

tudes in a given range((λ1,λ2),(φ1,φ2)). That is, a spherical point with spherical coordi-

nates(λ ,φ) is inside a Lambert rectangle((λ1,λ2),(φ1,φ2)) if and only if λ1≤ λ ≤ λ2 and

φ1≤ φ ≤ φ2. The area of such a rectangle is

∫ λ2

λ1

∫ φ2

φ1

dS=
∫ λ2

λ1

∫ φ2

φ1

cosφ dφ dλ = (λ2−λ1)(sinφ2−sinφ1).

Considering the premise that thez-coordinate value of any spherical point is equal to the

sine of its latitude (z = sinφ), and also the fact that sin(·) is a monotonically increasing

function from−π to π, we can represent the range with((λ1,λ2),(z1,z2)). The area of

such a Lambert rectangle is(λ2− λ1)(z2− z1). Figure 2.5 is an example of a Lambert

rectangle.

One of the benefits of using Lambert rectangles is that we can specify the whole sphere

with a single Lambert rectangle with longitudinal range of(−π,π) and latitudinal range

of (−π
2 , π

2). A Lambert rectangle is also easily divisible into smaller Lambert rectangles.

Another incidental property that make Lambert rectangles natural choices for a spheri-

cal quadtree are the subdivision rules. A Lambert rectanglesubdivides into fourequal

25

O

Figure 2.5: An example of a Lambert rectangle.

area smaller rectangles which can be done effortlessly by using the center of the rectan-

gle, λ1+λ2
2 , z1+z2

2 as center of subdivision. If that the point data objects on a sphere are

uniformly-distributed, the Lambert rectangles provide the same performance for quadtree-

based data structures as in the planar case (i.e., in 2D).

2.4 Geometrical Operation on Spherical Objects

In this section, we describe some of the algorithms used in the development of spheri-

cal SAND. In particular, SAND needed algorithms for determining if two spatial objects

intersect and for calculating the distance between two spatial objects. For any pair of ob-

ject types in spherical SAND, we had to implement the distance and intersection functions

which will be described in the following sections.

2.4.1 Intersection of Two Spherical Points

Two spherical points intersect if and only if they have the same coordinates (Algorithm 2.1).

2.4.2 Distance between Two Spherical Points

The distance between two spherical pointsA andB is α, the length of the arc betweenA

andB. We have sinα = |AB|/2. On the other hand, we know that forβ = 2α, cos2α =

26

Algorithm 2.1 DOESINTERSECTPOINTPOINT(p1, p2)

(* Determine whether two spherical points p1 and p2 intersect.*)
if p1 = p2 then

return true
else

return false
end if

cosβ = ~A ·~B.

Hence,
|AB|

2
= sin

β
2

. (2.11)

And,

dS(A,B) = β = arccos(~A·~B) (2.12)

= 2α = 2arcsin
|AB|

2
. (2.13)

Both Equation 2.12 and Equation 2.13 can be used to compute DISTPOINTPOINT(A,B),

however Equation 2.13 is preferable for very small values of|AB| due to the loss of preci-

sion in limited precision arithmetic [35]. For example forA=(0,0,1) andB=(2−13,2−13,1−

2−26), Equation 2.13 results in 0.00017263348854612559 which isprecise up to 10 digits,

while the Equation 2.12 results in zero.

The spherical distance between two spherical points is the length of the spherical arc

between the two spherical points (Algorithm 2.2).

Algorithm 2.2 DISTPOINTPOINT(p1, p2)

(* Calculate the distance between two spherical points p1 and p2. *)
return 2arcsin|p1p2|

2

Notice that arcsin is a monotonically increasing function in the range[0,1]. There-

fore, DISTPOINTPOINT(p1, p2) is a monotonically increasing function of|p1, p2| as well.

Hence, for queries such nearest neighbor queries, that onlyrequire a relative ordering of

27

distances, calculating the Euclidean distance is sufficient.

2.4.3 Distance between a Spherical Point and a Circle

The closest point to spherical pointp on circlec can be obtained by first projectingp on

the plane ofc to obtain pointpT and then extendingpT to the circle through the center of

c. Ford = DISPLACEMENT(c) andr = RADIUS(c), we haver2+d2 = 1. In the following

equations,D is the distance of the pointp from circlec, andX is the distance ofp from the

plane ofc, which can be obtained by NORMALIZE(~p− ~pc) ·NORMALVECTOR(c), where

pc is some point on the plane of circle.

Consider the case depicted in the left hand side of Figure 2.6 wherep andO, the center

of sphere, lie on the same side of the plane ofc. Using the additional symbolsa andb from

Figure 2.6, we have,

D2 = X2 +(r−b)2

= X2 +
(

r−
√

1−a2
)2

= X2 +

(

r−
√

1− (X−d)2

)2

. (2.14)

In casep andO are on opposite sides of the plane ofc as depicted in the right hand side

of Figure 2.6, we get

D2 = X2 +

(

r−
√

1− (X +d)2

)2

(2.15)

2.4.4 Distance of a point set to a circle

Consider a set of pointsSand a circlec such that all pointsS lie on the same side of plane

of c. From Equation 2.14 and Equation 2.15, we can observe that the distance from a point

to a circle is directly related to its distance to the plane ofthe circle. Hence, the closest

point of the point setS to circlec is the closest point inS to the plane ofc.

28

OO

Oc

d

a

p

D
X

pc
b

d

Oc b X
D

p

pc

a

Figure 2.6: Finding the distance of a point to a circle.

We use this observation to find the closest point of a point setS to a circlec, by first

partitioningS into setsS1 andS2, such that all points inS1 are on one side of the plane of

c and all points inS2 are on the other side of the plane ofc. We can then find the pointp1

the closest point inS1 to the plane ofc, and pointp2 the closest point inS2 to the plane of

c. Finally, we use Equation 2.14 and Equation 2.15 to find the closest point amongp1 and

p2 to c.

2.4.5 Distance between a Spherical Point and a Spherical Line

Consider a planeT, a pointp not on the planeT, and a setD⊆ T. Let pT denote the projec-

tion of p on planeT. For any pointd in D we have,|pd|2 = |ppT |2+ |pTd|2. Therefore, in

order to find the closest (or farthest) point inD to p it suffices to find the closest or farthest

point inD to pT . This observation will be used to find the distance of a spherical point to a

spherical line.

The distance from a spherical pointp to a spherical linel with endpointsA andB is the

distance fromp to A, B, or some other pointq which lies onl . q has the property that it is

co-linear with the line joining the originO and the projectionC of p on the plane containing

29

l . Let~mdenote the unit normal vector of the plane containing the spherical linel .

~m= NORMALIZE(~A×~B).

we have

~C = ~p− (~p·~m)~m,

and

~q = NORMALIZE(~C).

We should also test ifq lies on the spherical line. Based on these considerations, inorder

to find the distance between a spherical pointp and a spherical linel with endpointsA

andB, function DISTPOINTL INE, given in Algorithm 2.3, first findsq and then returns the

shortest distance fromp to eitherA, B, or q.

Algorithm 2.3 DISTPOINTL INE(p, l)

(* Calculate the distance of the spherical point p to the spherical line l. *)
A← ENDPOINTONE(l)
B← ENDPOINTTWO(l)
~n← NORMALIZE(~A×~B)
~q← NORMALIZE(~p− (~p·~n)~n)
if DOESINTERSECTPOINTL INE(q,L INE(A,B)) then

return DISTPOINTPOINT(p,q)
else

return min(DISTPOINTPOINT(p,A),DISTPOINTPOINT(p,B))
end if

2.4.6 Intersection of a Spherical Point and a Spherical Line

The function DOESINTERSECTPOINTL INE(Algorithm 2.4) determines whether a spherical

point q lies on the great circle of a spherical linel with endpoints ofA andB. It is easy to

see thatq lies on the spherical linel , if and only if, the angle∠AqBin the triangle△AqBis

obtuse (see Figure 2.7). This check is simple to make in the sense that∠AqB is 90 degrees

if the sumSof the squares of the lengths of the two edges that comprise itis equal to the

30

B

A

CO q

Figure 2.7: Example of the distance from a spherical point toa spherical line.

square of the length of the edgeAB denoted byH. The angle is acute (obtuse) ifS is less

(greater) thanH.

Algorithm 2.4 DOESINTERSECTPOINTL INE(q, l)

(* Determine whether spherical point q lies on the spherical line l. *)
A← ENDPOINTONE(l)
B← ENDPOINTTWO(l)
return |qA|2 + |qB|2 < |AB|2

2.4.7 Intersection of a Spherical Point and a Spherical Polygon

Throughout this section, we assume that we the spherical polygons are small area spherical

polygons. That is, the area of the interior of a spherical polygon is less than the area of its

exterior. The algorithms related to the interior of spherical polygon should be modified in

case a different convention for specifying the interior of aspherical polygon is used.

In order to check if a spherical pointp is inside a spherical polygonr we construct a

great circlec through p and another pointq chosen at random and check ifc intersects

r. If no, thenp lies outsider. If yes, then we examine the edgee containing the closest

intersection point top. If p is on the side ofe that is insider, then p is indeed inside

r; otherwise,p is outsider. The function DOESINTERSECTPOINTPOLYGON, given in

Algorithm 2.5 achieves this test.

31

Algorithm 2.5 DOESINTERSECTPOINTPOLYGON(p,g)

(* Determine whether the spherical point p intersects the spherical polygon g.*)
Let q be a plane passing throughp andO.
Let r be a point onq such thatp 6= r.
minDistance← ∞
for i = 1 to NSIDES(g) do

l ← SIDE(g, i)
p1← ENDPOINTONE(l).
p2← ENDPOINTTWO(l).
(x1,x2)← INTERSECTIONPOINTSOFPLANES(q,PLANE(l))
for j = 1 to 2 do

if DOESINTERSECTPOINTL INE(x j , l) then
intersects← true
distance← |x j r|
if distance< minDistancethen

minDistance← distance
inside← sign(NORMALVECTOR(PLANE(l)) ·q)

end if
end if

end for
α ← arccos(NORMALVECTOR(SIDE(g, i)) ·NORMALVECTOR(SIDE(g, i +1)))
s← sign(ENDPOINTONE(SIDE(g, i))×ENDPOINTTWO(SIDE(g, i +1)) ·
ENDPOINTTWO(SIDE(g, i)))
area← area+sα

end for
areaSign←

⌊

area
2π
⌋

mod2
return intersectsand (insidexor areaSign)

The function DOESINTERSECTPOINTPOLYGON makes use of the function

INTERSECTIONPOINTSOFPLANES given in Algorithm 2.6 to determine two points

on the sphere corresponding to the endpoints of the spherical line formed by the

intersection of two planesp andq of two great circles.

Algorithm 2.6 INTERSECTIONPOINTSOFPLANES(p,q)

(* Find the intersection points of two planes p and q and the unit sphere*)
~x← NORMALIZE(NORMALVECTOR(p)×NORMALVECTOR(q))
return (x,x)

32

2.4.8 Distance between a Spherical Point and a Spherical Polygon

In order to find the distance between a spherical point and a spherical polygon, we need

to consider two cases; either (i) the spherical point is on the polygon or (ii) it is not on

the polygon. In the first case, the distance is simply zero. Inthe second case, the point

is not on the polygon and the distance is the minimum of all distances from the point to

the edges of the polygon. The function DISTPOINTPOLYGON, given in Algorithm 2.7

correctly computes the distance between a spherical point and a spherical polygon.

Algorithm 2.7 DISTPOINTPOLYGON(p,g)

(* Find the distance between the spherical point p and the spherical polygon g.*)
if DOESINTERSECTPOINTPOLYGON(p,g) then

return 0
else

return mini DISTPOINTL INE(p,SIDE(g, i))
end if

2.4.9 Intersection of two Spherical Lines

Two distinct spherical lines can only intersect at the intersection points of their correspond-

ing great circles. Hence, two spherical linesl1 and l2 intersect if and only if at least one

of the two intersection points of their corresponding greatcircles lies on bothl1 and l2.

Function DOESINTERSECTL INEL INE, given in Algorithm 2.8, achieves this test.

2.5 Extensions to the SAND Browser

The SAND Browser is a graphical user interface for SAND that uses a two-dimensional

display system for displaying data. The GUI is used to compose and perform queries. Us-

ing our design, incorporating the spherical data type into the SAND Browser was straight-

forward. The main modification to the SAND Browser’s graphical user interface was the

addition of the ability to render spherical lines. In the current implementation, a spherical

33

Algorithm 2.8 DOESINTERSECTL INEL INE(l1, l2)

(* Determine whether two spherical lines l1 and l2 intersect.*)
p1 = ENDPOINTONE(l1)
p2 = ENDPOINTTWO(l1)
q1 = ENDPOINTONE(l2)
q2 = ENDPOINTTWO(l2)
for j = 1 to 2 do

if DOESINTERSECTPOINTL INE(xi ,L INE(p1, p2)) and
DOESINTERSECTPOINTL INE(xi,L INE(q1,q2)) then

return true
end if

end for
(* p lies on the great circle arc between spherical points p1 and p2. *) ¡x1,x2¿ =
INTERSECTIONPOINTSOFPLANES(l1.plane, l2.plane)
return False

line is approximated by many short line segments on the display. We use a heuristic to

decide how many segments are needed for a good visual approximation of the spherical

line. The heuristic uses the latitude of the two endpoints and the length of the line. If the

endpoints are far from poles or the line is long, then the heuristic uses more line segments.

An additional feature of the SAND Browser is the spatial selection operation which

enables a user to select data items that are located in a sector. A sector is represented by

a point and two rays emanating from that point. To support thesector on a sphere, we use

a spherical lune [79], which allows users to select the spherical data that is located on a

spherical lune. In order to specify the lune, the user selects one endpointp of the lune, two

spherical lines havingp and the antipodal ofp as their endpoints. Notice that onlyp need

be specified (i.e., the antipodal ofp is not specified by the user). Since there are infinite

number of spherical lines betweenp and the antipodal ofp, the user specifies the spherical

lines served to demarcate the lune.

Future work could involve the incorporation of additional primitives into the spherical

model of SAND. Examples include great circles and their arcs, small circles and their arcs,

and spherical polygons that cover more than half of the sphere. Also, the ability to perform

spherical visualizations is also an interesting feature for future implementation.

34

Chapter 3

Low distortion normal vector

quantization

3.1 Introduction

Compressing geometry models has recently been a subject of great interest [16, 17, 29, 44,

72]. The goal is to reduce the number of bits required to represent a geometry model in

order to lower the storage space, or to lower the transmission time of the model across the

network, or from the CPU to the GPU.

Realistic rendering of a geometry model requires knowledge of the surface normals

at various points of the model. The surface normals are either stored explicitly as part

of the geometry model or derived from other components of themodel during rendering.

For example, it is straightforward to compute the surface normal of an oriented triangle

during rendering. The surface normals could then be used to calculate color and texture

information at various points of the model. If the surface normals are stored explicitly, they

are usually stored as the surface normals of the vertices in amesh model, or the surface

normals of each point in point clouds [59]. Moreover, some texture models such as bump

maps [6] store a normal vector as part of the texture information. The efficient encoding of

35

surface normals could also be utilized to lower the storage cost of such texture models.

Deering [16] points out that the usual practice of storing a surface normal using 96

bits — three 32-bit floating point numbers — is wasteful. He proposed selecting 100,000

representative surface normals on the unit sphere and then quantizing each surface normal

to a nearby — but not necessarily nearest — representative surface normal. Each of the

100,000 surface normals can be encoded using⌈log2100000⌉ = 17 bits. Deering also

suggested using adelta encodingscheme to further compress a stream of surface normals

that have spatial correlation.

In this work, we present a framework for quantizing surface normals to any arbitrary

number of bits. Every normal vector quantization method includes anencodingcomponent,

where a surface normaln with Cartesian coordinates(x,y,z) : x2+y2+z2 = 1 is represented

by Q bits; and adecodingcomponent where theQ bits representingn will be used to

computenq the representative normalof n, nq = (xq,yq,zq) : x2
q + y2

q + z2
q = 1. The one to

one correspondence between three-dimensional unit normalvectors and the surface of the

unit sphere allows us to consider each surface normal as aspherical point, i.e., a point on the

surface of the unit sphere. Hence, normal vector quantization is the same as quantizing the

surface of the unit sphere. In this article, we do not distinguish between a three-dimensional

unit normal vector and a spherical point. Furthermore, we define compressionof a stream

of unit normal vectors to be the process of converting a collection of normal vectors, as

part of a geometry model, to a stream of bits. The key difference between a quantization

technique and a compression technique is that the former is applied to a single datum, while

the latter is applied to a data collection.

Traditionally, methods for normal vector compression of surface normals have been

considered in conjunction with the techniques for compressing whole geometry models.

Techniques for compressing geometry models usually use a surface normal quantization

technique for efficient storage of surface normals. Usuallythe Deering method is chosen

for such applications (e.g., [14, 72]). This article provides a comprehensive study and

36

analysis of many surface normal quantization techniques, and also proposes different error

measures in order to evaluate the relative merits of the discussed techniques. In partic-

ular, we present a new quantization method called QuickArealHex which is better than

the Deering method in terms of (1) the quantization error, (2) the rendering quality, and

(3) the computational efficiency as measured by the time and memory needed to encode

and decode the normalized values. This article, to the best of our knowledge, is the only

comprehensive study of surface normal quantization methods in the computer graphics lit-

erature. This article only discusses surface normal quantization techniques, and does not

address surface normal compression techniques. Nevertheless, a surface normal quanti-

zation method could be used as part of a statistical compression scheme, such as those

proposed by Gandoin and Devillers [17,29] who use an arithmetic coding [82] scheme.

The rest of this paper is organized as follows. Section 3.2 describes previous work in

this area. Section 3.3 presents two methods for surface normal quantization. Section 3.4

derives a loose theoretical lower bound for the quantization error. Section 3.5 compares

different quantization methods in terms of the quantization error and the computation effi-

ciency, while Section 3.6 describes how the different quantization methods affect the ren-

dering quality. Concluding remarks are drawn in Section 3.7.

3.2 Related Work

As the surface of a sphere is a two dimensional surface, it is possible to find a mapping

from a spherical point(x,y,z), to a two dimensional point(u,v). Such mappings have been

extensively studied in the map projection and cartography literature, as in [69]. A primary

goal of a cartographer is to visually present geographical information on paper which is a

two dimensional medium. Most map projections are categorized based on their inherent

properties that are used in different applications. For example, anequal area projection

does not distort the area measure of a shape when projected tothe plane, while aconformal

37

projectionpreserves the local angles of shapes. Computer graphics applications also use

map projection techniques. Environment mapping techniques [7] utilize a projection of

the sphere onto a two-dimensional surface, such as the surface of a cube [36]. Arvo and

Kirk [2] use a sphere-to-cube projection to speed up ray tracing applications.

A natural way of quantizing the surface of a sphere is to first project the sphere onto a

plane and then to quantize the plane. A similar technique is adopted by Deering [16] who

divides the unit sphere into eight equal octants, and then subdivides each octant into six

equal sextants. Each octant is an equilateral spherical triangles with three 90◦internal an-

gles. Each sextant is a spherical triangle with internal angles of 90◦, 60◦, and 45◦. The eight

octants of the sphere naturally define a regular octahedron.However, other Platonic solids,

such as the cube and the icosahedron have also been used for the purpose of quantizing the

surface of a sphere [2,73].

Deering [16] uses two six-bit valuesφn andθn to encode 2,145 representative surface

normals on each sextant. Each octant is encoded with three bits, and each sextant of an

octant is encoded with another three bits. Therefore, Deering uses 18 bits to represent

102,960 surface normals. As we can see, the Deering method wastes at least one bit,

as 102,960 surface normals could have been represented using only 17 bits,i.e., 217 >

102,960. The Deering algorithm requires the precomputation of all 2,145 representative

surface normals of a sextant. The encoding algorithm performs linear search among these

surface normals to find the closest representative normal tothe given surface normal. Thus,

the encoding algorithm would require a considerable amountof CPU time. The Deering

algorithm for decoding a surface normal first determines theoctant and the sextant of the

quantized normal (encoded by six bits) and subsequently uses the remaining 12 bits as an

index to a lookup table of the precomputed surface normals. Furthermore, each coordinate

value of a normal is stored using 16-bit fixed precision number. Thus, the size of the lookup

table is 24 kilobytes, which could be costly for a hardware implementation. Cignoni et

al. [14] describe a model used for visualizing tetrahedral meshes. They use the Deering

38

method for compact storage of the normal vectors of a model. The Deering method is

also used in [34] for storing quantized normals of a triangular mesh. Willmott [81] also

proposes using the Deering method for reducing the memory requirements of hierarchical

radiosity.

An alternative quantization method represents a normal vector by its geographic coor-

dinates,i.e., its latitude and longitude. It then quantizes each coordinate into the desired

number of bits. Kugler [48] uses this method for hardware rendering. A disadvantage of

this method is that the quantization error of a normal is highly skewed. That is, the normals

around the equator of the unit sphere on average have a higherquantization error than the

normals near the poles of the unit sphere.

Given a spherical point(x,y,z), another quantization method calculates(x0,y0,z0), such

that

(x0,y0,z0) · (|x|+ |y|+ |z|) = (x,y,z).

This is equivalent to thegnomonic projectionof the unit sphere on an octahedron. Notice

that |x0|+ |y0|+ |z0| = 1, and thus it suffices to only storex0, y0, and the sign ofz0. Fur-

thermore,x0 andy0 will each be quantized to the desired number of bits. If 2n+1 bits are

used for quantizing a normal,n bits are used for quantization of thex0 andy0 coordinates.

However, not all possible(x0,y0) values are valid. In particular, all values of(x0,y0) such

that |x0|+ |y0| > 1 are not valid. For example, we cannot have(0.9,0.9) for (x0,y0), as

0.9+0.9 > 1. Hence, only half of the 22n possible values for(x0,y0) are valid. Thus, this

method, similar to the Deering method, wastes one bit. A similar method [59] projects the

unit sphere onto a cube and then uses a uniform grid on the surface of the cube.

In [8,37,71,75] recursive subdivisions of an octahedron are used to encode each surface

normal with the triangle containing the surface normal. Theencoding in this method is

iterative, and hence would be slow in practice. For example,Botsch et al. [8] use 13 bits

per surface normal for a point sampled rendering application. Three bits are used to encode

the face of the octahedron, and two bits are used for each quaternary subdivision. Thus, the

39

recursive subdivision of the octahedron is five levels deep,and hence, encoding a surface

normal requires five iterations.

3.3 Quantization Methods

In this section, we discuss two distinct methods for normal vector quantization. We first in-

troduce our proposed method, called Octahedral Quantization. Subsequently, we describe

quantization methods that are based on a nearest neighbor finding algorithm. However,

for the sake of completeness, we also mentionGeographic Quantizationin this section.

In Geographic Quantization, a normal vector is first converted to its Geographic coordi-

nates (i.e., latitude and longitude), and then each geographic coordinate is quantized to the

desired number of bits.

3.3.1 Octahedral Quantization

Flattening Tesselation PointsProjection

Figure 3.1: A block diagram of Octahedral Quantization, theproposed method for surface
normal quantization.

Our proposed framework for surface normal quantization, called theOctahedral Quan-

tizationuses projections of the unit sphere onto a regular octahedron. Figure 3.1 is a func-

tional diagram summarizing the steps of the Octahedral Quantization method. After pro-

jecting the sphere onto the octahedron, the faces of the octahedron are flattened onto a

plane, such that they form a square. Then the square is tessellated using an appropriate

pattern. For each cell of the tessellation, a representative point is chosen.

Recall that a surface normal is a point on the surface of the unit sphere. The encoding

process thus maps each surface normal to a cell of the tessellation and hence, the represen-

40

tative point of the cell. The decoding process projects the representative point back to the

octahedron and to the unit sphere. Note that any appropriateprojection or tessellation can

be chosen — independent of each other — in the framework.

We use a regular octahedron placed around the unit sphere such that the vertices of the

octahedron are placed on the coordinate axes. Thepositive faceof the octahedron is the

triangleT with verticesX = (1,0,0), Y = (0,1,0), andZ = (0,0,1). Notice that, for all

points(x,y,z) on the positive face of the octahedron, we havex,y,z≥ 0 andx+y+z= 1.

Similarly, thepositive spherical octantof the unit sphere is the set of points(x,y,z) on the

sphere such thatx,y,z≥ 0. In the rest of the discussion, we only consider the encoding of

a normal vector in the positive face of the octahedron as the treatment of the other faces

is similar. We choose an arbitrary projection that projectsthe positive spherical octant of

the sphere to the positive face of the octahedron. We suggestusing projections that are

computationally efficient. In Section 3.3.4, we describe a few such projections, namely, the

Gnomonic projection, the Areal projection, the Buss-Fillmore projection, and the Tegmark

projection.

In general, the spherical point(x,y,z), will be mapped to a pointP = (a,b,c) on the

positive face of the octahedron, wherea+ b+ c = 1 and 0≤ a,b,c≤ 1. (a,b,c) are also

the barycentric coordinates ofP with respect to the triangleT. Now asa+ b+ c = 1, it

suffices to only store and encode two of the three barycentriccoordinates, as the third can

be obtained from the remaining two coordinates. We choose tostorea andb, as this maps

the vector(1,0,0) to the point(1,0), the vector(0,1,0) to the point(0,1), and the vector

(0,0,1) to the point(0,0). We use the equationc= 1−a−b, when the value ofc is needed.

We thus have 0≤ 1−a−b≤ 1, or equally, 0≤ a+ b≤ 1. The locus of the points(a,b)

with 0≤ a+b≤ 1 is a right-angled isosceles triangle with vertices(1,0), (0,1), and(0,0).

That is, we have shown how to project a face of the octahedron to a right-angled isosceles

triangle. Thus the eight faces of the octahedron map to eightequal right-angled isosceles

triangles, and we can arrange them in a square with side length of two as in Figure 3.2.

41

H A

L

C

J

H

N G

a∗

−+−

b∗

−−−

++−

+++−++

−−+ +−+

+−−

(1,1)

(1,−1)

(−1,1)

(−1,−1)

Figure 3.2: Arrangement of eight right-angled triangles ina square.

The placement of the eight triangles is such that the edges that are adjacent on the square

are also adjacent on the octahedron. We have labeled each triangle with the signs of thex,

y, andz coordinates of the spherical points corresponding to each triangle. For example,

the−+− in the upper-left triangle denote that points corresponding to that triangle have

negativex, positivey and negativez coordinates. We use(a∗,b∗) to denote the coordinates

of a point in the square of Figure 3.2.

In the next step, we quantize(a∗,b∗) to the desired number of bits. For an even num-

ber of bits, we use the pattern shown in Figure 3.3, where eachdot denotes a quantized

point. For an odd number of bits, we use a slightly more complex pattern shown in Fig-

ure 3.4. Notice that the representative points in Figures 3.3 and 3.4 are the centroids of

their corresponding cells.

3.3.1.1 Similar Methods

The Deering [16] method for surface normal quantization also uses a regular octahedron.

Moreover, our method partly resembles the work of Praun and Hoppe [55] for spherical

parameterization of mesh models. The technique of projecting the sphere onto a square

using an octahedron was previously proposed by Dutton [19] and Praun and Hoppe [55].

42

(a) 2 bits (b) 4 bits (c) 6 bits

Figure 3.3: Pattern of representative points for an even number of bits.

(a) 3 bits (b) 5 bits (c) 7 bits

Figure 3.4: Pattern of representative points for an odd number of bits.

That is, they project the unit sphere onto a regular octahedron, and then arrange the faces

of the octahedron to form a square. In spite of the similarities, Dutton [19] and Praun and

Hoppe [55] apply the flattening technique to different applications other than surface nor-

mal quantization. The focus of Dutton [19] was to devise a method for multi-resolution

encoding of geographical data. While Dutton’s work is closely related to surface normal

quantization, we examines the effect of a variety of projections on the quality of the quan-

tization for computer graphics applications. In contrast,Praun and Hoppe [55] propose

techniques for spherical parameterization of a mesh, and hence the quality measure used in

their work does not directly correspond to the quantizationerror of surface normals.

43

3.3.2 Delta Encoding

To further compress a stream of quantized normal vectors, a delta encoding scheme could

be used. The delta encoding scheme is a simple compression method that is widely used in

computer graphics applications (e.g., [16]). While the compression of normal vectors is not

the focus of this article, we still mention the correct way toapply delta encoding to surface

normals that are quantized using the Octahedral Quantization method. Instead of directly

encoding the data, the delta encoding scheme encodes the differences between successive

data elements. The vector(a∗,b∗) is encoded as(a∗−a∗p,b
∗−b∗p), where(a∗p,b

∗
p) is the

previous vector in the stream. Thus, if successive normal vectors have spatial locality, then

the delta vector has a smaller range and can be encoded more compactly.

The outer edges of the square in Figure 3.2 fold and touch at their midpoints. For

example, the half-edges H and A are actually the same edge of the octahedron. Similarly,

the half-edges L, C; N, G; and J, E are the same edge of the octahedron. Therefore, the

square could be extended to cover part of a larger square as shown in Figure 3.5. Notice

that each point in the smaller square will appear four times in the larger square. This can

be observed by looking at the star or the triangle symbols which are placed in Figure 3.5 to

illustrate this property. In other words, a point(a∗,b∗),0≤ a∗,b∗ ≤ 1 extends to the points



































(a∗,b∗),

(2−a∗,−b∗),

(−a∗,2−b∗),

(a∗−2,b−2∗).

Hence, the correct delta vector for point(a∗,b∗),0≤ a∗,b∗,≤ 1 will be the shortest delta

44

vector among


































(a∗−a∗p,b
∗−b∗p),

((2−a)∗−a∗p,−b∗−b∗p),

(−a∗−a∗p,(2−b)∗−b∗p),

((a−2)∗−a∗p,(b−2)∗−b∗p).

Table 3.1 tabulates the four extensions of a point in different quadrants of the square.

a∗ > 0,b∗ > 0 a∗ > 0,b∗ < 0 a∗ < 0,b∗ > 0 a∗ < 0,b∗ < 0














(a∗,b∗),
(2−a∗,−b∗),
(−a∗,2−b∗),
(a∗−2,b∗−2).















(a∗,b∗),
(2−a∗,−b∗),
(−a∗,−2−b∗),
(a∗−2,b∗+2).















(a∗,b∗),
(−2−a∗,−b∗),
(−a∗,2−b∗),
(a∗+2,b∗−2).















(a∗,b∗),
(−2−a∗,−b∗),
(−a∗,−2−b∗),
(a∗+2,b∗+2).

Table 3.1: The four extensions of a point(a,b) in different quadrants of the square.

Figure 3.5: Extension of Figure 3.2 to a larger square.

3.3.3 Hexagonal Cells

In Figure 3.3 we showed that when an even number of bits is usedfor quantization. we can

use square-shaped cells for tessellating the square. In this section, we describe an alterna-

tive tessellation pattern that uses hexagonal cells instead of square-shaped cells. Notice that

each square-shaped cell in Figure 3.3 exactly overlaps two triangular cells in Figure 3.4,

and hence two representative points of the same figure. We construct a pattern that uses

45

hexagonal cells using a three step process. We start with Figure 3.4 and remove one of the

two representative points that are co-located in the same square-shaped cell of Figure 3.3.

The resulting pattern is shown in Figure 3.6. Notice that therepresentative points shown

in Figure 3.6(a) appear at the same positions in Figure 3.6(b). Similarly, the representative

points shown in Figure 3.6(b) appear at the same positions inFigure 3.6(c). In the second

step, the hexagonal tessellation is constructed by replacing each removed point by three

edges that connect the point to the vertices of the triangle containing it. These edges are

shown using dotted lines in Figure 3.7. From Section 3.3.2 and Figure 3.5, we know that

we can extend the image inside the square to a bigger square. In the final step of building

the hexagonal pattern we form proper cells using the extension of the square. The resulting

pattern is shown in Figure 3.8.

Notice that exactly four cells of each pattern are in fact pentagons, and the rest of the

cells are hexagons. In particular, the pattern corresponding to two bits has four pentagons

and no hexagons, while the pattern corresponding to four bits has four pentagons and 12

hexagons. If the pattern in Figure 3.8 is projected back to the sphere using an appropriate

projection, the spherical hexagonal cells will be almost regular. We later show that this will

improve the quantization error.

(a) 2 bits (b) 4 bits (c) 6 bits

Figure 3.6: First step in constructing the hexagonal pattern for an even number of bits.

46

(a) 2 bits (b) 4 bits (c) 6 bits

Figure 3.7: Second step in constructing the hexagonal pattern for an even number of bits.

(a) 2 bits (b) 4 bits (c) 6 bits

Figure 3.8: Hexagonal pattern of representative points foran even number of bits.

3.3.4 Projections for Octahedral Quantization

In this section, we describe a few projections that project the positive spherical octant to the

positive face of the octahedron. We describe the Gnomonic, the Areal, the Buss-Fillmore,

and the Tegmark projections.

3.3.4.1 Gnomonic Projection

In this projection, the map of a pointP = (a,b,c) on the positive face of the octahedron to

the pointN = (x,y,z) on the unit sphere is the intersection of (i) the line that passes through

47

the center of the sphere andP, and (ii) the sphere itself. Thus we have,

a =
x

x+y+z
b =

y
x+y+z

c =
z

x+y+z
,

and the inverse relation,

x =
a√

a2 +b2 +c2
y =

b√
a2 +b2 +c2

z=
c√

a2 +b2 +c2
.

3.3.4.2 Areal Projection

In this section, we describe the Areal projection which is a projection devised by us having

the following distance-preserving property. In particular, let p be a point on one of the 12

edges of the octahedron. LetA andB be the end vertices of the edge containingp. Let r, C,

andD be the spherical points such that their Areal projections are p, A, andB respectively.

The Areal projection has the property that the ratio of the distance betweenp andA to the

distance betweenp andB is the same as the ratio of the spherical distance betweenr andC

to the spherical distance betweenr andD:

d(p,A)

d(p,B)
=

dS(r,C)

dS(r,D)
,

whered(·) denotes the Euclidean distance on a face of the Octahedron and dS(·) denotes

the Geodesic distance on the sphere.

The Areal projection of a pointN = (x,y,z) located on the positive spherical triangle

of the unit sphere is the pointP = (a,b,c), such thata, b, andc are the ratios of the areas

of the three spherical triangles formed byN and the pointsX = (1,0,0), Y = (0,1,0), and

Z = (0,0,1) to the area of the spherical triangle△XYZas shown in Figure 3.9. Notice that

the area of spherical triangle△XYZis π
2 , i.e., it equals one eighth of the surface area of the

48

c
YX

Z

N

γ

α

β

ab

Figure 3.9: The pointN inside spherical triangle△XYZ.

unit sphere. LettingAS(t,u,v) denote the area of the spherical triangle△tuv, we have:

a =
AS(N,Y,Z)

π
2

; b =
AS(X,N,Z)

π
2

; c =
AS(X,Y,N)

π
2

.

We can simplify the above equations to (see Appendix A.1):

a =
4
π

arctan
x

y+z+1
; b =

4
π

arctan
y

x+z+1
; c =

4
π

arctan
z

x+y+1
. (3.1)

To computeN = (x,y,z) from P= (a,b,c), we use the inverse relation (see Appendix A.1):

x = s(a)
1−s(a)−s(b)−s(c) ; y = s(b)

1−s(a)−s(b)−s(c) ; z= s(c)
1−s(a)−s(b)−s(c) ,

(3.2)

wheres(·) is defined as:

s(u) =
tanπ

4u

tanπ
4u+1

. (3.3)

Compared to the Gnomonic projection, the Areal projection uses trigonometric func-

tions which are more expensive to compute. However, as we discuss later, the Areal pro-

jection has lower quantization errors compared to the Gnomonic projection. The difference

in encoding time between the two projections is negligible except encoding for real-time

applications. In Section 3.3.5, we introduce the QuickAreal algorithm, a fast implementa-

tion of the Octahedral Quantization using the Areal projection. The QuickAreal algorithm

49

does not use trigonometric functions and hence is suitable for real-time applications.

3.3.4.3 Buss-Fillmore Projection

In this section, we briefly describe the Buss-Fillmore projection which, similar to the Areal

projection, preserves the distances along the edges of the Octahedron. Consider a point

N = (x,y,z), located on the positive spherical triangle of the unit sphere. we define the

Buss-Fillmore projection ofN to be the pointP = (a,b,c), such thatN is the weighted

spherical centroid of the pointsX = (1,0,0), Y = (0,1,0), andZ = (0,0,1) with weights

a, b, andc respectively.

Buss and Fillmore [9] describe an iterative algorithm to compute the weighted spherical

centroid of an arbitrary number of spherical points. This algorithm is used for the inverse

projection of a point from the octahedron to the sphere. On the other hand, the projection

from the sphere to the octahedron has a closed form solution.This implies that the Octa-

hedral Quantization using the Buss-Fillmore projection is slow for decoding, but fast for

encoding.

3.3.4.4 Tegmark Projection

We also introduce the Tegmark [73] projection, which is an equal area projection that was

initially designed for describing equal area pixels on a sphere. Although the Tegmark pro-

jection was designed for an Icosahedron, it is straightforward to apply the same technique

for an Octahedron, which is used in our Octahedral Quantization method.

3.3.5 QuickAreal Algorithm

In this section, we describe the QuickAreal algorithm, which is a fast algorithm for quan-

tizing unit normal vectors using the Areal projection. The QuickAreal algorithm uses table

lookups instead of computing trigonometric functions. We need to mention that hexagonal

50

cells cannot be used with the QuickAreal algorithm. The discussion here is restricted to

triangular and square-shaped cells.

The encoding algorithm works as follows. Equation 3.1 is symmetric with respect to

the three coordinatesx, y, andz, as well as,a, b, andc, and hence it sufficient to show how

a is computed usingx, y, andz. Notice that

a =
4
π

arctan
x

y+z+1
.

Hence, to computea givenx, y andz, it suffices to have an algorithm that quickly computes

the arctan(·) function. Moreover, we are only interested in values ofa that are quantized.

That is, they only haven bits of precision, wheren depends on the number of bits used for

quantization of the normal vector. Hence, if we precompute the function

t(x̂) = tan
π
4

x̂

for all x̂, such that ˆx is a positive fractional number withn bits of precision. We can search

the table for values of ˆx that are close to x
y+z+1. This can be implemented using binary

search, as the functiont(x̂) monotonic for 0≤ x̂≤ 1.

To decode a quantized normal vector, the QuickAreal algorithm uses another table for

storing values of

s(x̂) =
tanπ

4 x̂

tanπ
4 x̂+1

for all x̂, such that ˆx is a positive fractional number withn bits of precision, because the

values ofa, b andc used in Equation 3.2 have fixed precision.

Unlike the Deering algorithm, the decoding algorithm uses avery compact table. For

example, for a quantization using 18 bits, the QuickAreal algorithm needs to precompute

s(x̂) function for all 218/2−1 values of ˆx. This only requires a 1-kilobyte table, while the

Deering algorithm uses a 24-kilobyte table.

51

3.3.6 Quantization Using a Nearest Neighbor Finding Algorithm

A general method of surface normal vector quantization usesan appropriately chosen setS

of representative normals. To quantize a normaln, the nearest neighbor ofn in S is chosen

as the representative normal ofn. In contrast, the Octahedral Quantization method does not

guarantee that the representative normal ofn is its nearest neighbor. However, we can use a

nearest neighbor finding algorithm such as those proposed byHjaltason and Samet [41] in

conjunction with the Octahedral Quantization method. Thatis, the setSof representative

normals are to be the set of representative normals used in the Octahedral Quantization

method.

Quantization methods that use a nearest neighbor finding algorithm are not suitable for

real-time applications because the encoding process requires searchingS for the nearest

neighbor ofn, which can be expensive. Moreover, the decoding process mayrequire a lot

of storage as the three coordinates for each point inSneed to be computed and stored.

In this section, we describe a few methods that could be used for generating the set of

representative normalsS. These methods include Octahedral Quantization based methods

(i.e., Gnomonic, Areal, Bass-Fillmore, and Tegmark), the Deeringmethod, the Geographic,

Saff-Kuijlaars [60], and the Spherical Centroidal Voronoi Tessellations (SCVT) [18] method.

3.3.6.1 Random Points

Note that the setScan be a set of randomly generated spherical points. We use a random set

of points as benchmark to evaluate the quantization qualityof other quantization methods

that use a nearest neighbor finding algorithm.

3.3.6.2 Saff-Kuijlaars Method

Saff and Kuijlaars [60] describe a mathematical process which places a sequence of points

on the unit sphere. The points are placed in a spiral, that is the first point in the sequence

is placed on the south pole, and each successive point is placed north of the previous point,

52

with a suitable longitudinal displacement. Notice that no two points in the sequence have

the same latitude (i.e., z coordinate). Although the point set generated by this method

is easy to compute, it is not straightforward to compute a closed form for deriving the

coordinates of theith point in the sequence without computing all the preceding points.

3.3.6.3 Spherical Centroidal Voronoi Tessellations (SCVT)

Du, Gunzburger, and Ju [18] describe an iterative process for choosing an arbitrary number

of points on the unit sphere, such that the points are also thecentroids of the cells of

the Voronoi [3] tessellations. This method has the desirable property that the generated

points are very well distributed on the sphere, and hence suitable for quantization purposes.

However, the computation of the points is rather expensive as the algorithm to do so is

iterative. In our experiments we used an offline process to generate the set of representative

normals, and then used this set for quantizing normals. We need to mention that due to

the computational complexity of SCVT, the largest set that wemanaged contained only 216

normals.

3.3.7 Table of Quantization Methods

Table 3.2 summarizes the different quantization methods discussed in this paper. Quanti-

zation methods based on Octahedral Quantization are prefixed by ’OQ‘ and labeled by the

projection technique used and their use of of hexagonal cells. For example, ’OQ-Areal-

Hex‘ refers to an Octahedral Quantization method that uses both the Areal projection and

the hexagonal cells. On the other hand, names of methods which use a nearest neighbors

algorithm start with ‘NN’. The methods names that start with‘NN-OQ’ are quantization

methods that use a nearest neighbor finding algorithm such that the setSof the representa-

tive points is the same as an Octahedral Quantization methods. For example, the NN-OQ-

Areal-Hex method uses the representative normals of the OQ-Areal-Hex method. Notice

that the encoding process of NN-OQ-Areal-Hex method ensures that the quantization error

53

is minimized, but there is no such guarantee for the OQ-Areal-Hex method.

The Tegmark and Tegmark-Hex methods are the onlyequal areamethods in Table 3.2.

That is, each representative normal in these methods represents normals that cover an equal

area of the unit sphere. Equal areal quantization methods are especially important as they

can be used to uniformly sample the unit sphere.

Method’s Name Octahedral Hexagonal Nearest Neighbors Equal Area
Geographic
Deering

OQ-Gnomonic X

OQ-Areal X

OQ-Buss-Fillmore X

OQ-Tegmark X X

OQ-Gnomonic-Hex X X

OQ-Areal-Hex X X

OQ-Buss-Fillmore-Hex X X

OQ-Tegmark-Hex X X X

NN-OQ-Gnomonic X

NN-OQ-Areal X

NN-OQ-Buss-Fillmore X

NN-OQ-Tegmark X

NN-OQ-Gnomonic-Hex X X

NN-OQ-Areal-Hex X X

NN-OQ-Buss-Fillmore-Hex X X

NN-OQ-Tegmark-Hex X X

NN-SCVT X

NN-Saff-Kuijlaars X

NN-Random X

Table 3.2: A Summary of Quantization Methods

3.3.8 QuickArealHex Algorithm

In Section 3.5.1 we show that the encoding time of normal quantization methods that use

nearest neighbor finding algorithms increases rapidly withthe number of quantization bits.

In other words, such methods are not suitable when a large number of quantization bits is

54

required. Moreover, the nearest neighbor based quantization methods are not suitable for

applications that require real-time encoding of normal vectors.

In this section, we describe the QuickArealHex algorithm, afast implementation of

the NN-OQ-Areal-Hex quantization method. The QuickArealHex algorithm first uses the

QuickAreal algorithm to quickly encode a normal vectorq using the OQ-Areal method.

Then the nine neighbors of the quantized normal are tested tofind the closest represen-

tative normal toq. The QuickArealHex algorithm always searches for nine neighbors of

a quantized normals, hence it can perform fast encoding compared to implementing the

NN-OQ-Areal-Hex algorithm when using a general nearest neighbor finding algorithm.

Figure 3.10 provides an example. The gray dots are the representative points of the

OQ-Areal-Hex algorithm. The symbol× is the projection of the normalq onto the square

of Figure 3.8(c).q is mapped to middle square using the QuickAreal algorithm, and the

nine neighbors ofq are shown with black dots.

Figure 3.10: The neighborhood search of the QuickArealHex algorithm.

55

3.4 Lower Bounds

In this section, we provide a loose lower bound for the quantization error. Given a normal

vector n and its corresponding quantized normal vectornq, the quantization erroren is

the defined as the geodesic distance betweenn andnq on the unit sphere. We haveen =

dS(n,nq), anden = arccosn·nq, wheredS(n,nq) is the geodesic distance betweennq andn.

Three error statistics that are of interest to us are:

1. The Maximum Quantization Error (MQE) is the largest possible value ofen for a

quantization method;

2. The Average Quantization Error (AQE) is the average quantization error for all the

normals; and

3. The Root Mean Square Quantization Error (RMSQE) is the square root of the average

of the squares of the quantization error for all the normals.

We assume that we have placedM representative normals on the surface of the unit

sphere. Consider an arbitrary representative normalq. Let θq denote the largest quanti-

zation error of normals represented byq. Moreover, letSθq denote the surface area of the

unit sphere corresponding to the normals represented byq. Notice that,Sθq is smaller than

the surface area of a spherical disk with radiusθq. On the other hand, the surface area of a

spherical disk with radiusθ is [79] 2π(1−cosθ), henceSθq ≤ 2π(1−cosθq).

Let θ denote the largestθq of all representative normals. As we require all the normals

on the unit sphere to have corresponding representative normals, we have 4π ≤∑qSθq, and

hence 4π ≤ ∑q2π(1− cosθq). Therefore, asθ is the largestθq, we have 4π ≤M2π(1−

cosθ). The Maximum Quantization Error is equal toθ and is at least

arccos

(

1− 2
M

)

. (3.4)

56

O

n

β
qh

Figure 3.11: Cross section of the unit sphere centered atO.

We now derive the quantization error statistics of normals in a spherical disk with radius

θ . Consider an arbitrary normaln in the spherical disk centered atq and radiusθ . Assume

that the geodesic distance of normaln to its representative normalq is β (as shown in

Figure 3.11). The corresponding quantization error ofn is β . The total quantization error

for all normals located in the disk centered atq and geodesic radiusθ is

∫ θ

0
β

∂Sβ

∂β
dβ ,

whereSβ is the surface area of the spherical disk of heighth. We have [79],Sβ = 2πh and

h = 1−cosβ .

The Average Quantization Error (AQE) is

1
Sθ

∫ θ

0
β

∂Sβ

∂β
dβ =

M
2

(sinθ −θ cosθ) . (3.5)

Similarly, the mean square quantization error is

1
Sθ

∫ θ

0
β 2∂Sβ

∂β
dβ =

M
2

((2−θ 2)cosθ +2θ sinθ −2),

and the Root Mean Square Quantization Error (RMSQE) is

√

M
2

((2−θ 2)cosθ +2θ sinθ −2) . (3.6)

57

3.4.1 A Tighter Lower Bound

We can derive a tighter lower bound for the maximum quantization error (MQE) by observ-

ing the geometric properties of the spherical Voronoi diagram of the representative normals.

A spherical Voronoi diagram of the spherical point setS is a tessellation on the surface of

the unit sphere, such that all the points in each cell of the tessellation have the same nearest

neighbor inS. The cells of a spherical Voronoi tessellation could be of different shapes.

We point out that the lowest MQE is achieved by having cells that are as close to a cir-

cle as possible. In general, tessellation of a sphere by using only circles is not possible.

Furthermore, the sphere cannot be tessellated by any regular polygon with more than six

sides. In this section, we can derive an MQE lower bound by assuming a tessellation of the

unit sphere with equal regular hexagons. This lower bound istighter than the lower bound

in Equation 3.4. However, as it is not possible to completelycover the sphere only with

regular hexagons, the lower bound derived in this section isnot the tightest possible bound.

We derive the bounds for the general case of tessellating thesphere intoM equalN-sided

regular spherical polygons. The MQE lower bound corresponds to the the case ofN = 6.

The area of each cell is4π
M . Letting 2γ denote the interior angle of the cells, the area of

the cell is [79] 2Nγ− (N−2)π. Hence,

4π
M

= 2Nγ− (N−2)π.

Or,

γ =
π
2
− π

N

(

1− 2
M

)

.

Let A denote the center of a cell, and letB andC be two adjacent vertices of the cell.

Without loss of generality, we assume that the sphere is oriented such that, for properly

58

chosen values ofα andψ, we have:

A = (0,0,1)

B = (sinα cosψ,sinα sinψ,cosα)

C = (sinα cosψ,−sinα sinψ,cosα) .

Consider the spherical triangleABCdepicted in Figure 3.12. Let∠A denote the spher-

ical angle at vertexA and leta denote the spherical sideBC. Hence, asA is the center

of a regular spherical polygon, we have∠B = γ, and∠A = 2π
N . Moreover, notice that the

maximum quantization error is equal toα.

a

C

2π
N B

A

γ

c

b

Figure 3.12: Tighter lower bounds.

As a is the side of the spherical triangle betweenB andC, we have:

cosa = B·C = sin2α cos2ψ−sin2α sin2ψ +cos2α

1−2sin2 a
2

= sin2α(1−sin2ψ)−sin2α sin2ψ +1−sin2α

= 1−2sin2α sin2ψ

sin
a
2

= sinα sinψ .

Similarly, for b andc, we have: cosb = A·C = cosα and cosc = A·B = cosα. Hence,

b = c = α.

Using the law of cosines in the spherical triangleABC, we have: cos∠Asincsinb+

59

cosbcosc = cosa, hence:

cos∠A =
cosa−cosbcosc

sinbsinc

=
sin2α cos2ψ−sin2α sin2ψ +cos2α−cos2α

sin2α
= cos2ψ−sin2ψ = cos2ψ .

Hence,ψ = π
N .

Similarly, we have:

cos∠B =
cosb−cosacosc

sinasinc
=

cosα−cosα cosa
sinasinα

=
cosα
sinα

1−cosa
sina

=
cosα
sinα

2sin2 a
2

2sina
2 cosa

2

=
cosα
sinα

sina
2

cosa
2

=
cosα
sinα

sinα sinψ
cosa

2

= sinψ
cosα
cosa

2
.

Hence, as∠B = γ, we have

cos
a
2

= sinψ
cosα
cosγ

.

Moreover, as sin2 a
2 +cos2 a

2 = 1, we have

sin2α sin2ψ +sin2ψ
cos2α
cos2γ

= 1

sin2ψ
(

sin2α +
1−sin2α
1−sin2γ

)

= 1,

which simplifies to

sin2α =
sin2ψ +sin2γ−1

sin2ψ sin2γ
.

In case of a hexagonal cells, we haveN = 6,ψ = π
6 , γ = π

3(1+ 1
M), and hence the maximum

60

quantization error (α) is obtained from

sin2α = 4− 3

sin2 π
3

(

1+ 1
M

) .

This simplifies to:

cosα =

√
3

tanπ
3

(

1+ 1
M

) . (3.7)

Equations 3.5–3.7 could be used to design the minimum numberof quantized normals to

achieve a specific quantization error. For example to achieve a maximum quantization error

(α) less than 1 degree, requires at least 15,879 representative normals. Moreover, we know

from Equation 3.5 that the average quantization error for 15,879 representative normals

will be at least 0.6062 degrees and from Equation 3.6 we know that the root mean square

quantization error for 15,879 representative normals willbe at least 0.6430 degrees.

3.5 Comparison of Quantization Methods

Our test setup generates 128×2Q random unit normaltest vectorswith a uniform distri-

bution, whereQ is the number of quantization bits. Note that the number of test vectors

is proportional to the number of the representative normals. For example, ifQ = 12, we

generate 524,288 random unit test vectors. We then useQ bits to encode each test vector

and then decode it to derive its correspondingquantized vector. The quantization error for

each test vector is the angle between the test vector and its corresponding quantized vector

and is measured in degrees. The quantization errors are thenaggregated over all the test

vectors to produce the various error statistics. We also measure the average time taken for

decoding and encoding a test vector. The experiments were conducted on an IBM Thinkpad

T43 machine with an Intel Centrino 750 (1.86 GHz and 2 MB Level-2 cache) and 1GB of

RAM running Windows XP using the Visual C++ optimizing compiler.

In Figure 3.13, we compare the quantization error of severalquantization methods.

61

In particular, we compare the quantization errors of the Geographic, the Deering, the OQ-

Areal, the OQ-Gnomonic, the OQ-Tegmark, and the OQ-Buss-Fillmore quantization meth-

ods. In particular, we compare the Maximum Quantization Error (MQE), the Average

Quantization Error (AQE), and the Root Mean Square Quantization Error (RMSQE) of the

above mentioned quantization methods and the corresponding lower bounds. Notice that

the MQE lower bound is derived in Section 3.4.1, while the AQEand the RMSQE lower

bounds are derived in Section 3.4. The quantization error isshown on the lefty-axis of

Figure 3.13, while on the righty-axis of Figures 3.13(a, c, e), the quantization error is rep-

resented in terms ofeffective bits. We use the concept of aperfect quantizerto explain the

term “effective bits”. A perfect quantizer is a quantizer whose error statistics are the same

as the lower bounds. The effective bits corresponding to a quantization error is the number

of bits required by a perfect quantizer to obtain the same quantization error. For example,

we can see that the MQE error of the Deering method when using 12 quantization bits cor-

responds to 9 effective bits. That is, the same quantizationerror could have been achieved

if 9 bits were used with a perfect quantizer. In effect, this shows that the Deering method

wastes three bits. We also define a corresponding normalizederror metric for each of the

three error metrics by dividing each error statistics by itscorresponding lower bound. The

normalized error metrics are dimensionless and are used in Figures 3.13(b, d, e)–3.17(b, d,

e).

In Figure 3.13(a), we see that the Deering method has much higher quantization er-

ror compared to other methods. In particular, the Deering method wastes three bits while

other methods waste between one and two bits. Interestingly, the Geographic method has

the lowest MQE error among all the methods. Note that the Normalized Maximum Quan-

tization Error shown in Figure 3.13(b) depends on the parityof the number of bits. In

particular, all the methods have lower normalized error when the number of bits is an odd

number. Note that the Deering method is only defined for an even number of quantization

bits. Moreover, the normalized quantization errors of the Deering method rapidly increases

62

when the number of bits is increased. In contrast, the normalized quantization errors of

other methods remain the same.

From Figures 3.13(c, d) we immediately notice that the Deering method wastes two

bits for the AQE and the RMSQE errors, while other methods waste less than one bit.

However, Figures 3.13(d, f) show that the Geographic methodperforms worse than other

methods for the AQE and the RMSQE error metrics. Also note thatthe variation of the

errors with respect to the parity of the number of bits is onlyobserved in the Geographic

method.

In Figure 3.14, we compare the quantization error of Octahedral Quantization methods

that use hexagonal cells and the Geographic method. Note that hexagonal cells are only

defined for an even number of bits. In particular, we compare the quantization error of the

Geographic, the OQ-Gnomonic-Hex, the OQ-Areal-Hex, the OQ-Buss-Fillmore-Hex, and

the OQ-Tegmark-Hex quantization methods.

In Figure 3.14(a), we see that the Geographic method has a higher quantization er-

ror compared to other methods. In particular, the Geographic method wastes almost 1.5

bits, while other methods waste a little less than one bit. By comparing Figure 3.14(a)

with Figure 3.13(a), we conclude that using hexagonal cellsimproves the quantization by

almost one bit. This improvement is more evident by comparing Figure 3.14(b) with Fig-

ure 3.13(b). Note that the OQ-Buss-Fillmore and the OQ-Arealmethods have very similar

quantization errors. This is not entirely surprising as theBuss-Fillmore and the Areal pro-

jections approximate each other. Figure 3.14(b) also showsthat the NMQE error metric

of the OQ-Tegmark-Hex method increases with an increasing number of quantization bits,

while the converse is true for the OQ-Buss-Fillmore-Hex and the OQ-Areal-Hex meth-

ods. Moreover, the NMQE error metric of the OQ-Gnomonic-Hexmethod remains the

same. Notice that in Figures 3.14(c)–(f), the OQ-Buss-Fillmore-Hex and the OQ-Areal-

Hex methods are very close to the lower bounds.

In Figures 3.15–3.17, we compare the quantization error of quantization methods that

63

use a nearest neighbor finding algorithm. In particular, we compare the quantization error

of the NN-Geographic, the NN-Deering, the NN-OQ-Gnomonic,the NN-OQ-Areal, the

NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NN-OQ-Gnomonic-Hex, the NN-OQ-

Areal-Hex, the NN-OQ-Buss-Fillmore-Hex, the NN-OQ-Tegmark-Hex, the NN-SCVT,

and the NN-Saff-Kuijlaars quantization methods. By comparing Figures 3.15 and 3.16

with Figures 3.13 and 3.14, we observe that methods which usea nearest neighbor finding

algorithm have better quantization error. For example, theMQE error metric of the Deering

method improves by at least half a bit by using an nearest neighbor finding algorithm.

By comparing Figure 3.15(b) with Figure 3.13(b), we observe that the NN-OQ-Gnomonic

method when using an even number of quantization bits, has a lower NMQE error metric

compared to OQ-Gnomonic method. A similar observation can be made regarding the

OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark methods. Note that OQ-Tegmark

method gains the most from using a nearest neighbor finding algorithm. However the NN-

OQ-Buss-Fillmore method has the lowest error metrics. Another interesting observation

is that the Geographic quantization does not gain from usinga nearest neighbor finding

algorithm.

By comparing Figure 3.16(b) and Figure 3.14(b), we observe that the NN-OQ-Gnomonic-

Hex method has the same NMQE error metric compared to the OQ-Gnomonic-Hex method.

However, the MQE error metric of the OQ-Areal-Hex, the OQ-Buss-Fillmore-Hex, and the

OQ-Tegmark-Hex methods gain close to half a bit by using a nearest neighbor finding

algorithm.

Finally, we observe from Figure 3.17(b) that the MQE error ofthe NN-Saff-Kuijlaars

method is slightly more than the NN-OQ-Tegmark-Hex method.However the quantization

error of the NN-SCVT method is slightly better than both the NN-Saff-Kuijlaars and the

NN-OQ-Tegmark-Hex method. The most important observationthat we make is that the

NN-OQ-Buss-Fillmore-Hex method has the lowest MQE error metric among all the quan-

tization methods discussed in this article. Notice that theMQE error of the NN-OQ-Areal-

64

Hex method is just a little higher than the NN-OQ-Bass-Fillmore-Hex method. Moreover,

we note that the AQE and the RMSQE errors shown in Figures 3.17(c)–(f), are better for

the NN-SCVT and NN-Saff-Kuijlaars methods. However, the AQEand RMSQE errors

of the NN-OQ-Buss-Fillmore-Hex and the NN-OQ-Areal-Hex methods are just slightly

higher than the NN-SCVT and the NN-Saff-Kuijlaars methods.

Based on our observation of the errors of the different quantization methods, we claim

that the NN-OQ-Areal-Hex method is consistently among the better methods with respect

all the error metrics we considered in our study. We later show that the time and the

storage required for quantization using the OQ-Areal and the NN-OQ-Areal-Hex, when

implemented using the QuickAreal and QuickArealHex algorithms compares favorably to

all other methods.

3.5.1 Encoding and Decoding Times

We now discuss the computation time required for normal quantization. In Figure 3.18, we

have selected a few of the quantization methods for the evaluation of the encoding and de-

coding performance. The methods chosen cover a variety of the methods discussed before.

The methods are the Geographic, the Deering, the OQ-Tegmark, the OQ-Gnomonic, the

OQ-Areal, the OQ-Areal-Hex the NN-OQ-Areal-Hex, the NN-SCVT, the QuickAreal, the

QuickArealHex. We mention the following regarding the evaluation:

• The implementation of the Deering method used in our evaluation is based on the

conversion of Deering’s Java implementation to C++.

• We used the ANN [53] library and used its k-d tree [5] based nearest neighbor find-

ing algorithm for implementing quantization methods whichuse a nearest neighbor

finding algorithm.

• The SCVT point set was computed offline.

65

Figure 3.18(a) shows the encoding time. We remind the readerthatencodingrefers to

the process of converting a normal vector to its quantized representation. We observe that

the Deering method performs poorly for a higher number of quantization bits. Techniques

that use a nearest neighbor finding algorithm, with the exception of QuickArealHex, show

a drastic degradation in performance when the number of bitsincreases beyond a threshold

(14 bits in our experiments). One reason for this performance degradation is the large

amount of memory needed to store the set of representative normals and the associated

data structure. While QuickArealHex is slower than the methods that do not use a nearest

neighbor algorithm, it has a constant time performance and hence is comparable to such

methods. We also point out that the QuickAreal algorithm hasthe lowest encoding time,

even when compared with the OQ-Gnomonic method.

Figure 3.18(b) shows the decoding time. We observe that withthe exception of QuickAre-

alHex, the methods that use a nearest neighbor finding algorithm are very fast. This is not

surprising as the decoding component of these algorithms isimplemented using a table

look-up algorithm. However, this speed comes at the expenseof the extra storage required

to keep the table in memory. That size of the table is 12 bytes times the number of repre-

sentative normals. For example, if we use 18 bits for quantization, the table has a size of

3 Megabytes. Note that the decoding component of the Deeringmethod also uses a table

lookup. However, the size of the table used in the Deering method (24 kilobytes) is 128

times smaller as the Deering method takes advantage of the symmetry of the representa-

tive normals. QuickAreal and QuickArealHex have essentially the same decoding time,

although QuickArealHex is slightly slower as it requires a few extra operations. The OQ-

Gnomonic method is faster than the OQ-Areal method, but is slower than QuickAreal, as

it uses a square root operation. The OQ-Areal method uses themore expensive trigono-

metric functions. The QuickAreal algorithm uses a compact table instead of computing

trigonometric functions used in the OQ-Areal method. The Geographic method also uses

trigonometric functions, however it is faster than the OQ-Areal method. Note that the OQ-

66

Areal-Hex and the OQ-Areal methods have similar decoding times. Finally, OQ-Tegmark

has the slowest decoding time as it uses a very complex mathematical formulation. Note

that the decoding time of all methods could be made similar tothe methods that use a

nearest neighbor finding algorithm by storing the quantizednormal vectors in a table.

3.6 Rendering a Perfect Sphere

In this section, we show how the different quantization methods discussed in this article

affect the quality of rendered geometry models. A sphere is the only geometry model dis-

cussed in this article. We chose a sphere as it is a smooth surface, and hence the artifacts

resulting from the quantization are easily observable. Moreover, the surface of a sphere is

equivalent to the entire set of unit normal vectors, and it allows visualization of the quan-

tization artifacts on the entire set of unit normal vectors.We used the POV-Ray software

— modified to quantize the surface normals of a sphere — to produce the images in this

section.

Figures 3.19–3.26 show a sphere with different quantization methods. Rendering a

sphere with quantized surface normals produces visual artifacts which are equivalent to

a tessellation of the sphere. In order to show the complete tessellation of the sphere, the

sphere is rendered from two different viewpoints. The rendered sphere has a unit radius and

is centered at(0,0,0). The two viewpoints are chosen such that the center of each image

corresponds to the points(0,0,1) and(1√
3
, 1√

3
, 1√

3
).

Figure 3.19(a, b) shows the rendered sphere using the Geographic, and the NN-Geographic

quantization methods with 8 quantization bits. The Geographic method produces a tessel-

lation such that its cells are rectangular around the equator and triangular at the poles. The

cells around the poles are much smaller than the ones around the equator. We observe that

the NN-Geographic method does not noticeably affect on the shape of the cells.

Figures 3.19(c, d) show the rendered sphere using the Deering, and the NN-Deering

67

methods with 8 quantization bits. The Deering method produces a tessellation such that

its cells are rectangular, but they are larger than the tessellation cells of the Geographic

method. The Deering method produces cells that are irregular in shape, although the shape

of the cells is similar to a square. Notice that using the NN-Deering method considerably

changes the shape of the cells.

Figures 3.20–3.23 shows the rendered sphere using Octahedral Quantization meth-

ods with 8 and 7 bits of quantization. The OQ-Tegmark, the NN-OQ-Tegmark, the OQ-

Gnomonic, and the NN-OQ-Gnomonic methods are used in Figures 3.20 and 3.22, while

the OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-OQ-Buss-Fillmore

methods are used in Figures 3.21 and 3.23. Octahedral Quantization methods that do not

use a nearest neighbor finding algorithm produce cells that vary from diamonds to squares

when 8 bits are used for quantization and produce triangularcells when 7 bits are used for

quantization. However, when a nearest neighbor finding algorithm is used, the cells are of

varying shapes. Moreover, the tessellation of the sphere inthe bottom row of Figures 3.20,

and 3.21 contain pentagons and hexagons.

Notice the similarity of the tessellations produced by the Areal and the Buss-Fillmore

projections, as shown in Figures 3.21 and 3.23. This is not surprising as the two projections

approximate each other.

Notice that the OQ-Gnomonic method produces cells that greatly vary in size at differ-

ent areas of the sphere (Figures 3.20(a) and 3.22(a)). On theother hand, the OQ-Tegmark

method always produces cells of the exact same size, although of different shapes (Fig-

ures 3.20(c) and 3.22(c)). The OQ-Areal and the OQ-Buss-Fillmore methods produce cells

that do not vary in size as much as the OQ-Gnomonic method (Figures 3.21 and 3.23).

Figures 3.24(a, b) show the rendered sphere with 8 bits of quantization, using using the

OQ-Areal, the NN-OQ-Areal quantization methods. Figures 3.24(c, d) show the rendered

sphere using using the OQ-Areal-Hex, the NN-OQ-Areal-Hex quantization methods. No-

tice that Figure 3.24(c) which uses hexagonal cells is very similar to Figure 3.24(b) which

68

does not use hexagonal cells but instead uses a nearest neighbor finding algorithm. More-

over, by comparing Figure 3.24(c) with Figure 3.24(d), we observe that the shape of the

cells in Figure 3.24(d) are more regular.

Figure 3.25 shows the rendered sphere using various quantization method that use a

nearest neighbor finding algorithm. Figure 3.25 is generated by using 8 quantization bits.

Figure 3.25(a) shows the sphere when random points on the sphere are chosen as the set

of the representative normals. Although the cells are very irregular in shape, their sizes are

smaller than the Deering method shown in Figure 3.19(c).

The NN-Saff-Kuijlaars method is shown in Figure 3.25(b). Notice that the image in the

top row shows that the cells are arranged in a spiral startingfrom the center of the image.

Moreover, the cells of the NN-Saff-Kuijlaars method are also irregularly shaped.

The NN-SCVT method, shown in Figure 3.25(c), has cells which are the most regularly

shaped among all the other methods shown in Figure 3.25.

Figure 3.26 shows the rendered sphere using the Deering and the NN-OQ-Areal-Hex

quantization method for 10, 12, 14, 16, and 18 bits of quantization. As we can see, the

spheres rendered with the NN-OQ-Areal-Hex method with 14 ormore quantization bits is

almost visually comparable to a perfect sphere whose surface normals are not quantized.

However, the Deering method needs at least 16 quantization bits to produce the same effect.

Consequently, we claim that the NN-OQ-Areal-Hex method is a two bit improvement over

the Deering algorithm.

Notice that the surface color of the sphere in Figure 3.26 varies very gradually over

the the sphere. Hence, small quantization errors were not observable. We use a sphere

illuminated with a specular light in order to reveal finer visual artifacts of a quantization

method. The addition of a specular light to the previously discussed sphere model results

in Figure 3.27(a). Notice that there is a small specular highlight in the center of the im-

age. The specular highlight has been magnified and shown in Figure 3.27(b). Figure 3.28

illustrates discuss the fine-grained visual artifacts thatcould be produced when quantizing

69

surface normals. For each quantization method, the sphere,is rendered from two different

viewpoints. The rendered sphere has a unit radius and is centered at(0,0,0). The two

viewpoints are chosen such that the center of each image corresponds to the points(0,0,1)

and(1√
3
, 1√

3
, 1√

3
) (labeled by ’R‘). The first two rows of Figure 3.28 are renderedusing

the Deering method. Notice the sudden change in the shape of the tessellation when using

18 bits compared to when using 16 bits. The third and fourth rows of Figure 3.28 show

the artifacts produced by the OQ-Gnomonic-Hex method. Notice that the OQ-Gnomonic-

Hex method does not produce similarly sized cells at different locations of the sphere. On

the other hand, the OQ-Areal-Hex-NN algorithm produces similarly sized cells across the

sphere. The NN-SCVT method produces similarly shaped and similarly sized cells across

the sphere. However, the NN-SCVT method is not practical for more than 16 bits, as we

were unable to a generate the set of representative normals for a quantization of more than

16 bits.

3.7 Summary and Conclusion

In this paper, we have investigated a wide variety of techniques for unit normal vector quan-

tization. We reviewed some techniques that are currently inuse, and also proposed several

novel methods. We provided loose theoretical lower bounds on the quantization error us-

ing three different error metrics. We also discussed how different quantization methods

affect the rendering of geometry models. Our main finding is the recommendation of using

the QuickArealHex algorithm as it has a low quantization error, and is computationally

efficient. The factors contributing to the low quantizationerror of the QuickArealHex al-

gorithm are:

1. It uses hexagonal cells, and we have shown that using hexagonal cells in an Octahe-

dral Quantization method lowers the quantization error.

2. It uses a nearest neighbor algorithm for encoding each normal vector, which means

70

that it provides the lowest quantization error over all error metrics for the normal

vector.

3. Its use of the Areal projection leads to an approximation of the Buss-Fillmore pro-

jection, whose incorporation in the NN-OQ-Buss-Fillmore-Hex method resulted in

the lowest quantization error as measured by the MQE error metric.

Moreover, the QuickArealHex algorithm is fast with low memory requirements. This

is because it uses the QuickAreal algorithm, which as pointed out earlier, is very fast and

uses little memory. In particular, for 18 bits of quantization. the QuickArealHex algorithm

requires only 1 kilobytes of memory for decoding and an extra1 kilobytes of memory for

encoding, while the Deering method requires 24 kilobytes for each of the decoding and

encoding processes. The extra memory used by the Deering method enables a slightly

faster decoding time than the QuickAreal method due to the use of table lookup, which

could also be used by the QuickAreal method to obtain comparable behavior.

In addition, the nearest neighbor algorithm used in the QuickArealHex algorithm takes

advantage of the fact that the representative normals are almost regularly distributed, and

hence makes it possible to find the nearest neighbor of a pointin constant time.

Figure 3.29 compares the Deering and the QuickArealHex methods. As illustrated in

Figure 3.29(a) (which is in terms of relative magnitude—that is, a factor of x), the quan-

tization error of the QuickArealHex is far better than the Deering methods as the number

of bits gets large with the change coincidentally occurringat 18 bits, which is the number

of bits for which the Deering method is usually used. This increase in quality is achieved

while having a faster encoding time (see Figure 3.29(b)).

71

0.25

0.49

0.98

1.97

3.94

7.88

15.75

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8
7
6

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Maximum Quantization Error

Geographic
Deering
OQ-Gnomonic
OQ-Areal

OQ-Buss-Fillmore
OQ-Tegmark
Lower Bound

(a)

 1.5

 2

 2.5

 3

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

Geographic
Deering
OQ-Gnomonic

OQ-Areal
OQ-Buss-Fillmore
OQ-Tegmark

(b)

0.15

0.30

0.60

1.19

2.39

4.77

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Average Quantization Error

Geographic
Deering
OQ-Gnomonic
OQ-Areal

OQ-Buss-Fillmore
OQ-Tegmark
Lower Bound

(c)

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Average Quantization Error

Geographic
Deering
OQ-Gnomonic

OQ-Areal
OQ-Buss-Fillmore
OQ-Tegmark

(d)

0.16

0.32

0.63

1.27

2.53

5.06

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Root Mean Square Quantization Error

Geographic
Deering
OQ-Gnomonic
OQ-Areal

OQ-Buss-Fillmore
OQ-Tegmark
Lower Bound

(e)

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Root Mean Square Quantization Error

Geographic
Deering
OQ-Gnomonic

OQ-Areal
OQ-Buss-Fillmore
OQ-Tegmark

(f)

Figure 3.13: Different error statistics of the Deering, theGeographic, the OQ-Gnomonic,
the OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark quantization methods. (a,b)
Maximum Quantization Error. (c,d) Average Quantization Error. (e,f) Root Mean Square
Quantization Error.

72

0.25

0.49

0.98

1.97

3.94

7.88

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Maximum Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex
Lower Bound

(a)

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex

(b)

0.15

0.30

0.60

1.19

2.39

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Average Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex
Lower Bound

(c)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Average Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex

(d)

0.16

0.32

0.63

1.27

2.53

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Root Mean Square Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex
Lower Bound

(e)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Root Mean Square Quantization Error

Geographic
OQ-Gnomonic-Hex
OQ-Areal-Hex

OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex

(f)

Figure 3.14: Different statistics of the Geographic, the OQ-Gnomonic-Hex, the OQ-Areal-
Hex, the OQ-Buss-Fillmore-Hex, and the OQ-Tegmark-Hex quantization methods. (a,b)
Maximum Quantization Error. (c,d) Average Quantization Error. (e,f) Root Mean Square
Quantization Error.

73

0.25

0.49

0.98

1.97

3.94

7.88

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Maximum Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic
NN-OQ-Areal

NN-OQ-Buss-Fillmore
NN-OQ-Tegmark
Lower Bound

(a)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic

NN-OQ-Areal
NN-OQ-Buss-Fillmore
NN-OQ-Tegmark

(b)

0.15

0.30

0.60

1.19

2.39

4.77

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Average Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic
NN-OQ-Areal

NN-OQ-Buss-Fillmore
NN-OQ-Tegmark
Lower Bound

(c)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Average Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic

NN-OQ-Areal
NN-OQ-Buss-Fillmore
NN-OQ-Tegmark

(d)

0.16

0.32

0.63

1.27

2.53

5.06

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Root Mean Square Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic
NN-OQ-Areal

NN-OQ-Buss-Fillmore
NN-OQ-Tegmark
Lower Bound

(e)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Root Mean Square Quantization Error

NN-Geographic
NN-Deering
NN-OQ-Gnomonic

NN-OQ-Areal
NN-OQ-Buss-Fillmore
NN-OQ-Tegmark

(f)

Figure 3.15: Different statistics of the NN-Deering, the NN-Geographic, the NN-OQ-
Areal, the NN-OQ-Buss-Fillmore, and the NN-OQ-Tegmark, quantization methods. (a,b)
Maximum Quantization Error. (c,d) Average Quantization Error. (e,f) Root Mean Square
Quantization Error.

74

0.25

0.49

0.98

1.97

3.94

7.88

 10 11 12 13 14 15 16 17 18
18
17
16
15
14
13
12
11
10
9
8

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Maximum Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex
Lower Bound

(a)

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex

(b)

0.15

0.30

0.60

1.19

2.39

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Average Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex
Lower Bound

(c)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Average Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex

(d)

0.16

0.32

0.63

1.27

2.53

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Root Mean Square Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex
Lower Bound

(e)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Root Mean Square Quantization Error

NN-Geographic
NN-OQ-Areal-Hex
NN-OQ-Gnomonic-Hex

NN-OQ-Tegmark-Hex
NN-OQ-Buss-Fillmore-Hex

(f)

Figure 3.16: Different statistics of the NN-Deering, the NN-Geographic, the NN-OQ-
Gnomonic-Hex, the NN-OQ-Areal-Hex, the NN-OQ-Buss-Fillmore-Hex, and the NN-OQ-
Tegmark-Hex quantization methods. (a,b) Maximum Quantization Error. (c,d) Average
Quantization Error. (e,f) Root Mean Square Quantization Error.

75

0.25

0.49

0.98

1.97

3.94

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

9

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Maximum Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT
Lower Bound

(a)

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT

(b)

0.15

0.30

0.60

1.19

2.39

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Average Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT
Lower Bound

(c)

 1

 1.005

 1.01

 1.015

 1.02

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Average Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT

(d)

0.16

0.32

0.63

1.27

2.53

 10 11 12 13 14 15 16 17 18
18

17

16

15

14

13

12

11

10

de
gr

ee
s

ef
fe

ct
iv

e
bi

ts

number of bits

Root Mean Square Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT
Lower Bound

(e)

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 10 11 12 13 14 15 16 17 18

x
fa

ct
or

number of bits

Normalized Root Mean Square Quantization Error

NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

NN-Saff-Kuijlaars
NN-SCVT

(f)

Figure 3.17: Different error statistics of the NN-OQ-Gnomonic-Hex, the NN-OQ-Areal-
Hex, the NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NN-Saff-Kuijlaars, and the
NN-SCVT quantization methods. (a,b) Maximum Quantization Error. (c,d) Average Quan-
tization Error. (e,f) Root Mean Square Quantization Error.

76

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 8 10 12 14 16 18 20 22

m
ic

ro
se

co
nd

s

number of bits

Encoding Time

Geographic
Deering
OQ-Gnomonic
OQ-Areal
OQ-Areal-Hex

NN-OQ-Areal-Hex
OQ-Tegmark
NN-SCVT
QuickAreal
QuickArealHex

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 8 10 12 14 16 18 20 22

m
ic

ro
se

co
nd

s

number of bits

Decoding Time

Geographic
Deering
OQ-Gnomonic
OQ-Areal
OQ-Areal-Hex

NN-OQ-Areal-Hex
OQ-Tegmark
NN-SCVT
QuickAreal
QuickArealHex

(b)

Figure 3.18: The quantization time of different quantization methods. (a) Encoding time.
(b) Decoding time.

(a) Geographic (b) NN-Geographic (c) Deering (d) NN-Deering

Figure 3.19: Rendering a perfect sphere with normals quantized with 8 bits, using the Geo-
graphic, the NN-Geographic, the Deering, and the NN-Deering quantization methods. The
spheres in the top row have been rotated in the bottom row in order to show the tessellations
from a different viewpoint.

77

(a) OQ-Gnomonic (b)
NN-OQ-Gnomonic

(c) OQ-Tegmark (d) NN-OQ-Tegmark

Figure 3.20: Rendering a perfect sphere with normals quantized with 8 bits, using the
OQ-Gnomonic, the NN-OQ-Gnomonic, the OQ-Tegmark, and the NN-OQ-Tegmark quan-
tization methods. The spheres in the top row have been rotated in the bottom row in order
to show the tessellations from a different viewpoint.

78

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Buss-Fillmore (d) NN-OQ-Buss-
Fillmore

Figure 3.21: Rendering a perfect sphere with normals quantized with 8 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-OQ-Buss-Fillmore quantiza-
tion methods. The spheres in the top row have been rotated in the bottom row in order to
show the tessellations from a different viewpoint.

79

(a) OQ-Gnomonic (b)
NN-OQ-Gnomonic

(c) OQ-Tegmark (d) NN-OQ-Tegmark

Figure 3.22: Rendering a perfect sphere with normals quantized with 7 bits, using OQ-
Gnomonic, NN-OQ-Gnomonic, OQ-Tegmark, and NN-OQ-Tegmarkquantization meth-
ods. The spheres in the top row have been rotated in the bottomrow in order to show the
tessellations from a different viewpoint.

80

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Buss-Fillmore (d) NN-OQ-Buss-
Fillmore

Figure 3.23: Rendering a perfect sphere with normals quantized with 7 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-OQ-Buss-Fillmore quantiza-
tion methods. The spheres in the top row have been rotated in the bottom row in order to
show the tessellations from a different viewpoint.

81

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Areal-Hex (d)
NN-OQ-Areal-Hex

Figure 3.24: Rendering a perfect sphere with quantized normals at 8 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Areal-Hex, and the NN-OQ-Areal-Hex quantization
methods. The spheres in the top row have been rotated in the bottom row in order to
show the tessellations from a different viewpoint.

82

(a) NN-Random (b) NN-Saff-Kuijlaars (c) NN-SCVT (d)
NN-OQ-Areal-Hex

Figure 3.25: Rendering a perfect sphere with quantized normals using the NN-Random, the
NN-Saff-Kuijlaars, the NN-SCVT, and the NN-OQ-Areal-Hex quantization methods. The
spheres in the top row have been rotated in the bottom row in order to show the tessellations
from a different viewpoint.

(a) 10 bits (b) 12 bits (c) 14 bits (d) 16 bits (e) 18 bits

Figure 3.26: Rendering a perfect sphere with normals quantized with the Deering and the
NN-OQ-Areal-Hex quantization methods with different bitsof quantization. The spheres
in the top row are quantized using the Deering method, and thespheres in the bottom row
are quantized using the NN-OQ-Areal-Hex.

83

(a) A sphere rendered with specular
lighting.

(b) The sphere in (a) magnified
around its specular highlight.

Figure 3.27: Rendering of a sphere with specular highlight.

84

(a) 14 bits (b) 16 bits (c) 18 bits (d) 20 bits (e) no
quantization

Figure 3.28: Rendering the sphere in Figure 3.27(a) with surface normals quantized with
14, 16, 18, and 20 bits using the Deering, the OQ-Gnomonic-Hex, the NN-OQ-Areal-Hex,
and the NN-SCVT quantization methods.

85

(a) 14 bits (b) 16 bits (c) 18 bits (d) 20 bits (e) no
quantization

Figure 3.28, continued: Rendering the sphere in Figure 3.27(a) with surface normals quan-
tized with 14, 16, 18, and 20 bits using the Deering, the OQ-Gnomonic-Hex, the NN-OQ-
Areal-Hex, and the NN-SCVT quantization methods.

86

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 6 8 10 12 14 16 18 20 22

x
fa

ct
or

number of bits

Normalized Maximum Quantization Error

QuickArealHex Deering

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 6 8 10 12 14 16 18 20 22

m
ic

ro
se

co
nd

s

number of bits

Encoding Time

QuickArealHex Deering

(b)

Figure 3.29: A comparison of the Deering and QuickArealHex methods. (a) Normalized
Maximum Quantization Error. (b) Encoding time.

87

Chapter 4

Execution time analysis of a top-down

R-tree construction algorithm

4.1 Introduction

R-trees [39] (see also [64] for a review of recent results) were developed as an index struc-

ture for the efficient management of multi-dimensional and spatial data such as points and

regions, as well as spatial data with a temporal component (e.g., [10,47,56,61]). Common

operations performed on an R-tree include point location queries, range queries and nearest

neighbor queries. Given a set of input data objects, an R-treecould be constructed by the

repeated insertion of each data item. This approach does nottake advantage of the fact that

all the data items are known beforehand, as in this case it is preferable to insert all of the

data items using a single operation. Such an operation is calledbulk loading. An additional

motivation for bulk loading is to enable the construction ofan R-tree which can perform

queries faster.

There have been a number of bulk loading techniques developed for R-trees (e.g.,

[1,11,13,45,49,58,77]). In this paper we present a formal analysis of the cost of building

an R-tree using theTop-down Greedy Split(TGS) bulk loading technique that was origi-

88

nally proposed by Garcı́a, López, and Leutenegger [31]. Our approach differs from theirs

by providing a detailed implementation which enables a moreprecise analysis of the al-

gorithm. In particular, the analysis given in [31] only considers the number of disk pages

accessed for bulk loading of the data, while a formal analysis of the needed CPU time is

missing. Given that memory is getting cheaper, many spatialdatabases fit into memory

(e.g., in-car applications) and thus an analysis of the number of disk page accesses is not

sufficient. This is especially true in the case of a bulk loading algorithm such as TGS which

performs many sorting operations in order to obtain an R-treethat minimizes a particular

cost function. The algorithm of Garcı́a et al. in [31] uses a classical bottom-up packing

approach. We also introduce a top-down packing approach, show how to incorporate it into

the TGS algorithm, and discuss the tradeoffs in choosing oneversus the other.

Our motivation for presenting the analysis and implementation of the TGS algorithm

is to try to provide analytical support to the experimental results reported in [30] which

showed that the R-tree built using the TGS bulk loading technique performs much better

compared to those built using other bulk loading techniques, even though the bulk loading

process is slightly slower for TGS. It is important to note that in this paper we do not ana-

lyze the performance of queries executed on an R-tree constructed by the TGS bulk loading

operation; instead, we repeat, our contribution is to formally analyze the time required for

performing the bulk loading operation.

The rest of this paper is organized as follows. Section 4.2 reviews R-trees and the bulk-

loading process. Section 4.3 provides a description of the TGS bulk loading algorithm as

well as a sample implementation. Section 4.4 describes the two approaches to packing that

are used in bulk loading algorithms. Section 4.5 contains the formal analysis of the TGS

algorithm, while Section 4.6 contains some concluding remarks.

89

4.2 Background

The most basic object that is stored in an R-tree is anaxis-aligned rectangle, also called

a bounding box. An R-tree data structure is a height balanced data structuresimilar to a

B-tree [15] which facilitates storage of spatial data in secondary storage. Each leaf node

of an R-tree holds two items for each data record. One is the bounding box of the record,

and one is a pointer (or an identifier) to the data record itself. Similarly, each nonleaf node

of an R-tree holds two items for each of its children: a bounding box of the child, and a

pointer to the child. Naturally, the bounding box of a node isthe smallest bounding box

containing all the bounding boxes of the elements of that node. Furthermore, to ensure that

an R-tree is height balanced, each node has betweenb andM ≥ 2b children, whereM is

called thepage capacityof an R-tree node. In general, the page capacity of a leaf node is

different from the page capacity of a nonleaf node. A node that has less thanb children is

termedunderpacked. The root node of an R-tree is allowed to be underpacked.

The relationship between a node and its children is such thatthe boxes that are asso-

ciated with the children of a node are all spatially contained in the box that is associated

with the node itself. A common query on an R-tree is awindow query, which given a query

rectanglew, reports all the data records in the R-tree whose boxes intersectw. Whenw is

a point, the query is called apoint query. A window query is performed by examining the

root of an R-tree and recursively searching all its children that intersectw.

The efficiency of operations on an R-tree depends on the geometric relation of the nodes

with respect to each other as well as the height of the R-tree. For example, during a point

query, all the nodes of the R-tree that cover the query point are visited. The performance of

the query is thus proportional to the number of nodes visited. If the query point is inside the

bounding box of two or more sibling R-tree nodes, then all suchnodes must be visited. It is

possible to perform queries faster if the sibling nodes of anR-tree have little or no overlap.

Intuitively, reducing the overlap of sibling R-tree nodes also results in better performance.

A cost functionquantifies this notion by assigning a cost to the geometric relation of the

90

sibling nodes of an R-tree. Usually [4, 39, 45], the cost function of two bounding boxes

is a function of their areas, perimeters, and their overlap area. For example, consider the

collection of five bounding boxes in Figure 4.1(a). Suppose we are storing the five boxes

in an R-tree with the parametersb = 2,M = 4. We need to partition the five boxes into two

groups, one of size two, and one of size three. These partitions corresponds to the children

of the root of the R-tree. We show two such partitions in Figures 4.1(b) and 4.1(c). The

amount of overlap in Figure 4.1(b) is greater than in Figure 4.1(c), and thus the partition

depicted in Figure 4.1(b) is preferable.

B

C

A

E
D

(a)

B

C

A

E
D

(b)

B

C

A

E
D

(c)

Figure 4.1: Arrangement of bounding boxes. (a) A set of five boxes. (b) One bounding box
for boxes (A, C) and one for (B, D, E). (c) One bounding box for boxes (A, B) and one for
(C, D, E).

Roussopoulos and Leifker [58] introduced the concept ofpackedR-trees. In a packed

R-tree, all nodes of the R-tree, are as full as possible.This results in an R-tree with the low-

est possible height, thereby possibly improving the performance of search queries. How-

ever, the search performance is still dependent on the amount of overlap between the nodes.

Roussopoulos and Leifker’s approach for building a packed R-tree is abottom-upapproach

that builds an R-tree by placing spatially close rectangles together.

In general, a bottom-up approach for building packed R-treesis a two step process. It

the first step, then data rectangles are sorted according to a predetermined sort order. In

the second step, groups ofM data rectangles are placed into
⌈

n
M

⌉

leaf nodes. After building

the leaf nodes, the same process is applied to the bounding boxes of the leaf nodes to build

91

another level of the R-tree. This process is applied iteratively until the root node of the

R-tree is obtained. Thus the sorting step is performed at eachlevel of the tree although

the number of elements that are sorted is successively smaller at the successively shallower

levels of the tree. The time complexity of a bottom-up approach is

⌊logM n⌋
∑
i=0

⌈ n
Mi

⌉

log
⌈ n

Mi

⌉

= O(nlogn).

On the other hand, atop-downapproach, builds the higher levels of the R-tree first. The

data rectangles are sorted according to a predetermined sort order and then the groups ofn
M

data rectangles are associated with theM children of the root. The process will be repeated

for each of theM children of the root. In such an approach only one sort is needed for the

first iteration, as the order of the boxes does not change during the subsequent iterations.

The time complexity of a top-down approach is alsoO(nlogn). Kamel and Faloutsos [45]

use a Hilbert curve sort order to build packed R-trees by sorting the collection of data rect-

angles only once. Hence, their method while described as bottom-up approach is essentially

a top-down approach.

The bulk loading approaches described so far do not take intoaccount any notion of a

cost function. Depending on the sort order chosen, these approaches may or may not pro-

duce a desirable R-tree. The TGS (Top-down Greedy Split) algorithm of Garćıa et al. [31]

proposes to overcome this issue by taking into account a costfunction and tries to find a

partition with a low cost. Then data rectangles are first sorted using an appropriate sort key,

and then inserted in order intoM bins each holdingn
M rectangles. Moreover, the minimum

bounding box of the rectangles in a bin is computed and kept asthe bounding box of the

bin. The bins are also numbered from 1 toM using each of the possible sort orders. At this

point, we try to find an optimal partition of theM bins into two sets containing the firsti

bins and the nextM− i bins so that the value of the cost function on the minimum bounding

rectangles of the bins that make up each of the two sets is minimized (e.g., their overlap).

92

The key to this step is that we try to find the optimal partitionusing all of the possible sort

orders. It should be clear that in this initial step there areM− 1 possible partitions and

the TGS algorithm takes all of them and all of the possible sort orders into account when

determining the optimal one at this step. This is agreedy binarysplit of the bins and the

rectangles that they contain into two partitions. Each partition of the data rectangles is split

again until all of the data rectangles are partitioned intoM partitions of sizes less than or

equal ton
M , at which time we have obtained the first level of the R-tree. The same algorithm

is then applied recursively to the individual nodes of the R-tree until all nodes at a given

level contain at mostM data rectangles. GivenSdifferent sort orders, the TGS algorithm

sorts then rectangles inSdifferent orders. While theSsort orders used in [31] are based

on the 2d coordinates of thed dimensional rectangles, any sort order defined using a sort

key, such as as the Hilbert order, could be used in the TGS algorithm. Section 4.3 contains

a more detailed description of the algorithm.

4.3 TGS Bulk Loading Algorithm

In this section, we present a detailed implementation-level description of the TGS algorithm

given in [30,31]. The input to the TGS bulk loading algorithmis a listD of d-dimensional

data rectangles. The algorithm builds an R-tree for these data rectangles. Eachd dimen-

sional rectangler is defined byd pairs of scalars, where each pairr i = (r−i , r+
i) denotes the

range thatr spans in theith dimension. We use the notationp⊞q to denote the minimum

bounding box of two rectanglesp andq. For r = p⊞ q, we haver−i = min(p−i ,q−i) and

r+
i = max(p+

i ,q+
i) for i = 1. . .d.

We assume that there areS different sort keys associated with each rectangler in D,

where SORTKEY(r,s) denotes thesth sort key onr. For example, the sort keys of a two di-

mensional rectangler could be chosen as its extents: SORTKEY(r,1)= r−1 , SORTKEY(r,2)=

r+
1 , SORTKEY(r,3) = r−2 , and SORTKEY(r,4) = r+

2 . We assume further that each sort

93

key associated with a rectangle in are uniquely defined, and amechanism for breaking

the ties is in place. That is, for thesth sort key and the distinct data rectanglesr and p,

SORTKEY(r,s) 6= SORTKEY(p,s).

The algorithm is invoked by BULK LOAD(D) (Algorithm 4.1), whereD is the list of

input rectangles. BULK LOAD proceeds by sorting the data in ascending order usingS

different sort keys, and storing the results in listsD(1), . . . ,D(S). It then determines the

height of the R-tree and invokes BULK LOADCHUNK, which generates an R-tree with the

specified height using the sorted data. Note that the boldface symbolD denotes the sorted

lists D(1), . . . ,D(S).

Algorithm 4.1 BULK LOAD(D)

Input: D = {r1, . . . , rn} is a list ofn rectangles.
(* S is the number of sort keys defined on each rectangle.*)
(* N is the capacity of leaf nodes, and M is the capacity of nonleaf nodes.*)
(* Top-down-Greedy-Split bulk loading algorithm*)
for i = 1 to Sdo

D(i)← SORT(D, i) (* Sort D on the ith sort key*)
end for
h←max(0,

⌈

logM
|D|
N

⌉

) (* Desired height of the R-tree.*)

return BULK LOADCHUNK(D,h)

BULK LOADCHUNK (Algorithm 4.2) simply returns an R-tree leaf if the desired height

of the R-tree is zero. Otherwise, it determinesm, the desired number of data items that

need to be placed under each node (Line 6).m is chosen so that all the nodes will have the

maximum number of data rectangles under them. Next, it uses the PARTITION algorithm

(Algorithm 4.3) to partition the data into sets of sizem, and recursively builds an R-tree

node for each partition, returning a nonleaf R-tree node as their parent.

The PARTITION algorithm partitions the input setD into partitions of sizem using

a greedy paradigm. It uses the BESTBINARY SPLIT algorithm (Algorithm 4.4) to find a

desirable binary split of the input setD into two partitionsL and H. Note again as in

the case ofD, that the boldface symbolsL andH denote the sorted listsL(1), . . . ,L(S) and

H(1), . . . ,H(S), respectively. It then recursively partitionsL and H and builds a bigger

94

Algorithm 4.2 BULK LOADCHUNK(D,h)

(* Bulk load data inD into an R-tree of height h.*)
(* M is the capacity of nonleaf nodes.*)
if h = 0 then

return BUILD LEAFNODE(D(1)) (* Note that any of the sorted lists could have
been used.*)

5: else
m← N ·Mh−1 (* Desired number of data items under each child of this node.*)
{D1, . . . ,Dk}← PARTITION(D,m) (* Partition ofD into k≤M parts.*)
for i = 1 to k do

ni ← BULK LOADCHUNK(Di ,h−1) (* Recursively bulk load lower levels of the
R-tree.*)

10: end for
return BUILD NONLEAFNODE(n1, . . . ,nk)

end if

partition by joining them.

Algorithm 4.3 PARTITION(D,m)

(* Partition data into
⌈

|D(1)|
m

⌉

parts of size m6= 0. *)

if |D(1)| ≤m then
return D (* one partition*)

end if
5: L ,H← BESTBINARY SPLIT(D,m)

return Concatenation of PARTITION(L ,m) and PARTITION(H,m)

The BESTBINARY SPLIT algorithm considers theSdifferent orderings of the input set

D. It uses each ordering to group the data rectangles into groups of sizem. That is, if there

areM ·m rectangles, then the firstm rectangles are grouped together, then the secondm

rectangles are grouped together, and so forth. It then considers all possible splits of the

groups into two parts. In particular, if there areM groups, it considersS· (M−1) possible

ways of splitting the groups into two parts. The BESTBINARY SPLIT algorithm chooses

the split with the lowest cost, and accordingly splits the input setD (i.e., the data and itsS

orderings) into two parts using the SPLITONKEY algorithm (Algorithm 4.6).

The COMPUTEBOUNDINGBOXES algorithm (Algorithm 4.5) determines the bound-

ing boxes that are needed for determining the cost of each binary split considered in

95

Algorithm 4.4 BESTBINARY SPLIT(D,m)

(* Find the best binary split ofD. *)
(* m 6= 0 is the size of each partition.*)

M←
⌈

|D(1)|
m

⌉

(* Number of partitions*)

c∗← ∞ (* Best cost found so far*)
5: for s= 1 to Sdo

F,B← COMPUTEBOUNDINGBOXES(D(s),m)
for i = 1 to M−1 do

c← cost(Fi ,Bi)
if c < c∗ then

10: c∗← c (* Best cost*)
s∗← s (* Best sort order*)
key← SORTKEY(D(s)

i·m,s) (* Sort key of split position*)
end if

end for
15: end for

for s= 1 to Sdo
L(s),H(s)← SPLITONKEY(D(s),s∗,key)

end for
return L ,H

BESTBINARY SPLIT. It first computesB, the bounding boxes for each group ofm rect-

angles. It then computes lower bounding boxes (L) and the higher bounding boxes (H).

The SPLITONKEY algorithm will split a sorted listD, into two sorted listsL andH

based on a thresholdt, and thesth sort key among theSsort keys defined on rectangles. At

the end of SPLITONKEY, L will hold all elements ofI such that theirsth key is less thant,

andH will hold the rest.

4.4 Bottom-up Packing Versus Top-Down Packing Algo-

rithms

Figures 4.2 shows a set of 30 randomly generated rectangles that are bulk loaded using

the TGS algorithm into an R-tree with page capacity of 8 (i.e.,N = M = 8). Each R-tree

in the figure consists of a root and four leaf nodes under the root. The inner rectangles

96

Algorithm 4.5 COMPUTEBOUNDINGBOXES(D,m)

Output: Li = D1 ⊞ · · ·⊞Di·m for 1≤ i < M.
Output: Hi = Di·m+1 ⊞ · · ·⊞Dn for 1≤ i < M,n = |D|.

(* Compute the lower and higher bounding boxes of of possible binary splits of D list
of n rectangles into groups of size m*)
(* m 6= 0 is the size of each group.*)

M←
⌈

|D|
m

⌉

(* Number of groups*)

B is a list ofM rectangles.
5: L,H are each a list ofM−1 rectangles.

for i = 1 to M do
Bi ← D(i−1)·m+1 ⊞D(i−1)·m+2 ⊞ · · ·⊞Dmin(|D|,i·m)

end for
L1← B1

10: HM−1← BM

for i = 2 to M−1 do
Li ← Li−1 ⊞Bi

HM−i ← BM−i+1 ⊞HM−i+1

end for
15: return L,H

correspond to the data rectangles, and the outer rectanglescorrespond to the bounding

boxes of each leaf node. Four sort keys are used in the generation of the figure. In particular,

the four sort keys of a rectangle are its two extents in each ofthe two dimensions. The

cost functions used to generate Figure 4.2 involved minimizing the overlap area of two

rectangles (Figure 4.2(a)) and minimizing the total area oftwo rectangles (Figure 4.2(b)).

Traditionally, packing methods work by filling the leaf nodes as much as possible and

then proceed to apply the same filling criteria to the nonleafnodes. We characterize such

Algorithm 4.6 SPLITONKEY(D,s, t)

L andH are two empty lists.
for all r in D do

if SORTKEY(r,s) < t then
appendr to the end of listL.

5: else
appendr to the end of listH.

end if
end for
return L,H

97

an approach asbottom-up packingand is the one used in the implementation of the TGS

algorithm described in Section 4.3 and illustrated in Figure 4.2. We could also proceed by

starting at the root and packing the nonleaf nodes as much as possible. Such an approach

can be characterized astop-down packing. The TGS algorithm whose implementation

we described could also be converted to use top-down packingby modifying line 6 of

BULK LOADCHUNK (Algorithm 4.2) to be:

m←
⌈

|D(1)|
M

⌉

(* Desired number of data items under each child of this node.*)

Figure 4.3 was obtained using this modification. They use thesame dataset as in Fig-

ure 4.2, and again the trees are differentiated on the basis of the cost function that is min-

imized. Notice that the number of leaf nodes in this example is eight, and that four rect-

angles are placed in each leaf node with the exception of one leaf node which has just two

rectangles. GivenN andM as the capacities of the leaf and nonleaf nodes, respectively,

the bottom-up packing and top-down packing yield identicalresults whenn, the total num-

ber of data objects, equalsN ·Mh for some integer valueh > 0. However, whenn is not

equal toN ·Mh, the top-down packing yields a different result as can be seen by compar-

ing Figures 4.2(a) and 4.2(b) with Figures 4.3(a) and 4.3(b). It is interesting to observe

that top-down packing can potentially allow the queries to be performed faster as there are

more children under each nonleaf node thereby permitting more effective pruning when

answering queries. Notice also that regardless of whether top-down or bottom-up packing

is used with the TGS algorithm, the resulting R-trees have thesame height. However, an R-

tree constructed with the bottom-up packing TGS algorithm has fewer nodes than an R-tree

constructed with the top-down TGS algorithm. Therefore, wecan can identify a tradeoff

between the two packing approaches. In particular, the top-down packing TGS algorithm

builds R-trees that can potentially be used to answer queriesfaster than R-trees built by

the bottom-up packing TGS algorithm at the expense of requiring more storage space. We

point out that the relative merit of the two packing strategies depends on the query model.

For example, to answer the window queryQ shown in Figure 4.2(a), one leaf node needs to

98

be read from disk. However, to answer the same query shown in Figure 4.3(a), only the root

node needs to be examined. On the other hand, to answer a window query that intersects

all the leaf nodes, the top-down approach is faster than the bottom-up approach. Moreover,

future insert operations to an R-tree built by the bottom-up packing TGS algorithm are

more likely to increase the height of the R-tree than insert operations to an R-tree built by

the top-down packing TGS algorithm. Finally, we observe that one of the consequences of

using top-down packing is that some of the leaf nodes of the R-tree may be underpacked

(e.g., recall that one leaf node in Figure 4.3(a) has just twodata rectangles.) Of course,

when using bottom-up packing at most one node at each level isunderpacked. However,

this does not affect the correctness of the results returnedby queries on these R-trees.

Q

(a) (b)

Figure 4.2: Result of applying the TGS bottom-up packing bulkloading algorithm to bulk
load a packed R-tree using a cost function that minimizes (a) the overlap area, and (b) the
total area.

4.5 Analysis

In this section we analyze the running time of the TGS bulk loading algorithm. As we

pointed out in Section 4.1, the analysis provided in [31] wasonly in terms of the number

99

Q

(a) (b)

Figure 4.3: Result of applying the top-down packing TGS bulk loading algorithm to bulk
load an R-tree using a cost function that minimizes (a) the overlap area, and (b) the total
area.

of disk page accesses, whereas here we focus on the CPU time in light of the repeated

invocation of the sorting steps by the algorithm in the process of minimizing the particular

cost function. To simplify the analysis, we assume that the number of input data rectangles

results in a fully packed R-tree, i.e., there aren = NMh data rectangles, whereh denotes

the height of the resulting R-tree.

Let T(n) denote the time complexity of the BULK LOAD algorithm. The BULK LOAD

algorithm performsSsorts. We have,

T(n) = O(Snlogn)+B(n,h) (4.1)

whereB(n,h) denotes the time complexity of the BULK LOADCHUNK algorithm.

Notice that as the initial number of the data rectangles results in a fully packed R-tree,

100

it suffices to deriveB(N ·Mh,h). LettingC(h) denoteB(N ·Mh,h). We have,

C(h) =











O(N) h = 0

P(N ·Mh,N ·Mh−1)+M ·C(h−1)+O(M) h > 0
(4.2)

whereP(n,m) denotes the time complexity of the PARTITION algorithm, andO(M) corre-

sponds to the cost of invoking BUILD NONLEAFNODE.

We now proceed to deriveP(n,m). We first notice that the PARTITION algorithm con-

sists of a call to the BESTBINARY SPLIT algorithm and two recursive calls to itself. The

worst-case scenario arises when each call to BESTBINARY SPLIT results in a minimum par-

tition. That is, BESTBINARY SPLIT(D,m) yields two sets, such that one of them is of size

m. We have the following recurrence relation:

P(n,m) =











O(1) n≤m

E(n,m)+P(m,m)+P(n−m,m) n > m,
(4.3)

whereE(n,m) denotes the time complexity of the BESTBINARY SPLIT algorithm.

Observe that the execution times of the COMPUTEBOUNDINGBOXESalgorithm and the

SPLITONKEY algorithm are linear in their input size. Moreover, as the BESTBINARY SPLIT

algorithm invokes the COMPUTEBOUNDINGBOXES algorithmS times, its execution time,

E(n,m), is O(S·n), wheren is the number of input rectangles.

Therefore, we can rewrite equation 4.3 as:

P(n,m) =











O(1) n≤m

O(S·n)+P(m,m)+P(n−m,m) n > m
(4.4)

To further simplify the analysis, we assume thatn = L ·m, whereL is the number

of groups that the PARTITION algorithm considers. Notice that for each initial call of

PARTITION from BULK LOADCHUNK, we haveL = M. Therefore, we can rewrite equa-

101

tion 4.4 in closed form:

P(L ·m,m) =
L

∑
i=2

O(S· i ·m) = O(S·L2 ·m) (4.5)

By substitutingN ·Mh−1 for mandM for L in equation 4.5 we getP(N ·Mh,N ·Mh−1) =

O(S· (M2)Mh−1) = O(S·Mh+1), and we can rewrite equation 4.2 as:

C(h) =











O(N) h = 0

O(S·Mh+1)+M ·C(h−1)+O(M) h > 0.

The recurrence relation forC(h) can be solved to yield

C(h) = O(Mh · (S·h·M +N)) = O(n· (S·h·M
N

+1)),

where we have usedn = N ·Mh.

Recalling thatC(h) = B(NMh,h) and thath= logM
n
N , we obtain from equation 4.1 that

T(n) = O(Snlogn+n· (SM
N

logM
n
N

)).

In particular, forM = N = O(1), we haveT(n) = O(Snlogn), which demonstrates that

the observed improved performance of the TGS algorithm by Garćıa et al. [31] comes at a

cost of a factor ofSover that resulting from the use of a bottom up bulk loading approach.

Given thatS is relatively low for low dimensional data, the improvementseems worth the

extra effort. However, in the case of high dimensional data,this may not be the case.

4.6 Concluding Remarks

We have provided a formal analysis of the TGS R-tree bulk loading algorithm of Garćıa et

al. [31]. Our approach differs from theirs by providing a detailed implementation which

102

enabled a more precise analysis of the algorithm. In particular, we focused on the CPU

time requirements rather than the number of disk page accesses, which is what was done

in [31]. We also discussed the tradeoffs of using a classicalbottom-up packing approach

and a top-down packing approach, and showed how to incorporate the top-down packing

approach in the TGS algorithm.

103

Chapter 5

BV-trees, axis aligned rectangles, and

binary space partitioning

5.1 Introduction

The BV-tree [26, 27] is an abstract spatial indexing technique that is based on decoupling

(e.g., [63]) the partitioning and grouping processes that form the basis of most spatial index-

ing methods that use tree directories of buckets. In the caseof the BV-tree, the decoupling

is designed to overcome the following drawbacks of traditional solutions:

1. Multiple postings in disjoint space decomposition methods that lead to balanced trees

such as the hB-tree [22,50] where a node split in the event of node overflow may be

such that one of the children of the node that was split becomes a child of both of the

nodes resulting from the split.

2. Multiple coverage and non-disjointness of methods basedon object hierarchies such

as the R-tree [39] which lead to non-unique search paths.

Note that the principle of decoupling the grouping and partitioning processes has also been

used in the PK-tree [78, 83] although the motivation was different (i.e., to overcome the

104

presence of directory nodes with similarly-shaped hyper-rectangle bounding boxes that

have very minimal occupancy in disjoint space decomposition methods such as those based

on quadtrees (e.g., [24]) and k-d trees [5] that make use of regular decomposition). Spatial

indexes are useful in applications in spatial databases (e.g., [57]) as well as spatio-temporal

databases (e.g., [56]).

The BV-tree improves on its predecessor, the BANG file [25, 28], by introducing the

concept of guards which guarantee that the height of the BV-tree is always logarithmic in

the number of input data points. In addition, the execution time of point insertions and point

queries are also guaranteed to be logarithmic. The BANG file employs a regular binary

space decomposition that — similar to the k-d tree [5] — cycles the splitting hyperplanes

through the axes at each level of the decomposition. In contrast to the BANG file, the

BV-tree imposes no restriction on the space decomposition scheme. Instead, the space

decomposition scheme is replaced by regions which may have arbitrary shapes. We term

the original description of the BV-tree in [26] as anabstractBV-tree. However, in this

paper we show that the BV-tree can only be implemented when theshape of the regions

are precisely defined. We use the termconcreteBV-tree to refer to the BV-tree such that

the shapes of the regions are precisely defined. Moreover, weshow that only a binary

space partitioning scheme would guarantee the satisfaction of the design assumptions of

the BV-tree. This implies that the concrete BV-tree could be decoupled from the binary

space partitioning scheme, and is suitable for handling non-spatial data such as metric and

non-metric data, as long as a suitable binary partitioning scheme can be defined for the

underlying data domain.

The rest of this paper is organized as follows. Section 5.2 provides a brief description of

the BV-tree data structure and the implicit assumptions usedin the design of the BV-tree;

Section 5.3 describes the issues arising when using axis-aligned rectangles for the BV-

tree; and Section 5.4 shows that the BV-tree is only applicable to binary space partitioning

schemes.

105

5.2 Description of the BV-tree data structure

The BV-tree is a height-balanced data structure similar to the B-tree [15], that facilitates

storage of spatial data in secondary storage. The data objects or pointers to them are stored

at the lowest level of the BV-tree, called theleaf nodes. In our treatment of the BV-tree, we

uniquely identify each node of a BV-tree with two attributes,a leveland aregion. The leaf

nodes are at level zero, and levelk nodes are aggregates of levelk−1 nodes. The region

of a node refers to a subset of the domain space that it spans. Two regions are said to be

cordial in our terminology, if and only if, they are either disjoint or one is contained in the

other one,i.e., no two cordial regions partially overlap each other. For a more complete

description of the BV-tree, we refer the interested reader to[26,27,63].

The following assumptions – implicit in [26] – describe the regions of a BV-tree:

• Representation of Regions: Regions are represented using a common scheme, such

as axis-aligned rectangles, Morton blocks [32],etc.

• Cordiality : The regions of any two nodes in a BV-tree are either disjoint or one is

completely contained in the other one.

• Constant Splits: Givenn cordial regions, it is possible to find a region that is cordial

to all the given regions and that contains fromn
3 to 2n

3 of the regions.

In the following sections we show the implications of these assumptions on the space

decomposition scheme.

5.3 BV-trees and axis-aligned rectangles

The abstract BV-tree does not specify the shape of regions, nor how to represent the re-

gions. We claim that not every region representation schemeis suitable, thereby requiring

a more precise definition. In particular, using an example, we show that it is not possible

106

to represent the regions of a BV-tree with arbitrary axis-aligned rectangles. Axis-aligned

rectangles are especially interesting because they are used as the basis for aggregation of

objects in in many spatial data structures such as the R-tree [39] and its variants [4,68].

For example, Figure 5.1 that shows a given set of 24 axis-aligned rectangles that are

drawn in solid lines. Consider an additional axis-aligned rectangle placed in the same fig-

ure, such as the one shown by dotted lines. It is evident from the figure that this additional

rectangle either (i) partially intersects one of the given rectangles, or (ii) contains only one

of the given rectangles, or (iii) contains all the given rectangles. Hence we have shown that

it is not possible to find a cordial axis-aligned rectangle that contains at least two of the

given rectangles, but not all of the given rectangles. Therefore, theConstant Splitassump-

tion cannot be satisfied in this case. In other words, we have just shown that representing

regions of a BV-tree with arbitrary axis-aligned rectanglesis not possible because it is not

possible to always satisfy the BV-tree design assumptions.

Figure 5.1: A pathological example of axis-aligned rectangles that leads to violation of the
BV-tree design assumptions.

The above example assumes a data space of two or more dimensions. We now give an

example that shows that even for the one-dimensional case, it is not possible to represent

the regions of the BV-tree with arbitrary intervals (i.e., one-dimensional axis-aligned rect-

107

angles). Consider two nodes of the BV-tree which span the same region, but are at different

levels. The BV-tree should be able to split each of these nodesinto regions that are cordial

with all other regions in the BV-tree. However, this may require information about the re-

gions of the other nodes, and unless other restrictions are in place, the splitting of a node

may create a region that is not cordial to the region of another node.

Figure 5.2 is an example of such a case. Figures 5.2(a)-(h) show the successive insertion

of 12 one-dimensional data points into a BV-tree with page capacity of three. The regions

of the BV-tree are labeled with capital boldface letters. Notice that the nodeA0 is promoted

in Figure 5.2(f) as it is a guard1 of the nodeE1. Figure 5.2(g) shows the BV-tree before

the insertion of pointl, but after the insertion of pointk. Insertion of pointl requires that

the leaf nodeA0 containing data pointsg, i, k, andl to be split. A possible split ofA0 may

result in the leaf nodeF0 containing data pointsi andk. It is evident from Figure 5.2(h)

that the intervalF is not cordial to the intervalE. Observe that there would be no problem

if the split of nodeA0 would result in leaf nodeF0 containing the new data pointl.

The above example showed that even for one-dimensional data, we cannot use arbitrary

intervals for the representation of the BV-tree regions. An insight that we gain from this

example is that the local information about the children of anode may not be sufficient for

the proper splitting of the node.

5.4 Cordial regions and binary space partitioning

We first start by introducing a few definitions. We use the symbol ⊑ to show the contain-

ment relationship between regions, that isR1 ⊑ R2, if and only if, the regionR2 contains

the regionR1. Similarly, R1 ⊏ R2, if and only if, R2 properly containsR1. Notice that the

containment relationship imposes a partial order on regions.

1A nodea is aguardof another nodeb when the region ofa contains the region ofb and the level ofa is
deeper than the level ofb. Guards serve to ensure that the search paths for a point query are unique thereby
overcoming drawback of spatial indexes based on a non-disjoint decomposition of the underlying space as is
the case for object hierarchies such as the R-tree.

108

cba
cba

A

(a) After insertion of data pointsa,b,c.

d ba c

A0 B0B
dcba

A

(b) After insertion of data pointd.

f ba c

A0 B0

ed

fe
B

dcba
A

(c) After insertion of data pointse, f.

C0

g ba c ed f

A0 B0C
g fe

B
dcba

A

(d) After insertion of data pointg.

Figure 5.2: Example of a BV-tree with intervals as regions. The BV-tree, shown on the
right, has a page capacity of three. Data points and the regions are shown on the left. The
regions corresponding to level 0 nodes, level 1 nodes, and level 2 nodes are drawn in solid
lines, dash-dot lines, and dash-dot-dot lines, respectively.

A binary space partitioning schemehierarchically partitions a spaceS into two subsets.

Each subset of the space defined by a binary space partitioning scheme can be described

using a binary string. Note that in such a representation, the empty string denotes the

unpartitioned spaceS. Moreover, if a binary stringa is a prefix of a binary stringb, then

the region corresponding toa contains the region corresponding tob.

In this section, we show that the design assumptions of the BV-tree result in a binary

space partitioning scheme. This is in contrast to the impression created in the original pre-

sentation of the BV-tree that any arbitrary space partitioning scheme can be used. Further,

109

we claim that any binary space partitioning scheme is suitable for implementing a concrete

BV-tree. In other words, each region in a BV-tree corresponds to a subset of the space

resulting from the binary space partitioning scheme. Therefore, any such region can be

represented using a binary string.

For a concrete BV-tree and a regionS, let RS denote the set of all possible regions that

can result from splitting a node whose region isSusing rules that satisfy the BV-tree design

assumptions given in Section 5.2. We also defineR0
S,

R
0
S = {r ∈RS : ¬∃v∈RS : r ⊏ v ⊏ S}.

That is,R0
S is the set of regions such that no other region inRS contains them. Notice that

R0
S coversS, that is each element inS is in at least one member ofR0

S. For example, letRS

consist of the set of rectanglesA–L as in Figure 5.3(a), not necessarily resulting from a BV-

tree decomposition. The rectanglesB, G, K, andI are contained by the rectangleE. The

rectanglesL andJ are contained by the rectangleC, the rectangleG andH is contained by

the rectangleA, the rectangleH is contained by the rectangleF, while the rectanglesA, C,

D, E, andF are not contained by any other rectangle. Hence, we haveR0
S = {A,C,D,E,F}

for this example.

Lemma 5.1 For a given region S of a concrete BV-tree,R0
S is a partition of S.

Proof For a givenS, construct a BV-tree such thatS is the region corresponding to two

nodes of the BV-tree at different levels, such asS0 andS1. Consider distinct arbitrary

regionst, r ∈R0
S. Notice that by definition ofR0

S, we have,t 6⊑ r andr 6⊑ t. Moreover, by

definition ofRS, a sequence of BV-tree insertion operations can result in a split of the node

S1 resulting in regionr. Similarly, a sequence of BV-tree insertion operations can result in

a split of the nodeS0 resulting in regiont. As r andt are cordial by the definition of the

BV-tree, we haver ⊑ t or t ⊑ r or r ∩ t = ∅. However, ast andr are two distinct members

of R0
S, t 6⊑ r andr 6⊑ t, therefore we haver∩t = ∅. Hence, we showed that no two elements

110

of R0
S intersect. Therefore,R0

S is a partition ofS. �

Notice that the above lemma is correct for any spaceSas well as the entire data space.

Moreover, the partition must also satisfy theconstant splitsassumption of the BV-tree

which assumes cordial regions and that givenn cordial regions, it is always possible to

find a region that is cordial to all of the give regions and thatcontains fromn/3 to 2n/3

of the regions. This assumption is based on a proof constructed for the hB-tree [50] which

requires a binary partition, and thus in the case of the BV-tree, we can further tighten

the Lemma to only be true when the partitioning scheme is binary. Hence, we have the

following theorem.

Theorem 5.1 For a given region S of a concrete BV-tree,R0
S is a binary partition of S.

We can conclude from Theorem 5.1 that the BV-tree design assumptions require a hier-

archical binary partitioning of the underlying data space.However, any binary partitioning

scheme is acceptable. Therefore, it could be possible, for example, to adapt the BV-tree to

metric spaces in conjunction with aball partitioning scheme or ageneralized hyperplane

partitioningscheme [76].

111

C0

ihg ba c ed f

A0 B0
ih

C
g fe

B
dcba

A

(e) After insertion of data pointh, i.

b c h j g id e fa

B0 C0 D0

A1 E1 A0

E

D
j ih

C
g fe

B
dcba

A

(f) After insertion of data pointj.

a b c h j g id e f k

k

B0 C0 D0

A1 E1 A0

E

D
j ih

C
g fe

B
dcba

A

(g) After insertion of data pointk.

fed kilgjhcba

Fl k

D0

A1

B0

E1 F0A0

C0

E

D
j ih

C
g fe

B
dcba

A

(h) After insertion of data pointl.

Figure 5.2, continued: Example of a BV-tree with intervals asregions.

112

L

K

J

I

H

G
F

E

DC

B

A

(a)RS

F

E

DCA

(b) R0
S

Figure 5.3: Example illustrating the definition ofR0
S. The regionS is the outer rectangle,

and the setsRS andR0
S consist of the inner rectangles.

113

Chapter 6

Conclusion and future work

This dissertation discussed several problems that deal with spatial data. In Chapter 2 we

discussed our experience in extending a spatial database such it could handle spherical data.

In particular, we discussed how we adapted the PMR quadtree and the R-tree to handle

spherical data, such as spherical points, lines, and polygons. We further provided geometric

algorithms for handling spherical data. In particular, we gave detailed implementations of

algorithms for calculating the distance between sphericaldata. We also provided algorithms

for determining the intersection of spherical data.

Our work on spherical data lead us to investigate techniquesfor quantizing surface nor-

mal vectors in Chapter 3. We designed the QuickArealHex algorithm which is a fast normal

vector quantization algorithm with low quantization errorand low memory requirements.

We showed that the QuickArealHex algorithm provides (1) lower quantization error, (2)

better rendering quality, and (3) better computation efficiency than the current most widely

used normal vector quantization method proposed by Deering[16].

In Chapter 4, we provided a detailed CPU execution-time analysis and implementa-

tion for the top-down greedy split R-tree bulk loading algorithm of Garćıa, López, and

Leutenegger [31]. The TGS algorithm makes use of a classicalbottom-up packing ap-

proach. In addition, we introduced an alternative packing approach termed top-down pack-

114

ing which may lead to improved query performance. We also discussed a few the tradeoffs

of using the bottom-up and top-down packing approaches.

The BV-tree is an abstract spatial indexing technique that isbased on decoupling the

hierarchy inherent in the tree structure of the directory from the containment hierarchy as-

sociated with the recursive partitioning process of the underlying space from which the

data is drawn. The BV-tree is an improvement over its predecessor, the BANG file, which

achieves guaranteed logarithmic search time for point queries. The BANG file decomposes

the underlying space using a regular space decomposition process. In Chapter 5 we dis-

cussed a number of issues that arise in implementing a BV-treewithout requiring a regular

decomposition of the underlying space. In particular, we pointed out the limitations of a

space decomposition where objects are aggregated using axis-aligned rectangles similar to

what might be used in an object hierarchy such as an R-tree. In addition, we showed that

BV-trees were only suitable for hierarchical binary space partitioning schemes.

6.1 Directions for future work

Many computer graphics applications deal with directionaldata. An example is surface

normal vector data which was discussed at length in Chapter 3.In particular, in Chapter 3,

we

showed how to project the unit sphere onto to a square. This projection allowed us

to construct the Octahedral Quantization method which is a low distortion normal vec-

tor quantizer. We propose to investigate other applications of the Octahedral Quantization

method in computer graphics. An important example is BRDF data[51]. The Bidirectional

Reflectance Distribution Function (BRDF) models the light reflection properties of a sur-

face as a function of two parameters, (i) the incoming direction of light and (ii) the outgoing

direction of light. More complex models such as the Spatial BRDF (SBRDF) [52] and the

Time and Space Varying BRDF (TSVBRDF) [38] augment the BRDF function with the

115

addition of other parameters. In particular, SBRDF is a function of the incoming and out-

going light directions as well the the surface position. TSV-BRDF adds a time-varying

component to SBRDF in order to model the change of the reflectionproperties over time.

For example, the SBRDF of a wet piece of wood changes over time asit dries. In recent

years we have seen numerous efforts to build databases of BRDF data [38, 51]. Usually,

these models are sparsely sampled. Gu et. al [38] report thatinterpolation the BRDF data

resulted in rendered images with poor quality. Instead, they suggested building an analytic

model from the BRDF data and rendering using the analytic model.

Traditionally, the directional parameters of BRDF data are parameterized using the

Geographic coordinates of the incoming and outgoing light.We plan to investigate the

measurement and representation of the BRDF data using techniques that are similar to

the Octahedral Quantization method. We believe that the lowquantization error of such

techniques are also effective in improving the quality of rendering using sampled BRDF. In

particular, representing each direction as a two-dimensional point allows us to easily apply

quadtree-based multi-resolution techniques to BRDF data. For example, BRDF data can

be represented with a scalar field over a four-dimensional hyper-cube. Hence, if the hyper-

cube is subdivided using a regular decomposition, then the cells of subdivision correspond

to well distributed samples of the BRDF data.

116

Appendix A

A.1 Derivation of the Areal Projection

In this section, we derive the equations for the Areal projection. Consider the spherical

triangle△XYZ with verticesX = (1,0,0), Y = (0,1,0), andZ = (0,0,1), as shown in

Figure 3.9. The spherical pointN = (x,y,z) : x,y,z≥ 0 is inside the triangle△XYZ, and

partitions the triangle into three spherical triangles△NYZ,△XNZ, and△XYN. We only

need to deriveΓ = AS(N,Y,Z), the area of the spherical triangle△NYZ, as the area of the

two other triangles can be obtained similarly.

Let O denote the center of the sphere, and let−→u ,−→v , and−→w denote the normal vectors

of the planes passing through (O, Y, Z), (O, Z, N), and (O, N, Y) respectively. Leta, b, and

c denote the side lengths of the triangle△NYZ. We have

cosd =
−→
OZ·−→OY = 0,

cose =
−→
ON ·−→OZ = z,

cosf =
−→
OY ·−→ON = y.

117

We have [79]

cosα =
cosd−cosecosf

sinesin f
=− yz

√

1−y2
√

1−z2
,

cosβ =
cose−cosf cosd

sin f sind
=

z
√

1−y2
,

cosγ =
cosf −cosdcose

sindsine
=

y√
1−z2

.

Hence, we can obtain

sinα =
√

1−cos2α =
x

√

1−y2
√

1−z2
,

sinβ =
√

1−cos2β =
x

√

1−y2
,

sinγ =
√

1−cos2γ =
x√

1−z2
.

Therefore,

tanα = − x
yz

,

tanβ =
x
z
,

tanγ =
x
y
.

Girard’s spherical excess formula [79] expresses the area of a spherical triangle in terms

of its internal angles. We have,

Γ = α +β + γ−π.

118

We further simplifyΓ.

tanΓ = tan(α +β + γ−π)

= tan(α +β + γ)

=
tanα + tanβ + tanγ− tanα tanβ tanγ

1− tanα tanβ − tanα tanγ− tanβ tanγ

=

−x
yz + x

z + x
y− −x3

y2z2

1− −x2

yz2
− −x2

y2z
− x2

yz

=
−xyz+xy2z+xyz2 +x3

y2z2 +x2y+x2z−x2yz

=
x(−yz+y2z+yz2 +x2)

y2z2 +x2(y+z−yz)

=
x(−yz+y2z+yz2 +1−y2−z2)

y2z2 +(1−y2−z2)(y+z−yz)

=
x(yz(y−1)+(y−1)z2− (y−1)(y+1))

y2z2 +(1−y2)(y+z−yz)−z2(y+z−yz)

=
x(y−1)(yz+z2− (y+1)

(y2−y−z+yz)z2 +(1−y2)(z+y−yz)

=
x(y−1)((z−1)(z+1)+y(z−1))

(y−1)(y+z)z2− (y−1)(y+1))(z+y(1−z))

=
x(y−1)(z−1)(y+z+1)

(y−1)((y+z)z2− (y+1)(z−y(z−1)))

=
x(y−1)((z−1)(z+1)+y(z−1))

(y−1)((yz2 +z3−yz−z+(y+1)y(z−1)))

=
x(y−1)(z−1)(y+z+1)

(y−1)((yz(z−1)+z(z−1)(z+1)+(y+1)y(z−1)))

=
x(y−1)(z−1)(y+z+1)

(y−1)(z−1)((yz+z(z+1)+(y+1)y))

=
x(y−1)(z−1)(y+z+1)

(y−1)(z−1)(y2 +z2 +y+z+yz)

=
x(y+z+1)

(y2 +z2 +y+z+yz)

=
2x(y+z+1)

2(y2 +z2 +y+z+yz)

=
2x(y+z+1)

2(y2 +z2)+2(y+z+yz)

119

tanΓ =
2x(y+z+1)

y2 +z2 +1−x2 +2(y+z+yz)

=
2x(y+z+1)

(y+z+1)2−x2

=

2x
y+z+1

1−
(

x
y+z+1

)2

= tan

(

2arctan
x

y+z+1

)

.

Hence,

AS(N,Y,Z) = Γ = 2arctan
x

y+z+1
.

We can similarly obtain,

AS(X,N,Z) = 2arctan
y

x+z+1
,

and

AS(X,Y,N) = 2arctan
z

x+y+1
.

Hence, if we define the Areal projection of a pointN = (x,y,z) to be the pointP =

(a,b,c) such that

a =
AS(N,Y,Z)

π
2

,

b =
AS(X,N,Z)

π
2

,

c =
AS(X,Y,N)

π
2

;

120

then we have,

a =
4
π

arctan
x

y+z+1
,

b =
4
π

arctan
y

x+z+1
,

c =
4
π

arctan
z

x+y+1
.

Moreover, we have

tan
π
4

a =
x

y+z+1
,

tan
π
4

b =
y

x+z+1
,

tan
π
4

c =
z

x+y+1
.

Hence,

tanπ
4a

tanπ
4a+1

=
x

x+y+z+1
,

tanπ
4b

tanπ
4b+1

=
y

x+y+z+1
,

tanπ
4c

tanπ
4c+1

=
z

x+y+z+1
.

Definings(·) such that

s(u) =
tanπ

4u

tanπ
4u+1

,

We get,

s(a) =
x

x+y+z+1
,

s(b) =
y

x+y+z+1
,

s(c) =
z

x+y+z+1
.

121

Therefore,

1−s(a)−s(b)−s(c) =
1

x+y+z+1
.

We have,

s(a) =
x

1−s(a)−s(b)−s(c)
,

s(b) =
y

1−s(a)−s(b)−s(c)
,

s(c) =
z

1−s(a)−s(b)−s(c)
.

And finally,

x =
s(a)

1−s(a)−s(b)−s(c)
,

y =
s(b)

1−s(a)−s(b)−s(c)
,

z =
s(c)

1−s(a)−s(b)−s(c)
.

122

Bibliography

[1] A RGE, L., HINRICHS, K. H., VAHRENHOLD, J., AND V ITTER, J. S. Efficient

bulk operations on dynamic R-trees. InALENEX ’99: Proc. of the 1st Workshop on

Algorithm Engineering and Experimentation(Jan. 1999), vol. 1619 ofLecture Notes

in Computer Science, Springer-Verlag, pp. 328–348.

[2] A RVO, J., AND K IRK , D. Fast ray tracing by ray classification.SIGGRAPH Com-

puter Graphics 21, 4 (1987), 55–64.

[3] AURENHAMMER, F. Voronoi diagrams — a survey of a fundamental geometric data

structure.ACM Comput. Surv. 23, 3 (Sept. 1991), 345–405.

[4] BECKMANN , N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. The R∗-

tree: An efficient and robust access method for points and rectangles. InSIGMOD

’90: Proc. of the Intl. Conf. on Management of Data(New York, NY, May 1990),

H. Garcia-Molina and H. V. Jagadish, Eds., ACM Press, pp. 322–331.

[5] BENTLEY, J. L. Multidimensional binary search trees used for associative searching.

Commun. ACM 18, 9 (Sept. 1975), 509–517.

[6] BLINN , J. F. Simulation of wrinkled surfaces. InSIGGRAPH ’78: Proc. of the

5th Annual Conf. on Computer Graphics and Interactive Techniques(New York, NY,

Aug. 1978), ACM Press, pp. 286–292.

123

[7] BLINN , J. F.,AND NEWELL, M. E. Texture and reflection in computer generated

images.Commun. ACM 19(1976), 542–546.

[8] BOTSCH, M., WIRATANAYA , A., AND KOBBELT, L. Efficient high quality rendering

of point sampled geometry. InEGRW ’02: Proc. of the 13th Eurographics Workshop

on Rendering(Pisa, Italy, June 2002), pp. 53–64.

[9] BUSS, S. R.,AND FILLMORE , J. P. Spherical averages and applications to spherical

splines and interpolation.ACM Trans. Gr. 20, 2 (Apr. 2001), 95–126.

[10] CAI , M., KESHWANI, D., AND REVESZ, P. Z. Parametric rectangles: A model for

querying and animating spatiotemporal databases. InEDBT ’00: Proc. of the 7th

Conf. on Extending Database Technology(Mar. 2000), C. Zaniolo, P. C. Lockemann,

M. H. Scholl, and T. Grust, Eds., vol. 1777 ofLecture Notes in Computer Science,

Springer-Verlag, pp. 430–444.

[11] CHEN, L., CHOUBEY, R., AND RUNDENSTEINER, E. A. Bulk-insertions into R-

trees using the Small-Tree-Large-Tree approach. InGIS ’98: Proc. of the 6th ACM

Intl. Symp. on Advances in Geographic Information Systems(New York, NY, 1998),

R. Laurini, K. Makki, and N. Pissinou, Eds., ACM Press, pp. 161–162.

[12] CHEN, Z. T., AND TOBLER, W. R. Quadtree representations of digital terrain. In

Proc. of Auto-Carto London(London, United Kingdom, Sept. 1986), vol. 1, pp. 475–

484.

[13] CHOUBEY, R., CHEN, L., AND RUNDENSTEINER, E. A. GBI: A generalized R-

tree bulk-insertion strategy. InSSD ’99: Proc. of the 6th Intl. Symp. on Advances in

Spatial Databases(July 1999), R. H. G̈uting, D. Papadias, and F. H. Lochovsky, Eds.,

vol. 1651 ofLecture Notes in Computer Science, Springer-Verlag, pp. 91–108.

[14] CIGNONI, P., DE FLORIANI , L., MAGILLO , P., PUPPO, E., AND SCOPIGNO,

R. Selective refinement queries for volume visualization ofunstructured tetrahe-

124

dral meshes.IEEE Transactions on Visualization and Computer Graphics 10, 1 (Jan.

2004), 29–45.

[15] COMER, D. The ubiquitous B-tree.ACM Comput. Surv. 11, 2 (June 1979), 121–137.

[16] DEERING, M. Geometry compression. InSIGGRAPH ’95: Proc. of the 22nd Annual

Conf. on Computer Graphics and Interactive Techniques(New York, NY, Aug. 1995),

ACM Press, pp. 13–20.

[17] DEVILLERS, O., AND GANDOIN , P.-M. Geometric compression for interactive

transmission. InVIS ’00: Proc. of the 11th Conf. on Visualization(2000), pp. 319–

326.

[18] DU, Q., GUNZBURGER, M. D., AND JU, L. Constrained centroidal Voronoi tessel-

lations for surfaces.SIAM Journal on Scientific Computing 24, 5 (2003), 1488–1506.

[19] DUTTON, G. Zenithial orthotriangular projection. InProc. of the Tenth Intl. Conf.

on Computer-Assisted Cartography (Auto-Carto 10)(Baltimore, MD, Mar. 1991),

pp. 77–95.

[20] ESPERANÇA , C., AND SAMET, H. Spatial database programming using SAND. In

Proc. of the 7th Intl. Symp. on Spatial Data Handling(Delft, The Netherlands, Aug.

1996), M. J. Kraak and M. Molenaar, Eds., vol. 2, Intl. Geographical Union Commis-

sion on Geographic Information Systems, Association for Geographical Information,

pp. A29–A42.

[21] ESPERANÇA , C., AND SAMET, H. Experience with SAND/Tcl: a scripting tool for

spatial databases.Journal of Visual Languages and Computing 13, 2 (Apr. 2002),

229–255.

125

[22] EVANGELIDIS , G., LOMET, D., AND SALZBERG, B. The hBΠ-tree: a multi-attribute

index supporting concurrency, recovery and node consolidation. VLDB Journal 6, 1

(Jan. 1997), 1–25.

[23] FEKETE, G., AND TREINISH, L. Sphere quadtrees: a new data structure to support

the visualization of spherically distributed data. InExtracting Meaning from Complex

Data: Processing, Display, Interaction(Aug. 1990), E. J. Farrell, Ed., vol. 1259 of

Proc. of SPIE/SPSE Symp. on Electronic Imaging Science and Technology, pp. 242–

253.

[24] FINKEL , R. A., AND BENTLEY, J. L. Quad trees: a data structure for retrieval on

composite keys.Acta Inf. 4, 1 (Mar. 1974), 1–9.

[25] FREESTON, M. The BANG file: A new kind of grid file. InSIGMOD ’87: Proc.

of the Intl. Conf. on Management of Data(New York, NY, May 1987), U. Dayal and

I. L. Traiger, Eds., ACM Press, pp. 260–269.

[26] FREESTON, M. A general solution of the n-dimensional B-tree problem. In SIGMOD

’95: Proc. of the Intl. Conf. on Management of Data(New York, NY, May 1995), M. J.

Carey and D. A. Schneider, Eds., ACM Press, pp. 80–91.

[27] FREESTON, M. On the complexity of BV-tree updates. InCDB ’97: Proc. of the 2nd

Intl. Workshop on Constraint Database Systems(Jan. 1997), V. Gaede, A. Brodsky,

O. Günther, D. Srivastava, V. Vianu, and M. Wallace, Eds., vol. 1191 ofLecture Notes

in Computer Science, pp. 282–293.

[28] FREESTON, M. W. A well-behaved file structure for the storage of spatial objects. In

SSD ’89: Proc. of the 1st Symp. on Advances in Spatial Databases(July 1989), A. P.

Buchmann, O. G̈unther, T. R. Smith, and Y.-F. Wang, Eds., vol. 409 ofLecture Notes

in Computer Science, Springer-Verlag, pp. 287–300.

126

[29] GANDOIN , P.-M., AND DEVILLERS, O. Progressive lossless compression of arbi-

trary simplical complexes.ACM Trans. Gr. 21, 3 (July 2002), 372–379.

[30] GARCÍA , Y. J., LÓPEZ, M. A., AND LEUTENEGGER, S. T. A greedy algorithm

for bulk loading R-trees. Computer Science Technical Report 97-02, University of

Denver, Denver, CO, 1997.

[31] GARCÍA R., Y. J., LÓPEZ, M. A., AND LEUTENEGGER, S. T. A greedy algorithm

for bulk loading R-trees. InGIS ’98: Proc. of the 6th ACM Intl. Symp. on Advances in

Geographic Information Systems(New York, NY, 1998), R. Laurini, K. Makki, and

N. Pissinou, Eds., ACM Press, pp. 163–164.

[32] GARGANTINI , I. An effective way to represent quadtrees.Commun. ACM 25, 12

(Dec. 1982), 905–910.

[33] GOODCHILD, M. F., AND SHIREN, Y. A hierarchical data structure for global ge-

ographic information systems. InSDH ’90: Proc. of the 4th Intl. Symp. on Spatial

Data Handling(July 1992), vol. 1, pp. 911–917.

[34] GRABNER, M. Compression of arbitrary triangle meshes with attributes for selective

refinement.Journal of WSCG 11, 1 (2003).

[35] GRAY, J., SZALAY , A. S., FEKETE, G., NIETO-SANTISTEBAN, M. A.,

O’M ULLANE , W., THAKAR , A. R., HEBER, G., AND ROTS, A. H. There goes

the neighborhood: Relational algebra for spatial data search. Tech. Rep. MSR-TR-

2004-32, Microsoft Research, Redmond, WA, Apr. 2004.

[36] GREENE, N. Environment mapping nd other applications of world projections.IEEE

CG&A (Nov. 1986), 21–29.

[37] GROSSMAN, J. P. Point sample rendering. Master’s thesis, Massachusetts Institute

of Technology, Cambridge, MA, Aug. 1998.

127

[38] GU, J., TU, C.-I., RAMAMOORTHI , R., BELHUMEUR, P., MATUSIK , W., AND

NAYAR , S. Time-varying surface appearance: Acquisition, modeling and rendering.

ACM Trans. Gr. 25, 3 (July 2006), 762–771.

[39] GUTTMAN , A. R-trees: A dynamic index structure for spatial searching. In SIGMOD

’84: Proc. of the Intl. Conf. on Management of Data(New York, NY, June 1984),

B. Yormark, Ed., ACM Press, pp. 47–57.

[40] HJALTASON, G. R.,AND SAMET, H. Incremental distance join algorithms for spatial

databases. InSIGMOD ’98: Proc. of the Intl. Conf. on Management of Data(New

York, NY, June 1998), L. M. Haas and A. Tiwary, Eds., ACM Press,pp. 237–248.

[41] HJALTASON, G. R.,AND SAMET, H. Distance browsing in spatial databases.ACM

Trans. Database Syst. 24, 2 (June 1999), 265–318.

[42] HJALTASON, G. R., AND SAMET, H. Improved bulk-loading algorithms for

quadtrees. InGIS ’98: Proc. of the 7th ACM Intl. Symp. on Advances in Geographic

Information Systems(New York, NY, 1999), R. Laurini, K. Makki, and N. Pissinou,

Eds., ACM Press, pp. 110–115.

[43] HUNTER, G. M., AND STEIGLITZ , K. Operations on images using quad trees.IEEE

Transactions on Pattern Analysis and Machine Intelligence1, 2 (Apr. 1979), 145–153.

[44] KALAIAH , A., AND VARSHNEY, A. Statistical geometry representation for efficient

transmission and rendering.ACM Trans. Gr. 24, 2 (2005), 348–373.

[45] KAMEL , I., AND FALOUTSOS, C. On packing R-trees. InCIKM ’93: Proc. of the

2nd Intl. Conf. on Information and Knowledge Management(New York, NY, Nov.

1993), B. Bhargava, T. Finin, and Y. Yesha, Eds., ACM Press, pp. 490–499.

[46] KLINGER, A. Patterns and search statistics. InOptimizing Methods in Statistics, J. S.

Rustagi, Ed. Academic Press, New York, NY, 1971, pp. 303–337.

128

[47] KRIEGEL, H.-P., P̈OTKE, M., AND SEIDL , T. Managing intervals efficiently in

object-relational databases. InVLDB ’00, Proc. of 26th Intl. Conf. on Very Large

Data Bases(Sept. 2000), A. El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,

N. Kamel, G. Schlageter, and K.-Y. Whang, Eds., Morgan Kaufmann, pp. 407–418.

[48] KUGLER, A. IMEM: An intelligent memory for bump- and reflection-mapping. In

HWWS ’98: Proc. of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics

hardware(Aire-la-Ville, Switzerland, Switzerland, Aug. 1998), Eurographics Asso-

ciation, pp. 113–122.

[49] L I , J., ROTEM, D., AND SRIVASTAVA , J. Algorithms for loading parallel grid files.

In SIGMOD ’93: Proc. of the Intl. Conf. on Management of Data(New York, NY,

May 1993), P. Buneman and S. Jajodia, Eds., ACM Press, pp. 347–356.

[50] LOMET, D. B., AND SALZBERG, B. The hB-tree: A multiattribute indexing method

with good guaranteed performance.ACM Trans. Database Syst. 15, 4 (Dec. 1990),

625–658.

[51] MATUSIK , W., PFISTER, H., BRAND, M., AND MCM ILLAN , L. Efficient isotropic

BRDF measurement. InEGRW ’03: Proc. of the 14th Eurographics Workshop on

Rendering(Leuven, Belgium, June 2003), pp. 241–247.

[52] MCALLISTER, D. K., LASTRA, A., AND HEIDRICH, W. Efficient rendering of

spatial bi-directional reflectance distribution functions. In HWWS ’02: Proc. of the

ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware(Aire-la-Ville,

Switzerland, Switzerland, Aug. 2002), Eurographics Association, pp. 79–88.

[53] MOUNT, D. M., AND ARYA , S. ANN: A library for approximate nearest neighbor

searching, May 2005.http://www.cs.umd.edu/users/mount/ANN/.

[54] NELSON, R. C.,AND SAMET, H. A consistent hierarchical representation for vector

data.SIGGRAPH Computer Graphics 20, 4 (Aug. 1986), 197–206.

129

[55] PRAUN, E., AND HOPPE, H. Spherical parametrization and remeshing.ACM Trans.

Gr. 22, 3 (July 2002), 340–349.

[56] REVESZ, P. Introduction to Constraint Databases. Springer, New York, NY, 2002.

[57] RIGAUX , P., SCHOLL, M., AND VOISARD, A. Spatial Databases: with Applications

to GIS. Morgan-Kaufmann, San Francisco, 2001.

[58] ROUSSOPOULOS, N., AND LEIFKER, D. Direct spatial search on pictorial databases

using packed R-trees. InSIGMOD ’85: Proc. of the Intl. Conf. on Management of

Data (New York, NY, May 1985), S. B. Navathe, Ed., ACM Press, pp. 17–31.

[59] RUSINKIEWICZ, S., AND LEVOY, M. QSplat: a multiresolution point rendering

system for large meshes. InSIGGRAPH ’00: Proc. of the 27th Annual Conf. on

Computer Graphics and Interactive Techniques(New York, NY, July 2000), ACM

Press, pp. 343–352.

[60] SAFF, E. B., AND KUIJLAARS, A. B. J. Distributing many points on a sphere.

Mathematical Intelligencer 19, 1 (1997), 5–11.

[61] ŠALTENIS, S., JENSEN, C. S., LEUTENEGGER, S. T.,AND L ÓPEZ, M. A. Indexing

the positions of continuously moving objects. InSIGMOD ’00: Proc. of the 2000 Intl.

Conf. on Management of Data(New York, NY, May 2000), ACM Press, pp. 331–342.

[62] SAMET, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading, MA, 1990.

[63] SAMET, H. Decoupling partitioning and grouping: Overcoming shortcomings of

spatial indexing with bucketing.ACM Trans. Database Syst. 29, 4 (Dec. 2004), 789–

830.

[64] SAMET, H. Object-based and image-based object representations.ACM Comput.

Surv. 36, 2 (June 2004), 159–217.

130

[65] SAMET, H. Foundations of Multidimensional and Metric Data Structures. Morgan-

Kaufmann, San Francisco, CA, 2006.

[66] SAMET, H., ALBORZI, H., BRABEC, F., ESPERANÇA , C., HJALTASON, G. R.,

MORGAN, F., AND TANIN , E. Use of the SAND spatial browser for digital govern-

ment applications.Commun. ACM 46, 1 (Jan. 2003), 63–66.

[67] SCOTT, G. M. The cubic quadtree: a spatial data structure for spherical surfaces.

scholarly paper CSC 1024, University of Maryland, College Park, MD, Dec. 1996.

[68] SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C. The R+-tree: a dynamic

index for multi-dimensional objects. InVLDB ’87: Proc. of the 13th Intl. Conf. on

Very Large Databases(Sept. 1987), Morgan Kaufmann, pp. 507–518.

[69] SNYDER, J. P. Map Projections - A Working Manual. United States Government

Printing Office, Washington, DC, 1987.

[70] SONG, L., K IMERLING , A. J., AND SAHR, K. Developing an equal area global grid

by small circle subdivision. InDiscrete Global Grids(Santa Barbara, CA, 2002),

M. Goodchild and A. J. Kimerling, Eds., National Center for Geographic Information

and Analysis.

[71] TAUBIN , G., HORN, W. P., LAZARUS, F., AND ROSSIGNAC, J. Geometry coding

and VRML. Proc. of the IEEE 86, 6 (June 1998), 1228–1243.

[72] TAUBIN , G., AND ROSSIGNAC, J. Geometric compression through topological

surgery.ACM Trans. Gr. 17, 2 (Apr. 1998), 84 – 115.

[73] TEGMARK, M. An icosahedron-based method for pixelizing the celestial sphere.

Astrophysical Journal Letters 470(Oct. 1996), 81–84.

[74] TOBLER, W., AND CHEN, Z. T. A quadtree for global information storage.Geo-

graphical Analysis 18, 4 (Oct. 1986), 360–371.

131

[75] TOBOR, I., SCHLICK , C., AND GRISONI, L. Rendering by surfels. InGRAPH-

ICON ’00: Proc. of the 10th Intl. Conf. on Computer Graphics & Vision (Aug. 2000),

pp. 193–204.

[76] UHLMANN , J. K. Satisfying general proximity/similarity queries with metric trees.

Inf. Process. Lett. 40, 4 (Nov. 1991), 175–179.

[77] VAN DEN BERCKEN, J., SEEGER, B., AND WIDMAYER , P. A generic approach

to bulk loading multidimensional index structures. InVLDB ’97: Proc. of the 23rd

Intl. Conf. on Very Large Databases(Aug. 1997), M. Jarke, M. J. Carey, K. R. Dit-

trich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, Eds., Morgan Kaufmann,

pp. 406–415.

[78] WANG, W., YANG, J., AND MUNTZ, R. R. PK-tree: A spatial index structure for

high dimensional point data. InProc. of the 5th Intl. Conf. on Foundations of Data Or-

ganization and Algorithms (FODO)(Nov. 1998), K. Tanaka and S. Ghandeharizadeh,

Eds., pp. 27–36.

[79] WEISSTEIN, E. W. The CRC Concise Encyclopedia of Mathematics. CRC Press,

Boca Raton, FL, 1998.

[80] WHITE, D., KIMERLING , A. J., SAHR, K., AND SONG, L. Comparing area and

shape distortion on polyhedral-based recursive partitions of the sphere.Intl. Journal

of Geographical Information Science 12, 8 (Dec. 1998), 805–827.

[81] WILLMOTT , A. J. Hierarchical Radiosity with Multiresolution Meshes. PhD thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, Dec. 2000.

[82] WITTEN, I. H., NEAL , R. M., AND CLEARY, J. G. Arithmetic coding for data

compression.Commun. ACM 30, 6 (June 1987), 520–540.

132

[83] YANG, J., WANG, W., AND MUNTZ, R. Yet another spatial indexing structure.

Computer Science Technical Report 97040, University of California at Los Angeles,

Los Angeles, Nov. 1997.

