ABSTRACT

Title of dissertation: GEOMETRIC ISSUES IN SPATIAL INDEXING
Houman Alborzi, Doctor of Philosophy, 2006

Dissertation directed by: Professor Hanan Samet
Department of Computer Science

We address a number of geometric issues in spatial indexas. a@a of interest is
spherical data. Two main examples are the locations of stahe sky and geodesic data.
The first part of this dissertation addresses some of thdeciggs in handling spherical
data with a spatial database. We show that a practical agipffoa integrating spherical
data in a conventional spatial database is to use a suitapeing from the unit sphere to
a rectangle. This allows us to easily use conventional timtedsional spatial data struc-
tures on spherical data. We further describe algorithmshéodling spherical data. In
the second part of the dissertation, we introduce the aregtgiion, a novel projection
which is computationally efficient and has low distortione\8how that the areal projec-
tion can be utilized for developing an efficient method fow Idistortion quantization of
unit normal vectors. This is helpful for compact storagepiferical data and has applica-
tions in computer graphics. We introduce the QuickArealldigorithm, a fast algorithm
for quantization of surface normal vectors with very lowtdison. The third part of the
dissertation deals with a CPU time analysis of TGS, an R-tréddading algorithm. And
finally, the fourth part of the dissertation analyzes the B¢t a data structure for storing
multi-dimensional data on secondary storage. Contrarye@tpular belief, we show that

the BV-tree is only applicable to binary space partitionihghe underlying data space.

GEOMETRIC ISSUES IN SPATIAL INDEXING

by

Houman Alborzi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fullfillment
of the requirements for the degree of
Doctor of Philosophy
2006

Advisory Committee:

Professor Hanan Samet, Chair
Professor Larry Davis
Professor Shunlin Liang
Professor David Mount
Professor Amitabh Varshney

(© Copyright by
Houman Alborzi

2006

ACKNOWLEDGMENTS

| would like to express my gratitude to many people whosenttghip and support | re-
lied on during my years at the University of Maryland. | thani friend Jagan Sankara-
narayanan, for his commitment in proofreading my dissiertiatl thank my friends Jaime
Montemayor, Pedram Hovareshti, Banafsheh Keshavarzi, Mé&ildntari-Khandani, Nargess
Memarsadeghi, Guity Mohammadi, David Omer Horvitz, Bujda&ii, and Gabriel Rivera
for their encouragement and support to finish my dissertati@am thankful to my advi-
sor Professor Hanan Samet for his unconditional supportyofesearch and his personal
friendship. | would also like to thank Professors Larry Ba8hunlin Liang, David Mount,
and Amitabh Varshney for serving on my advisory committ@eaddition, | would like to
thank my many teachers from whom | learned much during mysyeegraduate school.
Moreover, | am thankful to Fatima Bangura and Nilo Rubin, ad a®bther staff member
at the University of Maryland who were always eager to helpmune way or another.

| also like to thank my father Shokrollah Alborzi, my mothenh@lsieh-Soltan Javadi-
Jahromi, my brother Kamran Alborzi, and my sister Marjandki for they were my first
teachers. And last, but not least, | would like to thank myewNaliheh Poorfarhani, for

her love, friendship, and emotional support.

Contents

1

Introduction 1
1.1 Spatial IndexingMethods 2
1.1.1 PMRQuadtree 3
112 R-tree 3
1.2 SAND: Spatial and Non-spatial Database 4
Spherical SAND 6
2.1 Introduction 6
2.2 Spatial Data Structure to Support SphericalData. 7
2.2.1 The first method of mapping usingacube 10.
2.2.2 The second method of mappingusingacube 11.
2.2.3 Criteria for of an appropriate mapping 12
2.2.4 Mapping using Lambert’s cylindrical equal area pcogm 12
2.2.5 Mapping using Flattened Octahedron 12
2.3 Spatial Objects in Spherical SAND and Spherical Aldgons 13
2.3.1 Preliminaries and Notations 13
2311 Mectors 13
2.3.1.2 Sphericalpoint., 14

2.3.1.3 Planesandcircles 15

2.3.1.4 Projection of a great circle on the plane of anotiheaty

circle 16
2.3.1.5 Projection of a small circle on a great circle plane ... 16
2.3.1.6 Sphericalline, 17
23.1.7 Smallarc. 17
2.3.1.8 SphericalPolygon 18
2.3.19 ExcessofaSmallArc 20
2.3.1.10 LambertRectangle. 24
2.4 Geometrical Operation on SphericalObjects 25
2.4.1 Intersection of Two Spherical Points 25
2.4.2 Distance between Two Spherical Points25
2.4.3 Distance between a Spherical Pointanda Circle. 27
2.4.4 Distance of apointsettoacircle 27
2.4.5 Distance between a Spherical Point and a Spherical Lin. . . . 28
2.4.6 Intersection of a Spherical Point and a Spherical Line 29
2.4.7 Intersection of a Spherical Point and a Sphericaldowly. 30
2.4.8 Distance between a Spherical Point and a Sphericgg®ol. . . . 32
2.4.9 Intersection of two SphericalLines 32
2.5 Extensionstothe SAND Browser 2 3
Low distortion normal vector quantization 34
3.1 Introduction 34
3.2 RelatedWork 36
3.3 QuantizationMethods 39
3.3.1 Octahedral Quantization 9 3
3.3.1.1 SimilarMethods 41
3.3.2 DeltaEncoding 43
3.3.3 HexagonalCells 44

3.3.4 Projections for Octahedral Quantization 46
3.3.4.1 Gnomonic Projection 46
3.3.4.2 ArealProjection 47
3.3.4.3 Buss-Fillmore Projection 49
3.3.4.4 Tegmark Projection 49

3.3.5 QuickAreal Algorithm 49

3.3.6 Quantization Using a Nearest Neighbor Finding Aliponi 51
3.3.6.1 RandomPoints. 51
3.3.6.2 Saff-KuijlaarsMethod 51

3.3.6.3 Spherical Centroidal Voronoi Tessellations (SCVT) .. 52

3.3.7 Table of Quantization Methods 52
3.3.8 QuickArealHex Algorithm 53
3.4 LowerBounds 55
3.4.1 ATighterLowerBound 57
3.5 Comparison of Quantization Methods 60
3.5.1 EncodingandDecodingTimes 64
3.6 Rendering aPerfectSphere, 66.
3.7 Summaryand Conclusion. 69
Execution time analysis of a top-down R-tree construction lgorithm 87
4.1 IntroducCtion 87
4.2 Background e 89
4.3 TGS Bulk Loading Algorithm 92
4.4 Bottom-up Packing Versus Top-Down Packing Algorithms 95
45 Analysis 98

4.6 ConcludingRemarks 101

5 BV-trees, axis aligned rectangles, and binary space partaning
5.1 Introduction
5.2 Description of the BV-tree data structure
5.3 BV-trees and axis-alignedrectangles

5.4 Cordial regions and binary space partitioning

6 Conclusion and future work

6.1 Directions for futurework

A.1 Derivation of the Areal Projection

Vi

103

. 105
. 105
. 107

113
114

116

Vil

List of Tables

3.1 The four extensions of a poifd, b) in different quadrants of the square. . . 44

3.2 A Summary of Quantization Methods 53

viii

List of Figures

2.1 Flatteningacubeontheplane. 11
2.2 Thelength ofasphericalline.. 17
2.3 Anexample of a spherical triangle. 18
2.4 Excess of a spherical arc (shown in thicker line) betwsgdrerical points

A andB. The thin lines are greatcirclearcs. 20
2.5 Anexample ofaLambertrectangle. 25
2.6 Finding the distance of a pointtoacircle. 28
2.7 Example of the distance from a spherical point to a spakline. 30
3.1 Ablock diagram of Octahedral Quantization, the prodasethod for sur-

face normal quantization. L. 9 3
3.2 Arrangement of eight right-angled triangles ina square. 41
3.3 Pattern of representative points for an even numbetfhi 42
3.4 Pattern of representative points for an odd numbersfbit 42
3.5 Extension of Figure 3.2toalargersquare. 44
3.6 First step in constructing the hexagonal pattern fovem @umber of bits. . 45
3.7 Second step in constructing the hexagonal pattern fevamnumber of bits. 46
3.8 Hexagonal pattern of representative points for an euenber of bits. . . . 46
3.9 The poiniN inside spherical triangl&XYZ 48
3.10 The neighborhood search of the QuickArealHex algarith 54

3.11 Cross section of the unit spherecentered.at 56

3.12 Tighterlowerbounds. e 58
3.13 Different error statistics of the Deering, the Geobreghe OQ-Gnomonic,
the OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark tzaion
methods. (a,b) Maximum Quantization Error. (c,d) AverageQization
Error. (e,f) Root Mean Square Quantization Error. 71
3.14 Different statistics of the Geographic, the OQ-Gnoimibiex, the OQ-
Areal-Hex, the OQ-Buss-Fillmore-Hex, and the OQ-Tegmagklquan-
tization methods. (a,b) Maximum Quantization Error. (&d¢rage Quan-
tization Error. (e,f) Root Mean Square Quantization Error.. 72
3.15 Different statistics of the NN-Deering, the NN-Gequr@, the NN-OQ-
Areal, the NN-OQ-Buss-Fillmore, and the NN-OQ-Tegmark, rgization
methods. (a,b) Maximum Quantization Error. (c,d) AveragmQlization
Error. (e,f) Root Mean Square Quantization Error. 73
3.16 Different statistics of the NN-Deering, the NN-Geqdrig, the NN-OQ-
Gnomonic-Hex, the NN-OQ-Areal-Hex, the NN-OQ-Buss-Filhadex,
and the NN-OQ-Tegmark-Hex quantization methods. (a,b)iMar Quan-
tization Error. (c,d) Average Quantization Error. (e,f) Rdean Square
Quantization Error.
3.17 Different error statistics of the NN-OQ-Gnomonic-kine NN-OQ-Areal-
Hex, the NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NNtSBauijlaars,
and the NN-SCVT quantization methods. (a,b) Maximum Quatitn Er-

ror. (c,d) Average Quantization Error. (e,f) Root Mean Sgqu@uantization

3.18 The quantization time of different quantization mei$ho (a) Encoding

time. (b) Decoding time.

3.19 Rendering a perfect sphere with normals quantized wiihs8 using the
Geographic, the NN-Geographic, the Deering, and the NNHdDgeguanti-
zation methods. The spheres in the top row have been rotated bottom
row in order to show the tessellations from a different viewmp

3.20 Rendering a perfect sphere with normals quantized wiitisg using the
OQ-Gnomonic, the NN-OQ-Gnomonic, the OQ-Tegmark, and tine N
OQ-Tegmark quantization methods. The spheres in the tofhewe been
rotated in the bottom row in order to show the tessellatiomsifa different
VIBWPOINt. o e e e e e

3.21 Rendering a perfect sphere with normals quantized wiitisg using the
OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the-RR-
Buss-Fillmore quantization methods. The spheres in thedwphave been
rotated in the bottom row in order to show the tessellatiomsifa different
VIBWPOINt. o e e e e e

3.22 Rendering a perfect sphere with normals quantized wiiits7 using OQ-
Gnomonic, NN-OQ-Gnomonic, OQ-Tegmark, and NN-OQ- Tegnagikn-
tization methods. The spheres in the top row have been dotathe bot-
tom row in order to show the tessellations from a differestwpoint.

3.23 Rendering a perfect sphere with normals quantized wiihs7 using the
OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the-DR-
Buss-Fillmore quantization methods. The spheres in thedwpghave been
rotated in the bottom row in order to show the tessellationfa different
VIEWPOINE. o

3.24 Rendering a perfect sphere with quantized normals as 8Using the OQ-
Areal, the NN-OQ-Areal, the OQ-Areal-Hex, and the NN-OQeAlFHex
guantization methods. The spheres in the top row have begtedan the

bottom row in order to show the tessellations from a diffékeewpoint. . .

79

81

Xi

3.25 Rendering a perfect sphere with quantized normals tiseWyN-Random,

the NN-Saff-Kuijlaars, the NN-SCVT, and the NN-OQ-ArealxHguanti-

zation methods. The spheres in the top row have been rotated bottom

row in order to show the tessellations from a different viewmp 82
3.26 Rendering a perfect sphere with normals quantized welDeering and

the NN-OQ-Areal-Hex quantization methods with differeits lof quanti-

zation. The spheres in the top row are quantized using thargemethod,

and the spheres in the bottom row are quantized using the QNA@al-

HexX. . 82
3.27 Rendering of a sphere with specular highlight. 83
3.28 Rendering the sphere in Figure 3.27(a) with surface alsrquantized with

14,16, 18, and 20 bits using the Deering, the OQ-Gnomonic-the NN-

OQ-Areal-Hex, and the NN-SCVT quantization methods. 84
3.29 A comparison of the Deering and QuickArealHex meth@a)sNormalized

Maximum Quantization Error. (b) Encoding time. 86

4.1 Arrangement of bounding boxes. (a) A set of five boxesOfi bounding

box for boxes (A, C) and one for (B, D, E). (c) One bounding boxbioxes

(A,B)andonefor(C,D,E). 90
4.2 Result of applying the TGS bottom-up packing bulk loadatgprithm to

bulk load a packed R-tree using a cost function that minimiagthe over-

lap area, and (b) thetotalarea. 98
4.3 Result of applying the top-down packing TGS bulk loadifgpathm to

bulk load an R-tree using a cost function that minimizes (&) dkerlap

area, and (b)thetotalarea. 9 9

5.1 A pathological example of axis-aligned rectangles léds to violation of

the BV-tree design assumptions. 06 1

5.2

5.3

Xi

Example of a BV-tree with intervals as regions. The BVstsl®wn on the
right, has a page capacity of three. Data points and thenegite shown
on the left. The regions corresponding to level 0 nodes,| [&veodes,

and level 2 nodes are drawn in solid lines, dash-dot lines daish-dot-dot

lines, respectively. 810

Example illustrating the definition c@g. The regiorSis the outer rectan-

gle, and the set¥s and%g consist of the innerrectangles.

Xiii

List of Algorithms

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
4.1
4.2
4.3
4.4
4.5
4.6

DOESINTERSECTPOINTPOINT(P1,P2) - -« « v o v e e e 26
DISTPOINTPOINT(P1, P2) - « « « v v e e e e e e e e e e e e 26
DISTPOINTLINE(P,I) 29
DOESINTERSECTPOINTLINE(Q,l) o o o oo oo 30
DOESINTERSECTPOINTPOLYGON(P,Q) - - -« « v v v v e e e 31
INTERSECTIONPOINTSOFPLANES(P, Q) -« « v v v v v e e e e e e e e 31
DISTPOINTPOLYGON(P,Q) . -« « o o o i e e e e e e e e 32
DOESINTERSECTLINELINE(l1,l2) o o o o oo o 33
BULKLOAD(D) o o o 93
BULKLOADCHUNK(D,h) 94
RRTITION(D,M) 94
BESTBINARYSPLIT(D,m) 95
COMPUTEBOUNDINGBOXES(D,m) 96

SPLITONKEY(D,Sit) 96

Chapter 1

Introduction

We address a number of geometric issues in spatial indexesar@a of interest is spherical
data which consists of geometric objects lying on a sphewo main examples are the
locations of stars in the sky and geodesic data. The firstgbainis dissertation addresses
some of the challenges in handling spherical data with dadpitabase. We show that a
practical approach for integrating spherical data in a eatienal spatial database is to find
a mapping from the unit sphere to a rectangle. This allow® wesasily use conventional
two-dimensional spatial data structures on spherical. ddMafurther describe algorithms
for handling spherical data.

In the second part of the dissertation, we introduce thel @regection, a novel pro-
jection which is computationally efficient and has low dist;. We show that the areal
projection can be utilized for developing an efficient metfior low distortion quantiza-
tion of unit normal vectors. This is helpful for compact stge of spherical data and has
applications in computer graphics. We discuss differentnab quantization methods and
provide an in-depth comparison of the methods. We introdoeeQuickArealHex algo-
rithm, a fast algorithm for quantization of surface normattors with very low distortion.

In the third part of the dissertation, a detailed CPU execdtime analysis and imple-

mentation are given for a bulk loading algorithm to condtRitrees due to Gara, Lopez,

and Leutenegger [31] which is known as the top-down greedly §S) bulk loading
algorithm. The TGS algorithm makes use of a classical botipnpacking approach. In
addition, an alternative packing approach termed top-dpacking is introduced which
may lead to improved query performance, and it is shown howdorporate it into the
TGS algorithm. A discussion is also presented of the trddedfusing the bottom-up and
top-down packing approaches.

The fourth part of the dissertation analyzes the BV-tree, ta daucture for storing
multi-dimensional data on secondary storage. Contrarye@tpular belief, we show that
the BV-tree is only applicable to binary space partitionihghe underlying data space.

In the rest of this chapter, we provide some background naatdsout spatial indexes.

We further introduce SAND, a software for spatial databaaaagement.

1.1 Spatial Indexing Methods

The B-tree and its variants (Comer [15] provides a compreliersirvey) are the data
structure of choice for implementing indexes for databashe B-tree design assumes that
there is a total ordering of the keys, and hence, stores gsak@rder on secondary storage.
The B-tree recursively splits the data into smaller blockssdciated with each blodkis

a key ranggk—, k"), such thaB contains all data elements with kky. k- <k <k". A
nice property of the B-tree is that it also allows efficientgarsearches. Moreover, if the
each key is associated with a point of a one dimensionaltiires the ordering of keys also
preserves their proximity. That is, the closest key to eaghi& either its predecessor or its
successor in the ordering. Spatial data, usually refetorgeometric data in a 2-d or 3-d
space, is not inherently suitable to be stored using the &-&&there does not exist a total
ordering on spatial data that also preserves proximity. ddea few data structures have
been designed to overcome the difficulties of efficientlyamiging spatial data. Some of

these spatial data structures, such as the linear qua8zkeife a B-tree as an underlying

data structure. Nevertheless, almost all spatial datatsties use similar concepts as the
B-tree. Each data block is an aggregate of smaller data blosks each data blocB
with a regionR of the space, called a bounding objecBofThe data blocks which are not
subdivided any further are called leaf nodes. Samet [65}iges an extensive survey of

spatial data structures.

1.1.1 PMR Quadtree

The PMR quadtree [54] is a variant of the region quadtreel@®2] that can handle spatial
objects of arbitrary dimensionality (i.e., including 2-dda3-d). For example, in a two-
dimensional space, the PMR quadtree subdivides the umagngctangular spaaeinto
four congruent rectangular areas whenever the number etbpverlapping exceeds
a predefined valus, termed the splitting threshold. Each of the resulting si@antains
references (via pointers) to the spatial descriptions @oihjects that overlap it. The PMR
guadtree is different from other bucketing methods. Inipaldr, when the number of
objects that overlap exceeds the splitting threshold, thers only subdivided once even
though some of the resulting areas, saynay still be overlapped by more thambjects.
The areaa will be subdivided the next time an object is inserted thartaps it. This way,

regions are not repeatedly subdivided when more #iadnects lie very close to each other.

1.1.2 R-tree

The R-tree [39], originally designed for handling rectasgls now widely used for in-
dexing all kinds of spatial data. Associated with each dé&takoof R-tree is a bounding
rectangleR such that the spatial extents of all data in that the blockcargained inR.
The bounding rectangles associated with the children ofta lolack may overlap. Con-
sequently, searches on an R-tree may involve traversing thareone path of the data

structure.

1.2 SAND: Spatial and Non-spatial Database

SAND [20,21,66] is an interactive spatial database and beoweveloped at the University
of Maryland. SAND combines a graphical user interface witpatial and non-spatial
database engine. It supports queries on both spatial andpairal data. Examples of
gueries are spatial selections and spatial joins. SAND atpphe PMR quadtree, the
R-tree, and the PK-tree [78] spatial indexing methods, aed tie B -tree index for non-
spatial data. Although some of the SAND'’s spatial operati@ng., selections and joins)
are only implemented for few spatial indexing methods, nobshe spatial operations are
supported by the PMR quadtree.

Spatial selections in SAND involve finding all data objectsose spatial attribute over-
laps the search region. Of particular interest are spaiae queries in SAND where a
user queries the data set for objects whose distance frothemdata object is within a
given distance range. For example, this feature enablesraadind all warehouses that
are between 100 and 200 miles of a particular retail storetifer query feature of SAND
allows users to search for all objects that have a certagntation with respect to another
data object. For example, a user can locate all warehousesrthnorth of a given location.

SAND also supports the join operation. There are many veiahthis operation.
The operation generates a subset of the Cartesian produe tbiid given relation® and
S that satisfy a specified join condition. When the join comditis imposed on spatial
attributes, the operation is known asgatial join The join condition often restricts tuples
to lie within a given distance of each other. In particulag distance join40] orders the
resulting tuples according to their spatial proximity. Thgtance semi-joif40] is a special
case of the distance join in which each element ofsist paired up only with the closest
member of se. The resulting tuples are ordered by the distance betweanabnstituent
spatial attributes. For example, consider two data Reaad S, such thatR contains the
locations of the warehouses of a merchant, &wbntains the locations of retail stores

of the merchant. Using the distance semi-join, a user cantfiaclosest warehouse for

each retail store. SAND implements distance semi-joinegianincrementalalgorithm

developed by Hjaltason and Samet [42].

Chapter 2

Spherical SAND

2.1 Introduction

This chapter discusses the design and implementation dfexispl data model for SAND.
SAND is a spatial database developed at University of Maythat combines a graphical
user interface with a spatial and non-spatial databaseen@AND supports geometric
operations on a few common geometric objects, such as pbigs, rectangles, and poly-
gons. Operations that are supported on these objects are&3uring distance between
two objects; (ii) determining if two objects intersect; i determining if an object con-
tains another object. Additionally, SAND can compute thegté of a line, and the areas
of rectangles and polygons. These geometric operationsiagamental to SAND as the
spatial indexes and the spatial queries support by SAND @mstaucted with these geo-
metric operations. The geometric objects of SAND were oatly implemented for data
lying in a 2-d or a 3-d space.

We extended SAND to support geometric objects that lie onhergpas SAND was
not able to correctly handle spherical data such as datdiehat the surface of the Earth.
In particular, SAND was not able to correctly calculate tistahce between data objects

on the surface of the Earth, and the planar data model onkjig®d reasonably accurate

responses to a small portion of the Earth. The main shortopmoi SAND was that the
distance function did not take into account the curvaturthefEarth. The addition of a
spherical data model gives SAND the ability to correctlyfpen queries on a spherical
data modeli.e., data that represent features on the surface of the Earth.

The rest of this chapter is organized as follows. SectiordB@usses the different con-
siderations that were taken into account in designing theamlata structure that supports
spherical data. Section 2.3 presents the spatial objestsite needed in spherical SAND.
Section 2.4 describes the algorithms needed to deal wigrgathgeometry, specially com-
puting distances between spherical primitives, while i8ac2.5 indicates changes that

were made to the SAND Browser to enable its use for viewing rspdledata.

2.2 Spatial Data Structure to Support Spherical Data

In this section, we describe the various approaches thatndertook to extend SAND
to support spherical data. Earlier versions of SAND sumgubdata primitives such as
polygons, lines, and points on a plane. We enhanced the SA&i® abjects to support
spherical polygons, spherical lines, and points on a spls&aID consists of a large code-
base that supports spatial data structures for two-dirneakand three-dimensional spaces.
Instead of redesigning all the spatial data structures gedations for the spherical data,
we focused on different ways in which a sphere could be mappedtwo-dimensional
space (plane). In the following discussion, we use the téata spaceo describe the
space in which the data resides, ayrdl spacefor the space in which the data structure
manipulations take place. For example, if the sphere is edgmto a plang, and a
guadtree decomposition is subsequently performed on @neepthen the planp is the
‘grid space’. Obviously, there should existrappingbetween the data space and the grid
space. ldeally, the mapping would need to permit efficieerapons on the data.

There are two ways to implement the mapping. One is to imnielgtienap the data ob-

jects onto the grid space whenever they are modified or egerto the database. Using the
above method requires computing a mapping of sphericaleshiajo planar shapes upon
performing insertion or update operations. This approaciidcbe advantageous when the
required geometric operations are more expensive to periothe data space than they
are in the grid space. An alternative approach is to map th#ipas on the grid space
into the data space. In our example, this approach requirés§ spherical curves which
when mapped to the grid space form the quadtree partitiotiseoplane. This approach
is advantageous if the geometric operations performedeigtid space are more complex
than the same operations performed in the data space. Imghadproach, an object in the
data set must be mapped from the data space onto the grid, sgaeeas in the second
approach only the grid partitions must be mapped from thet gpace onto the data space.
Assuming that there are more data objects than partiti@s it appears that mapping the
grid space onto the data space is cheaper from a computatmmnalexity standpoint than
mapping the data space onto the grid space. This is espeiriad! if the geometric oper-
ations performed in the grid space maps the data back to thesgace. For example, a
possible algorithm for determining the intersection of spderical lines mapped as planar
lines on the grid space, maps the planar lines back to sphdr@edermines the intersection
on sphere.

Mapping the grid space onto the data space can be made marergfby storing the
result of the mappings of the grid space onto the data spaite idata structure. For ex-
ample, in the case of a quadtree-like subdivision in the gpdce, we can maintain the
result of mapping the partition lines from the grid spacé®data space in the data struc-
ture. In addition, we should bear in mind that even for a dadabwith a few insertions
or updates, mapping data objects onto the grid space mayeramrbputationally feasible.
For example, in the case of mapping a sphere into a plane aisghline may not neces-
sarily be mapped onto a line on the plane. Hence, performangpatations on the result

of the mappings is not a straightforward task. Similar peotd can be encountered when

designing a mapping from the grid space onto the data spdweemappings of partitions
of the grid should make use of simple geometrical primitiwbgre geometrical algorithms
to compute the distance and intersection between objextsasy to implement.

In the case of spherical SAND, we use the second approachewfemap the grid
into the data space. In fact, we map the data structure gt the data space, and per-
form the geometrical operations directly in the data spatle.investigate four different
mappings between the data space and the grid space. Thevbrapproaches are based
on embedding a cube in the sphere and projecting points acutheto the sphere, or vice
versa as they are equivalent since the mappings are ongetesad onto. The map of a
point P on the sphere in this approach is calculated by shooting &oay the center of
sphere tdP, the intersection of the ray with the cube is the mafPofThese approaches
were based on the ideas proposed by Scott [67]. A cube is agadgn with the property
that all faces of it are squares and are regular polygons. lyhpdron such that all faces
are equal regular polygons is called a Platonic solid. Tlaeeeonly five platonic solids,
namely thetetrahedronwith four triangle faces and four vertices of degree threectibe
with six square faces and eight vertices of degree threedtatedrorwith eight triangle
faces and six vertices of degree four, th@edecahedromwith twelve pentagon faces and
twenty vertices of degree three, and tbesahedrorwith twenty triangle faces and twelve
vertices of degree five. Notice that if we take the cube anthoepeach face by a vertex
in the middle of the face, and connect the vertices whosespanding adjacent faces are
adjacent, we will obtain an octahedron. Hence, we consigectibe and the octahedron as
duals. Similarly, the dodecahedron and the icosahedroduais, while the tetrahedron is
the dual of itself. Projecting a sphere into a platonic s@id common practice in spatial
data structures [23, 33, 80].

The third approach is based on an equal area cylindricabgtion of the plane onto
the sphere (also known as Lambert’s cylindrical equal aregegtion [69]). Tobler and

Chen [12, 74] have used the same approach for building sgthguadtrees.

10

A fourth approach presented here is based on projecting erespito an octahedron
and then flattening the octahedron into a square. Praun appeH865] suggest mapping a
sphere into flattened octahedron as well. We independeautheaip with the same scheme

for the purpose of projecting spherical data into a square.

2.2.1 The first method of mapping using a cube

In the first approach that we tried, we mapped the sphere betoube based on an idea
developed by Scott [67]. We modeled each face of the regultbe with a quadtree
data structure thereby using six quadtree structuresolildibe noted that Scott’s method
for calculating the mapping between the subdivisions oficalbdaces and their spherical
counterparts is incorrect. In particular, Scott uses allgh@ojection that results in certain
portions of the sphere not being covered on the cube. Wedth&problem by projecting
through the center of the sphere(Gnomonic projection). This mapping has the property
that any line on a face of the cube maps to a spherical line erspherei(e., a great
circle arc). Therefore, we only needed to implement geanatalgorithms dealing with
spherical lines. However, lines parallel to the Equatoremprojected onto the cube will
not be a line anymore.

Another interesting feature of this mapping is that the siphepolygons are mapped
as polygons on the cube, and by storing the projection of €ata object we can use
faster planar geometric algorithms instead of the sphlesivas. However, a drawback of
this mapping is that it is not an equal area projection. Théans that data uniformly-
distributed in the data space are not uniformly-distridusdter projection into the grid
space.

Even though implementing this approach appears straigbefal, we encountered con-
siderable difficulties when we tried to modify many parts &N to incorporate it. For
example, in the case of a general spatial join, we would hapetform 36 pairwise inter-

sections — one for every possible pair of faces of the two stibat correspond to the two

11

joined sets. Moreover, in many of the standard functionsANB there is an implicit as-
sumption that the data is stored in a single quadtree. Ryainal debugging all the related

code seemed impractical for this task.

2.2.2 The second method of mapping using a cube

Observing the infeasibility of using six quadtrees for aiyaget, we used an alternative
approach where we flattened the cubic faces on a plane. In wtrels, the grid space
was considered to be a single rectangle which contains @lltemt six faces of result of
projecting the sphere onto the cube (see Figure 2.1). Thisoaph allowed us to reuse
many of the SAND routines with no extra effort. However, thaimdrawback of this
approach was that some of the regions in the grid space dithweta corresponding region
(i.e., were undefined) in the data space. Thus some of the algarith8AND failed to
work properly without further modification. In particularpt every connected region in
the grid space had a corresponding connected region on kieeespThis was a problem
because some of the operations in SAND examined every blmkned by the region in
the grid space and some of these blocks were not well defingbdeosphere, and hence

difficult to deal with. The dotted rectangle in Figure 2.1wkauch a block.

Figure 2.1: Flattening a cube on the plane.

12

2.2.3 Criteria for of an appropriate mapping

Based on our experience with the first two approaches, we ededlthat an appropriate

mapping for SAND should have the following properties:
1. Maps the sphere into a single rectangle,

2. Any axis-aligned rectangle on the plane should be mappadstmple shape on the

sphere.

2.2.4 Mapping using Lambert’s cylindrical equal area projection

We use Lambert’s cylindrical equal area projection as thppimy. This mapping is also
an equal area projection and hence preserves the unifoofrdigta points. However, it has
singularities at the poles, where the poles will be mappéallines in the grid space. A
side effect is that data primitives around the poles will lmngated in the projection. A
horizontal line in this mapping maps to an arc of a small arthersphere and a vertical line
in this mapping maps to an arc of great circle on the spher@céjeusing this mapping,
a rectangle in the grid space will be mapped to a sphericalrijageral, such that two
of its edges are small arcs (see Section 2.3.1.7) and the tetbeare spherical lines (see

Section 2.3.1.6).

2.2.5 Mapping using Flattened Octahedron

In Section 3.3.1 we describe how an octahedron can be fldttena square. We also
introduce the Areal projections. Using the flattened odadwe in combination with using
either the Gnomonic projection or the Areal projectionsgtour criteria for a suitable
mapping. If we use the Gnomonic projection line in one of tigwEtriangle of the square
map to a spherical line on the unit sphere. Thus, any polygmhiding a rectangle, in

the grid space will map to a polygon in the data space. Howelv@re use the Areal

13

projection, then only the vertical and horizontal lines #meldiagonal lines parallel to the
partition lines of Figure 3.4 will map to small arcs of the sph
In the sections that follow, we present more details abolspal data primitives and

geometrical algorithms needed for the implementation.

2.3 Spatial Objects in Spherical SAND and Spherical Al-
gorithms

This section introduces the spatial objects in the SpheB&&ND. The spherical objects
include spherical points, spherical lines, spherical gohs, and Lambert rectangles. In
the following section, we describe the spherical objects ®ame of their properties. We

follow by describing the algorithms that operate on splatiabjects.

2.3.1 Preliminaries and Notations

All objects in spherical SAND reside on the surface sphereof unit radius. LeO denote

the center of the sphere which is also the origin of the coaitei systemS? denotes the
surface of the sphere. While all the objects resid&grit is convenient to also use three-
dimensional Euclidean spa@® whenever needed. We freely use a Cartesian coordinate
system, and/or a spherical coordinate system, to speafgdiordinates of objects. The
triple (X,y,z) and the paiA, @) denote a point in Cartesian and spherical coordinate sys-
tems respectively is known as théongitudeof the point, andp is known at itslatitude.

For p andq points inR3, | pg| denotes the Euclidean distance betwpemda.

2.3.1.1 \ectors

For two vectorsi andv, U-V denotes their dot product amick Vdenotes their cross product.

NORMALIZE (V) denotes the unit vector correspondingvto The cosine of angle/t,v

14

between two unit vectorg andV is equal to the dot product of the unit vectors. Equally,

ZU,V=arccosu- V).

2.3.1.2 Spherical point

The basic unit of data is spherical pointwhich is a point ors?, the surface of the unit
sphere. There is a one-to-one mapping between poin® @md the unit vectors ifR3.
The corresponding unit vector frof to a pointp is denoted byp. For any pointP with
coordinategx,y, z), its antipodal point is the pointP with coordinates—x, —y,—2z). A
point, its antipodal, an® are collinear. Furthermore, the distance from a péirib O
equals the distance frof's antipodal pointP to O, or formally |OP| = |OP|. Given a
spherical poinP with Cartesian coordinat€s,y,z), and spherical coordinatéa, ¢), the

following relationships hold,

A = arctarfy,x) (2.1)
@ = arcsirz (2.2)
X = COSA cos@ (2.3)
y = SinAcosg (2.4)
zZ = sing (2.5)
1 = X4y +72 (2.6)

Recall thatA is also known as the longitude of the spherical point, end known
at its latitude. Notice that the spherical coordinates @efihere are different from the
convention in adopted in some calculus textbooks, wherecosd, andd = 57— @ is
called thecolatitude

For spherical pointg andqg, DISTPOINTPOINT(p,q) denotes the spherical distance

betweenp andq, which is the length of the shortest arc of the unit sphereeotingp and

q.

15
2.3.1.3 Planes and circles

The intersection of the unit sphere with a plane forms aeirlflthe plane passes through
the center of the sphere, then the intersection is caligdat circle and it has a unit radius.
If the center of the sphere does not occur on the interseptange, the resulting circle is
termed asmall circle A plane can be represented(@sd) wherefiis its normal vector and
d is its distance to the origi@, such that a poinp is on the plane if and only if- i = d.
Notice that both(i,d) and (—n, —d) represent the same plane. The plangl) and the
unit sphere intersect, if and only i, < 1. Notice that, in casd = 0, the circle is a great
circle; and otherwise it is a small circle. The small circl#l Wwe called a small circle of
displacementl or a small circle of radius. The intersection of the plan@,d) with the
unit sphere is a circle with radius= v/1—d?2. Note that the radius of a a great circle is
always 1. For the plang= (fA,d), NORMALVECTOR(Q) denotedi its normal vector and
DISPLACEMENT(Q) denoted its distance td®. Fir a circlec, PLANE(c) denotes the plan
containingc. Moreover, &GNTER(c) and RabpIus(c) denote the center and the radius of
the circle respectively. We also usedPLACEMENT(C) and NORMALV ECTOR(C) to refer

to DISPLACEMENT(PLANE(c)) and NORMALV ECTOR(PLANE(C)) respectively.

Any three non-collinear points iR3 specify one and only one plane passing through
them. Hence, the center of the sphere and any two non-aafipaihts p andq on the
sphere specify exactly one plane whose normal@dRMALIZE (P x §) and hence, exactly
one great circle of the sphere. A small circle can be spediijeithe plane normail and a
point p on it. The distance of the small circle to the great circle parallel to if & fi|. The

centero of a small circle igdn. Or,

CENTER(C) = DISPLACEMENT(C)NORMALVECTOR(C).

In case we are representing a great circle only, we can omfidnameted to save storage.

It is interesting to notice that a great circle and a sphepoat are duals. Where, the

16

dual of a spherical poinp is the great circle with normgd. In fact, any two antipodal
spherical points share the same great circle as their dBalsed on this observation, we
may as well defin@riented great circlesEvery great circle overlaps two directional great
circles with their directions going in opposite directions

2.3.1.4 Projection of a great circle on the plane of anotherrgat circle

The projection of a great circle on the plane of a great circt is an ellipse centered at

O and having two radir; andr;, such that

r=1

and
ro =r1/NORMALVECTOR(C1) - NORMALVECTOR(C))].
2.3.1.5 Projection of a small circle on a great circle plane

The projection of a small circle on the plane of a great circfgis an ellipse centered gt

and having two radif; andr, such that

g = CENTER(C)— (CENTER(C) - NORMALVECTOR(C))NORMALVECTOR(C)
ri = RADIUS(C)
r; = r1/NORMALVECTOR(C)- NORMALVECTOR(C)|

The ellipse is spread along the vectoloRMALVECTOR(C) x NORMALVECTOR(C).
The ellipse has no intersection with the great circle if amdyoif RADIUS(C) <

INORMALVECTOR(C) - NORMALVECTOR(C)|

17

2.3.1.6 Spherical line

A spherical lineis the collection of all points on the sphere on the shortath petween
two spherical points that are termed its two endpoints. Nude if the two endpoints of
a spherical line are antipodals, then there are many spthéines defined by them. Any
two non-antipodal spherical points specify a unique sghéline. The great circle formed
by two non-antipodal spherical points is divided into twosaof non-equal length where
the spherical line is the shorter arc. Figure 2.2 shows twesgal pointsA andB and the
circle of radiusr is the circle passing throug@, A andB. The length of the arc (drawn
using bold line) is 2.

The endpoints of a spherical ling are specified by EDPOINTONE(l) and
ENDPOINTTWO(I). As each spherical linkis an arc of a great circle, we can also specify

the plane RANE(I) that containd. The spherical line between two spherical poidtand

B is denoted by INE(A,B).

B

Figure 2.2: The length of a spherical line.

2.3.1.7 Small arc

There are many small circles passing through two sphermatpp andq. The shortest
arc betweerp andg on a small circle of displacemedtand radiug = /1 —d? is called
a small arcof displacementl betweenp andg. DISTPOINTPOINT(p,q,d) denotes the

length of such an arc. Consider the small circle of radigentaining the small arc as in

18

Figure 2.2. We have
DISTPOINTPOINT(p,q,d) =2ra = 2r arcsinw.
Fory = arcsind = arccosr), andf3 = arccos$p-), using Equation 2.11, we obtain
DISTPOINTPOINT(p,q,d) = Zcosyarcsin%. (2.7)

2.3.1.8 Spherical Polygon

A spherical polygons a closed region on the sphere bounded by non-intersespimegyical
lines. We represent a spherical polygon by a circular lisgdferical points ordered in such
a way that two adjacent spherical points in the list spec#plzerical line (edge) bounding
the spherical polygon. Figure 2.3 shows an example of a gg@thériangle. For a spherical
polygong, NSIDES(g) denotes the number of edgesgof/hich is also equal to the number

of vertices ofg. Moreover, $0E(g,i) denotes thé" edge ofg.

Figure 2.3: An example of a spherical triangle.

The angle between two intersecting spherical lines is défasethe angle between the
tangents of the great circles of the spherical lines thas gasugh the intersection point.
If the intersection point of two adjacent spherical linersegts of a spherical polygon is

denoted byB and the other endpoints of the spherical line segments ai@eld byA and

19

C, then the angle at verte® of the spherical polygon is equal to the angle between the

planes containing the great circles of the spherical limésch is
11— arcco$NORMALIZE (A x B) - NORMALIZE (B x C)). (2.8)

Girard’s spherical excess formula [79] derives the areagyfteerical polygon using to the
sum of its angles. Assume the spherical polygon masrticesv; ...v,. Let a; denote

internal angle of vertey;. Then,

Area= iai —(n=2)mr (2.9)

A spherical polygon divides the sphere in two parts, onerassito be the interior of the
polygon, and the other one the exterior of the polygon. Theeemany ways to designate
interior of a polygon, for example, one may assume that thidé@area of a polygon should
always be of smaller area than the outside area. Howevsrity cause ambiguities in
cases where the polygon divides the sphere into two equalsaaions. Considering that
the area of the unit sphere igt4this representation implies that the area of a spherical
polygon is always less tharm2 This approach is used in the current implementation of
spherical SAND. We term this representatsnall area spherical polygoor SA spherical
polygon

Another way to designate the interior of a spherical polypaio associate a spherical
point p such thatp is properly inside the spherical polygon. This requiresisgpan ad-
ditional spherical point for each spherical polygon. Wertéhis representation a&xplicit
interior point spherical polygomwr EIP spherical polygon

A better option that does not require any additional dateesitts to defineside-oriented
spherical polygonsr SO spherical polygonky proper ordering of the polygon vertices.
Consider a person walking along the spherical polygon staftiom the first vertex in

the list, moving to the second vertex, and so on. The intexfahe spherical polygon

20

is defined to be on the left hand side of the observer. In caseam to complement a
spherical polygon, we need to change the order of spher@atsin its representation.
However, a more efficient scheme is to assign a binary flagatitig whether the interior
of the spherical polygon is at the left hand side of the obeeoy at right hand side of the
observer.

We can also allow small arcs as edges of a spherical polyguichvs especially useful
in modeling areas of the Earth between two parallels. Inrole&ompute the area of a
spherical polygon where some of its edge are small arcs, stechiculate the area of the
spherical polygon assuming all its edges are spherica,lwe then compute a small arc
excess as defined in Section 2.3.1.9 for each small arc edbadthit to (or subtract it

from) the area of the spherical polygon.

2.3.1.9 Excess of a Small Arc

The excess of small arwith endpointsA and B and displacemend is the area of lune
bounded between the spherical liAeand B and the small arc of displacemetitwith
endpointsA andB. The excess of small arc is denoted®, B, d).

A

B

Figure 2.4: Excess of a spherical arc (shown in thicker loet)veen spherical poinfsand
B. The thin lines are great circle arcs.

Song et. al [70] describe a method for deriviB@\, B,d) using spherical coordinates.
We use the method described by Song et. al [70] to d&i¥eB,d) using Cartesian co-

ordinates. Let the plane of small circle B€,d). PointC is on the unit sphere and its

21

projection on the small circle is the center of the smallleifsee Figure 2.4)Scap the
area of the spherical cap betwe@rand the small circle is2(1—d). S, the area of the
part of this spherical cap which is between spherical l@8sandCB is é—g of Scap we
haveS, = (1—-d)£C.

We haveS(A,B,d) = S — S;, whereS; is the area of spherical triangleABCand$S,
is the area of the spherical section bounded between sphkniesAC, BC and small arc
AB.

Let the edges of the spherical triangleABCbea, b andc. We have/A = /B, a= Db,

_ p-d?
cos/C = T—p

whered = cosa, p = cosc = A-B.

Using law of cosines [79] for the spherical angles we get:

cos/C = —co€/A+sir? Z/Acosc
cos/C = sinPZA—1+ psir?ZA

cos/C = siPZA(1+p)—1.

Hence,
1+ cos/C

SIE ZA =
1+p

(2.10)

On the other hand,

S = /A+/B+/C—m
— 2/A+/C—m
S = (1-d)£C

S(A7Bad) = SZ_S.’L

Hence,

S(A,B,d)

S(A,B,d)

2(’—2T —/A) -d/C
arccos(cos<2<7—2T — 4A>)) —dzC
arccos(z co$ (g — 4A) — 1) —d«C

arccog2sirf Z/A—1) —d/C

1 /
arcco{ZLSC — 1) —dzC
1+p

14+ 04
arccos| 2— 1% 1| —d.C
_g2
1+p

1+ ;’:gi
arccos| 2 —-1]+1|—-d«C
1+p

2
1+29 1
arccos| 2 1-d? p+1) —d«C

arccos| 2

2+1) —dzC

1+p

22

23

p—d?

Y
S(A,B,d) = arccos 2?20'4+1 —dzC
1+p
p—d?—p+pd®
— arccos| 2— 1% 1| _dsC
1+p
—d2+ pd?
= arccos 21_7d2+1 —dzC
1+p
(p—1)d?
= arccos| 2 1-d2 +1|-dzC
1+p
d> p-1
= 2 ——+1)—-d«C.
arccos< 1—d2p+1+) d/C

S(A,B,d) can be further simplified in terms of trigonometric funcson

S(A,B,d) = arccog 2 & P=li 1) —asc
A 1-d21+p

cofacosh—1
= arccoy 2 1)—-dzC
S(sirfa COSb—|—1+ >

1-2sirf2-1
— arcco chsza it 2~ 41| -dsC
sifa 2co$ 8- 1+1

_2sirt®
— arcco ch§a b2-|-1 —dzC
sirfa 2co$ 5

tar? 5
= arccos —2 +1|—-d«C
tarfa

o f
Sin5

However, we know that, arccfls— 2x?) = 2 arcsir{x), and also that si% = Sna- Hence:

2
tan2

S(A,B,d) = arccos 1—2<—Z> —dzC
tana

_tan3
= 2arcsin—= —d«C
tana

_tan3 _sin®
= 2arcsin—= — 2coaarcsin—-=.
tana sina

24

2.3.1.10 Lambert Rectangle

In the two-dimensional SAND, the space is divided into regtas. Rectangular subdivi-
sions have two desirable properties. First of all, it istieddy easy to test for inclusion of
a point in a rectangle. Second, it is easy to subdivide themmsamaller rectangles. Re-
examining Equation 2.9 in Section 2.3.1.8, we see that adml@d spherical polygon with
four right angles has an area of 0. In other words, a sphemcahngle with four sides
covers just a single point of sphere. In other words, a rigigled quadrilateral cannot be
defined non-trivially on a sphere. To overcome this, we dedirectangle in an appropriate
planar projection of sphere. We used Lambert’s cylindrezgiial-area projection [69] to
define such a rectangle, which we terrhambert rectangle

A Lambert rectanglés a collection of spherical points with their longitudesidati-
tudes in a given ranggA1,A2), (¢, @)). That is, a spherical point with spherical coordi-
nategA, @) is inside a Lambert rectang(€A1,A2), (@1, @)) ifand only if A1 <A <Az and

o < @ < @. The area of such a rectangle is

A2 @ A @ . .
/ / dS:/ / cospd@dA = (A2 — A1) (Sing —singy).
Ao Mg

Considering the premise that tkeoordinate value of any spherical point is equal to the
sine of its latitude £ = sing), and also the fact that <) is a monotonically increasing
function from —r to 11, we can represent the range witth\1,A2),(z1,22)). The area of
such a Lambert rectangle {82 — A1)(z — z1). Figure 2.5 is an example of a Lambert
rectangle.

One of the benefits of using Lambert rectangles is that we pecify the whole sphere
with a single Lambert rectangle with longitudinal range(efrt,) and latitudinal range
of (-Z,Z). A Lambert rectangle is also easily divisible into smallanibert rectangles.
Another incidental property that make Lambert rectanglesinal choices for a spheri-

cal quadtree are the subdivision rules. A Lambert rectasghelivides into fourequal

25

Figure 2.5: An example of a Lambert rectangle.

areasmaller rectangles which can be done effortlessly by usiegcenter of the rectan-
gle, 22 212 a5 center of subdivision. If that the point data objects opleee are
uniformly-distributed, the Lambert rectangles provide #ame performance for quadtree-

based data structures as in the planar casgif 2D).

2.4 Geometrical Operation on Spherical Objects

In this section, we describe some of the algorithms usedeand#évelopment of spheri-
cal SAND. In particular, SAND needed algorithms for detenimg if two spatial objects
intersect and for calculating the distance between twaapatjects. For any pair of ob-
ject types in spherical SAND, we had to implement the distaantd intersection functions

which will be described in the following sections.

2.4.1 Intersection of Two Spherical Points

Two spherical points intersect if and only if they have th@sa@oordinates (Algorithm 2.1).

2.4.2 Distance between Two Spherical Points

The distance between two spherical poiAtandB is a, the length of the arc betweex

andB. We have sim = |AB|/2. On the other hand, we know that fBr= 2a, cos2r =

26

Algorithm 2.1 DOESINTERSECTPOINTPOINT(1, p2)
(* Determine whether two spherical pointg gnd p intersect.*)

if pp = pzthen
return true
else
return false
end if
cosB=A-B
Hence,
AB| . B
—— =8in=. 2.11
5 sin > ()
And,
ds(A,B) = p = arccosA-B) (2.12)
= 20 = 2arcsin@. (2.13)

Both Equation 2.12 and Equation 2.13 can be used to compstePDINTPOINT(A, B),
however Equation 2.13 is preferable for very small value\& due to the loss of preci-
sion in limited precision arithmetic [35]. For example for= (0,0,1) andB = (2713 2713 1
2-26), Equation 2.13 results in 0.00017263348854612559 whipheisise up to 10 digits,
while the Equation 2.12 results in zero.

The spherical distance between two spherical points isahgth of the spherical arc

between the two spherical points (Algorithm 2.2).

Algorithm 2.2 DISTPOINTPOINT(p1, p2)
(* Calculate the distance between two spherical pointam p. *)
return 2arcsin@

Notice that arcsin is a monotonically increasing functiarthe rang€0,1]. There-
fore, DISTPOINTPOINT(p1, p2) is @ monotonically increasing function g, p2| as well.

Hence, for queries such nearest neighbor queries, thatreqlyire a relative ordering of

27

distances, calculating the Euclidean distance is sufficien

2.4.3 Distance between a Spherical Point and a Circle

The closest point to spherical poipton circlec can be obtained by first projectingon
the plane ot to obtain pointp’ and then extending' to the circle through the center of
c. Ford = DISPLACEMENT(c) andr = RADIUS(c), we haver?+d? = 1. In the following
equationsp is the distance of the poiqtfrom circlec, andX is the distance op from the
plane ofc, which can be obtained by DRMALIZE (P — P;) - NORMALVECTOR(C), where
pc is some point on the plane of circle.

Consider the case depicted in the left hand side of Figure Begep andO, the center
of sphere, lie on the same side of the plane.dfising the additional symbo&sandb from

Figure 2.6, we have,

D* = X*+(r—h)?
2
= X2+ (r-Vi-2)

— X2+(r— 1—(X—d)2)2. (2.14)

In casep andO are on opposite sides of the planecats depicted in the right hand side
of Figure 2.6, we get
2
D? = X2+ (r— 1—(X+d)2) (2.15)

2.4.4 Distance of a point set to a circle

Consider a set of pointSand a circlec such that all point§lie on the same side of plane
of c. From Equation 2.14 and Equation 2.15, we can observe teatistance from a point
to a circle is directly related to its distance to the planéhef circle. Hence, the closest

point of the point seSto circlec is the closest point isto the plane ot.

28

Oc b Pec Oc b % Pc
D
p
Figure 2.6: Finding the distance of a point to a circle.

We use this observation to find the closest point of a poinSgeta circlec, by first
partitioningSinto setsS; andS,, such that all points it%; are on one side of the plane of
c and all points inS, are on the other side of the planemfWe can then find the poing;
the closest point it%; to the plane ot, and pointp, the closest point 1%, to the plane of
c. Finally, we use Equation 2.14 and Equation 2.15 to find theedt point among; and

p2>toc.

2.4.5 Distance between a Spherical Point and a Spherical Line

Consider a plan&, a pointp not on the pland, and aseb C T. Letp' denote the projec-
tion of p on planeT. For any poind in D we have|pd|?> = |pp'|?+ |p' d|?. Therefore, in
order to find the closest (or farthest) pointirto p it suffices to find the closest or farthest
point inD to p'. This observation will be used to find the distance of a sphégoint to a
spherical line.

The distance from a spherical pointo a spherical liné with endpointsA andB is the
distance fromp to A, B, or some other poirg which lies onl. g has the property that it is

co-linear with the line joining the origi® and the projectiof of p on the plane containing

29

|. Let mdenote the unit normal vector of the plane containing thespal linel.

M= NORMALIZE (A x B).

we have

C=p—(p-mm,

and

g = NormALIZE(C).

We should also test ifj lies on the spherical line. Based on these consideratiorsder
to find the distance between a spherical pgrand a spherical liné with endpointsA
andB, function DSTPOINTLINE, given in Algorithm 2.3, first findg| and then returns the

shortest distance frompto eitherA, B, or q.

Algorithm 2.3 DISTPOINTLINE(p,I)

(* Calculate the distance of the spherical point p to the splagfioe I. *)
A — ENDPOINTONE(I)
B < ENDPOINTTWO(I)
fi — NORMALIZE (A x B)
g« NORMALIZE(P— (p-1i)n)
if DOESINTERSECTPOINTLINE(q, LINE(A, B)) then
return DISTPOINTPOINT(p,Q)
else
return min(DISTPOINTPOINT(p,A), DISTPOINTPOINT(p,B))
end if

2.4.6 Intersection of a Spherical Point and a Spherical Line

The function DDESINTERSECTPOINTLINE(Algorithm 2.4) determines whether a spherical
pointq lies on the great circle of a spherical lihavith endpoints ofA andB. It is easy to
see thag lies on the spherical link if and only if, the angleZAgBin the triangle/AAQBis

obtuse (see Figure 2.7). This check is simple to make in theesthat’AgBis 90 degrees

if the sumS of the squares of the lengths of the two edges that compriseegual to the

30

B

Figure 2.7: Example of the distance from a spherical poiat $pherical line.

square of the length of the edgd denoted byH. The angle is acute (obtuse)3fis less

(greater) thar.

Algorithm 2.4 DOESINTERSECTPOINTLINE(q,I)
(* Determine whether spherical point g lies on the spherica lirt)
A — ENDPOINTONE()
B «— ENDPOINTTWO()
return |gA2 + |gB|? < |AB|?

2.4.7 Intersection of a Spherical Point and a Spherical Polygon

Throughout this section, we assume that we the sphericadpos are small area spherical
polygons. That is, the area of the interior of a sphericaygoh is less than the area of its
exterior. The algorithms related to the interior of spharfolygon should be modified in
case a different convention for specifying the interior epherical polygon is used.

In order to check if a spherical poiqtis inside a spherical polyganwe construct a
great circlec through p and another poing chosen at random and checkciintersects
r. If no, thenp lies outsider. If yes, then we examine the edgeontaining the closest
intersection point tgp. If p is on the side ok that is insider, then p is indeed inside
r; otherwise,p is outsider. The function DDESINTERSECTPOINTPOLYGON, given in

Algorithm 2.5 achieves this test.

31

Algorithm 2.5 DOESINTERSECTPOINTPOLYGON(p, Q)

(* Determine whether the spherical point p intersects the spalgpolygon g.*)
Let g be a plane passing throughandO.
Letr be a point org such thatp #r.
minDistance— oo
for i =1to NSIDES(g) do
| « SIDE(g,i)
p1 < ENDPOINTONE(I).
p2 < ENDPOINTTWO(I).
(X1,X2) < INTERSECTIONPOINTSOFPLANES(q, PLANE(I))
for j=1to 2 do
if DOESINTERSECTPOINTLINE(X],|) then
intersects— true
distance— |x;r|
if distance< minDistancethen
minDistance— distance
inside« signNORMALVECTOR(PLANE(l))-q)
end if
end if
end for
o < arcco$NORMALVECTOR(SIDE(Q,i)) - NORMALVECTOR(SIDE(g,i +1)))
S+« SigNn(ENDPOINTONE(SIDE(Q,i)) x ENDPOINTTWO(SIDE(Q,i+1)) -
ENDPOINTTWO(SIDE(Q,i)))
area— area+sa
end for
areaSign— | 22| mod 2

2
return intersectsand (insidexor areaSign)

The function DDESINTERSECTPOINTPOLYGON makes use of the function
INTERSECTIONPOINTSOFPLANES given in Algorithm 2.6 to determine two points
on the sphere corresponding to the endpoints of the sphdna formed by the

intersection of two planep andq of two great circles.

Algorithm 2.6 INTERSECTIONPOINTSOFPLANES(p, Q)
(* Find the intersection points of two planes p and g and the ytiese*)
X < NORMALIZE(NORMALVECTOR(p) x NORMALVECTOR(Q))
return (X,X)

32

2.4.8 Distance between a Spherical Point and a Spherical Polygon

In order to find the distance between a spherical point anchargal polygon, we need
to consider two cases; either (i) the spherical point is @pgblygon or (ii) it is not on
the polygon. In the first case, the distance is simply zerothénsecond case, the point
is not on the polygon and the distance is the minimum of aliagises from the point to
the edges of the polygon. The functiondYPOINTPOLYGON, given in Algorithm 2.7

correctly computes the distance between a spherical petha@pherical polygon.

Algorithm 2.7 DISTPOINTPOLYGON(p, Q)

(* Find the distance between the spherical point p and the sgdigoblygon g.*)
if DOESINTERSECTPOINTPOLYGON(p,g) then
return O
else
return min; DISTPOINTLINE(p, SIDE(Q,1))
end if

2.4.9 Intersection of two Spherical Lines

Two distinct spherical lines can only intersect at the isgetion points of their correspond-
ing great circles. Hence, two spherical lingsandl, intersect if and only if at least one
of the two intersection points of their corresponding graatles lies on botH; andl».

Function DOESINTERSECTLINELINE, given in Algorithm 2.8, achieves this test.

2.5 Extensions to the SAND Browser

The SAND Browser is a graphical user interface for SAND thatsus two-dimensional
display system for displaying data. The GUI is used to cora@usl perform queries. Us-
ing our design, incorporating the spherical data type ine0SAND Browser was straight-
forward. The main modification to the SAND Browser’s graphigser interface was the

addition of the ability to render spherical lines. In theremt implementation, a spherical

33

Algorithm 2.8 DOESINTERSECTLINELINE(I1,12)

(* Determine whether two spherical lingsdnd b intersect.*)
p1 = ENDPOINTONE(l1)
p2 = ENDPOINTTWO(I1)
g1 = ENDPOINTONE(I)
g2 = ENDPOINTTWO(I2)
for j=1to 2do
if DOESINTERSECTPOINTLINE(X;, LINE(p1,p2)) and
DOESINTERSECTPOINTLINE(X;, LINE(Q1,02)) then
return true
end if
end for
(* p lies on the great circle arc between spherical poitsapd . *) X1, X2¢ =
INTERSECTIONPOINTSOFPLANES(l1. planel,. plane
return False

line is approximated by many short line segments on the ayspiWe use a heuristic to
decide how many segments are needed for a good visual apyaten of the spherical
line. The heuristic uses the latitude of the two endpointsthe length of the line. If the
endpoints are far from poles or the line is long, then theikgamuses more line segments.

An additional feature of the SAND Browser is the spatial sieb@coperation which
enables a user to select data items that are located in a.sAcsector is represented by
a point and two rays emanating from that point. To suppors#wor on a sphere, we use
a spherical lune [79], which allows users to select the sphledata that is located on a
spherical lune. In order to specify the lune, the user sel@ee endpoinp of the lune, two
spherical lines having and the antipodal gb as their endpoints. Notice that onpyneed
be specifiedi(e., the antipodal ofp is not specified by the user). Since there are infinite
number of spherical lines betweerand the antipodal op, the user specifies the spherical
lines served to demarcate the lune.

Future work could involve the incorporation of additionainpitives into the spherical
model of SAND. Examples include great circles and their,ac®ll circles and their arcs,
and spherical polygons that cover more than half of the splAdso, the ability to perform

spherical visualizations is also an interesting featuréuture implementation.

34

Chapter 3

Low distortion normal vector

guantization

3.1 Introduction

Compressing geometry models has recently been a subjeaatfigterest [16,17, 29, 44,
72]. The goal is to reduce the number of bits required to srea geometry model in
order to lower the storage space, or to lower the transmmgsite of the model across the
network, or from the CPU to the GPU.

Realistic rendering of a geometry model requires knowledgie surface normals
at various points of the model. The surface normals are regtaged explicitly as part
of the geometry model or derived from other components ohtbeel during rendering.
For example, it is straightforward to compute the surfacemab of an oriented triangle
during rendering. The surface normals could then be usedltwlate color and texture
information at various points of the model. If the surfacemals are stored explicitly, they
are usually stored as the surface normals of the verticesmesh model, or the surface
normals of each point in point clouds [59]. Moreover, soméuree models such as bump

maps [6] store a normal vector as part of the texture infailemafl he efficient encoding of

35

surface normals could also be utilized to lower the storagt af such texture models.

Deering [16] points out that the usual practice of storingudage normal using 96
bits — three 32-bit floating point numbers — is wasteful. Hepgmsed selecting 100,000
representative surface normals on the unit sphere and treentiging each surface normal
to a nearby — but not necessarily nearest — representatif@ceunormal. Each of the
100,000 surface normals can be encoded u$laog, 100000 = 17 bits. Deering also
suggested using @elta encodingscheme to further compress a stream of surface normals
that have spatial correlation.

In this work, we present a framework for quantizing surfacenmals to any arbitrary
number of bits. Every normal vector quantization methotlides arencodingcomponent,
where a surface normalwith Cartesian coordinatés, y, z) : x> +y? 4 z° = 1 is represented
by Q bits; and adecodingcomponent where th® bits representingn will be used to
computeng the representative normadf n, ng = (Xq,Yq.Zq) : X4+ Y3+ 25 = 1. The one to
one correspondence between three-dimensional unit nameatdrs and the surface of the
unit sphere allows us to consider each surface normasplexical pointi.e., a point on the
surface of the unit sphere. Hence, normal vector quanizagithe same as quantizing the
surface of the unit sphere. In this article, we do not distisly between a three-dimensional
unit normal vector and a spherical point. Furthermore, wismdeompressiorf a stream
of unit normal vectors to be the process of converting a cbtle of normal vectors, as
part of a geometry model, to a stream of bits. The key diffeedmetween a quantization
technique and a compression technique is that the formpplged to a single datum, while
the latter is applied to a data collection.

Traditionally, methods for normal vector compression affate normals have been
considered in conjunction with the techniques for compngsa/hole geometry models.
Techniques for compressing geometry models usually usefaceunormal quantization
technique for efficient storage of surface normals. UsuhllyDeering method is chosen

for such applicationse(g, [14, 72]). This article provides a comprehensive study and

36

analysis of many surface normal quantization techniquesadso proposes different error
measures in order to evaluate the relative merits of theudssd techniques. In partic-
ular, we present a new guantization method called QuickMeawhich is better than
the Deering method in terms of (1) the quantization erroy.tif2 rendering quality, and
(3) the computational efficiency as measured by the time aghany needed to encode
and decode the normalized values. This article, to the emtiroknowledge, is the only
comprehensive study of surface normal quantization matirothe computer graphics lit-
erature. This article only discusses surface normal geatitn techniques, and does not
address surface normal compression techniques. Newsthel surface normal quanti-
zation method could be used as part of a statistical compressheme, such as those
proposed by Gandoin and Devillers [17,29] who use an arititneeding [82] scheme.
The rest of this paper is organized as follows. Section 3sZrilees previous work in
this area. Section 3.3 presents two methods for surfaceal@uantization. Section 3.4
derives a loose theoretical lower bound for the quantimagioor. Section 3.5 compares
different quantization methods in terms of the quantizagoor and the computation effi-
ciency, while Section 3.6 describes how the different gaation methods affect the ren-

dering quality. Concluding remarks are drawn in Section 3.7.

3.2 Related Work

As the surface of a sphere is a two dimensional surface, ibssiple to find a mapping
from a spherical pointx,y, z), to a two dimensional poir{u,v). Such mappings have been
extensively studied in the map projection and cartografégature, as in [69]. A primary
goal of a cartographer is to visually present geographidatmation on paper which is a
two dimensional medium. Most map projections are categdrlzased on their inherent
properties that are used in different applications. Forgda, anequal area projection

does not distort the area measure of a shape when projedtesijjtane, while @onformal

37

projection preserves the local angles of shapes. Computer graphicdsappis also use
map projection techniques. Environment mapping techsiqdg utilize a projection of
the sphere onto a two-dimensional surface, such as theceusfaa cube [36]. Arvo and
Kirk [2] use a sphere-to-cube projection to speed up rayriggapplications.

A natural way of quantizing the surface of a sphere is to firsjget the sphere onto a
plane and then to quantize the plane. A similar techniqudapted by Deering [16] who
divides the unit sphere into eight equal octants, and thedigides each octant into six
equal sextants. Each octant is an equilateral spherieagies with three 9internal an-
gles. Each sextant is a spherical triangle with internalesgf 90, 60°, and 45. The eight
octants of the sphere naturally define a regular octaheéttowever, other Platonic solids,
such as the cube and the icosahedron have also been used parpiose of quantizing the
surface of a sphere [2,73].

Deering [16] uses two six-bit valueg, and 6, to encode 2,145 representative surface
normals on each sextant. Each octant is encoded with thtgealnid each sextant of an
octant is encoded with another three bits. Therefore, Dgeauses 18 bits to represent
102,960 surface normals. As we can see, the Deering methstésvat least one bit,
as 102,960 surface normals could have been representegl argin 17 bits,i.e., 217 >
102 960. The Deering algorithm requires the precomputationlld?,&45 representative
surface normals of a sextant. The encoding algorithm padgdinear search among these
surface normals to find the closest representative nornthétgiven surface normal. Thus,
the encoding algorithm would require a considerable amoti@PU time. The Deering
algorithm for decoding a surface normal first determinesoittant and the sextant of the
guantized normal (encoded by six bits) and subsequently thgeremaining 12 bits as an
index to a lookup table of the precomputed surface normalghBrmore, each coordinate
value of a normal is stored using 16-bit fixed precision numbbus, the size of the lookup
table is 24 kilobytes, which could be costly for a hardwar@lementation. Cignoni et

al. [14] describe a model used for visualizing tetrahedrasines. They use the Deering

38

method for compact storage of the normal vectors of a modéke Deering method is
also used in [34] for storing quantized normals of a triaagwhesh. Willmott [81] also
proposes using the Deering method for reducing the memaouyine@ments of hierarchical
radiosity.

An alternative quantization method represents a normabvéy its geographic coor-
dinates,i.e,, its latitude and longitude. It then quantizes each coatéimnto the desired
number of bits. Kugler [48] uses this method for hardwarelegimg. A disadvantage of
this method is that the quantization error of a normal is lyigkewed. That is, the normals
around the equator of the unit sphere on average have a lgghatization error than the
normals near the poles of the unit sphere.

Given a spherical poir{k, y, z), another quantization method calculates yo, zp), such

that

(%0,¥0,20) - (X + |yl +12]) = (x,¥,2)-

This is equivalent to thgnomonic projectiorof the unit sphere on an octahedron. Notice
that|Xo| + |yo| + |20| = 1, and thus it suffices to only storg, yo, and the sign ofy. Fur-
thermore xg andygp will each be quantized to the desired number of bits.nlf-2L bits are
used for quantizing a normai,bits are used for quantization of tlig andyp coordinates.
However, not all possibléxg, yo) values are valid. In particular, all values @b, yo) such
that [xo| + |yo| > 1 are not valid. For example, we cannot h&0e9,0.9) for (xo,Yo), as
0.9+0.9 > 1. Hence, only half of the? possible values fofxo,yo) are valid. Thus, this
method, similar to the Deering method, wastes one bit. Alammethod [59] projects the
unit sphere onto a cube and then uses a uniform grid on thacsuof the cube.

In [8,37,71,75] recursive subdivisions of an octahedr@used to encode each surface
normal with the triangle containing the surface normal. €nheoding in this method is
iterative, and hence would be slow in practice. For exanmptgsch et al. [8] use 13 bits
per surface normal for a point sampled rendering applinafitiree bits are used to encode

the face of the octahedron, and two bits are used for eackmpaay subdivision. Thus, the

39

recursive subdivision of the octahedron is five levels deep, hence, encoding a surface

normal requires five iterations.

3.3 Quantization Methods

In this section, we discuss two distinct methods for norneater quantization. We first in-
troduce our proposed method, called Octahedral QuardizaBubsequently, we describe
guantization methods that are based on a nearest neighbdorgfinlgorithm. However,
for the sake of completeness, we also ments@ographic Quantizatiom this section.
In Geographic Quantization, a normal vector is first coraetb its Geographic coordi-
nates {.e., latitude and longitude), and then each geographic coateliis quantized to the

desired number of bits.

3.3.1 Octahedral Quantization

Projection Flattening Tesselatio

Figure 3.1: A block diagram of Octahedral Quantization,gheposed method for surface
normal quantization.

Our proposed framework for surface normal quantizatiolke@daheOctahedral Quan-
tizationuses projections of the unit sphere onto a regular octaheéiigure 3.1 is a func-
tional diagram summarizing the steps of the Octahedral uation method. After pro-
jecting the sphere onto the octahedron, the faces of thénedtan are flattened onto a
plane, such that they form a square. Then the square islsgegelising an appropriate
pattern. For each cell of the tessellation, a represeptptint is chosen.

Recall that a surface normal is a point on the surface of thiesphiere. The encoding

process thus maps each surface normal to a cell of the tsseland hence, the represen-

40

tative point of the cell. The decoding process projects gpeasentative point back to the
octahedron and to the unit sphere. Note that any approgmiajection or tessellation can
be chosen — independent of each other — in the framework.

We use a regular octahedron placed around the unit sphdndlgtahe vertices of the
octahedron are placed on the coordinate axes. poséive faceof the octahedron is the
triangle T with verticesX = (1,0,0), Y = (0,1,0), andZ = (0,0,1). Notice that, for all
points(x,y,z) on the positive face of the octahedron, we hawez > 0 andx+y-+z=1.
Similarly, thepositive spherical octardf the unit sphere is the set of poiritsy, z) on the
sphere such thaty,z > 0. In the rest of the discussion, we only consider the encpain
a normal vector in the positive face of the octahedron asréegrhent of the other faces
is similar. We choose an arbitrary projection that projeltspositive spherical octant of
the sphere to the positive face of the octahedron. We suggesy projections that are
computationally efficient. In Section 3.3.4, we describeva $uch projections, namely, the
Gnomonic projection, the Areal projection, the Buss-Filiemprojection, and the Tegmark
projection.

In general, the spherical poilk,y, z), will be mapped to a poinP = (a,b,c) on the
positive face of the octahedron, whexe-b+c =1 and 0< a,b,c < 1. (a,b,c) are also
the barycentric coordinates &fwith respect to the triangl&€. Now asa+b+c=1, it
suffices to only store and encode two of the three barycetocdinates, as the third can
be obtained from the remaining two coordinates. We choostotea andb, as this maps
the vector(1,0,0) to the point(1,0), the vector(0,1,0) to the point(0,1), and the vector
(0,0,1) to the point(0,0). We use the equatian= 1—a— b, when the value of is needed.
We thus have @ 1—-a—b <1, or equally, 0< a+ b < 1. The locus of the point&, b)
with 0 <a+b < 1is aright-angled isosceles triangle with verti¢&9), (0,1), and(0,0).
That is, we have shown how to project a face of the octahedrarright-angled isosceles
triangle. Thus the eight faces of the octahedron map to eighal right-angled isosceles

triangles, and we can arrange them in a square with sidenegévo as in Figure 3.2.

41

b*

(-1,-1) N G (1,-1)

Figure 3.2: Arrangement of eight right-angled trianglea square.

The placement of the eight triangles is such that the edgéath adjacent on the square
are also adjacent on the octahedron. We have labeled eangl&iwith the signs of the,

y, andz coordinates of the spherical points corresponding to edahgle. For example,
the — + — in the upper-left triangle denote that points correspogdmthat triangle have
negativex, positivey and negative coordinates. We us@”,b*) to denote the coordinates
of a point in the square of Figure 3.2.

In the next step, we quantiZa*,b*) to the desired number of bits. For an even num-
ber of bits, we use the pattern shown in Figure 3.3, where datllenotes a quantized
point. For an odd number of bits, we use a slightly more compkgtern shown in Fig-
ure 3.4. Notice that the representative points in Figur8saBd 3.4 are the centroids of

their corresponding cells.

3.3.1.1 Similar Methods

The Deering [16] method for surface normal quantization ailses a regular octahedron.
Moreover, our method partly resembles the work of Praun aoplpid [55] for spherical
parameterization of mesh models. The technique of projgdhe sphere onto a square

using an octahedron was previously proposed by Dutton [@@]Rraun and Hoppe [55].

(@) 2 bits

(b) 4 bits

(c) 6 bits

42

Figure 3.3: Pattern of representative points for an evenbaurof bits.

(a) 3 bits

(b) 5 bits

(c) 7 bits

Figure 3.4: Pattern of representative points for an odd reurabbits.

That is, they project the unit sphere onto a regular octairednd then arrange the faces
of the octahedron to form a square. In spite of the simiksjtDutton [19] and Praun and
Hoppe [55] apply the flattening technique to different apgiions other than surface nor-
mal quantization. The focus of Dutton [19] was to devise ahoétfor multi-resolution
encoding of geographical data. While Dutton’s work is clggelated to surface normal
guantization, we examines the effect of a variety of progexst on the quality of the quan-
tization for computer graphics applications. In contr&tun and Hoppe [55] propose
techniques for spherical parameterization of a mesh, andethe quality measure used in

their work does not directly correspond to the quantizagioor of surface normals.

43
3.3.2 Delta Encoding

To further compress a stream of quantized normal vectorslta ncoding scheme could
be used. The delta encoding scheme is a simple compresstboadrtbat is widely used in
computer graphics applications.g, [16]). While the compression of normal vectors is not
the focus of this article, we still mention the correct waypply delta encoding to surface
normals that are quantized using the Octahedral Quarmtizatethod. Instead of directly
encoding the data, the delta encoding scheme encodes fiieddes between successive
data elements. The vect*,b*) is encoded aga” — ap, b* — by), where(ay, by) is the
previous vector in the stream. Thus, if successive nornebve have spatial locality, then
the delta vector has a smaller range and can be encoded nmopacty.

The outer edges of the square in Figure 3.2 fold and toucheat thidpoints. For
example, the half-edges H and A are actually the same eddpe aictahedron. Similarly,
the half-edges L, C; N, G; and J, E are the same edge of the detaheTherefore, the
square could be extended to cover part of a larger squareoas1sh Figure 3.5. Notice
that each point in the smaller square will appear four timethe larger square. This can
be observed by looking at the star or the triangle symbolshvare placed in Figure 3.5 to

illustrate this property. In other words, a po@at,b*),0 < a*,b* < 1 extends to the points

(&, b%),

(2—a", —h"),
(—a",2—Db"),
(

a —2,b—2%).

Hence, the correct delta vector for poigat',b*),0 < a*,b*, < 1 will be the shortest delta

44

vector among

(a— 2) —ap, (b— 2) —bp).

\

Table 3.1 tabulates the four extensions of a point in diffeceiadrants of the square.

a*>0b">0 a*>0b"<0 a*<0,b*>0 a*<0,b*<0
(a",b"), (a*,b"), (a,b"), (a%,b),

(2—a",—b*), (2—a*,—b"), (-2—a*,—b"), (—2—a",—b"),
(—a*,2—b"), (—a*,—2—Db"), (—a*,2—b"), (—a*,—2—b"),
(a*—2,b*—2) (a*—2,b"+2). (@ +2,b*—2). (a"+2,b*+2).

Table 3.1: The four extensions of a po{iat b) in different quadrants of the square.

v 2%

Figure 3.5: Extension of Figure 3.2 to a larger square.

3.3.3 Hexagonal Cells

In Figure 3.3 we showed that when an even number of bits isfasegiantization. we can
use square-shaped cells for tessellating the square.sisébtion, we describe an alterna-
tive tessellation pattern that uses hexagonal cells idsitesquare-shaped cells. Notice that
each square-shaped cell in Figure 3.3 exactly overlapsriaagular cells in Figure 3.4,

and hence two representative points of the same figure. Warcoha pattern that uses

45

hexagonal cells using a three step process. We start withrd-B)4 and remove one of the
two representative points that are co-located in the sam&rseghaped cell of Figure 3.3.
The resulting pattern is shown in Figure 3.6. Notice thatré@esentative points shown
in Figure 3.6(a) appear at the same positions in Figure B.&fmilarly, the representative
points shown in Figure 3.6(b) appear at the same positioRgyure 3.6(c). In the second
step, the hexagonal tessellation is constructed by regaeach removed point by three
edges that connect the point to the vertices of the triangh¢aining it. These edges are
shown using dotted lines in Figure 3.7. From Section 3.3®Figure 3.5, we know that
we can extend the image inside the square to a bigger squmtiee final step of building
the hexagonal pattern we form proper cells using the exdarafithe square. The resulting
pattern is shown in Figure 3.8.

Notice that exactly four cells of each pattern are in facttpgons, and the rest of the
cells are hexagons. In particular, the pattern correspgnidi two bits has four pentagons
and no hexagons, while the pattern corresponding to foarhas four pentagons and 12
hexagons. If the pattern in Figure 3.8 is projected back ecsffhere using an appropriate
projection, the spherical hexagonal cells will be almogutar. We later show that this will

improve the quantization error.

(a) 2 bits

Figure 3.6: First step in constructing the hexagonal pafigran even number of bits.

(b) 4 bits

(c) 6 bits

46

.............

...........
........
o

........

4.,

4.,

........

..............

(@) 2 bits (b) 4 bits (c) 6 bits

Figure 3.7: Second step in constructing the hexagonalrpdttean even number of bits.

(@) 2 bits (b) 4 bits (c) 6 bits

Figure 3.8: Hexagonal pattern of representative pointafioeven number of bits.

3.3.4 Projections for Octahedral Quantization

In this section, we describe a few projections that projeeftositive spherical octant to the
positive face of the octahedron. We describe the GnomdmecAteal, the Buss-Fillmore,

and the Tegmark projections.

3.3.4.1 Gnomonic Projection

In this projection, the map of a poift= (a, b, c) on the positive face of the octahedron to

the pointN = (X,y,z) on the unit sphere is the intersection of (i) the line thaspashrough

47

the center of the sphere aRgand (ii) the sphere itself. Thus we have,

X y z
a: b: C: ,
X+y+z X+y+z X+Yy+z

and the inverse relation,

a b C

V2) VPR | VRIS
3.3.4.2 Areal Projection

In this section, we describe the Areal projection which is@extion devised by us having
the following distance-preserving property. In particulat p be a point on one of the 12
edges of the octahedron. L&&andB be the end vertices of the edge containmd.etr, C,
andD be the spherical points such that their Areal projectioegpaA, andB respectively.
The Areal projection has the property that the ratio of tistatice betweep andA to the
distance betweep andB is the same as the ratio of the spherical distance betwasdC

to the spherical distance betweeandD:

whered(-) denotes the Euclidean distance on a face of the Octahedtbds&n denotes
the Geodesic distance on the sphere.

The Areal projection of a poifl = (x,Y,z) located on the positive spherical triangle
of the unit sphere is the poift= (a, b, c), such thag, b, andc are the ratios of the areas
of the three spherical triangles formed Ryand the pointX = (1,0,0), Y = (0,1,0), and
Z =(0,0,1) to the area of the spherical triangleXY Zas shown in Figure 3.9. Notice that

the area of spherical triangleXY Zis 7, i.e., it equals one eighth of the surface area of the

48

Figure 3.9: The poink inside spherical triangl& XY Z
unit sphere. Lettind\s(t, u,v) denote the area of the spherical triangleuv, we have:

AS(NvYa Z) AS(X7N7Z> AS(X7Y7N)
a= ——5—-; b=—F— Cc=—7F—".
2 2 2

We can simplify the above equations to (see Appendix A.1):

4 X 4 y 4 z
a= —arctan———; b= -—arctan———; c= —arctan————. (3.1)
I y+z+1 I X+z+1 I X+y+1

To computeN = (x,y,z) from P = (a,b, c), we use the inverse relation (see Appendix A.1):

s(a) . s(b)

Cea sy V= CRasesg 2= THa SO (3.2)

X= T-s@-s(b)—sc)’

wheres(-) is defined as:
_ tanju
~ tanfu-+1’

s(u) (3.3)

Compared to the Gnomonic projection, the Areal projectiogssusigonometric func-
tions which are more expensive to compute. However, as verisisater, the Areal pro-
jection has lower quantization errors compared to the Gmierqrojection. The difference
in encoding time between the two projections is negligieept encoding for real-time
applications. In Section 3.3.5, we introduce the QuickAe&dgorithm, a fast implementa-

tion of the Octahedral Quantization using the Areal pragectThe QuickAreal algorithm

49

does not use trigonometric functions and hence is suitablestl-time applications.

3.3.4.3 Buss-Fillmore Projection

In this section, we briefly describe the Buss-Fillmore progagtwhich, similar to the Areal
projection, preserves the distances along the edges of ¢cteh&dron. Consider a point
N = (x,Y,2), located on the positive spherical triangle of the unit spheve define the
Buss-Fillmore projection oN to be the pointP = (a,b,c), such thatN is the weighted
spherical centroid of the poind$ = (1,0,0), Y = (0,1,0), andZ = (0,0,1) with weights
a, b, andc respectively.

Buss and Fillmore [9] describe an iterative algorithm to catephe weighted spherical
centroid of an arbitrary number of spherical points. Thgoakthm is used for the inverse
projection of a point from the octahedron to the sphere. @rother hand, the projection
from the sphere to the octahedron has a closed form solufibis. implies that the Octa-
hedral Quantization using the Buss-Fillmore projectionlasvsfor decoding, but fast for

encoding.

3.3.4.4 Tegmark Projection

We also introduce the Tegmark [73] projection, which is ana@rea projection that was
initially designed for describing equal area pixels on aesphAlthough the Tegmark pro-
jection was designed for an Icosahedron, it is straightéodito apply the same technique

for an Octahedron, which is used in our Octahedral Quamnizamethod.

3.3.5 QuickAreal Algorithm

In this section, we describe the QuickAreal algorithm, whi a fast algorithm for quan-
tizing unit normal vectors using the Areal projection. Thai€kAreal algorithm uses table

lookups instead of computing trigonometric functions. e to mention that hexagonal

50

cells cannot be used with the QuickAreal algorithm. The wkson here is restricted to
triangular and square-shaped cells.

The encoding algorithm works as follows. Equation 3.1 is syetric with respect to
the three coordinates y, andz, as well asa, b, andc, and hence it sufficient to show how

ais computed using, y, andz. Notice that

4 X
a= —arctan————.
m y+z+1

Hence, to computa givenx, y andz, it suffices to have an algorithm that quickly computes
the arctaf) function. Moreover, we are only interested in valuesdfiat are quantized.
That is, they only havae bits of precision, whera depends on the number of bits used for

guantization of the normal vector. Hence, if we precomplésftinction

" m,
t(X) = tan—X
() =tang
for all X, such thak'is a positive fractional number withbits of precision. We can search
the table for values ox that are close t@ﬁ. This can be implemented using binary
search, as the functidiiX) monotonic for 0< X < 1.
To decode a quantized normal vector, the QuickAreal algariises another table for

storing values of
tanZx
%)= nf 1 1
for all X, such thaix’is a positive fractional number with bits of precision, because the
values ofa, b andc used in Equation 3.2 have fixed precision.
Unlike the Deering algorithm, the decoding algorithm use®ry compact table. For
example, for a quantization using 18 bits, the QuickAregbethm needs to precompute

s(X) function for all 28/2-1 values ofx. This only requires a 1-kilobyte table, while the

Deering algorithm uses a 24-kilobyte table.

51
3.3.6 Quantization Using a Nearest Neighbor Finding Algorithm

A general method of surface normal vector quantization asesgppropriately chosen set

of representative normals. To quantize a normdhe nearest neighbor ofin Sis chosen

as the representative normalrofin contrast, the Octahedral Quantization method does not
guarantee that the representative normal isfits nearest neighbor. However, we can use a
nearest neighbor finding algorithm such as those proposétjditason and Samet [41] in
conjunction with the Octahedral Quantization method. Tiathe setS of representative
normals are to be the set of representative normals usec i@ttahedral Quantization
method.

Quantization methods that use a nearest neighbor findirgitdgy are not suitable for
real-time applications because the encoding processresgsearching for the nearest
neighbor ofn, which can be expensive. Moreover, the decoding processeagyre a lot
of storage as the three coordinates for each poiStieed to be computed and stored.

In this section, we describe a few methods that could be uwegkherating the set of
representative normafs These methods include Octahedral Quantization basecageth
(i.e.,, Ghomonic, Areal, Bass-Fillmore, and Tegmark), the Deemethod, the Geographic,

Saff-Kuijlaars [60], and the Spherical Centroidal Vorones$ellations (SCVT) [18] method.

3.3.6.1 Random Points

Note that the seébcan be a set of randomly generated spherical points. We aselam set
of points as benchmark to evaluate the quantization quaditther quantization methods

that use a nearest neighbor finding algorithm.

3.3.6.2 Saff-Kuijlaars Method

Saff and Kuijlaars [60] describe a mathematical processhvplaces a sequence of points
on the unit sphere. The points are placed in a spiral, thaiditst point in the sequence

is placed on the south pole, and each successive point iscotaarth of the previous point,

52

with a suitable longitudinal displacement. Notice that wo points in the sequence have
the same latitudei.e., z coordinate). Although the point set generated by this ntktho
is easy to compute, it is not straightforward to compute gexfioform for deriving the

coordinates of thé" point in the sequence without computing all the precedirigtpo

3.3.6.3 Spherical Centroidal Voronoi Tessellations (SCVT)

Du, Gunzburger, and Ju [18] describe an iterative processimosing an arbitrary number
of points on the unit sphere, such that the points are als@éehé&oids of the cells of
the Voronoi [3] tessellations. This method has the desérabbperty that the generated
points are very well distributed on the sphere, and hencatdaifor quantization purposes.
However, the computation of the points is rather expenssvéha algorithm to do so is
iterative. In our experiments we used an offline processeigee the set of representative
normals, and then used this set for quantizing normals. Veée h@ mention that due to
the computational complexity of SCVT, the largest set thatvamaged contained only2

normals.

3.3.7 Table of Quantization Methods

Table 3.2 summarizes the different quantization methosisudised in this paper. Quanti-
zation methods based on Octahedral Quantization are pidfix&Q‘ and labeled by the
projection technique used and their use of of hexagonas.c&lbr example, 'OQ-Areal-
Hex' refers to an Octahedral Quantization method that us#sthe Areal projection and
the hexagonal cells. On the other hand, names of method$iwki a nearest neighbors
algorithm start with ‘NN’. The methods names that start wiXiN-OQ’ are quantization
methods that use a nearest neighbor finding algorithm sathié set of the representa-
tive points is the same as an Octahedral Quantization metheat example, the NN-OQ-
Areal-Hex method uses the representative normals of theA@@l+Hex method. Notice

that the encoding process of NN-OQ-Areal-Hex method erssiia the quantization error

53

is minimized, but there is no such guarantee for the OQ-ArEad method.

The Tegmark and Tegmark-Hex methods are the eglyal areamethods in Table 3.2.
That is, each representative normal in these methods epsasormals that cover an equal
area of the unit sphere. Equal areal quantization methaespecially important as they

can be used to uniformly sample the unit sphere.

Method’s Name Octahedral| Hexagonal| Nearest Neighbors Equal Area
Geographic

Deering
OQ-Gnomonic
OQ-Areal
OQ-Buss-Fillmore
OQ-Tegmark
OQ-Gnomonic-Hex
OQ-Areal-Hex
OQ-Buss-Fillmore-Hex
OQ-Tegmark-Hex
NN-OQ-Gnomonic
NN-OQ-Areal
NN-OQ-Buss-Fillmore
NN-OQ-Tegmark
NN-OQ-Gnomonic-Hex
NN-OQ-Areal-Hex
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex
NN-SCVT
NN-Saff-Kuijlaars
NN-Random

SNENENENEN/ENENEN
ASENENEN

SESESEN

SNENENENENENENENENENEN

Table 3.2: A Summary of Quantization Methods

3.3.8 QuickArealHex Algorithm

In Section 3.5.1 we show that the encoding time of normal eation methods that use
nearest neighbor finding algorithms increases rapidly thighnumber of quantization bits.

In other words, such methods are not suitable when a largé@uai quantization bits is

54

required. Moreover, the nearest neighbor based quamtizatethods are not suitable for
applications that require real-time encoding of normateesc

In this section, we describe the QuickArealHex algorithnfast implementation of
the NN-OQ-Areal-Hex quantization method. The QuickAreatthlgorithm first uses the
QuickAreal algorithm to quickly encode a normal vectpusing the OQ-Areal method.
Then the nine neighbors of the quantized normal are testédddhe closest represen-
tative normal tog. The QuickArealHex algorithm always searches for nine Imeigs of
a quantized normals, hence it can perform fast encoding aoedpto implementing the
NN-OQ-Areal-Hex algorithm when using a general nearegh®or finding algorithm.

Figure 3.10 provides an example. The gray dots are the emas/e points of the
OQ-Areal-Hex algorithm. The symbal is the projection of the normaj onto the square
of Figure 3.8(c).q is mapped to middle square using the QuickAreal algorithmal, the

nine neighbors of] are shown with black dots.

Figure 3.10: The neighborhood search of the QuickArealHgarahm.

55

3.4 Lower Bounds

In this section, we provide a loose lower bound for the quatitn error. Given a normal
vectorn and its corresponding quantized normal veaigr the quantization errog, is
the defined as the geodesic distance betweandng on the unit sphere. We hawg =
ds(n,ng), ande, = arccos- ng, whereds(n, ng) is the geodesic distance betwagrandn.

Three error statistics that are of interest to us are:

1. The Maximum Quantization Error (MQE) is the largest pblesivalue ofe, for a

guantization method;

2. The Average Quantization Error (AQE) is the average quation error for all the

normals; and

3. The Root Mean Square Quantization Error (RMSQE) is the sqoat of the average

of the squares of the quantization error for all the normals.

We assume that we have plackdrepresentative normals on the surface of the unit
sphere. Consider an arbitrary representative nogndlet 8, denote the largest quanti-
zation error of normals represented dpyMoreover, letSy, denote the surface area of the
unit sphere corresponding to the normals representef hytice that,Sg, is smaller than
the surface area of a spherical disk with radiysOn the other hand, the surface area of a
spherical disk with radiu§ is [79] 2r1(1 — cosf), henceSy, < 2m(1— costy).

Let 8 denote the largedl, of all representative normals. As we require all the normals
on the unit sphere to have corresponding representativeaieywe have A< y ; S, and
hence 4t < §,27m(1 - cosby). Therefore, ad is the largesty;, we have 41 < M27(1 -

cosf). The Maximum Quantization Error is equalficand is at least

arccos<1 — %) . (3.4)

56

O

Figure 3.11: Cross section of the unit sphere center€l at

We now derive the quantization error statistics of normabsspherical disk with radius
6. Consider an arbitrary normalin the spherical disk centered@and radiusd. Assume
that the geodesic distance of nornmato its representative normalis 8 (as shown in
Figure 3.11). The corresponding quantization erron & 8. The total quantization error

for all normals located in the disk centeredjand geodesic radiugis

[852,

whereS; is the surface area of the spherical disk of helghtve have [79]Sz = 2mh and
h=1-cosp.

The Average Quantization Error (AQE) is

%(sine— 6coso). (3.5)

1 /9 0

YL

SpJo 9B
Similarly, the mean square quantization error is

/ /32 5B = —((2— 62) cos6 + 26'sin6 — 2),

and the Root Mean Square Quantization Error (RMSQE) is

\/%((2—92) cosO +205sin6 —2). (3.6)

57

3.4.1 A Tighter Lower Bound

We can derive a tighter lower bound for the maximum quantnagrror (MQE) by observ-
ing the geometric properties of the spherical Voronoi chagof the representative normals.
A spherical Voronoi diagram of the spherical point Se$ a tessellation on the surface of
the unit sphere, such that all the points in each cell of thediation have the same nearest
neighbor inS. The cells of a spherical Voronoi tessellation could be ffiedent shapes.
We point out that the lowest MQE is achieved by having cel& #re as close to a cir-
cle as possible. In general, tessellation of a sphere by usily circles is not possible.
Furthermore, the sphere cannot be tessellated by any rqguliagon with more than six
sides. In this section, we can derive an MQE lower bound byrasgy a tessellation of the
unit sphere with equal regular hexagons. This lower bounidfger than the lower bound
in Equation 3.4. However, as it is not possible to completalyer the sphere only with
regular hexagons, the lower bound derived in this sectiontshe tightest possible bound.
We derive the bounds for the general case of tessellatingphere intavl equalN-sided
regular spherical polygons. The MQE lower bound correspaadhe the case ¢ = 6.

The area of each cell l—”ﬁf Letting 2y denote the interior angle of the cells, the area of

the cell is [79] Ny — (N — 2) 1. Hence,
amn
— =2Ny— (N—-2)1t.
v = 2Ny=(N=-2)m

Or,

Let A denote the center of a cell, and B&andC be two adjacent vertices of the cell.

Without loss of generality, we assume that the sphere isi@iesuch that, for properly

58

chosen values af andy, we have:

A = (0,0,1)
B = (sinacosy,sinasiny,cosa)
C = (sinacosy,—sinasiny,cosq).

Consider the spherical triangkBC depicted in Figure 3.12. LetA denote the spher-
ical angle at vertexA and leta denote the spherical sid®C. Hence, asA is the center
of a regular spherical polygon, we hay® = y, andZA = ZW" Moreover, notice that the

maximum quantization error is equal do

A C

Figure 3.12: Tighter lower bounds.

As ais the side of the spherical triangle betwdeandC, we have:

cosa = B-C=sirfacosy—sirtasirt+cosa
1—23ir?%1 = sirfa(l—siPy)—sifasirfy+1—sirfa
= 1-2sirfasify

sin- = sinasiny.

Similarly, for b andc, we have: cob = A-C = cosa and cog = A-B = cosa. Hence,
b=c=a.

Using the law of cosines in the spherical triangiBC, we have: cogAsincsinb+

59

cosbcosc = cosa, hence:

C0Sa— COShCOoSC
sinbsinc
sir? a cog — sirf a sir’ Py + cof a — cos a
sirfa
— coS Y —siy =cosay.

COS/A =

Hencey = .

Similarly, we have:

cosb — cosacosc _ COsa —cosa cosa

cos/B = . - = - -
sinasinc sinasina
_ cosal—cosa COS 2sir 3
~ sina sina sina 2singcos3

cosa sing cosa sina siny
sina cos§ sina cosj

B cosa
- 5
cosS
Hence, a¥B =y, we have
cosa = Smwcosa
2 cosy
Moreover, as siﬁ%1 +cog2 =1, we have
cofa

S|n2asm2w+sm2w gy = 1

sm2w<sm201+1 smza) =1
1—sirfy

which simplifies to
s g — S|n2f,u+5|r12y—1.
sirt Ysiry

In case of a hexagonal cells, we haNe-6, y = §, y= Z(1+ &), and hence the maximum

60
guantization errord) is obtained from

3

Slnza:4_5|nz%[(—l_}_%)

This simplifies to:
V3

eyt (3.7)

cosa

Equations 3.5-3.7 could be used to design the minimum nuoflerantized normals to

achieve a specific quantization error. For example to aetaemaximum quantization error
(a) less than 1 degree, requires at least 15,879 represematitnals. Moreover, we know
from Equation 3.5 that the average quantization error fQB71% representative normals
will be at least 0.6062 degrees and from Equation 3.6 we kihaivthe root mean square

guantization error for 15,879 representative normalsivalat least 0.6430 degrees.

3.5 Comparison of Quantization Methods

Our test setup generates 122° random unit normatest vectorswith a uniform distri-
bution, whereQ is the number of quantization bits. Note that the number sif ¥ectors
is proportional to the number of the representative normiats example, ifQ = 12, we
generate 524,288 random unit test vectors. We therQusis to encode each test vector
and then decode it to derive its correspondijpgntized vectorThe quantization error for
each test vector is the angle between the test vector anorissponding quantized vector
and is measured in degrees. The quantization errors areatigregated over all the test
vectors to produce the various error statistics. We alscsareghe average time taken for
decoding and encoding a test vector. The experiments wadkicted on an IBM Thinkpad
T43 machine with an Intel Centrino 750 (1.86 GHz and 2 MB L&¥elche) and 1GB of
RAM running Windows XP using the Visual C++ optimizing compile

In Figure 3.13, we compare the quantization error of sevguaintization methods.

61

In particular, we compare the quantization errors of thedgaghic, the Deering, the OQ-
Areal, the OQ-Gnomonic, the OQ-Tegmark, and the OQ-Budsibik quantization meth-
ods. In particular, we compare the Maximum QuantizatioE(MQE), the Average
Quantization Error (AQE), and the Root Mean Square Quamntiz&irror (RMSQE) of the
above mentioned quantization methods and the correspptalirer bounds. Notice that
the MQE lower bound is derived in Section 3.4.1, while the Agytel the RMSQE lower
bounds are derived in Section 3.4. The quantization errehasvn on the lefi-axis of
Figure 3.13, while on the righ-axis of Figures 3.13(a, c, e), the quantization error is rep
resented in terms ddffective bits We use the concept offgerfect quantizeto explain the
term “effective bits”. A perfect quantizer is a quantizeragle error statistics are the same
as the lower bounds. The effective bits corresponding tcaatigation error is the number
of bits required by a perfect quantizer to obtain the samatigetion error. For example,
we can see that the MQE error of the Deering method when ugmgidntization bits cor-
responds to 9 effective bits. That is, the same quantizatioor could have been achieved
if 9 bits were used with a perfect quantizer. In effect, thiews that the Deering method
wastes three bits. We also define a corresponding normatized metric for each of the
three error metrics by dividing each error statistics bydsesponding lower bound. The
normalized error metrics are dimensionless and are usedumds 3.13(b, d, €)-3.17(b, d,
e).

In Figure 3.13(a), we see that the Deering method has mudtehiguantization er-
ror compared to other methods. In particular, the Deerinthotewastes three bits while
other methods waste between one and two bits. InterestithglyGeographic method has
the lowest MQE error among all the methods. Note that the Méped Maximum Quan-
tization Error shown in Figure 3.13(b) depends on the pasftthe number of bits. In
particular, all the methods have lower normalized errormiine number of bits is an odd
number. Note that the Deering method is only defined for an evenber of quantization

bits. Moreover, the normalized quantization errors of tieeiing method rapidly increases

62

when the number of bits is increased. In contrast, the nazedhiquantization errors of
other methods remain the same.

From Figures 3.13(c, d) we immediately notice that the Depmethod wastes two
bits for the AQE and the RMSQE errors, while other methods evéets than one bit.
However, Figures 3.13(d, f) show that the Geographic megestbrms worse than other
methods for the AQE and the RMSQE error metrics. Also note ttietvariation of the
errors with respect to the parity of the number of bits is asthgerved in the Geographic
method.

In Figure 3.14, we compare the quantization error of Octedlé€guantization methods
that use hexagonal cells and the Geographic method. Nadtdééiwagonal cells are only
defined for an even number of bits. In particular, we compageguantization error of the
Geographic, the OQ-Gnomonic-Hex, the OQ-Areal-Hex, the Bu3s-Fillmore-Hex, and
the OQ-Tegmark-Hex quantization methods.

In Figure 3.14(a), we see that the Geographic method hashemhguantization er-
ror compared to other methods. In particular, the Geogcaptathod wastes almost 1.5
bits, while other methods waste a little less than one bit. &ygaring Figure 3.14(a)
with Figure 3.13(a), we conclude that using hexagonal eelfgoves the quantization by
almost one bit. This improvement is more evident by compgFigure 3.14(b) with Fig-
ure 3.13(b). Note that the OQ-Buss-Fillmore and the OQ-Amezthods have very similar
guantization errors. This is not entirely surprising asBluss-Fillmore and the Areal pro-
jections approximate each other. Figure 3.14(b) also shbatsthe NMQE error metric
of the OQ-Tegmark-Hex method increases with an increasingoer of quantization bits,
while the converse is true for the OQ-Buss-Fillmore-Hex dmel ®Q-Areal-Hex meth-
ods. Moreover, the NMQE error metric of the OQ-Gnomonic-Hesthod remains the
same. Notice that in Figures 3.14(c)—(f), the OQ-Buss-kitierHex and the OQ-Areal-
Hex methods are very close to the lower bounds.

In Figures 3.15-3.17, we compare the quantization errouahtjzation methods that

63

use a nearest neighbor finding algorithm. In particular, amgare the quantization error
of the NN-Geographic, the NN-Deering, the NN-OQ-Gnomotte NN-OQ-Areal, the
NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NN-OQ-Gnoigardex, the NN-OQ-
Areal-Hex, the NN-OQ-Buss-Fillmore-Hex, the NN-OQ-Tegkittex, the NN-SCVT,
and the NN-Saff-Kuijlaars quantization methods. By commairigures 3.15 and 3.16
with Figures 3.13 and 3.14, we observe that methods whicla mearest neighbor finding
algorithm have better quantization error. For exampleMR¥E error metric of the Deering
method improves by at least half a bit by using an neareshbeigfinding algorithm.

By comparing Figure 3.15(b) with Figure 3.13(b), we obsenet the NN-OQ-Gnomonic
method when using an even number of quantization bits, hawer INMQE error metric
compared to OQ-Gnomonic method. A similar observation camiade regarding the
OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark methblige that OQ-Tegmark
method gains the most from using a nearest neighbor findgayigtim. However the NN-
OQ-Buss-Fillmore method has the lowest error metrics. Agothteresting observation
is that the Geographic quantization does not gain from uaimgarest neighbor finding
algorithm.

By comparing Figure 3.16(b) and Figure 3.14(b), we obsertttie NN-OQ-Gnomonic-
Hex method has the same NMQE error metric compared to the @§rBnic-Hex method.
However, the MQE error metric of the OQ-Areal-Hex, the OQ-8&dlmore-Hex, and the
OQ-Tegmark-Hex methods gain close to half a bit by using aestaeighbor finding
algorithm.

Finally, we observe from Figure 3.17(b) that the MQE errothef NN-Saff-Kuijlaars
method is slightly more than the NN-OQ-Tegmark-Hex methdolwever the quantization
error of the NN-SCVT method is slightly better than both the-SaFf-Kuijlaars and the
NN-OQ-Tegmark-Hex method. The most important observattiat we make is that the
NN-OQ-Buss-Fillmore-Hex method has the lowest MQE errorim@mong all the quan-

tization methods discussed in this article. Notice thatMi@ZE error of the NN-OQ-Areal-

64

Hex method is just a little higher than the NN-OQ-Bass-Filtexblex method. Moreover,
we note that the AQE and the RMSQE errors shown in Figures &-A(f), are better for
the NN-SCVT and NN-Saff-Kuijlaars methods. However, the A@il RMSQE errors
of the NN-OQ-Buss-Fillmore-Hex and the NN-OQ-Areal-Hex huets are just slightly
higher than the NN-SCVT and the NN-Saff-Kuijlaars methods.

Based on our observation of the errors of the different qmatibn methods, we claim
that the NN-OQ-Areal-Hex method is consistently among thigeld methods with respect
all the error metrics we considered in our study. We latemshtat the time and the
storage required for quantization using the OQ-Areal amdNN-OQ-Areal-Hex, when
implemented using the QuickAreal and QuickArealHex aliyonis compares favorably to

all other methods.

3.5.1 Encoding and Decoding Times

We now discuss the computation time required for normal tjzation. In Figure 3.18, we
have selected a few of the quantization methods for the atraluof the encoding and de-
coding performance. The methods chosen cover a varietyegh#fthods discussed before.
The methods are the Geographic, the Deering, the OQ-TegntekDQ-Gnomonic, the
OQ-Areal, the OQ-Areal-Hex the NN-OQ-Areal-Hex, the NN-S¥he QuickAreal, the

QuickArealHex. We mention the following regarding the exaion:

e The implementation of the Deering method used in our evianas based on the

conversion of Deering’s Java implementation to C++.

e We used the ANN [53] library and used its k-d tree [5] basedesaneighbor find-
ing algorithm for implementing quantization methods whirde a nearest neighbor

finding algorithm.

e The SCVT point set was computed offline.

65

Figure 3.18(a) shows the encoding time. We remind the retadéencodingrefers to
the process of converting a normal vector to its quantizpdesentation. We observe that
the Deering method performs poorly for a higher number ohgjmation bits. Techniques
that use a nearest neighbor finding algorithm, with the exoef QuickArealHex, show
a drastic degradation in performance when the number oifatsases beyond a threshold
(14 bits in our experiments). One reason for this performashegradation is the large
amount of memory needed to store the set of representativeat® and the associated
data structure. While QuickArealHex is slower than the meéshihat do not use a nearest
neighbor algorithm, it has a constant time performance amtd is comparable to such
methods. We also point out that the QuickAreal algorithm thaslowest encoding time,
even when compared with the OQ-Gnomonic method.

Figure 3.18(b) shows the decoding time. We observe thatthétlexception of QuickAre-
alHex, the methods that use a nearest neighbor finding #igoare very fast. This is not
surprising as the decoding component of these algorithnmepgemented using a table
look-up algorithm. However, this speed comes at the expehtbe extra storage required
to keep the table in memory. That size of the table is 12 bytesstthe number of repre-
sentative normals. For example, if we use 18 bits for quatitin, the table has a size of
3 Megabytes. Note that the decoding component of the Deemngtyod also uses a table
lookup. However, the size of the table used in the Deeringhotke({24 kilobytes) is 128
times smaller as the Deering method takes advantage of thmeiry of the representa-
tive normals. QuickAreal and QuickArealHex have essdptifle same decoding time,
although QuickArealHex is slightly slower as it requiresea fextra operations. The OQ-
Gnomonic method is faster than the OQ-Areal method, bubiwesl than QuickAreal, as
it uses a square root operation. The OQ-Areal method usesdine expensive trigono-
metric functions. The QuickAreal algorithm uses a compabtet instead of computing
trigonometric functions used in the OQ-Areal method. Thegaphic method also uses

trigonometric functions, however it is faster than the O@# method. Note that the OQ-

66

Areal-Hex and the OQ-Areal methods have similar decodimgsi. Finally, OQ-Tegmark
has the slowest decoding time as it uses a very complex matfeainformulation. Note
that the decoding time of all methods could be made similahéomethods that use a

nearest neighbor finding algorithm by storing the quantizeinal vectors in a table.

3.6 Rendering a Perfect Sphere

In this section, we show how the different quantization mndthdiscussed in this article
affect the quality of rendered geometry models. A spherkasonly geometry model dis-
cussed in this article. We chose a sphere as it is a smoothcsyidnd hence the artifacts
resulting from the quantization are easily observable. édwer, the surface of a sphere is
equivalent to the entire set of unit normal vectors, andliaves visualization of the quan-
tization artifacts on the entire set of unit normal vectdfge used the POV-Ray software
— modified to quantize the surface normals of a sphere — toym®dthe images in this
section.

Figures 3.19-3.26 show a sphere with different quantinatethods. Rendering a
sphere with quantized surface normals produces visuddetdiwhich are equivalent to
a tessellation of the sphere. In order to show the complsgeliation of the sphere, the
sphere is rendered from two different viewpoints. The reedsphere has a unit radius and

is centered at0,0,0). The two viewpoints are chosen such that the center of eaabam

1 1 L)
V3’ V3’ V37"
Figure 3.19(a, b) shows the rendered sphere using the Gaogrand the NN-Geographic

corresponds to the poin(®,0, 1) and(

guantization methods with 8 quantization bits. The Gedgmamethod produces a tessel-
lation such that its cells are rectangular around the eqaai triangular at the poles. The
cells around the poles are much smaller than the ones arbareytiator. We observe that
the NN-Geographic method does not noticeably affect ontibpes of the cells.

Figures 3.19(c, d) show the rendered sphere using the RQeemd the NN-Deering

67

methods with 8 quantization bits. The Deering method predwtessellation such that
its cells are rectangular, but they are larger than the ltatisa cells of the Geographic

method. The Deering method produces cells that are irreguihape, although the shape
of the cells is similar to a square. Notice that using the Néefing method considerably
changes the shape of the cells.

Figures 3.20-3.23 shows the rendered sphere using Octdt@dantization meth-
ods with 8 and 7 bits of quantization. The OQ-Tegmark, the Qi@-Tegmark, the OQ-
Gnomonic, and the NN-OQ-Gnomonic methods are used in g0 and 3.22, while
the OQ-Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, anel NN-OQ-Buss-Fillmore
methods are used in Figures 3.21 and 3.23. Octahedral Qatoti methods that do not
use a nearest neighbor finding algorithm produce cells #rgtfvom diamonds to squares
when 8 bits are used for quantization and produce triangeliés when 7 bits are used for
guantization. However, when a nearest neighbor findingréhgo is used, the cells are of
varying shapes. Moreover, the tessellation of the sphetteeibottom row of Figures 3.20,
and 3.21 contain pentagons and hexagons.

Notice the similarity of the tessellations produced by thead and the Buss-Fillmore
projections, as shown in Figures 3.21 and 3.23. This is nptsing as the two projections
approximate each other.

Notice that the OQ-Gnomonic method produces cells thatlgreary in size at differ-
ent areas of the sphere (Figures 3.20(a) and 3.22(a)). Gothiee hand, the OQ-Tegmark
method always produces cells of the exact same size, althoudifferent shapes (Fig-
ures 3.20(c) and 3.22(c)). The OQ-Areal and the OQ-Bussibitt methods produce cells
that do not vary in size as much as the OQ-Gnomonic methodi(@sg3.21 and 3.23).

Figures 3.24(a, b) show the rendered sphere with 8 bits oftqaadion, using using the
OQ-Areal, the NN-OQ-Areal quantization methods. Figure&st@, d) show the rendered
sphere using using the OQ-Areal-Hex, the NN-OQ-Areal-Heargization methods. No-
tice that Figure 3.24(c) which uses hexagonal cells is viemjar to Figure 3.24(b) which

68

does not use hexagonal cells but instead uses a nearesboefgiding algorithm. More-
over, by comparing Figure 3.24(c) with Figure 3.24(d), waee that the shape of the
cells in Figure 3.24(d) are more regular.

Figure 3.25 shows the rendered sphere using various ga#tatizmethod that use a
nearest neighbor finding algorithm. Figure 3.25 is gendrhjeusing 8 quantization bits.
Figure 3.25(a) shows the sphere when random points on the¥espine chosen as the set
of the representative normals. Although the cells are weegular in shape, their sizes are
smaller than the Deering method shown in Figure 3.19(c).

The NN-Saff-Kuijlaars method is shown in Figure 3.25(b) tide that the image in the
top row shows that the cells are arranged in a spiral staftorg the center of the image.
Moreover, the cells of the NN-Saff-Kuijlaars method arevatsegularly shaped.

The NN-SCVT method, shown in Figure 3.25(c), has cells whrettlae most regularly
shaped among all the other methods shown in Figure 3.25.

Figure 3.26 shows the rendered sphere using the DeeringhandN-OQ-Areal-Hex
guantization method for 10, 12, 14, 16, and 18 bits of quatibm. As we can see, the
spheres rendered with the NN-OQ-Areal-Hex method with 1shore quantization bits is
almost visually comparable to a perfect sphere whose sirfaomals are not quantized.
However, the Deering method needs at least 16 quantizat®tolproduce the same effect.
Consequently, we claim that the NN-OQ-Areal-Hex method 8a@lit improvement over
the Deering algorithm.

Notice that the surface color of the sphere in Figure 3.2@&sarery gradually over
the the sphere. Hence, small quantization errors were rssreable. We use a sphere
illuminated with a specular light in order to reveal fineruas artifacts of a quantization
method. The addition of a specular light to the previousgcdssed sphere model results
in Figure 3.27(a). Notice that there is a small specularligghin the center of the im-
age. The specular highlight has been magnified and showrgurd=-B.27(b). Figure 3.28

illustrates discuss the fine-grained visual artifacts toatd be produced when quantizing

69

surface normals. For each quantization method, the spiserendered from two different
viewpoints. The rendered sphere has a unit radius and igreehat(0,0,0). The two

viewpoints are chosen such that the center of each imagespannds to the point®,0,1)

and(\%, %, \i@) (labeled by 'R"). The first two rows of Figure 3.28 are rendeusihg

the Deering method. Notice the sudden change in the shape tég$sellation when using
18 bits compared to when using 16 bits. The third and fourtvsrof Figure 3.28 show
the artifacts produced by the OQ-Gnomonic-Hex method. dedtiat the OQ-Gnomonic-
Hex method does not produce similarly sized cells at diffelecations of the sphere. On
the other hand, the OQ-Areal-Hex-NN algorithm produceslaity sized cells across the
sphere. The NN-SCVT method produces similarly shaped anibsiynsized cells across
the sphere. However, the NN-SCVT method is not practical forenthan 16 bits, as we

were unable to a generate the set of representative norarajuantization of more than

16 bits.

3.7 Summary and Conclusion

In this paper, we have investigated a wide variety of tealesgor unit normal vector quan-
tization. We reviewed some techniques that are currenths@) and also proposed several
novel methods. We provided loose theoretical lower boumdhe quantization error us-
ing three different error metrics. We also discussed hovediht quantization methods
affect the rendering of geometry models. Our main findingésrecommendation of using
the QuickArealHex algorithm as it has a low quantizatioroerand is computationally
efficient. The factors contributing to the low quantizatemor of the QuickArealHex al-

gorithm are:

1. It uses hexagonal cells, and we have shown that using beahgells in an Octahe-

dral Quantization method lowers the quantization error.

2. It uses a nearest neighbor algorithm for encoding eaamalorector, which means

70

that it provides the lowest quantization error over all emeetrics for the normal

vector.

3. Its use of the Areal projection leads to an approximatibthe Buss-Fillmore pro-
jection, whose incorporation in the NN-OQ-Buss-Fillmorex-method resulted in

the lowest quantization error as measured by the MQE errtniane

Moreover, the QuickArealHex algorithm is fast with low memoequirements. This
is because it uses the QuickAreal algorithm, which as pdioté earlier, is very fast and
uses little memory. In particular, for 18 bits of quantinati the QuickArealHex algorithm
requires only 1 kilobytes of memory for decoding and an ektkilobytes of memory for
encoding, while the Deering method requires 24 kilobytesefach of the decoding and
encoding processes. The extra memory used by the Deerirftpchenables a slightly
faster decoding time than the QuickAreal method due to tleeafigable lookup, which
could also be used by the QuickAreal method to obtain conppatzehavior.

In addition, the nearest neighbor algorithm used in the KAnealHex algorithm takes
advantage of the fact that the representative normals aresalregularly distributed, and
hence makes it possible to find the nearest neighbor of a podanstant time.

Figure 3.29 compares the Deering and the QuickArealHex maksthAs illustrated in
Figure 3.29(a) (which is in terms of relative magnitude—ttisaa factor of x), the quan-
tization error of the QuickArealHex is far better than theebeg methods as the number
of bits gets large with the change coincidentally occurand8 bits, which is the number
of bits for which the Deering method is usually used. Thig@ase in quality is achieved

while having a faster encoding time (see Figure 3.29(b)).

Maximum Quantization Error

71

Normalized Maximum Quantization Error

15.75 T T T T T T T 6 T T
8
2
0 a
& ¢ 5
< 2 B
@ S 8
kel g %
@
1
10 11 12 13 14 15 16 17 18
number of bits
number of bits
Geographic -X- 0OQ-Buss-Fillmore —A—
Deering —+ 0OQ-Tegmark A Geographic -X- 0OQ-Areal -x%-
0OQ-Gnomonic -®- Lower Bound -v- Deering —+ 0OQ-Buss-Fillmore —A—
OQ-Areal -%- 0OQ-Gnomonic -@®- 0OQ-Tegmark A
(a) (b)
Average Quantization Error Normalized Average Quantization Error
477 T T T T T T T 8 2 F T T 1 | T T
18 - -
2]
n a
& ¢ 5 16 -
oD = Q
[} o (]
° D “
T O 14 —
1 1
10 11 12 13 14 15 16 17 18 L L L L L L
number of bits 10 11 12 13 14 15 16 17 18
number of bits
Geographic -X- 0OQ-Buss-Fillmore —A—
Deering —— 0OQ-Tegmark A Geographic -X- OQ-Areal -%-
0OQ-Gnomonic Lower Bound .- Deering —+ 0OQ-Buss-Fillmore —A—
OQ-Areal -%- 0OQ-Gnomonic -@- 0OQ-Tegmark A
(c) (d)
Root Mean Square Quantization Error Normalized Root Mean Square Quantization Error
2 F T T I I T T T]
1.8 |- -
a
7] a
8 e 5 16 .
{2 = Q
[7] o (]
® g -
o) 14 -

10 11 12 13 14 15 16 17

18 1 | | | | | | |
number of bits 10 11 12 13 14 15 16 17 18
number of bits
Geographic -X- 0Q-Buss-Fillmore —h—
Deering — 0OQ-Tegmark A Geographic =%~ OQ-Areal - % -
0OQ-Gnomonic - Lower Bound .- Deering —+ 0OQ-Buss-Fillmore —A—
OQ-Areal -%- 0OQ-Gnomonic -®- 0OQ-Tegmark A

(e)

(f)

Figure 3.13: Different error statistics of the Deering, Geographic, the OQ-Gnomonic,
the OQ-Areal, the OQ-Buss-Fillmore, and the OQ-Tegmark tzation methods. (a,b)
Maximum Quantization Error. (c,d) Average QuantizationdEr (e,f) Root Mean Square
Quantization Error.

degrees

degrees

degrees

Maximum Quantization Error

7.88
)/
3.94 ¥
2
1.97 a
@
=
o
0.98 2
@
0.49
0.25
10
number of bits
Geographic -X- 0OQ-Buss-Fillmore-Hex -O-
0OQ-Gnomonic-Hex -A- OQ-Tegmark-Hex -
0Q-Areal-Hex -3 Lower Bound -w-
(a)
Average Quantization Error
4
=
i3
=
3]
Q
=
@
number of bits
Geographic -X- OQ-Buss-Fillmore-Hex -O-
0OQ-Gnomonic-Hex -A- OQ-Tegmark-Hex -
OQ-Areal-Hex -3 Lower Bound -w-

(€)

Root Mean Square Quantization Error

effective bits

0.32

0.16

10 11 12 13 14 15 16 17 18
number of bits

Geographic -X- OQ-Buss-Fillmore-Hex -O-
0OQ-Gnomonic-Hex -A- 0OQ-Tegmark-Hex -A-
OQ-Areal-Hex -3 Lower Bound .-

(e)

x factor

x factor

72

Normalized Maximum Quantization Error

11 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18

number of bits

Geographic -X- 0OQ-Buss-Fillmore-Hex -O-

0OQ-Gnomonic-Hex -A- OQ-Tegmark-Hex -

0Q-Areal-Hex -3

Normalized Average Quantization Error
12 T T T T T T T
1.18%~ X A JEaN .
1.16 |~ \X,/ \X/ \X/ \X/ —
1.14 -
1.12 - -
11 -
1.08 |- -
1.06
1.04
A

1.021}

1

10
number of bits

Geographic -%- 0OQ-Buss-Fillmore-Hex -0O-

0OQ-Gnomonic-Hex -A- 0OQ-Tegmark-Hex -

0Q-Areal-Hex -

Normalized Root Mean Square Quantization Error
1.25 T T T T T T T
. X X, X,

10 11 12 13 14 15 16 17 18
number of bits

Geographic -X- 0OQ-Buss-Fillmore-Hex -O-
0OQ-Gnomonic-Hex -A- 0OQ-Tegmark-Hex -A-
0Q-Areal-Hex -

(f)

Figure 3.14: Different statistics of the Geographic, the-G@omonic-Hex, the OQ-Areal-
Hex, the OQ-Buss-Fillmore-Hex, and the OQ-Tegmark-Hex tjmation methods. (a,b)
Maximum Quantization Error. (c,d) Average QuantizationdEr (e,f) Root Mean Square
Quantization Error.

73

Maximum Quantization Error Normalized Maximum Quantization Error
T T

a
0 a
& ® 5
<) 2 G
@ S 8
kel g %
@
10 11 12 13 14 15 16 17 18
number of bits
number of bits
NN-Geographic NN-OQ-Buss-Fillmore —h—
NN-Deering —+ NN-OQ-Tegmark A NN-Geographic NN-OQ-Areal -X%-
NN-OQ-Gnomonic -®- Lower Bound .- NN-Deering —+ NN-OQ-Buss-Fillmore —A—
NN-OQ-Areal -%- NN-OQ-Gnomonic -®- NN-OQ-Tegmark A
(a) (b)
Average Quantization Error Normalized Average Quantization Error
18 T T T T T T T
17F ' " —
1.6 - —
a
9 s _ 15| —
8 -
2 £ 8§ 14 —
° g ‘;
5] 13 -
10 11 12 13 14 15 16 17 18
number of bits
number of bits
NN-Geographic NN-OQ-Buss-Fillmore —h—
NN-Deering — NN-OQ-Tegmark A NN-Geographic NN-OQ-Areal - % -
NN-OQ-Gnomonic -®- Lower Bound .- NN-Deering —+ NN-OQ-Buss-Fillmore —A—
NN-OQ-Areal - % - NN-OQ-Gnomonic -@- NN-OQ-Tegmark A
(c) (d)
Root Mean Square Quantization Error Normalized Root Mean Square Quantization Error
18 "7 T T T T T
a
g s 5
5] S &
° £ %
()

10 11 12 13 14 15 16 17 18
number of bits

number of bits

NN-Geographic NN-OQ-Buss-Fillmore —A—

NN-Deering — NN-OQ-Tegmark A NN-Geographic NN-OQ-Areal - % -
NN-OQ-Gnomonic -®- Lower Bound .- NN-Deering —+ NN-OQ-Buss-Fillmore —A—
NN-OQ-Areal -%- NN-OQ-Gnomonic -®- NN-OQ-Tegmark A

(e) (f)

Figure 3.15: Different statistics of the NN-Deering, the {8¢ographic, the NN-OQ-
Areal, the NN-OQ-Buss-Fillmore, and the NN-OQ-Tegmark, rgization methods. (a,b)
Maximum Quantization Error. (c,d) Average QuantizationdEr (e,f) Root Mean Square
Quantization Error.

74

Maximum Quantization Error Normalized Maximum Quantization Error
T T T T T T T T T T
1.6~ X X X, A
N RN 0N SN ,
AN 4 N s AN R4 AN ,
15 F ~ 7 N e N , AN . -
0 N ’ \\ 7’ \\ // \x//
0 3 o 14 |- Y X X —
3 v 2
o > ©
=) = K]
2 g x 13x A --A-. A 2
5
13 14 15 16 17 18
number of bits number of bits
NN-Geographic -»- NN-OQ-Tegmark-Hex -A- NN-Geographic -»- NN-OQ-Tegmark-Hex -A-
NN-OQ-Areal-Hex ~[+ NN-OQ-Buss-Fillmore-Hex -O- NN-OQ-Areal-Hex ~[- NN-OQ-Buss-Fillmore-Hex -O-
NN-OQ-Gnomonic-Hex -4A- Lower Bound -w- NN-OQ-Gnomonic-Hex -A-
(a) (b)
Average Quantization Error Normalized Average Quantization Error
ﬁ, T T T T T T T 12 T T T T T T T
2.39 ik 1.18%= LR LR LK A
- 1.16 | Soe” e N S
1.19 P 1.14 -
0 8 £ 112} -
¢ e 2 ., L |
2 0.60 g £ :
S & x 108 -
@ 1.06 [~
0.30 104 e A e e A A A
L0245 ooene
0.15 1
10 11 12 13 14 15 16 17 18
number of bits number of bits
NN-Geographic -~ NN-OQ-Tegmark-Hex -A- NN-Geographic -3~ NN-OQ-Tegmark-Hex -A-
NN-OQ-Areal-Hex [+ NN-OQ-Buss-Fillmore-Hex -O- NN-OQ-Areal-Hex <3+ NN-OQ-Buss-Fillmore-Hex -O-
NN-OQ-Gnomonic-Hex -4A- Lower Bound -w- NN-OQ-Gnomonic-Hex -A-
(c) (d)
Root Mean Square Quantization Error Normalized Root Mean Square Quantization Error
125 T T T T T T T
S //x\\ /x\ ,)<\ ,
1.2 L . e \\ e AN R
R4 N7 s N
%) x X Ped X
0 8 £ 115 —
() o
¢ 2 3
g s <
k=] L 11 -
@
number of bits number of bits
NN-Geographic -~ NN-OQ-Tegmark-Hex -A- NN-Geographic -3~ NN-OQ-Tegmark-Hex -A-
NN-OQ-Areal-Hex [+ NN-OQ-Buss-Fillmore-Hex -O- NN-OQ-Areal-Hex <3+ NN-OQ-Buss-Fillmore-Hex -O-
NN-OQ-Gnomonic-Hex -4A- Lower Bound -w- NN-OQ-Gnomonic-Hex -A-

(€) (f)

Figure 3.16: Different statistics of the NN-Deering, the {B¢ographic, the NN-OQ-
Gnomonic-Hex, the NN-OQ-Areal-Hex, the NN-OQ-Buss-Fillediex, and the NN-OQ-
Tegmark-Hex quantization methods. (a,b) Maximum QuatiamaError. (c,d) Average
Quantization Error. (e,f) Root Mean Square QuantizatioiErr

Maximum Quantization Error

(%]
[0}
1
[=2]
[}
o
number of bits
NN-OQ-Areal-Hex [+ NN-Saff-Kuijlaars
NN-OQ-Buss-Fillmore-Hex -©O- NN-SCVT
NN-OQ-Tegmark-Hex -4 - Lower Bound
(a)
Average Quantization Error
(%]
)
o
(=
[}
o
number of bits
NN-OQ-Areal-Hex ~[} NN-Saff-Kuijlaars
NN-OQ-Buss-Fillmore-Hex -©O- NN-SCVT
NN-OQ-Tegmark-Hex -4 - Lower Bound
(c)
Root Mean Square Quantization Error
(%2}
()
o
o
(5]
h=l

number of bits

NN-OQ-Areal-Hex [+ NN-Saff-Kuijlaars
NN-OQ-Buss-Fillmore-Hex -©O- NN-SCVT
NN-OQ-Tegmark-Hex -4 - Lower Bound

(€)

effective bits

effective bits

effective bits

x factor

x factor

x factor

75

Normalized Maximum Quantization Error

1.2
T T T T T
118 ® G O ° .
1164 o 4 -
et D
114 | [N N S
11247777 -
11 W |
1.08 —
1.06E
1.04
1.02 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18
number of bits
NN-OQ-Areal-Hex <3+ NN-Saff-Kuijlaars -o-
NN-OQ-Buss-Fillmore-Hex -©O- NN-SCVT ——
NN-OQ-Tegmark-Hex -A-
Normalized Average Quantization Error
1.02 T T T T T T T
R P J R ZN
1.015 [T -

¢ —*—o—+— o
1.005 [~ —

1 | | | | | | |

10 11 12 13 14 15 16 17 18

number of bits

NN-OQ-Areal-Hex ~[F- NN-Saff-Kuijlaars -O-
NN-OQ-Buss-Fillmore-Hex -©- NN-SCVT ——
NN-OQ-Tegmark-Hex -A-

1.025

1.015

1.01

1.005

1

NN-OQ-Areal-Hex B
NN-OQ-Buss-Fillmore-Hex
NN-OQ-Tegmark-Hex

(d)

Normalized Root Mean Square Quantization Error

10 11 12 13 14

number of bits

15 16 17 18

NN-Saff-Kuijlaars
- 2 - NN-SCVT

(f)

Figure 3.17: Different error statistics of the NN-OQ-GnariteHex, the NN-OQ-Areal-
Hex, the NN-OQ-Buss-Fillmore, the NN-OQ-Tegmark, the NNfBauijlaars, and the
NN-SCVT gquantization methods. (a,b) Maximum QuantizatiomE (c,d) Average Quan-
tization Error. (e,f) Root Mean Square Quantization Error.

76

Encoding Time Decoding Time

microseconds
microseconds

8 10 12 14 16 18 20 22

number of bits number of bits
Geographic --A- NN-OQ-Areal-Hex —+— Geographic -A- NN-OQ-Areal-Hex —+—
Deering -v- OQ-Tegmark - Deering -v- OQ-Tegmark -
0OQ-Gnomonic -O- NN-SCVT - 0OQ-Gnomonic -O- NN-SCVT -
OQ-Areal -A- QuickAreal -X- OQ-Areal -A- QuickAreal -X-
OQ-Areal-Hex -%- QuickArealHex -®- OQ-Areal-Hex * - QuickArealHex -®-
(a) (b)

Figure 3.18: The quantization time of different quantiaatmethods. (a) Encoding time.
(b) Decoding time.

(a) Geographic (b) NN-Geographic (c) Deering (d) NN-Deering

Figure 3.19: Rendering a perfect sphere with normals guethtaath 8 bits, using the Geo-
graphic, the NN-Geographic, the Deering, and the NN-Dgegunantization methods. The
spheres in the top row have been rotated in the bottom rowdier@o show the tessellations
from a different viewpoint.

77

(a) OQ-Gnomonic (b) (c) OQ-Tegmark (d) NN-OQ-Tegmark
NN-OQ-Gnomonic

Figure 3.20: Rendering a perfect sphere with normals queshtwith 8 bits, using the
0OQ-Gnomonic, the NN-OQ-Gnomonic, the OQ-Tegmark, and tReDQ-Tegmark quan-
tization methods. The spheres in the top row have been dotathe bottom row in order
to show the tessellations from a different viewpoint.

78

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Buss-Fillmore (d) NN-OQ-Buss-
Fillmore

Figure 3.21: Rendering a perfect sphere with normals quathtigth 8 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-B@ss-Fillmore quantiza-
tion methods. The spheres in the top row have been rotatde ibdttom row in order to
show the tessellations from a different viewpoint.

79

(a) OQ-Gnomonic (b) (c) OQ-Tegmark (d) NN-OQ-Tegmark
NN-OQ-Gnomonic

Figure 3.22: Rendering a perfect sphere with normals quethtidith 7 bits, using OQ-
Gnomonic, NN-OQ-Gnomonic, OQ-Tegmark, and NN-OQ-Tegn@ukntization meth-
ods. The spheres in the top row have been rotated in the botierm order to show the
tessellations from a different viewpoint.

80

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Buss-Fillmore (d) NN-OQ-Buss-
Fillmore

Figure 3.23: Rendering a perfect sphere with normals quathtigth 7 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Buss-Fillmore, and the NN-B@ss-Fillmore quantiza-
tion methods. The spheres in the top row have been rotatde ibdttom row in order to
show the tessellations from a different viewpoint.

81

(a) OQ-Areal (b) NN-OQ-Areal (c) OQ-Areal-Hex (d)
NN-OQ-Areal-Hex

Figure 3.24: Rendering a perfect sphere with quantized nerata8 bits, using the OQ-
Areal, the NN-OQ-Areal, the OQ-Areal-Hex, and the NN-OQeAkHex quantization
methods. The spheres in the top row have been rotated in ti@rboow in order to
show the tessellations from a different viewpoint.

82

(&) NN-Random (b) NN-Saff-Kuijlaars (c) NN-SCVT (d)
NN-OQ-Areal-Hex

Figure 3.25: Rendering a perfect sphere with quantized nemsing the NN-Random, the
NN-Saff-Kuijlaars, the NN-SCVT, and the NN-OQ-Areal-Hexamqtization methods. The
spheres in the top row have been rotated in the bottom rowderdo show the tessellations
from a different viewpoint.

(@) 10 bits (b) 12 bits (c) 14 bits (d) 16 bits () 18 bits

Figure 3.26: Rendering a perfect sphere with normals quethiigth the Deering and the
NN-OQ-Areal-Hex quantization methods with different bifsquantization. The spheres
in the top row are quantized using the Deering method, andgheres in the bottom row
are quantized using the NN-OQ-Areal-Hex.

(a) A sphere rendered with specular(b) The sphere in (a) magnified
lighting. around its specular highlight.

Figure 3.27: Rendering of a sphere with specular highlight.

83

(a) 14 bits (b) 16 bits (c) 18 bits (d) 20 bits (e) no
guantization

Figure 3.28: Rendering the sphere in Figure 3.27(a) withaserhormals quantized with
14, 16, 18, and 20 bits using the Deering, the OQ-Gnomonic-the NN-OQ-Areal-Hex,
and the NN-SCVT quantization methods.

(a) 14 bits (b) 16 bits (c) 18 bits (d) 20 bits (e) no
guantization

Figure 3.28, continued: Rendering the sphere in Figure 8)2vith surface normals quan-
tized with 14, 16, 18, and 20 bits using the Deering, the O@+Gonic-Hex, the NN-OQ-
Areal-Hex, and the NN-SCVT quantization methods.

86

Normalized Maximum Quantization Error Encoding Time
10 T T T T T T T

9 —

8 — —

7+ N 38
5 s
o - —
g 6 g
8 @
< °r 71 s

4 — 1S

3 — —

24 -

1 X k ske sk k sk sk X

6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
number of bits number of bits
QuickArealHex - % - Deering —+ QuickArealHex - % - Deering —+

(a) (b)

Figure 3.29: A comparison of the Deering and QuickArealHesthods. (a) Normalized
Maximum Quantization Error. (b) Encoding time.

87

Chapter 4

Execution time analysis of a top-down

R-tree construction algorithm

4.1 Introduction

R-trees [39] (see also [64] for a review of recent results)ewkaveloped as an index struc-
ture for the efficient management of multi-dimensional goatial data such as points and
regions, as well as spatial data with a temporal component (€0,47,56,61]). Common
operations performed on an R-tree include point locatiomigegrange queries and nearest
neighbor queries. Given a set of input data objects, an Retvakel be constructed by the
repeated insertion of each data item. This approach dodakeadvantage of the fact that
all the data items are known beforehand, as in this case refeqable to insert all of the
data items using a single operation. Such an operationlesidallk loading An additional
motivation for bulk loading is to enable the constructioraaf R-tree which can perform
queries faster.

There have been a number of bulk loading techniques dewklapeR-trees (e.g.,
[1,11,13,45,49,58,77]). In this paper we present a formalysis of the cost of building
an R-tree using th@op-down Greedy Spl{fTGS) bulk loading technique that was origi-

88

nally proposed by Gara, Lopez, and Leutenegger [31]. Our approach differs from sheir
by providing a detailed implementation which enables a npweeise analysis of the al-
gorithm. In particular, the analysis given in [31] only catess the number of disk pages
accessed for bulk loading of the data, while a formal analgéithe needed CPU time is
missing. Given that memory is getting cheaper, many spd#itdbases fit into memory
(e.g., in-car applications) and thus an analysis of the rarmobdisk page accesses is not
sufficient. This is especially true in the case of a bulk logdilgorithm such as TGS which
performs many sorting operations in order to obtain an Ritraeminimizes a particular
cost function. The algorithm of Gaecet al. in [31] uses a classical bottom-up packing
approach. We also introduce a top-down packing approaoky Bbw to incorporate it into
the TGS algorithm, and discuss the tradeoffs in choosingzergus the other.

Our motivation for presenting the analysis and implemeémtabf the TGS algorithm
is to try to provide analytical support to the experimengdults reported in [30] which
showed that the R-tree built using the TGS bulk loading tegimmiperforms much better
compared to those built using other bulk loading technigeesn though the bulk loading
process is slightly slower for TGS. It is important to notattin this paper we do not ana-
lyze the performance of queries executed on an R-tree catstiby the TGS bulk loading
operation; instead, we repeat, our contribution is to fdlyremalyze the time required for
performing the bulk loading operation.

The rest of this paper is organized as follows. Section 42w R-trees and the bulk-
loading process. Section 4.3 provides a description of (&8 Bulk loading algorithm as
well as a sample implementation. Section 4.4 describeswbh@pproaches to packing that
are used in bulk loading algorithms. Section 4.5 contaiesféhmal analysis of the TGS

algorithm, while Section 4.6 contains some concluding msha

89

4.2 Background

The most basic object that is stored in an R-tree isvds-aligned rectanglealso called
a bounding box An R-tree data structure is a height balanced data strustomiéar to a
B-tree [15] which facilitates storage of spatial data in set@yy storage. Each leaf node
of an R-tree holds two items for each data record. One is thading box of the record,
and one is a pointer (or an identifier) to the data recordfitSamilarly, each nonleaf node
of an R-tree holds two items for each of its children: a bougdiox of the child, and a
pointer to the child. Naturally, the bounding box of a nod¢his smallest bounding box
containing all the bounding boxes of the elements of thaen&drthermore, to ensure that
an R-tree is height balanced, each node has betwegdM > 2b children, whereM is
called thepage capacityf an R-tree node. In general, the page capacity of a leaf reode i
different from the page capacity of a nonleaf node. A nodéeliha less thab children is
termedunderpackedThe root node of an R-tree is allowed to be underpacked.

The relationship between a node and its children is suchtlieaboxes that are asso-
ciated with the children of a node are all spatially contdinethe box that is associated
with the node itself. A common query on an R-tree igiadow querywhich given a query
rectanglew, reports all the data records in the R-tree whose boxes @uiexs Whenw is
a point, the query is called@oint query A window query is performed by examining the
root of an R-tree and recursively searching all its childfeat tntersectv.

The efficiency of operations on an R-tree depends on the geisredaition of the nodes
with respect to each other as well as the height of the R-treeeXample, during a point
query, all the nodes of the R-tree that cover the query poawiaited. The performance of
the query is thus proportional to the number of nodes visitetie query point is inside the
bounding box of two or more sibling R-tree nodes, then all suathes must be visited. It is
possible to perform queries faster if the sibling nodes dRanee have little or no overlap.
Intuitively, reducing the overlap of sibling R-tree nodesaatesults in better performance.

A cost functionquantifies this notion by assigning a cost to the geomettation of the

90

sibling nodes of an R-tree. Usually [4, 39, 45], the cost fiomcof two bounding boxes
is a function of their areas, perimeters, and their overlaa.aFor example, consider the
collection of five bounding boxes in Figure 4.1(a). Supposeare storing the five boxes
in an R-tree with the parametdrs= 2, M = 4. We need to partition the five boxes into two
groups, one of size two, and one of size three. These pagitiorresponds to the children
of the root of the R-tree. We show two such patrtitions in Figutel(b) and 4.1(c). The
amount of overlap in Figure 4.1(b) is greater than in Figui€a@), and thus the partition

depicted in Figure 4.1(b) is preferable.

A Bl [A Bl ||A B

D D D

(@) (b) ()

Figure 4.1: Arrangement of bounding boxes. (a) A set of fivedso (b) One bounding box
for boxes (A, C) and one for (B, D, E). (c) One bounding box fordmA, B) and one for
(C, D, E).

Roussopoulos and Leifker [58] introduced the concepiaufkedR-trees. In a packed
R-tree, all nodes of the R-tree, are as full as possible.Thidtsein an R-tree with the low-
est possible height, thereby possibly improving the penéorce of search queries. How-
ever, the search performance is still dependent on the arobawverlap between the nodes.
Roussopoulos and Leifker’'s approach for building a packekRis abottom-upapproach
that builds an R-tree by placing spatially close rectangigsther.

In general, a bottom-up approach for building packed R-tieastwo step process. It
the first step, the data rectangles are sorted according to a predeterminedrsier. In
the second step, groupsifdata rectangles are placed |rﬁ§] leaf nodes. After building

the leaf nodes, the same process is applied to the boundkas lod the leaf nodes to build

91

another level of the R-tree. This process is applied itezbtiuntil the root node of the
R-tree is obtained. Thus the sorting step is performed at ksveh of the tree although
the number of elements that are sorted is successivelyamaalihe successively shallower

levels of the tree. The time complexity of a bottom-up apphoia

llogun)

> [| toa[7| = otmiogn

On the other hand, ®p-downapproach, builds the higher levels of the R-tree first. The
data rectangles are sorted according to a predeterminedrder and then the groups gf
data rectangles are associated withhehildren of the root. The process will be repeated
for each of theM children of the root. In such an approach only one sort is eééar the
first iteration, as the order of the boxes does not changagltine subsequent iterations.
The time complexity of a top-down approach is aBmlogn). Kamel and Faloutsos [45]
use a Hilbert curve sort order to build packed R-trees byrapthe collection of data rect-
angles only once. Hence, their method while described asrbedp approach is essentially
a top-down approach.

The bulk loading approaches described so far do not takeazdount any notion of a
cost function. Depending on the sort order chosen, thes®agipes may or may not pro-
duce a desirable R-tree. The TGS (Top-down Greedy Splityidhgo of Garda et al. [31]
proposes to overcome this issue by taking into account afgostion and tries to find a
partition with a low cost. Tha data rectangles are first sorted using an appropriate sort ke
and then inserted in order inM bins each holdingj; rectangles. Moreover, the minimum
bounding box of the rectangles in a bin is computed and kegiteabounding box of the
bin. The bins are also numbered from IMausing each of the possible sort orders. At this
point, we try to find an optimal partition of thd bins into two sets containing the finst
bins and the nex¥l —i bins so that the value of the cost function on the minimum llowmn

rectangles of the bins that make up each of the two sets ismzed (e.g., their overlap).

92

The key to this step is that we try to find the optimal partiti@ing all of the possible sort
orders. It should be clear that in this initial step there lre 1 possible partitions and
the TGS algorithm takes all of them and all of the possiblé saters into account when
determining the optimal one at this step. This igraedy binarysplit of the bins and the
rectangles that they contain into two partitions. Eachij@ntof the data rectangles is split
again until all of the data rectangles are partitioned Mtpartitions of sizes less than or
equal togz, at which time we have obtained the first level of the R-treee Jame algorithm
is then applied recursively to the individual nodes of theré¢®tuntil all nodes at a given
level contain at mostl data rectangles. Givehdifferent sort orders, the TGS algorithm
sorts then rectangles irs different orders. While th& sort orders used in [31] are based
on the 2l coordinates of thel dimensional rectangles, any sort order defined using a sort
key, such as as the Hilbert order, could be used in the TGSitdgo Section 4.3 contains

a more detailed description of the algorithm.

4.3 TGS Bulk Loading Algorithm

In this section, we present a detailed implementationt@escription of the TGS algorithm
given in [30, 31]. The input to the TGS bulk loading algoritisra listD of d-dimensional
data rectangles. The algorithm builds an R-tree for these &tangles. Eacth dimen-
sional rectangle is defined byd pairs of scalars, where each pait= (r;",r;") denotes the
range that spans in thé" dimension. We use the notatiqri to denote the minimum
bounding box of two rectanglgsandg. Forr = pHgq, we haver; = min(p;,qg;) and
ri- =max(p,q") fori=1...d.

We assume that there agdifferent sort keys associated with each rectamgie D,
where ®RTKEY(r,s) denotes tha™ sort key orr. For example, the sort keys of a two di-

mensional rectanglecould be chosen as its extentOTKEY(r,1) =r;, SORTKEY(r,2) =

ri, SORTKEY(r,3) =r,, and SRTKEY(r,4) =r;. We assume further that each sort

93

key associated with a rectangle in are uniquely defined, amgehanism for breaking
the ties is in place. That is, for tré sort key and the distinct data rectangteand p,
SORTKEY(r,S) # SORTKEY(p,S).

The algorithm is invoked by BLKLOAD(D) (Algorithm 4.1), whereD is the list of
input rectangles. BLKLOAD proceeds by sorting the data in ascending order uSing
different sort keys, and storing the results in iBt&),..., DS, It then determines the
height of the R-tree and invokesuBk LOADCHUNK, which generates an R-tree with the
specified height using the sorted data. Note that the badfgmbolD denotes the sorted
listsD@,....DS,

Algorithm 4.1 BuLKLoAD(D)

Input: D ={rq,...,rn} is alist ofn rectangles.
(* S is the number of sort keys defined on each rectafiple.
(* N is the capacity of leaf nodes, and M is the capacity of ndniedes *)
(* Top-down-Greedy-Split bulk loading algorithin
for i=1to Sdo
D) «— SorT(D,i) (* Sort D on thell sort key*)
end for
h — max(0, [Iog,\,I %b (* Desired height of the R-tre&)

return BULKLOADCHUNK(D,h)

BULKLOADCHUNK (Algorithm 4.2) simply returns an R-tree leaf if the desireigit
of the R-tree is zero. Otherwise, it determimasthe desired number of data items that
need to be placed under each node (Linen®)s chosen so that all the nodes will have the
maximum number of data rectangles under them. Next, it Use&NRTITION algorithm
(Algorithm 4.3) to partition the data into sets of siae and recursively builds an R-tree
node for each patrtition, returning a nonleaf R-tree node&is plarent.

The RARTITION algorithm partitions the input sé into partitions of sizem using
a greedy paradigm. It uses the&a8TBINARY SPLIT algorithm (Algorithm 4.4) to find a
desirable binary split of the input sé& into two partitionsL andH. Note again as in
the case oD, that the boldface symbols andH denote the sorted listsV,....L(S and

H®, ... ,H®), respectively. It then recursively partitionsandH and builds a bigger

94

Algorithm 4.2 BuLKLOADCHUNK (D, h)

(* Bulk load data inD into an R-tree of height H)

(* M is the capacity of nonleaf node¥.

if h=0then
return BuiLDLEAFNODE(DW) (* Note that any of the sorted lists could have
been used)

5. else

m«— N-MP-1 (* Desired number of data items under each child of this nége.
{Dy,...,Dg} < PARTITION(D,m) (* Partition of D into k< M parts.*)

fori=1tokdo
ni < BULKLOADCHUNK(Dj,h—1) (* Recursively bulk load lower levels of the
R-tree.*)
10: end for
return BUILDNONLEAFNODE(Ng,...,Nk)
end if

partition by joining them.

Algorithm 4.3 PARTITION(D, m)

(* Partition data into[Mw parts of size g 0. *)

m
if DY < mthen
return D (* one partition*)
end if
5. L,H <« BESTBINARY SPLIT(D,m)
return Concatenation of ARTITION (L, m) and RRTITION(H, m)

The BESTBINARY SPLIT algorithm considers th8 different orderings of the input set
D. It uses each ordering to group the data rectangles intgogrofisizem. That is, if there
areM - m rectangles, then the firsh rectangles are grouped together, then the second
rectangles are grouped together, and so forth. It then derssall possible splits of the
groups into two parts. In particular, if there aviegroups, it considerS- (M — 1) possible
ways of splitting the groups into two parts. The8BINARY SPLIT algorithm chooses
the split with the lowest cost, and accordingly splits theuinsetD (i.e., the data and itS
orderings) into two parts using theeSTONKEY algorithm (Algorithm 4.6).

The CoMPUTEBOUNDINGBOXES algorithm (Algorithm 4.5) determines the bound-

ing boxes that are needed for determining the cost of eadmpbisplit considered in

95

Algorithm 4.4 BESTBINARY SPLIT(D, m)

(* Find the best binary split dD. *)
(* m# Ois the size of each partitiort)
M «— [%W (* Number of partitiong)
Cc* + oo (* Best cost found so f&)
5. for s=1to Sdo
F,B — COMPUTEBOUNDINGBOXES(D®, m)
fori=1toM—1do
¢ < cost(F;, By)
if c < c* then
10: c* <+ ¢ (* Best cost)
S < s (* Best sort order)
key — SORTKEY(Di(,S%, s) (* Sort key of split positiot)
end if
end for
15: end for
for s=1to Sdo
L9 H® — SPLITONKEY(D'®, s*, key)
end for
return L ,H

BESTBINARY SPLIT. It first computesB, the bounding boxes for each grouprafrect-
angles. It then computes lower bounding boxgsand the higher bounding boxdd)

The SLITONKEY algorithm will split a sorted lisD, into two sorted listd. andH

based on a threshotgdand thes” sort key among th& sort keys defined on rectangles. At

the end of BLITONKEY, L will hold all elements of such that theig key is less tha,

andH will hold the rest.

4.4 Bottom-up Packing Versus Top-Down Packing Algo-
rithms

Figures 4.2 shows a set of 30 randomly generated rectariggésite bulk loaded using
the TGS algorithm into an R-tree with page capacity of 8 (Nes M = 8). Each R-tree

in the figure consists of a root and four leaf nodes under tbe rdhe inner rectangles

96

Algorithm 4.5 COMPUTEBOUNDINGBOXES(D, m)

Output: Li=D1H---HDjmforl<i<M.
Output: Hi =Djm18B---BEDyfor1<i<M,n=|D|.

10:

15:

(* Compute the lower and higher bounding boxes of of possiblay#saits of D list
of n rectangles into groups of size*n
(* m= Qs the size of each group)

M — P—r'?]' (* Number of group3)
B is a list of M rectangles.
L,H are each a list oM — 1 rectangles.
fori=1toMdo
Bi —D(-1)m1BDi_1)mi28--- B Dmin(p|i-m)
end for
L1+ By
Hv-1 < Bm
fori=2toM—1do
Li — Li—1HB;
Huv-i < Bv-i+1HHM-i+1
end for
return L,H

correspond to the data rectangles, and the outer rectaogtesspond to the bounding

boxes of each leaf node. Four sort keys are used in the gemeoéthe figure. In particular,

the four sort keys of a rectangle are its two extents in eadhetwo dimensions. The

cost functions used to generate Figure 4.2 involved miningizhe overlap area of two

rectangles (Figure 4.2(a)) and minimizing the total arefavofrectangles (Figure 4.2(b)).

Traditionally, packing methods work by filling the leaf ned&s much as possible and

then proceed to apply the same filling criteria to the nonteafes. We characterize such

Algorithm 4.6 SPLITONKEY(D,s,t)

5:

L andH are two empty lists.
forall rin D do
if SORTKEY(r,s) <t then
append to the end of lisL.
else
append to the end of lisH.
end if
end for
return L,H

97

an approach asottom-up packing@nd is the one used in the implementation of the TGS
algorithm described in Section 4.3 and illustrated in Fegdi2. We could also proceed by
starting at the root and packing the nonleaf nodes as muchsasiyle. Such an approach
can be characterized &sp-down packing The TGS algorithm whose implementation
we described could also be converted to use top-down padkingodifying line 6 of

BULKLOADCHUNK (Algorithm 4.2) to be:
— PDMﬂW (* Desired number of data items under each child of this néyle.

Figure 4.3 was obtained using this modification. They uses#imee dataset as in Fig-
ure 4.2, and again the trees are differentiated on the ba#ie cost function that is min-
imized. Notice that the number of leaf nodes in this examgpleight, and that four rect-
angles are placed in each leaf node with the exception ofeaferbde which has just two
rectangles. GiveN andM as the capacities of the leaf and nonleaf nodes, respegtivel
the bottom-up packing and top-down packing yield identieallts whem, the total num-
ber of data objects, equallé- M" for some integer valud > 0. However, whem is not
equal toN - M", the top-down packing yields a different result as can be $gecompar-
ing Figures 4.2(a) and 4.2(b) with Figures 4.3(a) and 4.3(bjs interesting to observe
that top-down packing can potentially allow the queries@gbrformed faster as there are
more children under each nonleaf node thereby permittingerefiective pruning when
answering queries. Notice also that regardless of whetipedbwn or bottom-up packing
is used with the TGS algorithm, the resulting R-trees havsdnee height. However, an R-
tree constructed with the bottom-up packing TGS algoritlasfewer nodes than an R-tree
constructed with the top-down TGS algorithm. Therefore,cae can identify a tradeoff
between the two packing approaches. In particular, theltyma packing TGS algorithm
builds R-trees that can potentially be used to answer quéaster than R-trees built by
the bottom-up packing TGS algorithm at the expense of regumore storage space. We
point out that the relative merit of the two packing stragésgilepends on the query model.

For example, to answer the window qué&pghown in Figure 4.2(a), one leaf node needs to

98

be read from disk. However, to answer the same query showigund=4.3(a), only the root

node needs to be examined. On the other hand, to answer awmgdry that intersects

all the leaf nodes, the top-down approach is faster thandtiern-up approach. Moreover,
future insert operations to an R-tree built by the bottom-apkmg TGS algorithm are

more likely to increase the height of the R-tree than insegrafons to an R-tree built by

the top-down packing TGS algorithm. Finally, we observe tme of the consequences of
using top-down packing is that some of the leaf nodes of theeR+nay be underpacked
(e.g., recall that one leaf node in Figure 4.3(a) has justdata rectangles.) Of course,
when using bottom-up packing at most one node at each leuwglderpacked. However,

this does not affect the correctness of the results retusgiepieries on these R-trees.

]

o a

- i T D

= el] -

I=

St

i
Al
1

|:||:|

]

St

(@) (b)

Figure 4.2: Result of applying the TGS bottom-up packing bo#ding algorithm to bulk
load a packed R-tree using a cost function that minimizesh@pverlap area, and (b) the
total area.

4.5 Analysis

In this section we analyze the running time of the TGS bullding algorithm. As we

pointed out in Section 4.1, the analysis provided in [31] waly in terms of the number

99

i
Gi= -
||:DD

(b)

Figure 4.3: Result of applying the top-down packing TGS bokding algorithm to bulk
load an R-tree using a cost function that minimizes (a) thelapearea, and (b) the total
area.

of disk page accesses, whereas here we focus on the CPU tinghtirod the repeated
invocation of the sorting steps by the algorithm in the psscaf minimizing the particular
cost function. To simplify the analysis, we assume that tiralmer of input data rectangles
results in a fully packed R-tree, i.e., there are NM" data rectangles, whetedenotes
the height of the resulting R-tree.

Let T(n) denote the time complexity of theltBk LOAD algorithm. The BILKLOAD

algorithm performsSsorts. We have,

T(n) = O(Snlogn) + B(n,h) (4.1)

whereB(n, h) denotes the time complexity of theuBK LOADCHUNK algorithm.

Notice that as the initial number of the data rectangleslt®sua fully packed R-tree,

100

it suffices to deriveB(N - MM h). LettingC(h) denoteB(N - M", h). We have,

C(h) = o) =0 4.2)
P(N-MPN-MM1) 4+ M.C(h—1)+O(M) h>0
whereP(n,m) denotes the time complexity of theRTITION algorithm, andO(M) corre-
sponds to the cost of invokingtBLD NONL EAFNODE.

We now proceed to derivé(n,m). We first notice that the ARTITION algorithm con-
sists of a call to the BSTBINARY SPLIT algorithm and two recursive calls to itself. The
worst-case scenario arises when each callHe BINARY SPLIT results in a minimum par-
tition. That is, BESTBINARY SPLIT(D, m) yields two sets, such that one of them is of size

m. We have the following recurrence relation:

O(1) n<m
P(n,m) = (4.3)
E(n,m)+P(mm)+P(n—mm) n>m,
whereE(n, m) denotes the time complexity of theeBTBINARY SPLIT algorithm.
Observe that the execution times of theNdPUTEBOUNDINGBOXESalgorithm and the
SPLITONKEY algorithm are linear in their input size. Moreover, as tlEesBBINARY SPLIT
algorithm invokes the GMPUTEBOUNDINGBOXES algorithmStimes, its execution time,
E(n,m), isO(S-n), wheren is the number of input rectangles.
Therefore, we can rewrite equation 4.3 as:
0O(1) n<m
P(n,m) = (4.4)
O(S-n)+P(mm)+P(n—mm) n>m
To further simplify the analysis, we assume timat L - m, wherelL is the number
of groups that the ARTITION algorithm considers. Notice that for each initial call of

PARTITION from BULKLOADCHUNK, we haveL = M. Therefore, we can rewrite equa-

101

tion 4.4 in closed form:

P(L-mm) = 'iO(S- i-m)=0(S-L?-m) (4.5)

By substituting\ - M1 for mandM for L in equation 4.5 we g@(N-M" N-Mh-1) =

O(S- (M?)M"-1) = O(S-M"*1), and we can rewrite equation 4.2 as:

O(N) h=0

C(h) =
O(S-M"1H 4+ M-.Cth—1)+0OM) h>0.

The recurrence relation f@(h) can be solved to yield
h M
C(h)=0O(M"-(S-h-M+N)) =0(n-(S-h- N +1)),

where we have usetd= N-M".

Recalling thaC(h) = B(NM", h) and thah = log,, §» we obtain from equation 4.1 that

M
T(n) = O(Srlogn +n- (S logy %)).

In particular, forM = N = O(1), we haveT (n) = O(Snlogn), which demonstrates that
the observed improved performance of the TGS algorithm hyi@at al. [31] comes at a
cost of a factor oS over that resulting from the use of a bottom up bulk loadingrapch.
Given thatSis relatively low for low dimensional data, the improvemeeems worth the

extra effort. However, in the case of high dimensional diig,may not be the case.

4.6 Concluding Remarks

We have provided a formal analysis of the TGS R-tree bulk logdigorithm of Gara et

al. [31]. Our approach differs from theirs by providing aalktd implementation which

102

enabled a more precise analysis of the algorithm. In pdaticwe focused on the CPU
time requirements rather than the number of disk page aesesich is what was done
in [31]. We also discussed the tradeoffs of using a clasticibm-up packing approach
and a top-down packing approach, and showed how to incdgptra top-down packing

approach in the TGS algorithm.

103

Chapter 5

BV-trees, axis aligned rectangles, and

binary space partitioning

5.1 Introduction

The BV-tree [26, 27] is an abstract spatial indexing techaithat is based on decoupling
(e.q., [63]) the partitioning and grouping processes thiahfthe basis of most spatial index-
ing methods that use tree directories of buckets. In the aftbe BV-tree, the decoupling

is designed to overcome the following drawbacks of tradaisolutions:

1. Multiple postings in disjoint space decomposition mehthat lead to balanced trees
such as the hB-tree [22,50] where a node split in the eventdé woerflow may be
such that one of the children of the node that was split besanohild of both of the

nodes resulting from the split.

2. Multiple coverage and non-disjointness of methods baseasbject hierarchies such

as the R-tree [39] which lead to non-unique search paths.

Note that the principle of decoupling the grouping and fiarting processes has also been

used in the PK-tree [78, 83] although the motivation waseddht (i.e., to overcome the

104

presence of directory nodes with similarly-shaped hypetangle bounding boxes that
have very minimal occupancy in disjoint space decompasitiethods such as those based
on quadtrees (e.g., [24]) and k-d trees [5] that make usegolae decomposition). Spatial
indexes are useful in applications in spatial databasgs [B7]) as well as spatio-temporal
databases (e.g., [56]).

The BV-tree improves on its predecessor, the BANG file [25, B§]introducing the
concept of guards which guarantee that the height of the B&/4t always logarithmic in
the number of input data points. In addition, the execuiime ©f point insertions and point
gueries are also guaranteed to be logarithmic. The BANG filpleys a regular binary
space decomposition that — similar to the k-d tree [5] — cy¢thee splitting hyperplanes
through the axes at each level of the decomposition. In aehto the BANG file, the
BV-tree imposes no restriction on the space decompositiberse. Instead, the space
decomposition scheme is replaced by regions which may héveaay shapes. We term
the original description of the BV-tree in [26] as abstractBV-tree. However, in this
paper we show that the BV-tree can only be implemented wheshhpe of the regions
are precisely defined. We use the tezoncreteBV-tree to refer to the BV-tree such that
the shapes of the regions are precisely defined. Moreoveshaw that only a binary
space partitioning scheme would guarantee the satisfaofithe design assumptions of
the BV-tree. This implies that the concrete BV-tree could beodeled from the binary
space partitioning scheme, and is suitable for handlingspatial data such as metric and
non-metric data, as long as a suitable binary partitioncigese can be defined for the
underlying data domain.

The rest of this paper is organized as follows. Section figdes a brief description of
the BV-tree data structure and the implicit assumptions usdae design of the BV-tree;
Section 5.3 describes the issues arising when using agiseal rectangles for the BV-
tree; and Section 5.4 shows that the BV-tree is only applectabbinary space partitioning

schemes.

105

5.2 Description of the BV-tree data structure

The BV-tree is a height-balanced data structure similar ¢oBftree [15], that facilitates
storage of spatial data in secondary storage. The datatslojepointers to them are stored
at the lowest level of the BV-tree, called tleaf nodesIn our treatment of the BV-tree, we
uniquely identify each node of a BV-tree with two attributatgveland aregion The leaf
nodes are at level zero, and lekehodes are aggregates of lekel 1 nodes. The region
of a node refers to a subset of the domain space that it sparsrefions are said to be
cordial in our terminology, if and only if, they are either disjoint@ne is contained in the
other onej.e., no two cordial regions partially overlap each other. For@ercomplete
description of the BV-tree, we refer the interested readf26p27, 63].

The following assumptions — implicit in [26] — describe tlegions of a BV-tree:

e Representation of RegionsRegions are represented using a common scheme, such

as axis-aligned rectangles, Morton blocks [3&};

e Cordiality : The regions of any two nodes in a BV-tree are either disjoirdre is

completely contained in the other one.

e Constant Splits Givenn cordial regions, it is possible to find a region that is cdrdia

to all the given regions and that contains fr@rto % of the regions.

In the following sections we show the implications of thessuanptions on the space

decomposition scheme.

5.3 BV-trees and axis-aligned rectangles

The abstract BV-tree does not specify the shape of regionshaw to represent the re-
gions. We claim that not every region representation schersgitable, thereby requiring

a more precise definition. In particular, using an examplke show that it is not possible

106

to represent the regions of a BV-tree with arbitrary axigtedd rectangles. Axis-aligned
rectangles are especially interesting because they adeasstihne basis for aggregation of
objects in in many spatial data structures such as the R38afd its variants [4, 68].

For example, Figure 5.1 that shows a given set of 24 axisratigectangles that are
drawn in solid lines. Consider an additional axis-aligneztaegle placed in the same fig-
ure, such as the one shown by dotted lines. It is evident fraigure that this additional
rectangle either (i) partially intersects one of the givectangles, or (ii) contains only one
of the given rectangles, or (iii) contains all the given eexjles. Hence we have shown that
it is not possible to find a cordial axis-aligned rectanglat ttontains at least two of the
given rectangles, but not all of the given rectangles. TioeeetheConstant Spliessump-
tion cannot be satisfied in this case. In other words, we hasteshown that representing
regions of a BV-tree with arbitrary axis-aligned rectangsesot possible because it is not

possible to always satisfy the BV-tree design assumptions.

Figure 5.1: A pathological example of axis-aligned rectasghat leads to violation of the
BV-tree design assumptions.

The above example assumes a data space of two or more dim&n#/e now give an
example that shows that even for the one-dimensional daisenot possible to represent

the regions of the BV-tree with arbitrary intervalse(one-dimensional axis-aligned rect-

107

angles). Consider two nodes of the BV-tree which span the segna, but are at different
levels. The BV-tree should be able to split each of these nimdi@segions that are cordial
with all other regions in the BV-tree. However, this may regunformation about the re-
gions of the other nodes, and unless other restrictionsngo&ace, the splitting of a node
may create a region that is not cordial to the region of anatbhde.

Figure 5.2 is an example of such a case. Figures 5.2(a)-¢l) gte successive insertion
of 12 one-dimensional data points into a BV-tree with pageacty of three. The regions
of the BV-tree are labeled with capital boldface letters.id®that the nodAO0 is promoted
in Figure 5.2(f) as it is a guatdf the nodeE1. Figure 5.2(g) shows the BV-tree before
the insertion of point, but after the insertion of poirk. Insertion of point requires that
the leaf nodeéAO containing data points, i, k, andl to be split. A possible split 0A0 may
result in the leaf nod€0 containing data pointsandk. It is evident from Figure 5.2(h)
that the intervaF is not cordial to the intervet. Observe that there would be no problem
if the split of nodeAO would result in leaf nod&0 containing the new data poiht

The above example showed that even for one-dimensionghdatzannot use arbitrary
intervals for the representation of the BV-tree regions. Asight that we gain from this
example is that the local information about the children nbde may not be sufficient for

the proper splitting of the node.

5.4 Cordial regions and binary space partitioning

We first start by introducing a few definitions. We use the sghibto show the contain-
ment relationship between regions, thaRisC R», if and only if, the regiorR, contains
the regionR;. Similarly, Ry C Ry, if and only if, R, properly containgk;. Notice that the

containment relationship imposes a partial order on region

LA nodea is aguard of another nodé® when the region o contains the region df and the level of is
deeper than the level &f Guards serve to ensure that the search paths for a point grestunique thereby
overcoming drawback of spatial indexes based on a nonkdigjecomposition of the underlying space as is
the case for object hierarchies such as the R-tree.

108

. A [afblec

(a) After insertion of data poinis, b, c.

- abc |
S Y Y0
ldl | | [albfc]
(b) After insertion of data poird.
abc f

(c) After insertion of data points,f.

g abc def
i — == C | A [ao[Bo[co]

Lol | | [albfc] [dle]f]

(d) After insertion of data poing.

Figure 5.2: Example of a BV-tree with intervals as regionse BV-tree, shown on the
right, has a page capacity of three. Data points and thenegite shown on the left. The
regions corresponding to level 0 nodes, level 1 nodes, atl 2enodes are drawn in solid
lines, dash-dot lines, and dash-dot-dot lines, respédgtive

A binary space partitioning schenmgerarchically partitions a spa&nto two subsets.
Each subset of the space defined by a binary space partgisoimeme can be described
using a binary string. Note that in such a representatioms,ethpty string denotes the
unpartitioned spac8. Moreover, if a binary strin@ is a prefix of a binary stringy, then
the region corresponding tocontains the region correspondingato

In this section, we show that the design assumptions of thér&/result in a binary

space partitioning scheme. This is in contrast to the ingioescreated in the original pre-

sentation of the BV-tree that any arbitrary space partitigraicheme can be used. Further,

109

we claim that any binary space partitioning scheme is slatia implementing a concrete
BV-tree. In other words, each region in a BV-tree corresponds subset of the space
resulting from the binary space partitioning scheme. Tioeee any such region can be
represented using a binary string.

For a concrete BV-tree and a regiSnlet s denote the set of all possible regions that
can result from splitting a node whose regio®issing rules that satisfy the BV-tree design

assumptions given in Section 5.2. We also deﬁ%
Fe={reRs: -Ve As:rCVLC S}.

That is,%g is the set of regions such that no other regioggcontains them. Notice that
23 coverssS, that is each element Bis in at least one member g#2. For example, lefZs
consist of the set of rectangl@s-L as in Figure 5.3(a), not necessarily resulting from a BV-
tree decomposition. The rectanglBsG, K, andl are contained by the rectandte The
rectangled. andJ are contained by the rectandle the rectangl€& andH is contained by
the rectanglé\, the rectangléd is contained by the rectangte while the rectangleé, C,

D, E, andF are not contained by any other rectangle. Hence, we;%te {A,C,D,E,F}

for this example.
Lemma 5.1 For a given region S of a concrete BV—tr@g Is a partition of S.

Proof For a givenS construct a BV-tree such thé&tis the region corresponding to two
nodes of the BV-tree at different levels, such3sandSl. Consider distinct arbitrary
regionst,r € %g. Notice that by definition o;f%g, we havet [Z r andr [Z t. Moreover, by
definition of #Zs, a sequence of BV-tree insertion operations can result ifitao§ghe node
Sl resulting in region. Similarly, a sequence of BV-tree insertion operations esult in
a split of the node) resulting in regiort. Asr andt are cordial by the definition of the
BV-tree, we have Ct ort Cr orrNt = @. However, a$ andr are two distinct members

of ,%g,t IZ r andr [t, therefore we havent = @. Hence, we showed that no two elements

110

of ¢ intersect. ThereforeZ2 is a partition ofS O

Notice that the above lemma is correct for any spaas well as the entire data space.
Moreover, the partition must also satisfy thenstant splitsassumption of the BV-tree
which assumes cordial regions and that givecordial regions, it is always possible to
find a region that is cordial to all of the give regions and tt@tains fromn/3 to 2n/3
of the regions. This assumption is based on a proof constidot the hB-tree [50] which
requires a binary partition, and thus in the case of the B¥:tmee can further tighten
the Lemma to only be true when the partitioning scheme isrpinelence, we have the

following theorem.
Theorem 5.1 For a given region S of a concrete BV—tr@g is a binary partition of S.

We can conclude from Theorem 5.1 that the BV-tree design gstsoms require a hier-
archical binary partitioning of the underlying data spadewever, any binary partitioning
scheme is acceptable. Therefore, it could be possible xtonple, to adapt the BV-tree to
metric spaces in conjunction withkall partitioning scheme or generalized hyperplane

partitioning scheme [76].

111

g abc h def i
[=B+ E=C A T[ac]Bo[CO)
lalhli| [alblc] [dle[f]

(e) After insertion of data poirit, i.

“A [a1[EL] TA0]

IBOI I IICOIDOI
\/ Y \
lalblc| [dlelf] [hlil | [alil |

(f) After insertion of data poing

E
g abc \hjk def‘ I
[=B DERT BemCrpA IA1I§1I lA0|
Bo| [| [colpo| |
\/ | \
lalblc] [dlelf]| [hlil | Lalilk]

(g) After insertion of data poirk.

E
g abc | thjk def iF
e<|B Dle mc A [a[en] TaolFo]

lalblc] [dlelf]| [hlil | Laltl | Lilk[|

(h) After insertion of data poirit

Figure 5.2, continued: Example of a BV-tree with intervalsexgons.

1

12

o

E/' E EE/'
e |
G i |
H J L
_________ AC______ Db | i. AC

= | ===

Figure 5.3: Example illustrating the definition ﬁg. The regionSis the outer rectangle,

and the sets?g and%g consist of the inner rectangles.

113

Chapter 6

Conclusion and future work

This dissertation discussed several problems that dehlspiatial data. In Chapter 2 we
discussed our experience in extending a spatial databelsé sould handle spherical data.
In particular, we discussed how we adapted the PMR quadtrédghe R-tree to handle
spherical data, such as spherical points, lines, and pos/gd&ve further provided geometric
algorithms for handling spherical data. In particular, veegdetailed implementations of
algorithms for calculating the distance between sphedatd. We also provided algorithms
for determining the intersection of spherical data.

Our work on spherical data lead us to investigate technifprespuantizing surface nor-
mal vectors in Chapter 3. We designed the QuickArealHex @lgarwhich is a fast normal
vector quantization algorithm with low quantization eresrd low memory requirements.
We showed that the QuickArealHex algorithm provides (1)dowuantization error, (2)
better rendering quality, and (3) better computation efficy than the current most widely
used normal vector quantization method proposed by Degtig

In Chapter 4, we provided a detailed CPU execution-time arsabsd implementa-
tion for the top-down greedy split R-tree bulk loading altfum of Garéa, Lopez, and
Leutenegger [31]. The TGS algorithm makes use of a clasbmtbm-up packing ap-

proach. In addition, we introduced an alternative packimgreach termed top-down pack-

114

ing which may lead to improved query performance. We alsoudised a few the tradeoffs
of using the bottom-up and top-down packing approaches.

The BV-tree is an abstract spatial indexing technique thaaged on decoupling the
hierarchy inherent in the tree structure of the directooyrfithe containment hierarchy as-
sociated with the recursive partitioning process of theeulythg space from which the
data is drawn. The BV-tree is an improvement over its prederethe BANG file, which
achieves guaranteed logarithmic search time for pointigsiefhe BANG file decomposes
the underlying space using a regular space decompositaegs. In Chapter 5 we dis-
cussed a number of issues that arise in implementing a BWiiteeut requiring a regular
decomposition of the underlying space. In particular, wmfeal out the limitations of a
space decomposition where objects are aggregated usswgléxned rectangles similar to
what might be used in an object hierarchy such as an R-treedditi@an, we showed that

BV-trees were only suitable for hierarchical binary spaagifi@ning schemes.

6.1 Directions for future work

Many computer graphics applications deal with directicthatia. An example is surface
normal vector data which was discussed at length in Chapterg@articular, in Chapter 3,
we

showed how to project the unit sphere onto to a square. Thiggiion allowed us
to construct the Octahedral Quantization method which iswadistortion normal vec-
tor quantizer. We propose to investigate other applicatmfrthe Octahedral Quantization
method in computer graphics. An important example is BRDF [@dth The Bidirectional
Reflectance Distribution Function (BRDF) models the light iiten properties of a sur-
face as a function of two parameters, (i) the incoming dioecdf light and (ii) the outgoing
direction of light. More complex models such as the Spatial BRBBRDF) [52] and the
Time and Space Varying BRDF (TSVBRDF) [38] augment the BRDF functitth the

115

addition of other parameters. In particular, SBRDF is a fumctf the incoming and out-
going light directions as well the the surface position. TERDF adds a time-varying
component to SBRDF in order to model the change of the refleptioperties over time.
For example, the SBRDF of a wet piece of wood changes over tintedagss. In recent
years we have seen numerous efforts to build databases of BRiaH38, 51]. Usually,
these models are sparsely sampled. Gu et. al [38] reporintieapolation the BRDF data
resulted in rendered images with poor quality. Instead; suggested building an analytic
model from the BRDF data and rendering using the analytic model

Traditionally, the directional parameters of BRDF data arepeeterized using the
Geographic coordinates of the incoming and outgoing lighte plan to investigate the
measurement and representation of the BRDF data using tegsthat are similar to
the Octahedral Quantization method. We believe that thegoantization error of such
techniques are also effective in improving the quality ofdering using sampled BRDF. In
particular, representing each direction as a two-dimerasipoint allows us to easily apply
guadtree-based multi-resolution techniques to BRDF data.ekample, BRDF data can
be represented with a scalar field over a four-dimensionagéhgube. Hence, if the hyper-
cube is subdivided using a regular decomposition, thenehg af subdivision correspond

to well distributed samples of the BRDF data.

116

Appendix A

A.1 Derivation of the Areal Projection

In this section, we derive the equations for the Areal prtopec Consider the spherical
triangle AXY Z with verticesX = (1,0,0), Y = (0,1,0), andZ = (0,0,1), as shown in
Figure 3.9. The spherical poibht = (x,y,2) : X,y,z> 0 is inside the triangl&\XY Z and
partitions the triangle into three spherical trianglellY Z AXNZ andAXY N We only
need to derivd = Ag(N,Y, Z), the area of the spherical triangleNY Z as the area of the
two other triangles can be obtained similarly.

Let O denote the center of the sphere, andigtV, andw denote the normal vectors
of the planes passing througd,(Y, Z), (O, Z, N), and O, N, Y) respectively. Leg, b, and

c denote the side lengths of the triangldNY Z We have

—_— -
cosd = 0OzZ-0Y=0,
— —
cose = ON-OZ=z,
- —
cosf = OY-ON=y.

117

We have [79]

cosa — cosd —cosecosf yz
B sinesinf |\ /1_y2/1-2’
cose— cosf cosd z
cosB = . - = 5
sinf sind 1—y?
cosy — cosf —cosdcose vy
v = sindsine V12

Hence, we can obtain

sina = V1—cofa= X

V1I-y2W1-Z
X
sin = 1—cogf = ,
B B Y

siny = \/1—co§y=\/%.

Therefore,

X
tana = ——,
yz
X
tan = -
B - .
tany = X
v

Girard’s spherical excess formula [79] expresses the dr@aherical triangle in terms

of its internal angles. We have,

r=a+p+y—T.

118

We further simplifyl”.

tanf = tanfa+B+y—m)

= tan(a +pB+y)
tana +tanf + tany — tana tanf tany
1—tana tanf — tana tany — tanf tany

3
X | X X_ =X
W—l—;-l—)—/—

. yZZZ
=] e 2 2
y2 yz vz
—XYZ+ XYPZ+ XyZ + X3

Y272 + X2y + X272 — X2yz
X(—yz+Y°z+yZ + %)
Y2722+ X2(y+2—Yy2)
X(—yz+y°z+yZ +1—-y>— 7
Y2+ (1-y*=2)(y+z-y2)
x(yzy—1)+(y—1)Z—(y—1)(y+1))
Y222+ (1—y?)(y+2—y2) — 2(y+2—Yy2)
X(y—1)(yz+2—(y+1)
(Y2 —y—2+Yy2)Z+(1-y?)(z+y—Yy2)
X(y—1((z=1)(z+1) +y(z-1))
(Y=1)(y+2Z - (y-1)(y+1))(z+y(1-2)
x(y—1)(z—1)(y+z+1)
(Y=D((y+2Z2—-(y+1)(z—y(z—-1)))
X(y—1)((z—1)(z+1) +y(z—1))
(Y-1)((y2+B—yz—z+(y+1)y(z—-1)))
X(y—1)(z—1)(y+z+1)
(=1 ((yzz—1) +2(z—-1)(z+1) +(y+Dy(z—1)))
x(y—1)(z—1)(y+z+1)
D(z-D((yz+2zz+1) +(y+1)y))
X(y—1)(z—1)(y+z+1)
D(z-1)(y>+22+y+z+y2)
X(y+z+1)
(Y2+Z2+y+2z+Yy2)
2X(y+z+1)
2(y? + 22 +y+2z+y2)
2X(y+z+1)
2(y*+22) +2(y+2z+y2)

(y

(y

tanl = 2x(y+ G 1)

Y2+ Z224+1—-x2+2(y+2z+Y2)
2X(y+z+1)

(y+2z+1)2—x?

2x
yrz+1

1 (yetn)

X
= tan (2 arctan—) .
V+2z

+1

Hence,

As(N,Y,Z) =T = 2arctan————.
Vrz+1

We can similarly obtain,

As(X,N,Z) =2 arctanL,
X+z+1

and

As(X,Y,N) = 2arctan—~—.
X+y+1

119

Hence, if we define the Areal projection of a poMt= (x,y,z) to be the pointP =

(a,b,c) such that

2~ ANYZ)
2
AS<X7NaZ)
b = = ,
2
C AS<X7Y5N) .

then we have,

4 X
a = —arctan———,
) y+z+1
4
b = —arctanL,
T X+z+1
4 Z
c = —arctan———.
m X+y+1
Moreover, we have
tanta — X
4= y+z+1’
T y
tan-b = ———
4 X+z+1’
tannc = z
47 x+y+1°
Hence,
tanja X
tanfa+1l Xx+y+z+1’
tanyb _ y
tanfb+1 X+y+z+1’
tanjc z
tanjc+1 X+y+z+1
Definings(+) such that
tanZu
4
s(u) = ———
(W tanju+1’
We get,
X
sa) = —,
(@) X+y+z+1
y
sh) = ————,
(b) X+y+z+1
z
s(c) =

X+y+z+1'

120

121

Therefore,
1_S<a) _S(b) B () - X—l—y—:::Z—f— 1
We have,
- X
@ = -5 —sb)—s0)’
y
sb) = 5@ —sp -0’
o A
SO = T-s@—sb)-s0
And finally,
s(a)
X = 1-s(@ —sb) —s(c)
_ s(b)
Y = 1-s@—sb)-s(c)’
L S(0)

122

Bibliography

[1] ARGE, L., HINRICHS, K. H., VAHRENHOLD, J., AND VITTER, J. S. Efficient
bulk operations on dynamic R-trees. ALENEX '99: Proc. of the 1st Workshop on
Algorithm Engineering and Experimentati@dan. 1999), vol. 1619 dfecture Notes
in Computer Sciengé&pringer-Verlag, pp. 328—348.

[2] ARrRvo, J.,AND KIRK, D. Fast ray tracing by ray classificatioSIGGRAPH Com-
puter Graphics 214 (1987), 55-64.

[3] AURENHAMMER, F. Voronoi diagrams — a survey of a fundamental geometiia da

structure ACM Comput. Surv. 23 (Sept. 1991), 345—-405.

[4] BECKMANN, N., KRIEGEL, H.-P., SSHNEIDER, R., AND SEEGER B. The R-
tree: An efficient and robust access method for points an@mgtes. InNSIGMOD
'90: Proc. of the Intl. Conf. on Management of Datidew York, NY, May 1990),
H. Garcia-Molina and H. V. Jagadish, Eds., ACM Press, pp. 332-

[5] BENTLEY, J. L. Multidimensional binary search trees used for asdivel searching.

Commun. ACM 13 (Sept. 1975), 509-517.

[6] BLINN, J. F. Simulation of wrinkled surfaces. BIGGRAPH '78: Proc. of the
5th Annual Conf. on Computer Graphics and Interactive Teas@New York, NY,
Aug. 1978), ACM Press, pp. 286—292.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

123

BLINN, J. F.,AND NEWELL, M. E. Texture and reflection in computer generated

images.Commun. ACM 191976), 542-546.

BoTscH, M., WIRATANAYA , A., AND KOBBELT, L. Efficient high quality rendering
of point sampled geometry. EGRW '02: Proc. of the 13th Eurographics Workshop
on RenderingPisa, Italy, June 2002), pp. 53—-64.

Buss, S. R.,AND FILLMORE, J. P. Spherical averages and applications to spherical

splines and interpolatiolACM Trans. Gr. 202 (Apr. 2001), 95-126.

Cal, M., KESHWANI, D., AND REVESZ, P. Z. Parametric rectangles: A model for
querying and animating spatiotemporal databasesEDBT '00: Proc. of the 7th
Conf. on Extending Database Technoldgiar. 2000), C. Zaniolo, P. C. Lockemann,
M. H. Scholl, and T. Grust, Eds., vol. 1777 bécture Notes in Computer Science
Springer-Verlag, pp. 430-444.

CHEN, L., CHOUBEY, R., AND RUNDENSTEINER E. A. Bulk-insertions into R-
trees using the Small-Tree-Large-Tree approachGlia '98: Proc. of the 6th ACM
Intl. Symp. on Advances in Geographic Information Sysi@&es York, NY, 1998),
R. Laurini, K. Makki, and N. Pissinou, Eds., ACM Press, pp. 1632

CHEN, Z. T., AND TOBLER, W. R. Quadtree representations of digital terrain. In
Proc. of Auto-Carto LondofLondon, United Kingdom, Sept. 1986), vol. 1, pp. 475—
484.

CHOUBEY, R., CHEN, L., AND RUNDENSTEINER E. A. GBI: A generalized R-
tree bulk-insertion strategy. IBSD '99: Proc. of the 6th Intl. Symp. on Advances in
Spatial Database@luly 1999), R. H. @Gting, D. Papadias, and F. H. Lochovsky, Eds.,
vol. 1651 ofLecture Notes in Computer Scien&pringer-Verlag, pp. 91-108.

CIGNONI, P., DE FLORIANI, L., MAGILLO, P., RUPPQ E., AND SCOPIGNGQ,

R. Selective refinement queries for volume visualizatioruo$tructured tetrahe-

[15]

[16]

[17]

[18]

[19]

[20]

[21]

124

dral mesheslEEE Transactions on Visualization and Computer Graphicsli@@an.

2004), 29-45.
COMER, D. The ubiquitous B-treeACM Comput. Surv. 12 (June 1979), 121-137.

DEERING, M. Geometry compression. BIGGRAPH '95: Proc. of the 22nd Annual
Conf. on Computer Graphics and Interactive Technigieswv York, NY, Aug. 1995),
ACM Press, pp. 13-20.

DEVILLERS, O., AND GANDOIN, P.-M. Geometric compression for interactive
transmission. VIS '00: Proc. of the 11th Conf. on Visualizati¢2000), pp. 319—
326.

Du, Q., GUNZBURGER, M. D., AND Ju, L. Constrained centroidal Voronoi tessel-

lations for surfacesSIAM Journal on Scientific Computing,Z(2003), 1488—-1506.

DUTTON, G. Zenithial orthotriangular projection. Rroc. of the Tenth Intl. Conf.
on Computer-Assisted Cartography (Auto-Carto {Baltimore, MD, Mar. 1991),
pp. 77-95.

ESPERAN®, C., AND SAMET, H. Spatial database programming using SAND. In
Proc. of the 7th Intl. Symp. on Spatial Data Handli(i2elft, The Netherlands, Aug.
1996), M. J. Kraak and M. Molenaar, Eds., vol. 2, Intl. Gegipiaal Union Commis-
sion on Geographic Information Systems, Association fav@saphical Information,

pp. A29-A42.

ESPERAN®, C.,AND SAMET, H. Experience with SAND/Tcl: a scripting tool for
spatial databasesJournal of Visual Languages and Computing, 23(Apr. 2002),
229-255.

125

[22] EVANGELIDIS, G., LOMET, D., AND SALZBERG, B. The hB!-tree: a multi-attribute
index supporting concurrency, recovery and node condaitaVLDB Journal 6 1

(Jan. 1997), 1-25.

[23] FEKETE, G., AND TREINISH, L. Sphere quadtrees: a new data structure to support
the visualization of spherically distributed data Brtracting Meaning from Complex
Data: Processing, Display, Interactioffug. 1990), E. J. Farrell, Ed., vol. 1259 of
Proc. of SPIE/SPSE Symp. on Electronic Imaging Science acithdlogy pp. 242—
253.

[24] FINKEL, R. A., AND BENTLEY, J. L. Quad trees: a data structure for retrieval on

composite keysActa Inf. 4 1 (Mar. 1974), 1-9.

[25] FREESTON M. The BANG file: A new kind of grid file. InNSIGMOD '87: Proc.
of the Intl. Conf. on Management of Dafidew York, NY, May 1987), U. Dayal and
I. L. Traiger, Eds., ACM Press, pp. 260—-269.

[26] FREESTON M. A general solution of the n-dimensional B-tree problemSIGMOD
'95: Proc. of the Intl. Conf. on Management of Ddtdew York, NY, May 1995), M. J.
Carey and D. A. Schneider, Eds., ACM Press, pp. 80-91.

[27] FREESTON M. On the complexity of BV-tree updates. GDB '97: Proc. of the 2nd
Intl. Workshop on Constraint Database Systddemn. 1997), V. Gaede, A. Brodsky,
O. Glinther, D. Srivastava, V. Vianu, and M. Wallace, Eds., vt ofLecture Notes

in Computer Scien¢@p. 282—293.

[28] FREESTON M. W. A well-behaved file structure for the storage of sgaiigects. In
SSD '89: Proc. of the 1st Symp. on Advances in Spatial Da&sd{daly 1989), A. P.
Buchmann, O. @nther, T. R. Smith, and Y.-F. Wang, Eds., vol. 409 etture Notes

in Computer Scienge&pringer-Verlag, pp. 287-300.

126

[29] GANDOIN, P.-M., AND DEVILLERS, O. Progressive lossless compression of arbi-

trary simplical complexesACM Trans. Gr. 213 (July 2002), 372—-379.

[30] GARCIA, Y. J., LOPEZ M. A., AND LEUTENEGGER S. T. A greedy algorithm
for bulk loading R-trees. Computer Science Technical Repo@A7University of

Denver, Denver, CO, 1997.

[31] GARCIA R., Y. J., LOPEZ M. A., AND LEUTENEGGER S. T. A greedy algorithm
for bulk loading R-trees. 161S '98: Proc. of the 6th ACM Intl. Symp. on Advances in
Geographic Information Systenidew York, NY, 1998), R. Laurini, K. Makki, and
N. Pissinou, Eds., ACM Press, pp. 163-164.

[32] GARGANTINI, |. An effective way to represent quadtreeSommun. ACM 2512

(Dec. 1982), 905-910.

[33] GooDCHILD, M. F., AND SHIREN, Y. A hierarchical data structure for global ge-
ographic information systems. BDH '90: Proc. of the 4th Intl. Symp. on Spatial
Data Handling(July 1992), vol. 1, pp. 911-917.

[34] GRABNER, M. Compression of arbitrary triangle meshes with attribute selective

refinementJournal of WSCG 1,11 (2003).

[35] GRAY, J., SALAY, A. S., FEKETE, G., NETO-SANTISTEBAN, M. A.,
O’MULLANE, W., THAKAR, A. R., HEBER, G., AND ROTS, A. H. There goes
the neighborhood: Relational algebra for spatial data keafech. Rep. MSR-TR-
2004-32, Microsoft Research, Redmond, WA, Apr. 2004.

[36] GREENE, N. Environment mapping nd other applications of world pobdjons.|[EEE
CG&A (Nov. 1986), 21-29.

[37] GROssSMAN, J. P. Point sample rendering. Master’s thesis, Massatthuastitute

of Technology, Cambridge, MA, Aug. 1998.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

127

Gu, J., Tu, C.-l., RAMAMOORTHI, R., BELHUMEUR, P., MATUSIK, W., AND
NAYAR, S. Time-varying surface appearance: Acquisition, modedind rendering.

ACM Trans. Gr. 253 (July 2006), 762—771.

GUTTMAN, A. R-trees: A dynamic index structure for spatial searchingg|IGMOD
'84: Proc. of the Intl. Conf. on Management of Datidew York, NY, June 1984),
B. Yormark, Ed., ACM Press, pp. 47-57.

HJALTASON, G. R.,AND SAMET, H. Incremental distance join algorithms for spatial
databases. I8IGMOD '98: Proc. of the Intl. Conf. on Management of Déew
York, NY, June 1998), L. M. Haas and A. Tiwary, Eds., ACM Pregxs,237-248.

HJALTASON, G. R.,AND SAMET, H. Distance browsing in spatial databasA&M

Trans. Database Syst. 22 (June 1999), 265-318.

HJALTASON, G. R., AND SAMET, H. Improved bulk-loading algorithms for
guadtrees. I1G1S '98: Proc. of the 7th ACM Intl. Symp. on Advances in Geogi@p
Information System@New York, NY, 1999), R. Laurini, K. Makki, and N. Pissinou,
Eds., ACM Press, pp. 110-115.

HUNTER, G. M., AND STEIGLITZ, K. Operations on images using quad trde&E

Transactions on Pattern Analysis and Machine Intelligehc(Apr. 1979), 145-153.

KALAIAH , A., AND VARSHNEY, A. Statistical geometry representation for efficient

transmission and renderingCM Trans. Gr. 242 (2005), 348—-373.

KAMEL, I., AND FALOUTSOS, C. On packing R-trees. I6IKM '93: Proc. of the
2nd Intl. Conf. on Information and Knowledge Managem@ew York, NY, Nov.
1993), B. Bhargava, T. Finin, and Y. Yesha, Eds., ACM Press, pp--499.

KLINGER, A. Patterns and search statisticsQptimizing Methods in Statistic3. S.

Rustagi, Ed. Academic Press, New York, NY, 1971, pp. 303-337.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

128

KRIEGEL, H.-P., BOTKE, M., AND SEIDL, T. Managing intervals efficiently in
object-relational databases. YAi.DB '00, Proc. of 26th Intl. Conf. on Very Large
Data BasegSept. 2000), A. El Abbadi, M. L. Brodie, S. Chakravarthy, U.yBha
N. Kamel, G. Schlageter, and K.-Y. Whang, Eds., Morgan Kaunimap. 407—418.

KUGLER, A. IMEM: An intelligent memory for bump- and reflection-mgipg. In

HWWS '98: Proc. of the ACM SIGGRAPH/EUROGRAPHICS workshop apltas

hardware(Aire-la-Ville, Switzerland, Switzerland, Aug. 1998), Eagraphics Asso-
ciation, pp. 113-122.

Li, J., ROTEM, D., AND SRIVASTAVA, J. Algorithms for loading parallel grid files.
In SIGMOD '93: Proc. of the Intl. Conf. on Management of Dékdéew York, NY,
May 1993), P. Buneman and S. Jajodia, Eds., ACM Press, pp. 367-3

LoMET, D. B., AND SALZBERG, B. The hB-tree: A multiattribute indexing method
with good guaranteed performancACM Trans. Database Syst. 1% (Dec. 1990),
625—658.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L. Efficient isotropic
BRDF measurement. IEGRW '03: Proc. of the 14th Eurographics Workshop on
RenderingLeuven, Belgium, June 2003), pp. 241-247.

MCALLISTER, D. K., LASTRA, A., AND HEIDRICH, W. Efficient rendering of
spatial bi-directional reflectance distribution funcsonn HWWS '02: Proc. of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardyire-la-Ville,
Switzerland, Switzerland, Aug. 2002), Eurographics Assaun, pp. 79-88.

MOUNT, D. M., AND ARYA, S. ANN: A library for approximate nearest neighbor

searching, May 2005t t p: / / ww. ¢s. und. edu/ user s/ nount / ANN .

NELSON, R. C.,AND SAMET, H. A consistent hierarchical representation for vector

data. SIGGRAPH Computer Graphics 20 (Aug. 1986), 197—-206.

129

[55] PRAUN, E.,AND HOPPE H. Spherical parametrization and remeshiAGM Trans.

Gr. 22, 3 (July 2002), 340-349.
[56] REVESZ, P. Introduction to Constraint DatabaseSpringer, New York, NY, 2002.

[57] RIGAUX, P., SSHOLL, M., AND VOISARD, A. Spatial Databases: with Applications

to GIS Morgan-Kaufmann, San Francisco, 2001.

[58] RoussopPoULOSN., AND LEIFKER, D. Direct spatial search on pictorial databases
using packed R-trees. BRIGMOD ’'85: Proc. of the Intl. Conf. on Management of
Data (New York, NY, May 1985), S. B. Navathe, Ed., ACM Press, pp. 17-3

[59] RUSINKIEWICZ, S., AND LEVOY, M. QSplat: a multiresolution point rendering
system for large meshes. BIGGRAPH '00: Proc. of the 27th Annual Conf. on
Computer Graphics and Interactive Technigbew York, NY, July 2000), ACM
Press, pp. 343-352.

[60] SAFF, E. B., AND KUIJLAARS, A. B. J. Distributing many points on a sphere.

Mathematical Intelligencer 19 (1997), 5-11.

[61] SALTENIS, S., ENSEN, C. S., LEUTENEGGER S. T.,AND LOPEZ M. A. Indexing
the positions of continuously moving objects.SFtGMOD ’00: Proc. of the 2000 Intl.
Conf. on Management of Dadlew York, NY, May 2000), ACM Press, pp. 331-342.

[62] SAMET, H. The Design and Analysis of Spatial Data Structurdsldison-Wesley,
Reading, MA, 1990.

[63] SAMET, H. Decoupling partitioning and grouping: Overcoming sbomings of
spatial indexing with bucketingACM Trans. Database Syst. ,28(Dec. 2004), 789—
830.

[64] SAMET, H. Object-based and image-based object representatid@sl Comput.
Surv. 36 2 (June 2004), 159-217.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

130

SAMET, H. Foundations of Multidimensional and Metric Data Structrdlorgan-

Kaufmann, San Francisco, CA, 2006.

SAMET, H., ALBORzI, H., BRABEC, F., ESPERAN®, C., HIALTASON, G. R.,
MORGAN, F., AND TANIN, E. Use of the SAND spatial browser for digital govern-

ment applicationsCommun. ACM 461 (Jan. 2003), 63—-66.

ScoTT, G. M. The cubic quadtree: a spatial data structure for spdlesurfaces.

scholarly paper CSC 1024, University of Maryland, CollegekPsiD, Dec. 1996.

SELLIS, T., RoussorpouLos N., AND FALOUTSOS, C. The R -tree: a dynamic
index for multi-dimensional objects. MLDB '87: Proc. of the 13th Intl. Conf. on

Very Large DatabaseSept. 1987), Morgan Kaufmann, pp. 507-518.

SNYDER, J. P. Map Projections - A Working ManualUnited States Government

Printing Office, Washington, DC, 1987.

SONG, L., KIMERLING, A. J.,AND SAHR, K. Developing an equal area global grid
by small circle subdivision. Imiscrete Global Gridsg(Santa Barbara, CA, 2002),
M. Goodchild and A. J. Kimerling, Eds., National Center fora@eaphic Information

and Analysis.

TAUBIN, G., HORN, W. P., LAZARUS, F., AND ROSSIGNAC J. Geometry coding

and VRML. Proc. of the IEEE 866 (June 1998), 1228-1243.

TAUBIN, G., AND ROSSIGNAC J. Geometric compression through topological

surgery.ACM Trans. Gr. 172 (Apr. 1998), 84 — 115.

TEGMARK, M. An icosahedron-based method for pixelizing the ced¢stphere.

Astrophysical Journal Letters 44{@ct. 1996), 81-84.

TOBLER, W., AND CHEN, Z. T. A quadtree for global information storag&eo-

graphical Analysis 184 (Oct. 1986), 360-371.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

131

TOBOR, |., SCHLICK, C., AND GRISONI, L. Rendering by surfels. IGRAPH-
ICON '00: Proc. of the 10th Intl. Conf. on Computer Graphics &ivis(Aug. 2000),
pp. 193-204.

UHLMANN, J. K. Satisfying general proximity/similarity queriestiwvimetric trees.

Inf. Process. Lett. 404 (Nov. 1991), 175-179.

VAN DEN BERCKEN, J., SEEGER B., AND WIDMAYER, P. A generic approach
to bulk loading multidimensional index structures. VDB '97: Proc. of the 23rd

Intl. Conf. on Very Large Databaséfug. 1997), M. Jarke, M. J. Carey, K. R. Dit-
trich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfelds EMorgan Kaufmann,
pp. 406—415.

WANG, W., YANG, J.,AND MUNTZ, R. R. PK-tree: A spatial index structure for
high dimensional point data. Froc. of the 5th Intl. Conf. on Foundations of Data Or-
ganization and Algorithms (FOD(Nov. 1998), K. Tanaka and S. Ghandeharizadeh,
Eds., pp. 27-36.

WEISSTEIN, E. W. The CRC Concise Encyclopedia of Mathemati€RC Press,
Boca Raton, FL, 1998.

WHITE, D., KIMERLING, A. J., SAHR, K., AND SONG, L. Comparing area and
shape distortion on polyhedral-based recursive parsitafrthe spherelntl. Journal

of Geographical Information Science 12 (Dec. 1998), 805-827.

WILLMOTT, A. J. Hierarchical Radiosity with Multiresolution MeshePhD thesis,

School of Computer Science, Carnegie Mellon UniversitysBiitgh, PA, Dec. 2000.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. Arithmetic coding for data

compressionCommun. ACM 30 (June 1987), 520-540.

132

[83] YANG, J., WANG, W., AND MUNTZ, R. Yet another spatial indexing structure.
Computer Science Technical Report 97040, University of Qalifoat Los Angeles,
Los Angeles, Nov. 1997.

