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Microbial communities are intimately intertwined with many processes affecting the 

health of plants.  There is increasing interest in utilizing microbial communities to 

increase plant health while reducing management inputs.  To that end, bacterial and 

fungal communities associated with creeping bentgrass were evaluated using next-

generation sequencing technologies.  Evaluating the impact of resident seed and soil 

microbial communities revealed introductions of microbes from the seed despite a strong 

influence from the soil.  Observing long-term population dynamics revealed no shifts in 

fungal diversity over six months, while bacterial diversity increased from emergence to 

two months post-emergence.  Across both studies taxonomic profiling revealed that 

bacterial and fungal communities were consistently dominated by just a few groups.  In 

both studies, ordination analyses revealed clustering of samples by sampling time.  These 

results show that changes in the microbiome are driven by rare species, and that the 

turfgrass microbiome is resilient to change over time.  
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Chapter 1. Review of the Literature: The Turfgrass Microbiome 

 

DEFINING MICROBIOMES 

In recent years there has been a significant increase microbiome research.  In 

2015, a web-based search using the keyword ‘microbial metagenomics’ returned 31,400 

citations (Beirn, 2016). This same search two years later results in nearly double the 

number of citations at 57,200 (https://scholar.google.com; accessed 2017 December 20).  

The scientific community’s interest in microbiome research is entirely evident based on 

this 182% increase in “microbial metagenomics” manuscripts published over two years.  

It is likely that this trend will continue to increase in the years to come.   

The microbiome is made up of the resident microorganisms, their genomes, and 

the surrounding environmental conditions (Marchesi and Ravel, 2015).  More simply put, 

the microbiome is the combination of the metagenome (i.e., all the genetic material 

present in an environmental sample, consisting of many individual organisms) and the 

environment.  Since 2008, several microbiome projects have been initiated with the goal 

of mapping and characterizing the microbiomes, varying in terms of the scope and size 

(American Phytopathological Society, 2016; Gilbert et al., 2010; Turnbaugh et al., 2007).  

The Human Microbiome Project was launched in 2008 by the National Institutes of 

Health and was designed to facilitate characterization of the human microbiota to further 

our understanding of how the microbiome impacts human health and disease (Turnbaugh 

et al., 2007).  The Earth Microbiome Project was launched in 2010 specifically aimed to 

characterize global microbial taxonomic and functional diversity for the benefit of the 

planet and humans (Gilbert et al., 2010). The Phytobiomes Initiative was started in 2015 
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by the American Phytopathological Society with the goal of better understanding the 

networks of interactions among plants, their environment and the complex communities 

of microorganisms which inhabit them, including their influence on plant and 

agroecosystem health and productivity (2016).   

Unlike the Human Microbiome Project and the Earth Microbiome Project, whose 

main foci are the characterization and understanding of microbiome dynamics, the 

Phytobiomes Initiative covers a wider breadth of research areas, including weather, 

animals, nutrients, soils, plants, and microbes (Phytobiomes Initiative, 2015).  When 

thinking about the phytobiome, all the aforementioned factors play a role individually, 

but are also intertwined with one another, forming either a symphony of positive affects 

leading to enhanced plant health or a cacophony of adverse affects that result in plant 

decline. 

Microbiomes have a wide variety of impacts on plants. Mycorrhizae and rhizobia 

exchange nutrients with their hosts, helping plants to succeed when nutrient availability is 

poor (van der Heijden et al., 2008).  Endophytes survive within hosts asymptomatically 

and can provide protection from pathogens or harsh environmental conditions (Rodriguez 

et al., 2009).  Nutrient and carbon cycling within the soil is driven by microbial activity, 

influencing plant health through the availability of nutrients (Arias et al., 2005; van der 

Heijden et al., 2008).  Plant pathogens parasitize their hosts leading to reduced yields, 

poor playability or reduced aesthetics and economic value, while other microbes can 

combat the affects of pathogens to reduce or prevent disease (Andrews, 1992; Lo et al., 

1997).  From a plant pathology perspective, it is thought that understanding plant 



3 
 

microbiomes, will allow for manipulation of microbial communities to combat plant 

pathogens or enhance plant health. 

 

METHODS OF INVESTIGATING MICROBIOMES 

Microbial communities associated with plants are intricate and diverse (Berg and 

Smalla, 2009).  Early methods used to study microbes associated with plants involved 

culturing those organisms on specialized growth media to view and/or manipulate them 

in the lab.  However, most researchers agree that culture-based methods can only account 

for a small fraction of the total microbial community present (Saleh-Lakha et al., 2005). 

For example, Rastogi et al. (2010) estimated that culturing bacteria on tryptic soy agar to 

account for bacterial abundance in the lettuce phyllosphere only accounted for 0.1-8.4% 

of the total bacterial abundance observed using real-time PCR. Similarly, other studies 

have found that only 0.1% to 1% of bacteria present in the soil can be established in pure 

culture on selective media (Amann et al., 1995; Torsvik and Øvreås, 2002; Torsvik et al., 

1990).  Advances in culture-based technologies, such as high-throughput 

microbioreactors, simulated natural environments, or community cultures, have increased 

the amount of bacterial that can be cultured (Pham and Kim, 2012).  Therefore, at least 

for the present time, reliance on culture-based methods alone to enumerate plant-

associated microbes will severely underestimate microbial populations as well as 

taxonomic diversity. 

By utilizing non-culture based investigative techniques in conjunction with 

culture-based methods, researchers can gain deeper insight into microbial populations.  

Non-molecular techniques, such as phospholipid fatty acid analysis (PLFA) allow for the 
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construction of a community profile for the comparison of samples.  PLFA is a method of 

estimating microbial biomass (Frostegard et al., 2010; White, 1983) and provides a 

general inference as to the types of organisms present in the sample (Frostegard et al., 

2010).  This is done by comparing the cellular membrane phospholipids of known 

microorganisms to those of unknown microorganisms in a sample (Frostegard et al., 

2010).  However, when utilizing PLFA for inferring community composition, caution 

must be taken, as all organisms within a group may not share a single biomarker and that 

same biomarker may be shared with organisms from another group, making taxonomic 

assignment impossible at times (Frostegard et al., 2010).  For example, the PLFAs cy17:0 

and cy19:0 are typically associated with Gram-negative bacteria, however Schoug et al. 

(2008) showed these PLFAs are also present in large quantities in a number of Gram-

positive bacteria.   

Over the past few decades, DNA-based approaches have developed as a more 

robust tool for studying plant-microbe interactions.  Common DNA-based tools include 

terminal-restriction fragment length polymorphism (T-RFLP), ribosomal intergenic 

spacer analysis (RISA), PCR-denaturing gradient gel electrophoresis (DGGE), or next-

generation sequencing (NGS) technologies and each can provide a more in-depth 

examination into the microbial communities associated with plants.  These DNA based 

methods all take advantage of the fact that all living organisms possess DNA, therefore 

allowing analysis of these communities regardless of their capability to be cultured.  As 

such, these methods provide greater resolution of community diversity and may provide a 

more accurate and comprehensive reflection of the microbial community being 

investigated relative to culture-based methods or PLFA (Amann et al., 1995).  In T-
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RFLP, PCR amplified markers are digested with restriction endonucleases and the 

subsequent size polymorphisms are measured on high resolution sequencing gels (Marsh, 

1999).  Utilizing PCR amplification of the intergenic spacer between the 16S and 23S 

subunit rRNA genes in bacteria, RISA generates community profiles on a polyacrylamide 

gel through electrophoresis of the DNA fragments generated from PCRs (Fisher and 

Triplett, 1999). Using both T-RFLP and RISA, Micallef and others (2009b) showed that 

eight different accessions of Arabidopsis thaliana L. recruited specific bacterial 

communities to their respective rhizospheres.  Through the use of DGGE, a DNA 

fingerprinting technique that can be used to separate DNA fragments with the same 

length but different sequences (Muyzer and Smalla, 1998), Micallef et al. (2009a) 

investigated the effect of plant age and genotype on the rhizosphere bacterial 

communities of two different A. thaliana accessions.  It was found that succession of 

bacterial communities progressed differently between the two accessions; however, as the 

plants aged, the rhizosphere and bulk communities converged (Micallef et al., 2009a).  

This convergence coincided with an expected decrease in root exudate release as the 

plants aged (Micallef et al., 2009a).  Using next-generation sequencing, a high-

throughput DNA sequencing technique that allows for rapid sequencing of millions of 

DNA strands in parallel, biochar applications were evaluated for their effects on soil 

bacterial and fungal communities (Jenkins et al., 2017).  Biochar applications to a short 

rotation coppice in the UK, a French grassland and a short rotation forestry site in Italy 

reduced Proteobacteria, Actinobacteria and Acidobacteria compared to pre-treated 

abundances within the same sites (Jenkins et al., 2017).  Biochar applications also 
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resulted in significant decreases in Gemmataceae and Koribacteraceae within the forestry 

site in Italy (Jenkins et al., 2017). 

While culture-independent methods overcome some of the limitations associated 

with establishing microorganisms in culture, they are not without their own limitations.  

Many of the methods previously described require lysing of cells, which is the breaking 

down of the membrane of cells, to access the DNA for PCR amplification.  Lysis of cells 

and fungal structures differs both within and between microbial groups (Prosser, 2002).  

Fungal mycelia of different ages lyse differently, potentially introducing biases in 

molecular based studies of microbial diversity (Prosser, 2002).  It has also been observed 

that various DNA isolation methods can lead to bias due to dominant microbes present.  

For example, Kozdrój and van Elsas (2000) compared soil bacterial community profiles 

generated from DNA that was extracted directly (i.e., lysis by bead beating or grinding in 

liquid N) or indirectly (i.e., cell extraction from soil followed by DNA extraction or 

combined RNA/DNA extraction).  All four methods generated similar profiles, however, 

cluster analysis showed groupings based on the extraction method utilized (Kozdrój and 

van Elsas, 2000).  These clustering patterns indicated that, even with the same soil 

sample, different bacterial populations may be detected, solely based on the isolation 

method used (Kozdrój and van Elsas, 2000; von Wintzingerode et al., 1997).  Similarly, 

Luna et al. (2006) observed that using a single in situ SDS-based DNA extraction kit 

underestimated bacterial ribotypes of marine sediments when compared to a cell 

extraction protocol.  Due to the variability observed through employing different 

techniques, pooling the results from several different DNA extraction methods may 

provide a more accurate insight into the microbiome community structure.  However, 
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monetary and time constraints may prohibit the use of combined approaches for large-

scale microbiome investigations.   

 Since the advent of NGS technologies for microbiome analyses, there has been 

one major issue: how to analyze massive amounts of data in a meaningful manner.  

Initially the best option was to perform operational taxonomic unit (OTU) clustering from 

sequences.  Using a fixed dissimilarity threshold (commonly 3%), DNA sequences from 

NGS technologies are clustered into OTUs (Kopylova et al., 2016; Westcott and Schloss, 

2015). Subsequently, a sample-by-OTU table is generated, wherein an observation of an 

OTU in a sample corresponds to an observation of the ‘species’ assigned, and utilized for 

downstream analyses. While many different methods of OTU clustering have been 

proposed, two methods are used: 1) closed-reference OTU clustering and 2) de-novo 

OTU clustering.  Closed-reference OTU clustering uses a reference database to place 

reads into an OTU based on their sequence similarity to the database entries (Kopylova et 

al., 2016) whereas, de-novo OTU clustering employs sequence dissimilarities for 

generating OTUs (Westcott and Schloss, 2015).  De novo OTU clustering is performed 

based on a set similarity/dissimilarity threshold without a reference database, which 

means the clustering of the OTUs themselves depends on the relative abundances of the 

sampled community (Callahan et al., 2017).  Due to this data set dependence, de novo 

OTUs cannot be compared between two different sample sets.  Conversely, if utilizing 

closed-reference OTUs data can be compared across data sets if the same reference 

database was used for OTU determination. However, biological variation in nucleotide 

sequences not represented in the reference database will be lost in the final OTU 

assignment (Callahan et al., 2017).  Amplicon sequence variants are inferred de novo 
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under the expectation that biological sequences are more likely to be repeatedly observed 

than are error-containing sequences.    

Increasingly, OTUs are being replaced by amplicon sequence variants (ASVs) 

which allow for the resolution of sequences down to a single nucleotide difference while 

controlling errors using improved bioinformatic processing methods (Callahan et al., 

2017).  Unlike de novo OTUs, ASVs are consistently defined by the DNA sequence of 

the assayed organism (Callahan et al., 2017).  This gives ASVs a consistent label that is 

not dataset dependent and will allow ASVs that are defined from different data sets to be 

compared (Callahan et al., 2017).  There are a myriad of other benefits ASVs hold over 

more traditional OTU clustering methods.  Inference of ASVs are performed on a per 

sample basis rather than per read basis like OTU clustering (Callahan et al., 2017).  As 

such independent parallelization is easily performed, allowing computation time to scale 

linearly with increasing sample number, while simultaneously keeping memory 

requirements flat (Callahan et al., 2017).  As with closed-reference OTUs, the consistent 

labels provided by ASV methods allows for sequence tables (i.e., a sample by sequence 

variant table providing counts of sequences assigned to an ASV on a per-sample basis) to 

be merged into a cross-study table.  This facilitates analyses across different studies 

without the need to compile, pool, and reprocess data using de novo OTU methods 

(Callahan et al., 2017).  This significantly decreases the time needed to perform meta-

analyses for microbiome studies performed on similar environments.  One output of 

microbiome research is using community data to develop diagnostic tools (Baxter et al., 

2016).  The dataset-dependent labels provided by de novo OTU methods exist only in 

that dataset, however, the consistent labels from closed-reference OTU or ASV methods 
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can be applied to new datasets to help generate predictive biomarkers through regression 

or machine learning (Callahan et al., 2017).  While both closed-reference OTUs and 

ASVs utilize consistent labeling, closed-reference OTUs are inhibited by their 

limitations.  Since closed-reference OTUs require the use of a reference database any 

sequences in the dataset that do not map to the reference database are removed from 

analysis (Callahan et al., 2017).  Considering reference databases are incomplete, this 

could lead to a significant amount of sequences removed from the dataset, especially in 

understudied environments (Callahan et al., 2017).  Additionally, closed-reference OTUs 

do not guarantee that the labeled sequence was observed, as these methods still use a 

similarity threshold to map the input dataset to the reference database, thus masking 

biological variation in the data (Callahan et al., 2017). Caution should be taken moving 

forward with this new analysis method, as there are inherent problems using short 

sequences to represent organisms (Callahan et al., 2017).  For example, multiple 

sequence variants may exist within a single organism if multiple copies of the targeted 

gene region exist (Callahan et al., 2017).  Despite these drawbacks ASVs still present as a 

more meaningful and applicable method of analyzing microbial community marker gene 

studies, and as such should become the common place method for these studies. 

 

UNDERSTANDING PLANT COMPONENTS AND ASSOCIATED 

MICROBIOMES  

The Phyllosphere 

 The phyllosphere is the above-ground component of the plant microbiome, which 

acts as the interface between the plant and the surrounding environment.  Depending on 
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the plant of interest or the scope of the research, the phyllosphere can be dissected into 

many different parts, including but not limited to the caluosphere (stems) (Berg et 

al.;Velmourougane et al., 2006), anthosphere (flowers) (Berg et al., 2015; Rodríguez et 

al., 2001), carposphere (fruits) (Berg et al., 2015; Mosca et al., 2014), and the endosphere 

(internal portion of plant) (Berg et al., 2015; Compant et al., 2010).  The phyllosphere is 

highly dynamic and may experience large changes in temperature, humidity, and solar 

radiation over the course of a single day (Turner et al., 2013).  It stands to reason that 

with these extremes the microbial communities inhabiting the phyllosphere might consist 

of a small group of highly specialized to surviving harsh conditions (Rastogi et al., 2013).   

Inherent variability in microbial populations and communities adds to intricacy of 

the phyllosphere (Vorholt, 2012).  Both the environment and host plant play a major role 

in the microbial composition of the phyllosphere and variability of each is confounding 

attempts being made to observe and map the phyllosphere of plants (Vorholt, 2012).  The 

same species of plants inhabiting different places may host vastly different microbial 

communities (Lindemann et al., 1984; Lindow and Andersen, 1996; Magan and Lacey, 

1986).  Similarly, plants of different species in the same location may have significantly 

different microbial populations in the phyllosphere (Kinkel et al., 1996; Lindemann et al., 

1984; Lindow et al., 1978).  A survey of bacterial communities encompassing the 

phyllosphere in the Atlantic Forest of Brazil found that the resident microorganisms 

greatly varied, even in the phyllosphere of trees of the same species, but they could be 

grouped together by discriminant analysis, a statistical analysis to predict a categorical 

dependent variable by one or more continuous variables (Lambais et al., 2006).  

Additionally, DGGE 16S rDNA banding patterns clustered based on plant species, 
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showing that these plants exhibit selection for their microbiome inhabitants (Yang et al., 

2001). Delmotte and others (2009) used DGGE to determine that the phyllosphere 

bacterial communities of soybean (Glycine max (L.) Merr), clover (Trifolium repens L.) 

and A. thaliana were all predominantly composed of bacteria belonging to the 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and 

Bacteroides.  However, by increasing the taxonomic resolution to the genus levels more 

nuanced differences appeared.  For example, sequencing of excised bands from the 

DGGE acrylamide gel showed that within the Alphaproteobacteria, reads mapped to the 

genus Methylobacterium were highest in soybean and clover, while reads mapped to the 

genus Sphingomonas were highest in Arabidopsis (Delmotte et al. 2009).  Additionally, 

within the Gammaproteobacteria, the genus Pseudomonas was consistently detected in 

clover, soybean and Arabidopsis (Delmotte et al., 2009). 

The Rhizosphere 

The rhizosphere is broadly defined as the interface between the plant and soil, or 

more precisely, the root and soil.  While the phyllosphere is consistently exposed to 

weather fluctuations, the rhizosphere faces constant changes as a result of root exudation 

due to sloughing of root cells and mucilage deposition (Turner et al., 2013).  These root 

exudates contain compounds such as amino acids, organic acids, sugars, fatty acids, 

vitamins, hormones and even antimicrobial compounds (Bais et al., 2006; Bertin et al., 

2003).  Consequently, root exudates are shown to be driving factors influencing the 

structure and abundance of the rhizosphere microbiome.  Shi et al. (2011) added various 

root exudate compound solutions to microcosms of pasture soil and measured the 

response of the microbial communities using DGGE and a PhyloChip, a bacterial 16S 
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gene microarray for microbial surveys.  Relative to sugars the presence of organic acids 

in the soil exhibited a larger influence on the bacterial communities.  For example, 15 

proteobacterial taxa were significantly affected by the addition of sugars, whereas 113-

349 additional proteobacterial taxa were significantly affected by the addition either 

maleic acid, quinic acid, or lactic acid (Shi et al., 2011).  In addition, soil physical and 

chemical properties have been shown to be determinants in the microbial community 

structure (Ranjard and Richaume, 2001).  Using selective media to enumerate bacteria, 

fungi, Gram-negative bacteria, and actinomycetes, Kennedy and Smith (1995) observed 

higher microbial diversity in cultivated wheat (Triticum aestivum L.) fields than a prairie 

grassland.  Adding to the intricacy of the rhizosphere microbiome, Richaume and others 

(1993) fractionated soil aggregates from an Alfisol, a leached basic or slightly acidic soil 

with a clay-enriched sub-soil, and enumerated the soil bacteria associated with differing 

soil particle sizes.  With direct counts, staining bacteria with acridine orange, fixing on a 

0.2µm membrane and enumerating, and indirect counts, plating of diluted soil 

suspensions onto non-selective nutrient agar, it was observed that the 2-20 µm soil 

fraction contained the highest number of bacteria (Richaume et al., 1993).  The 50-250 

µm contained the next largest counts of bacteria, with the 20-50 µm, <2 µm, and >250 

µm fractions all containing the lowest counts of bacteria (Richaume et al., 1993).  

Plant genetics also appear to play a role in the development of the rhizosphere 

microbiome.  Using culture-based methods, Elliot et al. (2004) observed turfgrass species 

as significant driver in variation for actinomycetes, heat-tolerant bacteria, fluorescent 

pseudomonads, and Gram-positive bacteria living in the rhizosphere.  Similar results 

were found using both hierarchical clustering analysis and non-metric multi-dimensional 
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scaling, on T-RFLP and RISA data, showed distinct groups of bacterial communities 

associated with A. thaliana accessions (Micallef et al., 2009b). Moreover, Peiffer et al. 

(2013) found that even though the effects were small, maize genotype significantly 

impacted alpha and beta-diversities across different field environments. 

In addition to the aforementioned factors that influence the rhizosphere 

microbiome, plant location may also be a significant factor.  A study looking at 

rhizosphere samples taken from creeping bentgrass (Agrostis stolonifera L. cv. 

“Crenshaw”) putting greens located in North Carolina and Alabama and hybrid 

bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy cv. 

“Tifdwarf”) putting greens located in Florida and South Carolina found that location was 

a significant factor explaining the variability in Gram-negative bacteria, aerobic bacteria, 

actinomycetes, heat-tolerant bacteria, and fluorescent pseudomonads (Elliot et al., 2004).  

Roots from a single European aspen (Populus tremula L.) tree in southern Estonia were 

observed to contain over 100 species of ectomycorrhizal fungi (Bahram et al., 2010).  

Overall geography and environmental factors impose strong effects on fungal community 

structure (Peay et al., 2016).  

 

MICROBIOME OF GRAMINACEOUS HOSTS 

There is evidence that members of the Gramineae family exhibit consistent 

associations with predominant microbes (Donn et al., 2015; Ofek et al., 2014; Johnston-

Monje et al., 2016, Knief et al., 2012).  In a study of the wheat rhizosphere of two widely 

grown wheat cultivars, ‘Janz’ and ‘H45’, Proteobacteria, Actinobacteria, and 

Bacteroidetes were found to be the predominant bacterial phyla (Donn et al., 2015).  
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Similarly, Johnston-Monje et al. (2016) observed the rhizosphere bacterial fraction of 

both ‘Lenha’ and ‘BRS 1030’ maize varieties to be predominantly comprised of 

Proteobacteria, Bacteroidetes, and Firmicutes when grown under variable soil types (i.e., 

iron mine subsoil vs rich, organic anthrosol).  Another graminaceous host, rice (Oryza 

sativa L. cv. Angelica, IR-72, and PSB RC80), exhibited this same pattern of 

Proteobacteria prevalence in both the rhizosphere and phyllosphere, when analyzed 

through pyrosequencing (Knief et al., 2012).  At a deeper taxonomic resolution, within 

the wheat rhizosphere the Gammaproteobacteria had the highest relative abundance, with 

Deltaproteobacteria, Alphaproteobacteria and Betaproteobacteria had the next highest 

relative abundances (Ofek et al., 2014).  Based upon these findings it appears that 

graminaceous plants may consistently associate with Proteobacteria.  However, 

additional research is needed to see if this pattern continues across other graminaceous 

plants, or even across the plant kingdom. 

 Management practices, such as organic, e.g., biological based pest management, 

or conventional, e.g., traditional chemical pest management, and specific management 

inputs, such as fertilizer and fungicides, have been evaluated for their impacts on the 

microbiome of graminaceous plants.  Utilizing NGS technologies, Proteobacteria, 

Firmicutes, and Actinobacteria were found to be the predominant bacterial members in 

the microbiome of wheat grown under conventional and organic management regimes 

(Gdanetz and Trail, 2017).  High rates of nitrogen fertilizer (50 mg N L-1 to 160 mg N L-

1) were found to significantly increase bacterial abundance of maize (Zhu et al., 2016).  

Further analysis showed that increased N rates increased bacterial orders (e.g., Bacillales, 

Rhodocyclales, and Nitrosomonadales) and genes associated with various parts of the N 
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cycle (e.g., assimilatory nitrate reduction, nitrification, and denitrification) yet it was 

undetermined whether increased microbial abundance was due to high N rates, or to 

increased root exudate production (Zhu et al., 2016).   

Looking at the fungal fraction of the microbiome, Gdanetz and Trail (2017) found 

Dothidiomycetes, Leotiomycetes, and Sordariomycetes to be the predominant classes 

regardless of whether they were subjected to organic or conventional management 

practices.  Previous work utilizing clone libraries of ITS1/2 rDNA found Sodariomycetes 

and Leotiomycetes as predominant fungal classes in the wheat root microbiome (Kwaśna 

et al., 2010).  Interestingly, a culture-based study on the wheat root microbiome, 

rhizosphere, and bulk soil of wheat grown in various production systems found patterns 

in the predominant members of the fungal fraction of the microbiome similar to the 

aforementioned studies (Lenc et al., 2015). Applications of various fungicides commonly 

used to control wheat pathogens decreased fungal community richness and evenness of 

wheat grown in two different climates in Sweden (Karlsson et al., 2014). 

 

EXISTING KNOWLEDGE ON THE TURFGRASS MICROBIOME 

 Golf course putting greens, due to their high input management requirements and 

low organic content root zone, have been thought of as inhospitable for microorganisms 

(Hodges, 1990; Nunan et al., 2003; Ranjard et al., 2000).  However, microbiome research 

is increasingly showing that turfgrasses host large and diverse microbial communities 

(Beirn et al., 2016; Crouch et al., 2017; Zhang et al., 2017).  Through selective media 

culturing, it was found that levels of bacteria, fungi, and actinomycetes in the constructed 

rootzone of a creeping bentgrass putting green were found to be similar to levels found in 
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native soils (Mancino et al., 1993).  In a similar study on creeping bentgrass putting 

greens, Karp and Nelson (2004) found that bacterial communities of sand-based 

rootzones showed higher overall diversity and more Gram-positive species.  Utilizing 

several different selective media for enumerating colony forming units (CFUs) of 

bacteria, Gram-negative bacteria, fluorescent pseudomonads, fungi, actinomycetes, and 

Bacilllus spp. in the rhizosphere of newly established putting greens, Bigelow et al. 

(2002) observed that microbial populations increased rapidly.  For example, general 

bacteria had populations around 106 CFUs g-1 dry soil at the initial sampling date, and 

after six months the populations reached higher than 108 CFUs g-1 dry soil (Bigelow et 

al., 2002).  Similarly, microbial diversity, examined through substrate use pattern and 

PLFA, was found to be similar in turfgrasses of varying age (e.g., 1, 6, 23, and 95-years 

old) and in a native pine rootzone (Yao et al., 2006).  The only exception being that one- 

and six-year old stands of turfgrass were less diverse than the native pine and older stands 

of turfgrass at a depth of 5-15cm; authors attribute this to a lower amount of organic 

matter in the younger turfgrass stand (Yao et al., 2006).  Roberts et al. (2017) isolated 

228 bacteria across 32 genera from the foliage of creeping bentgrass over the course of 

four years.  Beirn et al. (2016) used NGS to evaluate the bacterial and archaeal diversity 

of an annual bluegrass (Poa annua L.) putting green and found that even though the turf 

was subjected to intensive management for several years, the environment still hosted an 

extensive cohort of microorganisms, with 1.03 X 105 unique bacterial and archaeal OTUs 

observed (Beirn et al., 2016).  Additionally, an Illumina sequencing analysis of the effect 

of perennial ryegrass establishment on soil bacterial and fungal communities revealed 

increased bacterial and fungal diversity in turfgrass soil than vacant land soil (Zhang et 
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al., 2017).  While all but four bacterial phyla identified were shared between the turfgrass 

and vacant land soils, Acidobacteria and Proteobacteria were present at relative 

abundances 14.9% and 20.7%, respectively, higher in the turfgrass soil (Zhang et al., 

2017).    

While knowing that turfgrass can host large and diverse microbial communities is 

valuable, it is even more important to understand how management practices may impact 

these microbial communities.  Although management practices applied to sports turf are 

aimed at increasing turf aesthetics and playability, is possible that these practices are also 

influencing plant-associated microbial communities.  Cole and Turgeon (1978) observed 

that eight-year old Kentucky bluegrass plots treated with the herbicide bandane contained 

significantly more bacteria than non-treated control plots, whereas no differences in 

bacterial populations were observed in plots treated with calcium arsenate.  In a three-

year study by Smiley and Craven (1979), 15 different pesticides were evaluated for their 

impacts on culturable microbial communities associated with a two-year-old stand of 

Kentucky bluegrass (Poa pratensis L.).  Smiley and Craven observed that combination 

products (i.e., fungicide active ingredient mixtures) reduced fungal populations while 

increasing bacterial communities, whereas single active ingredient applications had 

minimal effects on both communities (1979).  Similarly, in a culture-based study by 

Doherty et al. (2017), microbial communities inhabiting a creeping bentgrass putting 

green phyllosphere were resilient to repeated applications of five different fungicides. 

While there were some instances where individual microbial groups were affected by 

some fungicides, the overall impact over the growing season was very minimal (Doherty 

et al., 2017).  Conversely, in a one-year old sand-based putting green, a DGGE analysis 
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of bacterial and fungal ribosomal RNA showed that chlorothalonil applications positively 

affected 5 bacterial clones, negatively affected 2 bacterial clones, and a rate dependent 

effect was seen on two fungal clones (Sigler and Turco, 2002).  

Fertilizer applications are frequently made to highly maintained stands of 

turfgrass, e.g. golf courses and athletic fields, and as such there is interest in what these 

frequent nutrient applications do to the microbiome of turfgrass. When looking 

specifically at denitrifying bacteria, Mancino and Torello (1986) found that applications 

of a nitrate fertilizer did not increase the number of denitrifying bacteria in a five-year-

old stand of Kentucky bluegrass.  On a creeping bentgrass putting green, applications of 

both water-insoluble and water-soluble N increased counts of fungi in the soil compared 

to a non-fertilized control, however, the water-soluble source increased fungal counts 

more (Mancino et al., 1993).  Additional research is needed to fully understand what 

selections turfgrass management practices are imposing on the microbiome. 

 

SUMMARY AND THESIS OVERVIEW 

 Microbiomes are an ever-increasing area of interest for scientific research, and the 

methods used for their investigation are rapidly evolving.  Early microbiome research 

was limited to culture-based methods, which may severely limit the community of 

microorganisms that researchers are able to detect.  This became an acknowledged 

limitation of culture-based work and researchers began working on new techniques for 

investigating microbial communities.  The currently favored method of investigating the 

microbiome of a host is next-generation sequencing, which allows for simultaneous high-

throughput sequencing of PCR amplicons from DNA regions of interest.  This method is 
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capable of generating millions of reads from multiple samples, from various organismal 

groups so long as primers are sufficiently developed.  New techniques have also provided 

the ability to simultaneously sequence samples (i.e., multiplexing), which exponentially 

increases the amount of data collected and provides researchers more statistical power in 

their analyses.   

 Turfgrass settings such as golf courses or athletic fields tend to have high 

management inputs, with fertilizers and pesticides being frequently applied to maximize 

turfgrass aesthetics and playability.  Previous research has provided some insight as to 

how these management practices may impact the turfgrass microbiome.  However, these 

studies have typically been limited to culture-based methods, which may have provided 

under-representations of the resident microbial populations.  Since much of the 

microbiome is not culturable using currently available technologies are we missing off-

target effects of management inputs on the resident microbiota? Or are these culturable 

constituents of the microbiome an adequate representation of the effects that management 

inputs have on the microbiome? 

 While it is important to thoroughly understand how management practices impact 

the turfgrass microbiome, baseline knowledge regarding the microbiota that compose the 

microbiome is needed.  By gaining deeper insight into the constituents of the turfgrass 

microbiome, we may discover novel microbes that can be utilized to promote plant health 

or combat turfgrass pathogens.  The temporal patterns in microbial communities may be 

important as well.  As turfgrass systems age, do they select for a microbiome that is 

primed for increasing turf vigor? Do pathogens have a threshold they need to pass in 
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order to cause disease? Can pathogens be mitigated by encouraging other microbiota 

during seasonal fluctuations?   

This thesis sets out to answer two basic questions regarding the turfgrass 

microbiome.  How do resident seed and soil microbiota influence the juvenile creeping 

bentgrass microbiome?  What are the temporal fluctuations in the turfgrass microbiome 

from seedling emergence through six months?  Understanding these basic metrics of the 

turfgrass microbiome will create a foundation for future work utilizing NGS 

technologies.  Moreover, gaining a better understanding of how the microbiome forms 

immediately following germination will provide a baseline for the next steps in 

harvesting the turfgrass microbiome for our own benefit as turfgrass managers.   
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Chapter 2. Elucidating the Influence of Resident Seed and Soil 
Microbiota on the Developing Creeping Bentgrass 
Microbiome 

 
ABSTRACT 

 Manipulation of the plant microbiome holds the potential to increase plant health 

and reduce disease by fostering relationships between plants and beneficial 

microorganisms.  However, we are limited in our knowledge in the members of the 

microbiome and their population dynamics.  This project was developed to gain a 

fundamental understanding of the influence of resident microflora inhabiting seed and 

soil exhibit on the juvenile microbiome, and how these communities evolve and mature 

following seedling emergence.  Utilizing a randomized-complete block experimental 

design creeping bentgrass (Agrostis stolonifera L. cv. “007”) seeds were planted into 

sterilized or non-sterilized soil, and grown under sterile conditions in a laminar flow hood 

for six weeks.  Samples of foliage and roots were taken at emergence, and at two, four, 

and six weeks post-emergence, and soil samples were taken at the end of the experiment.  

Environmental DNA was extracted, and used to generate PCR amplicons with bacterial 

16S and fungal ITS primers.  Amplicons were sequenced on the Illumina MiSeq, and 

sequences were analyzed with the DADA2, phyloseq, and vegan packages in R.   

Sequencing runs generated 3.32 x 107 reads, which filtered into 2,576 bacterial and 303 

fungal amplicon sequence variants (ASVs).  Proteobacteria and Eurotiomycetes 

dominated the bacterial and fungal ASVs, respectively.  Bacterial alpha-diversity was 

lowest at emergence, and no significant changes were observed in fungal alpha-diversity.  

Taxonomic profiling revealed introduction of two genera, Sphingomonas and 

Pseudomonas, from the seed used at planting.  These data show consistent microbiome 
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recruitment despite different soil treatments, highlighting the influence of plant host on 

the microbiome. 

 

INTRODUCTION 

Plant associated microbial communities, herein referred to as the plant 

microbiome, are complex entities that are intimately involved in many processes that 

directly impact plants.  Some of these processes include pathogenesis, nutrient 

availability and cycling within the soil, as well as the activation of plant defenses (Arias 

et al., 2005; Rodriguez et al., 2009; van der Heijden et al., 2008).  One area of 

considerable interest is the manipulation of the microbiome to reduce agronomic inputs 

and improve plant health (Bakker et al., 2012).  To date there have been few successful 

examples of microbiome manipulations employed to modify plant health.  Mendes and 

others observed that the whole soil microbiome in fields of sugar beets, Beta vulgaris L. 

cv. “Alligator”, is responsible for reducing crown and root rot incidence caused by 

Rhizoctonia solani Kühn  and demonstrated that this microbiome-mediated suppression is 

transferrable to susceptible soils (Mendes et al., 2011).  The soil microbiomes selected for 

by early- or late-flowering genotypes of Arabidopsis thaliana L. were used to inoculate 

soil used to grow three different genotypes of A. thaliana (Ler, Be, RLD) and Brassica 

rapa (Panke-Buisse et al., 2014).  The Be and RLD genotypes of A. thaliana and B. rapa 

exhibited shifts to early- or late-flowering based on the source of the microbiome used as 

inoculation (Panke-Buisse et al., 2014).  Recently a bacterial endosymbiont of 

Rhizoctonia solani AG 2-2IIIB was discovered that enhanced the virulence of the 

pathogen when inoculated onto creeping bentgrass (Obasa et al., 2017).  
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 Understanding the driving factors behind microbiome recruitment is essential if 

successful and reproducible microbiome manipulation is ever to be achieved.  Plant 

compartment, host genetics, geographic location, season, and management practices, 

have all been shown to influence the plant microbiome to varying degrees and have 

complicated research efforts (Edwards et al., 2015; Gdanetz and Trail, 2017; Lenc et al., 

2015; Lundberg et al., 2012; Mendes et al., 2014; Peiffer et al., 2013).  For example, 

Gdanetz and Trail (2017) found that wheat (Triticum aestivum L. cv. “25R39”) 

microbiomes grown under organic or conventional practices were similar.  However, 

Lenc et al. (2015) did find significant differences in the winter wheat (T. aestivum L. cv. 

“Zyta”) root, rhizosphere, and bulk soil microbiomes under organic, integrated, 

conventional, and monoculture management strategies.  However, within each 

management strategy the crop rotations differed, which may have been an influencing 

factor on the microbial community composition.  Environmental changes are also shown 

to impact microbial communities.  Beirn et al. (2016) documented significant differences 

in the total archaeal and bacterial communities inhabiting the soil of a Poa annua L. 

putting green over the course of one year (11 June 2014 through 3 June 2015).  Seasonal 

variations were also observed in the microbial biomass of both warm- and cool-season 

turfgrass soils, with lower biomass observed in September while higher biomass was 

observed in May and December (Yao et al., 2011). In their analysis, the authors 

speculated that seasonal differences were driven by competition for nitrogen between 

microbes and turfgrass (Yao et al., 2011), yet additional research is needed to better 

define the details of these plant-microbes interactions.  
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 Niches, or the fit of a species living under specific environmental conditions 

(Pocheville, 2015), may be an additional driving factor in community assemblages.  

Niche theory suggests that variation in communities allows for partitioning of limited 

resources between competing organisms, fundamentally based upon the ecological traits 

differ among species within a community (Leibold and McPeek, 2006), and predict that 

changes in the composition of a community, microbial or otherwise, are driven by 

changes in environmental variables (Jongman et al., 1995).  When competing for multiple 

limited resources different organisms have different competitive capabilities for each 

resource, thus resulting in multiple species coexisting through utilization of these 

resources (Tilman, 1982; Tilman and Pacala, 1993).    

 Until recent years, previous research of the turfgrass microbiome has been limited 

to either culture-based techniques (Bigelow et al., 2002; Buck and Burpee, 2002; Cole 

and Turgeon, 1978; Mancino et al., 1993) or community fingerprinting techniques 

(Bartlett et al., 2008; Steer and Harris, 2000).  While these studies provide valuable 

insight into the turfgrass microbiome, culture-based methods may only capture about 0.1-

1.0% of the total microbial community (Amann et al., 1995; Torsvik and Øvreås, 2002).  

With community fingerprinting techniques, such as phospholipid fatty acid analysis 

(PLFA), taxonomic inference can be problematic, with errors sometimes stemming from 

biomarkers that may not always be exclusive to an organism (Frostegard et al., 2010).  

For example, the PLFA markers cys17:0 and cy19:0 are typically associated with Gram-

negative bacteria, however these markers can be found in large quantities in a number of 

Gram-positive bacteria (Schoug et al., 2008). 
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Successful implementation and lowered costs associated with next-generation 

sequencing (NGS) technologies has increased accessibility to characterize entire 

microbial communities.  To date, published research utilizing NGS approaches to 

characterize the microbiome of turfgrass is limited to work by Beirn and others (2016), 

Crouch et al (2017) and Zhang et al. (2017).  As a result, our understanding of the 

developing turfgrass microbiome is still quite limited.  While previous research illustrates 

the significance of environmental factors on microbial composition, it is also likely that 

species and possible cultivar can have a significant impact as well.  One goal of 

microbiome research is to harness beneficial properties that can be exploited through 

management.  In plants, this may be reducing water, nutrient inputs, or even disease 

incidence.  But to develop management tools that harness the microbiome, it is essential 

to understand the community as it develops with the plant.  Therefore, this project was 

designed to determine 1) the influence that the microbiota inhabiting seed and soil exhibit 

on the developing creeping bentgrass (Agrostis stolonifera L. cv. “007”) microbiome and 

2) how the juvenile creeping bentgrass microbiome develops immediately following 

emergence from soil.  Identifying specific microbial groups that are associated with seed 

and the developing creeping bentgrass microbiome may provide an opportunity to 

influence the mature microbiome before final community niches are filled. 

 

MATERIALS & METHODS 

 Sterile Growth Conditions.  A sterile air growth environment was established 

using modified methods developed from Henry et al. (2006).  Briefly, creeping bentgrass 

plants were established from seed in a sterile air environment through the use of a 
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laminar flow hood (Purifier™ Clean Bench, Labconco, Kansas City, MO) utilized as a 

growth chamber for the experiment.  Lighting was provided on a 12-hour day-night cycle 

using fluorescent bulb lighting.  The experiment was performed in a central room with 

minimal airflow to minimize potential contaminants in the experiment.  Temperature was 

maintained at 23º C throughout the trial. 

 Growth medium was established as a uniform mixture of 85% sand and 15% 

sphagnum peat moss (sieved) to mimic specifications for putting green rootzone 

construction (USGA, 2018), hereafter referred to as the soil.  Sand was obtained from 

Egypt Farms White Marsh, MD, and peat was obtained from Premier Horticulture, Inc., 

Quakertown, PA.  For drainage of water, 50 ml polypropylene conical tubes (VWR, 

Radnor, PA) were modified by drilling a 6 mm hole in the bottom, and then autoclaved.  

The autoclaved modified conical tubes were filled to the top with soil.   

Our trial imposed two treatments, sterilized (i.e., autoclaved) and non-sterilized 

soil.  The sterilized soil treatment was achieved by autoclaving the soil filled conical 

tubes at 121º C for 30 minutes, three separate times, with 24 hours between each cycle.  

Sterility was confirmed by collecting water flow through and plating on multiple media 

in a Labconco Purifier Biosafety Cabinet (Labconco).  After autoclaving, 60 ml 

autoclaved DI H2O was run through the soil filled conical tubes.  Ten µl for the flow 

through was plated onto four different selective media using a flame sterilized bent glass 

rod: actinomycete isolation agar (VWR), acidified potato dextrose agar (pH 4.5) (Becton, 

Dickinson, and Co., Franklin Lakes, NJ), nutrient agar (Becton, Dickinson, and Co.) + 

1% sucrose, and King’s B medium (Becton, Dickinson, and Co.), to confirm that soil was 

sterilized.  An additional plate of each media was plated with the same autoclaved DI 
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H2O used to run through the conical tubes to serve as a control for the sterility 

confirmation.    

 Four replicates of each treatment (i.e., autoclaved vs. non-autoclaved soil) were 

placed into the laminar flow hood in a completely randomized design.  Using flame-

sterilized forceps, 25 seeds of creeping bentgrass (Seed Research of Oregon, Tangent, 

OR) were planted into the four replicate autoclaved and non-autoclaved soil treatments.  

All plants were irrigated daily with 6 ml of autoclaved DI H2O, and 6 ml of sterilized 

half-strength Hoagland’s solution (Hoagland and Arnon, 1950), made in the lab, was 

applied twice per week.  All irrigation events were delivered with a sterile 25 mL luer-

slip syringe (Beckton, Dickinson and Co.).  The entire experiment was repeated a second 

to generate additional data.   

Sampling and eDNA Extraction.  Using sterilized forceps, foliage and root 

samples were taken at initial seedling emergence, and at two, four and six weeks post-

emergence.  Foliage and roots were separated at the chlorophyll line and placed into 

individual sterile coin envelopes.  Sterile 1.5 ml microcentrifuge tubes (Fisher Scientific, 

Pittsburgh, PA) were filled to the 1.5 ml line with bulk soil from each replicate at the 

conclusion of each experimental run.  Seeds used at planting were also sampled for 

microbial analysis.  Immediately after collections were performed, all samples were 

maintained at -20º C (-4º F) to preserve microbial populations present at the time of 

sampling. 

 Environmental DNA (eDNA), which is DNA extracted from a whole 

environmental sample as opposed to a single organism, was extracted from all samples 

using commercially available kits.  Foliar and seed samples were extracted with the 
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DNeasy Plant Mini Kit (Qiagen, Gaithersburg, MD).  The DNeasy PowerSoil Kit 

(Qiagen, Gaithersburg, MD) was used for eDNA extraction from soil and root samples.  

Plant eDNA extractions consisted of an overnight incubation in 400 µl solution AP1, 

solution contained in the kit, at 65º C.  Following incubation, 2 microcentrifuge tube 

capfuls of 450 to 600-µm glass beads (Acros Organics, Morris Plains, NJ) were added 

and three runs on a FastPrep-24 (MP Biomedicals, Solon, OH) at 4.5 m/s for 25 seconds 

were completed, before implementing the guidelines set forth by the manufacturer’s 

protocol in the DNeasy Plant Mini Kit (Qiagen).  Initial incubation steps were determined 

empirically to increase overall yields (data not shown).  Soil and rhizosphere eDNA were 

extracted using a modified protocol provided by the DNeasy PowerSoil kit manufacturer, 

as initial tests with the manufacturer’s standard protocol resulted in poor yields (<10 

ng/µl), possibly due to low organic content in the soil.  An equal volume of 25:24:1 

chloroform:phenol:isoamyl alcohol pH 8 (VWR, Radnor, PA) was used to replace 200 µl 

of the solution in the PowerSoil Bead tube, followed by adding 0.25 g of soil and 60 µl of 

solution C1.  Vortexing was replaced with three runs on a FastPrep-24 (MP Biomedicals) 

at 4.5 m/s for 25 seconds.  The manufacturer’s protocol was then followed until the 

elution step where 60 µl of solution C6 was used for the elution of eDNA.   

Amplicon Generation and Sequencing Preparation.  Extracted eDNA was 

quantified using a Nanodrop 1000 (Thermo Fisher Scientific, Waltham, MA) and a Qubit 

fluorometer (Life Technologies, Grand Island, NY).  Based off Qubit quantification, all 

samples were diluted to 1.5 ng/µl for amplicon library generation, which was generated 

through a two-step PCR process. First, targeted PCR primers were used to amplify a 

specific gene region-of-interest, i.e., bacterial 16S or fungal ITS.  The bacterial 16S 
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ribosomal DNA V3-V4 hypervariable region was PCR amplified from bacteria using the 

Ba9F/Ba515Rmod1 primer pair (~500bp; Kittelmann et al., 2013; Weisburg et al., 1991).  

Fungal communities were characterized through amplification of the internal transcribed 

spacer region using the ITS3_KYO2-F/ITS4-R primer pair (~350 bp; Toju et al., 2012; 

White et al., 1990).  To the 5' end of each primer, an overhang adaptor sequence, which 

allows for integration of indices and Illumina sequencing adapters, was added.  The 

forward primer overhang sequence was 5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3' while the reverse primer 

overhang sequence was 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3'.  

Reverse primers were synthesized in four different versions with 0-3 mixed sequence 

bases (where N is any nucleotide) and combined into an equimolar mixture for use in 

subsequent PCR reactions to add diversity to the sequences, as low diversity libraries 

such as 16S and ITS amplicons do not sequence well on the Illumina MiSeq (Fadrosh et 

al., 2014).  Initial PCR reactions were performed using MangoTaq DNA Polymerase 

(BioLine, Taunton, MA) in 25 µL volumes containing 5X PCR buffer (BioLine), 0.2 mM 

of each dNTP (BioLine), 2 mM MgCl2 (BioLine), and 10 µM of each primer.  Cycle 

conditions were: 94ºC for 2 min, followed by 30 cycles of 94ºC for 1 min, 52ºC for 45 s, 

72ºC for 45 s, followed by a final extension at 72ºC for 5 min (Beirn et al., 2016).  PCR 

was confirmed with the QIAxcel Advanced system (QIAGEN, Gaithersburg, MD).  After 

PCR confirmation, 16S and ITS amplicons from the same sample were pooled and 

purified using the ZR-96 DNA Clean & Concentrator™-5 (Zymo Research, Irvine, CA).   

 The second PCR step was performed to add unique indices for each sample using 

the Nextera XT index kit v2 (Illumina, San Diego, CA), to enable multiplexing for 
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combining samples within a single sequencing run.  Indexing reactions were prepared in 

40 µl volumes containing 5X PCR buffer (BioLine), 2 mM MgCl2 (BioLine), 0.2 mM of 

each dNTP (BioLine), 5 µl of each Nextera index primer (Illumina), and 2.5 U 

MangoTaq DNA polymerase (BioLine).  The indices were incorporated with the 

following cycling conditions: 72ºC for 3 min, 95ºC for 30 s, followed by 12 cycles of 

95ºC for 10 s, 55ºC for 30 s, 72ºC for 30 s, followed with a final extension at 72ºC for 5 

min (Beirn et al., 2016).  Once indices were incorporated, libraries were cleaned using 

HighPrep PCR (MagBio Genomics, Gaithersburg, MD) and a modified protocol for 

targeted removal of sequence fragments less than 200 bp.  Fragment size and DNA 

concentration for each sample was calculated from data generated quantifications 

performed using the QIAxcel Advanced and Qubit fluorometer.  Libraries were 

normalized to 4 nM and combined to form a pooled amplicon library (PAL) for 

sequencing.  A 30% spike-in of PhiX control (Illumina) was added to increase the 

diversity of the sample.  PhiX and 4 nM PAL were denatured with an equal volume of 

0.2 N NaOH at room temperature for 5 min.  Once denatured PhiX and PAL were diluted 

further to 10 pM to optimize cluster density in the MiSeq run.  Immediately prior to 

loading the MiSeq the PhiX and PAL mixture was heat denatured at 95ºC for 5 min.  

These were then sequenced as paired-end reads (2x300) on the Illumina MiSeq platform 

with a 600 cycle MiSeq v.3 Reagent Cartridge (Illumina).  For both experimental runs of 

the entire trial, two additional technical replicates were performed from initial amplicon 

generation through MiSeq sequencing.  All read sequences were output in FASTQ 

format. 
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 Sequence Manipulation and Analysis.  Prior to bioinformatic analysis, non-

biological sequences (i.e., primers and Illumina adaptors) were removed from paired-end 

sequences using cutadapt 1.9.1 (Martin, 2011).  Within the cutadapt program, the ‘–p’ 

option was utilized to parse paired-end files together, failing of one end to pass filter 

resulted in removal of both ends from the output file to maintain matching reads in 

downstream analyses.  Following removal of non-biological sequences from paired-end 

files, DADA2 1.6 (Callahan et al., 2016) was used for denoising, joining of reads when 

appropriate, inference of amplicon sequence variants (ASVs), and taxonomy assignment 

within the R environment (R Core Team, 2017).  Bacterial reads were truncated to 275 bp 

to remove low quality bases at the end of reads.  Fungal reads were joined without 

trimming or truncation, as these manipulations can impact results due to the length 

variation of the ITS2 region.  Following removal of chimeric sequences from the dataset, 

taxonomy was assigned for bacteria using a DADA2 formatted release of the GreenGenes 

database v.13.8 (Callahan, 2016; McDonald et al., 2012) and for fungi using the UNITE 

general FASTA release v.7.2 (Kõljalg et al., 2013).  Any ASVs that were not identified 

by their respective databases were submitted to a BLAST query and were assigned 

taxonomy pending successful identification (i.e., 95-100% identity, low E-value, and 

repeated returns of same taxonomy).  Sequences identifications belonging to Plantae, 

Protista, chloroplast, or mitochondria were removed from the analysis. 

All taxonomic and statistical analyses were performed in the R statistical 

computing environment version 3.4.2, unless stated otherwise (R Core Team, 2017).  A 

p-value of £ 0.05 was considered significant when calculated, unless explicitly stated 

otherwise.  Graphics were generated using ggplot2 (Wickham, 2009), unless otherwise 
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stated.  Alpha diversity, i.e., species richness and evenness within samples, was assessed 

through the Shannon diversity index within the R package phyloseq (McMurdie and 

Holmes, 2013).  For alpha diversity metrics, no rarefaction was performed, as estimation 

of alpha-diversity metrics are not library-size dependent (McMurdie and Holmes, 2014).  

Differences in alpha diversity between samples was determined using nonparametric 

Kruskal-Wallis tests with the Benjamini-Hochberg correction applied for multiple 

pairwise comparisons using the dunn.test package in R (Dinno, 2017).  

Beta diversity, i.e., the change in diversity of species between samples, was 

calculated using Bray-Curtis dissimilarity matrices using the R package phyloseq 

(McMurdie and Holmes, 2013; Gardener, 2014).  Reads were scaled for beta diversity to 

account for any large differences in sequencing depth (>10x) (Weiss et al., 2017).  

Distance matrices were subjected to ordination analyses, permutational analysis of 

variance (PERMANOVA) was used to test community centroids, and homogeneity of 

variance to test community variance.  These were calculated using the ‘adonis’ and 

‘betadisp’ functions in the vegan package for R (Oksanen et al., 2017).   

 

RESULTS 

Amplicon Sequence Variants.  Sequencing of the bacterial 16S and fungal ITS 

amplicons resulted in 3.32 x 107 reads usable in downstream analyses.  Due to poor 

quality in reverse reads and minimal overlap, only forward reads of bacterial 16S 

amplicons were utilized in analysis.  These reads resulted in 3,126 ASVs, of which 2,705 

belonged to bacteria and 421 belonged to fungi, and after quality filtering the final ASV 

count was 2,576, with 2,273 bacteria and 303 fungi.  Foliar samples are included in 
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results only for visualization of the taxonomic composition of the microbial communities, 

as poor sequencing depth (<200) resulted in removal from statistical analyses.  Technical 

replicates were not different for each sample and were pooled.  Experimental runs are 

presented separately, as the analyses showed significance for both bacteria and fungi.   

Composition of Amplicon Sequence Variants. Bacterial ASVs were predominantly 

composed of Proteobacteria, Firmicutes, and Actinobacteria at 35%, 17%, and 13%, 

respectively.  Sixteen percent of bacterial ASVs were not identifiable below the kingdom 

level.  The majority of the Proteobacteria were comprised of Alphaproteobacteria (51%), 

with Gammaproteobacteria and Betaproteobacteria comprising 15% and 14%, 

respectively (data not shown).  On the family level, the family Microbacteriaceae made 

up 41% of all Actinobacteria in our samples (data not shown). Alicyclobacillaceae was 

the predominant Firmicute, making up 68% of the family (data not shown).   

Fungal ASVs were predominantly of the Eurotiomycete, Sordariomycete, 

Dothideomycete, and Tremellomycete classes, comprising 42%, 19%, 13%, and 10% of 

all fungal ASVs, respectively (Table 2).  Only six fungal ASVs were not identifiable at 

the class level (Table 2).  The most prevalent class, the Eurotiomycetes, were primarily 

comprised by the Penicillium genus making up 60% of the class (data not shown).  The 

Sordariomycetes were primarily comprised of the genus Trichoderma (69%) (data not 

shown).  The Dothideomycetes were comprised of the genera Mycosphaerella (31%), 

Cladosporium (17%), and Alternaria (14%) (data not shown).  Tremellomycetes were 

predominantly comprised of the genus Bullera at 51% (data not shown).  
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Table 1. Composition of Bacterial Amplicon Sequence Variants 

Phylum ASVs Assigned†  Percent of ASVs‡ 
Proteobacteria 818 35.99 
Firmicutes 391 17.20 
NA§ 380 16.72 
Actinobacteria 302 13.29 
Bacteroidetes 199 8.75 
Cyanobacteria 80 3.52 
Planctomycetes 28 1.23 
Acidobacteria 26 1.14 
Chloroflexi 10 0.44 
TM7 10 0.44 
Armatimonadetes 5 0.22 
Gemmatimonadetes 4 0.18 
Verrucomicrobia 4 0.18 
WPS-2 4 0.18 
Fibrobacteres 3 0.13 
Elusimicrobia 2 0.09 
FBP 2 0.09 
[Thermi] 1 0.04 
Chlorobi 1 0.04 
Fusobacteria 1 0.04 
Nitrospirae 1 0.04 
Spirochaetes 1 0.04 

†Number of ASVs assigned to the respective phylum. 
‡Percentage of ASVs assigned to the respective phylum. Not representative of relative 
abundances  

§NA indicates ASVs that could not be assigned taxonomy at the class level. 
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Table 2. Composition of Fungal Amplicon Sequence Variants 
Class ASVs Assigned† Percent of ASVs‡ 

Sordariomycetes 58 19.14 
Eurotiomycetes 130 42.90 
Dothideomycetes 41 13.53 
Tremellomycetes 33 10.89 
Mucoromycetes 20 6.60 
Microbotryomycetes 5 1.65 
Leotiomycetes 10 3.30 
NA§ 6 1.98 

†Number of ASVs assigned to the respective phylum. 
‡Percentage of ASVs assigned to the respective phylum. Not representative of 
relative abundances.  

§NA indicates ASVs that could not be assigned taxonomy at the class level. 
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Relative Abundances of Bacteria and Fungi. While individual bacterial ASVs 

were predominantly identified as Proteobacteria, the Firmicutes had higher relative 

abundances at ~8% in foliage and ~10-11% in roots (Fig. 1A).  Taxonomic composition 

of bacterial communities was similar between treatments at the phylum level (Fig. 1A).  

Bacterial communities had minimal shifts in relative abundance over the course of the 

experiment, as evidenced by taxonomic profiles appearing similar across time points 

(Supplementary Fig. 1).  Relative abundances exhibited the most fluctuations from 

emergence 4-weeks post emergence, with increases in Cryocola, Curtobacterium, 

Dolichospermum, Pseudomonas and Sulfobacillus, and decreases in Alicyclobacillus 

compared to two weeks post emergence (Supplementary Fig. 1). 

Non-sterile and sterile soil treatments were not significant, although a higher 

relative abundance of Tremellomycetes were observed in the sterile treatment (Fig. 1B).   

Figure 1. Relative abundances, calculated in phyloseq, of A) bacterial phyla and B) fungal classes 
associated with creeping bentgrass seed, foliage, roots, and bulk soil under sterile growing conditions. 
“Se”,”F”, “R” and “So” refer to “Seed”, “Foliage”, “Root” and “Soil”, respectively. 
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Eurotiomycetes had higher relative abundances (~15%) in root samples compared to 

foliar samples (~4-6%) (Fig. 1B).   Over time there were minimal shifts in the fungal taxa 

present (Supplemental Fig 2).  Mycospharella was the largest portion of the seed fungal 

communities at ~4% relative abundance, although, it was not detectable at any other 

sampling point except at six weeks post-emergence where it was detected only in the 

foliage at ~0.5% (Supplementary Fig. 2).  At two weeks post-emergence there was an 

increase in the relative abundance of Trichoderma, but these levels lowered at subsequent 

samplings (Supplementary Fig. 2).  Root samples from two weeks post-emergence on and 

soil samples had Penicillium at ~5% relative abundance (Supplementary Fig. 2).   

Diversity of Rhizosphere Bacterial and Fungal Communities.  Significant 

differences in bacterial alpha diversity were observed in the second experimental run, but 

not in the first.  In the second experimental run, samples taken at the time of leaf 

emergence had lower diversity than samples taken at 2 and 6 weeks, and diversity at 2 

weeks was statistically higher than at 4 weeks (Table 3) (Fig. 2A). These observations 

Figure 2. Alpha diversity, as measured through the Shannon diversity index calculated using 
phyloseq in R, of A) bacterial and B) fungal communities comprising the microbiome of creeping 
bentgrass grown under sterile conditions. Outliers indicated by orange points. 
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corresponded with an increase in genera present at low relative abundances from two 

weeks post emergence forward (Supplementary Fig. 2).  In both runs of the experiment, 

sample types were significantly different, with seed having the highest diversity, 

followed by soil, then by roots (Table 3) (Fig. 2A). Over the course of the experiment, 

fungal community alpha diversity was not significantly different in any treatment or at 

any time point in either experimental run (Table 3) (Fig. 2B).



 
 

 

Table 3. Alpha Diversity† Measures for Microbial Communities Associated with Creeping Bentgrass  
Grown Under Sterile Conditions 

  Bacteria Fungi 
Group 1  Group 2 Run 1 Run 2 Run 1 Run 2 

 
Kruskal-Wallis 

chi2‡ p-value§ 
Kruskal-Wallis 

chi2 p-value 
Kruskal-Wallis 

chi2 p-value 
Kruskal-Wallis 

chi2 p-value 
Treatment 3.372 0.190 3.136 0.210 1.834 0.400 0.496 0.780 

Non-Sterile Sterile 1.736 0.124 -1.317 0.141 1.320 0.280 -0.342 0.366 

Non-Sterile Control 0.241 0.405 1.514 0.195 0.026 0.490 0.686 0.739 

Sterile  Control 0.911 0.272 0.753 0.226 0.565 0.429 0.473 0.477 

Tissue 9.553 0.010** 20.504 0.001*** 3.284 0.190 9.785 0.010** 

Roots Seed -2.995 0.004** -3.775 0.001*** -0.783 0.325 -2.542 0.017* 

Roots Soil -1.324 0.093 -3.119 0.001*** -1.736 0.124 -2.269 0.018* 

Seed Soil 1.848 0.049* 1.639 0.051* -0.613 0.270 1.084 0.159 
Time 3.089 0.210 12.298 0.010** 2.331 0.310 0.591 0.900 

Emergence 2 Weeks - - -3.278 0.003** - - -0.762 1.000 

Emergence 4 Weeks - - -1.228 0.151 - - -0.471 0.957 

Emergence 6 Weeks - - -2.478 0.020* - - -0.377 0.706 

2 Weeks 4 Weeks -1.738 0.123 1.999 0.046* -1.504 0.199 0.276 0.470 

2 Weeks 6 Weeks -0.946 0.258 0.800 0.212 -0.370 0.356 0.373 0.532 

4 Weeks 6 Weeks 0.792 0.214 -1.199 0.138 1.086 0.208 0.094 0.463 
†Alpha diversity, calculated as Shannon’s diversity index using phyloseq in R. 
‡ Chi2 test statistic calculated through Kruskal-Wallis tests using dunn.test in R. 
§p-values corrected using Benjamini-Hochberg correction for multiple comparisons. 
* Significant at the 0.05 probability level.  
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level. 
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Principle component analyses on Bray-Curtis distance matrices showed 

clustering, to varying degrees, based on soil treatment (Fig 3).  Soil and root samples 

consistently clustered separately from seed samples (Fig. 4).  In experimental run 2, 

within each time point, clustering of bacterial communities became closer as time 

progressed (Fig 4).  PERMANOVA tests of fungal beta diversity revealed that in both 

runs of the experiment, treatments and tissue type had significantly different centroids, 

with significant tests of homoscedasticity only for tissue type (Table 4).  Across both runs 

of the experiment, sample type and sampling time had significantly different centroids 

within sterile and non-sterile soil treatments (Table 4).  Dispersion tests were significant 

for sampling time within the non-sterile treatment of experimental run 1, and for tissue 

type within both treatments for run 2 (Table 5).  Treatments had significantly different 

centroids within roots and soil in experimental run 2, with a significant dispersion test 

only for treatment within soils.  

PERMANOVA testing of bacterial beta diversity revealed that treatments and 

sampling times had significantly different centroids for both runs of the experiment 

(Table 1).  Dispersions tests were significant for sampling times in both runs of the 

experiment, as well as for treatments in run 2.  Additionally, bacterial beta diversity was 

significantly different across tissue types in the second run of the experiment, with a 

significant homoscedasticity test (Table 1).  Within treatments, tissue type and sampling 

times had significantly different centroids.  Tests of homoscedasticity were significant for 

tissue and time within treatment, except for sample type and time within the sterile 

treatment of experimental run 1 (Table 2).  Within roots, treatments had significantly 

different centroids across both runs, and sampling times had significantly different 
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centroids in run 2 (Table 2).  Homoscedasticity was only significant for sampling time 

within roots (Table 2).  In run 2 of the experiment treatments had significantly different 

centroids within soil (Table 2).  

  

Experimental Run 1 Experimental Run 2 

Experimental Run 1 Experimental Run 2 

Figure 3. Principal component analysis, completed using phyloseq in R, of Bray-Curtis distance 
matrices, calculated in phyloseq, of A) bacterial and B) fungal communities of creeping bentgrass 
grown under sterile conditions. Point shape and color are indicative of tissue sampled and soil 
treatment, respectively. 
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Experimental Run 2 Experimental Run 1 

Experimental Run 1 Experimental Run 2 

Figure 4. Principal component analysis, completed using phyloseq in R, of Bray-Curtis distance 
matrices, calculated in phyloseq of A) bacterial and B) fungal communities of creeping bentgrass 
grown under sterile conditions. Point shape and color are indicative of tissue sampled and time 
sampled, respectively. 
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† Beta diversity metrics calculated as Bray-Curtis dissimilarity matrices using phyloseq in R. 
‡Permutational analysis of variance p-value calculated using vegan in R. 
§Dispersion tests used to test community variances, p-values calculated using vegan in R.  
* Significant at the 0.05 probability level.  
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level. 

Table 4. Centroid and Dispersion Testing of Beta-Diversity† Metrics of 
Microbial Communities Associated with Creeping Bentgrass Grown 

Under Sterile Conditions  
 Bacteria 
 Run 1 Run 2 

Beta-Diversity 
PERMANOVA 

p-value‡ 
Dispersion 

p-value§ 
PERMANOVA 

p-value 
Dispersion 

p-value 

Treatment 0.033* 0.090 0.001*** 0.019* 

Tissue 0.974 0.685 0.001*** 0.013* 

Time 0.001*** 0.019* 0.001*** 0.002** 

  Fungi 
Treatment 0.002** 0.304 0.001*** 0.214 

Tissue 0.001*** 0.001*** 0.001*** 0.001*** 

Time 0.812 0.211 0.189 0.701 
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Table 5. Centroid and Dispersion Testing of Beta-Diversity† Within 
Groupings 

  Bacteria 
  Run 1 Run 2 

  
Group 
Within 

PERMANOVA 
p-value‡ 

Dispersion 
p-value§ 

PERMANOVA 
p-value 

Dispersion 
p-value 

Sterile Tissue 0.002** 0.285 0.001*** 0.006** 
Sterile Time 0.001*** 0.474 0.001*** 0.019* 
Non-Sterile Tissue 0.001*** 0.003** 0.001*** 0.009** 
Non-Sterile Time 0.001*** 0.062 0.001*** 0.216 

Root Treatment 0.041* 0.191 0.076 0.505 
Root Time 0.97 0.693 0.001*** 0.001*** 
Soil Treatment 0.223 0.299 0.001*** 0.287 
  Fungi 
Sterile Tissue 0.002** 0.076 0.001*** 0.001*** 
Sterile Time 0.019* 0.275 0.004** 0.097 
Non-Sterile Tissue 0.003** 0.101 0.001*** 0.009** 
Non-Sterile Time 0.008** 0.001*** 0.001*** 0.462 
Root Treatment 0.023* 0.85 0.024* 0.166 
Root Time 0.826 0.231 0.178 0.712 
Soil Treatment 0.1667 0.208 0.014* 0.098 

† Beta diversity metrics calculated as Bray-Curtis dissimilarity matrices using phyloseq in R. 
‡Permutational analysis of variance p-value calculated using vegan in R. 
§Dispersion tests used to test community variances, p-values calculated using vegan in R.  
* Significant at the 0.05 probability level.  
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level. 
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DISCUSSION 

 The goal of this project was to gain a thorough understanding of how the creeping 

bentgrass microbiome develops following seeding.  More specifically, the investigation 

centered on what influences resident microbial populations play on the developing 

creeping bentgrass microbiome, and if there is preferential recruitment of certain 

organisms.  To that end, this research project sought to determine what influence resident 

seed and soil microbiota exhibit on the microbiome assemblage in the developing plant, 

and how the juvenile microbiome forms over initial growth stages (i.e., 6 weeks) 

following seedling emergence.  Bacterial communities associated with seeds have the 

potential to increase germination and seedling growth.  For example, six plant growth 

promoting rhizobacteria (Pseudomonas putida R-168, P. fluorescens R-93, P. fluorescens 

DSM 50090, P. putida DSM291, Azospirillum lipoferum DSM 1691, and A. brasilense 

DSM 1690) were evaluated for their impacts on maize (Zea mays L. cv, “SC 647”) 

seedling germination and growth following inoculation of seed with a single bacterial 

strain.  The authors found that all tested bacteria, except A. lipoferum DSM1691, 

increased seed germination by up to 18.5% compared to the control and all bacterial 

inoculants increased seedling fresh weight compared to the control (Gholami et al., 

2009).  Similarly, volatile organic compounds released by Bacillus amyloliquefaciens 

IN937a and B. subtilis GB03 significantly increased total leaf surface area of 2-day old A. 

thaliana seedlings growing in petri dishes, with a center partition separating the bacteria 

and plants, filled with solid half-strength Murashige and Skoog salt medium (Ryu et al., 

2003).  Fungi have exhibited benefits to seedling development as well.  For example, 

perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) 
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seeds from parent plants infected by fungal endophytes exhibited significantly higher 

germination than seeds from uninfected parent plants (Clay, 1987).  Understanding the 

microbiome as it develops in concert with the plant host could allow for the development 

of management strategies to harness existing microbiome inhabitants to increase seedling 

germination and growth.  

 The bacterial communities in this controlled environment study primarily 

belonged to the Proteobacteria, Firmicutes, and Actinobacteria.  In several field studies of 

the wheat microbiome, the same dominant bacterial phyla were observed (Donn et al., 

2015; Gdanetz and Trail, 2017; Ofek et al., 2014).  In the soil of a Poa annua putting 

green the predominant bacterial phyla were identified as Proteobacteria and 

Acidobacteria (Beirn et al., 2016).  Using PCR restriction profile analysis of 16S rDNA 

extracted from bulk soil, rhizosphere soil, and washed roots of L. perenne and Trifolium 

repens L. showed that plant roots have a selective effect towards Gammaproteobacteria 

and a dominance of Pseudomonas (Marilley and Aragno, 1999). Although phylum level 

identification is an extremely broad classification and covers an immense number of 

organisms, the consistent dominance of Proteobacteria across many studies may reflect a 

preferential recruitment of members of this phylum in the plant microbiome.  As such 

there is potential that introduction of beneficial bacteria from the Proteobacteria phylum 

may prove to be more successful than bacteria from other phyla, though future research 

would need to confirm this hypothesis. 

 Within the Proteobacteria there are several organisms of interest when 

considering enhancing plant health and vigor.  The Burkholderia genus contains species 

which are known to produce antibiotic compounds (Pidot et al., 2014), which can 
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potentially be utilized to combat plant pathogens.  Additionally, the bacterial family 

Sphingomonadaceae contains plant pathogen antagonists, plant growth promoters, and 

members capable of being utilized in bioremediation (Glaeser and Kampfer, 2014).  It is 

important to note that not all Proteobacteria are beneficial, and some are prominent plant 

pathogens.  Some species within the genus Bacillus, which is in the Firmicutes, are 

known to be plant growth promoters.  Two species of note, B. amyloliquefaciens and B. 

subtilis, have both been shown to be successful plant growth promoters (Ryu et al., 

2003).  Actinobacteria are also known for their disease suppression, through antibiotics, 

lytic enzymes, hyperparasitism, competition, or host defense induction, and plant growth 

promotion, through increasing nutrient availability or secretion of plant growth regulators 

(El-Tarabily and Sivasithamparam, 2006; Palaniyandi et al., 2013).  Actinobacteria can 

act as plant growth promoters, this promotion occurs through production of plant growth 

regulators, siderophores, nitrogen fixation, promotion of symbiosis with nitrogen fixing 

bacteria or mycorriza, phosphate solubilization, and stress alleviation (Palaniyandi et al., 

2013).  Although it is important to note that while there are beneficial organisms in these 

groups, there are increasing reports of bacterial problems in turf, such as the emergence 

of several species such as Acidovorax avenae, Xanthomonas translucens and Pantoea 

annanatis causing etiolation in turfgrass (Roberts et al., 2017). However, based upon the 

broad phylum level identification it is possible that the turfgrass microbiome in our study 

is already primed with beneficial bacteria that can be utilized to increase plant health. 

In this study, Ascomycota was the predominant fungal phylum, comprising 65% 

of all ASVs; however, three phyla—Ascomycota, Basidiomycota and Chytridiomycota—

and two subphyla—Kickxellomycota and Mucoromycota—were covered by all ASVs.  
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The abundance of Ascomycota is consistent with several previous studies (Schadt et al., 

2003; O’Brien et al., 2005; Hur et al., 2012).  For example, in a phylogenetic analysis of 

fungi living in the roots of tall oat-grass (Arrhenatherum elatius L.), 49 phylotypes were 

identified, with Ascomycota being the most prevalent at 25 of the 49 phylotypes 

(Vandenkoornhuyse et al., 2002).   

At class level, fungal communities were primarily made up of Dothideomycetes, 

Eurotiomycetes, Sordariomycetes and Tremellomycetes.  With the exception of the 

Tremellomycetes, other studies have found the same fungal classes to be the predominate 

the fungal compartment of the plant microbiome.  For example, the rhizosphere of wheat 

under conventional or organic management strategies and in different crop rotations 

showed consistent dominance of Dothideomycetes, Leotiomycetes, and Sordariomycetes 

(Gdanetz and Trail, 2017; Lenc et al., 2015).  Additionally, a survey of the epiphytic 

phyllosphere fungi across 57 tree species in a Panamanian tropical lowland rainforest 

showed Dothideomycetes, Eurotiomycetes and Sordariomycetes being the most prevalent 

fungal classes (Kembel and Mueller, 2014).  Considering no other study found 

Eurotiomycetes, predominantly Penicillium in our study, at the prevalence we did, it is 

possible this is an artifact of the controlled nature of our study providing limited 

inoculum entering the microbiome.   

Not surprisingly the Ascomycota were the most abundant fungal organisms in the 

study, considering it is the largest phylum of fungi with over 64,000 described species 

(Kirk et al., 2008).   The most prevalent class, the Eurotiomycetes, includes organisms 

that are used in fermentation processes in food production, xerophiles and psychrophiles, 

and those that produce toxic or useful secondary metabolites (Geiser et al., 2006).  
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Species within the genus Penicillium, which made up the overwhelming majority of the 

Eurotiomycetes, can be plant pathogens (Neri et al., 2006), plant growth promoters 

(Hossain et al., 2007; Whitelaw et al., 1997), or used to combat plant pathogens through 

antifungal compound production (Yang et al., 2008).  When thinking of combating plant 

pathogens and increasing plant health, Trichoderma, a member of the Sordariomycetes, is 

commonly used as a biocontrol for controlling some diseases (Howell, 2003).  In 

turfgrass systems Trichoderma harzianum strain 1295-22 has been shown to reduce 

disease severity due to pathogens such as Sclerotinia homoeocarpa, Rhizoctonia solani, 

and Pythium graminicola (Lo et al., 1997).  Similar to bacterial communities associated 

with plants, it is possible that the fungal fraction of the plant microbiome is already 

primed with beneficial organisms that could be utilized to improve plant health.  Future 

research projects could be aimed at determining methods of activating these native 

beneficial bacteria and fungi. 

Over the 6-week sampling period of this study, significant changes were observed 

in alpha diversity of bacterial communities at emergence, where it was lower than all 

other sampling points.  This difference may be driven by the shift in dominant members 

of the community between seeds, roots, and soil (Fig 1).  Similar patterns have been 

observed in the wheat microbiome, where bacterial alpha diversity was observed to be 

higher in root tissue at flowering and seed development growth stages compared to the 

vegetative growth stage (Gdanetz and Trail, 2017).  Similarly, wheat rhizosphere 

bacterial diversity was found to increase as the plants went from vegetative to 

reproductive growth (Donn et al., 2015).  A similar shift was documented from the 

microbiome of apple flowers, where alpha diversity increased from closed bud to bloom, 
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a 2-day time difference, followed by a stabilization at all other sampling points (Shade et 

al., 2013).  This shift from closed bud to bloom highlights how quickly diversity can 

change.  Interestingly, researchers observed the bacterial alpha diversity of a P. annua 

rhizosphere increases as time progressed (Beirn et al., 2016).  However, authors related 

differences to environmental changes across the season and not plant age, as the 

experiment was conducted on a 5-yr old stand of P. annua.  Given the controlled 

environment of our study, changes over time on the bacterial communities may also be 

driven by plant exudates, as plant exudates are shown to be a driving factor in 

rhizosphere composition (Micallef et al., 2009; Paterson et al., 2007; Shi et al., 2011).   

Unlike the observed shift in bacterial diversity, fungal alpha diversity did not 

significantly change over time.  Additionally, community centroids were similar over 

time, indicating that these communities are remaining similar across sampling times.  

This lack of change in alpha diversity is similar to what was found in the wheat 

microbiome, where fungal alpha diversity was similar over the 29 days between 

vegetative and flowering growth stages across leaf, stem, and root tissue (Gdanetz and 

Trail, 2017).  In organically managed wheat, root tissue had significantly higher α-

diversity than stem tissue did during the seed production growth stage (Gdanetz and 

Trail, 2017).  Long term studies may be required to determine if the diversity of plant-

associated fungal communities are changing, or if diversity remains constant as plant 

tissue matures. 

 Comparison of the initial seed-associated bacterial communities to that of the 

subsequent rhizosphere bacterial communities show an interesting trend.  The bacterial 

and fungal communities inhabiting the seed were predominantly Proteobacteria and 
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Dothideomycetes, respectively.  However, the bacterial communities of the soil were 

predominantly Firmicutes.  Interestingly, the plant tissue bacterial communities showed a 

shared dominance of Firmicutes and Proteobacteria.  Bacterial communities of the 

rhizosphere of maize grown on sterile sand and non-sterile soils all contained the same 

dominant OTUs, indicating the seed as a common source of inoculum (Johnston-Monje 

et al., 2016).  Based on these findings, the bacterial compartment of the plant microbiome 

can be influenced by the bacteria present on the seed.  However, further research is 

needed to confirm this under field conditions and to evaluate whether beneficial bacterial 

organisms can be successfully and consistently introduced into the plant microbiome 

through seed treatments.  

 Data presented here suggest that bacterial communities inhabiting seed play a role 

in determining which bacteria are present in the juvenile microbiome of creeping 

bentgrass.  However, fungi were less impacted by the resident seed microflora and more 

dependent upon what was present in the soil.  Only bacterial alpha diversity exhibited a 

significant change over time, with an initial increase following seedling emergence, 

whereas fungal community alpha diversity was not significantly changed over time.  

Based solely on these results, it is believed that fungal communities reached a climax 

community prior to 2 weeks post-emergence, while bacterial communities have not.  

Although, since various studies found bacterial alpha diversity to increase as plants 

matured it is possible that our short six-week sampling period may not have been long 

enough to capture any potential shifts in alpha diversity.  Future research implementing a 

longer sampling duration is necessary to confirm when and if a climax community is 

reached.  While this closed environment was successful in allowing us to determine the 
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specific influences of resident seed and soil microbiota on the developing creeping 

bentgrass microbiome, this same system limited incoming inoculum that would impact 

the microbiome.  Previous studies evaluating similar graminaceous hosts under field 

conditions have observed similar predominant members of bacteria and fungi as 

identified in the present study, however, more research is needed to elucidate if these 

communities are functioning in the same manner.  The work presented here provides a 

framework for developing turfgrass microbiome research.  A thorough understanding of 

the turfgrass microbiome establishment and what influence resident microflora exhibit is 

necessary if turfgrass scientists hope to manipulate the turfgrass microbiome to increase 

plant health and productivity. 
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Chapter 3. Mapping Temporal Shifts in the Creeping Bentgrass 
Microbiome 

 
ABSTRACT 

For turfgrass managers there is a constant need for chemical inputs to maintain 

high quality stands of turfgrass.  However, the indigenous turfgrass microbiome presents 

a potential reservoir of organisms that may be manipulated to increase plant health while 

decreasing the need for traditional management inputs.  This project was developed to 

determine how bacterial and fungal populations of the creeping bentgrass (Agrostis 

stolonifera L. cv. “007”) microbiome fluctuate over time.  Using a repeated measures 

design on replicate cone-tainers of creeping bentgrass planted into a 85% sand and 15% 

peat soil medium, bacterial and fungal communities were evaluated.  Samples of foliage 

and the rhizosphere were taken at seedling emergence and at two, four, and six months 

post emergence.  Environmental DNA was extracted, and bacterial 16S and fungal ITS 

amplicons were generated using PCR, and subsequently sequenced on the Illumina 

MiSeq as a 2 x 300 paired end run.  Sequence outputs were quality filtered, amplicon 

sequence variants (ASVs) inferred, and diversity and statistical analyses performed using 

the R packages DADA2, phyloseq, and vegan.  Sequencing runs generated 2.16 x 107 

quality-filtered reads, which resulted in 8,811 bacterial and 1,221 fungal ASVs.  

Taxonomic profiling of bacterial and fungal communities showed a prevalence of 

Cyanobacteria, Proteobacteria, Sodariomycetes, and Dothideomycetes.  Alpha diversity 

of bacterial communities increased from seedling emergence to two months and then 

stabilized. Lower bacterial alpha diversity was observed from foliage than in the 

rhizosphere.  No significant differences were observed in fungal alpha diversity over time 

or across plant tissue.  For both bacterial and fungal communities, ordination analyses 
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showed clustering by sampling time.  These results show bacterial and fungal 

communities are evolving over time as the turf matures. 

 

INTRODUCTION 

 Plant-associated microbial communities, or the microbiome, are complex entities 

that play a key role in determining plant health and productivity (Lambers et al., 2009; 

Berendsen et al., 2012).  Through manipulation of the plant microbiome it is possible to 

reduce incidence of plant disease (Andrews, 1992), increase agricultural productivity 

(Bakker et al., 2012), and reduce chemical inputs (Adesemoye et al., 2009).  There are 

several examples of improved plant growth as a direct result of microbiome 

manipulation.  Inoculating tomatoes (Solanum lycopersicum L. cv. “Juliet”) with plant 

growth promoting rhizobacteria (Bacillus amyloliquefaciens IN937a and B. pumilus T4) 

and the arbuscular mycorrhizal fungi Glomus intraradices allowed for a 25% reduction in 

fertilizer rate without limiting plant growth (Adesemoye et al., 2009).  Mendes and others 

observed that soils possessing higher abundance of specific bacterial taxa (i.e., 

Pseudomonadaceae, Burkholderiaceae, Xanthomonadaceae, and Lactobacillaceae) 

showed reduced incidence of crown and rhizosphere rot on sugar beets (Beta vulgaris L. 

cv. “Alligator”) caused by Rhizoctonia solani Kühn (2011).  Additionally, disease 

suppression was partially transferred to conducive soils through the incorporation of 

small quantities of suppressive soil (Mendes et al., 2011).   

 Establishment of plant microbiomes is much like that of the disease triangle, in 

that it requires three components working together over time: 1) a competitive group of 

microbes; 2) a compatible plant host; 3) the right environment for establishing and 
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maintaining the plant-microbial relationship(s).  The soil lying beneath plants is inhabited 

by an abundance of microbial life, with a gram of soil containing 108-109 bacteria and 

105-106 fungi (Sylvia et al., 2005).  Micallef and others showed that rhizosphere bacterial 

community succession progressed differently and in a repeatable manner when 

examining early stage development in two separate accessions of Arabidopsis thaliana L. 

(2009). Further analysis showed that communities converged as plants neared the end of 

their life cycle (~ 8 weeks in the study), which coincided with an expected decrease in 

rhizosphere exudate release, though root exudate quantities were not measured.  Seasonal 

variations impact the environment and consequently, have been observed to impact plant 

associated microbial communities.  Several warm- and cool-season turfgrasses were 

observed to have lower biomass in September and higher biomass in May and December, 

which may have been driven by competition for available N (Yao et al., 2011).  Beirn et 

al. also showed significant changes in the rhizosphere bacterial and archaeal communities 

of a Poa annua L. putting green when sampling over a 12-month period (2016).  Crouch 

et al. surveyed the rhizosphere bacterial communities before and after an extensive 

renovation of the soil and turfgrass at the National Mall in Washington D.C., and found 

that there was no appreciable change in the bacterial communities pre- or post-renovation 

(2017).   

Plant management practices have the ability to alter host physiology in addition to 

the microenvironment.  Research to understand how management practices impact the 

microbiome have produced mixed results.  Gdanetz and Trail (2017) observed the whole 

wheat (Triticum aestivum L.) microbiome, both bacteria and fungi across all plant organs, 

to be unaffected when comparing growth under conventional or organic management 
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practice (2017), while Hartmann et al. previously found significant differences in 

rhizosphere bacterial and fungal communities of winter wheat and grass-clover rotations 

under long term organic and conventional management (2014).  On a creeping bentgrass 

(Agrostis stolonifera L. cv. “A1”) putting green, Doherty et al. observed significant 

reductions in general bacterial, fungal, fluorescent Pseudomonad, and actinomycete 

populations in response to repeated fungicide applications over a two-year period (2017).  

In the first year of the study, fluazinam increased populations of actinomycetes and 

fluxapyroxad lowered populations of fluorescent Pseudomonads when compared to their 

non-treated controls (Doherty et al., 2017).  Interestingly, in the second year, fluazinam 

and fosetyl-Al decreased actinomycete populations, fluazinam also reduced bacterial 

populations, while chlorothalonil and pyraclostrobin lowered fungal populations when 

compared to their respective non-treated controls (Doherty et al., 2017).  Additional 

research is needed to further understand the plant-microbe interactions driving 

microbiome composition. 

Our understanding of the turfgrass microbiome is limited, although recent 

research is showing that location plays a significant role in the microbiome composition 

(Beirn et al., 2016; Crouch et al., 2017; Elliott et al., 2008).  One main goal of 

microbiome research is to utilize microbial groups in reducing agronomic inputs while 

simultaneously maintaining or improving plant health.  However, it is essential to 

understand these developing microbial communities before we can hope to consistently 

manipulate the microbiome to our benefit.  To that end this project was developed to map 

populations of the creeping bentgrass microbiome from seedling emergence through early 
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development, and to identify microbes that consistently associate with creeping 

bentgrass. 

 

MATERIALS & METHODS 

Growth Conditions. To minimize external influences on the turfgrass microbiome 

and ascertain temporal shifts in microbial populations driven by plant maturity, this 

experiment was conducted at the Research Plant Growth Facility at the University of 

Maryland, College Park, MD.  Seeds of “007” creeping bentgrass were planted into 

replicate SC10 cone-tainers (Stuewe & Sons, Inc., Tangent, OR) filled with a soil 

medium of 85% sand and 15% peat (v:v). Plantings were then placed within a greenhouse 

and maintained until 6 months following seedling emergence.  Experimental run 1 was 

initiated on 6 June 2016 and experimental run 2 was initiated on 10 August 2016.  

Greenhouse temperatures were maintained at 25ºC and 23ºC for experimental run 1 and 

2, respectively.  Irrigation was provided daily between the hours of 8 AM and 5:15 PM 

through a mister system within the greenhouse range every 15 min for 30 s, delivering 

165 ml of H2O per misting event.  Nutrients were provided every 14 d in the form of 10 

mL ½-strength Hoagland’s solution (Hoagland & Arnon, 1950). 

Sample Collection and Processing.  Using a repeated measures design, samples of 

foliage and rhizosphere were taken at emergence and at two, four, and six months post-

emergence.  To remove bulk soil, samples were shaken by hand and roots were combed 

through using flame-sterilized forceps.  Foliar and rhizosphere samples were separated at 

the chlorophyll line at sampling using flame sterilized forceps and placed into autoclaved 

coin envelopes (#3, Staples, Framingham, MA).  Samples were immediately placed on 
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ice to minimize microbial community degradation during transportation. Bulk soil was 

taken from each replicate cone-tainer at the conclusion of the experiment.  All samples 

were stored at -20ºC and processed within 24 h.  Environmental DNA (eDNA), i.e., the 

DNA of all organisms present in a sample, was extracted from foliar samples using the 

Qiagen DNeasy Plant Mini Kit (Qiagen, Gaithersburg, MD).  Samples were incubated 

overnight in solution AP1 (solution in DNeasy Plant Mini Kit) at 65º C (149º F), two 1.5 

ml microcentrifuge tube capfuls of 450-600 µm glass beads (Acros Organics, Morris 

Plains, NJ) were added to each sample, subjected to 3 consecutive runs on a FastPrep-24 

(MP Biomedicals, Solon, OH) at 4.5 m/s for 25 seconds, and extracted following the 

manufacturer’s protocol.  Rhizosphere and soil sample eDNA was extracted using the 

Qiagen PowerSoil kit (Qiagen).  A modified protocol for low biomass soils was provided 

by the PowerSoil kit manufacturer to increase yields in high sand content root zones.  An 

equal volume of 25:24:1 chloroform:phenol:isoamyl alcohol pH 8 (VWR, Radnor, PA) 

was used to replace 200 µl of the solution in the PowerSoil Bead tube, followed by 

adding 0.25 g of soil and 60 µl of solution C1.  Vortexing was replaced with 3 runs on a 

FastPrep-24 at 4.5 m/s for 25 seconds.  The manufacturer’s protocol was then followed 

until the elution step where 60 µl of solution C6 was used for elution of eDNA.   

DNA Manipulations.  Quality and concentration of extracted eDNA were 

measured using a Nanodrop 1000 (Thermo Fisher Scientific, Waltham, MA) and a Qubit 

fluorometer (Life Technologies, Grand Island, NY), respectively.  Extracted eDNA was 

then diluted to 1.5 ng/µl, based on Qubit measurements.  Amplicons were generated 

using a two-step PCR process: first, specific regions of interest were PCR amplified 

utilizing primers with overhang adapters; second, an additional PCR step was utilized to 
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add Illumina P5 and P7 sequence adaptors.  The bacterial 16S v3-v4 hypervariable region 

of ribosomal DNA was amplified using the primer pair Ba9F/Ba515Rmod1 (~500bp; 

Kittelmann et al., 2013; Weisburg et al., 1991).  The fungal ITS2 region was amplified 

using the ITS3_KYO2/ITS4-R primer pair (~350bp; Toju et al., 2012; White et al., 

1990).  Prior to primer synthesis overhang adaptor sequences, used for integration of 

indices and Illumina sequencing adaptors, were added to the 5’ end of each primer.  

Forward primers overhang sequences were 5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3', while reverse primer 

overhang sequences were 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-

3'.  Reverse primers were synthesized with 0-3 mixed sequence bases (where N is any 

nucleotide), and combined into an equimolar mixture for subsequent PCR reactions to 

increase sequencing diversity.  All PCR reactions were performed using MangoTaq DNA 

Polymerase (BioLine, Taunton, MA) in 25 µL volumes containing 5X PCR buffer 

(BioLine), 0.2 mM of each dNTP (BioLine), 2 mM MgCl2 (BioLine), and 10 µM of each 

primer.  Cycle conditions were: 94ºC for 2 min, followed by 30 cycles of 94ºC for 1 min, 

52ºC for 45 s, 72ºC for 45 s, followed by a final extension at 72ºC for 5 min (Beirn et al., 

2016).  Amplicon production was confirmed with the QIAxcel Advanced system 

(Qiagen), then amplicons for each sample were pooled and purified using the ZR-96 

DNA Clean & Concentrator™-5 (Zymo Research, Irvine, California).   

Indices were added to the purified amplicon libraries using the Nextera XT index 

kit v2 (Illumina, San Diego, CA) to enable multiplexing of many samples in a single 

MiSeq cartridge.  Indexing reactions were prepared in 40 µl volumes containing 5X PCR 

buffer (BioLine), 2 mM MgCl2 (BioLine), 0.2 mM of each dNTP (BioLine), 5 µl of each 
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Nextera index primer (Illumina), and 2.5 U MangoTaq DNA polymerase.  The indices 

were incorporated with the following cycling conditions: 72ºC for 3 min, 95ºC for 30 s, 

followed by 12 cycles of 95ºC for 10 s, 55ºC for 30 s, 72ºC for 30 s, followed with a final 

extension at 72ºC for 5 min (Beirn et al., 2016).  Indexed libraries were cleaned using 

HighPrep PCR (MagBio Genomics, Gaithersburg, MD) with a modified protocol for 

targeted removal of any sequence fragments less than 200 bp.  The QIAxcel Advanced 

(Qiagen) and Qubit fluorometer (Life Technologies) were used to determine fragment 

size and DNA concentration for each purified library.  All libraries were then normalized 

to 4 nM and pooled into a single pooled amplicon library (PAL).  PhiX control (Illumina) 

was spiked into the PAL at 30% final volume.  The PAL and PhiX solution was 

denatured with an equal volume of 0.2N NaOH at room temperature for 5 min.  Once 

denatured the solution was further diluted to 10 pM for optimal cluster density in the 

MiSeq run.  Immediately prior to loading the MiSeq, the PAL and PhiX mixture was heat 

denatured at 95ºC for 5 min, and subsequently put onto ice.  Sequencing was performed 

as a paired-end (2x300) run on the Illumina MiSeq platform with a 600-cycle MiSeq v.3 

Reagent Cartridge (Illumina).  Two additional technical replicates for both experimental 

runs were performed identically from amplicon generation through sequencing on the 

Illumina MiSeq.  All sequences were output in FASTQ format. 

Sequence Analysis. Non-biological sequences were removed from paired-end 

sequences using cutadapt 1.9.1 (Martin, 2011).  Within the cutadapt program, the “-p” 

option was utilized to parse paired-end files together, thereby maintaining matching reads 

between files for downstream analyses.  Following the DADA2 1.6 pipeline (Callahan et 

al., 2016), paired-end files were quality filtered, denoised, joined, amplicon sequence 
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variants (ASVs) were inferred, and taxonomy assigned.  Bacterial amplicon reads were 

trimmed to 275 bp to remove low quality tails.  Fungal reads were joined without 

trimming or truncation to avoid masking the length variation within the ITS2 region.  

Sequences determined to be chimeric by DADA2 were removed from the dataset.  Using 

a DADA2 formatted release of the GreenGenes v.13.8 database (Callahan, 

2016;McDonald et al., 2012) and the UNITE general FASTA v.7.2 release (Kõljalg et al., 

2013), taxonomy was assigned for bacteria and fungi, respectively.  For ASVs not 

assigned taxonomy in DADA2, their sequences were subjected to a BLAST query.  If 

identification was provided from BLAST, that taxonomy was added to the dataset.  Any 

ASVs assigned Plantae, Protista, chloroplast, or mitochondria were removed from the 

analysis. 

The R packages phyloseq (McMurdie and Holmes, 2013) and vegan (Oksanen et 

al., 2017) were utilized for diversity and statistical analyses within the R statistical 

computing environment v.3.4.2 (R Core Team, 2017).  Unless otherwise stated, a p-value 

of < 0.05 was considered significant.  Graphics were generated using the ggplot2 package 

(Wickham, 2009), unless otherwise stated.  Alpha diversity, or the species richness and 

evenness within samples, was measured using the Shannon diversity index.   No 

rarefaction was performed for estimation of alpha diversity metrics, as these metrics are 

not sample size dependent (McMurdie and Holmes, 2014).  Significant differences in 

alpha diversity between samples were determined using nonparametric Kruskal-Wallis 

test, with Benjamini-Hochberg correction for multiple pairwise comparisons applied 

using the dunn.test package (Dinno, 2017) in R. 
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 Beta diversity, or the change in diversity between samples, was calculated using 

Bray-Curtis dissimilarity matrices, where large values indicate that samples are less 

similar and smaller values indicate that samples have similar community structure 

(Gardener, 2014). To account for variation in sequencing depth (>10X), reads were 

scaled for beta diversity measures (Weiss et al., 2017).  Distance matrices were subjected 

to ordination analyses, permutational analysis of variance (PERMANOVA) for testing 

community centroids, and homoscedasticity tests to determine community variance. 

Ordinations were performed using phyloseq, and PERMANOVA and homogeneity of 

variance tests performed using the ‘adonis’ and ‘betadisper’ tests in vegan. 

 

RESULTS 

 Sequencing Output.  Sequencing of the bacterial 16S and fungal ITS amplicons 

resulted in 2.16 x 107 reads usable in downstream analyses.  Only forward reads of 16S 

were used in analysis of bacterial communities as poor reverse read quality resulted in 

minimal overlap.  The sequence reads contained 16,619 ASVs, with 11,454 bacterial and 

5,165 fungal.  Following removal of chimeras and contaminant ASVs, (i.e., chloroplast, 

mitochondria, Plantae, and Protista) 10,032 ASVs were identified, with 8,811 and 1,221 

ASVs belonging to bacteria and fungi, respectively.  Technical replicates were not 

different for each sample and were pooled together.  Experimental runs are presented 

separately as analysis showed significance for both bacteria and fungi. 
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Diversity of Bacterial and Fungal Communities.  For both bacterial and fungal 

alpha diversity, experimental run was not significant.  Therefore, experimental runs were 

combined for alpha diversity metrics.  Bacterial alpha diversity was lowest at seedling 

emergence, with no other differences between two, four, and six months (Table 6, Fig. 

5A).  Diversity of soil and rhizosphere bacterial communities was higher than the foliar 

bacterial communities (Fig. 5A).  No significant differences were observed in the alpha 

diversity of fungal communities within the study (Table 6, Fig. 5B). 

Experimental run was significant for both bacterial and fungal beta diversity.  

Within both experimental runs, PERMANOVA tests revealed significantly different 

centroids for both time and tissue sampled for bacterial and fungal communities (Table 

7), however, only tissue sampled had significant tests of homoscedasticity in bacterial 

communities.  Fungal communities had significant tests of homoscedasticity, except for 

sample time in the second experimental run (Table 7).  Ordination of bacterial data 

revealed clustering by time sampled for both experimental runs (Fig. 6A).  Similarly, 

A B 

Figure 5. Shannon diversity measures, calculated using phyloseq in R, for A) bacterial and B) fungal 
communities associated with greenhouse grown creeping bentgrass. Higher values indicate higher 
overall species richness and evenness.  Orange point indicate outliers.   
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ordination of fungal data showed clustering by time sampled in both experimental runs 

(Fig. 6B). 

Taxonomic Composition of Amplicon Sequence Variants.   Total bacterial ASVs 

were predominantly made up of members of the Proteobacteria (41%) and Actinobacteria 

(15.2%).  Only 5.9% of ASVs were not assigned taxonomy at the phylum level.  At the 

genus level, taxonomic identification was not possible for 64.09% of the ASVs.  The 

Proteobacteria were composed of Alphaproteobacteria (70%), with the next largest group 

A 

B 

Figure 6. Principal component analysis, completed using phyloseq in R, of Bray-Curtis distance matrices, 
calculated in phyloseq, of A) bacterial and B) fungal communities of experimental run 1 (left) and experimental 
run 2 (right). Values in brackets indicate percent variation explained.  
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being the Gammaproteobacteria (10%).  Actinobacteria were predominantly composed of 

the classes Actinobacteria (55%) and Acidimicrobiia (30%).   

Fungal ASVs were predominantly composed of Sordariomycetes (22.5%), 

Dothideomycetes (18.6%), and Eurotiomycetes (14.3%).  A large portion (i.e., 30.6%) of 

the total fungal ASVs could not be assigned taxonomy at the class level; however, when 

converted to relative abundances, these unassigned ASVs made up only 0.5% or less 

across samples throughout the course of the experiment (Fig. 7).  The Sordariomycetes 

were predominantly composed of Trichoderma (30.5%), Pleurophragmium (11.6%), 

Fusarium (11.2%), and Plectosphaerella (10.5%).  The most prevalent genus of the 

Dothideomycetes was Curvularia (14.9%), although 28.6% of Dothideomycetes could 

Figure 7. Relative abundances, calculated using phyloseq in R, of fungal classes associated with 
greenhouse grown creeping bentgrass. “F”, “R”, and “So” refer to “Foliar”, “Rhizosphere”, and 
“Soil” samples, respectively.  “Emrg”, “2 M”, “4 M”, and “6 M” refer to “Emergence”, “2 Month”, 
“4 Month”, and “6 Month” sampling times, respectively. 
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not be identified at the genus level.  Eurotiomycetes were predominantly composed of 

Penicillium (52%). 

Changes in Taxonomy Across Plant Tissue and Time.  Bacterial community 

abundance was dominated by Proteobacteria and Cyanobacteria over the six-month 

sampling period.  As the turfgrass matured, the relative abundance of Cyanobacteria 

decreased from ~2.25% to ~1% (Fig. 8).  The Cyanobacteria observed were 

predominantly members of the Nostocaceae family (Fig. 9).  A high relative abundance 

(~2.25%) of Burkholderia was observed at seedling emergence, which decreased to 

<0.25% relative abundance at all subsequent time points (Fig. 10).  Erwinia and Dyella 

Figure 8. Relative abundances, calculated using phyloseq in R, of bacterial phyla associated with 
greenhouse grown creeping bentgrass. “F”, “R”, and “So” refer to “Foliar”, “Rhizosphere”, and “Soil” 
samples, respectively.  “Emrg”, “2 M”, “4 M”, and “6 M” refer to “Emergence”, “2 Month”, “4 
Month”, and “6 Month” sampling times, respectively. 
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were also observed at seedling emergence, but were undetectable and less abundant at 

additional sampling points (Fig. 10).  Foliar samples had higher relative abundance of 

Sphingomonas compared to rhizosphere and soil samples (Fig. 10).     

Figure 9. Relative abundances, calculated using phyloseq in R, of bacterial families 
associated with greenhouse grown creeping bentgrass. “F”, “R”, and “So” refer to “Foliar”, 
“Rhizosphere”, and “Soil” samples, respectively.  “Emrg”, “2 M”, “4 M”, and “6 M” refer 
to “Emergence”, “2 Month”, “4 Month”, and “6 Month” sampling times, respectively. 
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Figure 10. Relative abundances, calculated using phyloseq in R, of bacterial genera associated 
with greenhouse grown creeping bentgrass. “F”, “R”, and “So” refer to “Foliar”, “Rhizosphere”, 
and “Soil” samples, respectively.  “Emrg”, “2 M”, “4 M”, and “6 M” refer to “Emergence”, “2 
Month”, “4 Month”, and “6 Month” sampling times, respectively. 
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Apart from the foliar samples at 2-months post-emergence, fungal communities 

were dominated by Sordariomycetes, followed by Dothideomycetes and Eurotiomycetes 

(Fig. 7).  The foliage at 2-months post-emergence had higher relative abundance of 

Dothideomycetes and lower relative abundance of Eurotiomycetes than all other samples 

(Fig. 7).  Genus level taxonomy revealed more nuances in the fungal populations than 

class level taxonomy.  Soil fungal communities were dominated by Pleurophragmium 

(~2.25% relative abundance) and Trichoderma (~1.25% relative abundance).  At seedling 

emergence there was an increase of Trichoderma (3% and 5% relative abundance in 

foliage and rhizosphere, respectively) and minimal levels of Pleurophragmium (~<0.1% 

relative abundance) (Fig. 11).  As time progressed Trichoderma continued to decrease 

until levels were below 0.25% relative abundance at six-months post-emergence (Fig. 

11).  The relative abundance of Pleurophragmium increased from 0-0.1% at emergence 

to 2-2.25% at six-months post-emergence (Fig. 11).  There was an increase of Curvularia 

(~1.5-1.75% relative abundance) at two-months post emergence, followed by a continual 

decrease to ~0-0.25% relative abundance (Fig. 11).  From 2 months forward the foliage 

consistently had about 1% relative abundance of Plectosphaerella (Fig. 11). 
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Figure 11. Relative abundances, calculated using phyloseq in R, of fungal genera associated 
with greenhouse grown creeping bentgrass. “F”, “R”, and “So” refer to “Foliar”, 
“Rhizosphere”, and “Soil” samples, respectively.  “Emrg”, “2 M”, “4 M”, and “6 M” refer to 
“Emergence”, “2 Month”, “4 Month”, and “6 Month” sampling times, respectively. 



 
 

Table 6. Microbial Community Alpha-Diversity Measures for Greenhouse Grown Creeping Bentgrass 

  Alpha-Diversity† 
  Bacteria   Fungi 

Group 1  Group 2     

 Kruskal-Wallis chi2‡ p-value§   Kruskal-Wallis chi2 p-value 

Tissue 17.98 0.001***  0.43 0.810 
Foliage Roots -3.00 0.002**  0.65 0.773 
Foliage Soil -3.79 0.001***  0.15 0.439 
Roots Soil -1.89 0.030*  -0.26 0.598 

Time 37.73 0.001***  4.62 0.330 

Emergence 2 Months -3.50 0.006**  -0.12 0.453 
Emergence 4 Months -4.13 0.001***  0.72 0.394 
Emergence 6 Months -4.17 0.001***  1.79 0.183 
2 Months 4 Months -0.63 0.292  0.84 0.403 
2 Months 6 Months -0.67 0.312  1.91 0.281 
4 Months 6 Months -0.04 0.483  1.07 0.472 

† Alpha diversity, calculated as Shannon’s diversity index using phyloseq in R. 
‡ Chi2 test statistic calculated through Kruskal-Wallis tests using dunn.test in R. 
§p-values corrected using Benjamini-Hochberg correction for multiple comparisons. 
* Significant at the 0.05 probability level.  
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level. 
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Table 7. Centroid and Dispersion Tests of Beta-Diversity† 
Metrics for Microbial Communities Associated with 

Greenhouse Grown Creeping Bentgrass 

 Bacteria 
 Run 1 Run 2 

 
PERMANOVA     

p-value‡ 
Dispersion 

p-value§ 
PERMANOVA   

p-value 
Dispersion 

p-value 
Tissue 0.022* 0.011* 0.001*** 0.003** 
Time 0.001*** 0.873 0.001*** 0.187 
 Fungi 
Tissue 0.010** 0.001*** 0.002** 0.005** 
Time 0.001*** 0.001*** 0.001*** 0.113 

†Beta diversity metrics calculated as Bray-Curtis dissimilarity matrices 
using phyloseq in R. 

‡Permutational analysis of variance p-value calculated using vegan in R. 
§Dispersion tests used to test community variances, p-values calculated 
using vegan in R. 

* Significant at the 0.05 probability level.  
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level. 
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DISCUSSION 

The goal of this project was to obtain an understanding of community dynamics 

of the developing creeping bentgrass microbiome following seedling emergence, and to 

determine the core of the microbiome.  Minimal shifts in bacterial community diversity 

were observed and no significant changes in fungal community diversity were evident 

over the six-month study.  Consistent bacterial community dominance from the 

Proteobacteria, Cyanobacteria, and Soradiomycetes was observed; whereas, fungal 

communities were predominantly the Dothideomycetes.  Ordination analyses revealed 

clustering by sample time, with sample time and tissue types all having significantly 

different centroids. 

Bacterial communities in our study were consistently dominated by members of 

the Proteobacteria and Cyanobacteria.  Within the Cyanobacteria, the Nostocaceae 

consistently dominated across sampled tissues and times.  Members of the Nostocaceae 

are capable of fixing N in specialized cells called heterocysts (Komárek, 2016), and are 

the most heavily studied Cyanobacteria for their heterocyst glycolipid content 

(Gambacorta et al., 1998).  Bacterial communities contained a large relative abundance 

(2-2.25%) of Burkholderia at emergence, yet these numbers diminished at subsequent 

sampling times.  Burkholderia have been shown to produce antibiotic compounds (Pidot 

et al., 2014), and may prove useful combating plant diseases, but these compounds are 

often only produced under high cell concentrations or nutrient limited conditions (Haas 

and Keel, 2003).  The Sphingomonadaceae, while exhibiting low relative abundance 

(~1%) can be antagonistic to plant pathogens, plant growth promoters, and 

bioremediators due to their capability to degrade xenobiotic and recalcitrant 
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(poly)aromatic compounds (Glaeser and Kampfer, 2014).  Additional research is needed 

to understand how these bacteria maintain dominance in the microbial community in 

order to promote plant beneficial properties in the future. 

Fungal communities in our study were dominated by Trichoderma at seedling 

emergence, yet were dominated by Pleurophragmium at 6 months.  Many of the 

described species of Pleurophragmium are found as saprobes on decaying organic 

material (D’Souza and Bahat, 2012; Luttrell, 1964; Kedsueb et al., 2008).  Additionally, 

some several genera are described as being hyperparasites of fungi within the Meliolales 

order (Luttrell, 1964).  Trichoderma species are well known for their use as a biological 

control agents to combat plant disease.  For example, in turfgrass systems Trichoderma 

harzianum 1295-22 has been used to reduce damage from Sclerotinia homoeocarpa, 

Rhizoctonia solani, and Pythium graminicola (Lo et al., 1997).  Another isolate of T. 

harzianum, T39, has been observed to control Botrytis cineria, Pseuperonospora 

cubensis, S. sclerotiorum, and Sphaerotheca fusca in cucumber under commercial 

greenhouse conditions (Elad, 2000).   

Cladosporium and Plecctosphaerella made up a smaller portion of the fungal 

community, but were still consistently present in plant tissue.  The Cladosporium genus 

contains a wide variety of organisms, including saprobes (i.e., fungi that feed off non-

living or decaying organic matter), fungicolous species (i.e., fungi growing on other 

fungi), and plant pathogens (Bensch et al., 2012).  One of the most prominent members 

of the Plectosphaerella genus is P. cucumerina, which is a necrotrophic fungus that 

colonizes its host and causes cell death (Gamir et al., 2012).  Taxonomic profiling reveals 

a microbiome inhabited by beneficial, detrimental, and neutral fungi.  Focusing future 
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research on promoting relationships between plants and beneficial fungi is critical to 

improving plant health. 

Over the course of the experiment the only change in alpha diversity was 

observed in bacterial communities, where diversity increased from seedling emergence to 

two months followed by a stabilization of diversity afterwards.  Although, with this study 

being in a controlled environment (i.e., a greenhouse) some factors influencing the 

microbiome development may have been attenuated (e.g., reduced water stress from 

consistent watering, limited temperature fluctuations) or omitted (e.g., weather events, 

minimal inoculum introduced to microbiome).  Investigations of soil microbial diversity 

over a turfgrass chronosequence (i.e., a set of sites that share similar attributes, but are of 

differing ages) observed that soil microbial community diversity, as measured through 

phospholipid fatty acid analysis and substrate use pattern, was similar at a depth of 0-5 

cm for 1-, 6-, 23-, and 95-year old stands of turfgrass (Yao et al., 2006).  Interestingly, 

the diversity at a sampling depth of 5-15cm was lower in the 1- and 6-year old turfgrass 

compared to the 2 older stands, which directly correlated to lower organic matter in the 

soil of the younger stands (Yao et al., 2006). However, community structure showed the 

23- and 95- year old turfgrass stands diverging from the 1- and 6-year old turfgrass stands 

(Yao et al., 2006). Using next-generation sequencing technologies Beirn et al. (2016) 

showed an increase in bacterial and archaeal diversity over the course of a year in the 

rhizosphere of a 5-yr old Poa annua L. putting green.  Increases in bacterial diversity 

have also been observed in wheat, as rhizosphere bacterial communities had higher 

diversity at flowering at seed development stages as compared to the vegetative growth 

stage (Gdanetz and Trail, 2017).  Using the higher resolution acquired with next-
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generation sequencing technologies we may be able to capture shifts in diversity previous 

methods missed.   

Unlike bacterial diversity, fungal diversity exhibited no significant changes over 

the course of the study or across plant tissue.  Consistent fungal diversity was also 

observed in wheat grown under field conditions (Gdanetz and Trail, 2017).  Moreover, 

research on the agave (Agave tequilana L.) microbiome also similarities in fungal 

diversity of rhizosphere and phyllosphere samples (Coleman-Derr et al., 2016).  

Considering multiple studies, under both controlled and field conditions, found no 

differences in rhizosphere or phyllosphere fungal diversity, there may be a rapid systemic 

colonization of plant tissue following seedling emergence.  Future research would benefit 

from utilizing multiple sampling points from seedling emergence to 24-48 hours post-

emergence to capture the state of fungal colonization of the newly emerged plant tissue. 

Ordination analyses revealed clustering of samples by the time when the samples 

were taken and tighter clustering as time progressed.  This could be due to communities 

reaching an equilibrium with turfgrass maturity.  In the 4- and 6-month samplings relative 

abundances of the Sphingomonadaceae, Cytophagaceae, Pseudanabeanaceae, 

Xanthomonadaceae, and Pleurophragmium appear to be stabilizing.  Previous research 

examining A. stoloniferea putting green rootzones in North Carolina showed that 

culturable communities of fluorescent pseudomonads, actinomycetes and Gram-negative 

bacteria became increasingly stable as the newly seeded putting greens matured over a 

23-month period (Bigelow et al., 2002).  Understanding what is driving this stabilization 

of microbiome populations could elucidate avenues for manipulating the microbiome to 

artificially select for desired microbes. 
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With one of the main goals of microbiome research being to increase plant-

beneficial microbe interactions, several factors may need to be overcome in order to 

consistently achieve these interactions.  Along with Bigelow et al. (2002) we observed a 

stabilization of bacterial communities as turfgrass plant matured.  This could hinder or 

enhance establishment of introduced beneficial microorganisms. A stabilization could 

indicate niche fulfillment has occurred and the top competitors have emerged as the 

predominant microbiome members.  Conversely, this stabilization could indicate reduced 

competition for an introduced organism to overcome.  However, further research would 

benefit from testing introduced biological organisms across a multitude of environmental 

conditions and geographical regions, thus maximizing inference for the organisms’ 

competitiveness.  Additionally, by surveying the microbiome of a site it may be possible 

to supplement naturally occurring populations of a beneficial microorganism with an 

applied organism, thus resulting in a synergistic increase in the desired microorganisms.  

Although, for practitioners surveying the microbiome would be a costly and time-

consuming endeavor, especially across large areas such as agricultural fields or all 18 

fairways on a golf course.  Therefore, development of targeted rapid testing methods 

would make this a more feasible implementation for practitioners. 

In summary, this work provides a framework for next-generation sequencing 

analyses of the turfgrass microbiome.  Our work illustrated that microbial communities 

associated with creeping bentgrass are diverse and resilient to change after seedling 

establishment.  Diversity of bacterial communities increased following emergence, and 

fungal community diversity did not change over the course of the experiment.  Dominant 

community members remained dominant over the six-month sampling period, and shifts 
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in taxonomic profiles were mainly driven by rarer species at low relative abundances.  To 

our knowledge this is the first project aimed at mapping the creeping bentgrass 

microbiome from establishment.  While we observed the same predominant bacterial and 

fungal members as field studies in both turf and additional graminaceous hosts, further 

research is needed to determine if these organisms are functioning in the same manner 

under field conditions.   
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APPENDIX 1 

Supplementary Figure 1. Relative abundances, calculated using phyloseq in R, of bacterial 
genera associated with creeping bentgrass grown under sterile conditions over time.  “F”, “R”, 
“So” and “Se” refer to “Foliar”, “Rhizosphere”, “Soil” and “Seed” samples, respectively.  
“Emrg”, “2 Wk”, “4 Wk”, “6 Wk” refer to “Emergence”, “2 Week”, “4 Week” and “6 Week” 
sampling times, respectively.    
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Supplementary Figure 2. Relative abundances, calculated using phyloseq in R, of 
fungal genera associated with creeping bentgrass grown under sterile conditions 
over time. “F”, “R”, “So” and “Se” refer to “Foliar”, “Rhizosphere”, “Soil” and 
“Seed” samples, respectively.  “Emrg”, “2 Wk”, “4 Wk”, “6 Wk” refer to 
“Emergence”, “2 Week”, “4 Week” and “6 Week” sampling times, respectively.    
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