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Technological advances in recent years have opened ways for easier creation of

spatial data. Every day, vast amounts of data are collected by both governmental

institutions (e.g., USGS, NASA) and commercial entities (e.g., IKONOS). This pro-

cess is driven by increased popularity and affordability across the whole spectrum of

collection methods, ranging from personal GPS units to satellite systems. Many col-

lection methods such as satellite systems produce data in raster format. Often, such

raster data is analyzed by the researchers directly, while at other times such data is

used to produce the final dataset in vector format. With the rapidly increasing supply

of data, more applications for this data are being developed that are of interest to

a wider consumer base. The increasing popularity of spatial data viewers and query

tools with end users introduces a requirement for methods to allow these basic users

to access this data for viewing and querying instantly and without much effort. In



our work, we focus on providing remote access to vector-based spatial data, rather

than raster data.

We explore new ways of allowing visualization of both spatial and non-spatial

data stored in a central server database on a simple client connected to this server

by possibly a slow and unreliable connection. We considered usage scenarios where

transferring the whole database for processing on the client was not feasible. This is

due to the large volume of data stored on the server as well as a lack of computing

power on the client and a slow link between the two. We focus on finding an optimal

way of distributing work between the server, clients, and possibly other entities intro-

duced into the model for query evaluation and data management. We address issues

of scalability for clients that have only limited access to system resources (e.g., a Java

applet). Methods to allow these clients to provide an interactive user interface, even

for databases of arbitrary size, are also examined.
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Chapter 1

Introduction

Technological advances in recent years have opened ways for easier creation of spatial

data. Every day, vast amounts of data are collected by both governmental institutions

(e.g., USGS, NASA) and commercial entities (e.g., IKONOS). This process is driven

by increased popularity and affordability across the whole spectrum of collection

methods, ranging from personal GPS units to satellite systems. Many collection

methods such as satellite systems produce data in raster format. Often, such raster

data is analyzed by the researchers directly, while at other times such data is used

to produce the final dataset in vector format. With the rapidly increasing supply of

data, more applications for this data are being developed that are of interest to a

wider consumer base. The increasing popularity of spatial data viewers and query

tools with end users introduces a requirement for methods to allow these basic users

to access this data for viewing and querying instantly and without much effort. In
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our work, we focus on providing remote access to vector-based spatial data, rather

than raster data.

Traditionally, common spatial databases and Geographic Information Systems

(GIS) such as ESRI’s ArcInfo are designed to be stand-alone products. The spatial

database is kept on the same computer or local area network from which it is visu-

alized and queried. This hardware setup allows for instantaneous transfer of large

amounts of data between the spatial database and the visualization module so that

it is perfectly feasible to use large-bandwidth protocols for communication between

these two. There are, however, many applications where a more distributed approach

is desirable. In these cases, the database is maintained in one location, while users

need to work with it from possibly distant places over the network (e.g., the public

internet). These connections can be far slower and less reliable than local area net-

works, and thus it is desirable to limit the data flow between the database (server)

and the visualization unit (client) in order to get timely response from the system.

Another approach has been adopted by numerous web-based mapping service

vendors (MapQuest [23], MapsOnUs [24], etc.) that face the same challenge. Their

goal is to enable remote users, typically only equipped with standard web browsers,

to access the vendor’s spatial database server and retrieve information (in the form

of maps) from them. The solution presented by most of these vendors is based on

performing all the calculations on the server side, and then transferring only bitmaps

that represent results of user queries and commands. Although the advantage of this

2



solution is one of requiring minimal hardware and software resources on the client

site, the resulting product has severe limitations in terms of available functionality

and response time (each user action results in a new bitmap being transferred to the

client).

In our research, we explore new ways of allowing visualization of both spatial and

nonspatial data stored in a central server database on a simple client connected to

this server by possibly a slow and unreliable connection. We develop a new client-

server approach as an answer to some of these drawbacks of traditional solutions. Our

system aims to partitions the workload between the client and the server in such a

manner that the user’s experience with the system is interactive, with minimal delay

between the user action and appropriate response. The design works around potential

bottlenecks for the information transfer such as the limited network bandwidth or

resources available on the client computer. To support multiple concurrent clients,

limited resources on the server must also be considered.

Our solution is especially appropriate for usage scenarios where transferring the

whole database for processing on the client is not feasible. This is typically due to

the large volume of data involved, the lack of computing power on the client, and a

slow link between the two. We focus on finding an optimal way of distributing work

between the server, clients, and possibly other entities introduced into the model for

query evaluation and data management. We address issues of scalability for clients

that have only limited access to system resources (e.g., a Java applet). Methods

3



to allow these clients to provide an interactive user interface, even for databases of

arbitrary size, are also examined.

The rest of the thesis is organized as follows. In the remaining part of this chap-

ter, we introduce existing spatially-enabled DBMSs and discuss their advantages and

drawbacks. In Chapter 2, we provide a review of existing methods for remotely

accessing spatial databases. In Chapter 3, we introduce the basic concepts of the

client-server paradigm, and discuss its application to remote spatial operations. In

Chapter 4, we describe our initial research efforts in this area and outline lessons

learned for our further research. Chapter 5 introduces our client, the SAND Internet

Browser. It describes its functionality and the user interface layout, as well as provid-

ing several examples of how to evaluate queries using it. In Chapter 6, we discuss our

architecture based on pure client-server approach. Given a client that communicates

directly to a server, we examine different deployment options and describe several

methods that improve the performance that can be achieved in this environment.

Chapter 7 extends the basic client-server approach by adding auxiliary servers. Such

servers can be used as temporary data storage between the client and the server.

We present typical deployment scenarios when this would be beneficial, as well as

present methods for using this arrangement to further speed up its performance. In

Chapter 8, we combine all the different design options and speed-up methods together

and discuss how to choose the optimal deployment method for given specific usage

scenarios. In Chapter 9, we discuss several related issues that we needed to address in

4



order to be able to build a system useful in practice. Chapter 10 discusses our expe-

rience with spatial data and algorithm visualization and its application in geographic

information system applications. Finally, in Chapter 11 we draw some conclusions

and propose topics for further research.

1.1 Spatial DB Servers

1.1.1 MySQL

MySQL [10] is a fast, multi-threaded, multi-user SQL database server. MySQL

implements spatial extensions following the specification of the Open GIS Consor-

tium (OGC), in particular the OpenGIS Simple Features Specifications For SQL [22].

MySQL implements a subset of the SQL with Geometry Types environment proposed

by OGC. The support for spatial attributes in MySQL is recent and so far only basic.

MySQL is available under either GPL or commercial licenses.

1.1.2 PostgreSQL/PostGIS

PostgreSQL [26] is an open source object-relational database management system

based on code originally developed at the University of California at Berkeley. It

supports SQL92 [28] and SQL99 [29] and offers many modern features such as foreign

keys, triggers, views and transactional integrity. PostgreSQL can also be extended by

the user in many ways, for example, by adding new data types, functions, operators,

5



etc. PostgreSQL can be used, modified, and distributed by everyone free of charge

for any purpose.

PostgreSQL includes support for the two-dimensional spatial data types point,

line, line segment, box, open and closed path, polygon and circle. It also implements

various operations such as overlap and distance. However, these are not available on

all combinations of data types. The spatial support in PostgreSQL is more mature

and its features are implemented more thoroughly and completely than in case of

MySQL.

PostGIS [16] is a GIS built on top of PostgreSQL, it adds support for geographic

objects and effect spatially enables the PostgreSQL server. PostGIS is released under

the GNU General Public License.

1.1.3 Oracle

Oracle facilitates support for spatial data through its Oracle Spatial [70] module.

Oracle Spatial provides a way to store and retrieve multi-dimensional data in Oracle.

It is primarily used for GIS to implement geo-reference and solve spatial queries.

Oracle Spatial stores individual features (point, line or polygon) in a single field

within a table. A single Helical Hyperspatial code (HHCode1) [56] is used to store

the Euclidean spatial dimensions and additional data dimensional include depth, el-

evation, or time. The types of multidimensional data are restricted only in that they

1HHCodes are in effect Peano-Hilbert [41] codes.
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must be a numeric data type and have a bounded range. The HHCode is generated

through the recursive decomposition of space of known dimensionality. Attribute data

for specific multidimensional data is stored within columns of a table in the database.

Access to the data for processing and manipulation is accomplished through exten-

sions to Oracle PL/SQL. Oracle Spatial is a commercial product.

1.1.4 Informix

IBM Informix Spatial DataBlade [5] module extends the IBM Informix Dynamic

Server (IDS) to support location-based data. It provides access to the SQL-based

spatial data types and functions both through standard SQL queries or with client-

side GIS software. Spatial data is indexed using a built-in R-tree multidimensional

index to maximize spatial query performance. Informix is a commercial product.

1.1.5 ArcGIS

ESRI’s ArcGIS [25] is an integrated family of products that allow deployment of GIS

system on a range of platforms — desktops, servers, embedded and mobile devices.

ArcGIS products allow integration with existing databases and display their records

on maps for presentation and analysis purposes. ArcGIS supports implementation of

the geospatial data model through a collection of files in a file system (for smaller

projects) or through accessing an RDBMS (such as DB2, Oracle or Informix). While

ArcGIS is not a core spatial DBMS, it can be used to aggregate data from other
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sources and to serve as a data source itself.

1.1.6 MapInfo SpatialWare

MapInfo SpatialWare [7] data management software enhances existing 3rd party

RDBMSs (including DB2, Informix and SQL Server) to manipulate spatial data.

SpatialWare also utilizes an R-Tree to index the spatial data. Implemented on top of

one of the supported standard RDBMs, SpatialWare can also serve as a spatial data

server.

1.1.7 SAND — Spatial And Non-Spatial Database

Spatial And Non-spatial Database (SAND) [44] was originally developed by Claudio

Esperanca at the University of Maryland but many other people contributed to its

extensions and improvements since then. While we use this particular database engine

as our central spatial server in our specific implementation for providing the database

management and query evaluation, the client-server approach for distributed spatial

databases that we have developed does not depend on any specific software used and

can be adapted to others, commercial or non-commercial alike.

The SAND kernel is based on extended relational data model. The data in SAND

is organized into a collection of tables, each table consists of a set of tuples (records),

where each tuple is a set of simple data types (attributes). There are three table

types in SAND: relation, linear index and spatial index. Each of these tables supports
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operations that are appropriate to its function in the database environment. Most of

the operators are used to alter the order in which tuples are retrieved.

Relations only support random access to individual tuples. In case of linear in-

dexes, the ’find’ operator allows performing searches for a tuple that is closest to a

tuple value given in the argument. Range queries can be performed by using the find

operator for finding a starting point and a stop condition for a linear traversal. Linear

indexes are implemented as B-trees [42]. Spatial indices support several spatial search

operators such as ’overlap’ (for searching tuples that intersect a given feature) and

’within’ (for searching tuples within certain distance from a given feature). Tuples

can also be ranked, in which case they are retrieved in the order of distance from

a given feature. Numerous spatial index types were implemented in SAND for the

purpose of experimental evaluation and comparison. The default spatial index type

used is the PMR quadtree [65, 66].

Most common non-spatial types are supported by SAND (integers, floating-point

numbers, fixed and variable-length strings). Various two and three-dimensional ge-

ometric types (points, line segments, axes-aligned rectangles, polygons and regions)

with both Euclidean and spherical distance metrics are also available2. The usual

operators are supported for the non-spatial attributes, which includes the ’compare’

operator that establishes total ordering among attribute values of the same type. For

2The Euclidean distance metric is used for small area maps. The spherical metric is utilized for

maps that cover whole or major part of the world and when Euclidean calculations could be too

distorted.
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the spatial types, operators such as ’distance’ (calculates distance between two spa-

tial attributes), ’intersect’ (determines whether there is any intersection between two

spatial attributes) and ’bbox’ (calculates the smallest enclosing axis-aligned rectangle

for a given feature) are available.

The application programming interface (API) for the SAND kernel is derived from

and embedded in the Tcl [19] language. This connects the high-level compiled code

of the kernel with a front end based on an interpreted programming language. Most

aspects of SAND can be controlled and programmed through this SAND interpreter.
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Chapter 2

Spatial Server Access

2.1 Integrated Solutions

Some spatial database solutions, especially those intended for browsing and query-

ing relatively small data sets, are created as standalone products with the database

engine and the visualization unit bundled together. This allows a user and his or

her computer to be completely independent in running the application. The obvious

drawbacks include the limitations regarding the data volume that can be presented

this way as well as complications resulting from keeping the locally stored data set

up-to-date.
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2.1.1 ArcGIS Desktop

ArcView [1] — now part of the ArcGIS Desktop suite — was one of the first and

remains the most popular representatives of this category. It provides extensive map-

ping, data use, and analysis along with simple editing and geoprocessing capabilities.

Its design allows for usage of extensions, implemented by both ESRI and third party

developers.

2.1.2 MapInfo Professional

MapInfo Professional [7] is a business mapping solution allowing users to perform data

analysis and visualization. Similar to ArcView, it supports extensive data import and

export and allows users to develop their own custom extensions.

2.1.3 Sand Browser — The Original SAND Visualization

Tool

The SAND Browser is a tool designed to provide a graphical user interface to the

facilities of SAND developed at the University of Maryland, originally by Claudio

Esperanca [44] with further enhancements added by Gisli Hjaltason [53, 54]. It fa-

cilitates visualization of the SAND data by letting the user to specify several search

criteria: the scan order in which tuples are to be incrementally retrieved, a spatial

selection (overlap and within constraints) and an arbitrary selection predicate. The
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appearance of SAND Browser is illustrated in Figure 2.1.

Figure 2.1: Snapshot of a SAND Browser window. The relation being browsed
contains data describing world political divisions. The current tuple corresponds
to the main land mass of Brazil.

The SAND Browser user interface is divided into vertically stacked panels. These

are (from top to bottom):

• The command area, containing buttons for several actions. The key function-

ality is provided through the First and Next buttons that retrieve the first

and next tuple satisfying the currently set scan order and predicate respec-

tively; Display facilitates operations on the graphical display, such as clearing

it or selecting the color for drawing spatial features or displaying all the query
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matches in one step.

• The scan order button triggers several “pop-up” dialog boxes which allow the

user to specify parameters to be used when the relation is being scanned with

the help of one of the indices defined for it.

• The conditions field is used to enter a selection predicate. The expression must

follow the syntactic rules of the Tcl language.

• The graphical display panel is the drawing area where spatial features are input

and output. At any given moment of the interaction, the current value of the

relation’s spatial attribute is displayed in this area and highlighted by a blinking

rectangle. When defining a query, spatial features are input by drawing on the

graphical display. The display can also be panned and zoomed in and out.

• The tuple display panel contains a series of labeled entry boxes, one for each

attribute in the schema of the relation. These are updated to reflect the value

of the current tuple.

The browser supports selection and spatial join and semijoin queries, and their

results are processed (and returned) in an incremental manner. This means that the

user gets some visual feedback quickly. Additionally, receiving the results in some

specific order is often a part of what the user is interested in. Returning objects in

the order of distance from another object or a set of objects is an example of a fairly

typical query.
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2.2 Remote Access Tools

Accessing spatial databases is not the only area where the user interface may need to

be hosted on a system different from the one that executes the operations resulting

from the user’s input. In some scenarios, the solution needs to be very general to sup-

port many different remote applications. In other scenarios, the remote access method

needs to support a very specialized remote applications and the access-enabling tech-

nology can be developed and optimized for this specific usage.

2.2.1 Generic Remote Access Tools

Several software vendors have come to the market with products that let users utilize

a remote machine in a such a fashion that their experience is similar to using the

computer locally (Figure 2.2). While some operating systems come with this kind of

feature built in (e.g., terminals in Unix), others (such as Microsoft Windows) were

originally lacking this capability, and only third party applications or recent add-ons

assured that these platforms would provide this functionality as well. Although these

remote access tools were designed for general purpose remote access, they must solve

problems similar to those present in the remote access of a spatial database. Notice

that the task is similar in both cases. First, the system needs to report to the user

the visual representation of the computer’s activities in the form of a bitmap on the

computer screen. Second, the user’s input such as keystrokes, mouse movements and
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clicks need to be sent back to the remote computer. Since the networking connection

could be slow and/or with significant latency, it is desirable to use a protocol that

would minimize network utilization in order to maximize system performance and

usability.

Figure 2.2: Remote Access — The user runs a sample application called “Paint”
locally (left window) as well as on a remote computer (right inner window labeled
“Paint” in its title bar). The remote computer’s desktop is showing in the local
window (right outer window labeled “Remote Desktop” in its title bar). The
application’s appearance is the same in both cases.

While the general principle of all the above mentioned systems is the same — to

transfer screen bitmaps to the user and keystrokes and mouse events to the computer

— the overall performance, and, ultimately the usability, of these products depends

on how efficiently each system utilizes its available network resources. If no attempt
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is made to optimize the data transfer, a new screen is transferred to the client after

every operation. A screen bitmap can occupy anywhere between tens of kilobytes to

megabytes. Even if usual static bitmap compression methods (e.g., LZW [85] used

in the popular GIF format) are employed, the data throughput cannot be decreased

so that the screen updates are instantaneous and almost invisible to the user. White

this may be acceptable for certain types of computer usage, generally faster updates

are required for optimal user experience. For instance, smooth animation typically

needs to refresh the screen in the order of tens of times per second. Obviously, if

downloading a new bitmap takes a few seconds, the desired behavior is very far from

achievable in reality.

There is no need to transfer the whole bitmap after every change though. Notice

that in many cases, the new bitmap may remain identical in some areas. For instance,

after a panning operation in a window, most of the old bitmap can be reused and

only a small stripe at one of the edges of the window has to be newly rendered.

The predominant similarities between the old and new bitmap may be different from

application to application. While panning and zooming may be common operations

in browsing a geographic database, these operations may not be used as often by a

normal computer user. Therefore, even though some of the remote access packages

already have powerful mechanisms that decrease the network utilization significantly,

focusing specifically on support for spatial database browsing can allow for even better

performance.
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2.2.2 Web-Based Mapping Services

The above mentioned approach where mere bitmaps are sent to the client for viewing

was employed by many vendors that provide access to maps over the web. The typical

example of providers of these services are vendors such as MapQuest [23] and Switch-

board/MapsOnUs [24] for street maps based on addresses; or TopoZone [20] for topo-

graphical maps. Their approach is simple, the server receives a location description

(e.g., a street address, name of a place, etc), it queries its spatial database, retrieves

a map, converts it into a bitmap image and sends it back to the user (their browser).

The map retrieved from the spatial database may be in vector (MapQuest, Map-

sOnUs) or raster (TopoZone) format. In either case, it gets rasterized or subsampled

respectively before sending the data over the network to user’s browser (Figure 2.3).

This approach requires very little support from the client site, typically just a web-

browser equipped computer or network appliance. The drawback of this solution is

that it quickly reaches its usability limitations when more serious work is attempted.

Such poorly supported operations include even basic zooming in or out or panning

not to mention running queries. In particular, actions such as zooming or panning

are very cumbersome with performance bordering unacceptable for many users as the

response time is determined by the amount of data that needs to be transferred every

time a new view is requested. Other operations such as querying the database beyond

displaying all objects within a certain rectangle are not supported at all.

This behavior is a direct result of a trade-off faced by designers of these systems.
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Figure 2.3: Map Quest — a sample map generated on the server and downloaded
as a bitmap to the web browser (client)

On one hand, they could assume just the bare basic features on the client side and

do all the work on the server side. Another approach would be to transfer a custom

application to the client machine to provide for a more optimized operations and thus

to improve the whole user experience. It is obvious that the designers chose to go the

former way, probably to be able to serve as many users as possible without any need

for initial setup or configuration. It is also obvious that having the advantage of a

smart client could improve the overall user experience and performance of the system.

In this research we have investigated various methods of utilizing such a smart client

and found approaches that perform well for different scenarios.
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An interesting enhanced raster-based design was recently presented by Google [4]

and later also by Microsoft [9]. Similar to MapQuest, Google’s map service is raster-

based. However, this service does not send a single image covering the whole viewable

area every time there is need for an update. Instead, the viewable map is divided

into a grid of 128 × 128 small image cells. When a panning operation is executed,

there is no need to download a new image that represents the whole viewable area.

Only cells covering the area that just became visible need to be downloaded, others

are reused by simply moving them on the screen.

Apparently, Google does not generate these image cells dynamically, instead the

whole world has been pre-processed and a raster representation in the form of a col-

lection of small image cells for each supported zoom factor has been created. Clearly,

this pre-processing operation is expensive to run and produces a vast amount of data

that is difficult to manage for most hosts. Additionally, this approach is not ideal for

datasets that get updated often as the whole set would have to be pre-processed again.

It is also not appropriate when users need to be able to select various combinations

of layers to be displayed. Given the number of layers n, to pre-process the data into

bitmaps for each combination of layers would require having 2n different versions of

the coverage. This is because each layer can be either displayed or hidden and they

are all controlled independently, hence 2n combinations. This would generate a vast

amounts of data for even a few layers. Thus, while this approach is perfectly feasible

for a organization with enough resources in terms of storage space and processing
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power that serves one-size-fits-all static data (which is the case for Google Maps or

MSN Virtual Earth), it is impractical for most companies and institutions that are

not capable of dedicating the resources that this approach requires.

It would also be possible to generate these tiles dynamically. However, this would

increase server load as the servers would have to perform this rasterization operation

in addition to serving the tiles to clients. Comparing to services such as MapQuest,

the areas to be rasterized would be the same. However, the Google approach would

drive larger overhead as one rasterization request would have to be processed for each

tile. On the other hand, due to client caching, the Google servers would typically

have to rasterize smaller total area as there would be no need to re-rasterize areas

covered by previously processed tiles.

2.2.3 Existing Spatial Data Clients

In many respects, working with a remote spatial database is no different than doing

many other tasks on remote computers. The common goal is to utilize remote re-

sources and to subsequently retrieve and deliver the results of this utilization to the

local computer. A very common example of this situation is accessing a mail server.

In this scenario, a remote server collects all recipients’ incoming email and holds it

for them. All they have to do is to connect to the server, retrieve the email onto their

local computer and process it locally. This approach is quite feasible as sending email

is not as intensively interactive task as operating a program remotely using a key-
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board and/or a mouse. Many times, when a remote access to a computer program

is needed, some sort of proprietary protocol is developed that suits the particular

application well. We can easily argue that this is the case with common protocols

such as FTP (remotely operate a file server), HTTP (remotely operate a web server),

SMTP (remotely operate a mail server) as well as numerous others less known and

more proprietary solutions.

It may be useful to look for an alternative to developing a special communication

protocol for each application that needs to communicate with the user over a network.

One such an alternative is a solution that instead of transferring data for further

processing to the client (e.g., email to be read, HTML to be rendered on the client

browser, etc), has the server perform all the processing, thereby producing a human-

understandable form (e.g., a screen shot), and only transfering this screen image —

a bitmap — to the client. In this solution, the client can be very simple, barely more

than a monitor, video memory, a network card and some input devices to allow users

to communicate back (e.g., mouse, keyboard, touch screen, etc). While this solution

is rather universal, it suffers from performance drawbacks. These drawbacks result

from the fact that every user’s activity triggers transfer of data between the client

and the server. If the latency and the bandwidth of the network connection is less

than perfect, this results in the user not being able to do truly interactive work as

he or she has to wait for the results every time some operation is initiated. While

these drawbacks can be worth the ease of use for a casual user, this approach is not
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necessarily desirable for serious work.

Other systems rely on a custom client module that communicates with the spatial

server via a proprietary protocol. There are not many such systems, most of those that

are available are in the stage of a research project rather than a proven commercial

product.

Yap, Been, and Du [87] proposed a responsive visualization system that links a

central TIGER database stored in PostgreSQL database with a Java-based client

(over a JDBC interface). Their research focuses on fast viewing of static data (i.e.,

window queries) rather than a more powerful tool supporting a larger class of spatial

queries and operations.

A new ESRI product called ArcGIS Server [25] provides an infrastructure for

building centrally managed enterprise GIS applications. It can also be used out-of-

the-box in conjunction with the standard ArcGIS Desktop for basic management and

mapping over a network connection.

Oracle provides a rendering service called MapViewer [13] for their Oracle Spatial

product. This is a Java component that accepts spatial queries and generates resulting

bitmaps viewable by the client platform. Thus, from the perspective of a user, this

is similar approach to that used by MapQuest and similar web-based services.

23



2.2.4 MapServer — The Map Visualization Tool

MapServer [8], a system originally developed at the University of Minnesota, is an

environment for constructing spatially enabled Internet-web applications. MapServer

is not a full-featured GIS system; instead, it provides a visualization layer for third

party spatial data sources such as ESRI’s Shapefiles or spatially-enabled DBMSs (e.g.

Oracle, Sybase, MySQL). MapServer provides functionality to support those types of

web applications that simply need to enable users to browse spatial data.

MapServer reads data from supported data sources and given its current config-

uration generates an image, presumably to be sent to the user’s browser over the

internet. The current configuration may control such aspects of the visualization as

the area being viewed, data layers, projection, color scheme, level of detail, labels,

etc.

Even though MapServer in itself does not provide GIS functionality, the method of

facilitating interactive environment for users connected over the internet is a valid one.

While serving images representing the current map view is similar to the method used

by MapQuest and other mainstream commercial mapping services, the open source

nature of the MapServer project, its wide acceptance as a map visualization tool,

and its ability to serve as a single box solution make MapServer a good standard for

comparing performance and user experience of different systems.
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Chapter 3

Client-Server Paradigm

3.1 Introduction

A client-server computer network application is one where the client typically facili-

tates the user interface and connects to an application or database server to submit

requests and receive responses whose nature is determined by the type of the applica-

tion (Figure 3.1). Servers are powerful computers or processes dedicated to managing

resources or performing tasks. Clients are usually lower end computers, workstations

or hand-held devices.

The amount of business logic handled on the client side can differ from design

to design. In one approach, the client can communicate directly with the server

application (e.g., a database), and then process and visualize results on its own. A

more common method introduces a middleman application on the server side that
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Figure 3.1: An example of a computer system deployment using the client-server
architecture.

connects to the database and implements any necessary business logic. The client

then simply visualizes already prepared text, images or other output.

This approach can be generalized into the application server connecting an arbi-

trary number of databases and other applications, and then aggregating the results

and preparing them for the client to visualize. This type of system was developed

under the OpenMapTM [12] project with our participation as described in [43].

3.2 Applications

The client-server paradigm is not new in the area of computer science. For many

years, the only computers available used to be large machines spanning vast rooms.
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Operators would then access these machines from consoles, some of them colocated,

while others were in other rooms. This arrangement can be seen as an example of a

client-server configuration where the main computer acts as a server and the console

(usually a unit consisting of no more than a screen and keyboard that can process

a basic protocol for controlling the cursor on the screen) as a client. Only with

the advent of PCs in the early 1980s did the concept of an independent stand-alone

computer that is widely available become common and gradually took over most IT

deployments. While some specialized applications are still used in a client-server

fashion, the most common applications in use today are run on the same hardware

that the end user utilizes for controlling the application. This is appropriate when

the application is not too complex to overwhelm the hardware available to individual

end users and when the amount of data that the application needs to work with is

not large or when this data is also available locally. It is interesting to note that some

companies are revisiting the client-server approach even for basic computing such as

utilizing office applications and e-mail [18]. This effort is however largely driven by

the effort to simplify administration of a larger deployment and to allow users to hop

between workstations easily rather than to solve performance issues.

Working with large spatial databases is not feasible within a stand-alone desktop

machine, and thus utilizing some type of client-server approach is necessary. This is

because unlike editing a letter or a spreadsheet, it is typically not feasible for all the

spatial data to be copied over to the machine on which the user is going to work.
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This can be due to the sheer volume or the combination of the volume and the need

for frequent updates. Thus, it is necessary to load some data on demand, as the user

works with the application. The exact nature of the data transfer and the design of

the client-server infrastructure is the subject of our work.
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Chapter 4

Initial Approach

In the previous chapter we discussed situations where a single spatial database server

provides certain services to one or more remote clients. As we have seen, these clients

do not have to be identical. By utilizing new technologies, various platforms can be

supported and participate in the spatial database distributed environment. In this

model, the spatial server is fixed and various clients can utilize its services.

However, we can ask whether we can allow certain versatility on the server side as

well. Imagine that there are several different entities providing certain spatial data

for a given location. It would be helpful if these servers could be accessed in a uniform

fashion. It would be even more helpful if a client existed that would aggregate services

provided by these individual servers. In this way, the user could work with several

servers from one interface, possibly without even realizing the whole result is created

from data residing on separate servers.
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The need for merging spatial data from several servers into a single client comes

from many real applications. Each community that manages spatial data may have

its own idea of which information it is important to retain. For example, given a

river, the ecology community may be interested in the number of small frogs per

kilometer of bank, a transportation agency may be more interested in the positions of

current and future bridge crossing sites, while the Defense department may be more

interested in knowing at what points the river can be forded by an M1 Abrams tank.

Because of these differing views, data digitized by one organization may not be

easily shared with other dissimilar organizations, unless some method for interoper-

ability can be devised. Yet, such sharing is not only desirable but may be necessary, as

funding may not be available for essentially duplicative digitization efforts. Occasions

arise when data simply must be shared.

For example, an emergency response team requires the synthesis of a map that

includes geological, soil properties, road network, water lines, demographic informa-

tion, and public service facility locations such as hospitals and schools to be plotted

for an urban area just impacted by an earthquake. No single agency is responsible for

this variety of geospatial data; yet, “best-available” information must be assembled

and printed for use by field personnel in often both paper and electronic form within

a few hours [63].
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4.1 OpenGIS and SandBrowser

Initial stages of this research involved working on the OpenMapTM [12] project with

the OpenGIS community and a report on our results was published in [43]. The

OpenGIS (Open Geographical Information Systems) Consortium [40] is an open,

industry-wide consortium of GIS vendors and users who are attempting to facilitate

interoperability by proposing standards for GIS knowledge interchange. The goal of

the consortium is to enable transparent interworking within any one community of

interest, and to provide a framework for explicit conversion procedures when data is

to be shared between differing interest communities.

OpenMapTM is a product suite developed by BBN Technologies (now a division of

GTE Internetworking) in a DARPA-sponsored project to demonstrate CORBA [86]-

based mapping. Whereas OpenGIS’s Simple Features specification addresses the in-

terface between a GIS database and a GIS application, OpenMapTM specifies an

interface between a GIS application and its user interface (UI). OpenMap includes a

user interface client, a client/server interface (implemented through CORBA), and a

suite of specialists that implement the server side of the interface, making a partic-

ular kind of data source accessible to the user interface client. Thus, it provides a

way to integrate geographical data from diverse data sources in a single map display.

OpenMapTM has been used in technology demonstrations within the OpenGIS com-

munity, and its creators have initiated a dialogue concerning the need for an open

application/UI interface.
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In this work, we have investigated methods for adding the SAND database into

the OpenMapTM architecture. We built a SAND specialist that made data stored in

SAND accessible to the OpenMapTM user interface client.

Issues similar to what we were working on during our involvement in the OpenMap

project are discussed in [84]. These authors also study a situation when several servers

running some sort of a geographic information system manage different data and the

user needs to access more than one of them to get all the information he or she needs.

Without any collaboration among these servers, the user would have to visit each

of them one by one, execute the necessary queries on them individually and at the

end aggregate the information obtained into a single result somehow. The authors

present a system, where the servers would be aware of each other and would provide

the user’s client software with information about other potential sources of data. In

this way, the user only needs to go to this single server site, and the client will learn

about other servers that it would also automatically query and eventually present the

user with a answer that was found by piecing several query results together. Notice

that this solution is really more of a peer-to-peer architecture on the server level,

where all servers are equal in terms of acting as an access point to the system for the

client browser. The OpenMap approach on the other hand is client-server both on

the end user and on the server level. This is because of the presence of the central

server that acts as the sole contact point for the user’s client browser. This central

server then works as an interface between the user and the individual GIS servers.
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While the work presented by Wang and Jusoh in [84] is relevant to our research,

its authors address different issues that arise from implementing this client-server

architecture on a GIS than what we have focused on. In particular, their interest is

in the distributed aspect of the solution and they deal with issues related to being

able to harness information stored on multiple servers and to combine them into a

single result. These include problems such as designing a proper common interface

for different modules involved in the product, converting the data into common for-

mats so that they could be merged together, etc. They are less interested in making

the system truly interactive. To achieve this also requires focusing on methods that

would minimize the amount of data needed to be presented as query results, thereby

minimizing the amount of data necessary to be transferred over the network con-

nection to the client. Methods such as client data caching would help the system

to provide some response to the user almost immediately. Our experience in the

OpenMap project was that an overly general design with frequent transformations

between proprietary and common formats in conjunction with utilization of Java [6]

and CORBA technologies results in poor performance which can turn a potentially

useful tool into one that is too sluggish, too cumbersome to use, and, ultimately, of

little practical value.
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4.2 OpenMapTM and OpenGIS

A GIS system can be viewed as being divided into three tiers: the UI (User Interface),

Application, and Database tiers. In the Database tier, we have databases storing ac-

tual GIS data. In the Application tier, we have applications that query the databases

and process the result in some manner. In the UI tier, we have the graphical user in-

terface where the query result is displayed to the user. The OpenGIS Simple Features

specification addresses the interface between the Application and Database tiers (as

well as between applications). OpenMap, on the other hand, specifies an interface

between the UI and Application tiers. This interface is based on CORBA, an in-

dustry standard middleware layer based on the remote-object-invocation paradigm.

By middleware we mean shared software layers that support communication between

applications, thereby hopefully achieving platform independence. Such a “layering”

organizational paradigm has been extremely successful in networked computer com-

munications (for example, FTP over TCP over IP over Ethernet). The adoption of

the IIOP (Internet Inter-ORB Protocol) standardizes CORBA interoperation down

to the TCP/IP protocol layer. Thus any two CORBA applications should be able to

interwork.

The central component of OpenMap is the OpenMap Browser, its user interface

client. It includes a map viewing area, navigation controls, and a layers palette, in

addition to menus and a tool bar. A simplified version of the OpenMap Browser

was implemented in Java, and a variant of it can be deployed on any Java enabled
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Web browser. The layer palette lists map layers available to the client. A map

layer is a collection of related geographic objects, i.e., road network, railroad tracks

or country boundaries. The layers come from data servers, termed specialists, that

communicate with the OpenMap Browser using CORBA. The interface specification

between specialists and the OpenMap Browser allows the Browser to request data

objects intersecting a query rectangle, where the data objects are graphical objects of

various types, including line segments, circles, rectangles, polylines/polygons, raster

images, and text. These can be specified either in lat/long coordinates or in screen

coordinates. In addition, the interface provides support for custom palettes that allow

the user to configure the specialist, and support for mouse gestures1, which allow the

specialist to respond to mouse actions on the displayed graphics.

Specialists can be implemented either in C++ or Java. Among the components

of OpenMap are classes for each language (called CorbaSpecialist and Specialist, re-

spectively) that encapsulate the common aspects of all specialists. A custom data

server can be created by extending these classes, adding only the specialized routines

required to access a particular target database. Details of CORBA and session initial-

ization, transfer of query rectangles from client to server, and transfer of GIS feature

information from server to client are handled transparently.

1A mouse gesture is a way of combining mouse movements and clicks that the software recognizes

as specific commands. A typical example is the click-and-drag operation to move objects on the

screen.
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4.3 Specialist

In this section, we describe a specialist for OpenMap that provides access to geo-

graphic data stored in SAND relations. We implemented this specialist in Java and it

is based on the Specialist class that was provided by BBN. Figure 4.1 shows the soft-

ware components of an OpenMap session, where the structure of the SAND specialist

is detailed. The user interface client uses CORBA middleware to communicate with

various specialists, each of which provides access to a specific type of data source. The

SAND specialist code communicates with the UI client with methods inherited from

the Specialist class, and in turn invokes the SAND interpreter to perform the actual

data access. The SAND specialist responds to requests for objects in a particular

map layer intersecting a query rectangle. (In this case, each map layer corresponds to

a SAND relation.) In addition, the SAND specialist directs the UI client to display

a custom palette for each layer, where the color of the data objects in the layer can

be set.

SAND
specialist

Specialist
(server skeleton)

CORBA
middleware

Tcl
libraries

SAND
interpreter

SAND
kernel

database

unix
exec/pipe

inherits

CORBA
middleware

CORBA
middleware

Internet

other
servers

UI client

Figure 4.1: Structure of the SAND specialist for OpenMap
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The data made available by the SAND specialist in our demonstration was ob-

tained from USGS and was in the form of points, polylines and polygonal areas.

Since the goal of the demonstration was to show how multiple maps from diverse

sources could be overlayed on top of each other, it was undesirable to display filled

polygons as they obliterate any map features in lower layers. Thus, we chose to focus

on polylines and polygon boundaries, stored as line segments in the SAND relations

representing each map layer. (An alternative approach would have been to represent

polygonal areas with the SAND polygon attribute type, and convert from polygons

to polylines or line segments in the server at run time.) A spatial index was built on

the line segment attribute in the map layer relations in order to allow efficient spatial

lookup.

4.4 Implementation of the SAND Specialist

The SAND specialist communicates with the SAND interpreter by passing it Tcl

scripts that implement specific database queries using the low-level SAND query in-

terface, and receiving back textual output through an I/O pipe. GIS features satisfy-

ing the query are translated into OpenMap Specialist objects, which are then passed

on to inherited Specialist methods for transport to the client display. The Tcl script

that the SAND specialist passes to the SAND interpreter selects a database, opens

a spatial index, and then executes a query passing a rectangle as an argument (the

only query currently specified in the OpenMap specialist interface is such a rectangle
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intersection query):

sand cd <directory>;

set index [sand open <indexname>];

$index first -intersect \

{rectangle <left> <bottom> <width> <height>};

while {[$index status]} {

puts [$index get];

$index next;

}

$index close

The <directory> argument to the sand cd command specifies the file system

directory that holds the database. The sand open command returns a handle to an

open table, in this case an index on a spatial attribute. The handle, which corresponds

to an underlying C++ spatial index object, can subsequently be used to perform

actions on the index. The script initiates a spatial window query by invoking the

table command first with a query rectangle, which loads the first tuple satisfying

the query (if any exists), i.e., a tuple corresponding to a line segment that is intersected

by the given rectangle. The table command get returns the contents of the current

index tuple, in this case storing a line segment. The table command next loads the

next tuple satisfying the query, or sets the table status to false if none exists. In
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fact, not only does the SAND kernel return the tuples satisfying the query one-by-

one (through the SAND interpreter), but it actually executes the query incrementally

rather than batch style. The while loop outputs the line segment (which is received

by the SAND specialist), and fetches another one until all line segments intersecting

the query rectangle have been exhausted. At that point, the index file is closed.

This query plan, which makes use of a spatial index, is more efficient than the

straightforward one of initiating a sequential scan of a relation, and then testing

each line segment for intersection with the query rectangle and only outputting those

segments that actually intersect it. However, as it turned out in our experiment, the

time saved was actually drowned out by communication costs.

The line segments as returned over the I/O pipe are of the form:

{line <x1> <y1> <x2> <y2>}

The SAND specialist parses this format, creates two OpenMap Specialist points,

creates a Specialist line between the two points, and adds the line to the display list

for return to the client.

Each coordinate value undergoes four data conversions. The data in the index

file is in binary floating format. The SAND interpreter converts this to an ASCII

string representation (conversion 1) to return it over the I/O pipe to the SAND

specialist. The SAND specialist reads the ASCII string representation from the pipe

and converts it back to binary floating (conversion 2). It must do this because the

Specialist’s Point object creator takes binary floating arguments. Presumably, the
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Specialist must convert this machine-specific binary floating value into some machine

independent wire format (conversion 3). Finally, the display client must convert from

the wire format to some display device-specific format (conversion 4) for eventual

display.

This project presents one of the initial stages of our research efforts in the remote

spatial data access area. It was mostly focused on interoperability and data synthesis,

and less on optimizing performance and responsiveness.
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Chapter 5

SAND Internet Browser — User

Experience

The SAND Internet Browser is a Java applet or application that represents the client

piece of our client-server solution for facilitation of remote access to spatial databases.

The design of the SAND Internet Browser user interface (Figure 5.1) is rooted in

the experiences gathered from using the original Tcl/Tk-based SAND Browser (Sec-

tion 2.1.3) as well as the OpenMap project outlined in Chapter 4. While many

concepts originally proposed in the traditional SAND were validated by years of us-

age, some drawbacks emerged as well. These weaknesses fall into two categories. One

category contains items related to the user interface and its limits for the types of

operations the user can perform. The other category includes problems hidden from

the user involving various design-related limitations. Such problems are possibly more
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significant because they cause the original SAND Browser not to be able to work with

certain types of datasets. Such limiting factors include the overall size of the dataset,

the spatial and non-spatial types used, etc.

Figure 5.1: SAND Internet Browser — user interface

One major weakness related to the user interface involves the SAND Browser’s de-

sign which limits it to working with only one layer of data per its instance. Typically,

a single data set that represents a certain geographical area consists of several layers

of data. For instance, in case of a general purpose map, these layers may include

political boundaries, streams and rivers, lakes and ponds, roads and trails, contours,

pipelines and power lines, etc. While the original SAND Browser was able to display

all the layers as a background, any queries could only be done with respect to a single
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layer selected at the start-up time of the application. Switching between individual

layers for the purposes of querying (e.g., finding all matching roads vs.all matching

rivers) was impossible. Also, the display properties of the background layers was

determined in advance and was fixed during the program execution. This caused

problems when some of the background layers with extent overlapped, for instance a

park layer (where parts were filled in green) and a water surface layer (filled in blue).

Furthermore, not all queries require displaying of all the layers available in the given

dataset. Thus, it became obvious that the user needs to be able to show and hide

individual layers easily and that the user needs to be able to dynamically choose the

primary layer, i.e. the layer with respect to which the queries are made. Numerous

smaller problems were identified as well. For instance, forcing users to type a selec-

tion predicate in free text formatted to follow the syntax of the Tcl language was also

identified by many users as suboptimal approach.

The other category of weaknesses includes items hidden from the user but obvious

to the administrator of the system. One such problem results from the tight coupling

between the data engine (SAND) and the visualization tool (SAND Browser). In

order to enable a user to work with this system, the whole spatial server and the

dataset had to be installed on the same computer that the user was working on. This

may be acceptable for demo purposes or to a user who uses a limited number of

datasets heavily. However, it is not realistic for centrally managed large datasets that

need to be made available to multiple users. The SAND Browser made work with
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larger database impossible further by attempting to copy all spatial data into the

main memory of the visualization module. While this is a reasonable approach for

using the SAND Browser as a demo tool for the SAND DBMS, it made it impractical

for any serious work.

We have investigated the properties of SAND Browser and using the experience we

designed a new user interface for SAND Internet Browser. This new interface looks

familiar to SAND Browser users which makes it easy for them to switch. It, however,

also provides access to the improved SAND Internet Browser functionality. While the

user interface improvements are naturally helpful to users, our primary focus was on

creating the new SAND Internet Browser as a tool that provides visualization and

query access to an arbitrarily large data set in a typical deployment scenarios.

Like the original SAND Browser, the SAND Internet Browser permits the visual-

ization of the data contained in a SAND relation by specifying two types of controls:

the scan order in which tuples are to be retrieved and an arbitrary selection predicate.

A SAND Internet Browser window is divided into several panels stacked vertically.

These are (from top to bottom):

• The command area, containing menus and buttons for several actions: First

and Next retrieve the first/next tuple satisfying the currently set scan order

and predicate; File provides various basic operations such as Open or Close

[the current relation] or Quit [the browser]; Display presents a menu of several

activities connected to the graphical display, such as clearing it or drawing
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spatial features; Style allows changes of drawing attributes such as line or fill

color.

• The Scan order panel contains a button that triggers the exhibition of several

“pop-up” dialog boxes, and a message area that displays the currently selected

scan order parameters. Each dialog box corresponds to parameters to be used

when the relation is being scanned with the help of one of the indices defined

for it.

• The Conditions panel allows specification of a predicate to be used to evaluate

the query. Unlike in case of the SAND Browser, this client uses an intuitive

interface for building arbitrary conditions based on fields of the current relation.

In this way, the user need not to be aware of any specific syntax that must be

followed.

• The info panel indicates the current line and fill colors (the colors that will

be used next time the user chooses any displaying operation from the Display

menu). It also contains a choice which allows the user to change the active

data layer (the relation from the data set that all the queries are executed with

respect to).

• The graphical display panel is the drawing area where spatial features are input

and output. At any given moment of the interaction, the current value of

the relation’s spatial attribute is displayed in this area and highlighted by an
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orange rectangle. Most of the other user interface components which hold a

spatial feature value support input by drawing on the graphical display. The

display can also be panned and zoomed in and out. The zoom in and zoom

out operations are available through left and middle mouse click respectively,

while the right click finds the nearest object to the location of the click from

the current relation and makes it the current tuple (i.e., a “pick” operation in

computer graphics parlance).

• The info line will show various messages during the browser execution.

• The tuple display panel contains a series of labeled entry boxes, one for each

attribute in the schema of the relation. These are updated to reflect the value

of the current tuple.

• The layer display lists all the layers available for this relation. Clicking on the

individual entries in this list toggles displaying of the respective layers in the

graphical display area on and off.

• The query history lists all queries and their results (they can be assigned names)

the user has performed so far. In this way, the user can easily visually compare

results of multiple queries by flipping through them, the user can also return

to an older query, use it to pre-populate it the query dialog box, then initiate

a new query. Thus, it is easy to form new queries that share some parameters

with previous ones.
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Below, we give a few examples of how a user may utilize the user interface to

obtain results to specific queries.

• Given a road map of Silver Spring, MD (single layer data set), find all the roads

within distance d from polygon p (hand drawn to represent an area of interest,

e.g., a flooded area and its immediate proximity) and return them in the order

of distance from line l (hand drawn to represent, for instance, an emergency

vehicle route). The result will indicate the streets affected by the flood that are

closest to where the emergency vehicles can get.

1. Go to File menu and Open Relation Silver Spring.

2. Press Scan order, choose line to open a dialog box

3. Enable Ranking by distance from, choose line and select the line l by

drawing on the canvas.

4. Enable Restrict search to lines within, choose distance and specify

a line by drawing on the screen. The length of the line will define the

distance used in this condition. Choose polygon from the object list next

to it and define polygon p by drawing it on the canvas.

5. Click OK to submit the query.

6. Click First and Next to retrieve the first and all the other lines within

distance d from p ordered by distance from l.
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7. The entire group could also be displayed at once by selecting Display

group (uses the current line color) or Display blended group (changes

the color for each returned line to indicate the order in which the lines

were retrieved).

• Given a multi-layered map of Washington, D.C., find all the roads that pass

through a park

1. Use Open Relation to open the appropriate data set.

2. Make the Road layer the current relation.

3. Click on Scan order, choose line, and a dialog box will appear.

4. Enable Ranking by distance from, choose relation, choose Parks.

Enable Max distance and enter 0 (zero) to the text box below. This will

look for all the lines and a maximum distance of zero from any park. In

other words, for all lines that intersect some park.

5. Click OK to submit the query.

6. Set the line width and color to the desired values and use Display group

to show the results.

• Find all roads that are within distance d from Georgia Avenue in the Silver

Spring database

1. Open Relation Silver Spring.
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2. Click Scan order, choose name type, and both the min and max value

of Name(Type) to Georgia(Ave).

3. From File menu, select Save group under a name of your choice.

4. Click Scan order, and choose line to open a dialog box.

5. Enable Ranking by distance from, choose relation, and choose the

relation that you just saved.

6. Enable Max distance and click on the button to specify a line by drawing

on the canvas. The length of the line will define the distance d.

7. Click OK to submit the query.

8. Use Draw group or Draw blended group to display the result of the

query.
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Chapter 6

Direct Server Access

Traditionally, a client-server computing paradigm only involves two computers — the

client and the server (obviously not counting computers and devices in between the

two that simply route or shape the traffic between them, such as routers, firewalls,

etc). In some types of deployment, the server functionality may be actually performed

by two (or more) machines to add redundancy (and thus reliability) or for load-

balancing purposes. This however is transparent to the client and the cluster of

servers acts as a single entity with a single interface.

In recent years, an alternative to a client-server approach emerged in the form of

a peer-to-peer networking (e.g., [27]). The main idea is that instead of relying on a

single machine1 to support all the clients (or users), these clients all contribute some

1Or a single virtual machine — that is, a cluster of machines that act as a single entity, usually

to improve performance or reliability
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of their resources to a common resource pool which they all can utilize to obtain the

services that they need (Figure 6.1).
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Figure 6.1: Example of a Peer-to-Peer network environment. Individual comput-
ers can directly communicate and exchange information with any other computers
participating in the network.

The application of the peer-to-peer paradigm on remote spatial database visual-

ization and querying has been investigated in [82]. Due to the large amounts of data

usually involved in operations on spatial databases, inventive methods are needed to

distribute data among individual peers in an efficient way [81].
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6.1 Pure Client-Server Design

The simplest and most common design for the client-server architecture makes in-

dividual tasks such as data management, image rendering or query evaluation the

responsibility of either the client or the server. When the spatial database appli-

cation is implemented in this manner, the server handles all the data management

and query evaluation. The client only facilitates data visualization while maintaining

connectivity to the server. In this scenario, the client simply translates user input

into queries and sends them to the server. It can also receive data sent by the server

and visualize them. There is no data storage or processing on the client beyond these

basic functions. Figure 6.2 indicates the data flow and processing. Note that this

design corresponds to way in which many popular web-based mapping services such

as MapQuest or Switchboard’s Maps On Us operate.

��������	�
���


�
�
����

�
�
�����
���
����

Figure 6.2: Diagram of basic Client-Server architecture

The advantage of this approach is that most users can utilize this service with the
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resources that they already have — a networked machine with a web browser. The

users do not need to install or set up any additional hardware or software. However,

the main disadvantage of this approach is that the client needs to communicate with

the server every time the user requests even the most simple operation. This can slow

down the user experience significantly if the network throughput and latency are a

limiting factor or if the server is heavily loaded.

6.2 Memory Based Caching in Client

The first method that improves upon the basic design is one where the client utilizes

some of its own main memory to store (cache) some of the data in the central database

(Figure 6.3). This allows the client in some cases to rely on its own data repository

to handle some of the user’s requests thus cutting back on the network utilization

and improving the system’s responsiveness. Naturally, the spatial data stored on the

client must be spatially indexed for fast approach. Note that in this approach it is no

longer possible to use the standard web browser as a mere image viewer. A custom

code needs to be loaded onto the client to facilitate the operations to be performed

there. The Java environment has emerged in the past years as a platform of choice

for most types of lightweight cross-platform applications.

The maximum amount of data to be stored on the client in order to optimize

the overall performance will depend on the extent of client’s available resources. The
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Figure 6.3: The thin client communicates directly with the main spatial server
and utilizes its (limited) memory capacity to cache some spatial data locally.
This saves many data transfers as the client does not need to ask the server for
data after each screen update.

basic concept of this design is for the client to be fetching the requested data via

fast memory-only operations whenever possible. This would be more efficient than

retrieving the same data over the network from the central server. While retrieving

data from the memory is usually more efficient than downloading the data over the

network, a special consideration has to be made in case of environments that are

unusual in some way. For instance, small devices with low processing power may still

be providing a more efficient service by acting as terminals and without attempting

to perform any data management operations themselves.

Given these facts, it’s clear that there are no single settings that would assure
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the best performance for all types of devices. However, optimal values for some of

the parameters can be estimated by the system via a self-test. For instance, it is

important that the amount of memory allocated for the spatial data storage is lower

than the total available main memory and that even after that enough memory is left

for other parts of the application. It is necessary to use only as much memory as the

Java Virtual Machine can provide without swapping on the disk. This would slow

down the process significantly and cancel out benefits of internal caching over the

network-only approach. Unfortunately, in Java it is difficult to find out the amount

of memory available without swapping as the system seamlessly pools together the

main memory capacity and the available disk space2 to provide the information.

Similarly, the processing power of any given hardware platform can be assessed

upon start up of the client application. This information indicates how much spatial

data the platform can handle and sort through effortlessly.

Operations performed by the SAND system are primarily client-driven, i.e., any

operation performed on either the client or the server is in response to some user-

generated input. To minimize the amount of data that needs to be transferred from

server to the client in response to each event on the client side, various techniques

were developed and implemented in SAND.

To keep the amount of traffic between the client and the server low, we cache

some data on the client in case the user requests another operation on data in the

2Up to the total memory allowed for the process to use by a runtime parameter.
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same area. We store the data in their original vector format rather than the resulting

bitmaps so that the client is able to generate new views and process some types of

queries locally without having to request additional data from the server.

Only using the main memory results in lower requirements for the client in terms

of access privileges to the client platform resources. This allows us, for instance,

to run the client as a basic Java applet without requiring the user to perform any

special configuration or installation. This is especially beneficial in cases where ad-

hoc usages of the system are needed, when users are invited to work with the given

SAND instance on a short notice (e.g., in case of emergency personnel accessing a

spatial database specially set up to support handling of a specific crisis).

6.2.1 Internal Spatial Data Structures

The spatial data is stored on the client using a PMR quadtree [71] spatial data

structure. This structure divides the plane into quadrants such that if an object is

inserted into a certain quadrant, then if the quadrant already contains more than a

predefined threshold of other objects, then the quadrant is split into its four children

once and only once and the objects are reinserted into the children. Thus, the objects

are always stored in the leaf nodes of this quadtree.

We establish and maintain the maximum amount of data that can be cached on

the client in order not to overwhelm or crash the client platform. Since a vertex is

an atomic building block of all the objects representable within the application, the
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allowable amount of data is measured in terms of the number of vertices occupied

by all the objects stored within the tree. An alternative would be relying on the

runtime environment’s reports regarding the amount of occupied and free memory.

Unfortunately, the amount of free memory reported by Java VM is not necessarily up-

to-date (i.e., it does not account for available memory not yet claimed by the garbage

manager) or authoritative (e.g., it may include memory that would only become

available through disk swapping). Thus, counting the total number of vertices stored

provides better control over the system performance. The goal is to keep enough

memory free within the Java VM for all the temporary data allocation to be performed

within the main memory. If there is not enough available main memory, the machine

may start running the garbage collector more frequently, thereby slowing down our

main process. This is discussed in more detail in Section 6.2.3.

Each leaf node of the PMR quadtree also contains a time stamp indicating when

it was accessed (displayed) last. Together with the PMR quadtree containing the

spatial data, we also maintain pointers to all the PMR quadtree leaf nodes in a

variant of a balanced binary search tree3. The key for this tree is the time stamp

stored in the PMR quadtree leaf nodes. This structure facilitates quick insertions,

deletions and location of pointer representing the PMR node with the oldest time

stamp. This arrangement facilitates our caching mechanism (Figure 6.4). When we

3The Java library TreeMap class is used to build and maintain this structure. The Java imple-

mentation is based on red-black trees [47]
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need to make more memory available for additional data, we use the least-recently-

used (LRU) caching mechanism to delete as many PMR leaf nodes linked from the top

of the balanced binary search tree as necessary. If all four children of some internal

PMR quadtree node are removed, the tree automatically collapses and the internal

node becomes an empty leaf node. A flag in each node indicates whether the node

represents an area that is actually empty (valid node) or whether the node is empty

because its elements are not available in the memory (e.g., page fault, invalid node).
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Figure 6.4: Individual spatial data layers are stored in separate PMR quadtrees.
A priority queue shared by all of them maintains ordering of all the PMR leaves
for all the PMR quadtrees based on the time of their last viewing.

Note that using this mechanism, the entire quadrant has to be contained in the
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memory for its node to be valid. This may be too inefficient as if we continuously

work with only part of the quadrant and have no need to load the rest of the quadrant,

then the node would never be marked as valid and the data from the part in which

we are interested would be reloaded over and over. To prevent this, we add another

field in each node indicating which part of it is actually valid. Thus, if we loaded data

for only part of the quadrant, we mark the quadrant as valid but indicate which part

of it is actually valid (i.e., the intersection of the quadrant and the query window).

The next time we need to access data from this quadrant, if the area we need falls

completely within the valid area of the node, we do not need to load any additional

data. If the area we need is not fully enclosed by the valid area, then we load the

missing part and increase the valid area of the node accordingly. This is discussed in

more detail in Section 7.4.

The type definition (in Java syntax) of the node in our PMR quadtree data struc-

ture is as follows:

class RNode implements NodeAble {

private RNode parent;

private RNode[] son;

private DrawableVector lo;

private DRectangle validSubarea;

private long timestamp;
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private boolean pagefault;

}

As discussed above, a typical dataset would contain several tables representing

different layers of the map. While each layer is stored in a separate PMR quadtree,

there is only a single balanced binary search tree for all the layers combined. This

way, when a user stops working with one of the layers, its data will be automatically

and gradually removed from the cache and will be replaced with the data needed

currently.

To understand the memory management used to store data in our PMR quadtree,

it is useful to compare it with the standard memory management. There, individual

pages of main memory may be swapped out onto the disk if the processes running on

the system require more memory than what is available. Analogously, if the client

asks the PMR tree to store more data than its capacity (see discussion on page 54), the

individual PMR nodes can be “swapped out”. In the context of the PMR quadtree,

this means that this node is freed from memory and pointers to this node are reset

to indicate that the node is no longer available. Now, when the data for the same

quadrant is needed again in the future, the client will request its download from the

server. So in its simplest form, the PMR node is valid if and only if all the data in

the database that overlap its quadrant are loaded into the client’s memory.

Unfortunately, this approach alone does not produce good results because the
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user-driven accesses into the database (i.e., the window queries resulting from the user

panning and zooming) do not necessarily align with the PMR quadtree boundaries.

This means that some PMR nodes would not get loaded fully and thus would not

become valid per the above definition (see Figure 6.5b). Therefore, not all the results

of the window query would get cached and some pieces of the window would have to

be reloaded from the server after each screen refresh even if the user’s viewable area

remains the same.

(a) (b)

Figure 6.5: Figure 6.5a shows spatial decomposition of a PMR quadtree. Fig-
ure 6.5b shows the same PMR quadtree after a window operation has been
performed. Note that the window overlaps some nodes of the PMR quadtree
fully, some partially and some not at all. All data will be loaded for the fully
overlapped nodes and they will become regular leaves of the PMR quadtree.
The non-overlapped nodes will not be affected. The partially overlapped nodes
will have some data loaded typically causing some of them to split. Leaf nodes
that were not loaded fully will have the covered area covered indicated in their
validSubarea field.

One solution would seem to be to load extra data from outside the query window in
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order to fill the enclosing PMR quadrant in its entirety (and allow it to become “valid”

and thus cached) as indicated on Figure 6.6. Unfortunately, the data distribution in

the set may be substantially non-uniform and without examining the data first, one

cannot decide what enclosing PMR quadrant or a collection of quadrants to load.

Picking a quadrant or a collection of quadrants without knowing how much data in

the database overlaps these quadrants could result in loading much more data than

what the user requested. In this case, this caching method would actually be slowing

the user down rather than providing improvement.

Figure 6.6: In some cases, loading the partially overlapping quadrant in full would
result in loading excessive amounts of data.

The solution that we chose involves loading data only for the part of the PMR

block that overlaps the query window. As the data is being loaded, the node will
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be typically split as necessary. For each leaf node that was not loaded in full we

mark its PMR block as valid (meaning the node is in the memory and contains data),

however we indicate in a field within the node that not the whole area of the block

is represented. Specifically, we use the field validSubarea (see page 60) to indicate

the rectangular subarea of the PMR block for which the data is fully loaded in the

memory. Obviously, when the node is fully loaded, then this field matches the block

area itself.

The question now is how to update the validSubarea field after subsequent window

queries that overlap different areas of the block but which still do not result in the

block being fully loaded (see Figure 6.7). To analyze this situation, it is helpful to

review the dynamics of building a PMR quadtree based on such window queries.

When an empty PMR block overlaps a query window, the system loads data from

within the area of the overlap. The amount of data loaded is typically much larger

than the PMR splitting threshold.

So the originally empty PMR node is typically split over and over following the

rules for building a PMR quadtree until all the objects are inserted. This means

that the rectangle that indicated the valid area in the original leaf node is no longer

assigned to the PMR block that was empty originally as it now turned into an in-

ternal PMR node. Instead, some of the smaller children of this block that intersect

the boundary of the query window are not loaded in full and are assigned a valid

area indicator. During a subsequent window query operation, if the query window
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Figure 6.7: Two consecutive window operations result in partial loading of an
existing PMR block with data. Since the union of the two loaded subareas is not
necessarily a rectangle, we cannot represent the loaded area by validSubarea

directly. We handle this by calculating the bounding rectangle for these loaded
areas, load the remaining overlapping data into the PMR quadtree as well, and
use this bounding rectangle as the new validSubarea for this PMR node.

intersects but does not overlap some of the PMR blocks, the system loads additional

data that lies inside the intersection, thereby likely triggering further decomposition

of the PMR node. Therefore, we see that updating a valid but incomplete PMR

node via another window query that results in the same node still being incomplete

happens only rarely, and the total number of original and newly added objects would

still have to be below the PMR threshold. We see that this only happens when the

amount of data within the area covered by this PMR block is low. Thus, when an

incomplete node is filled through another window query and this operation does not
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result in splitting of the node, it is safe to calculate the union of the two rectangles

(the original validSubarea and the intersection of the PMR block and the new win-

dow), load data that lies within the resulting rectangle, and use this rectangle as the

new validSubarea. Of course, if this additional load finally results in splitting the

PMR node, the validSubarea for the node is no longer relevant as the node becomes

an internal node.

6.2.2 Data Traversal

As the user explores the content of the database using a graphical viewer, he or she

is basically retrieving all the objects stored in the database that overlap the current

viewing windows. Some of the content may be already available within the client

while other parts of the database have either not been retrieved yet or were retrieved

earlier but dropped again since then. It is difficult and computationally expensive

to maintain the definition of geometry that identifies which parts of the database

are currently in the cache and which are not. Such geometry would be represented

by a collection of orthogonal polygons and every time a new requests is issued, an

intersection between this object and the viewing area would have to be computed.

Instead of maintaining the definition of the available area, we store the information

about availability within individual nodes of our spatial data structure. Each node

can be either ’white’ (no data available for the area represented by this node, and

such a node is a leaf), ’gray’ (some data is available for area represented by this node
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and further recursion is needed to get the exact answer) or black (the whole area

under this node is available in the local cache). If a gray node is a leaf, it means that

there is some data stored but not enough to cause another split. In such case, the

node has a rectangle associated with it that specifies which part of the node is valid.

When the content of the spatial structure overlapping certain query object needs

to be drawn, a tree traversal is performed to find all the objects in the tree that overlap

the query object. Sometimes, the internal nodes may be “invalid”, they either were

not loaded yet or were previously removed by the memory management process when

they were not used for some time. In such a case, the data needs to be reloaded.

Remember from the above discussion that is it not always necessary to reload the

content of the entire invalid block. Only the intersection of the query object and the

invalid block is considered and even in that case, reload is only performed if the valid

area represented by the validSubarea field doesn’t contain this intersection.

As requests are received from the visualization module for more data, there are

two ways to handle them:

1. The data can be requested from the server each time a missing block is found.

The advantage of this approach is that the data can be drawn on the screen as

the tree is being traversed. This has a benefit from the user’s perspective as it

enables him or her to see some approximate results while waiting for the whole

screen to update.
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2. All the missing blocks can be gathered first and stored in a set. Only once the

whole tree has been traversed, is a single query is created that references all

the stored blocks at once. The advantage of this approach is the lower number

of server requests which means less time spent on overhead associated with

creating the queries and accepting the results.

Our research indicated that the overall behavior of the system is more acceptable

when implemented in the latter fashion. The number of queries resulting from each

screen update is cut from perhaps tens to only one, and the lower overhead cost

significantly speeds up the whole redrawing process. So, while the user may need

to wait a little bit longer to see the first response to his or her request, the process

also finishes faster. Therefore, overall, the system react to any user input in a more

instantaneous fashion.

The final algorithm contains two steps. In the first step, the system finds out

what areas need to be loaded from the server and builds a collection of rectangles that

represent this area (the algorithm is expressed in Java notation). The function fetch

is called with parameters q representing the root of the PMR quadtree, searchBlock

is the current viewable area, block is the rectangle represented by the node q and

boxCollection is used to store the set of rectangles whose overlapping data need to

be loaded from the server. Once the function call returns, boxCollection will contain

the set of rectangles whose content needs to be loaded from the server.
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double xf[] = {0, 0.5, 0, 0.5};

double yf[] = {0.5, 0.5, 0, 0};

void fetch(RNode q, DRectangle searchBlock,

DRectangle block, Vector boxCollection) {

DRectangle inters = searchBlock.intersection(block);

if (q.isLeaf()) {

if (q.isPageFault() && !q.isStored(inters)) {

if (r.getValidArea() != null) {

boxCollection.addElement(inters.union(r.getValidArea()));

} else {

boxCollection.addElement(inters);

}

}

return;

}

for (int i = 0; i < 4; i++) {

DRectangle subblock = new DRectangle(block.x + block.width * xf[i],

block.y + block.height * yf[i],

block.width / 2, block.height / 2);

if (subblock.intersects(searchBlock)) {

fetch(q.son[i], searchBlock, subblock, boxCollection);

}

}

}

In the second step, the algorithm takes the list of rectangles boxCollection re-

turned by the first step and loads all the data from the server that lie within the area

defined by this collection of rectangles. Then for each rectangle loaded, it adjusts the

corresponding PMR node status:

for (int i = 0; i < boxCollection.size(); i++) {

DRectangle block = (DRectangle)boxCollection.elementAt(i);
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resetPages(root, bbox, block);

}

private void resetPages(RNode r,

DRectangle block, DRectangle search) {

if (r.isLeaf()) {

if (r.isPageFault()) {

if (search.contains(block)) {

r.resetPageFault();

} else {

// store in the node the intersection of block

// and search that was loaded with data

r.setValidArea(block.intersection(search));

}

}

return;

}

for (int i = 0; i < 4; i++) {

DRectangle subblock = new DRectangle(

block.x + block.width * xf[i],

block.y + block.height * yf[i],

block.width / 2, block.height / 2);

if (subblock.intersects(search)) {

resetPages(r.son[i], subblock, search);

}

}

}

Given a PMR block n, the function n.isPageFault checks whether all the data

that lie within the n are loaded in the client, i.e., it returns true if the node n is

completely invalid or if only part of the node’s area is loaded. It returns false if the

node’s data are fully loaded in the memory.

The function n.setValidArea(a) adjusts a partially valid PMR node n to indicate

that data overlapping a (a part of the block termed search in the function parameters
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that is overlapped by n) is loaded in the memory.

The function n.resetPageFault marks node n as fully valid.

Now, when we need to display all data that overlaps a given window w, we can look

at not just the valid/invalid identifier of each PMR node that overlaps w, we can also

check the validSubarea field of the invalid nodes. If the intersection of the window

w with the PMR block is fully contained in the node’s validSubarea, we know that

all the necessary data for this window query is already in the database, even if the

PMR node is not loaded fully. This test is performed by the fetch function above,

when deciding what data needs to be fetched from the server. When the drawing

function is called, it already knows that all the data is already loaded in the memory

and it simply steps through the overlapping PMR nodes and displays their contents,

as shown in the algorithm below:

void draw(RNode q, DRectangle searchBlock,

DRectangle block, CoordSystem cs) {

if (q.isLeaf()) {

q.draw(cs);

return;

}

for (int i = 0; i < 4; i++) {

DRectangle subblock = new DRectangle(block.x + block.width * xf[i],

block.y + block.height * yf[i],

block.width / 2, block.height / 2);

if (subblock.intersects(searchBlock)) {

draw(q.son[i], searchBlock, subblock, cs);

}

}

}
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The function n.draw(cs) simply draws all data stored in PMR node n using the

coordinate system cs.

We have mentioned the utilization of a balanced binary search tree to facilitate

caching. The balanced binary search tree data structure supports quick (log n)

insertions, deletions and lookup operations. In the system, a single balanced binary

search tree is shared by all data layers of the current data set. Each PMR leaf node in

each layer contains a time stamp4 field (see page 60 for the data structure definition).

References to individual PMR nodes are then stored in the balanced binary search tree

and the time stamp associated with each node serves as the key. When the content

of a PMR node is displayed, the time stamp of that node is updated. This requires

reordering of the balanced binary search tree, which, in practice, is achieved by simply

reinserting the node into the tree using the updated time stamp. This mechanism

provides us with the list of all the PMR leaf nodes currently in memory sorted in the

order of their last usage. This allows us to implement the least-recently used caching

mechanism on the PMR nodes. When memory needs to be freed, i.e., the total

number of vertices stored in the memory exceeds the threshold (see Section 6.2.1),

PMR nodes are removed from the memory in the order of their last usage until the

number of vertices decreases below the threshold. The removal of PMR nodes from

the PMR quadtree follows the standard PMR-deletion algorithm. It means that if

4Since operations happen quicker than the granularity of the system clock, the time stamp is

really a large counter that increases every time a new element is stored into the tree. This guarantees

uniqueness of the keys.
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the combined number of elements stored in all four children of a PMR node is below

the splitting threshold, the tree collapses and the parent node now becomes a leaf

itself. This can repeat recursively.

Since the single tree handles all data layers (i.e., all PMR quadtrees, one for each

layer), it means that the system automatically purges data that belong to layers that

the user turned off. Since the layer was turned off, its PMR nodes no longer get

accessed (i.e., they are no longer used for visualization). Therefore, the PMR leaves

of hidden layers do not have their time stamps updated and thus they gradually

become the oldest in the queue (in terms of the time stamp). This means that they

will be freed first when more memory is needed.

6.2.3 Memory Management Considerations

Unlike some development platforms such as C/C++, the Java environment does not

provide the code to access memory management functions on the OS level. Specif-

ically, in Java, the virtual machine handles memory management. It monitors the

references to all allocated objects and when an object is no longer referenced, it can

free its memory and make it available for new objects in a process called “garbage

collection”. The application layer code has only limited control over this process.

Thus, when elements are removed from the tree, they cannot be explicitly and

immediately released from memory. Instead, the client makes sure that there is no

link to the removed object and as the independent Java garbage collector (GC) thread
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eventually locates this data, it will recognize it as no longer in use and will make its

memory available for other objects. Thus, the memory will not become available

immediately but only after it is found to be free by the GC process.

Another problem is caused by the fact that the remaining available memory re-

ported by Java can only be considered to be a rough estimate. This is because the

system does not know what the amount of the free memory is at all times and thus,

it has to run the garbage collector first before it can find out how much memory is

really occupied. This leaves two run-time options, either build the system on num-

bers that may be vastly inaccurate, or, run the garbage collector explicitly every time

the memory status is needed. The former method is not suitable in our case as we

need more precise numbers than what this method offers. The latter method is not

acceptable due to performance reasons.

So we see that any fine tuning of the memory management based on the amount

of remaining available memory is very difficult. Many times, the garbage collector,

which runs continuously in the background, would increase the intensity with which

it looks for available memory when it detects that more memory is needed. This

happens before the application layer can detect this state so it is possible that the

main thread responsible for user interaction suddenly slows down significantly without

any apparent reason. As this is very undesirable from the user’s point of view, it is

important that we take precautions to avoid this. Our approach is based on ensuring

that the total amount of memory that the program has allocated at any given time
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does not exceed the amount of memory easily available within the virtual machine.

Therefore, we need to ensure that the garbage collector will not have to struggle to

find a few more blocks of memory when most of the total memory is already allocated.

This amount of memory that is ’safe’ for the application to utilize without affecting

the performance throughout the execution is determined when the application starts.

In this way, the garbage collector works with the same intensity all the time and does

not cause any application performance fluctuations.

To compute the ’safe’ amount, our system utilizes the number of vertices of all

the objects in the tree as the identifier of memory occupancy. A safe threshold is

determined from the total available memory at the start. During the execution of the

application the memory manager starts dropping nodes from the memory once the

number of vertices exceeds this predefined threshold. To establish the ideal threshold

turns out to be as difficult as it is important. Setting the threshold low and storing

less data on the client would result in more data flow between the client and the server

due to more frequent “page faults”. Storing more data on the client would mean that

the amount of memory being utilized would come closer to the maximum amount

available. This means that the Java garbage collection thread could become much

more aggressive trying to locate and reclaim unused memory. As discussed above,

this could result in noticeable slowdowns in the main user interface thread, or even

bring the execution of these main threads to a standstill.

The internal caching method relies solely on the resources available on each client’s
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platform. This method allocates a portion of client’s available memory space for

storing spatial data that has been received from the spatial server. The efficiency of

this method depends on the amount of memory available and the processing speed

of the platform. Additionally, as with any other caching method, the usage pattern

also affects the benefits of this method. If the spatial operations are localized, i.e.

users tend to access the same part of the global map for a while before moving to

another part, it can also improve the efficiency dramatically as the data turnaround

within the cache is smaller. If the data needed can be found in this local repository

instead of having to fetch it from some external source, it completely avoids delays

caused by the data transfer over the network layer. Unfortunately, in typical scenarios

the amount of data that can be stored internally compared to the amount of data

available on the spatial server is very small.

Our system relies on the client to keep track of what data it has available. The

client is responsible for requesting only the data that it is missing to draw the user-

requested area. In this way, the server can be designed as stateless. It does not need

to keep track of what data was sent to which client in order to only send data that the

client has not received yet. The client can do its own memory management internally,

drop data it no longer needs, and download targeted data from the server.

In summary, we have shown how the client treats leaf blocks of its PMR quadtree

as “pages” of memory for the purposes of caching. Each block is marked as either

valid or not valid in order to indicate whether the data needs to be loaded from the
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server or whether it is available locally. In addition, however, some invalid blocks

may contain an internal indicator (a rectangle not necessarily aligned with the node’s

own block) showing which part of it is actually available locally after all and thus

does not have to be loaded.

6.3 Disk-Based Caching

An obvious limitation of the memory-only approach is the maximum amount of space

that can be utilized for local data storage. This approach is the only one available

when the client runs on a platform that does not allow access to its secondary memory

(e.g., disks). In a Java-based platform, this is usually the case when the client runs

as an applet, a lightweight variant of a downloadable executable code with minimal

requirements in terms of management, security privileges, etc. It is certainly easier

for a user to run the code in such environment, however he or she gives up access to

resources that, if available, could significantly increase the performance of the system.

This environment may also be the only one available on smaller devices that do not

have any secondary memory such as disks and only offer a limited amount of battery-

powered RAM. Examples of such devices include various PDAs and similar handheld

platforms.

One way access privileges to additional system resources can be utilized to improve

the performance is to store some data on the local disk. While the disk operations are
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naturally slower than operations in the main memory, they are faster than fetching

data over the network. Thus, it is beneficial to store all data that is downloaded from

the server into the disk-based cache. Then, when the data has to be released from the

main memory but later needs to be reloaded, the system can fetch the data from the

disk cache rather than re-request the data from the data server. The amount of time

that data should be cached on the disk naturally depends on the specific application.

For instance, if the data in the database is constantly changing, a fresh reload may

be needed more often. In such a case, it does not actually matter whether the data

is locally stored in the main memory or on the disk, a forced reload may be needed

every predetermined period of time. However, if the data in the database is relatively

stable, then reloads do not need to be performed too often and in some cases perhaps

never. This would allow the local client to eventually develop a cache as large as the

source database (or as large as feasible given the disk space and performance of the

hardware, we assume that the central database can manage large amounts of data

more efficiently than the lightweight client).

Thus, on platforms where this arrangement is feasible, we can deploy two layers of

cache. One layer is based in main memory whose capacity would be limited to a safe

amount we know the platform can manage without excessive memory management

and garbage collection overhead. This safe capacity can be associated with specific

platforms in advance, or a safe capacity can be estimated upon launch of the client

during its initiation. The second caching layer would have theoretically unlimited
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capacity but in practice we would still want to impose some restrictions. The exact

amount of disk space to which the application would be restricted depends on many

factors including remaining free disk space, speed of the disk access vs. speed of the

network access, frequency of data updates, etc. Generally however, we can utilize

two or three platform profiles that would define this limit in a way suitable for all

devices that fall into its respective category. The very basic categories would probably

include one entry for small (wireless) devices and another for PC-like platforms with

faster network connection.

6.4 Disk-swapping in Local Caching

One way to utilize the disk space to gain access to more local storage is simply to

rely on the operating system’s or JVM’s capability to provide more main memory by

swapping memory pages onto the disk. However, this is a general purpose mechanism

for allowing processes to access more memory than what is physically available. This

approach is not optimized to store structured database data and spatial data in

particular. We have not pursued this option as it is obvious that the next method is

more efficient.
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6.5 DBMS-driven Local Caching

Instead of letting the main program store more data in the memory using standard

memory allocation functions and letting the operating system to swap on disk as

necessary, we investigated utilization of tools specifically designed to store data by

accessing disk when necessary.

Various DBMSs have been developed for many platforms and small-footprint prod-

ucts are available even for handheld devices. However, only few of these products

have support for efficient handling of spatial data. We have identified two such prod-

ucts that are easily available, popular and free — MySQL and PostgreSQL. Using a

DBMS-driven local caching is a special case of methods discussed in more detail in

Chapter 7.

6.6 Locally Cloned Servers

The above methods discuss storing parts of the data on the local machine, usually

small fraction of the whole dataset representing the parts that were used recently.

The central data server still serves as a master data source and clients store data

only temporarily, for their own use and the amount of data stored is typically much

smaller compared to the data available on the server.

A different approach has been investigated in [82]. There, the authors look into

automatically creating a local copy of the server content. This eventually turns the
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local machine into a stand-alone platform where queries and visualization can be

performed without further network operations. Such a server clone can then be used

as a server for other clients and data modifications performed on this server can be

propagated back into the original source or parent of this clone. As the data on

a single server propagates to other locations by creating clones that can be used

interchangeably, a peer-to-peer network of spatial servers is in effect built. Clients to

such a system can then connect to any of the participating peers. Further optimization

then allows clients to select a more efficient server to connect to. One time clients

can even become servers in this infrastructure themselves. Obviously, the purpose of

this solution is primarily dissemination of the complete database data across multiple

network nodes for redundancy and load balancing purposes. Our work focuses on

allowing thin clients to communicate with data servers, whether they are isolated or

participate in such a peer-to-peer system.
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Chapter 7

Utilizing Auxiliary Servers

Development of internet technologies has introduced various methods for utilization

of additional servers to improve performance for end users who connect to external

servers using common internet protocols (such as HTTP). One of the first and most

popular methods is caching. Caching can be implemented directly within the end

user’s browser, or it can also be implemented within the user’s or ISP’s1 network,

on the gateway (proxy) between the network and the outside internet. In the latter

case, the same cache can be shared among several users. Additionally, a cache can

attempt to predict what files the user may want to download in the future and it can

pre-fetch the data accordingly. For instance, in the case of the HTTP protocol, the

caching server can automatically follow all hyperlinks listed on the web site that the

user requested. This obviously speeds up serving up of this data significantly if the

1ISP = Internet Service Provider, e.g. a phone or a cable company
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user actually requests the pre-fetched data later. The term ’caching proxy’ has been

established for servers that provide such functionality.

Obviously, the reason for introducing these proxy servers between the client and

the internet is because the responsiveness of the proxy server with respect to the

end user’s browser is much higher than if the data was requested directly from the

original host. This is due to both higher network speed between the client and the

proxy server compared to the network speed between the client and the original host.

Another factor can possibly be lower load and higher responsiveness of the proxy

server since it only handles traffic for a few users and therefore can process requests

more efficiently.

In the context of spatial databases, some services will naturally be provided by

large corporations who made proper investments into their hardware equipment and

can handle direct connections of individual users in large numbers. However, for

smaller outfits, hosting a spatial database is much more complex task than hosting a

simple web server as many do today. This is because the amount of traffic generated

by browsing a spatial database can be so much larger.

In case of these smaller outfits, we expect that more often than not the spatial

data provider will have a working relationship with the individual users. For instance,

a spatial database may be set up by a rescue agency and the services provided by

the server will be utilized by individual rescuers carrying laptops and other mobile

devices. Or, a real estate maps will be provided by a real estate agency and utilized
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wirelessly by agents in the field.

In such scenarios, whether because the dynamic situation does not allow the time

to set up a robust hardware system or because the spatial server is run by a smaller

entity, we cannot assume that the central spatial server is going to be a well established

high power machine hosted in a professional environment. It is possible that an ad-

hoc set up may be needed on a short notice. In this case, offloading some of the work

away from the central server is an important prerequisite for an efficiently working

system. A real-life scenario when a spatial database technology may be used in a

rescue operation is shown in Figure 7.1.

The solution is to bring a small server or a server-like device closer to the end

clients and use it for certain types of proxy services. The rest of this section discusses

how various methods introducing additional hardware could improve the experience

of end users by speeding up the system. When a small spatial proxy is added in the

above sample scenario, the resulting hierarchy looks as shown in Figure 7.2.

As indicated above, these smaller servers supporting the system may need to

be affordable, easy to transport, cheap to run. For some deployments, it could be

beneficial to create single purpose “black boxes” that run an operating system and

application underneath exposing only a basic user interface. This is similar to routers,

printers, firewalls and other network devices.

While there are several spatial DBMSs on the market, we have identified two that

we believe would be uniquely advantaged for this role — MySQL and PostgreSQL.
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Figure 7.1: In an emergency situation, individual responders in the field commu-
nicate directly with the central server. Such communication can be facilitated by
relatively slow wireless carrier data networks or it can be provided through a wire-
less LAN linked with the central server via a satellite or other limited-bandwidth
link.

Both are very popular, well understood with a small footprint, operate on many

hardware platforms, and can be used at no charge and contain some level of support

for spatial operations2.

2MySQL supports spatial operations in versions 4.0 and newer.
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Figure 7.2: Emergency response service deployed a mobile unit in support of the
operations. This unit can cover the area with a fast wireless network access and
provide a proxy service for spatial operations. Individual responders can utilize
the applications on their mobile devices more efficiently.

7.1 Using External Data Storage

As discussed, sometimes the clients can be hosted on very small devices, small in

terms of size as well as performance. The internal caching method can produce only

limited improvements. However, it still may not be necessary to go back to the off-

site main spatial server for each screen update. If the client is run from within a

network under the same jurisdiction (e.g., not a mobile device over a ISP connection

but a small/mobile device hosted within the customer’s own network), it is possible

to offload the functionality normally provided by the internal caching method to a
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third server. Such a server would be hosted within the same network as the client

devices and thus would be easily accessible to the clients. On the other hand, such

a server would be powerful enough to store significant amounts of spatial data so

that it could process most queries issued by the client for the purposes of visual map

browsing.

As discussed above, the types of queries that such server needs to be able to process

are rather simple so even databases with basic spatial support can be considered.

In our research we have investigated two commonly available database engines, both

SQL-based, that have some sort of spatial support — MySQL and PostgreSQL. These

engines’ support for spatial operations is rather limited, especially in comparison with

SAND and other more mature systems. However, the level of spatial data support

that they provide is sufficient. An added benefit is that these systems are immensely

popular and their installation and management would be easy for many customers’

IT staff.

7.2 Static Proxy

In some cases, the main spatial server provider and the individual users of this

database are from within the same organization or these organizations collaborate

closely. If this is the case and the spatial data is rather static (i.e., updates in the

database are not done frequently), it may be feasible to perform a one-time step of
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copying all the spatial data stored in the main spatial database onto the auxiliary

database running on the proxy server. In such scenario, the auxiliary database needs

to be preloaded with the spatial data from the central SAND server when the system

is being installed as well as possibly periodically after that. The frequency would de-

pend on how often the data on the central server changes. This approach is especially

effective if updates on the central spatial server are performed in regular intervals

rather than dynamically. For instance, a new data set may be released once a month

or once a year instead of applying partial updates continuously.

Since the complete valid map resides on the proxy server, there is no need for the

client to ever connect to the central spatial server for window queries. There is also

no need for the proxy server to talk to the spatial server, to receive updates or for any

other reason. Therefore, the only traffic generated by this scheme involves the SAND

Internet Browser clients communicating with both the central spatial server (e.g.,

SAND server) and the SQL proxy server. This situation is outlined in Figure 7.3.

7.3 Dynamic Proxy

In some cases, the amount of data stored on the central server would overwhelm

even a normal server-level machine. Or, the data on the central server gets updated

continuously and any information stored on the server may potentially only be valid

for a short period of time. In such scenarios, preloading the proxy server with all
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Figure 7.3: Static Proxy — The proxy server is pre-loaded with all the spatial
data from the central spatial server during its setup. The client submits complex
spatial queries to the central server but retrieves all the spatial data required for
visualization from the proxy.

the spatial data from the main spatial server is not possible and/or useful. For this

situation, we have developed a design that involves deploying the proxy server with

no data preloaded on it. As the individual clients start working with the data, they

still go directly to the central spatial server to get results for custom queries and to

the proxy server to get results of window queries. This time however, the necessary

data may or may not be available on the proxy server. If the data is available, it is

sent back to the client immediately. If the data is not available, the proxy connects

to the central spatial server, retrieves the necessary data and stores it in its database.
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Once this is finished, it evaluates the window query locally. Since the data was just

loaded, the server retrieves all the data successfully and sends it back to the client.

The layout of this scenario is illustrated in Figure 7.4. Since the dynamic proxy loads

the data from the central spatial server on as-needed basis, it is not a problem if some

data is not available locally. The proxy can utilize this to drop data when necessary,

e.g., to keep the amount of data stored locally under the a prescribed limit or to

assure that the data served is not older than a certain predetermined age.
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Figure 7.4: Dynamic Proxy — The proxy server is installed with no data on it
initially. It connects to the central spatial server and if a request comes from a
client for data not available locally, the proxy retrieves the data from the central
server, caches it locally, and sends it back to the client.

When data needs to be dropped would depend on the particular scenario. Fur-
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thermore, the data release may be triggered by the proxy itself, or, it can be triggered

by the central spatial server. For instance, the proxy may decide to drop the least re-

cently used data to maintain a predetermined maximum total amount of data stored.

Or it can drop data older than a predetermined threshold based on the properties of

the data on the central database. For instance, in case of weather information, the

data may be considered expired after 30 minutes. So the proxy could periodically

drop all data older than 30 minutes and thus force a fresh download the next time a

client needs the same segment of the database.

Data invalidation driven by the spatial server would be triggered by changes on

the main spatial server. When a part of the central database is updated, the server

would instruct its proxy servers to drop the corresponding part of the database from

their local repository. Alternatively, it could instruct the proxy servers to refresh

the data immediately instead of waiting for the first time that a client requests data

from the dropped area. The communication between the individual elements of the

solution is outlined in Figure 7.5.

7.4 Implementation Details

The SAND Internet Browser running on clients is implemented in Java and its con-

nection with the external servers is facilitated via Java Database Connectors (JDBC)

modules provided by the respective database vendors (the specifics related to indi-
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Figure 7.5: Diagram showing how database updates performed by the spatial
data provider get propagated to individual proxy servers

vidual DBMSs are discussed in Section 8.5).

The external servers to be used are specified on startup of the client using a

uniform resource locator (URL) that defines the database type (vendor), username

and passwords required to authenticate access to the database as well as the server

name and the database within the DBMS on that server to use.

For PostgreSQL, the external data source would be identified by a URL such as:

postgresql://username:password@servername/database

For MySQL, the URL would be similar:
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mysql://username:password@servername/database

SAND Proxy, our implementation of the proxy server outlined in general above, is

a combination of two modules. The first is an off-the-shelf SQL database responsible

for spatial data storage and window query handling. The second is a Java module

responsible for communication with the clients and, in case of the dynamic proxy,

with the SAND server that performs the role of the central spatial database. In addi-

tion, this module also maintains information about which parts of the SQL database

are currently valid (i.e., which parts fully mirror the content of the central SAND

database).

The first module is implemented through one of the supported SQL databases

described in Section 1.1. This part is responsible for storing the bulk spatial data

and for efficiently responding to window queries. It is important to note that this SQL

database does not have any information regarding what data it contains compared

to the content of the main spatial server. Therefore, the information about this

relationship needs to be managed elsewhere.

We have created a second database implemented within the Java module of the

SAND proxy to maintain the information about which area of the “world” that is

stored in the central database is covered in the local SQL database and which is not.

The SAND Proxy utilizes the Region Quadtree [72] data structure to manage this

information. The problem of determining which areas of the world are represented in

the SQL database translates into evaluating window queries on this data structure.
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The Region Quadtree allows the SAND Proxy to identify quickly and efficiently which

part of the main database is available through the local SQL database. Figures 7.6a

and 7.6b indicate how the region quadtree complements the SQL database to manage

the cached data.

(a)

��

�� �� ��

(b)

Figure 7.6: A region quadtree indicates which areas of the world are stored within
the SQL database. The areas present in the local SQL are indicated by darker
blocks in Figure 7.6a. This information is represented in the region quadtree, the
covered area shown in Figure 7.6a corresponds to the region quadtree shown in
Figure 7.6b.

When the proxy server is first started, the auxiliary SQL database is empty and

95



the region quadtree is correspondingly all ’white’. As the clients start connecting

and requesting spatial data, the proxy server initially forwards these requests to the

central spatial data server as it does not store the required information locally yet.

Once the data arrives over the network back to the proxy server, the Java code in the

application layer fetches the data from the communication layer and inserts it into

the database through its JDBC connection. Once the data is stored in the database,

it means that the gaps in the coverage are filled. Then, the local database can be

queried directly and the result is then returned back the respective SAND Internet

Browser clients.

For any query window R, some data overlapping the window may already be

available locally and some may not be. We see that calculating the exact difference of

R minus the area for which the data is available locally would produce a sequence of

orthogonal polygons. However, such a sequence is expensive to calculate on the proxy

side and it would also be expensive to find out the overlapping data on the spatial

server side (expensive especially compared to a simple window query). Therefore,

for every window query R, we first test whether the data overlapping R is available

locally in full by recursively traversing the region quadtree. If all the data for R is

fully available, no download from the central server is needed. The local database

can be used to fetch all the overlapping objects and the resulting data stream can

be sent back to the client. If the region quadtree reports that some data overlapping

R is missing in the local database, then a download of all the data overlapping R
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in its entirety is requested from the server. While it will re-load some data that are

already present locally, the benefit is that the overhead is much smaller, as only a

single window query is submitted to the central server. Any would-be duplicates

are ignored by the SQL databases as the data table structure is set up to enforce

uniqueness of individual objects stored.

After the data overlapping R is loaded from the server, the region quadtree is

updated to mark R as fully loaded. This is done through top-to-bottom insertion

into the region quadtree — by recursing into all overlapping nodes, marking them

black if they are fully overlapped. Or, in case of a partial overlap and unless the

maximum depth was reached, the node gets divided into four children and the same

operation is performed recursively. If there is still just partial overlap of R and leaf

node N when the algorithm reaches the maximum allowed decomposition level, we

mark the node as black. This assures that any subsequent window query that is

simply a result of a lateral movement (i.e., a scroll operation) along the same axis

as the window edge that intersects N won’t report missing data due to the same N

and cause another download request to the central server. Of course, the drawback

is that the region tree reports N as available in the SQL database while part of data

overlapping N is in fact missing. In reality, this area is very small (a fraction of the

node on the region quadtree maximum depth level) and will be loaded before the

data is needed — once the window R moves such that it overlaps N in full. This is

because N ’s white neighbors will trigger download of data overlapping R thus filling
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the gap in N ’s coverage as well.

Given the root node of the region quadtree Q and the window query provided by

the client R, the algorithm is then as follows:

1. traverse Q to find out whether data overlapping R is available locally in full

2. if some areas of R are not stored locally

(a) request the download of data overlapping R from the central spatial server

(b) insert the downloaded data to the local SQL database

3. retrieve all elements overlapping window R from the local spatial database (note

that at this point it is known that the data is actually in the database)

4. return all elements back to the client

This approach guarantees that the proxy is always able to provide the data re-

quested by the client, while efficiently caching the data for future use.

7.5 Automatic Multi-Level Displaying

In Chapter 5 we discussed the concept of layers within a spatial data visualization

tool. The most intuitive application for the data layers is assigning a single data

layer to each type of objects represented by the source data set. For instance, if the

source data set contains information on roads, parks, cities, rivers and water surfaces,
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the SAND system can be set up with five layers, each corresponding to one of the

types of data stored in the database. The user then can choose to display any or

all of the data sets in the same time. The display order of the individual layers is

such that layers containing object with spatial extent (lakes, parks) are drawn first,

one dimensional objects (roads, rivers) are displayed next. That way we minimize the

number of situations when one object would substantially or completely hide another.

In case of polygon overlap (e.g., a lake is a part of a park) or overlapping lines (e.g.,

a metro line runs under a road), the user can choose to show or hide individual layers

to highlight the data of interest.

Besides this obvious application, the same layer system can be used to handle

situations when the original data set contains more elements that would be feasible

to display on the map in the same time. By not feasible we mean that the it is

possible to choose such a viewable area or window that drawing all elements that fall

within this area would either take too long or displaying of all such elements would

virtually completely cover the whole window. This would make such a view pointless.

The solution SAND provides for this type of scenario is to use a layer system to

store several levels of details for each data type where this excessive data density

could occur. So, for the above mentioned example, we may choose to establish three

levels of detail for roads, cities and rivers and only two levels for parks,and water

surfaces. Thus, there would be the total of 13 layers in such a SAND deployment.

As SAND displays visible objects, it steps through the layers of each object type

99



starting with the layer with the least amount of detail. It displays all the objects in

the current layer that fall within the viewable area, and then moves to the next layer.

If drawing all the elements from that level still results in acceptable data density, the

elements get drawn and the algorithm repeats this step by going to the next layer.

Once the loop reaches the first layer that contains too many objects to be displayed,

the execution exits the loop.

This algorithm is captured in the following Java code. sl is an array of layers,

each storing different level of detail for a given object type. The first array element

(index zero) represents the layer with full details, the last layer is the most general

one. wholeView represents the current viewable area.

for (int i = sl.length - 1; i >= 0; i--) {

if (sl[i].isFeasibleToDraw(wholeView))

sl[i].draw(wholeView);

else

break;

}

It is important to note the isFeasibleToDraw function. Given the current view-

able area and the contents of this layer, it determines whether we want to display

all the data or whether it would result in too many objects being drawn. Seemingly,

this function needs to examine the data within the viewable area to decide whether

it is feasible to draw all of it. However, this function is actually used in the opposite

way. It needs to provide a result without necessarily having access to the data. Only
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depending on the result of this function, the data will get loaded from the server and

displayed on the screen.

We are primarily concerned about responsiveness of the system. Therefore, this

function bases its decision primarily on the amount of data that would be drawn if

the current layer were to serve as a data source for drawing on this viewable area.

For the purposes of this calculation, the amount of data is represented by the number

of vertices used to represent the stored objects. A preset threshold on the number of

vertices is used to decide whether it is feasible to draw this layer using this viewable

window or not.

Obviously, if this layer stores points (e.g., cities) or line segments (e.g., roads,

rivers), then there are always one or two vertices per single object respectively. When

polygons are stored, the number of vertices per object varies. In this case the average

number of vertices per object is calculated for the whole dataset and this ratio is used

to approximate the number of vertices for any given viewable area given the number

of polygons that overlap it. The results of this approach can be skewed if there were

large discrepancies between the number of vertices for represented polygons. However,

practical experience with actual real datasets such as lakes, states, countries or parks

showed that this method works adequately.

Similarly, if the data that falls within the viewable area is not available on the

client, it is unknown how many objects would be drawn on the map. Initially, no data

is available on the client but after a while some data is already cached and some may
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still be missing or might have been dropped in the past. So the content of the viewable

area may be partially known. By using the spatial representation of the data, we find

all the quadtree nodes that overlap the viewable area. Black nodes (those that have

data available locally) give us directly the number of objects stored in them. For

white areas we approximate the number of vertices expected to be drawn in them by

multiplying their area by the global vertex per area rate. After we add up all the

vertex counts (actual and approximate) for all the blocks that overlap the viewable

area, we can compare with the preset threshold and the result is the response from

the isFeasibleToDraw function.

Finally, it should be noted that when the source data is being pre-processed and

distributed into the individual detail layers, in order to maximize efficiency, we need

to make sure that the more detailed layer does not contain data already represented

in the less detailed layer. This is because as we saw in the algorithm, the more general

object will have already been drawn in the previous iterations of the loop.
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Chapter 8

Building Combined Solutions

This section describes how the individual building blocks presented previously can

be combined together to build a complete spatial database visualization solution.

Results of experiments are given that provide guidelines for selection of appropriate

designs given specific deployment scenarios.

8.1 Modular Design and Chaining

While different host types may be used to cache spatial data, their functionality is

similar. Their goal is to store the data that have passed through up to their efficient

capacity. In our design we do not attempt any collaborated pre-fetching where several

different proxies would fetch pieces of data from the central database. We are not

looking at keeping a global plan as to what piece of information is stored on which
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participating node. This has been looked at in [83]. In our case, the clients or proxies

are stacked on top of each other, where the node closest to the actual displaying

client has the smallest capacity and usually stores a subset of data of its successor in

the chain. The further in the chain that we go from the client, the more data and

processing power the machine within the chain has.

This is because when a client requires a certain data range and cannot find this

information locally, it sends the request to the next cache/proxy node. If the data is

available there, it is served. If it’s not available there, the cache/proxy requests the

same data further up the chain. This process repeats until the data is reached, in the

worst case in the main spatial data server. Once the data is reached, it is sent back

the same way the requests came, i.e. all caches/proxies on the way between the client

and the successful data repository will get the chance to store the data as well. Since

the layers closer to the client have typically smaller capacity, they would usually have

to drop some of the data first and thus end up storing subsets of data available on the

proxy. This proxy hierarchy is outlined in Figure 8.1. Of course, what data can be

expected to be stored on the proxy becomes less clear once the proxy serves multiple

clients. In such a case, the proxy may get overwhelmed by requests from another

client in such a way that it is forced to drop all data loaded for our client. In this

case, our client may still hold some data while the proxy no longer does.

Regardless of the type of platform managing the data, the data is always stored

in a spatial data structure (e.g., a quadtree). The main data server runs a full-blown
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Figure 8.1: SAND Internet Browser and proxies chained together

spatially-enabled DBMS. The proxies and clients however only perform a subset of

operations of a normal DBMS in order to support the limited functionality required

by this layered system of caches/proxies.

This layered system is only used for base map visualization, it is not used to

evaluate queries. Arbitrary query evaluation would basically involve installing the

whole DBMS again closer to the client. Additionally, while the base map is being used

repetitively and possibly by many users, queries tend to be unique and non-repeating.

Thus, there is a much smaller chance that this caching stack could improve the query
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evaluation performance.

The common interface for nodes participating in the stacked caching system turns

out to be very simple:

implements: getArea(Rectangle area)

requires: getArea(Rectangle area)

This means that each participant in the infrastructure needs to be able to perform

a remote procedure call (RPC) representing a window query on its parent within the

hierarchy (where the parent means the node closer to the main server). It also needs

to provide a window query interface, i.e. allow nodes closer to the client to submit

window queries (RPCs) to it.

Above we have shown that individual computing platforms can be linked together

to create a chain of caching proxies that link the client’s visualization module with

the central spatial database. Not all computers within this chain need to employ

the same caching method. They only need to implement the above interface. The

actual implementation can vary based on the hardware parameters of that platform

as well as other factors. However, even within each computer, the individual caching

methods do not need to be used in an isolated fashion. The caching concept can be

generalized to involve an arbitrary number of caching layers that can be stacked on

top of each other in the order of speed in which they are able to serve the content.

Many times, the speed of delivery is inversely proportional to the volume of data any
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given layer can store efficiently or at all.

Note that accessing the central data server can be considered within the framework

of such a layer as well, and it would be the last and slowest layer that however always

succeeds (never generates a page fault). So we see that it does not matter whether

the data served by any given layer is stored locally or in a remote location. Thus,

this concept allows us to generalize the caching into multi-server setups, or even a

peer-to-peer environment. All the client needs to know is in which order it should

turn to individual data providing layers. Note that the border between data cache

and data server is fuzzy as individual clients can share caches on servers closer to

them than the original server, in which case such caches would actually serve as sort

of proxies in such environment.

For instance, imagine an environment where multiple clients contain their own

internal memory cache as the first data provider layer, in which case the next layer is

a disk cache stored locally on the client’s platform. In other words, the next layer is

the “proxy” server hosted within the same location (in terms of local area network).

This proxy server can be shared with other clients so even if this client never accessed

certain data from the server, another client might have. If so, it facilitates faster

loading all other clients that utilize the same proxy server. Finally, as the last resort,

the last data provider layer is the main spatial data server.
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8.2 Chaining in SAND Environment

Above we outlined the general principle of the proxy chain and showed that each

node only needs to implement the common interface while the actual implementation

is irrelevant to the other nodes. Examining this arrangement in more detail, we see

that two nodes in the chain are in a special position. The ends of this chain correspond

to the visualization module of the clients and the central spatial database. They do

not need to implement half of the common interface. The visualization module does

not serve as a data source for any other node in the chain and so it does not need

to implement the window query service. Looking at the other end of the chain,

the central database that serves as the ultimate data source does not need to query

anywhere else for additional information and so it does not need to implement the

getArea (see page 106) callout function.

From the global perspective, on the beginning of the chain is the data consumer,

the visualization module of SAND Internet Browser. It is set up to talk to a single

data producer, which can be specified at run time. During compilation, nothing

needs to be known besides the fact that the producer is an instance of the remote

interface, i.e. that it implements the getWindow function as a remote procedure call.

An instance of the remote interface can be either the final data producer, the central

SAND database (at the end of the chain) or a proxy/caching module (a chain link in

the middle). The proxy/caching module responds to getWindow calls from modules

in front of in in the chain as well as calls the getWindow procedures on another
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instance of this interface placed behind it in the chain. Figure 8.1 illustrates a basic

situation where the SAND Internet Browser and SAND server are linked through

several proxy modules.

The most basic scenario is for a chain containing only two links, the SAND Internet

Browser and the SAND server. This special case is shown in Figure 8.2. In this case,

the SAND Internet Browser requests the spatial data directly from the SAND server

every time a screen update is needed. This method may be appropriate for standalone

deployments, for instance in scenarios where a mobile computer needs to be preloaded

with data and taken into field where no connectivity is available. In this setup, the

SAND system is no different than traditional self-contained GIS products such as

ArcView [1].
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Figure 8.2: SAND Internet Browser and SAND Server chained together in a basic
setup

A slightly different approach is achieved in a case where a simple memory-only
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proxy is implemented to run in the same space as the SAND Internet Browser itself.

In this scenario, the SAND Internet Browser client stores some data locally within

its own internal data structures. How much data is stored depends on the amount

of resources available on the given platform. Only if the data needed is not stored in

the local structures, the central SAND database is used. This approach is actually

the traditional method of how the data flow was designed in the original SAND

Browser [44]. This method saves some calls to the database by allowing the client

to evaluate window queries internally. While the SAND database is better suited to

handle arbitrary amounts of data, somewhat larger overhead of the database calls

and high enough speed of the internal method (for limited amounts of data) makes

the usage of the internal cache helpful. Additionally, the internal cache can store the

data in ready-to-use objects, there is no need for any data conversion and memory

management resulting from temporary data creation and removal.

The last method for chaining modules together with using at most two hard-

ware platforms (one for client and one for server) involves adding a file-based data

repository for the client. This module is similar to the one outlined in the previous

paragraph. However, instead of storing data in the main memory, it stores data on

the disk. Thus, more data can be stored locally as the main memory capacity is no

longer a constraint. On the other hand, the data access is more costly. This approach

is similar to utilizing a SQL database on the client as it would also store its data

on the disk. The advantage is that the actual DBMS does not have to be installed
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which makes this method appropriate in scenarios where the client platform has a

disk access but does not have DBMS available or installation of one is not feasible.

Example of this scenario would be various portable computers that are either running

somewhat unusual operating systems (e.g., Psion) or that are only used sporadically

or on a short notice where installation of the DBMS is not possible or feasible for

logistical reasons. This method can still use the memory-based caching as well or it

can use the disk caching exclusively. The two scenarios are outlined in Figure 8.3.
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Figure 8.3: SAND Internet Browser uses disk-based caching possibly in conjunc-
tion with memory-based caching

Chaining together modules hosted on three hardware platforms allows us to benefit

from instant access to data stored in client’s local memory as well as from somewhat

slower access to much larger amount of data stored on a dedicated server within

the same LAN/WAN. In this scenario, we link together the SAND Internet Browser

viewer, the memory-based caching method (both on the user’s platform), the SQL-

based proxy server (on a dedicated server-level platform typically within the same
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LAN/WAN as the end user), and finally the SAND central server. This setup in

shown in Figure 8.4.
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Figure 8.4: SAND Internet Browser, a proxy and the central server in a three-
platform setup

This design allows for unlimited chaining, i.e., an arbitrary number of nodes can

be linked together to create a data channel between the end client and the master

server. However, there are only a few distinct types of caching proxies, most typical

include:

1. The fast but resource-wise limited client’s internal memory.

2. The central database that contains all the data but that is slow in providing it.

3. An in-the-middle link that is faster than the central database but does not nec-

essarily contain all the data. Although it contains more data than the internal

memory, it is slower.
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While in some specific scenarios it would be beneficial to utilize several proxies of

the same type within each channel, typically such additional modules would introduce

higher overhead without bringing much speed-up that could offset it. So we expect

that a typical setup of this system would either involve just two physical nodes (the

client and the server) or it will chain together three nodes — the client, the central

server and a single caching proxy server between them.

The proxy server platform can be chosen and various parameters adjusted to bring

its overall behavior and performance either closer to the user client or to the central

database as desired. For instance, by providing the proxy server with substantial

processing power, main memory and disk space we can make it work more like the

central SAND database. Bringing it closer to the user’s client within the network

topology (or even as close as installing it on the same hardware altogether) will

make this proxy module more responsive (due to less networking overhead) but may

decrease the overall performance due to having access to less resources and thus

caching less data.

8.3 Peer-to-peer Options

If the system is to be utilized by a single user at a time, there is no need to link several

same-type proxy servers together to improve responsiveness. This assertion assumes

the data hand-off speed and networking delays are the bottleneck rather than the disk

113



and processor of the server being fully utilized. However, in situations where multiple

users are trying to access data through a given proxy server, it may be beneficial to

link such servers in parallel fashion to split the user accesses among several servers and

thus improve performance in such multi-user environment. These proxy servers can

either act completely independently or they can share the actual database and only

offer their processing power to run the application code that accesses the database.

An alternative set up that does not involve dedicated proxy servers would be

a peer-to-peer environment. If there are multiple clients running nearby, they can

register each other as potential data sources for individual data layers. Then it would

be more efficient to attempt to fetch the data from the peer rather than going back

to the main server. The exact collaboration strategies naturally depend on specifics

of the platforms involved. For instance, a proxy server would actually load and cache

any data that was requested from it but not found. In a peer-to-peer environment,

the peer client could be queried for data but probably should not be forced to load the

data if it is not available. This is because the client has limited resources and should

primarily contain only data that it needs itself, not data that other client needs at this

time. Peer-to-peer spatial data sharing concept has been explored in [80], however in

that work the author focused primarily on cloning the ’heavy’ primary data servers.

Our focus is more on cache/proxy sharing and more lightweight collaboration.

Finally, the multiple server approach can be also used to relieve the load off of

the central server in scenarios where high server load would become the bottleneck.
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In this case, multiple data servers could be installed and provided to clients, and the

clients would then utilize one of the servers spreading the load across all of them.

The strategies for choosing the server can range from round robin or random to more

sophisticated ones that measure current load and connect to server that is least busy.

Note that this switching method does not need to be implemented on the application

level, as appropriate hardware devices exist that handle this service automatically

and seamlessly in such a way that they basically build one virtual superserver. In

other words, the clients are not even aware that several different data servers are

ready to handle the incoming requests.

The individual multi-server setups are illustrated in Figures 8.5–8.8.
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Figure 8.5: A client running the SAND Internet Browser utilizes local memory
as well as the local disk for internal caching and connects directly to the central
spatial server.

8.4 Caching vs. Proxying

In web terminology, terms such as caching and proxying have their long accepted

meanings. Browser caching refers to an operation where the client, for some period of
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Figure 8.6: Individual SAND clients utilize each other in peer-to-peer fashion for
localized caching. They connect directly to the central server if necessary.

time, locally stores data that it has previously received and displayed to the user. In

this way, the data can be quickly retrieved if a request for the same data comes again

in the near future. The type of data that is handled in this way includes HTML code

describing the content of visited web pages as well as images, Java applets, and other

objects to which the visited pages may refer.

A (caching) web proxy is a server application that is placed between the user’s

browser and the internet. This application receives all the requests from browsers on

the local network. If a request comes through for data that the proxy does not store

locally, then this request is forwarded by the proxy through the internet to the original
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Figure 8.7: Clients utilize their own memory for internal caching and a proxy
server for local caching. They access the central spatial server through the proxy
as necessary.

provider of the requested content. As the data is received, the proxy again forwards it

to the user’s browser but it also stores the data locally. In this way, the next time one

of the users utilizing this proxy server requests the same data, the proxy can respond

immediately, thereby limiting any traffic resulting from the request to just the local

network. This obviously makes the request resolution much faster. In essence, a

caching web proxy provides the same functionality as the browser’s cache but it is

shared by multiple users and typically hosted from a more powerful and/or dedicated

machine. Neither the browser-based cache not caching web servers typically pre-fetch

any data, i.e. they do not download data from the internet which is not specifically
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Figure 8.8: Each client uses only own memory for local caching and otherwise
connects directly to the central spatial server.

asked for by users, perhaps by attempting to predict future users’ requests. This

is usually because many pages that users tend to visit often update their contents

frequently (e.g., news sites). Obviously, in such a scenario, utilizing the proxy server

is only of limited benefit.

In our spatial database scenario, we can expect that users will work with only a

small number of spatial databases at a time, and that the content of these databases,

or at least their base data set (e.g., road map or water surfaces layer), will be mostly

static. In such a situation, it makes sense to explore the possibility to pre-load all

the relevant data onto a proxy server. In this way, when the user submits a complex
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database query or accesses more dynamic layers, the request will be handled by the

primary spatial server. When the user only needs to access the background layers

(usually to display the map’s background), it is feasible and more efficient to retrieve

the necessary data from the locally available proxy server instead.

This local proxy server can either replace the internal client’s caching altogether

or it can be used as a second level cache and thus participate in chaining potential

data sources together, chaining between the client on one end and the primary spatial

server on the other. The proxy can also be either preloaded with data (Figure 7.3) or

it can be initially empty and fill itself with data as users start to utilize the system

(Figure 7.4). While the pros and cons were generally discussed above, we have also

compared the performance of these approaches in our research and the results are

presented below.

8.5 SAND Proxy Implementation

In Section 7.4 we have introduced embedding of external DBMSs into the SAND

infrastructure. In this section, we outline the implementation specifics related to the

individual DBMSs that we have worked with. We have employed two off-the-shelf

databases that contain some level of support for spatial indexing. Specifically, we

looked at popular open-source databases MySQL (version 4.1+) and PostgreSQL.

Compared to database engines that were designed primarily as a spatial database
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(e.g., SAND), the spatial data support in these products is only rudimentary. How-

ever, for our purpose of using them as auxiliary data repositories, the level of support

is sufficient. From the two DBMSs that we work with, MySQL is the one with

more limited capabilities (the spatial data extension was also added more recently).

For instance, MySQL JDBC does not even support MySQL’s own spatial types, so

wasteful conversions from and to plain text representation are necessary. This means

that all spatial objects returned by the database need to be expressed as strings,

passed through JDBC into the SAND Internet Browser, where the strings needs to

be parsed before the objects that they represent can be displayed. This continu-

ous encoding/decoding taxes the performance and decreases the benefit of secondary

caching based on MySQL.

PostgreSQL JDBC supports spatial types directly. This means that in response to

a spatial query, the caller receives back a sequence of Java objects that implement and

represent the spatial types returned. Such spatial objects include points, lines and

polygons. These objects can be directly used by the drawing module of the SAND

Internet Browser after the coordinates are converted from the world coordinates to

their corresponding screen coordinates. There is no need for any string parsing as

was the case for MySQL. The result of this benefit is much faster query processing

and more significant improvement in caching using PostgreSQL.

In the assumed scenario, the main spatial database (in our case represented by

SAND) contains all the available data, both spatial and non-spatial and its sophis-
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ticated database engine enables evaluation of complex queries. Installing and main-

taining such a massive database is appropriate for a dedicated spatial data managing

organization that has the proper hardware and human resources. However, to extend

this amount of effort is generally not feasible for a consumer — a customer trying

to benefit from such a data collection. This is the primary reason for investigating

the client-server architecture for spatial data access in the first place. Thus, when

looking for a secondary cache to be installed closer to the users’ clients (possibly on

customer’s internal network), utilization of SAND or a similar sophisticated database

would negate many benefits of deploying the system through the client-server archi-

tecture.

For the purposes of secondary level caching, no sophisticated queries are needed,

only support for window queries is required. A window query refers to finding all

objects in the database that intersect a given rectangle. Thus, we can successfully

deploy simpler database systems such as MySQL or PostgreSQL that may have only

rudimentary spatial data support but even such limited support is sufficient for such

purpose. Additionally, management of such a system is much easier for the customer,

especially since such secondary cache can run autonomously (as we will show below).

Objects represented in the SAND database include points, lines,1 and polygons.

1The “line” data type in SAND actually represents what is elsewhere referred to as line segments.

In the literature, the term “line” is often used to denote an infinite line in a geometric sense. At

other times, the term “line” denotes a collection of adjacent line segments, i.e. a multi-line or a

polyline.
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Thus, the secondary database system needs to be able to query the data to find

points included in a rectangle, lines overlapping (crossing) a rectangle, or polygons

overlapping a rectangle. It turns out the support for such operations is not always

available and many times the query needs to be simplified into looking for objects

whose bounding box intersects a given window. This is obviously a much easier

and faster query but may result in false positives. Specifically, at this time, MySQL

syntax supports queries using arbitrary spatial objects (e.g., users can enter a query

with respect to a polygon and a window) but such queries when executed only use

the object’s bounding box to calculate the results. This may surprise some users

who expect to get the exact results, not results with respect to the bounding boxes.

Presumably, this will be improved upon in future versions.

PostgreSQL performs calculations exactly as stated in the SQL but it does not

support many of the geometric operations for many spatial type pairs. For instance,

the “overlap” operation is only supported for boxes and lines, not for polygons, i.e.,

determining whether a line or a rectangle overlap a given window is possible, while

determining whether a polygon overlaps the window is not.

Fortunately, for the purposes of visualizing objects visible within a given view,

utilization of the limited overlap operation (i.e., that only works with respect to

objects’ bounding boxes) is sufficient. In this case, the possible extra objects will be

clipped by the drawing algorithm (as will any hidden parts of the objects that do

overlap the view).
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The SAND Proxy module implements the design outlined in Section 7. Its purpose

is to link one or more SAND Internet Browsers (clients) with the main SAND server,

while optimizing the performance by decreasing the network traffic and absorbing

some load off of the clients as well as the SAND server. The proxy is designed to

be easy to install and to manage a lightweight component that would typically be

installed within the network of entities that frequently utilize services provided by

spatial servers. This proxy is meant to handle the bulk of “get window” queries that

result from browsing the data, thereby allowing the main server to focus primarily on

evaluating unique queries that individual users form themselves using their clients.

Since the SAND Proxy software is hosted from a server-class machine, the module

has access to all resources of the computer including the disk. This differentiates it

from the client software and allows it to process large amounts of data more efficiently.

We have investigated several different methods of how this module works, each

method’s properties make it more suitable for a different specific usage scenario.

8.6 Implementation Details

The SAND Internet Browser client takes the following options from the command-

line:

1. server — This parameter provides the client with the host name or the IP

address of the central SAND server which hosts the data the client will be
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working with. This option is required regardless of the proxy situation since as

outlined above the proxy is not meant to completely replace the central server

and some communication with the central server is always needed.

2. proxy — This parameter is optional and instructs the client to use the proxy

specified by this parameter to speed up the client’s operations. The format of

this parameter follows the standard URL2 format, i.e.:

<protocol:>//[user@password]<host>[:port]/<database>

The individual parts of the URI are defined as follows:

• protocol — One of the supported proxy protocols — the options are

postgresql, mysql, sandproxy and hybridproxy. These are discussed in

greater detail below.

• user — The username needed to obtain access to the proxy.

• password — The password needed to obtain access to the proxy.

• host — The hostname or the IP address of the proxy server.

• port — The port number where the client should be connecting to on the

proxy server.

• database — The name of the database used to store the spatial data on

the proxy server.

2URI — Uniform Resource Identifier [17]
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The individual supported protocols provide the following functionality:

• postgresql — The client connects to a proxy that runs the PostgreSQL

database that was preloaded with spatial data from the corresponding

SAND server. As discussed above, this is an appropriate scenario for the

situation that the data on the central server is relatively static. The com-

munication between the SAND Internet Browser and the SAND Proxy is

done through PostgreSQL’s JDBC protocol.

• mysql — This case is equivalent to the one above, except that this time

the database running on the proxy server is MySQL. The communication

is done through MySQL’s JDBC protocol.

• sandproxy — This protocol assumes that the proxy server is running a

standard SAND spatial database and that the communication between the

SAND Internet Browser and the proxy is done through the SAND protocol.

Note that while the standard SAND DBMS is running on the proxy, it is

only used to store spatial attributes of the central SAND server. In other

words, the proxy is still a auxiliary database that works in conjunction

with the central SAND server. It does not act as a complete copy of the

central SAND database.

• hybridproxy — This is the most complex environment used in scenarios

where the proxy needs to be loading data from the central database on

demand. This could be the case when the data on the central server
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changes frequently or when it is impractical to pre-load all the spatial data

stored on the central server into the proxy (due to the volume constraints,

time constraints, etc.). In this scenario, the proxy acts as a pass-through

module that captures requests from the server. If it has the requested data

immediately available, then it sends the data back to the client. Otherwise

it requests the data from the central server, loads the data it obtains into

its local database (PostgreSQL), and then it executes the client’s query

locally (now the data is definitely available). The proxy runs a DBMS

(e.g., PostgreSQL) as well as a Java servlet that provides communication

to the central SAND server (over the SAND protocol), the SAND Internet

Browser client (over the SAND protocol) and to the internal PostgreSQL

database (over PostgreSQL’s JDBC).

8.7 Communication Protocol

The communication between the SAND Internet Browser client and the SAND server

and between the SAND Proxy server and the central SAND server run over a TCP3

connection. The Java servlet on the server side acts as both a simple standard web

server and as a specialized SAND protocol servlet. The reason for adding the web

server capability is to allow running the SAND Internet Browser client as a Java

applet within standard web browsers. The security limitations of these browsers

3Transmission Control Protocol
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result in only allowing applets to establish network connections back to the server

from which they were downloaded. Thus the applet has to be downloaded from the

same computer that the SAND Internet Browser server part runs on. While our

servlet could be simply installed on the computer that is already running an existing

web server of the organization deploying the SAND Internet Browser, attaching web

server functionality to the SAND Internet Browser server part makes the deployment

easier. There is no need to interact with the IT personnel and the system can be

installed on any networked computer, instead of just the web server, which is valuable

especially in the testing and trial phase of the deployment.

The Java servlet listens on two TCP ports and waits for a client to initiate a

connection. If the client is run as an applet, the first connection would come to the

port that handles the HTTP (web) traffic. The only operation supported by this

simple web server is downloading of a specified file through a GET command [69].

These files can either be the index.html file that serves as a wrapper page that the

applet is embedded in or either sandjava.jar or numerous class files (depending on

whether JAR files are supported by the user’s web browser). Thus ordinarily, first

the HTML page would be served which would trigger another request for either the

JAR file or several class files. After all this data is received by user’s web browser, it

is able to start the Java applet. If the client is run as an application, no download of

the code is needed since the application was installed separately beforehand. Users

simply start the client piece by double clicking the appropriate icon on their desktop

127



or launch the application in any other way specific to their platform.

Once the client piece is launched (either by going to certain web site which results

in downloading and running the applet or by launching the application manually),

it connects back to the SAND servlet, but this time on the TCP port dedicated to

SAND Internet Browser traffic. The communication is driven by the client piece,

the server only responds to client’s queries. The client initiates the transaction by

sending a query. The query is sent in text format. It consists of the query keyword (see

Table 8.1 for list of query keywords) followed by matching arguments, the number

and type of arguments vary from query type to query type (and thus keyword to

keyword).

Upon receiving the query, the Java servlet uses it to create a SAND-Tcl expression

or script in SAND kernel native format and sends it to the kernel for evaluation or

execution. The SAND kernel responds accordingly, and the response is given in text

format. Naturally, the response depends on the query and can be a boolean value,

a number or a string representing a value (e.g., a default color), or the whole tuple

(e.g., in response to the nearest tuple query). If a script was sent to the kernel (e.g.,

requesting all the tuples matching some criteria), then an arbitrary number of lines

can be returned by the SAND server. Passing this data over the network directly to

the client in plain-text would naturally be very inefficient. Thus in case a query is

submitted that returns an arbitrary number of tuples, the data stream is compressed

using the standard LZW [85] algorithm at the servlet and decompressed at the client
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before the result is parsed. Results of queries that are known to return only a single

tuple are sent uncompressed.

It is obvious that this protocol is not as optimized for carrying the SAND Internet

Browser specific traffic as it could be. On the other hand, it is very flexible and easy

to use which is especially valuable during the SAND Internet Browser development

phase. Moreover, we do not expect more efficient encoding of the data within the

protocol to improve the overall performance of the system much.

It is also obvious that if another spatial database is used instead of SAND kernel,

only a simple modifications to the servlet would need to be made in order for the

SAND Internet Browser to function properly. The queries sent by the client would

need to be recoded into another query language, one that is native to this different

spatial database. The format of the protocol used for communication between the

servlet and the client will be unaffected.

The following table explains the protocol used for client-server communication.

The client always initiates the communication with the server. It is done by sending

a request keyword followed by a variable number of arguments to the sender. In

response, the server executes the operation encoded by the request, and, if applicable,

it sends the response back to the client.

Protocol format
Query Keyword Explanation

cce choose catalog entry — open a specified mapset
cdd change working directory of SAND kernel
cls close table
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crr create random relation — used to store temporary results
drp remove relation (typically the temporary relation)
ext exit
fbq calculate results of query, insert resulting tuples into a

given group
flt retrieve tuples via filter
fst find the first tuple from the given table
gad get auto display – retrieve the information about the de-

fault coloring scheme for this table
gat request list of attributes for the given group
gav get attribute value — get the attribute value for a given

tuple and its attribute
gcl list all relations available on the server
gfc get fill color — get the default fill color for a given relation
ggb get group by — get all tuples with the same unit attribute

as the given tuple that also match the query
gib get indexed by — find all indices of a given table
gid requests raster data associated with a given tuple
glc get the default line color for a given group
gle get the number of tuples of the given group
glw get line width — get the default line width for a given

table
gon get the object name (singular) for the given table (e.g.,

road, river, etc)
grl get list of relations of the given mapset
gsi get the spatial index of the given group
gsn get name of objects (plural) for the given table (e.g.,

roads, rivers, etc)
gst get the spatial type of the given table (e.g., line, rectan-

gle, etc)
gun request the default group-by attribute of a given relation
gwr get dimensions of the world
nea get the nearest tuple to a given location
nxt get the next tuple within the table
otb open table
scg save current group (on the server)
ssc sand keep-alive message (generates periodical traffic to

keep the connection alive)
sts get statistics about the current session

Table 8.1: SAND Protocol keywords
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8.8 Evaluation

Our research explores the impact of various types of techniques of chaining different

caching layers together on the performance of the solution. We investigate different

scenarios and suggest ideal combinations of caching based on the types of devices

used, usage model (e.g., number of users looking at the same data), network speed,

and other factors.

Specifically, we have designed and implemented the following caching methods

and investigated properties of SAND systems created by chaining them in various

combinations:

• Client

1. direct access — the client communicates directly with the main spatial

server without any local caching

2. local caching — the client caches data in its memory

• Proxy

1. pre-loaded data — local SQL database is pre-loaded with all spatial data

from the server
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2. dynamically-loaded data — local SQL database is loaded dynamically

based on the requests coming from the clients

It is important to realize that our contribution involves the design of the compu-

tational infrastructure put in place to improve the overall user experience by speeding

up the system’s response in comparison with other traditional approaches in given

scenarios. The behavior of the whole system depends on a number of factors, many

outside our reach (e.g., the network latency, number of concurrent users, or even the

exact implementation of the garbage-collection algorithm in the underlying operating

system or virtual machine, etc.). This also makes rigorous comparison with other ex-

isting systems that aim to serve the same goal (e.g., MapQuest) difficult as we are not

able to run performance tests of both systems in identical environments. MapQuest

is deployed in a professional hosting environment on powerful hardware while it is

being accessed by tens, hundreds or possibly thousands of people at any given time.

Our system can be tested in a lab environment where the hardware and network have

different parameters. Furthermore, the target audience for an established service such

as MapQuest is different than the one intended for the SAND service. For MapQuest

(and similar services), the system only aims to display a map for the area that sur-

rounds a given location. The SAND system is designed to allow the user to perform

more complex spatial queries.

Therefore, the nature of the SAND system and a MapQuest-type system makes

their comparison difficult. This is because they may behave slightly differently each
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time the experiment is run. Thus, other similar experiments or real deployment

experience may produce results that would differ from ours. Nevertheless, as we will

see, where we claim that one of the methods is better than the other, the performance

difference is substantial enough so that the same conclusions can be drawn even when

allowing for rather generous deviations.

Of course, we have tried to minimize the impact of external factors. This was done

by utilizing the same hardware and software platforms for both systems, the same

networking environment as well as identical data sets, queries or sequences of queries.

In addition, the parameters of the server platform, the networking environment, and

the type of datasets and queries that were run on them were selected to be typical

for the types of deployments that we suggest would benefit from this system. The

selection of test scenarios is discussed further below.

Finally, the goal of the evaluation is not to determine that one approach is better

in any scenario. Instead, we aim to identify what approach is the best one for different

types of deployments and provide the system administrator and user with guidelines

for selecting a solution best suitable for their specific needs. Besides comparing vector-

based SAND against a bitmap solution, we also deployed SAND in several different

ways utilizing its modularity as described in Section 8.1.
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8.9 Comparison with MapServer-Based Visualiza-

tion

For our performance evaluation, we used TIGER datasets from the U.S. Census,

specifically the street maps for states in the Mid-Atlantic region. This includes all

the roads and streets in Virginia, Maryland, District of Columbia, New Jersey, and

Pennsylvania. There are over 7,500,000 entries in this combined dataset. Each entry

corresponds to a single line segment, each actual street may be represented by one

or more line segments in the map. The total size of the data stored in the format

distributed by U.S. Census is over 700MB.

The relevant datasets can be obtained from the U.S. Census Bureau in many ways

including downloading through the agency’s HTTP/FTP server4. The U.S. Census

Bureau publishes the specifications of the TIGER format in [21]. ESRI converted the

TIGER data into their proprietary Shapefile format [2] and offers the converted data

for download on their web site5.

U.S. Census Bureau TIGER data contains numerous layers of spatial and non-

spatial data. For the purposes of this test, we only worked with the road data layer

represented within the TIGER set. In ESRI’s filename scheme, the names of the data

files start with tgr followed by the five-digit county FIPS6 code followed by the layer

4ftp://www2.census.gov/geo/tiger

5http://arcdata.esri.com/data/tiger2000/tiger_download.cfm

6Federal Information Processing Standards
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suffix. “Line Features — roads” are stored in files with suffix lkA. This layer alone

provides enough data to test and compare performance of different spatial mapping

systems. These road segments are also moreless evenly distributed across the covered

area.

In an actual deployment, it would probably be helpful to include other data layers

available in TIGER to create a background map for users’ specific data sets. Such

layers could include railroads, other transportation-related objects (e.g., airports),

streams and rivers, parks, water surfaces (e.g., lakes, oceans), boundaries, power

lines, etc. Additionally, we may choose to create several separate layers out of some

of the data types available in TIGER. For instance, while all the roads in TIGER

are stored together within the same layer, it may not be desirable to display all the

roads all the time. This situation arises as a result of using a lower zoom factor which

means that a larger area of the covered world is visible, and thus only major roads

need to be displayed. Only when the user zooms in to examine a smaller area in

more detail do we need to show all the roads represented in the data set. Thus, the

information stored in the TIGER road data layer can be used to create several road

layers, each representing roads with a different level of detail. Perhaps, on one end

of the spectrum the layer would only list major highways while the other end would

show even the smallest neighborhood streets.

With different levels of detail available, the mapping application can decide which

layer to fetch the data from based on the current zoom level, the desired maximum
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number of elements to be displayed in each view, etc. The exact setup can be config-

ured based on the requirements of each specific deployment. This adaptive system is

available in SAND and is discussed in more detail in section 7.5.

When selecting data elements (such as individual roads) for inclusion into the

individual layers, we need to know the “significance” of each element. The more

significant elements would be visible in the more general views while less significant

elements would only be visible in more detailed levels. The meaning of “significance”

depends on the type of data as well as the particular deployment scenario. For

instance, for the above mentioned road layer, interstates and other highways would

be typically considered the more important roads while smalled local streets would

be less important. Similarly, on the park layer, national parks may considered more

important while state and regional parks would be less important. For other types

of data, the importance may be reflected by the spatial extent (e.g., size of a lake),

shape (e.g., an object represented by a straight line may be more important than

one represented by a jagged line) or total length. As we see, the importance can

be deduced from the non-spatial data that accompanies the layer elements (e.g., the

type of the part, the class of the road) or from the spatial properties of each element

itself as well as elements around it. Selecting elements according to their non-spatial

attributes is simple as a search for all elements whose non-spatial attributes match a

given criteria (e.g., cities with more than x residents) will produce the desired results.

However, the situation gets significantly more complex when selecting objects by their
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spatial properties (either because non-spatial attributes are not available or because

they do not reflect the desired search criteria closely enough). This topic is discussed

in more detail in section 9.2.

A sample map created from U.S. Census TIGER data is shown in Figure 8.9a.

Note that we have split the TIGER road data set into two map layers, one that

contains major roads and one for minor roads. We have used the non-spatial attribute

’CFCC’ associated with each road which contains information about the class of each

road stored in the dataset. Both layers are then drawn using different graphical

parameters to differentiate major and minor roads when the level of detail is large

enough for both layers to be displayed. For comparison, a MapQuest map capturing

the same area is shown in Figure 8.9b. We see that both data sources present feasible

option for online mapping in terms of coverage, level of detail and visual presentation

so results obtained using the TIGER data should be applicable to maps created from

other data sources such as MapQuest as well.

Our performance testing aims to compare different types of SAND’s vector based

approach to remote mapping with the bitmap based approach employed by such

popular systems such as MapQuest or Switchboard’s MapsOnUs. In order to run both

systems in the same environment, we chose MapServer (see Section 2.2.4) to represent

the bitmap approach. This allows us to deploy both systems on the same hardware,

using the same operating system and within the same networking environment. This

helps us minimize performance differences caused by factors that are not directly
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(a)

(b)

Figure 8.9: Comparison of a sample map generated from TIGER data and a
MapQuest map of approximately the same area and zoom factor. Figure 8.9a
shows the TIGER map, Figure 8.9b is the corresponding MapQuest map
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related to design of spatial data management.

The MapServer system can operate with spatial data represented in ESRI’s Shape-

file format. Once the U.S. Census TIGER data is converted to ESRI’s Shapefile for-

mat, the MapServer system can utilize the data set directly. We acquired our data

from ESRI who, as mentioned above, makes it freely available for download.

As mentioned above, various types of SAND deployment may use auxiliary SQL

servers that support spatial data. In particular, we implement support for MySQL

and PostgreSQL. SAND, MySQL or PostgreSQL do not work directly with TIGER

data or Shapefiles, so we need to convert the Shapefile-formatted data into the native

formats of these database applications. We used publicly available libraries [3] to

develop tools that perform this conversion. Thanks to this conversion process both

MapServer and SAND (in standalone configuration or supported by MySQL or Post-

greSQL) can operate on data represented in their own native format. Since all these

native sets originate from the same U.S. Census data set, both systems work with

identical content which makes their side-by-side comparison valid.

Our work focuses on optimizing methods that facilitate remote access to spatial

data. Therefore, in this evaluation we investigated the performance of the module

that is responsible for presenting the user with the data retrieved from the spatial

data repository. While the retrieval of visible data from the spatial repository (the

window query) is naturally a part of the visualization process, for these services we

rely on technology that was not part of our research. So in our evaluation we need
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to make sure that any possible difference in the performance of the DMBSs does not

affect our overall results.

8.9.1 Evaluating Performance of Underlying DBMSs

As we indicated above, our approach to remote visualization is not necessarily de-

pendent on the SAND server. Any DBMS with spatial capabilities could perform the

function of the central spatial server or of any of the auxiliary servers. Our implemen-

tation indeed allows the system administrator to use SAND, MySQL or PostgreSQL

interchangeably on the auxiliary servers. Therefore, when evaluating our remote vi-

sualization approach against others, we do not need to choose any specific DBMS.

This means that in our MapServer (representing a bitmap approach) vs. SAND (rep-

resenting our vector data approach) comparisons, we need to investigate the relative

performance of all the DBMSs involved to confirm that their individual properties

are not the decisive factor in the overall results. While these DBMSs are needed for

the whole remote visualization solution to work, we only want to compare methods

that are employed after the matching objects have been identified by the DBMS.

To assess the performance of the spatial engines separately, we ran tests on the

same data and queries that we later use for assessing the performance of the whole

system, but without transferring the matching objects anywhere. As we will discussed

in further detail below, the operations used include zoom in, zoom out, slow scroll

(the new view overlaps 90% of the area of the previous view) and fast scroll (the new

140



view overlaps the previous view by 50%, i.e., half the window). The data density (i.e.,

the number of objects visible within the view) for all these operations is kept within

ranges to be expected during normal usage. Specifically, the zoom factor was selected

such that the number of objects shown in any view is around 10,000-20,000 objects.

We observed that with a larger number of objects, the content of the window gets too

busy and individual features start to blend together, thereby filling continuous areas

of the display with the feature color and making individual features indistinguishable.

Of course, for the zoom operations the number of visible objects can be much lower

as the user zooms farther inwards.

We have used MySQL as the DBMS running on the central spatial server for our

evaluation. Other DBMSs could have been used as easily though, we chose MySQL

because it is a popular and affordable product available for many platforms and thus

it is easier for readers to relate to experiments that utilize this product. Our goal is

to evaluate the performance of the overall design and to do so we need to find out if

using different DBMSs for the bitmap and vector approaches skews the results. Thus,

in order to isolate the performance of the underlying spatial engine from the overhead

cost related to further data formatting, and linearization for output or visualization,

we use the same set of operations on both MapServer and on MySQL.

The sequence of operations that we use to emulate typical usage scenarios and to

measure the performance of various types of deployment are given in Section 8.9.2.

Here we use the same sequence of views to measure the performance of the DBMSs
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alone. This enables us to see whether there are significant differences between the

query evaluation time in MapServer and MySQL.

For MySQL, we measure its core performance by executing the following SQL

command7 that calculates the number of elements within a given window:

select count(*) from roads where

within(location, rectangle(minx,miny, maxx, maxy))

As the test iterates over the predefined set of rectangles, the values minx, miny,

maxx, maxy are replaced by the actual values of each test rectangle.

To access MapServer functionality, we used the PHP-based [14] scripting tool

MapScript [15]. We have developed a script implementing the same functionality that

was used for MySQL — that is, iterate over all test rectangles and query the number

of elements (using the queryByRect operation) that lie within each test window.

Both methods and their native data sets utilize spatial indices built on the data.

In the case of MapServer, the Shapefiles themselves are distributed together with

spatial indices. In the case of MySQL, the spatial index was built after completion

of the conversion and import process.

Table 8.2 shows the performance of MapServer vs. MySQL. The DBMS were

7Note that the actual SQL command is somewhat more complex due to syntax restrictions

and requirements of MySQL. In particular, the command is: select count(*) from roads

where within(location, GeomFromText("Polygon((minx miny, minx maxy, maxx maxy,

maxx miny, minx miny))"))
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evaluating 20 window queries for the scroll operations and five window queries for the

zoom operations.

Spatial Engine Performance
Operation Time (in sec)

MySQL MapServer

Fast Scroll 4.3 4.6
Fine Scroll 5.5 6.8
Zoom In 1.7 2.0
Zoom Out 1.5 2.0

Table 8.2: MySQL and MapServer spatial engine performance comparison

As we see from the results, the performance of both systems is comparable. Once

we obtain the total cost of retrieving, transporting and visualizing the results for

the same sequence of queries, we will be able to judge how large a role the query

execution performed by the DBMS plays in the overall cost of the remote visualization

operation and whether the differences in performance between the underlying DBMSs

are significant.

Data retrieval from the database is an integral part of this process, it is always

the first step in the visualization of the area requested by the client. After the data

has been retrieved from the database, MapServer always creates an image file and

pushes it to the client. In case of SAND, retrieved data will be passed to the client

in vector format, possibly merged with other data already available there and finally

rasterized for viewing directly on the client side.

Note that to obtain the cost of the visualization alone (i.e., not counting the cost
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of running the DBMS query), we cannot simply subtract the time it takes the DBMS

to fetch all matching elements within each window in the query window sequence from

the total running time. This is because the number and size of the query windows

requested by the visualization module from the database is also determined by the

design of the module. Due to deployments of caching and other methods within

SAND, spatial database supporting the SAND-based system would typically process

queries encompassing smaller areas and thus return fewer elements. This is because

often the query objects are only fractions of the current total viewable area and are

often only used to fill gaps in cached coverage.

In the case of the MapServer system, the visualization process involves the follow-

ing steps:

1. On the server side

• Given the current viewable area (calculated from instructions sent by the

client), perform the ’window query’ on the spatial database.

• Retrieve all elements within the viewable window and render them into a

raster image.

2. Between the server and the client

• Transport the resulting raster image to the user’s web browser.

3. On the client side
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• Display the raster image within the web browser

In the case of SAND with local caching, the visualization process is as follows:

1. On the client side

• Given the current viewable area (calculated from the user’s input such as

clicking the navigation bars), using the locally managed spatial structure

calculate which areas of the viewable areas are available locally and which

are missing. The missing areas are expressed in terms of a sequence of

quadtree blocks. Send the request for objects overlapping this sequence to

the server.

2. Between the client and the server

• Transport the sequence of window queries to the server

3. On the server side

• Perform ’window queries’ on the spatial database using the sequence of

rectangles received from the client.

• Combine all the resulting objects into a single data package to be trans-

ferred to the client.

4. Between the server and the client

• Transport all the matching objects to the client.
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5. On the client

• Load the received objects missing from the local cache into the local cache

(possibly dropping some older cached objects)

• Render a bitmap using the vector data stored in the local cache (we know

all the necessary data is available locally after the gaps have been filled by

the download from the server).

• Display the bitmap on client’s screen.

8.9.2 Performance Comparisons for Typical Usage Scenarios

— MapServer vs. SAND Internet Browser

We have identified several typical operations that a user of a mapping or GIS system

would perform frequently while navigating around the map. These operations include:

• Zoom in — this operation allows the user to view an area of interest in more

detail. This operation is usually available through clicking at a map near the

area of interest while the application is in the ’Zoom in’ mode. The application

then centers the next view around the selected point and makes the viewable

area smaller, possibly while showing more details.

• Fast Scroll — this operation allows the user to move the viewable area left

and right or up and down by large increments. For dynamically visualizing
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applications (such as SAND) this is typically done by clicking and dragging the

scroll bar on the side of the viewable window. As the user scrolls vertically

or horizontally, the application attempts to refresh the view dynamically. For

applications that respond to operations one click at a time (such as MapServer),

this is typically implemented by adding four discreet buttons next to the image,

each representing a direction the map would move if the button is clicked (i.e.,

left, right up and down). In this scenario, the map often moves by one half

of the window size, e.g., when the ’move down’ button is clicked, the elements

near the bottom edge of the map will now be showing near the center and there

is 50% overlap between the old and new views.

• Fine Scroll — this operation allows the user to move the viewable area left and

right or up and down by small increments, perhaps only by a fraction of the

window width or height. In dynamically updating systems (such as SAND), this

is typically implemented by responding to clicks on arrows located at the end of

scroll bars. In discreet systems (e.g., MapsOnUs) this is often implemented by

adding another set of buttons similar to the ones used for fast scrolling. These

buttons, however, trigger a much smaller move in the given direction and the

old and new viewable areas overlap significantly.

• Zoom out — this operation allows the user to see a larger area of the map

within the viewable window. Since more objects fall within the viewable area,

it may be desirable to select and show only a subset of the elements (e.g., the
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more important ones) that are viewable at the more detailed zoom level. This

operation is typically available by clicking at a map near the area where the

zoomed out view should be centered while the application is in ’Zoom out’

mode. The application then makes the viewable area larger while possibly

selecting only some of the objects for display.

We expect (and confirm our expectations by running experiments) that the cost

of each visualization operation (zoom, pan) for the MapServer approach will be ap-

proximately constant given a constant data density (i.e., the number of objects to

be visualized for per the fixed view area size) and viewable area size. If the number

of elements within the viewable area remains the same, then the cost of the spatial

query and the subsequent rendering cost remains the same as well. Similarly, the cost

of converting the resulting bitmap into a compressed raster format commonly used

in web applications (e.g., GIF or PNG) remains the same. Finally, the size of the

resulting GIF or PNG image remains the same and so does the cost of transporting

it over the network to the user’s web browser. Thus we see that when the number of

objects visible as a result of a visualization operation remains the same, the cost of

updating remains constant as well. Given a server platform, the MapServer system

responsiveness will depend on the network speed and latency.

The situation for the SAND Internet Browser is different. There, the system takes

a more complex approach when processing visualization requests and the response

time will depend on the nature of the request as well as on the history of similar
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requests preceding this one.

As mentioned above, we have selected several typical operations that users of a

mapping system or GIS would perform most often while navigating around the map.

These operations include zooming in and out and panning/scrolling.

First, we compare MapServer with the standard SAND setup that only involves

the central data server and the SAND Internet Browser client. No auxiliary servers

are involved at this time. The spatial server uses MySQL to process the window

queries.

As discussed, the bitmap-based approach (MapServer) always loads the full bitmap

in response to a single click. Once the request to the server is sent, the user cannot

operate the client until this operation is over. If the user tries to initiate further opera-

tions while another one is still in progress, all such attempts are either ignored or they

are queued up and executed one by one. This means that the user may inadvertently

trigger a given operation several times (perhaps as a result of not seeing any response

from the system he or she was not sure if the operation request was registered by the

application). This could result in the user waiting seconds or even minutes for the

queued up operations to clear. SAND uses a different approach. While an operation

is being executed, the client does not ignore any subsequent operation requests nor

does it queue them. Instead, it only keeps track of the last operation requested. So

if the user tries to scroll several times in a row, once the client becomes available,

it only executes a single scroll operation that takes the user to the latest requested
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position. Clearly this is a more desirable method. However, in order to evaluate the

visualization system without influence of this additional optimization, when measur-

ing the scrolling performance in SAND we always wait for the last scroll to finish (i.e.,

update the screen) before triggering the next one.

In order to prevent the user’s response time8 from affecting the performance

timing, we have created a special SAND Internet Browser module that emulates

a sequence of user’s operations while always waiting for the operation to finish be-

fore launching the next one. Similarly, we have developed a user emulator for the

MapServer system which requests a new operation as soon as it receives results from

the previous one.

For the SAND Internet Browser, we measure the execution time in two scenarios:

• The data to be visualized as a result of the user’s operation is already cached

on the system.

• The data to be visualized as a result of the user’s operation is not yet cached

on the system and has to be loaded dynamically from the server.

For MapServer, the bitmap is always downloaded from the server for each new

operation.

8The amount of time it takes the user between noticing the last operation finished and when he

or she requests the next operation.
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In our sequence of operations, each view shows about 25,000 line segments. Each

single fine scroll update “recycles” 9/10th of the screen (using a quick bitmap copy)

and updates 1/10th of the screen from the cache or by download from the server, (i.e.,

about 2,500 line segments). The fast scroll operation reuses one half of the screen

and rasterizes vector data loaded either from the local cache or downloaded from the

server for the other half of the screen. For the zoom in operation, the data for the

next operation is always cached in the system (since the next view shows the subset of

data shown in the previous view). For the zoom out operation, the data for the next

operation may either already be in the local cache (e.g., if the zoom out operation

was preceded by a zoom in operation) or it may need to be loaded from the server

(e.g., if the user panned into the current view on the same zoom level and now he or

she needs to zoom out to view previously unseen data).

In order to measure the performance across the various deployment scenarios (here

represented by different properties of the network connection), we emulate networking

environments that correspond to several typical methods of achieving connectivity on

mobile devices as well as fixed workstations. The methods that we investigated are

given in Table 8.3 along with the properties of such connection methods.

To emulate different networking properties in our test environment, we have uti-

lized NIST Net [11], a general-purpose tool for emulating performance characteristics

in IP networks. The tool was designed to allow controlled, reproducible experiments

with applications that are sensitive to network performance. NIST Net can emulate
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Connectivity methods
Connection Type Bandwidth (bytes/sec) Typical delay (sec)

Dial-up modem 56kbps 7,000 0.300
Cable/xDSL 182,000 0.200
Satellite 62,500 1.000
LAN 1,250,000 0.002

Table 8.3: Properties of various network connection types

end-to-end performance characteristics imposed by various wide area network situa-

tions (e.g., congestion loss) or by various underlying subnetwork technologies (e.g.,

asymmetric bandwidth situations of xDSL and cable modems).

NIST Net is implemented as a kernel module extension to the Linux operating

system. The tool allows a Linux server to emulate numerous complex performance

scenarios including tunable packet delay distributions, congestion and background

loss, bandwidth limitation, and packet reordering or duplication.

We have configured NIST Net using networking parameters typical for individual

connectivity methods (Table 8.3) to measure the performance of the SAND system in

different deployment scenarios. Since NIST Net only affects incoming traffic (i.e., the

traffic that is arriving into the machine running the NIST Net emulation), we had to

make sure to run the module on the machines that are receiving data from upstream.

This would include the machine running the client and also the machine running the

auxiliary proxy in case of the dynamically loaded version of the setup.

As discussed earlier in Section 7.4, the actual DBMS running on the server can

be one of many supported systems. The communication protocol between the client
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and the server-based DBMS used to submit queries and retrieve results depends on

the specific DBMS used. As such, some protocols may be more efficient than others

in encoding the results in the least amount of space possible. For some DBMSs this

optimization may not even be a concern as they expect other layers of the network

connection to handle this.

When the native SAND server is used as the central DBMS, the objects returned

as a query response are represented in their textual form but the stream of text is

compressed using the LZW algorithm before the data is pushed over the network

(the SAND protocol is discussed in more detail in Section 8.7). On the other hand,

MySQL and PostgreSQL do not explicitly compress the data sent between the client

and the server. In order to remove this potential inefficiency and to level the playing

field with MapServer (that always implicitly compresses the datastream by by repre-

senting the bitmaps in formats such as GIF or PNG that are natively compressed), we

establish a compressed IP tunnel9 between the client and the server. In this way, any

communication between the client and the server is compressed even when MySQL

or PostgreSQL is used. Note that in the case of a fast network connection, using

compression can actually slow the system down as the time spent by the system to

compress and decompress the data may exceed the time saved from the faster data

transfer.

9This was achieved by employing the Secure Shell (ssh) utility and its port forwarding and

compression functionality.
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For our testing we have used a Dell PowerEdge 300 server running RedHat Enter-

prise Edition 3.0 AS operating system. The server is powered by a 800MHz Pentium

III processor with 192MB of RAM. The client ran on a Compaq Armada E500 laptop

with 700MHz Pentium III and 192MB of RAM with the same operating system.

For the pure client-server environment (i.e., no auxiliary servers), the performance

was tested for the following three basic client-server architecture states. First, the

cached SAND Internet Browser state refers to a scenario where the SAND Internet

Browser provides local caching and the data to be displayed as a response to the

sequence of scroll operations is already available in the client’s memory. This type of

memory-caching client is discussed in Section 6.2. Second, the direct SAND Internet

Browser state refers to a scenario where the client does not cache data locally and

downloads all the data from its server. This represents the pure client-server setup

where the client communicates directly with the central server (Section 6.1) but note

that essentially the same environment is created in a setup that involves a static (pre-

loaded) proxy (Section 7.2) or a dynamic proxy which already contains the required

data (Section 7.3). It is also similar to a scenario where the client’s internal caching

is implemented but the data for the current viewable area is not available on the

client (Section 6.2). In this scenario, in addition to being displayed, the data would

also be stored locally in the PMR quadtree as it is downloaded from the server so

that the performance of such a setup in this particular scenario may be slightly lower.

Finally, the dynamic SAND Internet Browser state refers to a scenario where the
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client provides local caching but the necessary data is not available in the local cache

yet.

Table 8.4 shows the results of a performance comparison of MapServer with the

SAND Internet Browser for scrolling. During a sequence of fine scroll operations, the

previous window overlaps the next window 90% of the window area. This means that

the SAND Internet Browser can use a fast bitmap copy operation to transfer the part

that can be reused to an other location of the screen and it needs to rasterize only

10% of the window using vector data stored either locally or downloaded from the

server.

Fine scrolling/Local Panning
Connection type MapServer SAND Internet Browser

Cached Dynamic Direct

Dial-up modem 179 6.6 80 124
Cable/DSL Line 52 6 38 20
Satellite 181 5 85 81
LAN 18 5 33 10

Table 8.4: Performance comparison of the SAND Internet Browser and
MapServer for the fine scroll operation. The table indicates the time in sec-
onds it took to perform 20 subsequent fine scroll operations.

Table 8.5 shows the results of a performance comparison of MapServer with the

SAND Internet Browser for zooming in. The starting viewable window showed 25,000

line segments and each zoom in operation doubled the map scale, i.e. both the x and

y coordinate ranges were halved. Thus, the area before the zoom in operation is four

times as large as the area displayed after the zoom in operation. We measured the

time it took to execute five subsequent zoom in operations, the last view was showing
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only dozens of line segments.

Note that the viewable area resulting from the zoom in operation is always a

subset of the viewable area that existed prior to the zoom in operation. Thus, for the

caching SAND Internet Browser, the data to be displayed after any zoom in operation

will always be available in the cache.

Zoom in
Connection type MapServer SAND Internet Browser

Cached Dynamic Direct

Dial-up modem 44 0.5 N/A 10
Cable/DSL Line 12 0.8 N/A 3
Satellite 44 0.5 N/A 10
LAN 5 0.8 N/A 1

Table 8.5: Performance comparison of the SAND Internet Browser and
MapServer for the zoom-in operation. The table indicates the time in seconds
it took to perform five subsequent zoom-in operations. The results for the dy-
namic SAND Internet Browser method are not applicable (N/A) since the data
will always be cached from the previous operation.

Table 8.6 shows the results of a performance comparison of MapServer and the

SAND Internet Browser for the zoom out operation. This test is essentially a reverse

of the zoom in operation with a single important distinction in the caching SAND

Internet Browser. While each zoom in operation can expect to have all the necessary

data cached from the previous step, in the zoom out operation this is not necessarily

the case. Consider a scenario when the user moves around in a zoomed-in (e.g., street)

level and then tries to zoom-out (e.g., to city level). As the viewable area grows, not

all the data objects that overlap this area are necessarily cached.
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For the zoom out operation, the starting viewable window showed a large detail

containing only a few dozens of line segments. Each zoom out operation expands both

x and y coordinate ranges twice. Thus, the area before the zoom out operation is

four times smaller than the area showing after the zoom out operation. We measured

the time it took to execute five subsequent zoom out operations, the last view was

showing about 25,000 line segments. We considered both scenarios outlined above

for the SAND Internet Browser. One scenario captures the situation where the data

to be shown after the zoom-out operation is already in the cache (i.e., the zoom-out

operation was preceded by a zoom in operation without any panning operations in

between). The other scenario explores a situation when the data to be shown after

the zoom-out operation is not in the cache and has to be fetched from the spatial

server.

Zoom out
Connection type MapServer SAND Internet Browser

Cached Dynamic Direct

Dial-up modem 45 1.8 48 26
Cable/DSL Line 12 1.6 22 5
Satellite 45 3.2 36 17
LAN 5 2.3 20 2

Table 8.6: Performance comparison of the SAND Internet Browser and
MapServer for the zoom out operation. The table indicates the time in sec-
onds it took to perform five subsequent zoom out operations.

Table 8.7 shows the results of a performance comparison between MapServer and

the SAND Internet Browser for global panning. Unlike in the Local Panning/Fine

Scrolling scenario evaluated above, in the global panning operation, a large portion

157



of the post-panning viewable area does not overlap the pre-panning viewable area.

This means that the SAND Internet Browser must load a large portion of the new

viewable area from the locally cached data or from the central spatial server. Given

this, we again measure the performance of the SAND Internet Browser for two distinct

scenarios:

• The data to be visualized as a result of the user’s operation is already cached

on the system.

• The data to be visualized as a result of the user’s operation is not yet cached

on the system and has to be loaded dynamically from the server.

MapServer, as always, generates a new bitmap on the server and pushes it onto

the client. Each view was showing about 25,000 line segments during this panning

operation. As we can see, each of the tests performed above repeats the same opera-

tion under the same conditions. This provides us with a comparison of each possible

operation under given conditions (in terms of network parameters) separately. While

in a real life deployment the network parameters will likely remain fixed during each

session, the sequence of operations will probably be a combination of the available

operations. In other words, the user will probably not use solely the fine scroll or the

zoom operations, instead they would typically do some scrolling, then zoom in, scroll

some more, zoom out, etc. The typical sequence structure and the duration of such a

session would depend on the nature of the scenario. Reviewing a larger area for cer-
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tain properties may involve much scrolling and a minimum of zooming. Investigation

of multiple separate locations may involve more zooming in and out with a minimum

amount of panning.

Fast Scrolling/Global Panning
Connection type MapServer SAND Internet Browser

Cached Dynamic Direct

Dial-up modem 161 3.9 109 108
Cable/DSL Line 44 3.9 54 19
Satellite 165 3.9 104 80
LAN 14 3.8 48 9

Table 8.7: Performance comparison of the SAND Internet Browser and
MapServer performance comparison for the fast scroll (global panning) operation
(in sec)

Furthermore, the user will rarely work under conditions when the spatial data is

either fully cached all the time or not cached at all in any step. Depending on the

exact usage patterns, the user can expect to benefit from the caching for some portion

of his or her operations. The success rate of the caching mechanism will depend on

numerous factors. The first is the time at which the operation is executed. The

cache will be empty right after the start-up of the client application. So the user can

expect to be fetching data from the server for most such operations initially. Thus,

the initial performance of the caching SAND application will appear close to what

we have shown above under the non-cached data columns (i.e., direct or dynamic).

Once the cache is filled with data, the success rate will depend on the extent to which

the user’s spatial operations are localized. If the user visualizes information mostly

within the same limited area, then most of the operations will utilize the cached data.
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In such a scenario, the performance will be close to what we have shown above in

the cached data column. Most of the time the sequence of operations generated by

the user will trigger a mixture of cached and non-cached data retrievals. Therefore,

we can consider our cached and non-cached results to be the extreme cases of what a

user may expect and the typical experience will lie somewhere inbetween.

The data in tables 8.4–8.7 is displayed graphically in Figures 8.10–8.13. From

these figures we see that in most deployment scenarios, network environments, and

usage patterns the user can expect to have substantially better experience using the

SAND system than when using a pure bitmap system. In addition, we see that the

performance differences of the underlying DBMSs (as shown in Table 8.2) are negli-

gible in comparison to the cost of running the whole remote visualization operation.

Thus we can safely conclude that the differences that we observed are really due to

the remote visualization design rather than due to the use of different DBMSs for the

examples that we used.

8.9.3 Performance Comparisons for Deployments Utilizing

Auxiliary Servers

In the previous section we compared the SAND-based system that involved a caching

and non-caching client and a central spatial server with a bitmap based system rep-

resented by the MapServer application. We have seen that this type of SAND de-

ployment in which the client communicates directly with the central server is a valid
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Figure 8.10: Comparison of a bitmap (MapServer) approach with the vector-
based SAND approach for remote spatial data visualization. The figure shows
results for 20 subsequent fine scroll operations as tabulated in Table 8.4.

approach when the prerequisites for its efficient usage are satisfied, namely the capa-

bility of the client to cache non-trivial amounts of data or when the network speed

is such that data can be downloaded from the server over and over quickly. With

the growing popularity of small footprint wireless-capable handheld devices (e.g.,

smart/cell phones, PDAs and other similar devices), we also need to look at how

the SAND-based architecture handles scenarios where the client cannot store larger

amounts of data locally. Note that the bitmap approach is still valid as the client

does not store any data locally and thus this method is still applicable even on these

mobile devices (see Figure 7.1).

An example of the deployment of the handheld wireless technology in conjunction
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Figure 8.11: Comparison of a bitmap (MapServer) approach with the vector-
based SAND approach for remote spatial data visualization. The figure shows
the results for 20 subsequent fast scroll operations as tabulated in Table 8.7.

with the introduction of a third auxiliary server is presented in Figure 7.2. This

scenario can be modeled using the SAND system by deploying the non-caching SAND

client on the handheld device and by installing an auxiliary SAND proxy server within

a fast network connection. In this way, the client is requesting all the data it needs

to visualize from the proxy server (possibly repeatedly) while the proxy server either

has all the data already available or it needs to fetch the data from further upstream

(i.e., from the central data server).

We evaluate the performance of different approaches below. We compare the

bitmap MapServer approach with a SAND system utilizing an auxiliary proxy server.

This proxy server can either be preloaded with the base spatial data or it loads the
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Figure 8.12: Comparison of a bitmap (MapServer) approach with the vector-
based SAND approach for remote spatial data visualization. The figure shows
the results for five subsequent zoom in operations as tabulated in Table 8.5.

data from the central spatial server as the requests for the data come in.

As before, we examine at two different usage scenarios. The first one assumes that

the user just started the application so that no cached data is available yet. Since

the proxy server can provide its services to multiple users, we also assume that this

user is the first one to request this particular data. The second scenario assumes

that the same data was already accessed before (by this or another user) and thus

it is already available on the proxy server. The proxy server in our environment is

implemented as a Java servlet that manages connections between the clients and the

central server, and utilizes MySQL DBMS over a JDBC connector for data storage

(Figures 7.3 and 7.4). In these scenarios, we assume a spatial database system needs
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Figure 8.13: Comparison of a bitmap (MapServer) approach with the vector-
based SAND approach for remote spatial data visualization. Figure shows the
results for five subsequent zoom out operations as tabulated in Table 8.6.

to be implemented quickly with minimum time and effort spent on preprocessing and

setting up. Examples of this type of deployment are discussed in Section 8.9.3 and

illustrated in Figures 7.1 and 7.2.

In this environment, the communication link consists of two parts. The first leg

connects the handheld clients with a local connectivity provider. In the emergency

scenario used to illustrate this case, a mobile communication van or similar vehicle

equipped with a wireless router as well as with satellite or similar type of link to the

central computing facilities could serve as such a provider. Thus the data received by

the handheld devices may need to travel across two network segments, one between

the device and the mobile van, while the other must travel between the van and
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the central facilities. We presume that in emergency scenarios such as these, the

connectivity between the handheld devices and the van is faster than the connectivity

between the van and the central facility.

We perform our experiments with different ad-hoc style usage scenarios on the

same set of typical operations used in the experiments described in Section 8.9.2, i.e.,

fast scroll, fine scroll, zoom in and zoom out. Based on the assumptions for such an

emergency response deployment, we assume that the mobile teams will be able to

connect to the central facilities over a satellite link. Locally, the connection between

the individual response team members will be wireless (e.g., WLAN 802.11b/g). This

emulation is again facilitated by the NIST Net product. Table 8.8 contains the exact

network layer parameters that we assumed.

Connectivity methods
Connection Type Bandwidth (KB/sec) Typical delay (ms)

Satellite 62 1,000
Wireless LAN (802.11b) 1,300 25

Table 8.8: Properties of network connection types typically available in deploy-
ments involving an auxiliary server

Since we assume that the need for quick response time won’t allow establishment

of any sophisticated data center, any hardware deployed on the site will have to be

portable and thus possibly not particularly powerful. It is reasonable to expect that

emergency response teams would use laptop-type equipment for any server tasks. In

our experiments, we have used a Pentium III 700MHz/192MB RAM platform running

RedHat Enterprise Linux to represent such an underpowered mobile platform.
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Table 8.9 shows the results for different ad-hoc style usage scenarios. Figures 8.14a,

8.14b, 8.14c and 8.14d indicate the performance graphically. As we see, MapServer

performs better on a freshly installed system where no data has been pushed through

the infrastructure yet. In all scenarios, MapServer produces the results much faster

than the SAND caching-type deployment where the cache is still empty. This is

because of the additional overhead of copying the necessary data from the central

data server to the auxiliary server, a step that MapServer completely bypasses. Once

the cache is loaded with data, we see that it performs at least as well as, and most

of the time significantly better than, MapServer. If the auxiliary server is preloaded

with the data, then the difference is even more pronounced.

Auxiliary Server-based Deployment Performance Comparison
Operation MapServer Preloaded

Proxy
Dynamic
Proxy (clean)

Dynamic
Proxy
(cached)

Fast Scroll 165 19 568 52
Fine Scroll 181 29 520 75
Zoom In 44 2 N/A 12
Zoom Out 45 6 58 48

Table 8.9: Performance comparison of various operations for MapServer and the
SAND Internet Browser using the auxiliary server deployment method. The scroll
operation values represent the time (in seconds) it took the system to process 20
subsequent scroll operations. The values associated with the zoom operations
indicate the number of seconds it took the system to process five consecutive
zoom operations. The client to auxiliary server link is of a wireless LAN type.
The link between the auxiliary server and the central spatial server is a satellite
connection. The result for the zoom in operation in the dynamic SAND Internet
Browser method is not applicable (N/A) since the data will always be cached
from the previous operation.

While intuitively we would expect the performance of the preloaded auxiliary
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Figure 8.14: Performance comparison of various operations for MapServer and
SAND Internet Browser using the auxiliary server deployment method. Note that
non-cached (clean) scenario for the zoom-in operation is not applicable.

server and the cached auxiliary server to be virtually the same, the results indicate

that this is not the case. The reason is the additional overhead that the caching server

needs to manage the data. In particular, whereas in case of the preloaded server, the

client always goes directly to the data stored on the auxiliary server using its DMBS’s

native protocol, in the case of the caching server, the client communicates with the
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Java middleware that first needs to determine what data is available and then serves

as the client’s data provider. While some extra overhead is unavoidable and that

the caching method can always be expected to be slower than the direct access to

preloaded database, we believe that with some additional optimization of the Java

middleware, the difference could be decreased.

8.9.4 Latest Development in Remote Mapping

In early 2005, a new variant of the bitmap approach has emerged. Google and

Microsoft have introduced their own mapping systems (Google Maps and Virtual

Earth respectively) aimed to compete with established providers such as MapQuest

and Switchboard/MapsOnUs. Their developers realized the deficiencies of the classic

bitmap approach, especially the slow response time due to the need to load the full

bitmap after each operation. The principles of the Google Maps application are out-

lined in Section 2.2.2, while the Virtual Earth application is implemented in a very

similar way.

The viewable area is divided into many tiles and as the user pans, previously

downloaded tiles are are cached and reused where possible and only newly visited areas

need to have their tiles downloaded. The client logic is implemented in Javascript

which makes this application directly usable in most browsers without any additional

software download and installation.

Because both Google and Microsoft serve one-size-fits-all maps built from data
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that is not being updated, they were able to generate the tiles from the source datasets

in advance. After this pre-processing, no further spatial operations are needed and

their infrastructure simply serves existing tiles to individual clients.

While this need for pre-processing disqualifies serving of real-time or frequently

updated data, in principle it should be feasible to generate such tiles from vector

data on demand. This would be similar to SAND except that in SAND the client is

responsible for rasterizing missing pieces of the viewable area from the vector data

while here this operation would still be done on the server. The Google/Microsoft

approach however would not scale as well as SAND since all the work would have to

be done on the server. While we naturally cannot run formal experiments comparing

Google Maps or Virtual Earth with SAND, we can estimate what the performance of

these technologies would be within the same environment MapServer and SAND is

deployed. Assuming that the cost of locating the right tiles on the server is negligible,

the decisive factor for the cost is the amount of data transmitted from the server to

the client. Since the tile approach allows for tile reuse, only the newly visible areas

will trigger further download. For our fast scroll operation, we are reusing 50% of the

visible area and so Google Maps/Virtual Earth would be twice as fast as MapServer

(Table 8.11). For our fine scroll operation, 90% of the area is reused so the tile

applications would be about ten times faster than MapServer (Table 8.10). The

zoom in and out operations (if offering the view for the first time) would take as long

as MapServer because the specific bitmaps are not yet available on the client so they
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have to be loaded from the server in full.

Fine scrolling/Local Panning
Connection type Tile Method (estimated) SAND IB dynamic SAND IB direct

Dial-up modem 18 80 124
Cable/DSL Line 5 38 20
Satellite 18 85 81
LAN 2 33 10

Table 8.10: Performance comparison of the SAND Internet Browser and the
estimated tile method for the fine scroll operation. The table indicates the time
in seconds it took to perform 20 subsequent fine scroll operations.

Fast Scrolling/Global Panning
Connection type Tile Method (estimated) SAND IB dynamic SAND IB direct

Dial-up modem 80 109 108
Cable/DSL Line 22 54 19
Satellite 82 104 80
LAN 7 48 9

Table 8.11: Performance comparison of the SAND Internet Browser and the
estimated tile method for the fast scroll (global panning) operation (in sec)

So we see that for fine scrolling, the tile method would be faster than SAND

when the data is not already cached (the performance would be similar for cached

areas). For fast scrolling, the performance would be comparable. For zoom in and out

operations, the tile method would provide no benefit over MapServer-type approach

as the available bitmaps cannot be reused. So in many scenarios, especially where the

client is not expected to perform more operations than viewing the map, the tile-based

approach is a valid alternative to SAND. The drawback of the tile method is that all

the work is concentrated on the server so as the number of clients connecting to a

server rises, the performance decreases more rapidly than in case of SAND where the

170



client is responsible for more work. Additionally, the tile method does not allow for

development of more sophisticated clients that would perform more operations locally.

While in the case of SAND, the client stores the vector data and can therefore perform

many operations (such as window or nearest neighbor operations), in the case of the

tile method, the client only has access to the bitmap tiles that do not provide data

for such localized calculations. So we see that even though SAND may be slower

in some scenarios, it is a better platform for developing smarter, more independent

client applications.

Most recently, both Google and Microsoft linked their symbolic maps with satellite

photography so a symbolic map can be viewed as overlaid on top of a satellite image.

The challenge there is to align the symbolic data (e.g., road segments) with their

corresponding representation on the satellite map. As the symbolic map and the

satellite images usually come from different sources, relying simply on matching the

coordinates of the symbolic objects with the satellite images does not necessarily

work well enough. This is because of small discrepancies due to measurement errors,

rounding errors during numerical calculations, and so on that cause corresponding

objects not to be aligned precisely. While the resulting differences may seem to be

relatively small, even a shift of a few feet can cause the symbol of a road intersection to

be displayed on the sidewalk or beyond which is undesirable from a user’s perspective.
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Chapter 9

Practical Considerations

The results of our work involve not just a theoretical design or a proof-of-concept

implementation. We went further and developed a software platform that could

provide core functionality for a production spatial data visualization system. In this

section we discuss several items that are not directly related to the design of client-

server communication but that we had to investigate and resolve in order to create

an overall usable system.

9.1 Multi-Threaded Design

Normally, a single computer program executes its code sequentially. This means that

the program handles individual tasks one at a time. While a single such task is being

executed, any other tasks have to wait for this one to finish. In the context of a spatial
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data visualization tool, such individual tasks could involve checking user’s input,

rasterizing the map, communicating with the server, etc. Clearly, in this scenario we

cannot afford for the program to stop everything else while it is downloading data

from the server or rasterizing the vectors using the objects from the PMR quadtree.

Such a program would appear non-responsive to the user and would provide poor

user experience.

Thus, we have employed Java’s support for multi-threaded design which allows us

to perform some of these tasks in parallel within the single program. For instance,

one of the threads would manage screen redraws, i.e., it would be always ready to

refresh a part of the application window that has been obscured by another window

on the desktop. By running in a separate thread, the code is always ready to do so

by copying the last known bitmap to the viewable are, regardless of what the rest of

the application is doing at that time.

Another thread is responsible for preparing a raster image based on user’s input.

This process involves fetching all objects that overlap the current viewable window

(e.g., by traversing the internal PMR quadtree, by downloading data from the server

or the proxy, etc.) and rasterizing it using the proper zoom factor, colors, etc. Once

the thread finishes, it makes the resulting bitmap available as the last known valid

bitmap. If the user requests a different view while this thread processes the previous

user’s request, the calculations get interrupted, the current plan abandoned and the

thread starts working on rasterization of a new view according to the user’s latest
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input. The user’s input is continuously monitored by yet another thread.

So, as we see, the SAND Internet Browser can receive user’s input any time and

if a new command arrives while the last one is still being processed, the work on the

previous command stops before it is finished and a new round of calculations starts.

This is different from most bitmap-based systems where the user has to wait for the

last command to be processed before execution of any new command can start.

In this way, the user interface is always responsive. In particular, the user doesn’t

have to wait for his/her mouse click to be accepted or for a part of the user interface

to be refreshed until drawing of the current scene is completed. Moreover, the system

responds to user’s map navigation quickly by abandoning a previous map rendering

and redirecting the processing power to render the most recently requested view.

9.2 Maintaining Maximum Map Density

Since our client-server approach supports any size of the data set, it is obvious that

it may not always be feasible or desirable to display every single element of the data

set that lies in the current view window. If the window is large enough, such an

operation would call for displaying of too many elements which would both take too

much time to render and cause the drawing canvas to be too busy. Therefore, it is

desirable to have a way to select and display only a subset of the elements to keep

the density of the information within the view reasonable.
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In some cases, the solution may be to examine values for some nonspatial attribute

or attributes to decide which elements should be still displayed and which ones should

be omitted for a given view. An example of such an attribute could be the class of

the road in case of a road map. All roads would be displayed only in a detailed view

that zooms in on a small area of the map. On the other hand, for a more global

view, only interstate highways would be shown. This concept is familiar to many

users of various popular web-based mapping services such as MapQuest. Assuming

that an appropriate set of nonspatial attributes is available for the working data set,

this method produces very natural results.

However, an appropriate set of nonspatial attributes may not always be available,

or the nonspatial data may not be reliable or it may not provide enough information

to separate data into as many levels of details as necessary. For instance, in the

case of a road map, each line segment may have an attribute associated with it that

identifies the class of the road and this attribute can have one of three possible values,

e.g., interstate, main road, or local road. If we are working with larger datasets, it’s

possible that we need to be able to display the map with six different levels of detail.

In this case, relying on the road class attribute only won’t provide the necessary depth

of line segment classification.

Therefore, in some scenarios it is necessary to rely only on the spatial properties of

data or some combination of spatial and nonspatial properties to create a classification

of spatial objects for the purpose of creating the required number of detail levels.
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When choosing the more important elements to be representatives of all the ele-

ments in less detailed map, the topology of the map may provide valuable information.

For instance, if individual line segments are grouped together to represent complete

streets and roads within the spatial data set, then we can draw conclusions about the

importance of individual roads from their total length. It is likely that longer roads

are more important than shorter ones. However, while this grouping may be part of

one data format, it may not be available in others. Thus, in order to make an algo-

rithm work on any data set regardless of what topology information the particular

data format contains, we need to accept the input as an arbitrary list of line segments

without relying on information about their mutual relationship.

Given such a list of individual line segments and the desired selectivity factor (for

instance in terms of percentage of the original data set size), the goal is to select

a subset of the original data set of the specified size so that it contains the most

representative roads, rivers, or other spatial features within the map. For instance,

we may need to find the most representative 10% of the roads from the original set.

In our algorithm, the first step is to group line segments so that each group

represents a continuous road, river or other line feature. Notice that these groups

may not necessarily match streets or roads grouped by their name or number as

sometimes a street may continue in the same fashion under a different name or on

the contrary, a single street may suddenly turn and start heading in a completely

different direction than its earlier part.
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The next step can then be to compare spatial features of these individual polylines

found in the previous step and rank them based on their perceived importance for the

simplified map. Notice that it is possible to look at the polylines separately, one by

one, or alternatively the ranking of these polylines could depend on their own features

as well as on features of their neighborhood. For instance, if a similar polyline was

found close-by, it may not be as important to display this one as well. Thus, the

current polyline may be ranked lower than some other one whose own properties may

make it look less important than that of the polyline we are currently looking at.

Thus, some of the attributes of each such polyline that will contribute to the total

ranking may include:

1. Total length of the polyline — typically, the longer is the road, the more impor-

tant it is. However, this cannot be the only criterion as we cannot guarantee

that these polylines match real roads exactly.

2. Total number of segments in the polyline — more segments in the polyline may

indicate a more winding road which may make it less likely to be one of the

major connectors. Thus given two polylines of similar length, the one with less

segments will rank higher than the one with more segments.

3. Total number of other polylines nearby — a major road may not have as many

intersections as a more local road of the same length. This criterion will require

looking at the buffer of certain size around this polyline and count the number
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of other polylines within that buffer.

4. Region coverage — some regions contain more major roads than others. Thus,

it is important to choose such polylines for the simplified map so that the whole

area is still represented. To achieve this, the whole area of the map will have to

be subdivided into multiple regions and each region should be represented by

such a number of polylines that is proportional to the total number of polylines

in the region. The total number of regions that need to be created will depend

on how evenly are the polylines represented throughout the map. The more

irregular distribution, the more regions need to be considered.

5. “Windingess” — calculate the total deviation from a smooth curve. If the

polyline is winding, then this is an indication that it represents a smaller local

road or river.

The above outlined problem is a part of a more general discipline called map

generalization [61]. The problem of extracting major map features such as primary

roads into another map so that this new map still resembles the old more detailed one

has been addressed by numerous researchers. Since the quality of results is determined

subjectively, it is difficult to compare similarly performing methods in a definitive way.

As our research has not been focused on finding the best generalization method, we

do not offer more detailed comparison with existing work or a formal evaluation. We

developed a generalization method because we needed to be able to generate sparser
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datasets to be used within SAND’s layer system and it is outlined in this section for

the sake of completeness. Nevertheless, our method has been shown to perform well.

In particular, an informal sampling of subjective opinions of users indicated that the

selection of elements from the detailed map preserves the overall visual impression

of the represented area. Moreover, our algorithm is simple, scales well, and is based

purely on SQL and spatial database queries.

The generalization process is typically executed in form of pre-processing such as

upon loading the dataset onto the server. On-line generalization is not feasible in

general. The server can only process a given amount of data within the time frame

required for a user-friendly system responsiveness. However, since the dataset can be

arbitrarily large, there is no guarantee of any upper limit on the amount of data that

would have to be generalized given the user’s current view. Therefore, it is necessary

to create several layers of generalized data that would reside on the server along with

the original data set. The server will send data from the layer corresponding with the

level of detail requested by the client.
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Chapter 10

Visualization of Spatial Data

10.1 Introduction

In the previous chapters we focused on optimization of the transport of the spatial

data from the data repository and the user’s client (and its visualization module

specifically). However, providing the visualization module with the data is not the

last operation that the GIS system and its clients need to take care of. Before the

user can benefit from the GIS system, the spatial data needs to be converted from

the incoming stream (regardless whether the data source is the internal cache or a

remote spatial server) into an image presented to the user, i.e., visualized.

The visualization process is simpler when the data is coming in from known sources

and in a unified format. This is usually the case when the client-server application

is produced in a way such that both the server and the client are developed together
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as a part of a single project. This allows the system architects to design them so

that they are optimized to work well in tandem. This is the case of SAND, where

both the SAND Internet Browser client and the Java servlet that provides interface

to the SAND server are application-level programs that were designed as part of the

same effort. As such, communication between these two counterparts as well as the

client and server modules themselves can be fully optimized. In similar scenarios,

the hardware used in the system can also be custom-designed to correspond with the

needs of the system, both on the server and the client ends. This kind of approach is

typically applicable for scenarios where both client and server are maintained by the

same entity or by separate but closely collaborating entities.

However, there are numerous examples of applications where the server side of

the solution is facilitated by an entity independent of the client users. This makes

the visualization more difficult because for a variety of reasons data coming from

different sources may not work well together. The objects in the data may not be

properly aligned, there may be unexpected overlaps, they may have incompatible

drawing attributes, etc. This can be the case when the server provides services to

a large number of clients from different vendors. Our earlier experience with such

an environment are described in Chapter 4. Similar problems may arise where data

provided by other entities need to be reformatted and imported for use in the system.

We have explored such integrations in [75] in the context of providing general public

access to government-maintained spatial data. Additional aspects of this problem
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were investigated in [77]. Our research in the area of thin-client access to government-

provided data is presented in [73] and [74].

One of the most popular platform choices for implementing applications that run

over the internet is Sun Java environment. Nowadays, most commonly used computer

systems have the Java Virtual Machine implemented and usually available for free.

Thus, any Java-based software solution is immediately deployable over most platforms

that users wish to use on the client side of the solution. While running a Java

application is a relatively simple task, for certain audiences an even easier solution on

the client side may be needed when no explicit installation of any additional module

would be necessary. This can be provided by making the Java client in the form of

a applet which is automatically downloaded and executed from within a standard

web browser. Unfortunately, due to various security reasons, Java applets do not

have access to as many system resources as do Java applications. While for some

scenarios this doesn’t pose any problems, others may need to avoid these restrictions

by requiring the software to be run as an application after all.

Below, we discuss issues related to using Java and Java applets especially for

displaying spatial data.
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10.2 Visualization of Spatial Data Structures

The representation of spatial data is an important issue in spatial databases [48, 78].

Generally, there are two types of spatial data: locational data and object data. Lo-

cational data consists of points while object data consists of spatial objects that have

extent (i.e., they occupy space) such as lines, rectangles, regions, surfaces, volumes,

etc. The representation of spatial data involves the selection of an appropriate decom-

position of the underlying space that contains the spatial objects as well as a spatial

index to facilitate finding the objects. Spatial indexes usually provide a quick way

to access the objects given a specific location or set of locations. Spatial database

systems make use of a number of different space decompositions and access struc-

tures. For example, Oracle [50, 68] makes use of a quadtree-block decomposition

(e.g., [55, 58, 71, 72]) and a B-tree access structure [42]. The result is known as SDO

denoting Spatial Data Option. IBM Informix [79] makes use of data blades that com-

bine a hierarchy of minimum bounding boxes (often known as an R-tree [49]) with a

B-tree access structure. ESRI makes use of a two-level grid (as well as a three-level

grid) which is a variant of a grid file [67] that uses a regular decomposition partition.

The result is known as SDE denoting Spatial Data Engine.

Although we have mentioned a number of general representations above, actual

implementations make use of variants of these representations. The relationship be-

tween these variants is not immediately clear, although a well-trained computer sci-

entist can consult the original references or books (e.g., [71, 72]). Often, this form of
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consultation requires an effort that is beyond what users and database designers are

willing to expend. In addition, it may not provide the intuition that is desired. What

is really wanted is a hands-on experience with the ability to vary the data assuming

a rather limited volume of data so as to make the task manageable.

In previous work [36, 37] extended in [39] we developed a set of spatial index

JAVA (e.g., [32]) applets that enable users on the worldwide web to experiment with

a number of the most popular spatial representations and spatial data types, and,

most importantly, enable them to see in an animated manner how a number of basic

spatial database search operations are executed for them. The decompositions can

be disjoint or non-disjoint. Due to the limitations of our displays, our examples are

restricted to a two-dimensional domain where the objects can be points, lines, and

rectangles. The decompositions can be regular (i.e., based on a recursive halving or

quartering of the underlying space into blocks of equal size), or non-regular (in which

case the blocks can have arbitrary size). The decomposition process can partition all

of the axes at once, or one axis at a time (e.g., a k-d tree [33]). The non-disjoint

decompositions are based on a hierarchy of aggregations of minimum bounding boxes

for the spatial objects (e.g., an R-tree). In this case, we show the effects of choosing

between a large number of competing methods of aggregating the bounding boxes.

In addition to seeing how the underlying space is decomposed through the abil-

ity to insert data in an incremental manner, we also enable users of the applets to

delete data so that effect of any sequence of arbitrary insertion and deletion oper-
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ations can be understood. Most importantly, users of the applets can see how the

space decompositions support the most common database search operations. In par-

ticular, we show in an animated manner how spatial selection [30] is executed for an

arbitrary rectangular search region (also known as a window operation or a spatial

range query), and how nearest neighbors are found. Both the spatial selection and

the nearest neighbor operations are executed in an incremental manner which means

that the data objects that satisfy the query are returned and displayed one-by-one.

The nearest neighbor algorithm is particularly noteworthy as when the algorithm is

run to completion, it provides a full ranking of the data objects in terms of their dis-

tance from the query object [51, 52]. The animations are performed in a consistent

manner for the different spatial decompositions and data types through the use of a

consistent user interface and colors.

10.2.1 Data Structure Population and Modification

In order to be able to visualize the decomposition induced by the data structures

as well as the associated algorithms, we need a way to populate and modify them

which means that we must make it easy to insert and delete spatial objects. As soon

as an object is inserted using the graphical user interface, the decomposition of the

underlying space into blocks is updated and displayed, and likewise when an object

is deleted.

Points are inserted by simply depressing the mouse inside the drawing canvas
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(i.e., the display area). The point is inserted at the position of the mouse when it is

depressed. Points are deleted by using the same process except that the user must be

in deletion mode which is done by selecting the “delete” option. Since it is difficult to

position the mouse precisely over the point to be deleted, we simply delete the closest

point (using the Euclidean distance metric) to the position of the mouse.

Lines are inserted by depressing the mouse at a particular point, which serves as a

starting vertex, and then dragging the mouse (while depressed) to the point which is

to serve as the terminating vertex, at which time the mouse is released. This technique

is fine for creating new lines. However, at times, we also need to connect existing lines

by making use of existing vertices thereby permitting the creation of polygonal maps

such as a triangulation. This is achieved by making use of the control key to augment

the line insertion process. In particular, whenever the control key is depressed at the

start (end) of the line creation process, the starting (terminating) vertex of the line

is snapped to the nearest existing vertex. Thus two existing vertices are joined by a

newly created line by keeping the control key depressed before selecting the starting

vertex, during the dragging process, and after selecting the terminating vertex by

releasing the mouse.

Lines are deleted in the same manner as points in that we position the mouse

somewhere near the line we wish to delete while in deletion mode. Once again, the

closest line (using the Euclidean distance metric) to the position of the mouse is

deleted.
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Rectangles are inserted in the same manner as line segments in the sense that the

user specifies two diagonally opposite vertices. The difference is that the dragging

process results in drawing a rectangle rather than a line. In addition, unlike the

case of lines, there is no notion of snapping although this technique could be used in

the future to permit the construction of collections of rectangles with shared sides.

Rectangles, are deleted in a manner similar to that used for points and lines with the

exception that we usually position the mouse somewhere within the rectangle that

we wish to delete. If the mouse is in more than one rectangle (as may be the case for

the rectangle representations that permit overlapping rectangles — e.g., the MX-CIF

quadtree and the R-tree), then delete the containing rectangle r whose boundary is

the closest (note that r is not necessarily the closest rectangle as the rectangle whose

boundary is the closest need not be a containing rectangle). If the mouse is not within

any rectangle, then delete the rectangle whose boundary is the closest.

Since one of the goals of the visualization is to be able to compare the different

representations, the applets must keep track of the order in which the objects were

inserted. This is necessary because for some of the representations the decomposition

of the underlying space depends on the order in which the objects were inserted. For

example, this is the case for the point quadtree, k-d tree, PMR quadtree, and R-tree.
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10.2.2 Algorithm Visualization and Animation

We have tried to use the same color conventions for distinguishing between the data,

query objects, and the intermediate results of the search operations. In order to

understand the motivation for our choices, we now give a brief explanation of the

algorithms that we use to implement the search operations. We first explain the

incremental nearest neighbor algorithm which locates the objects in the database in

the order of their distance from the query object q [51]. Next, we explain the window

query algorithm.

The incremental nearest neighbor algorithm makes use of a priority queue where

the queue elements are the blocks of the underlying data structure as well as the

objects themselves. The priority queue is ordered on the basis of the distance of its

elements from the location of the query object, which is a point in our implementation.

The algorithm works in a top-down manner in the sense that as elements are removed

from the queue, they are checked if they correspond to blocks that are not at the

lowest level of the hierarchy (i.e., nonleaf nodes). If this is the case, then their

immediate descendants (i.e., the sons) are inserted in the queue ordered according to

their distance from the query object. Otherwise, the objects that they contain are

inserted into the queue ordered according to their distance from the query object.

If the element e that has been removed from the queue is a data object, then e is

reported as the next nearest neighbor of the query object.

In order to be able to visualize the behavior of the incremental nearest neighbor
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algorithm, at any instance of time (see [59, 62] for alternative nearest neighbor al-

gorithm animations) we distinguish between the following entities by using different

colors in a consistent way for all of the data structures and data types:

1. Blocks in the priority queue denoted by light blue.

2. Objects in the priority queue denoted by green.

3. Objects that have not yet been processed (i.e., entered explicitly into the queue

or output into the ranking) denoted by red.

4. Objects that have been processed and hence have been ranked denoted by blue.

The numeric position of the object in the ranking is displayed in blue next to

the object.

5. Blocks that have been processed (although their objects may still be in the

queue) denoted by gray.

6. The next item in the queue to be processed (could be a block or an object)

denoted by yellow.

7. The query object denoted by orange.

It is important to note that we distinguish between objects that have yet to be

processed and those that are explicitly in the queue. Objects that have not yet been

processed are those that have not been enqueued explicitly although some of their

containing blocks, say the set C, are in the queue, while the blocks that contain the
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elements of C have already been dequeued. C may contain more than one block for

a particular data object when the representation is one that decomposes the blocks

containing the objects into disjoint blocks at a particular level (e.g., the rect quadtree

for rectangles and the PM quadtree family for lines). This distinction enables users

to watch the progression of the algorithm.

By the same line of reasoning, an object can be in the queue several times. How-

ever, the incremental nearest neighbor algorithm ensures that the object will be re-

ported just once in the ranking. The object will be inserted into the queue several

times when the object is a member of several blocks whose contents are inserted into

the queue. The insertion algorithm performs some checks to reduce the number of

times an object o is inserted into the queue; however, these checks are not guaranteed

to prevent the object from ever being inserted into the queue more than once. For

example, if the distance from o to the query object q is less than the distance from

the containing block to q, then o must have already been encountered and thus it is

not even inserted into the queue. However, the algorithm does have the property that

once an object is reported as the currently closest object, all remaining instances of

the object are found immediately afterwards as they have the same distance and thus

they are not reported; instead, they are removed from the priority queue [51].

Observe that if a block b of size 2m × 2m is in the queue, then all of the blocks

of size 2i × 2i (i < m) contained in b are also implicitly in the queue although we do

not distinguish between them and b. This means that we really don’t have an entity
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such as a block that is unprocessed in contrast to having objects that have not yet

been processed.

An interesting question is why we differentiate between enqueued objects and

enqueued blocks by using a different color for them (i.e., green and light blue, respec-

tively). It would appear that we should use the same color for both of these entities

as they can both be members of the queue. However, using such a convention would

not enable us to properly deal with representations that store objects in both leaf

and nonleaf nodes of the hierarchy.

For example, this is the case for the MX-CIF quadtree [57] which associates each

rectangle with its minimum enclosing quadtree block. In particular, when executing

the incremental nearest neighbor algorithm, after removing from the queue a block b

corresponding to a nonleaf node, we insert into the queue the four blocks correspond-

ing to b’s children as well as the objects that are associated with b. Thus if we were

to use the same color for the objects in the queue and the blocks in the queue, then

when the queue contains a block b as well as the objects in b, then we would not be

able to see the objects even though they are present. Notice that this situation is

different from that where the block is in the queue but the objects contained in it

have not been entered into the queue (in which case the objects are denoted in red).

It is important to note that using the same color for the objects in the queue

and the blocks in the queue also causes a problem for both the point quadtree and

the k-d tree as for these representations the data corresponding to the point objects
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is associated with nonleaf nodes rather than just with leaf nodes as is the case for

representations based on a regular decomposition. Thus when we enqueue the point,

we also enqueue the blocks corresponding to its sons. Since the point serves as a

corner of the son blocks in the case of the point quadtree and a side of the son blocks

in the case of the k-d tree, if the point and the son blocks are in the queue at the same

time, then we will not be able to see the point even though it is present. In other

words, again, it should be clear that we need to use one color for enqueued objects

and another color for enqueued blocks as both a block and the overlapping objects

may be in the queue.

Observe that we distinguish between the elements in the priority queue, those

that have been processed, and the one that is currently being processed (i.e., the

next one to be processed). Initially, we only made a distinction between the elements

in the priority queue and the ones that have already been processed. However, this

made the visualization of the animation very difficult to follow as users could not

easily detect what had changed from step to step. In particular, without making the

explicit distinction between the elements that have been processed and the element

to be processed (or currently being processed) we would have to do so via the process

of a mental visual subtraction of ‘before’ and ‘after’ states of the animation process.

Clearly, our approach is preferable.

As an example of the execution of the incremental nearest neighbor algorithm,

consider Figure 10.1 which shows an intermediate stage of the algorithm for a PR
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quadtree immediately after retrieving the 11 nearest neighbors. Observe that the

manner in which the algorithm proceeds leads to a constantly growing circle cen-

tered at the query point where the blocks inside the circle are gray corresponding

to the blocks that have been processed while the area outside the circle is light blue

corresponding to blocks in the queue which remain to be processed.

Figure 10.1: PR quadtree applet showing an intermediate stage in the incremental
nearest neighbor algorithm immediately after finding the 11th nearest neighbor.
The query object is orange. The 11 nearest neighbors are blue with their position
in the ranking. All blocks in the priority queue are light blue while the points in
the priority queue are green. The current item being processed, in this case a
block, is yellow. All points not yet processed or not in the priority queue are red.
All blocks that have been processed are gray.

The window query algorithm is a simple tree traversal that visits the blocks of the

representation in a top-down manner checking at each stage if the block b overlaps
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the query window. If there is no overlap, then exit. Otherwise, check if b is not at the

lowest level of the hierarchy (i.e., b is a nonleaf node), in which case the algorithm is

applied recursively to the immediate descendants of b. If b is at the lowest level of

the hierarchy, then check if the objects contained in b are in the query window and

report them as satisfying the query.

Once again, in order to be able to visualize the behavior of the window query

algorithm, at any instance of time we distinguish between the following entities by

using different colors in a consistent way for all of the data structures:

1. Blocks that remain to be processed (i.e., they partially overlap the query range)

denoted by light blue.

2. Objects that have not yet been processed but whose smallest enclosing block

has been found to be in the query range denoted by green.

3. Objects that have not yet been processed in the sense that their smallest con-

taining block has not been tested with respect to being in the query range or

has been found to be outside the query range denoted by red.

4. Objects that have been processed and that have been found to be in the query

range denoted by blue.

5. Objects that have been explicitly processed and that have been found to be

outside the query range denoted by violet.
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6. Blocks that have been processed denoted by gray (although some of the objects

that they contain remain to be processed).

7. Blocks that have not been processed as they are outside the query range denoted

by white.

8. The next item to be processed (could be a block or an object) denoted by yellow.

9. The query range denoted by orange.

When the objects have extent (e.g., lines, rectangles, etc.), we need to be a bit

more precise as to what is retrieved by the window query. The issue is whether the

retrieved object o must be contained in its entirety in the query window w, whether

o must enclose w, or whether o need only have a nonempty intersection with w (i.e.,

a partial overlap). For line segments, we have the following three options:

1. The entire line (i.e., both of its endpoints) are in the query window.

2. The entire line passes through the query window (i.e., both of its endpoints lie

outside the window).

3. At least some part of the line crosses the boundary of the window.

The applets enable the user to specify which of these variants of the window query is

to be used.

The concept of blocks to be processed as well as objects to be processed in the

window query is similar to the blocks and objects that are stored in the priority queue
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for the incremental nearest neighbor query. In fact, we can make use of a queue to

keep track of the blocks and objects that intersect the query range. However, in

the window query algorithm we only place blocks and objects in the queue that are

guaranteed to be processed in the future. These are the blocks and objects (by virtue

of their smallest containing block) that intersect the query range. The difference from

the priority queue of the incremental nearest neighbor algorithm is that the elements

in the priority queue are ordered by their distance from the query object while there

is no required order in the list of blocks or objects to be processed in the case of the

window query algorithm. In other words, once a block is inserted in the list of blocks

to be processed it can be processed at any time. On the other hand, in the interest of

minimizing the size of the queue, we usually prefer to process the objects before the

blocks as once the objects are processed, the queue is guaranteed to decrease in size

while this is not the case after processing the blocks. Note also that if we order the

list of blocks to be processed according to time of insertion, then we get some variant

of a consistent top-down traversal of the blocks that intersect the query range (e.g.,

NW, NE, SW, SE).

The visualization of the window query algorithm differs from that of the incre-

mental nearest neighbor algorithm in that we need to distinguish between objects

that have been explicitly determined to be outside of the query range (denoted by

violet) and those that have been implicitly determined to be outside of the query

range by virtue of the fact that their containing blocks are outside of the query range
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(denoted by red). Of course, this distinction would also be needed in the visualization

of the incremental nearest neighbor algorithm if we would set a bound, say k, on the

number of nearest neighbors that we want to determine. In this case, when the algo-

rithm runs to completion, all objects remaining in the queue (denoted by green) play

a similar role to the objects that have been found explicitly to be outside the query

range (and thus they will have to be converted to violet) in contrast to those in the

blocks that have not even been inserted into the queue (denoted by red). Note that

the blocks that remain in the priority queue have been explicitly tested in the sense

that their distance from the query object was computed before they were inserted

into the priority queue.

Observe that the window query could also be implemented in a bottom-up manner

in which case we would be visiting the blocks in another order (e.g., by adjacency)

as exemplified by algorithms that visit the blocks using neighbor finding (e.g., [31]).

However, even if we change the algorithm, we can still use the same color conventions.

The difference is that the blocks would be processed in a different order and the objects

that overlap the query range would also be obtained in a different order.

Another important point to notice is that the algorithms that we have imple-

mented must be visualized in the way we have described regardless of whether or

not the underlying data structures are implemented as trees. This point is partic-

ularly relevant to the representations that are based on a disjoint decomposition of

the underlying space (e.g., quadtrees). This is because these representations could
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also be implemented as collections of blocks corresponding to the leaf nodes, or even

all of the nodes, and organized using some other data structure such as a B-tree.

An example of such an implementation is the linear quadtree [46] where each block

is represented by a pair of numbers corresponding to its depth and a location code

denoting the result of interleaving the bits of the binary representations of a distin-

guished point in the block such as its lower-left-most corner. These pair of numbers

are concatenated and stored in a B-tree. When such a representation is used, the

algorithms are visualized in the same way. The difference is that when the nonleaf

nodes are not explicitly stored in the B-tree, the algorithm must artificially create

blocks corresponding to them as both the incremental nearest neighbor and window

query algorithms simulate a tree traversal where the blocks corresponding to these

nodes are indeed present.

Using the above coloring conventions, the animated visualization of the algorithms

is quite straightforward and easy to follow. Initially, all objects in the database are

displayed in red. The query regions for the window query and the query object for

the nearest neighbor query are displayed in orange. As the algorithms for the various

operations are executed, the data objects that have been found to satisfy the query are

displayed in blue while the data objects that have been found explicitly (implicitly)

not to satisfy the query are displayed in violet (red). The data objects that have been

enqueued for a future decision are displayed in green.

As the search algorithms are executed, they are animated in the sense that the
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objects that satisfy the queries are returned one-by-one using a programmable time

delay factor which is under the control of the user with the aid of a slider. The

animation consists of showing the objects and blocks of the decomposition of the

underlying space that are visited during the search in the order in which they are

visited. Of course, since our algorithms are inherently top-down, they visit the ele-

ments of the hierarchy (which are blocks) in order of decreasing size whether or not

the implementation of the data structure actually makes use of a tree. Thus the

animation also displays the blocks at the intermediate levels regardless of whether or

not they are physically present (i.e., this would be the case for a pointer-less quadtree

representation such as a linear quadtree).

As blocks are visited during the search, they are displayed by filling the space

spanned by them with yellow (actually this is done immediately prior to visiting

them). Once the blocks have been processed, they are displayed by filling the space

spanned by them with gray. Those blocks that have never been visited (e.g., as they

are completely outside the query range) are displayed by filling the space spanned by

them with white. The blocks that have been queued for processing (although not yet

been processed) are displayed by filling the space spanned by them with light blue.

As mentioned above, since the search algorithms are often tree traversals (or at

least visit the blocks in an order often related to their size), the animation has the

effect of starting out with one yellow block that covers the entire underlying space

and then decomposing it into smaller and smaller blocks all of which are light blue
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with the exception of one which is shown in yellow corresponding to the next block

to be processed by the algorithm. Whenever a large block has been visited, we may

need to generate blocks corresponding to its descendants at which time one of the

descendants is visited while the remaining brothers at this level are enqueued for

future processing. The blocks that are enqueued for future processing are the ones

that are displayed by changing their fill color to light blue, while the blocks that have

actually been visited have their fill color changed to gray. Blocks that will never be

visited (e.g., they are outside the query range) have their fill color changed to white.

As another example, consider Figure 10.2 which shows an intermediate stage of the

window query algorithm for a bucket PR k-d tree with bucket capacity 3.

10.2.3 Extension to Other Representations

In order to test the generality of our ideas, we adapted our system and display con-

ventions to deal with additional representations that are radically different. Most of

the data structures that we discussed in Section 10.2 were dynamic in the sense that

they did not have to be rebuilt when data was added and deleted. We now examine

the two-dimensional range tree [34, 35] and the priority search tree [60]. They are

designed primarily for range queries and thus we did not implement the incremental

nearest neighbor query for them. These are static representations which have better

worst-case execution times for range queries than quadtree variants or R-trees. As

these are static representations, our applets do not show their construction in an in-
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Figure 10.2: Bucket PR k-d tree (with bucket capacity 3) applet showing an
intermediate stage in the window query. The query range is orange. The points
that have been found so far to be in the query range are blue. All blocks in
the queue are light blue while the points in the queue are green. The current
item being processed, in this case a point, is yellow. All points that have been
processed and found not to be in the query range are violet. All points not yet
processed or not in the queue are red. All blocks that have been processed are
gray. All blocks that have not been processed, as they are outside the query
range, are white.

cremental manner. Instead, in the interest of speed, the points are added in sequence

and the data structure is only built once the user has indicated that the input process

is finished.

The two-dimensional range tree is designed to facilitate the execution of two-

dimensional range queries. It is a tree of trees where the main tree T is a one-

dimensional range tree along the x coordinate value. Each nonleaf node c of T
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contains a one-dimensional range tree along the y coordinate values of all points in

the subtree rooted at c. Thus we see that the x coordinate value serves as the primary

key, while the y coordinate value serves as the secondary key. Given n points, the

structure requires O(N · log2 N) storage.

The two-dimensional range tree window query search algorithm first locates the

nodes a and b in the main tree that contain the x coordinate boundary values of the

query range. It then performs a one-dimensional search on the one-dimensional range

trees associated with the nonleaf nodes found in the paths from the nearest common

ancestor of a and b to a and b. This process takes O(log2

2
N +F ) time where N is the

number of points in the data set and F is the number of points found.

This algorithm is visualized and animated in the same way as the quadtree and

R-tree algorithms described in Section 10.2.2. The only modification we have made is

to replace the block decomposition lines in the case of the quadtree variants and the

object aggregate boundaries in the case of the R-tree by a set of vertical lines showing

the partitions of the underlying space that are made by the one-dimensional range

tree built on the basis of the x coordinate values. As the partition lines go through

the entire range of y coordinate values, we use the visual cue of line thickness to

differentiate between the levels of decomposition, with the thicker lines corresponding

to the partitions closer to the root of the tree. Since there is a limit to the line

thicknesses between which we can visually discriminate, we only show the partitions

for the first four levels (labeled 0–3). The partition lines are also labeled with numbers
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to their left to show the depth of their corresponding nonleaf node. We do not show

the partitions induced by the y coordinate values as they differ at each nonleaf node

and their multitude would only confuse the viewer. Keeping with our display color

conventions, we show the partition lines in black.

Once the algorithm has found the boundary nodes a and b in the main tree

corresponding to the x coordinate values and their nearest common ancestor node c,

it proceeds to search the one-dimensional range trees attached to the nonleaf nodes

along the paths from c to a and b. During this process we use the color yellow to

denote the space spanned by the current partition of the main range tree that is

being searched, while the space spanned by the remaining partitions to be searched

is shown in light blue. The light blue area corresponds to the blocks in the queue

in our earlier algorithms. The space spanned by partitions that have already been

searched is shown in gray while the space spanned by those that are outside of the

query range is shown in white.

Once the search of a one-dimensional range tree r has started, all points in the leaf

nodes of r are shown in green as they are analogous to those that are placed in the

queue in the other representations that we implemented. At the same time, the color

of the space spanned by the partition is changed from yellow to gray denoting that

it has been processed. The search of r first determines the nodes d and e in r that

contain the y coordinate boundary values of the query range. All points corresponding

to nodes before d and after e will not be examined and their color is changed from
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green to red as they were not examined prior to being implicitly placed in the queue.

The process of determining d and e may examine at most two points which are

not in the range in which case their color will be changed from green to violet. All

remaining points are processed one-by-one, at which time their color changes from

green to yellow while the color of the previously processed point is changed from yellow

to blue denoting that it has been found to be in the query range. As an example,

consider Figure 10.3 which shows an intermediate stage of the window query algorithm

for a two-dimensional range tree.

The priority search tree is similar to the two-dimensional range tree with the

difference that it is just one tree and thus requires only O(N) storage for N points.

It is designed to facilitate the execution of semi-infinite range queries which are range

queries where the upper bound on the y coordinate value is infinite. Conceptually,

the priority search tree is a range tree for the x coordinate values and a heap for

the y coordinate values. The structure is implemented as a binary tree where the

leaf nodes contain the points and are linked together in ascending order of the x

coordinate value. Each nonleaf node i contains a midrange x coordinate value and

a pointer to the node in the subtree rooted at i with the largest y coordinate value

that has not already been associated with a node at a shallower level in the tree.

The semi-infinite range query traverses the priority search tree in the same manner

as the window query algorithm for the two-dimensional range tree and is visualized

in a similar manner.
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Figure 10.3: Two-dimensional range tree applet showing an intermediate stage
in the window query. The black vertical lines indicate the partitions at the first
four levels of the range tree for the x coordinate value with the thicker lines
corresponding to the shallower levels. The lines are labeled with the depth value
of their corresponding partition. The query range is orange. The points that
have been found so far to be in the query range are blue. All blocks in the queue
are light blue while the points in the queue are green. The current item being
processed, in this case a point, is yellow. All points that have been processed and
found not to be in the query range are violet. All points not yet processed or not
in the queue are red. All blocks that have been processed are gray. All blocks
that have not been processed as they are outside the query range are white.

10.2.4 History List

It is desirable to be able to switch between different data structures in order to see

how the same data set is represented by different spatial data structures. This is

achieved by keeping a separate representation R (termed a history list) of all objects
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of a given spatial data type. R is ordered according to the time t at which the object

o was created and thereby inserted into the data structure that was being displayed

at t. In addition, when an object o is deleted from the data structure that is being

displayed, o is inserted again into R and marked as being deleted. This is important

when the data structure depends on the order in which the objects were inserted (e.g.,

a PMR quadtree [64]) and the data structure is being rebuilt after a data structure

switch that may have been accompanied by some insertion operations since the last

time it was built. Thus we see that an object may appear more than once in R.

Maintaining such an ordering ensures predictable and consistent results as we switch

between representations.

The history list is also useful for dealing with illegal configurations of objects.

In particular, some configurations of objects are illegal for one representation while

legal for another. For example, intersecting lines (at points other than vertices) are

allowed for the PMR quadtree while they are not allowed for the PM1, PM2, and

PM3 quadtrees [76]. Thus if we first build a PMR quadtree with intersecting line

segments, followed by a switch to display the PM1 quadtree for these line segments,

then we do not allow any intersecting lines to be displayed. However, when we switch

back from the PM1 quadtree to the original PMR quadtree, then the intersecting line

segments are displayed. The history list facilitates this action. Notice that similar

problems arise when switching between representations that allow intersecting (i.e.,

overlapping) rectangle objects and those that do not. In the case of object types
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which can be described in terms of other simpler object types, the history list also

contains a representation of the simpler object types using a particular data structure

in order to facilitate operations that involve the simpler object type. For example, in

the case of line segment objects, each line segment consists of two vertices which are

point objects. The set of vertices is represented by a PR quadtree.

10.2.5 Semantics and Mechanics of the Move Operation

In the previous section, we discuss visualization of nearest-neighbor and window query

operations. However, it is also important to look into operations that build the data

structure to run the queries on. While insertion and deletion operations were briefly

discussed in Section 10.2.1, in this section we will focus on the move operation. The

move operation allows relocating an existing object within the data structure while

keeping the properties specific to the structure. These can for instance be the order, in

which the elements have to be inserted to recreate the current structure from scratch.

The first task in implementing the move operation is to decide which object to

move. This is done with the aid of a pointing device (e.g., the mouse). In particular,

once the move operation has been selected, the closest object to the position of the

mouse is displayed (in orange) and the underlying data structures and the display

canvas are continuously updated as the mouse moves. This is achieved by invoking

the incremental nearest neighbor algorithm [51, 53] to find just one neighbor. This is

the same algorithm used in the nearest operation to rank the objects with respect
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to a given query object.

In the case of objects with extent such as rectangles, the situation is more complex.

Assume that rectangle object o is the closest to the position m of the mouse. The

identity of the closest rectangle is determined in the same way as done for the nearest

operation (see Section 10.2.2). However, since o is not a point object, o cannot be co-

located with m. Thus we need to find some representative point for o which is made

to coincide with m. The easiest solution (and the one we adopted) is to represent o

by its centroid c. As the mouse is moved, the rectangle object is moved in such a

way that its orientation is preserved (i.e., all horizontal sides remain horizontal and

all vertical sides remain vertical).

At times, we may want to simply modify an individual rectangle by moving one

of its constituent primitive elements (i.e., a vertex or an edge). In order to do this,

we add the move vertex and move edge operations. The move vertex operation

proceeds in the same manner as the move operation for a point object except that

the point that is being moved is a vertex of a rectangle. The move vertex operation

moves the closest vertex v of the nearest rectangle object o to position m of the mouse.

The identity of o is determined by the nearest operation for rectangle objects (see

Section 10.2.2). Once vertex v of rectangle object o has been determined, v is moved

so that v is coincident with m and all subsequent motions of the mouse result in a

maintenance of the coincidence while preserving the orientation of o. The result is

that o is grown or shrunk in size through the motion of v while the vertex diagonally
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opposite from v is not moved.

The move edge operation proceeds in a similar, but more restricted, manner as

the move vertex operation. The restriction is that the moved edge e maintains

its length and orientation throughout the motion, and all remaining edges are not

moved although e’s two adjacent edges are allowed to grow longer and shrink. The

move edge operation moves the closest edge e of the nearest rectangle object o to

position m of the mouse. The identity of o is determined by the nearest operation

for rectangle objects (see Section 10.2.2). Once edge e of rectangle object o has been

determined, e is moved in the direction of its normal so that the infinite extension of e

is coincident with m and all subsequent motions of the mouse result in a maintenance

of the coincidence while preserving the length of e and the orientation of o. The result

is that o is grown or shrunk in size through the motion of e while the edge of o that

is parallel to e is not moved.

Moving line segment objects is more complex than moving rectangle objects al-

though they are handled in a similar manner as point and rectangle objects. The

key difference is that a collection of line segment objects can take on two forms. The

first is as a collection of individual objects which is treated in a similar way to a

collection of point and rectangle objects. The second is as a collection of connected

objects formed by sharing their vertices. This makes the members of a collection of

line segment objects inter-dependent whereas the members of a collection of point

and rectangle objects are independent. The result is known as a polygonal map or
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subdivision.

As in the case of rectangle objects, we must make a distinction between moving

a line segment object or moving its constituent elements of which, in this case, there

is just one kind — that is, a vertex. The difference in the nature of the possible

collections of objects between the move operation for line segment objects and the

move operation for rectangle objects is that when we have a connected collection, we

no longer can move the line segments and vertices as independent entities. In other

words, the move operation must move all line segments incident at the vertices of the

line segment being moved or at the vertex being moved.

The application of a move operation to a line segment object proceeds in a similar

manner as the move operation for a rectangle object. Once again, we assume that

line segment o is the closest to the position of the mouse m. The identity of o is

determined by the nearest operation for line segment objects (see Section 10.2.2).

In addition, we also determine the identity of its two vertices as well as the identities

of all of the line segments incident at them. As in the case of moving entire rectangle

objects (rather than their constituent parts — that is, vertices and edges), we use

the centroid of the line segment as its representative point. As the mouse is moved,

the line segment object (as well as all line segments that are incident at its vertices)

is moved in such a way that its length, its orientation (i.e., slope), and the topology

of the underlying data set are preserved. In addition, the resulting configuration of

line segments must be legal for this data structure. For example, Figure 10.4b shows
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the result of moving the rightmost edge in the polygonal map in Figure 10.4a (i.e.,

in the NW quadrant) to the right (via a move operation). Notice that the motion of

the vertices that comprise this edge result in considerable changes to the original

polygonal map as well as to the resulting decomposition.

(a) (b)

Figure 10.4: Figure 10.4b shows the result of moving the rightmost edge (via a
‘move’ operation) in the polygonal map in Figure 10.4a (i.e., in the NW quadrant)
to the right.

Note that the fact that we may need to identify the vertices of the nearest line

segment object differentiates this process from the move operation for rectangle ob-

jects. The principal difference is that since the primary entity is a line segment, the

vertices are usually not stored explicitly in the data structure. However, in order to

support operations such as deletion, nearest line segment object to a point, etc., re-

call from Section 10.2.4 that as part of the history list we maintain an auxiliary data

structure in the form of a PR quadtree for the vertices of the line segment objects.
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Having located the vertices v1 and v2 of the closest line segment o, we find all the

line segments that are incident at v1 and v2 using the incremental nearest neighbor

algorithm. In particular, for each of the vertices, the algorithm is invoked to find all

line segments in the structure with distance 0 from them. Although this guarantees

finding all line segments that share these vertices, unfortunately it also returns those

line segments that pass through them without having them as an endpoint. A simple

test weeds out these line segments from further consideration.

The move vertex operation proceeds in a similar manner as the move operation

for point objects in that we find the closest vertex v to the position m of the mouse

using the incremental nearest neighbor algorithm as was done for point objects. In

this case, we are searching the auxiliary PR quadtree for the vertices. Notice that

there must be at least one line segment connected to v since otherwise v would not

be represented in the PR quadtree. In addition, we also determine the identity of all

of the line segments incident at it using the incremental nearest neighbor algorithm.

As the mouse is moved, v (as well as all line segments that are incident at v) is moved

in such a way that the topology of the underlying data set is preserved. In addition,

the resulting configuration of line segments must be legal for this data structure. It is

important to note that only vertex v and the line segments incident at v are actually

moved. The remaining vertices of the line segments incident at v are not moved.

A useful byproduct of the move vertex operation is that it can be used to merge

vertices so that the set of line segments incident at them are merged. This is difficult
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in the sense that it is hard to detect visually when two vertices are coincident.

A similar problem arises when creating a polygonal subdivision through the addi-

tion of a new line segment and it is desired for the new line segment to share a vertex

with an existing line segment. This is achieved during line segment insertion by keep-

ing the ‘Control’ key depressed. We use the same principle for merging vertices by

stipulating that if the ‘Control’ key is depressed when the mouse is released during

the execution of a move vertex operation on vertex v1, then the system locates the

nearest vertex v2.

The line segments incident at v1 and v2 are joined at v2 unless the resulting

configuration leads to an illegal arrangement of line segments (e.g., intersecting lines

in the case of a PM1 quadtree which, though, is legal for a PMR quadtree) in which

case no merge takes place and the operation ceases with v1 being located at its final

legal position for the data structure currently being displayed. Observe that any

existing edge between the merged vertices is removed as a result of the merge as we

do not allow line segments of zero length.

We believe that our solution is preferable to the introduction of an additional op-

eration named merge vertex which would merge the selected vertex with its nearest

neighbor.
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10.2.6 Effect of Move on the Underlying Data Structures and

the Display Canvas

There are a number of ways of updating the display canvas as well as the history list

to reflect the results of the move operation. In part, they depend on the granularity of

the move operation. In particular, an important question is how often do we update

the display canvas during the motion of the mouse and the object that is bound to

it. As the applet senses the motion of the mouse, an event is generated indicating

the new position and the applet updates the display canvas. During this update, no

further sensing of motion is done and thus the update operation is not interrupted

by subsequent mouse motions.

When the move is executed, only the currently displayed data structure is updated.

No modifications are made to the other data structures as they do not physically exist

at this time. However, we do need to modify the history list in some way to account

for the motion. In this section, we discuss a number of possible methods of updating

the history list, as well as explain the one that we have chosen.

The simplest and most naive way of updating the history list is to add a pair of

entries corresponding to (delete o at p1, insert o at p2) each time the applet senses

the motion of the mouse, when bound to object o, from p1 to p2 (i.e., as the mouse

is dragged). This is very cumbersome and results in dramatic growth of the history

list. An alternative is to replace the sequence of (delete o at p1, insert o at p2)
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by one pair of (delete o at ps, insert o at pe) entries corresponding to the starting

location ps and ending location pe of the dragging process. This method does not get

rid of all inefficiencies as users could conceivably drag an object from p1 to p2 and

then continue to drag the same object from p2 to p3, . . . pi−1 to pi. In this case, we

can replace the sequence by the pair of (delete o at p1, insert o at pi) operations.

The above updating methods assume that the path traced by the dragging process

has no effect on the resulting data structure. This is not true in general for all of the

data structures. Point data structures such as the PR quadtree, which recursively

quarter the underlying space into equal-sized parts until each block contains at most

one point, are completely independent of the order in which the objects (i.e., points

in this case) are inserted and thus they are also independent of the path followed

by the dragging process. However, during this path, node merges and/or splits may

occur. Data structures such as the priority search tree and the two-dimensional range

tree are also independent of the path traced by the dragging process. However, they

are static data structures which must be rebuilt in their entirety each time an object

is deleted or inserted, and thus they must also be rebuilt after an object has been

moved.

Data structures such as the point quadtree [45] (which is the two-dimensional

analog of the binary search tree) and the k-d tree (which is like a point quadtree

except that at each level of decomposition only one axis is split) whose shape is

affected by the order in which the objects are inserted are also independent of the
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path followed by the dragging process as the same object is being dragged. Thus once

the object (i.e., point) is initially removed from the data structure, its subsequent

insertions result in its placement in leaf nodes and thus the subsequent deletions do

not have an effect on the remaining data structure with the exception of the possible

merging of four leaf nodes and one split of a leaf node. In other words, only the first

deletion has any effect.

However, some data structures such as the PMR quadtree are affected by the

path followed by the dragging process. In particular, in the PMR quadtree, a deletion

causes merging to be applied repeatedly as long as the occupancy of the resulting node

is less than or equal to the value of the splitting threshold, while insertion causes any

node intersected by the inserted object to be split once and only once if the splitting

threshold is exceeded. Thus the shape of the structure is very sensitive to the path

followed by the dragging process.

Nevertheless, keeping track of the dragging process in the history list is not really

practical for large data sets as the storage requirements will no longer depend on

the volume of the data; but, instead, will depend on the granularity of the system’s

reaction to the motion of the objects. In fact, even keeping one entry in the history

list for every motion of an object is impractical and thus we turn to an alternative

method of keeping track of the effect of the motion.

This alternative is based on the observation that the most natural way to deal

with the path followed by the motion of the objects in the history list is to ignore
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it. Instead, we find the object that is moved and modify its actual location in the

history list while keeping intact its position in the relative ordering.

Thus the object that is moved is not deleted which represents quite a departure

from our previous proposed approach for handling data structures whose shape de-

pends on the order of insertion (e.g., the point quadtree and the k-d tree). Notice

that in some situations, more than one object will be modified in the history list. For

example, when moving line segment objects, we usually preserve the topology of the

underlying set of line segments (unless merging vertices in which case we may have to

remove a line segment from the history list which will be treated as a deletion). Thus

we don’t only move the line segment that is closest to the position of the mouse but

also both vertices of the line segment and all other line segments incident at them.

The same holds when moving the vertex of a line segment object in which case we

also move all line segments incident at it.

The only remaining question is how to update the display canvas to reflect the

changes in the underlying data structure. The simplest solution is to rebuild the

entire data structure from the newly modified history list and redraw the display

canvas. However, rebuilding the data structure and redrawing the display canvas

each time a mouse motion is detected can be time-consuming and thus we would like

to minimize such rebuilding and redrawing. The key is to differentiate between the

data structures on the basis of the degree of their dependence on the order in which

their constituent objects are inserted (and deleted). There are four classes of data
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structures with the following actions.

1. Dynamic data structures which are independent of the order of insertion such as

the MX and PR quadtrees for point objects; PM1, PM2, and PM3 quadtrees for

line segment objects; and rect and MX-CIF quadtrees for rectangle objects. As

the objects appear in leaf nodes, all that is needed is the execution of a simple

deletion and insertion operation, and a redrawing of the relevant portions of the

display canvas. This may include some node merges and/or splits.

2. Dynamic data structures which are dependent on the order of insertion but

independent of the path followed by the dragging process such as the point

quadtree and the k-d tree. As motion is started, we only need to rebuild the

structure from the position of the moved object o in the history list. However,

this would require us to have access to the partial representation of the data

structure which may not be feasible. So, instead, we rebuild the data structure

in its entirety from the history list.

3. Dynamic data structures which are dependent on the path followed by the

dragging process such as the PMR quadtree for point and line segment objects.

The data structure is rebuilt from the history list each time a mouse movement

is detected.

4. Static data structures which are always independent of the order of insertion

but must be rebuilt each time there is a change in their membership or in any
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of the elements that they contain.

It should be clear the animation of the move operation in classes 1 and 2 is simple for

most data sets including large ones. Our experience has also been that the animation

for classes 3 and 4 has also been smooth.

An interesting byproduct of our solution is that it avoids some tricky problems

that arise as a result of moving a sub-primitive of an object. For example, when we

move a vertex v of a line segment object, if we would have used the (delete, insert)

method, then we would have had to reinsert all of the line segments that are incident

at v. The order in which we reinsert them may affect the shape of the data structure

when the data structure is order-dependent (e.g., the PMR quadtree). The simplest

solution is to reinsert them in the order in which the nearest neighbor algorithm found

them. However, this is somewhat arbitrary and is not repeatable. Fortunately, our

method of simply updating the locational description in the history list of the moved

object preserves the order of insertion and thus we are not bothered by this problem.

10.3 Spatial Data Visualization in GIS

Careful consideration of client-side operations, both the user interface design and

implementation of operations executed on the client side aspects, as discussed above,

is an important prerequisite for developing an efficient client-server system. In real-

life deployments of client-server architecture for accessing remote spatial data servers,
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visualizing spatial structures and understanding of their inner working mechanisms,

which was our focus in [36, 37, 38], is typically not of high importance. What matters

more are the ways in which the actual objects stored in a spatial data structure are

visualized. Here, difficult issues arise even when only a single dataset is involved.

For instance, in the case of overlap between individual objects in the set, we need to

decide on a way to display the data so that no information is lost by not showing

an object or a part thereof that happens to be hidden behind another object. This

becomes an even more burning issue when more datasets get involved in creating the

final view on the database. This is the case in many typical applications of spatial

data structures, such as a map representation.

Most maps are created by overlaying multiple layers of spatial data. For instance,

a typical auto map can consist of road layer displayed as a network of black lines, a

river layer displayed as network of blue lines, forested areas displayed as a layer of

green polygons, a field layer displayed as a layer of yellow polygons etc. Based on

what type of features the individual layers represent, certain rules regarding possible

overlaps between individual layers can be established. For instance, it is obvious that

a certain area cannot be included in the layer that represents forested areas and in

the layer that represents lakes at the same time. To make things more complicated,

this assumption can be made if the map captures an approximation of the reality

at a single moment (as is usually true). Special provisions may need to be made in

cases that the reality changes and this change needs to be somehow represented in
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the map. For instance, the water level in a lake may vary by the season and the map

preparers could decide to represent this fact by representing both the lake and the

surrounding soil in the map in their largest extent. Thus an overlap between the land

and the lake is made even though normally this situation would not be expected.

While overlap of land and water may be unusual, overlaps of other types of layers

are to be expected. This is especially true if different types of information are to

be displayed in a single map. For instance, users may want to display both physical

features (rivers, roads, forests, etc) as well as administrative subdivisions (counties,

national parks, etc). While some of these can be represented by their contours,

sometimes it is inevitable to display two or more overlapping layers that use solid

objects (e.g., polygons) to represent their data. Obviously, in this case the top layer

may be obstructing views into the other layers and this is an issue that needs to be

addressed.
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Chapter 11

Conclusion

The main focus of our work was to investigate and optimize remote access to spatial

databases. We have reviewed existing solutions, most of them bitmap-based, and

identified some of their advantages and drawbacks. We have proposed, designed,

and implemented a new vector-based system that could be used in situations where

the traditional approaches do not work too well. We have compared performance

of a bitmap-based system with our vector-based SAND system. The results of our

experiments allow us to suggest the best type of a remote spatial data visualization

tool for a given the specific deployment scenario.

We have developed a modular design for infrastructure that facilitates remote

spatial data access. We applied this design to implement several specific types of

SAND system deployment. Which type of the deployment performs best depends on

the specific environment in which the system is to be used. Generally, the system
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can either be deployed in such a fashion that the clients communicate directly with

the central spatial server. Alternatively, in situations where the client runs on a thin

platform or where the service is shared among several co-located clients, an auxiliary

server could be used to improve the performance of the overall solution.

11.1 Direct Client-Server Communication

In the simpler setup, the clients communicate directly with the central server. The

bitmap approach works better if only a few operations are needed per session. This is

the case when the user only needs to see a basic map of a given area and does not plan

on any further exploration or querying. If the user performs a sequence of operations

(zooming, panning) in a given area, then the vector-based SAND approach performs

better than the bitmap-based solution across all types of connections, all operations,

and for all possible SAND deployments (i.e., the requested content is fully cached,

not cached, or caching is not involved at all and the data is always fetched directly

from the server). The more the user revisits previously seen areas, the greater are the

benefits to be derived from SAND’s caching.

In the case of the fast scroll operation where the new view overlaps 50% of the

old view, improvements from using SAND range from a factor of 4 (using a fast

LAN connection) to 40 (using a slow dial-up modem or a high-latency satellite link)

over using the bitmap solution when the content is fully cached. If the content is
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not cached, then SAND performs between 1.5 and 2 times better. If caching is not

available on the client and all data has to be downloaded from the server, then SAND

performs 1.5 times better for slower network connections and up to 3 times worse

for a fast LAN-type connection with both approaches being comparable for network

speeds in between.

In the case of the fine scroll operation, where the new view overlaps 90% of the

old view, improvement from using SAND ranges from a factor of 3.5 (using a fast

LAN connection) to 35 (using a slow dial-up modem or a high-latency satellite link)

over using the bitmap solution when the content is fully cached. If the content is

not cached, then SAND performs between 1.5× and 2.5× better. If caching is not

available on the client and all data has to be downloaded from the server, then SAND

performs 1.5× worse than the bitmap solution for a LAN-type connection and between

1.5 and 2.5× faster for slower connections.

For zoom in operations, the improvement from using SAND ranges between 5 and

50 times faster than a bitmap system. For the zoom out operation, the improvement

from using SAND is 2 to 20 times faster when client-side caching is available, and

slightly better to 4 times worse for the scenario where caching is not available locally

and all data has to be fetched from the server.

Therefore, we see that if users are only expected to use the system briefly, perhaps

a quick address lookup followed by one or two zoom or scroll operations, the deploy-

ment of a bitmap system would be more efficient. However, when users are expected
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to use the system beyond just a few operations, it is better to deploy a vector-based

system such as SAND. If possible, local caching should be used but better results are

achieved even when data is always fetched directly from the server.

The tile-oriented bitmap method of accessing spatial data as introduced by Google

Maps and Microsoft Virtual Earth would provide better results than the traditional

bitmap method represented by MapQuest or MapsOnUs. While direct comparison in

an identical environment is not possible, we can estimate what its performance would

be in our test environment by extrapolating results from our MapServer experiments.

If the data is already cached on the client, then the tile method and SAND would

perform the same. If the data is not cached, then the tile method would perform

about 4 times better on a fine scroll operation. Both methods would perform about

the same for the fast scroll operation. The results of a comparison for the zoom in

and zoom out operations will remain the same as they were for the regular bitmap

approach. Therefore, while the tile method performs very well as a pure viewer, the

SAND system offers a platform for better load sharing between client and the server

while providing similar performance. This is due to having the vector data present

on the client. In this way, the SAND Internet Browser can handle certain operations

and queries locally, thereby speeding up the response time and relieving the server’s

load.
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11.2 Auxiliary Server Deployment

In some cases, multiple co-located clients need to utilize a spatial server, while the

connection speed between the location of the clients and the server is poor. In other

cases, the clients do not support internal caching. For such scenarios, we proposed to

introduce auxiliary proxy servers that speed up response time for the clients, while

decreasing the load on the central spatial server. Such a proxy can be either pre-loaded

with the spatial data stored on the central server or it can be installed without any

data and allowed to download the data from the central server as necessary. Assuming

a scenario where the local network connection between the clients and the proxy is

fast (e.g., they are on the same LAN) and that the connection between the proxy

and the central server is substantially slower (e.g., a satellite link), we saw that the

scroll operations are about 6–8× faster for SAND. The zoom in operation can be 20×

faster while zoom out is about 8× faster.

The extra overhead of managing the proxy makes the SAND solution slower ini-

tially when the proxy server does not contain any data. In this phase right after

deployment, SAND can be 3× slower than the MapServer system. However, once the

data becomes available on the proxy, SAND becomes about 3 times faster.
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11.3 Future Research

There are many directions for future research in the area of spatial database remote

access. One area of interest would involve investigation of methods for caching fre-

quently used data in the form of bitmap tiles instead of vectors. While these tiles

would only be usable in given views (in terms of zoom factor and layers displayed),

they would also allow skipping of repeated rasterization steps. Such a system would

in effect be a hybrid between SAND as it is today and the tile approach introduced

by Google Maps.
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