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1 IntroductionThe term digital video is commonly used to describe three seemingly di�erent activities: producing,storing and playing videos on modern computing systems. However, it takes only a casual experiencewith any of these activities to understand the intimate connection between them. For example,if one uses some expensive, specialized peripherals (including a high-end digitizer, a RAID diskcon�guration, etc.), one can, in theory, edit an entire broadcast-quality, full-screen video productionon an Apple Macintosh computer.Of course this raises the issue of storage. In the parlance of videography, a digitized, broadcast-quality video demands a screen size of 640 � 480 pixels, a display rate of 30 frames per second(or 29.97 frames per second on NTSC displays), and an RGB color depth of 24 bits per pixel.Some simple multiplication yields a demand for 1.66 Gbytes per minute, or roughly 50 Gbytes fora one-half hour production!And then there is the problem of playback. Even if the producer has the wherewithal todigitize, edit and store a feature-length video, the chances are high that no consumer would beable play it. The original production will require 50 Gbytes of storage { and demand an e�ec-tive playback rate of 27 Mbytes per second { whereas a typically well-equipped, consumer-gradeworkstation possesses no more than 2.5 Gbytes of disk space, with peak transfer rates at about2.5 Mbytes per second. Moreover, the computer's display logic will probably not include high-endvideo de-compressor functionality; thus video decompression will be done in software, as will bu�ermanagement, synchronizing the video and audio, etc.Clearly, the quality of a digital video is directly proportional to the computing resources itrequires. Thus the problem of tuning a video production to a target platform { and tuning theplatform to the video { demands something akin to a traditional \load-balancing" solution, appliedwith both quantitative and qualitative metrics.We are studying the �eld of digital video essentially as an operating systems application, andone that possesses a strong real-time component. On one hand, we have found media applicationsto be ideal for real-time research. After all, the end-to-end requirements can be clearly and preciselyarticulated { e.g., 30 full-color frames delivered per second, accompanied by 16-bit digital soundplayed at 44kHz, with sound and video synchronized �ve times per second. Also, when the systemfails to achieve a desired level of quality, the resulting behavior can easily be perceived by the viewer.Finally, we need not deal with abstractions of applications (as in avionics control problems); rather,we can experiment with media applications on consumer-grade workstations.Yet real-time video applications possess unique di�culties not present in \hard" real-time sys-tems. Most of these stem from an obvious point: sampling and update rates should be determinedby factors related to \human perception," which is not amenable to mathematical models of \ac-ceptable service." It is true that playback rates of 27 Mbytes/sec are not achievable on modern,consumer-grade systems. It is equally true that there are many ways of reducing these rates, bysacri�cing quality { e.g., by introducing greater signal loss into digital compression, or by decreasingcolor-depth, playback rate, playback size, etc. The theory is that if any of these options are chosen,2



then disk transfer rates are reduced, as are storage requirements, CPU utilizations, demands forRAM bu�ers, overload sensitivity { with the result being a smoother, more deterministic video.But it is not at all apparent which option (or combination of options) should be selected toachieve the greatest bene�t. Indeed, as we show in this paper, it is not even true that a \quality-reducing" measure necessarily leads to reduced transfer rates (it occasionally has the oppositee�ect). And it is never a trivial venture to predict which combination of actions leads to thegreatest achievable quality at playback.On the other hand, while more powerful equipment may lead to better playback quality, there isno guarantee that this will always be the case. As we show, faster CPUs, faster disks, and wider IOpaths will not always translate into better video quality { even in the best \multimedia computers."1.1 Observations and HypothesesThe work described in this paper grew out of some informal observations, which led to severalhypotheses, which in turn were tested by a controlled series of 240 experiments. The observationswere as follows:� Using several QuickTime [1] movies as samples, and Apple Macintosh computers as our plat-forms, we found that the selection of codec1, frame rate, and color quality had unpredictableconsequences. For example, a supposedly \smooth" codec like Radius's Cinepak would, attimes, lead to more color distortion than Apple's \default" video codec { which is basically acrude motion-JPEG scheme.� It was not always the case that upgrading equipment led to discernibly better video playback.This was even true when we compared a Quadra 950 to a PowerPC (MC601) 7100/80 { whenthe PPC machine ran a movie player compiled into \native" MC601 code, and where theplatform had 8 Mbytes more memory.� \Skips" and \jumps" in video playback were noticeable across a wide spectrum of machinesand sample videos. In fact, they looked suspiciously like bu�er overruns, pre-fetching glitches,and similar, very familiar problems. For example, frames were not dropped at measured,deterministic rates; rather, a second's worth of video would play, then the following secondwould stall, then play, then stall, etc.These observations led to a growing con�dence that media playback should be studied as a problemof coordinating the operating systems with the properties of the media { and not speci�cally as aproblem of data compression. While compression algorithms can have a profound e�ect on visualquality, from the perspective of balancing the resources, a speci�c compression algorithm can (andperhaps should) be treated as a \black box."That said, we postulated the observations above as the following hypotheses, which we then setout to test.1A codec is a compression/decompression scheme 3



1. A faster, more powerful platform will not necessarily lead to better playback quality.2. A movie's size (in bytes), and its \preferred playback rate" (in frames per second) are notalways good predictors of quality.3. Movie-playing software could give better performance if it (1) took into account the platform'scapabilities, and (2) provided deterministic rate control based on these characteristics.1.2 Metrics and VariablesBefore setting out to test these hypotheses, we were presented with four initial hurdles: (1) develop-ing sound, quantitative metrics which loosely correspond to \qualitative performance;" (2) selectingsuitable, comparable platforms on which we would benchmark our experiments; (3) �nding a setof test videos with a controlled spectrum of content (e.g., di�erent color and light densities, soundquality, scene transitions, etc.), which would permit making some general conclusions from ourresults; and (4) identifying the test variables, whose instantiations would generate our \test runs."(1) Quantitative Metrics. It is true that \quality" is fundamentally a subjective attribute.However when analyzing clusters of similar experiments, we found two metrics that stood out asroughly correlating to visual quality. They are: (a) total frames displayed vs. total frames in movie,and (b) the display rate's variance (measured in one second quanta) over the course of the movie.When comparing di�erent \runs" of a single movie, the �rst metric gives an indication of averageplayback quality over the course of each run. Letting e denote a run of a digital movie, we denoteFT (e) as the movie's total, \preferred" number of frames that should be displayed throughout therun. Alternatively, we let FD(e) be the measured number of frames that actually get displayed. Ift(e) is the movie's duration (in seconds), we can extract the following properties:RPREF(e) def= FT (e)t(e) (Preferred Rate)R(e) def= FD(e)t(e) (Mean Rate)That is, RPREF(e) is the digitized rate of the movie in frames per second (henceforth abbreviated as\fps"), and R(e) is the e�ective, mean rate of the movie's playback performance in an experimente. But FD(e) and R(e) tell only one side of the story, since a test may experience a given FD(e)in a variety of ways. It may be due to a nearly uniform rate throughout { for example, when every-other frame is played. Alternatively, there may be large \spikes" during which very few framesare displayed. A third scenario is realized when there are be repeated, radical oscillations, i.e.,high-rate intervals, followed by low-rate intervals, etc.The �rst case (e.g., Figure 1(1)) may yield good overall visual quality; it depends on whethera rate of 15 fps is acceptable for the video content. However, this type of behavior has one thinggoing for it { it is deterministic, in that playback persistently hovers around R(e). As for the second4
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0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00Figure 1: Playing Three Digital Versions of a Video: (1) Smooth, (2) Spikes and (3) Ocillationcase (e.g., Figure 1(2)), its four-�ve spikes are tolerable over the course of an eighty second video.The net esthetic e�ect is akin to the occasional \noticeable jitter" seen in a television set. But thethird case (Figure 1(3)) is de�nitely observable, and the visual experience is like a watching a slideshow of randomly selected, blurry pictures.To distinguish between these very di�erent cases, we use the frame rate's variance (per secondquantum). That is, letting Fi(e) be the number of frames displayed during the ith second of e,R�2(e) adequately serves to capture the degree of \
icker," whereR�2(e) def= Pt(e)i=0 (R(e)� Fi(e))2t(e)(2) Suitable, Comparable Platforms. We selected two Apple Macintosh computers to be ourtest platforms { Quadra 950's (at the low end), and Power PC 7100/80's (at the high end). (InSection 3 we detail the di�ering speci�cations of these platforms, and we identify the variables wemaintained in both. )Our decision to use Macintoshes was preceded by an exhaustive, \qualitative" investigation intothe video capabilities of di�erent contemporary, a�ordable workstations.2 While there is a widevariety of workstations currently available, Apple's products still seem to deliver the best \software-codec" video.3 This is partially due to the fact that over the years, Apple has invested heavily inoptimizing the QuickTime and QuickDraw libraries.4 But perhaps of greater importance is thefact that at the application level, Mac tasks are still largely nonpreemptive and event-driven, whilemulti-threading is mainly cooperative.5 System services are still invoked via fast traps, and the2We intentionally excluded specialized high-end equipment, such as SGI's graphics workstations.3A software codec is a compression/decompression scheme in which video processing is performed without specialhardware.4QuickTime includes a set of software codecs, and a set of functions to build, store and play movies. QuickDrawis used by QuickTime, and it encompasses a set of functions which draw single frames to the screen.5While a preemptive threads package exists, as of this writing it is still rather ine�cient.5
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SignalFigure 2: Instantiating the VariablesRAM-resident kernel system includes functionality usually not associated with operating systems{ e.g., high-level graphics services.While these \features" lead to a very awkward programming style (every application programis essentially a system program too), they end up providing a streamlined platform for evaluatingvideo applications.(3) Test Videos. We �rst experimented with sample videos from various sources, i.e., fromApple's developer CDs, from Internet locations, and digitized from commercial VHS tapes. Noneof these options were very satisfying. In the �rst two cases, movies were already digitized andcompressed by others, according to their own needs, and all were of poor quality. Thus our re-digitized, experimental copies would have been generated from inferior originals. A similar problemheld in the case of the VHS copies of commercial movies, which possessed a large amount of noise,and led to highly distorted digital copies. Most of all, we had no control over getting a su�cientlywide spectrum of changes in motion, light, sound, etc.But there was a natural way to control all of the variables involved, which was record, digitize,edit, and assemble our own movie with our own video equipment. Aside from giving us ultimatecontrol over content, this decision had two ancillary bene�ts. First, we could compare the qualityof the computer-based, digital experiments with our original Hi8 clips played on a high-quality,S-video television. Second, we were forced to learn our application in its entirety. In fact we foundthat digital video is currently in a state similar to that of traditional real-time systems circa 1985.As we explain in the sequel, producing a video on a computer is still a matter of trial-and-error.(4) Variables. Once we had our digital \master," we produced sixty di�erent copies, with eachpossessing a set of uniquely instantiated variables. What are our variables? We identi�ed �ve whichplay dominant roles in determining the quality of the �nal result (Figure 2): codec type, frame size,digitized rate (or RPREF), spatial quality and keyframe distribution. The last two variables areartifacts of digital compression: spatial quality is the amount of original signal loss permitted ineach compressed frame, whereas the keyframe distribution is the distribution of frames which are6



stored as compressed, still pictures { while the remainder are processed via interpolation relativeto the keyframes.All other variables, such as color depth and sound quality, were kept �xed. (Throughout wemaintained an RGB color depth of 16 bits, and 16-bit stereo sound, sampled at 44kHz.)While all of these variables have an e�ect on the ultimate playback quality (and potentially thetransfer rates required), the actual contribution of each is not easy to determine. Picture size, forexample, is immediately identi�able { and most people would agree that \bigger is better." Yetwhile too big a palette will lead to untenable data rates, depending on the other parameters chosen,reducing the picture size may not lead to a reduction in data size. As for frame rates, in somepresentations the human eye cannot perceive the qualitative di�erences between playback rates of30, 20 or 15 fps { it is usually a function of type and amount of inter-frame motion.Moreover, these variables are not at all independent, and the interplay between them is highlynonlinear. Codec selection always has an e�ect on tolerable keyframe distributions, as well as onacceptable spatial quality. Yet the actual relationships are usually content-dependent, and willvary over the course of a presentation. A videographer typically juggles these issues to maintaina reasonable level of quality, while simultaneously reducing transfer rates to fall within the abilityof some target playback system. But the the process of determining a good instantiation of thevariables is at best highly interactive and ad hoc.1.3 Remainder of the Paper.Armed with our experiments and metrics, we measured the performance of all 60 variable instan-tiations on our two platforms. This paper contains the results of these experiments, as well ourpreliminary analysis of each variable's importance. This data unveiled some very surprising anoma-lies, which seemed to substantiate our hypotheses { even more than we expected. In fact, theseanomalies forced us to run yet another 120 tests, whose examination led to some rather broadconclusions about digital video speci�cally, and about personal computers in general.The remainder of this paper is organized as follows. In Section 2 we survey some of the relatedwork in the area of digital video. Then in Section 3, we describe how we generated our test cases,and how we controlled the variables involved. In Section 4 we describe our test results, and weanalyze the signi�cance of each variable. We conclude in Section 5 with some remarks on our futurework.2 Related WorkWithin computer science the of area digital video has largely been studied as a networking problem,without the \client-centric" focus which we take in this paper. Nonetheless, some recent paperson distributed systems touch on many of the same issues, albiet from a di�erent perspective. Forexample, Stone and Je�ay's study of delay and jitter management [5] is highly relevant to ourfocus. As they note, a network's display latency e�ectively determines client's frame rate, and that7



latency is, for obvious reasons, inversely proportional to permissible display rates. As they havefound in networked tra�c { and as we have found in dealing with disks and compression software {a balance must be found between a stream's jitter and its delivery rate. Stone and Je�ay prescribea queue monitoring policy for dyanamic adjustment of display latency, which supports low-latencyconferences with acceptable gap-rates.Our focus on IO and data paths is echoed in [2], which proposes a means of optimizing thetransmission of compressed videos. While a network may be able to transmit the video frames, thedestination station may end up being the bottleneck. After all, MPEG compression ratios may beas high as 200:1; thus the demand on the receiving station's operating system may be overwhelming.Display quality may decrease not as a result of network capability, but rather due to insu�cient I/Othroughput. In this work a splice mechanism is introduced, in which an application can associate akernel-level data source with its sink point; this allows for a direct point-to-point data path betweensource and sink, obviating unnecessary kernel interference.Finally, the abilities of our player-monitor are similar to that described in [6], where MPEG-encoded video streams can be generated expressly for providing statistical information on the data,such as distribution of ATM cells per frame, auto-correclation and cell inter-arrival times.3 Experiment Construction and Variable InstantiationIn this section we provide an overview of the methods used in constructing our test videos. Some ofthe techniques we used are traditionally not included under the rubric of \computer science," muchless \realtime systems;" rather, they are considered more relating to \video production." But aswe have found, it is di�cult to experiment on the \science" of media systems without having somecontrol over video content. In this section we include some of the processes we used to generateour test cases. Our goal here is to provide su�cient detail so that others can, if they desire, repeatthese experiments.Figure 3 roughly outlines the process we used to produce our tests. Without belaboring thedetails, we carried out the following steps: (1) Sketching out a \story-board," in which we includedscenes with di�erent levels of light, color, motion, etc.; (2) Using a Hi8 video camera to photo-graph about 3-4 hours worth of video \clips," which included a superset of our \story-board;"(3) Reviewing our clips, selecting portions of interest, and then using a JPEG hardware codec todigitize them into a 7100/80 { and storing them on a 2.1G disk; (4) Using Adobe Premiere 4.0 toassemble a rough prototype of our �nal \cut," whose duration is about 5 minutes; (5) Employingsound-processing software to sample and �lter \background music" from CDs, and inserting themin the movie at appropriate levels; (5) Using Adobe Premiere, in conjunction with our digitizerand the Mac's sound capabilities, to produce a �nal \mix" { which was still in a \hardware-codec"format; (6) Selecting an 80 second segment from the movie, which contained su�cient contrastto stress the capabilities of compression and playback software; (7) Using the Premiere/Digitizercombination in conjunction with the Quicktime libraries to generate 60 software-digitized copiesfrom this 80 second segment { each representing a separate instantiation of our variables; and (8)8



ShootClips JerkinessSound ProblemsBad ExposureVideoTape Digitize DigitalVideoOut of Disk SpacePoor Quality EditClips VideoSequenceWrong SequenceAdd TextVideo andTextData Rate Too HighDigitizeAudioDigitalAudioDown SampleUp SampleMixFinalProductFile Too LargeGenerateTestCasesTests Writeto CDs 6 CDsFigure 3: Experiment Production ProcessArchiving our 60 �les on six CDs. We were then able to run the tests and monitor their results viaour TimeWare testing tool, which we built for this purpose.As Figure 3 makes clear, this process is hardly a linear one, with \back-edges" at almost everystage. Aside from the obvious esthetic di�culties that arise in a �lm production, there were moreserious problems associated with computing issues involved. For example, we constantly had toadjust the quality of our digitized samples to accommodate the transfer rates and capacity ofour SCSI disks { while balancing these limitations against our eventual goal, i.e., to produce 60\paradigm" test runs. Indeed, the process of striking the appropriate balance required severalmonths of time.3.1 Hardware and SoftwareTable 3.1 presents the equipment we used. While most of the speci�cations are self-explanatory,a few comments are relevant here.Digitizer: The Radius VideoVision Studio (or VVS) is essentially a hardware JPEG codeccapable of realtime, 30fps full-screen digitization and compression (or equivalently, de-compressionon playback). While the cost of this small card exceeded that of Platform 1, the investment wasnecessary for producing digital \master copies" of clean Hi8 originals. The advantages of usinga good hardware codec are obvious: one need only let the tape roll, and the compression logicis capable of handling every frame in real-time. In fact, the VVS is capable of digitizing framesizes 640x480 with little signal loss, and no \drop-out" frames. Since JPEG compression basicallyinvolves running a Hu�man �lter over frames mapped onto an 8x8 grid, the VVS can process thegrid's 64 squares in parallel. 9



Computing EquipmentTest Platform 1: PPC 7100/80CPU: MC601 80MHz, Floating PointMemory: 24MbInternal Hard Drive: 696 Mbyte, IBM DSAS3720CD: Apple 300i (2-speed, Internal)OS: System 7.5, Minimal ExtensionsDisk Drivers: From FWB Test Platform 2: Quadra 950CPU: MC68040 33 MHz, Floating PointMemory: 16MbInternal Hard Drive: 234Mb, Quantum LP2435CD: Apple 300i (2-speed, External)OS: System 7.5, Minimal ExtensionsDisk Drivers: From FWBEssential Peripherals Video EquipmentExternal Hard Drive: 2.1Gbyte, Seagate ST12400NDigitizer: Radius VideoVision Studio 2.0CD Writer: Pinnacle Micro RCD 1000Tape Drive: Exabyte 2000 Cameras: Sony CCD TR700s Hi8 FormatTime Code, HiFi Stereo, S-video In/OutVCR: Sony EVS7000 Hi8 FormatTime Code, Single-Frame Advance/RetractEdit Marks, PCM Audio Dubbing, S-videoSoftwareMetrowerks Gold C/C++ Compiler (PPC/68K Compiler/Debugger)Adobe Premiere, Adobe Photoshop (Video and Photo Editing Tools)Macromedia SoundEdit 16 (Sound Sampler and Filtering Tools)Assorted Quicktime Tools (For \massaging" Quicktime Movies)TimeWare Movie Monitor (Our monitoring program to test playback)Table 1: Hardware and Software Used to Generate and Run ExperimentsAll of this stated, we were unable to use this equipment at its peak potential { our 2.1Gbytedisk was not fast enough to keep up with the required transfer rates, nor was it su�ciently large tostore more than a single minute of footage. Even after being processed by the compression logic,some scenes still produced blistering data rates of 20 Mbyte/sec, which would quickly �ll up anylarge disk.After determining the ability of the system via trial-and-error, we found a reasonable compro-mise between quality and capacity: digitizing at 30fps, but with a frame size of 320x240, and with asmall amount of signal loss. For the sake of our experiments we considered this to be our \baseline,"ranking it at \100% quality." All subsequent software-compressed copies were generated from theVVS-digitized \master" at this baseline quality.The outstanding performance of the hardware codec raises the following question: if silicon cando the job so well, why should we bother measuring software-codec playback performance? Oneanswer is obvious: most users will not invest in a digitizer that costs more than the computer itself.But another reason stems from the limitations inherent in the high-priced, real-time JPEG cards.That is, if one is purely interested in transmitting and viewing videos, then JPEG is perhaps theworst compression format to use. JPEG cards do not perform inter-frame compression, and theyproduce signi�cantlly more data than most systems can accomodate. On the other hand, full-�eld, full-color, realtime MPEG (and Motion-JPEG) compression cards are still very specializedperipherals, priced well over $100,000.But there is even a better reason why we should be interested in purely software schemes. Aswe show in the sequel, when the system software is tuned appropriately, a good software-codec is10



more than capable of delivering high-quality video. Conversely, if the operating system imposeshigh latencies on large IO transfers, even the fanciest hardware codec will probably fail to live upto its rated potential.Hard Disks: Our \main" disk drive was a 2.1 Gbyte Seagate \Barracuda," which we used fordigitizing our clips, as well as in monitoring the playback quality of each test run. Using a varietyof commercial benchmarking tools, we measured the Barracuda's normal transfer rates as follows:Read Transfers: 2790 bytes/secWrite Transfers: 3100 bytes/secAll of the disk drivers were installed using FWB's Hard Disk Toolset, and we also used FWB'sutilities for formatting and partitioning. In particular, we disabled re-mapping bad sectors to theend of the disk; rather, we con�gured the drivers to simply skip them. This minimized the amountof head movement in both sampling and playback.3.2 Video Content: February 14, 1995The video clips were photographed during the week of 2/14/95 at the University of Maryland. Theycaptured \typical" scenes of the university and the Computer Science department, with studentsand faculty in relatively informal settings. The objective was to procure a su�ciently wide spectrumof changes in light, color and motion within { and between { the scenes. To this extent, about50% of our test video consists of brightly-lit, exterior scenes, with the remainder shot indoors.The longest scene has a duration of 13 seconds, and is mostly static, whereas there is 15 second\collage" of active short scenes, each of which consumes roughly 1 second of time. About 15%of the movie contains dialague set over background music (to check synchronization), while theremaining \soundtrack" contains only music.The digitized clips were edited using Adobe Premiere 4.0, with which we also inserted titlesequences. The �nal \cut" is a 5-minute video occupying about 270 Mbytes of space, with RPREFset to 30 fps. We copied an 80-second portion of this \�nal cut" into a separate \experiment" �le,which then formed the \master" for each test case.3.3 VariablesNext we produced 60 test �les, each of which containing an instantiation of our variables: codec type,frame size, digitized rate (orRPREF), spatial quality and keyframe distribution. Other variables thatcould have been altered { but were not { were color depth and sound quality. Across all experimentsthey remained �xed, respectively at 16-bit color, and 16-bit stereo sampled at 44kHz.Formally, the variable space ranges overCodec� Rate�KFD � Size� Qualitywhere 11



1 secFigure 4: One-Second Strip of frames, with Rate = 15 and KFD = 31. Codec 2 fC;V; Jg denotes the compression scheme used. Here \C" is Radius's Cinepakcodec, \V" is Apple's \Default Video" Motion-JPEG codec, and \J" stands for QuickTime's\Photo," frame-by-frame, still-JPEG codec.2. Rate 2 f15; 30g denotes preferred playback rate, or RPREF.3. KFD 2 f1; 3; 5; 10g denotes the keyframe distribution used. For example, if KFD = 5 thismeans that every �fth frame is a keyframe. (Note that when the \J" codec is used, KFD isalways set to 1, since all frames in a JPEG movie can be considered keyframes.)4. Size 2 fhalf ; quatg denotes the frame size, where \half" is 320x160 pixels, and where \quat"is 160x80.5. Quality 2 f75; 100g denotes the degree of spatial quality that is maintained in the re-digitizedtest �le. When Quality = 75, this implies that the codec attempts to keep 75% of the originalquality, and Quality = 100 means that the codec is used at its \best possible" setting.Our test instances have labels like \C/30/3/half/75," which denotes a movie re-digitized in theCinepak codec at 30 fps, with one keyframe every third frame, in a frame size of 320x160 with a75% quality index.Codecs and Keyframes. JPEG [3] is basically a compression standard for still-pictures, whichcan produce nearly lossless digital copies. However, it turned out to be a poor performer atplayback time, and we used it as our \high watermark" for image quality, while simultaneouslyas a \low watermark" for motion quality. (Note that the VVS has no problem handling realtimede-compression at 30 fps, but this is di�cult to achieve in software.)The other two techniques, \Video" and \Cinepak," fall into the category of motion-JPEG.Whereas still-JPEG involves running a Hu�man �lter over each frame individually, motion-JPEG12



also employ inter-frame (or \temporal") compression. In this scheme keyframes are compressed asstill pictures, while the other frames are interpolated relative to their preceeding keyframes (as inFigure 4).QuickTime does this in a rather crude (but e�ective) manner: when temporally compressinga frame k relative to its keyframe i, k's pixel-map is simply subtracted from that of i, and theresult is compressed. Note that this is analogous (but not identical) to P-frames in MPEG [4],which determines the �elds of motion relative to last I-frame, and then stores the correspondingmotion-vectors.While MPEG-compression can be a complex (and time-consuming) operation, re-compressingQuickTime movies in software can also require an enormous amount of CPU time. In particular,each re-compression of our 80-second test in Cinepak required about two hours.3.4 Running the TestsOur TimeWare monitor tool is an e�cient QuickTime player, which interacts with QuickDrawto determine which frames are displayed, and which are dropped. It keeps this frame-by-frameinformation in a running bit-vector associated with each movie; after testing the movie, the bit-vector is used to generate a set of playback-performance measures (such as FD, R�2 , R, etc.).Although the Movie Monitor is e�cient { and the code requires a minuscule amount of memory{ whenever it executes it turns into a memory hog. In fact, it grabs all of the memory currentlyavailable (usually about 20Mbytes) on our systems. This is for a good reason: the greater itsmemory partition, the more bu�ers can be a�orded to the QuickTime decompression software. Weset out to test the capabilities of video playback performance, not the speed of garbage collection.We also eliminated the e�ects of disk fragmentation. Whenever we ran a test sequence, we �rstreformatted out disk drive, then we copied a set of our test CDs onto the disk, after which we againre-optimized the entire disk (which eliminated any internal fragmentation). We also used the samephysical disk on both of our test machines, hand-carrying it back and forth between them.Finally, every test was run at least �ve times; surprisingly, our metrics FD and R�2 showed verylow deviation across the trials. We attribute this to the tight interaction between Mac applicationprograms and the operating system; i.e., the system rarely \steals" CPU cycles from an applicationwithout the application yielding time.4 Test Results and AnalysisThe results of our initial half-screen tests are listed in Figure 5; the remaining test results are inthe Appendix. To better understand the \highlights" of the half-screen tests, we have extractedthe FD data onto the bar charts in Figures 6-7.Platform and Codec Variables. One need not delve into the numbers to make some courseobservations, which stand out in the bar charts. First, excluding a few notable exceptions (to whichwe return shortly), the PPC tests show superior results to those run on the Quadra. Another fairly13



Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 half 100 65668948 51556948 2400 1837 22.96 5.30 1090 13.62 29.56C 30 3 half 100 55288196 41176196 2400 1884 23.55 5.17 1323 16.54 31.15C 30 5 half 100 53200812 39088812 2400 1882 23.52 7.55 1341 16.76 28.59C 30 10 half 100 51599160 37487160 2400 1893 23.66 8.63 1315 16.44 29.67C 30 1 half 75 56272532 42160532 2400 1868 23.35 6.65 1066 13.32 33.66C 30 3 half 75 48114560 34002560 2400 1978 24.73 5.25 1461 18.26 25.09C 30 5 half 75 46467008 32355008 2400 2015 25.19 5.49 1557 19.46 24.22C 30 10 half 75 45253496 31141496 2400 2038 25.48 5.70 1607 20.09 24.17V 30 1 half 100 138782648 124670648 2400 528 6.60 17.97 271 3.39 1.91V 30 3 half 100 126319334 112207334 2400 809 10.11 39.94 255 3.19 1.74V 30 5 half 100 123699495 109587495 2400 847 10.59 42.59 267 3.34 2.24V 30 10 half 100 121666111 107554111 2400 802 10.03 44.64 218 2.73 1.05V 30 1 half 75 110761808 96649808 2400 994 12.43 29.94 336 4.20 1.16V 30 3 half 75 89538819 75426819 2400 1446 18.07 25.38 388 4.85 7.66V 30 5 half 75 85251859 71139859 2400 1430 17.88 27.29 471 5.89 22.98V 30 10 half 75 81892471 67780471 2400 1551 19.39 24.11 507 6.34 39.47J 30 1 half 100 94238136 80126136 2400 313 3.91 0.29 112 1.40 0.24J 30 1 half 75 76101834 61989834 2400 325 4.06 0.28 124 1.55 0.25C 15 1 half 100 39892376 25780376 1200 1129 14.11 1.04 1113 13.91 1.99C 15 3 half 100 34932804 20820804 1200 1148 14.35 0.57 1117 13.96 1.60C 15 5 half 100 33894160 19782160 1200 1140 14.25 0.76 1117 13.96 1.60C 15 1 half 75 35187128 21075128 1200 1139 14.24 0.75 1117 13.96 1.60C 15 3 half 75 31257064 17145064 1200 1142 14.28 0.69 1116 13.95 1.78C 15 5 half 75 30448024 16336024 1200 1142 14.28 0.69 1116 13.95 1.78V 15 1 half 100 76406147 62294147 1200 1083 13.54 2.92 593 7.41 8.49V 15 3 half 100 71468196 57356196 1200 1102 13.78 1.98 724 9.05 9.19V 15 5 half 100 70419248 56307248 1200 1097 13.71 1.81 747 9.34 9.44V 15 1 half 75 62437907 48325907 1200 1144 14.30 0.71 692 8.65 7.08V 15 3 half 75 53301189 39189189 1200 1129 14.11 1.49 894 11.18 8.36V 15 5 half 75 51404010 37292010 1200 1138 14.22 0.82 945 11.81 7.66J 15 1 half 100 109158425 95046425 1200 209 2.61 0.41 63 0.79 0.17J 15 1 half 75 45082267 30970267 1200 330 4.12 0.76 143 1.79 0.17Figure 5: PPC 7100/80 and Quadra 950/33, 320 � 240 { Played o� Disk
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FDFD
Cinepak @30 fps, KFD 2 f1; 3; 5; 10g Default Video @30 fps, KFD 2 f1; 3; 5; 10g JPEG @30 fps1 3 5 10 1 3 5 1005001000150020002500 1 3 5 10 1 3 5 1005001000150020002500 05001000150020002500 1 1Cinepak @15 fps, KFD 2 f1; 3; 5g Default Video @15 fps, KFD 2 f1; 3; 5g JPEG @15 fps05001000150020002500 1 3 5 1 3 5 1 3 5 1 3 505001000150020002500 05001000150020002500 1 1Figure 6: FD of All Half-Screen Runs Played on PPC 7100/80 o� of Disk. Keyframes are Numbered1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 75FDFD
Cinepak @30 fps, KFD 2 f1; 3; 5; 10g Default Video @30 fps,KFD 2 f1; 3; 5; 10g JPEG @30 fps1 3 5 10 1 3 5 1005001000150020002500 05001000150020002500 1 3 5 10 1 3 5 10 05001000150020002500 1 1Cinepak @15 fps, KFD 2 f1; 3; 5g Default Video @15 fps,KFD 2 f1; 3; 5g JPEG @15 fps05001000150020002500 1 3 5 1 3 5 05001000150020002500 1 3 5 1 3 5 1 105001000150020002500

Figure 7: FD of All Half-Screen Runs Played on Quadra 950/33 o� of Disk. Keyframes areNumbered 1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 7515
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Time (sec)Figure 8: V/30/3/half/100 (above) and V/30/1/half/75 (below)obvious observation is that JPEG is a very poor performer, while Cinepak shows the best averageperformance in most test cases. Yet we found that when Default Video and Cinepak have similarperformance (as, for example, on the PPC at 15 fps), the Video tests are esthetically superior.In certain scenes, Cinepak's signal loss tends to result in a \grid pattern" appearing over uniformcolor �elds, no doubt an artifact of the JPEG-style YUV compression. A similar, though lessannoying phenomenon, emerges in Default Video compression, which tends at times to result in\blurry" edges between di�ering �elds of intensity. However an esthetic judgement like this is reallya matter of personal taste.Compression Variables. As for the e�ects of compression, it appears that reducing spatial qualityhardly leads to uniform bene�ts across the tests; moreover, the results of temporal compressionare highly unpredictable. But there are two groups of trials on which these factors seem to have amore pronounced impact: the PPC/Video tests digitized at 30 fps, and the Quadra/Cinepak testsdigitized at 15 fps. Figure 8 shows two of the Default Video results from the PPC, in which theonly di�erence is spatial quality. Note that while both runs show a signi�cant amount of jitter, areduction to 75% quality performs signi�cantly better. This is true across all of our statistics { FD(809 vs. 1446 frames displayed), the proportional R (10.11 vs. 18.07), and R�2 (39.94 vs. 25.38).Neither variance is stellar (one need only examine the graphs to see the reason); yet the playbackquality is noticeably superior in the 75% run. Similar statements can be made when comparingthe role of KFD in the Cinepak/Quadra/30fps runs.The conclusion we reached is as follows: that when R was over (34)RPREF, additional spatial16



FD Codec 2 fC;V;Jg, Rate = 30, Quality = 100, Codec 2 fC;V;Jg, Rate = 15, Quality = 100,KFD = 1, Size 2 fhalf; quatg KFD = 1, Size 2 fhalf; quatg05001000150020002500 C V J C V J 05001000150020002500 V J C V JCFigure 9: FD High-Quality PPC 7100/80 Runs, Where Screen Size is Altered. Solid Bars DenoteSize = half, Striped Bars Denote Size = quatand temporal compression failed to raise it (but only realized a degradation of quality). This is abit surprising: comparing the size of the \C/30/1/half/100" video to that of \C/30/10/half/75,"we see a reduction from 65 Mbytes to 45 Mbytes, i.e., the transfer-rate is reduced by over 30%.The other observation is that there are many instances where even with a large amount of spatialand temporal compression, abysmal performance remains abysmal. For example, comparing theQuadra's treatment of \V/15/1/half/100" to that of \V/15/5/half/75" { a whopping reductionin size from 139 Mbytes to 82 Mbytes { we end up playing 353 more frames, which still fails toachieve decent visual quality. This is also evident when comparing the 25% quality reduction from\J/15/1/half/100" to \J/15/1/half/75," which reduces the �le size from 109 Mbytes to 45 Mbytes!The performance, however, still does not rise about 4.12 fps (on the PPC) or 1.79 fps (on theQuadra).The E�ect of Frame Size. Since a 160x120 �eld contains 1/4 the number of pixels of a 320x240�eld, one would expect the \quat" video track sizes (and transfer rates) to be much lower thanthe corresponding \half" track sizes. And examining the data in Figures 5-12, one sees thatthis is true: going from \C/30/1/half/100" to \C/30/1/quat/100" we get a video track reductionfrom 51 Mbytes to 15 Mbytes; from \V/30/1/half/100" to \V/30/1/quat/100" we get a reductionfrom 124 Mbytes to 32 Mbytes; and \J/30/1/half/100" reduces from 95 Mbytes to 32 Mbytes in\J/30/1/quat/100." (Note that the sound track remains a constant 14 Mbytes.)But watching a video on a quarter-screen palette is hardly satisfying; thus the reduced sizeshould, one hopes, pay o� in superior playback quality. Does it?Figure 9 compares the e�ects of frame size on selected 30fps and 15fps trials. In the case ofDefault Video at 30fps, the answer is a resounding \yes." In fact, the e�ective playback rate Rincreases four-fold from 6.6 to 25.36 { echoing the 75% reduction in transfer rate. As for the othersamples, the result is less clear. JPEG's performance increases substantially, but still, it is hardlyacceptable. And while Cinepak's rate improves from 22.96 fps to 27.32 fps, most people wouldprefer the larger frame size to a relatively small increase in the display rate.17
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Time (sec)Figure 10: C/30/1/half/100 (above) and C/15/1/half/100 (below)As for the 15fps runs, the Default Video and Cinepak codecs show only minimal improvement;e.g., the signi�cant frame-size reduction buys Cinepak a rate increase of 0.18 fps, from 14.11 to14.29. Clearly for the this codec on the PPC at 15 fps, substantially lowering the data-rate abutsagainst the law of diminishing returns.But this raises an interesting, perplexing question: Exactly what does it take to achieve the full15fps playback rate? We return to this question shortly.The E�ects of Rate Changes. Considering the Rate variable, the Default Video statisticsin Figures 6-7 show situations where 15 fps tests realize superior playback performance to theircorresponding 30 fps versions. This is true in all of the Video test results on the Quadra, andstrikingly so in the 100%-quality runs on the PPC. Even though this is a very fast CPU, with asu�ciently good disk, the Quicktime de-compression logic still seems to \thrash" on the 30 fpsversion. It does better with more deterministic (albeit lower) playback rates.A similar situation arises when a reduction in RPREF leaves R almost unchanged, but radicallyenhances the movie's visual quality. In Figure 10, we compare the results of two Quadra/Cinepakplayback runs, \C/30/1/half/100" (with R = 13:62) and \C/15/1/half/100" (with R = 13:91).Figure 10 shows the on-line behavior of the two; this illustrates why we also use variances tocompare two runs with similar average behavior. Visually, the 15 fps version looks smooth andcontinuous, while the 30 fps playback is jerky (as its graph portrays).But what is really causing the oscillation in 30fps trial? There are three potential bottlenecks:(1) the QuickDraw screen-manager, (2) the de-compressor, or (3) the IO channel between the hard18



drive and the codec software.Case (1) would imply that the de-compressor works faster than the screen manager. Since ourplayer/driver streams the codec's output directly to QuickDraw (for screen updates), perhaps moreframes get decompressed than can be drawn. This would have the following result: a bursty period(i.e., a crest) occurs when the de-compressor's input bu�er is full of compressed frames. Each frameis then quickly converted, and then streamed to the screen handler. But if QuickDraw cannot keepup with the update rate, since the real-time clock continues to advance, the the de-compressor isperiodically forced to purge its bu�ers { and then request additional chunks of frames from the �lesystem. The resulting latency causes the wave's trough, or low watermark.But since decompression is a compute-intesive activity, Case (2) is more convincing { that thede-compressor is slower than both QuickDraw and the IO. In this case, perhaps the Cinepak codecattempts to consume frames at a rate of 30fps, while it can only decompress them at a rate of,say 20fps. The result is a repetitive purge of the input queue, followed by a (belated) request totransfer a new set frames from disk. This can easily explain the wave's \trough."If the bottleneck is Case (3) { i.e., slow IO transfers { we could have the following scenario:That QuickTime and QuickDraw are su�ciently fast to keep up with the display-rate demands;that instead the problem lies in unduly long latencies associated with large IO transfers. This caneasily account for the regular oscillation in display rates. That is, whenever the codec's input bu�ercontains compressed frames, they can quickly be de-compressed and drawn to the screen. On theother hand, IO transfers will result in prolonged periods of the bu�er being empty.The 15fps test demands only one-half of the display rate, and 3/5 of the data-transfer rate (seeFigure 5. So this test puts less pressure on all of the three potential bottlenecks { which explainsthe 15fps's low-amplitude waveform (in Figure 10).But even in the 30fps case, the bottlenecks could be reduced if there were better, more controlledcoordination between the three components involved. That is, if the platform is only capable ofplaying a 30fps movie at 20fps, then all of these components should be \tuned" to work at a nearlyconstant, deterministic rate of 20 fps.Before we investigate this issue, we �rst must discover the true bottleneck in the process. Indoing so, we �nd some statistics that really seem to stand out.The RAM Tests. When we attempted to determine the highest performance capabilities ofour two platforms, our measurements presented us with some surprising anomalies. Consider, forexample, the half-screen/PPC/Cinepak runs listed in Figure 5. Note that all of the 30fps testsdisplay at least 1800 out of 2400 total frames in the 80 second segment. Why, then, is it the casethat not a single 15fps test displays all (or almost all) of its 1200 frames? Since the codec \proves"that it can run at a rate of 22fps when \asked" to run at 30fps, one would expect it to be capableof running at 15fps \upon request."This phenomenon is somewhat analogous to the opposite one { i.e., the cases in which a movieplays better at 15fps than it does at 30fps. In fact, both sets of data focused our attention on Case(3) above { that high IO latencies \rob" the decompressor of useful CPU time. Moreover, since this19



FDFD
PPC 7100/80 @ 30fps PPC 7100/80 @ 15fpsC V J C V J05001000150020002500 C V J C V J05001500200025001000Quadra 950/33 @ 30fps Quadra 950/33 @ 15fpsC V J C V05001000150020002500 C V J C V05001000150020002500

Figure 11: 320 � 240, Highest temporal and spatial compression, Disk vs. RAM playback. Resultsfrom the disk runs are portrayed with solid bars, whereas the RAM runs are in striped bars.occurs in such a periodic, predictable fashion (as in Figure 10), we postulate that this overhead isdue mainly to a large amount of synchrony in IO setups.We were not able to test this speci�c issue, since it basically involves reverse-engineering theQuicktime library. However it was easy to test our main hypothesis { that the bottleneck lies inthe �le system/IO subsystem. We simply extended the TimeWare Movie Monitor to play our testmovies in eight 10 second segments { with each segment �rst prefetched into RAM, and then playedout of RAM. During an IO transfer (which is typically quite brief, but noticeable), the monitorstops its movie-progress clock, and then resets it after it the transfer is done. The net result is a toolwhich measures the performance of the CPU and the display drivers, but not the IO subsystem.Figure 4, and the �gures in the Appendix, illustrate the di�erences between the disk-based tests,and those played out of RAM. The contrast is striking: the PPC Cinepak and Video versions playalmost every single frame, when run out of RAM. This is true for all of the runs. Most incredibly,the Default Video test climbs from R = 6:60 to R = 29:48.With one set of notable exceptions, the Quadra's performance improvement is not as uniform.The exceptions are all of the Cinepak 30 fps runs, which climb to nearly perfect display rates like29.98, 30.00, 29.85, etc. In fact, the Cinepak tests do marginally better on the Quadra than on thePPC (but the di�erences are minute, since both achieve near-perfection).As for the Default Video tests, the performance increase is marked, but not as much as on thePPC. This leads us to conclude that the decompression algorithm is su�ciently compute-intensive20



to stress the 68040/33, while the 7100 can handle the half-screen decompression easily.But after all, it should not be a surprise that the disk is a bottleneck. \Common wisdom"dictates that the hard drive will always be the culprit, since (1) it is a physical device, limited byseek times, rotational delays, etc., and (2) it is connected via a SCSI bus, not the local bus.But in this case the numbers do not lead to such a conclusion. The PPC hardware, for example,a�ords the ability to perform asynchronous, DMA'd block transfers. As we mentioned in Section 3,our disk is capable of handling read transfers at 2.7 Mbytes/sec. Since the largest �le is \only"138 Mbytes, the maximum demand from any of our tests is 1.7 Mbytes/sec { a large number, tobe sure, but not one that will choke the system. Moreover, a data rate of 1.7 Mbytes/sec is nothigh enough for the DMA's memory \cycle-stealing" to have a large impact. Accounting for IOoverhead, perhaps the Disk-based, Cinepak/PPC tests should run at 27 fps, but not 23 fps.So the conclusion seems obvious: that disk transfers incur a large latency, and that IO { even\asynchronous," DMA'd, IO { is not su�ciently asynchronous for the QuickTime codecs to runat their peak rates. While the Mac arguably possesses the best consumer-grade video software, itcould be signi�cantly improved by achieving e�cient coordination between the �le system and thecodec software. Of course, this would be a nontrivial task, since it involves streaming DMA'd IOdirectly into user space, while simultaneously providing \regular" IO services for other processes.On the bright side, there is good news: that the PPC is capable of displaying high-quality videousing a software-only solution. Indeed, full-screen, software decompression should be achievablewithin the near future { that is, if IO operations can be coordinated with the required displayrates.5 ConclusionWe conclude by re-examining our initial hypotheses.1. A faster, more powerful platform will not necessarily lead to better playback quality.In general, the PPC performed better the Quadra, which was not a surprising result. Howeverin the RAM-based, 30fps Cinepak tests, the Quadra outperformed the PPC. And as we showed inour last series of tests, hardware was not really the problem in video playback { it was the operatingsystem.2. A movie's size (in bytes), and its playback rate (in frames per second) are not always goodpredictors of quality.This phenomenon manifested itself many times { especially in the cases where the 15fps testsoutperformed their corresponding 30fps versions.3. Movie-playing software could give better performance if it (1) took into account the platform'scapabilities, and (2) provided deterministic rate control based on these characteristics.This was the point of the paper, and it raises the subject of our future plans in the area.We have now located what we believe is the most signi�cant bottleneck facing video-playbacksoftware. We are currently working to eliminating this problem, by implementing a direct, double-21



bu�ered channel between the disk driver and the decompression software. A direct, DMA'd \datapipe" will, for example, obviate the need for redundant copy-in/copy-out operations. (Fall andPasqule came to the same conclusion in [2].) Needless to say, a \Quicktime-aware" driver will haveto be safe with respect other processes in the system. With this enhancement, and with a widerIO path, we are con�dent that we will have a software-only solution for displaying high-quality,full-screen videosReferences[1] Apple Computer Corporation. Inside the Machintosh: Quicktime. Addison Wesley, 1994.[2] Kevin Fall and Joseph Pasquale. Improving Continuous-Media Playback Performance withIn-Kernel Data Paths. Proceedings of IEEE, pages 100{109, 1994.[3] Gregory K.Wallace. The jpeg still picture compression standard. Communications of the ACM,34(4), 4 1991.[4] Ralf Steinmetz. Compression Techniques in Multimedia Systems. Technical Report 43.9307,IBM European Networking Center, Vangerowstrabe 18, 69020 Heidelberg, Germany, 1993.[5] Donald L. Stone and Kevin Je�ay. An Empirical Study of Delay Jitter Management Policies.Multimedia Systems, 2(6):267{279, 1995.[6] Toshiyuki Urabe, Hassan Afzal, Grace Ho, and Pramod Pancha Magda El Zarki. MPEGTool:An X Window-Based MPEG Encoder and Statistics Tool. Multimedia Systems, 1(6):220{229,1994.
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A Additional Test ResultsTest Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 quat 100 29766828 15654828 2400 2186 27.32 2.94 2157 26.96 8.37C 30 3 quat 100 27746068 13634068 2400 2166 27.07 4.43 2149 26.86 9.03C 30 5 quat 100 27310408 13198408 2400 2189 27.36 3.55 2192 27.40 7.84C 30 10 quat 100 26985084 12873084 2400 2194 27.43 3.37 2173 27.16 6.88C 30 1 quat 75 29449976 15337976 2400 2185 27.31 3.76 2176 27.20 8.15C 30 3 quat 75 26442288 12330288 2400 2190 27.38 3.46 2171 27.14 8.68C 30 5 quat 75 25860228 11748228 2400 2193 27.41 3.02 2185 27.31 8.44C 30 10 quat 75 25421516 11309516 2400 2193 27.41 3.17 2166 27.07 6.36pV 30 1 quat 100 46998831 32886831 2400 2029 25.36 5.93 1903 23.79 8.92V 30 3 quat 100 42843008 28731008 2400 2084 26.05 4.94 1968 24.60 11.82V 30 10 quat 100 41322935 27210935 2400 2107 26.34 5.19 2037 25.46 9.22V 30 1 quat 75 38400471 24288471 2400 2129 26.61 3.64 2023 25.29 8.52V 30 3 quat 75 32259404 18147404 2400 2155 26.94 4.04 2103 26.29 9.60V 30 10 quat 75 30045289 15933289 2400 2174 27.18 3.31 2144 26.80 7.69J 30 1 quat 100 78918203 64806203 2400 616 7.70 1.01 177 2.21 0.37J 30 1 quat 75 36138726 22026726 2400 1006 12.57 3.27 444 5.55 1.12C 15 1 quat 100 21939432 7827432 1200 1143 14.29 0.67 1124 14.05 1.24C 15 3 quat 100 21037560 6925560 1200 1138 14.22 0.77 1122 14.03 1.39C 15 5 quat 100 20823272 6711272 1200 1136 14.20 0.88 1119 13.99 1.42C 15 1 quat 75 21780904 7668904 1200 1146 14.32 0.61 1120 14.00 1.26C 15 3 quat 75 20319956 6207956 1200 1144 14.30 0.66 1122 14.03 1.39C 15 5 quat 75 20029612 5917612 1200 1143 14.29 0.67 1119 13.99 1.42V 15 1 quat 100 30546740 16434740 1200 1146 14.32 0.61 1149 14.36 0.80V 15 3 quat 100 28887319 14775319 1200 1141 14.26 0.71 1124 14.05 1.24V 15 1 quat 75 26254172 12142172 1200 1140 14.25 0.73 1141 14.26 0.96V 15 3 quat 75 23659209 9547209 1200 1143 14.29 0.67 1131 14.14 1.13J 15 1 quat 100 46508263 32396263 1200 632 7.90 1.48 219 2.74 0.24J 15 1 quat 75 25122290 11010290 1200 1050 13.12 1.32 511 6.39 0.78Figure 12: PPC 7100/80 and Quadra 950/33, 160 � 120 { Played o� Disk
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Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 half 100 65668948 51556948 2400 2397 29.96 0.04 2398 29.98 0.05C 30 3 half 100 55288196 41176196 2400 2393 29.91 0.08 2399 29.99 0.01C 30 5 half 100 53200812 39088812 2400 2392 29.90 0.11 2400 30.00 0.00C 30 10 half 100 51599160 37487160 2400 2389 29.86 0.14 2388 29.85 0.90C 30 1 half 75 56272532 42160532 2400 2399 29.99 0.01 2388 29.85 0.13C 30 3 half 75 48114560 34002560 2400 2389 29.86 0.12 2396 29.95 0.05C 30 5 half 75 46467008 32355008 2400 2392 29.90 0.11 2396 29.95 0.05C 30 10 half 75 45253496 31141496 2400 2394 29.93 0.07 2400 30.00 0.00V 30 1 half 100 138782648 124670648 2400 2358 29.48 0.55 461 5.76 73.18V 30 3 half 100 126319334 112207334 2400 2370 29.62 1.61 1516 18.95 47.70V 30 5 half 100 123699495 109587495 2400 2375 29.69 1.02 1662 20.77 50.62V 30 10 half 100 121666111 107554111 2400 2384 29.80 0.49 1809 22.61 60.69V 30 1 half 75 110761808 96649808 2400 2351 29.39 0.66 296 3.70 47.48V 30 3 half 75 89538819 75426819 2400 2371 29.64 1.43 1280 16.00 70.92V 30 5 half 75 85251859 71139859 2400 2376 29.70 1.09 1540 19.25 76.51V 30 10 half 75 81892471 67780471 2400 2372 29.65 0.91 1713 21.41 73.07J 30 1 half 100 94238136 80126136 2400 473 5.91 0.53 - - -J 30 1 half 75 76101834 61989834 2400 491 6.14 0.72 - - -C 15 1 half 100 39892376 25780376 1200 1200 15.00 0.00 1199 14.99 0.01C 15 3 half 100 34932804 20820804 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 half 100 33894160 19782160 1200 1200 15.00 0.00 1200 15.00 0.00C 15 1 half 75 35187128 21075128 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 half 75 31257064 17145064 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 half 75 30448024 16336024 1200 1200 15.00 0.00 1200 15.00 0.00V 15 1 half 100 76406147 62294147 1200 1200 15.00 0.00 1195 14.94 0.06V 15 3 half 100 71468196 57356196 1200 1198 14.97 0.11 1197 14.96 0.04V 15 5 half 100 70419248 56307248 1200 1197 14.96 0.20 1197 14.96 0.04V 15 1 half 75 62437907 48325907 1200 1200 15.00 0.00 1196 14.95 0.05V 15 3 half 75 53301189 39189189 1200 1197 14.96 0.20 1197 14.96 0.04V 15 5 half 75 51404010 37292010 1200 1197 14.96 0.20 1198 14.97 0.02J 15 1 half 100 109158425 95046425 1200 282 3.52 0.62 - - -J 15 1 half 75 45082267 30970267 1200 528 6.60 0.82 194 2.42 0.27Figure 13: PPC 7100/80 and Quadra 950/33, 320 � 240 { Played from RAM
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Test Movie Size PPC QuadraCodec/FPS/KFD/Size/Quality Total Video FT FD R R�2 FD R R�2C 30 1 quat 100 29766828 15654828 2400 2399 29.99 0.01 2400 30.00 0.00C 30 3 quat 100 27746068 13634068 2400 2399 29.99 0.01 2400 30.00 0.00C 30 5 quat 100 27310408 13198408 2400 2399 29.99 0.01 2400 30.00 0.00C 30 10 quat 100 26985084 12873084 2400 2398 29.98 0.02 2400 30.00 0.00C 30 1 quat 75 29449976 15337976 2400 2398 29.98 0.02 2400 30.00 0.00C 30 3 quat 75 26442288 12330288 2400 2395 29.94 0.06 2400 30.00 0.00C 30 5 quat 75 25860228 11748228 2400 2399 29.99 0.01 2400 30.00 0.00C 30 10 quat 75 25421516 11309516 2400 2399 29.99 0.01 2400 30.00 0.00V 30 1 quat 100 46998831 32886831 2400 2395 29.94 0.06 2400 30.00 0.00V 30 3 quat 100 42843008 28731008 2400 2391 29.89 1.01 2400 30.00 0.00V 30 10 quat 100 41322935 27210935 2400 2393 29.91 0.24 2400 30.00 0.00V 30 1 quat 75 38400471 24288471 2400 2392 29.90 0.09 2399 29.99 0.01V 30 3 quat 75 32259404 18147404 2400 2389 29.86 1.50 2399 29.99 0.01V 30 10 quat 75 30045289 15933289 2400 2395 29.94 0.44 2400 30.00 0.00J 30 1 quat 100 78918203 64806203 2400 859 10.74 1.32 306 3.83 0.42J 30 1 quat 75 36138726 22026726 2400 1478 18.48 3.05 578 7.22 0.82C 15 1 quat 100 21939432 7827432 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 quat 100 21037560 6925560 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 quat 100 20823272 6711272 1200 1200 15.00 0.00 1200 15.00 0.00C 15 1 quat 75 21780904 7668904 1200 1200 15.00 0.00 1200 15.00 0.00C 15 3 quat 75 20319956 6207956 1200 1200 15.00 0.00 1200 15.00 0.00C 15 5 quat 75 20029612 5917612 1200 1200 15.00 0.00 1200 15.00 0.00V 15 1 quat 100 30546740 16434740 1200 1200 15.00 0.00 1200 15.00 0.00V 15 3 quat 100 28887319 14775319 1200 1198 14.97 0.11 1200 15.00 0.00V 15 1 quat 75 26254172 12142172 1200 1200 15.00 0.00 1200 15.00 0.00V 15 3 quat 75 23659209 9547209 1200 1197 14.96 0.20 1200 15.00 0.00J 15 1 quat 100 46508263 32396263 1200 858 10.72 1.25 336 4.20 0.33J 15 1 quat 75 25122290 11010290 1200 1197 14.96 0.04 578 7.22 0.67Figure 14: PPC 7100/80 and Quadra 950/33, 160 � 120 { Played from RAM
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