Benchmarking Digital Video: Measurements, Analysis,

Improvements and Lessons Learned *

Richard Gerber and Ladan Gharai
Department of Computer Science
University of Maryland
College Park, MD 20742
{rich, ladan}@cs.umd.edu
Tel: (301) 405-2710
FAX: (301) 405-6707

May 9, 1995

Abstract

Digital video applications can often push a computer’s resources to their limit. They require
massive amounts of storage, high 1O transfer rates, and fast display refresh times. And if
software is involved in the decompression process, the CPU will often end up over-utilized.
Resource demands have a direct effect on the quality of the delivered video; this results in a
complex “load-balancing” problem, which must be solved with both quantitative and qualitative
metrics.

In this paper we describe our experiments on media applications, specifically concentrating
on the tradeoff analysis involved in tuning video systems. We first postulate a set of hypotheses,
and then we describe the controlled set of 240 tests we ran to test them. Our observations
confirmed that achieving smooth playback is mainly a problem of coordinating an operating
system to the properties of the media.

The first 120 test runs were drawn from a series of 60 videos, which we generated with our
own Hi8 equipment. Each test video uniquely instantiated the following variables: codec, frame
size, digitized rate, spatial quality and keyframe distribution. The tests were carried out on two
Apple Macintosh platforms: at the lower end a Quadra 950, and at the high-end, a Power PC
7100/80. Our quantitative metrics included average playback rate, as well as the rate’s variance
over one-second intervals.

This paper contains the results of these experiments, as well our analysis of each variable’s
importance. The first set of results unveiled some surprising anomalies, which seemed to sub-
stantiate our hypotheses — even more than we expected. These anomalies forced us to run an
additional 120 tests, whose analysis led to some broad conclusions about digital video specifi-

cally, and the capabilities of personal computers in general.

*This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, and NSF Young
Investigator Award CCR-9357850.

1 Introduction

The term digital video is commonly used to describe three seemingly different activities: producing,
storing and playing videos on modern computing systems. However, it takes only a casual experience
with any of these activities to understand the intimate connection between them. For example,
if one uses some expensive, specialized peripherals (including a high-end digitizer, a RAID disk
configuration, etc.), one can, in theory, edit an entire broadcast-quality, full-screen video production
on an Apple Macintosh computer.

Of course this raises the issue of storage. In the parlance of videography, a digitized, broadcast-
quality video demands a screen size of 640 x 480 pixels, a display rate of 30 frames per second
(or 29.97 frames per second on NTSC displays), and an RGB color depth of 24 bits per pixel.
Some simple multiplication yields a demand for 1.66 Gbytes per minute, or roughly 50 Gbytes for
a one-half hour production!

And then there is the problem of playback. Ewven if the producer has the wherewithal to
digitize, edit and store a feature-length video, the chances are high that no consumer would be
able play it. The original production will require 50 Gbytes of storage — and demand an effec-
tive playback rate of 27 Mbytes per second — whereas a typically well-equipped, consumer-grade
workstation possesses no more than 2.5 Gbytes of disk space, with peak transfer rates at about
2.5 Mbytes per second. Moreover, the computer’s display logic will probably not include high-end
video de-compressor functionality; thus video decompression will be done in software, as will buffer
management, synchronizing the video and audio, etc.

Clearly, the quality of a digital video is directly proportional to the computing resources it
requires. Thus the problem of tuning a video production to a target platform — and tuning the
platform to the video — demands something akin to a traditional “load-balancing” solution, applied
with both quantitative and qualitative metrics.

We are studying the field of digital video essentially as an operating systems application, and
one that possesses a strong real-time component. On one hand, we have found media applications
to be ideal for real-time research. After all, the end-to-end requirements can be clearly and precisely
articulated — e.g., 30 full-color frames delivered per second, accompanied by 16-bit digital sound
played at 44kHz, with sound and video synchronized five times per second. Also, when the system
fails to achieve a desired level of quality, the resulting behavior can easily be perceived by the viewer.
Finally, we need not deal with abstractions of applications (as in avionics control problems); rather,
we can experiment with media applications on consumer-grade workstations.

Yet real-time video applications possess unique difficulties not present in “hard” real-time sys-
tems. Most of these stem from an obvious point: sampling and update rates should be determined

> which is not amenable to mathematical models of “ac-

by factors related to “human perception,’
ceptable service.” It is true that playback rates of 27 Mbytes/sec are not achievable on modern,
consumer-grade systems. It is equally true that there are many ways of reducing these rates, by
sacrificing quality — e.g., by introducing greater signal loss into digital compression, or by decreasing

color-depth, playback rate, playback size, etc. The theory is that if any of these options are chosen,

then disk transfer rates are reduced, as are storage requirements, CPU utilizations, demands for
RAM buffers, overload sensitivity — with the result being a smoother, more deterministic video.

But it is not at all apparent which option (or combination of options) should be selected to
achieve the greatest benefit. Indeed, as we show in this paper, it is not even true that a “quality-
reducing” measure necessarily leads to reduced transfer rates (it occasionally has the opposite
effect). And it is never a trivial venture to predict which combination of actions leads to the
greatest achievable quality at playback.

On the other hand, while more powerful equipment may lead to better playback quality, there is
no guarantee that this will always be the case. As we show, faster CPUs, faster disks, and wider 10

paths will not always translate into better video quality — even in the best “multimedia computers.”

1.1 Observations and Hypotheses

The work described in this paper grew out of some informal observations, which led to several
hypotheses, which in turn were tested by a controlled series of 240 experiments. The observations

were as follows:

e Using several QuickTime [1] movies as samples, and Apple Macintosh computers as our plat-
forms, we found that the selection of codec!, frame rate, and color quality had unpredictable
consequences. For example, a supposedly “smooth” codec like Radius’s Cinepak would, at
times, lead to more color distortion than Apple’s “default” video codec — which is basically a

crude motion-JPEG scheme.

o [t was not always the case that upgrading equipment led to discernibly better video playback.
This was even true when we compared a Quadra 950 to a PowerPC (MC601) 7100/80 — when
the PPC machine ran a movie player compiled into “native” MC601 code, and where the

platform had 8 Mbytes more memory.

e “Skips” and “jumps” in video playback were noticeable across a wide spectrum of machines
and sample videos. In fact, they looked suspiciously like buffer overruns, pre-fetching glitches,
and similar, very familiar problems. For example, frames were not dropped at measured,
deterministic rates; rather, a second’s worth of video would play, then the following second

would stall, then play, then stall, etc.

These observations led to a growing confidence that media playback should be studied as a problem
of coordinating the operating systems with the properties of the media — and not specifically as a
problem of data compression. While compression algorithms can have a profound effect on visual
quality, from the perspective of balancing the resources, a specific compression algorithm can (and
perhaps should) be treated as a “black box.”

That said, we postulated the observations above as the following hypotheses, which we then set

out to test.

'A codec is a compression/decompression scheme

1. A faster, more powerful platform will not necessarily lead to better playback quality.

2. A movie’s size (in bytes), and its “preferred playback rate” (in frames per second) are not

always good predictors of quality.

3. Movie-playing software could give better performance if it (1) took into account the platform’s

capabilities, and (2) provided deterministic rate control based on these characteristics.

1.2 Metrics and Variables

Before setting out to test these hypotheses, we were presented with four initial hurdles: (1) develop-
ing sound, quantitative metrics which loosely correspond to “qualitative performance;” (2) selecting
suitable, comparable platforms on which we would benchmark our experiments; (3) finding a set
of test videos with a controlled spectrum of content (e.g., different color and light densities, sound
quality, scene transitions, etc.), which would permit making some general conclusions from our

results; and (4) identifying the test variables, whose instantiations would generate our “test runs.”

(1) Quantitative Metrics. It is true that “quality” is fundamentally a subjective attribute.
However when analyzing clusters of similar experiments, we found two metrics that stood out as
roughly correlating to visual quality. They are: (a) total frames displayed vs. total frames in movie,
and (b) the display rate’s variance (measured in one second quanta) over the course of the movie.

When comparing different “runs” of a single movie, the first metric gives an indication of average
playback quality over the course of each run. Letting e denote a run of a digital movie, we denote
Fr(e) as the movie’s total, “preferred” number of frames that should be displayed throughout the
run. Alternatively, we let Fp(e) be the measured number of frames that actually get displayed. If

t(e) is the movie’s duration (in seconds), we can extract the following properties:

Rprer(e) = (Preferred Rate)

R(e) = (Mean Rate)

That is, Rprer(e) is the digitized rate of the movie in frames per second (henceforth abbreviated as
“fps”), and R(e) is the effective, mean rate of the movie’s playback performance in an experiment
e.

But Fp(e) and R(e) tell only one side of the story, since a test may experience a given Fp(e)
in a variety of ways. It may be due to a nearly uniform rate throughout — for example, when every-
other frame is played. Alternatively, there may be large “spikes” during which very few frames
are displayed. A third scenario is realized when there are be repeated, radical oscillations, i.e.,
high-rate intervals, followed by low-rate intervals, etc.

The first case (e.g., Figure 1(1)) may yield good overall visual quality; it depends on whether
a rate of 15 fps is acceptable for the video content. However, this type of behavior has one thing

going for it — it is deterministic, in that playback persistently hovers around R(e). As for the second

FramesiSec Frames/Sec

3000 30.00.

2000 2000

: A I

Figure 1: Playing Three Digital Versions of a Video: (1) Smooth, (2) Spikes and (3) Ocillation

case (e.g., Figure 1(2)), its four-five spikes are tolerable over the course of an eighty second video.
The net esthetic effect is akin to the occasional “noticeable jitter” seen in a television set. But the
third case (Figure 1(3)) is definitely observable, and the visual experience is like a watching a slide
show of randomly selected, blurry pictures.

To distinguish between these very different cases, we use the frame rate’s variance (per second
quantum). That is, letting F;(e) be the number of frames displayed during the i second of e,

i

R, (€) adequately serves to capture the degree of “flicker,” where

R (o) 2 Tk (RUe) = File))?
2 1

(¢)

(2) Suitable, Comparable Platforms. We selected two Apple Macintosh computers to be our
test platforms — Quadra 950’s (at the low end), and Power PC 7100/80’s (at the high end). (In
Section 3 we detail the differing specifications of these platforms, and we identify the variables we
maintained in both.)

Our decision to use Macintoshes was preceded by an exhaustive, “qualitative” investigation into
the video capabilities of different contemporary, affordable workstations.? While there is a wide
variety of workstations currently available, Apple’s products still seem to deliver the best “software-
codec” video.® This is partially due to the fact that over the years, Apple has invested heavily in
optimizing the QuickTime and QuickDraw libraries.* But perhaps of greater importance is the
fact that at the application level, Mac tasks are still largely nonpreemptive and event-driven, while

multi-threading is mainly cooperative.’ System services are still invoked via fast traps, and the

?We intentionally excluded specialized high-end equipment, such as SGI’s graphics workstations.

A software codec is a compression/decompression scheme in which video processing is performed without special
hardware.

*QuickTime includes a set of software codecs, and a set of functions to build, store and play movies. QuickDraw
is used by QuickTime, and it encompasses a set of functions which draw single frames to the screen.

®While a preemptive threads package exists, as of this writing it is still rather inefficient.

N\ 2\ N\ 2\
] 640x480 1 30 0
: N~
L |1 320x240[] 100 6 100

Codec Frame Keyframe Rate Signal SpacefTransfer Quality
Size Distribution Loss Requirements

Figure 2: Instantiating the Variables

RAM-resident kernel system includes functionality usually not associated with operating systems
— e.g., high-level graphics services.

While these “features” lead to a very awkward programming style (every application program
is essentially a system program too), they end up providing a streamlined platform for evaluating

video applications.

(3) Test Videos. We first experimented with sample videos from various sources, i.e., from
Apple’s developer CDs, from Internet locations, and digitized from commercial VHS tapes. None
of these options were very satisfying. In the first two cases, movies were already digitized and
compressed by others, according to their own needs, and all were of poor quality. Thus our re-
digitized, experimental copies would have been generated from inferior originals. A similar problem
held in the case of the VHS copies of commercial movies, which possessed a large amount of noise,
and led to highly distorted digital copies. Most of all, we had no control over getting a sufliciently
wide spectrum of changes in motion, light, sound, etc.

But there was a natural way to control all of the variables involved, which was record, digitize,
edit, and assemble our own movie with our own video equipment. Aside from giving us ultimate
control over content, this decision had two ancillary benefits. First, we could compare the quality
of the computer-based, digital experiments with our original Hi8 clips played on a high-quality,
S-video television. Second, we were forced to learn our application in its entirety. In fact we found
that digital video is currently in a state similar to that of traditional real-time systems circa 1985.
As we explain in the sequel, producing a video on a computer is still a matter of trial-and-error.

” we produced sixty different copies, with each

(4) Variables. Once we had our digital “master,’
possessing a set of uniquely instantiated variables. What are our variables? We identified five which
play dominant roles in determining the quality of the final result (Figure 2): codec type, frame size,
digitized rate (or Rprer), spatial quality and keyframe distribution. The last two variables are
artifacts of digital compression: spatial quality is the amount of original signal loss permitted in

each compressed frame, whereas the keyframe distribution is the distribution of frames which are

stored as compressed, still pictures — while the remainder are processed via interpolation relative
to the keyframes.

All other variables, such as color depth and sound quality, were kept fixed. (Throughout we
maintained an RGB color depth of 16 bits, and 16-bit stereo sound, sampled at 44kHz.)

While all of these variables have an effect on the ultimate playback quality (and potentially the
transfer rates required), the actual contribution of each is not easy to determine. Picture size, for
example, is immediately identifiable — and most people would agree that “bigger is better.” Yet
while too big a palette will lead to untenable data rates, depending on the other parameters chosen,
reducing the picture size may not lead to a reduction in data size. As for frame rates, in some
presentations the human eye cannot perceive the qualitative differences between playback rates of
30, 20 or 15 fps — it is usually a function of type and amount of inter-frame motion.

Moreover, these variables are not at all independent, and the interplay between them is highly
nonlinear. Codec selection always has an effect on tolerable keyframe distributions, as well as on
acceptable spatial quality. Yet the actual relationships are usually content-dependent, and will
vary over the course of a presentation. A videographer typically juggles these issues to maintain
a reasonable level of quality, while simultaneously reducing transfer rates to fall within the ability
of some target playback system. But the the process of determining a good instantiation of the

variables is at best highly interactive and ad hoc.

1.3 Remainder of the Paper.

Armed with our experiments and metrics, we measured the performance of all 60 variable instan-
tiations on our two platforms. This paper contains the results of these experiments, as well our
preliminary analysis of each variable’s importance. This data unveiled some very surprising anoma-
lies, which seemed to substantiate our hypotheses — even more than we expected. In fact, these
anomalies forced us to run yet another 120 tests, whose examination led to some rather broad
conclusions about digital video specifically, and about personal computers in general.

The remainder of this paper is organized as follows. In Section 2 we survey some of the related
work in the area of digital video. Then in Section 3, we describe how we generated our test cases,
and how we controlled the variables involved. In Section 4 we describe our test results, and we
analyze the significance of each variable. We conclude in Section 5 with some remarks on our future

work.

2 Related Work

Within computer science the of area digital video has largely been studied as a networking problem,
without the “client-centric” focus which we take in this paper. Nonetheless, some recent papers
on distributed systems touch on many of the same issues, albiet from a different perspective. For
example, Stone and Jeffay’s study of delay and jitter management [5] is highly relevant to our

focus. As they note, a network’s display latency effectively determines client’s frame rate, and that

latency is, for obvious reasons, inversely proportional to permissible display rates. As they have
found in networked traffic — and as we have found in dealing with disks and compression software —
a balance must be found between a stream’s jitter and its delivery rate. Stone and Jeffay prescribe
a queue monitoring policy for dyanamic adjustment of display latency, which supports low-latency
conferences with acceptable gap-rates.

Our focus on 10 and data paths is echoed in [2], which proposes a means of optimizing the
transmission of compressed videos. While a network may be able to transmit the video frames, the
destination station may end up being the bottleneck. After all, MPEG compression ratios may be
as high as 200:1; thus the demand on the receiving station’s operating system may be overwhelming.
Display quality may decrease not as a result of network capability, but rather due to insufficient 1/0O
throughput. In this work a splice mechanism is introduced, in which an application can associate a
kernel-level data source with its sink point; this allows for a direct point-to-point data path between
source and sink, obviating unnecessary kernel interference.

Finally, the abilities of our player-monitor are similar to that described in [6], where MPEG-
encoded video streams can be generated expressly for providing statistical information on the data,

such as distribution of ATM cells per frame, auto-correclation and cell inter-arrival times.

3 Experiment Construction and Variable Instantiation

In this section we provide an overview of the methods used in constructing our test videos. Some of
the techniques we used are traditionally not included under the rubric of “computer science,” much

" rather, they are considered more relating to “video production.” But as

less “realtime systems;’
we have found, it is difficult to experiment on the “science” of media systems without having some
control over video content. In this section we include some of the processes we used to generate
our test cases. Qur goal here is to provide sufficient detail so that others can, if they desire, repeat
these experiments.

Figure 3 roughly outlines the process we used to produce our tests. Without belaboring the
details, we carried out the following steps: (1) Sketching out a “story-board,” in which we included
scenes with different levels of light, color, motion, etc.; (2) Using a Hi8 video camera to photo-
graph about 3-4 hours worth of video “clips,” which included a superset of our “story-board;”
(3) Reviewing our clips, selecting portions of interest, and then using a JPEG hardware codec to
digitize them into a 7100/80 — and storing them on a 2.1G disk; (4) Using Adobe Premiere 4.0 to
assemble a rough prototype of our final “cut,” whose duration is about 5 minutes; (5) Employing
sound-processing software to sample and filter “background music” from CDs, and inserting them
in the movie at appropriate levels; (5) Using Adobe Premiere, in conjunction with our digitizer
and the Mac’s sound capabilities, to produce a final “mix” — which was still in a “hardware-codec”
format; (6) Selecting an 80 second segment from the movie, which contained sufficient contrast
to stress the capabilities of compression and playback software; (7) Using the Premiere/Digitizer
combination in conjunction with the Quicktime libraries to generate 60 software-digitized copies

from this 80 second segment — each representing a separate instantiation of our variables; and (8)

Jerkiness

Sound Problems .
Bad Exposure OuésgrDQlil;]?&ace Wrong Sequence
g =~ -~ AN -~ N

4 \ / \ 4 \

\ \ \
Video Digitize Digital Video
Tape Video Sequence

Data Rate Too High

——
g N

File Too Large I/)
—— T~ s
Pe N Video and Add Text
/
- Down Sample
G t T P
Tests eTn:;él ¢ Final & Up Sample
¢ Product —_—_—
ases , Ny
I/ \
\ Digital Digitize
Audio Audio
6 CDs

Figure 3: Experiment Production Process

Archiving our 60 files on six CDs. We were then able to run the tests and monitor their results via
our TimeWare testing tool, which we built for this purpose.

As Figure 3 makes clear, this process is hardly a linear one, with “back-edges” at almost every
stage. Aside from the obvious esthetic difficulties that arise in a film production, there were more
serious problems associated with computing issues involved. For example, we constantly had to
adjust the quality of our digitized samples to accommodate the transfer rates and capacity of
our SCSI disks — while balancing these limitations against our eventual goal, i.e., to produce 60
“paradigm” test runs. Indeed, the process of striking the appropriate balance required several

months of time.

3.1 Hardware and Software

Table 3.1 presents the equipment we used. While most of the specifications are self-explanatory,
a few comments are relevant here.

Digitizer: The Radius VideoVision Studio (or VVS) is essentially a hardware JPEG codec
capable of realtime, 30fps full-screen digitization and compression (or equivalently, de-compression
on playback). While the cost of this small card exceeded that of Platform 1, the investment was
necessary for producing digital “master copies” of clean Hi8 originals. The advantages of using
a good hardware codec are obvious: one need only let the tape roll, and the compression logic
is capable of handling every frame in real-time. In fact, the VVS is capable of digitizing frame
sizes 640x480 with little signal loss, and no “drop-out” frames. Since JPEG compression basically
involves running a Huffman filter over frames mapped onto an 8x8 grid, the VVS can process the

grid’s 64 squares in parallel.

Computing Equipment

Test Platform 1: PPC 7100/80 Test Platform 2: Quadra 950
CPU: MC601 80MHz, Floating Point CPU: MC68040 33 MHz, Floating Point
Memory: 24Mb Memory: 16Mb
Internal Hard Drive: 696 Mbyte, IBM DSAS3720 Internal Hard Drive: 234Mb, Quantum LP2435
CD: Apple 300i (2-speed, Internal) CD: Apple 300i (2-speed, External)
OS: System 7.5, Minimal Extensions OS: System 7.5, Minimal Extensions
Disk Drivers: From FWB Disk Drivers: From FWB
Essential Peripherals Video Equipment
External Hard Drive: 2.1Gbyte, Seagate ST12400N Cameras: Sony CCD TR700s HIS Format
.. Time Code, HiFi Stereo, S-video In/Out
Digitizer: Radius VideoVision Studio 2.0 .
. . . VCR: Sony EVS7000 Hi8 Format
CD Writer: Pinnacle Micro RCD 1000 . .
T Drive: Exabyvte 2000 Time Code, Single-Frame Advance/Retract
ape brive: fxabyte Edit Marks, PCM Audio Dubbing, S-video

Software

Metrowerks Gold C/C++ Compiler (PPC/68K Compiler/Debugger)
Adobe Premiere, Adobe Photoshop (Video and Photo Editing Tools)
Macromedia SoundEdit 16 (Sound Sampler and Filtering Tools)
Assorted Quicktime Tools (For “massaging” Quicktime Movies)
TimeWare Movie Monitor (Our monitoring program to test playback)

Table 1: Hardware and Software Used to Generate and Run Experiments

All of this stated, we were unable to use this equipment at its peak potential — our 2.1Gbyte
disk was not fast enough to keep up with the required transfer rates, nor was it sufficiently large to
store more than a single minute of footage. Even after being processed by the compression logic,
some scenes still produced blistering data rates of 20 Mbyte/sec, which would quickly fill up any
large disk.

After determining the ability of the system via trial-and-error, we found a reasonable compro-
mise between quality and capacity: digitizing at 30fps, but with a frame size of 320x240, and with a
small amount of signal loss. For the sake of our experiments we considered this to be our “baseline,”
ranking it at “100% quality.” All subsequent software-compressed copies were generated from the
VVS-digitized “master” at this baseline quality.

The outstanding performance of the hardware codec raises the following question: if silicon can
do the job so well, why should we bother measuring software-codec playback performance? One
answer is obvious: most users will not invest in a digitizer that costs more than the computer itself.
But another reason stems from the limitations inherent in the high-priced, real-time JPEG cards.
That is, if one is purely interested in transmitting and viewing videos, then JPEG is perhaps the
worst compression format to use. JPEG cards do not perform inter-frame compression, and they
produce significantlly more data than most systems can accomodate. On the other hand, full-
field, full-color, realtime MPEG (and Motion-JPEG) compression cards are still very specialized
peripherals, priced well over $100,000.

But there is even a better reason why we should be interested in purely software schemes. As

we show in the sequel, when the system software is tuned appropriately, a good software-codec is

10

more than capable of delivering high-quality video. Conversely, if the operating system imposes
high latencies on large IO transfers, even the fanciest hardware codec will probably fail to live up
to its rated potential.

Hard Disks: Our “main” disk drive was a 2.1 Gbyte Seagate “Barracuda,” which we used for
digitizing our clips, as well as in monitoring the playback quality of each test run. Using a variety

of commercial benchmarking tools, we measured the Barracuda’s normal transfer rates as follows:

Read Transfers: 2790 bytes/sec
Write Transfers: 3100 bytes/sec

All of the disk drivers were installed using FWB’s Hard Disk Toolset, and we also used FWB’s
utilities for formatting and partitioning. In particular, we disabled re-mapping bad sectors to the
end of the disk; rather, we configured the drivers to simply skip them. This minimized the amount

of head movement in both sampling and playback.

3.2 Video Content: February 14, 1995

The video clips were photographed during the week of 2/14/95 at the University of Maryland. They
captured “typical” scenes of the university and the Computer Science department, with students
and faculty in relatively informal settings. The objective was to procure a sufficiently wide spectrum
of changes in light, color and motion within — and between — the scenes. To this extent, about
50% of our test video consists of brightly-lit, exterior scenes, with the remainder shot indoors.
The longest scene has a duration of 13 seconds, and is mostly static, whereas there is 15 second
“collage” of active short scenes, each of which consumes roughly 1 second of time. About 15%
of the movie contains dialague set over background music (to check synchronization), while the
remaining “soundtrack” contains only music.

The digitized clips were edited using Adobe Premiere 4.0, with which we also inserted title
sequences. The final “cut” is a 5-minute video occupying about 270 Mbytes of space, with Rprger
set to 30 fps. We copied an 80-second portion of this “final cut” into a separate “experiment” file,

which then formed the “master” for each test case.

3.3 Variables

Next we produced 60 test files, each of which containing an instantiation of our variables: codec type,
frame size, digitized rate (or Rprir), spatial quality and keyframe distribution. Other variables that
could have been altered — but were not — were color depth and sound quality. Across all experiments
they remained fixed, respectively at 16-bit color, and 16-bit stereo sampled at 44kHz.

Formally, the variable space ranges over
Codec x Rate x KFD x Size X Quality

where

11

Figure 4: One-Second Strip of frames, with Rate = 15 and K FD =3

1. Codec € {C,V,J} denotes the compression scheme used. Here “C” is Radius’s Cinepak
codec, “V” is Apple’s “Default Video” Motion-JPEG codec, and “J” stands for QuickTime’s
“Photo,” frame-by-frame, still-JPEG codec.

2. Rate € {15,30} denotes preferred playback rate, or Rprgr.

3. KFD € {1,3,5,10} denotes the keyframe distribution used. For example, if K'F'D = 5 this
means that every fifth frame is a keyframe. (Note that when the “J” codec is used, K F'D is

always set to 1, since all frames in a JPEG movie can be considered keyframes.)

4. Size € {half, quat} denotes the frame size, where “half” is 320x160 pixels, and where “quat”
is 160x80.

5. Quality € {75,100} denotes the degree of spatial quality that is maintained in the re-digitized
test file. When Quality = 75, this implies that the codec attempts to keep 75% of the original
quality, and Quality = 100 means that the codec is used at its “best possible” setting.

Our test instances have labels like “C/30/3/half/75,” which denotes a movie re-digitized in the
Cinepak codec at 30 fps, with one keyframe every third frame, in a frame size of 320x160 with a

75% quality index.

Codecs and Keyframes. JPEG [3] is basically a compression standard for still-pictures, which
can produce nearly lossless digital copies. However, it turned out to be a poor performer at
playback time, and we used it as our “high watermark” for image quality, while simultaneously
as a “low watermark” for motion quality. (Note that the VVS has no problem handling realtime
de-compression at 30 fps, but this is difficult to achieve in software.)

The other two techniques, “Video” and “Cinepak,” fall into the category of motion-JPEG.

Whereas still-JPEG involves running a Huffman filter over each frame individually, motion-JPEG

12

also employ inter-frame (or “temporal”) compression. In this scheme keyframes are compressed as
still pictures, while the other frames are interpolated relative to their preceeding keyframes (as in
Figure 4).

QuickTime does this in a rather crude (but effective) manner: when temporally compressing
a frame k relative to its keyframe 7, k’s pixel-map is simply subtracted from that of ¢, and the
result is compressed. Note that this is analogous (but not identical) to P-frames in MPEG [4],
which determines the fields of motion relative to last I-frame, and then stores the corresponding
motion-vectors.

While MPEG-compression can be a complex (and time-consuming) operation, re-compressing
QuickTime movies in software can also require an enormous amount of CPU time. In particular,

each re-compression of our 80-second test in Cinepak required about two hours.

3.4 Running the Tests

Our TimeWare monitor tool is an efficient QuickTime player, which interacts with QuickDraw
to determine which frames are displayed, and which are dropped. It keeps this frame-by-frame
information in a running bit-vector associated with each movie; after testing the movie, the bit-
vector is used to generate a set of playback-performance measures (such as Fp, R,,, R, etc.).
Although the Movie Monitor is efficient — and the code requires a minuscule amount of memory
— whenever it executes it turns into a memory hog. In fact, it grabs all of the memory currently
available (usually about 20Mbytes) on our systems. This is for a good reason: the greater its
memory partition, the more buffers can be afforded to the QuickTime decompression software. We
set out to test the capabilities of video playback performance, not the speed of garbage collection.
We also eliminated the effects of disk fragmentation. Whenever we ran a test sequence, we first
reformatted out disk drive, then we copied a set of our test CDs onto the disk, after which we again
re-optimized the entire disk (which eliminated any internal fragmentation). We also used the same
physical disk on both of our test machines, hand-carrying it back and forth between them.
Finally, every test was run at least five times; surprisingly, our metrics #p and R, showed very
low deviation across the trials. We attribute this to the tight interaction between Mac application
programs and the operating system; i.e., the system rarely “steals” CPU cycles from an application

without the application yielding time.

4 Test Results and Analysis

The results of our initial half-screen tests are listed in Figure 5; the remaining test results are in
the Appendix. To better understand the “highlights” of the half-screen tests, we have extracted
the Fp data onto the bar charts in Figures 6-7.

Platform and Codec Variables. One need not delve into the numbers to make some course
observations, which stand out in the bar charts. First, excluding a few notable exceptions (to which

we return shortly), the PPC tests show superior results to those run on the Quadra. Another fairly

13

Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R Ru, | Fp R Rus
C 30 1 half 100 65668948 | 51556948 | 2400 | 1837 | 22.96 | 5.30 | 1090 | 13.62 | 29.56
C 30 3 half 100 55288196 | 41176196 | 2400 | 1884 | 23.55 | 5.17 | 1323 | 16.54 | 31.15
C 30 5 half 100 53200812 | 39088812 | 2400 | 1882 | 23.562 | 7.55 | 1341 | 16.76 | 28.59
C 30 10 half 100 51599160 | 37487160 | 2400 | 1893 | 23.66 | 8.63 | 1315 | 16.44 | 29.67
C 30 1 half 75 56272532 | 42160532 | 2400 | 1868 | 23.35 | 6.65 | 1066 | 13.32 | 33.66
C 30 3 half 75 48114560 | 34002560 | 2400 | 1978 | 24.73 | 5.25 | 1461 | 18.26 | 25.09
C 30 5 half 75 46467008 | 32355008 | 2400 | 2015 | 25.19 | 5.49 | 1557 | 19.46 | 24.22
C 30 10 half 75 45253496 | 31141496 | 2400 | 2038 | 25.48 | 5.70 | 1607 | 20.09 | 24.17
V 30 1 half 100 138782648 | 124670648 | 2400 | 528 | 6.60 | 17.97 | 271 | 3.39 | 1.91
V 30 3 half 100 126319334 | 112207334 | 2400 | 809 | 10.11 | 39.94 | 255 | 3.19 | 1.74
V 30 5 half 100 123699495 | 109587495 | 2400 | 847 | 10.59 | 42.59 | 267 | 3.34 | 2.24
V 30 10 half 100 121666111 | 107554111 | 2400 802 | 10.03 | 44.64 | 218 2.73 1.05
V 301 half 75 110761808 | 96649808 | 2400 | 994 | 12.43 | 29.94 | 336 | 4.20 | 1.16
V 30 3 half 75 89538819 | T7H426819 | 2400 | 1446 | 18.07 | 25.38 | 388 | 4.85 | 7.66
V 305 half 75 85251859 | 71139859 | 2400 | 1430 | 17.88 | 27.29 | 471 | 5.89 | 22.98
V 30 10 half 75 81892471 | 67780471 | 2400 | 1551 | 19.39 | 24.11 | 507 | 6.34 | 39.47
J 30 1 half 100 94238136 80126136 | 2400 313 3.91 0.29 112 1.40 0.24
J 30 1 half 75 76101834 | 61989834 | 2400 | 325 | 4.06 | 0.28 | 124 | 1.55| 0.25
C 15 1 half 100 39892376 25780376 | 1200 | 1129 | 14.11 1.04 | 1113 | 13.91 1.99
C 15 3 half 100 34932804 | 20820804 | 1200 | 1148 | 14.35 | 0.57 | 1117 | 13.96 | 1.60
C 15 5 half 100 33894160 | 19782160 | 1200 | 1140 | 14.25 | 0.76 | 1117 | 13.96 | 1.60
C 15 1 half 75 35187128 21075128 | 1200 | 1139 | 14.24 | 0.75 | 1117 | 13.96 1.60
C 15 3 half 75 31257064 17145064 | 1200 | 1142 | 14.28 0.69 | 1116 | 13.95 1.78
C 15 5 half 75 30448024 16336024 | 1200 | 1142 | 14.28 0.69 | 1116 | 13.95 1.78
V 15 1 half 100 76406147 | 62294147 | 1200 | 1083 | 13.54 | 2.92 593 7.41 8.49
V 15 3 half 100 71468196 | 57356196 | 1200 | 1102 | 13.78 | 1.98 | 724 | 9.05 | 9.19
V 15 5 half 100 70419248 | 56307248 | 1200 | 1097 | 13.71 | 1.81 | 747 | 9.34 | 9.44
V 15 1 half 75 62437907 | 48325907 | 1200 | 1144 | 14.30 | 0.71 | 692 | 8.65 | 7.08
V 15 3 half 75 53301189 39189189 | 1200 | 1129 | 14.11 1.49 894 | 11.18 8.36
V 155 half 75 51404010 37292010 | 1200 | 1138 | 14.22 0.82 945 | 11.81 7.66
J 15 1 half 100 109158425 | 95046425 | 1200 | 209 | 2.61 | 0.41 63| 0.79 | 0.17
J 15 1 half 75 45082267 | 30970267 | 1200 | 330 | 4.12 | 0.76 | 143 | 1.79 | 0.17

Figure 5: PPC 7100/80 and Quadra 950/33, 320 x 240 — Played off Disk

14

Fp

Fp

Cinepak @30 fps, K F'D € {1,3,5,10}
2500

2000

15
10
50

0
1 3 5 101 3 5 10

Default Video @30 fps, K F'D € {1,3,5,10}
2500

2000

1500

1006

50

0
1 3 5 101 3 5 10

JPEG @30 fps
2500
200
150

100

500

Ar

1 1

Cinepak @15 fps, K F D € {1,3,5}
2500
2000

1500

10
50

0

Default Video @15 fps, KF D € {1,3,5}
2500

2000

1500

10

50
0

JPEG @15 Ips

250
200

150
100
500

Ll

Figure 6: Fp of All Half-Screen Runs Played on PPC 7100/80 off of Disk. Keyframes are Numbered
1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 75

Fp

Fp

Cinepak @30 fps, K F'D € {1,3,5,10}
2500

2000

1500

10
50

0
1 3 5 101 3 5 10

Default Video @30 fps, K D € {1,3,5,10}
2500

2000

1500

1000

500

0
1 3 5 101 3 5 10

JPEG @30 Ips

250
200
150

500

T

Cinepak @15 fps, K F D € {1,3,5}
2500

2000

1500

100
50
0

Default Video @15 fps, K F'D € {1,3,5}
2500

2000

1500

1000

50

0

JPEG @15 Ips

250
200
150

100

50

T T

Figure 7: Fp of All Half-Screen Runs Played on Quadra 950/33 off of Disk. Keyframes are
Numbered 1-10. Solid Bars Denote Quality = 100, Striped Bars Denote Quality = 75

15

Frames Displayed Per Sec
30.00

20.00 1 P A |

1000 \/\/\/\ W /V\A/\ N l

VWV A I AN

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00
Time (sec)
Frames Displayed Per Sec
30.00
20.00 ’V\/_/\/ I . A Ay Ay M

A A Y
I LT LA

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time (sec)

Figure 8: V/30/3/half/100 (above) and V/30/1/half/75 (below)

obvious observation is that JPEG is a very poor performer, while Cinepak shows the best average
performance in most test cases. Yet we found that when Default Video and Cinepak have similar
performance (as, for example, on the PPC at 15 fps), the Video tests are esthetically superior.
In certain scenes, Cinepak’s signal loss tends to result in a “grid pattern” appearing over uniform
color fields, no doubt an artifact of the JPEG-style YUV compression. A similar, though less
annoying phenomenon, emerges in Default Video compression, which tends at times to result in
“blurry” edges between differing fields of intensity. However an esthetic judgement like this is really

a matter of personal taste.

Compression Variables. Asfor the effects of compression, it appears that reducing spatial quality
hardly leads to uniform benefits across the tests; moreover, the results of temporal compression
are highly unpredictable. But there are two groups of trials on which these factors seem to have a
more pronounced impact: the PPC/Video tests digitized at 30 fps, and the Quadra/Cinepak tests
digitized at 15 fps. Figure 8 shows two of the Default Video results from the PPC, in which the
only difference is spatial quality. Note that while both runs show a significant amount of jitter, a
reduction to 75% quality performs significantly better. This is true across all of our statistics — Fp
(809 vs. 1446 frames displayed), the proportional R (10.11 vs. 18.07), and R, (39.94 vs. 25.38).
Neither variance is stellar (one need only examine the graphs to see the reason); yet the playback
quality is noticeably superior in the 75% run. Similar statements can be made when comparing
the role of K F'D in the Cinepak/Quadra/30fps runs.

The conclusion we reached is as follows: that when R was over (%)RPREF, additional spatial

16

Codec € {C,V,]}, Rate = 30, Quality = 100, | Codec € {C,V,]}, Rate =15, Quality = 100,

KFD =1, Size € {half, quat} KFD =1, Size € {half, quat}
2500 ' 2500
2000 2000
Fp 15 1500
10 100 I
50 50
0 0

Figure 9: Fp High-Quality PPC 7100/80 Runs, Where Screen Size is Altered. Solid Bars Denote
Size = half, Striped Bars Denote Size = quat

and temporal compression failed to raise it (but only realized a degradation of quality). This is a
bit surprising: comparing the size of the “C/30/1/half/100” video to that of “C/30/10/half/75,”
we see a reduction from 65 Mbytes to 45 Mbytes, i.e., the transfer-rate is reduced by over 30%.

The other observation is that there are many instances where even with a large amount of spatial
and temporal compression, abysmal performance remains abysmal. For example, comparing the
Quadra’s treatment of “V/15/1/half/100” to that of “V/15/5/half/75” — a whopping reduction
in size from 139 Mbytes to 82 Mbytes — we end up playing 353 more frames, which still fails to
achieve decent visual quality. This is also evident when comparing the 25% quality reduction from
“J/15/1/half/100” to “J/15/1/half/75,” which reduces the file size from 109 Mbytes to 45 Mbytes!
The performance, however, still does not rise about 4.12 fps (on the PPC) or 1.79 fps (on the
Quadra).

The Effect of Frame Size. Since a 160x120 field contains 1/4 the number of pixels of a 320x240
field, one would expect the “quat” video track sizes (and transfer rates) to be much lower than
the corresponding “half” track sizes. And examining the data in Figures 5-12, one sees that
this is true: going from “C/30/1/half/100” to “C/30/1/quat/100” we get a video track reduction
from 51 Mbytes to 15 Mbytes; from “V/30/1/half/100” to “V/30/1/quat/100” we get a reduction
from 124 Mbytes to 32 Mbytes; and “J/30/1/half/100” reduces from 95 Mbytes to 32 Mbytes in
“J/30/1/quat/100.” (Note that the sound track remains a constant 14 Mbytes.)

But watching a video on a quarter-screen palette is hardly satisfying; thus the reduced size
should, one hopes, pay off in superior playback quality. Does it?

Figure 9 compares the effects of frame size on selected 30fps and 15fps trials. In the case of
Default Video at 30fps, the answer is a resounding “yes.” In fact, the effective playback rate R
increases four-fold from 6.6 to 25.36 — echoing the 75% reduction in transfer rate. As for the other
samples, the result is less clear. JPEG’s performance increases substantially, but still, it is hardly
acceptable. And while Cinepak’s rate improves from 22.96 fps to 27.32 fps, most people would

prefer the larger frame size to a relatively small increase in the display rate.

17

Frames Displayed Per Sec
30.00

oo | AVAAMAMAVARA

,\lv "YVYYYYVV"YYV""YVV'YVV

=

A

AR

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00
Time (sec)
Frames Displayed Per Sec

30.00

20.00

1000 r/\NV\/\/\/\N\/\/\N\/\/\N\NW\/WW\/\NV\/\N\/V\N\/_
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time (sec)

Figure 10: C/30/1/half/100 (above) and C/15/1/half/100 (below)

As for the 15fps runs, the Default Video and Cinepak codecs show only minimal improvement;
e.g., the significant frame-size reduction buys Cinepak a rate increase of 0.18 fps, from 14.11 to
14.29. Clearly for the this codec on the PPC at 15 fps, substantially lowering the data-rate abuts
against the law of diminishing returns.

But this raises an interesting, perplexing question: Exactly what does it take to achieve the full

15fps playback rate? We return to this question shortly.

The Effects of Rate Changes. Considering the Rate variable, the Default Video statistics
in Figures 6-7 show situations where 15 fps tests realize superior playback performance to their
corresponding 30 fps versions. This is true in all of the Video test results on the Quadra, and
strikingly so in the 100%-quality runs on the PPC. Even though this is a very fast CPU, with a
sufficiently good disk, the Quicktime de-compression logic still seems to “thrash” on the 30 fps
version. It does better with more deterministic (albeit lower) playback rates.

A similar situation arises when a reduction in Rprgr leaves R almost unchanged, but radically
enhances the movie’s visual quality. In Figure 10, we compare the results of two Quadra/Cinepak
playback tuns, “C/30/1/half/100” (with R = 13.62) and “C/15/1/half/100” (with R = 13.91).
Figure 10 shows the on-line behavior of the two; this illustrates why we also use variances to
compare two runs with similar average behavior. Visually, the 15 fps version looks smooth and
continuous, while the 30 fps playback is jerky (as its graph portrays).

But what is really causing the oscillation in 30fps trial? There are three potential bottlenecks:

(1) the QuickDraw screen-manager, (2) the de-compressor, or (3) the 10 channel between the hard

18

drive and the codec software.

Case (1) would imply that the de-compressor works faster than the screen manager. Since our
player/driver streams the codec’s output directly to QuickDraw (for screen updates), perhaps more
frames get decompressed than can be drawn. This would have the following result: a bursty period
(i.e., a crest) occurs when the de-compressor’s input buffer is full of compressed frames. Each frame
is then quickly converted, and then streamed to the screen handler. But if QuickDraw cannot keep
up with the update rate, since the real-time clock continues to advance, the the de-compressor is
periodically forced to purge its buffers — and then request additional chunks of frames from the file
system. The resulting latency causes the wave’s trough, or low watermark.

But since decompression is a compute-intesive activity, Case (2) is more convincing — that the
de-compressor is slower than both QuickDraw and the 10. In this case, perhaps the Cinepak codec
attempts to consume frames at a rate of 30fps, while it can only decompress them at a rate of,
say 20fps. The result is a repetitive purge of the input queue, followed by a (belated) request to
transfer a new set frames from disk. This can easily explain the wave’s “trough.”

If the bottleneck is Case (3) — i.e., slow 10 transfers — we could have the following scenario:
That QuickTime and QuickDraw are sufficiently fast to keep up with the display-rate demands;
that instead the problem lies in unduly long latencies associated with large IO transfers. This can
easily account for the regular oscillation in display rates. That is, whenever the codec’s input buffer
contains compressed frames, they can quickly be de-compressed and drawn to the screen. On the
other hand, 10 transfers will result in prolonged periods of the buffer being empty.

The 15fps test demands only one-half of the display rate, and 3/5 of the data-transfer rate (see
Figure 5. So this test puts less pressure on all of the three potential bottlenecks — which explains
the 15fps’s low-amplitude waveform (in Figure 10).

But even in the 30fps case, the bottlenecks could be reduced if there were better, more controlled
coordination between the three components involved. That is, if the platform is only capable of
playing a 30fps movie at 20fps, then all of these components should be “tuned” to work at a nearly
constant, deterministic rate of 20 fps.

Before we investigate this issue, we first must discover the true bottleneck in the process. In

doing so, we find some statistics that really seem to stand out.

The RAM Tests. When we attempted to determine the highest performance capabilities of
our two platforms, our measurements presented us with some surprising anomalies. Consider, for
example, the half-screen/PPC/Cinepak runs listed in Figure 5. Note that all of the 30fps tests
display at least 1800 out of 2400 total frames in the 80 second segment. Why, then, is it the case
that not a single 15fps test displays all (or almost all) of its 1200 frames? Since the codec “proves”
that it can run at a rate of 22fps when “asked” to run at 30fps, one would expect it to be capable
of running at 15fps “upon request.”

This phenomenon is somewhat analogous to the opposite one — i.e., the cases in which a movie
plays better at 15fps than it does at 30fps. In fact, both sets of data focused our attention on Case

(3) above — that high 10 latencies “rob” the decompressor of useful CPU time. Moreover, since this

19

PPC 7100/80 @ 30fps PPC 7100/80 @ 15fps
2500 2500
2000 2000
0
Fp 15 150
100 100 I
50 50 —
0 0
\ Vv Vv Vv
Quadra 950/33 @ 30fps Quadra 950/33 @ 15fps
2500 2500
2000 2006
a2z 1500 1500
10 100 ——
50 50
0 0
A% Vv Vv J Vv

Figure 11: 320 % 240, Highest temporal and spatial compression, Disk vs. RAM playback. Results
from the disk runs are portrayed with solid bars, whereas the RAM runs are in striped bars.

occurs in such a periodic, predictable fashion (as in Figure 10), we postulate that this overhead is
due mainly to a large amount of synchrony in 10 setups.

We were not able to test this specific issue, since it basically involves reverse-engineering the
Quicktime library. However it was easy to test our main hypothesis — that the bottleneck lies in
the file system /10 subsystem. We simply extended the TimeWare Movie Monitor to play our test
movies in eight 10 second segments — with each segment first prefetched into RAM, and then played
out of RAM. During an 10 transfer (which is typically quite brief, but noticeable), the monitor
stops its movie-progress clock, and then resets it after it the transfer is done. The net result is a tool
which measures the performance of the CPU and the display drivers, but not the 10 subsystem.

Figure 4, and the figures in the Appendix, illustrate the differences between the disk-based tests,
and those played out of RAM. The contrast is striking: the PPC Cinepak and Video versions play
almost every single frame, when run out of RAM. This is true for all of the runs. Most incredibly,
the Default Video test climbs from R = 6.60 to R = 29.48.

With one set of notable exceptions, the Quadra’s performance improvement is not as uniform.
The exceptions are all of the Cinepak 30 fps runs, which climb to nearly perfect display rates like
29.98. 30.00, 29.85, etc. In fact, the Cinepak tests do marginally better on the Quadra than on the
PPC (but the differences are minute, since both achieve near-perfection).

As for the Default Video tests, the performance increase is marked, but not as much as on the

PPC. This leads us to conclude that the decompression algorithm is sufficiently compute-intensive

20

to stress the 68040/33, while the 7100 can handle the half-screen decompression easily.

But after all, it should not be a surprise that the disk is a bottleneck. “Common wisdom”
dictates that the hard drive will always be the culprit, since (1) it is a physical device, limited by
seek times, rotational delays, etc., and (2) it is connected via a SCSI bus, not the local bus.

But in this case the numbers do not lead to such a conclusion. The PPC hardware, for example,
affords the ability to perform asynchronous, DMA’d block transfers. As we mentioned in Section 3,
our disk is capable of handling read transfers at 2.7 Mbytes/sec. Since the largest file is “only”
138 Mbytes, the maximum demand from any of our tests is 1.7 Mbytes/sec — a large number, to
be sure, but not one that will choke the system. Moreover, a data rate of 1.7 Mbytes/sec is not
high enough for the DMA’s memory “cycle-stealing” to have a large impact. Accounting for 10
overhead, perhaps the Disk-based, Cinepak/PPC tests should run at 27 fps, but not 23 fps.

So the conclusion seems obvious: that disk transfers incur a large latency, and that 10 — even
“asynchronous,” DMA’d, 10 — is not sufficiently asynchronous for the QuickTime codecs to run
at their peak rates. While the Mac arguably possesses the best consumer-grade video software, it
could be significantly improved by achieving efficient coordination between the file system and the
codec software. Of course, this would be a nontrivial task, since it involves streaming DMA’d 10
directly into user space, while simultaneously providing “regular” 10 services for other processes.

On the bright side, there is good news: that the PPC is capable of displaying high-quality video
using a software-only solution. Indeed, full-screen, software decompression should be achievable
within the near future — that is, if IO operations can be coordinated with the required display

rates.

5 Conclusion

We conclude by re-examining our initial hypotheses.

1. A faster, more powerful platform will not necessarily lead to better playback quality.

In general, the PPC performed better the Quadra, which was not a surprising result. However
in the RAM-based, 30fps Cinepak tests, the Quadra outperformed the PPC. And as we showed in
our last series of tests, hardware was not really the problem in video playback — it was the operating

system.

2. A movie’s size (in bytes), and its playback rate (in frames per second) are not always good
predictors of quality.
This phenomenon manifested itself many times — especially in the cases where the 15fps tests

outperformed their corresponding 30fps versions.

3. Movie-playing software could give better performance if it (1) took into account the platform’s

capabilities, and (2) provided deterministic rate control based on these characteristics.

This was the point of the paper, and it raises the subject of our future plans in the area.
We have now located what we believe is the most significant bottleneck facing video-playback

software. We are currently working to eliminating this problem, by implementing a direct, double-

21

buffered channel between the disk driver and the decompression software. A direct, DMA’d “data
pipe” will, for example, obviate the need for redundant copy-in/copy-out operations. (Fall and
Pasqule came to the same conclusion in [2].) Needless to say, a “Quicktime-aware” driver will have
to be safe with respect other processes in the system. With this enhancement, and with a wider
10 path, we are confident that we will have a software-only solution for displaying high-quality,

full-screen videos

References

[1] Apple Computer Corporation. Inside the Machintosh: Quicktime. Addison Wesley, 1994.

[2] Kevin Fall and Joseph Pasquale. Improving Continuous-Media Playback Performance with
In-Kernel Data Paths. Proceedings of IFEF, pages 100-109, 1994.

[3] Gregory K.Wallace. The jpeg still picture compression standard. Communications of the ACM,
34(4), 4 1991.

[4] Ralf Steinmetz. Compression Techniques in Multimedia Systems. Technical Report 43.9307,
IBM European Networking Center, Vangerowstrabe 18, 69020 Heidelberg, Germany, 1993.

[5] Donald L. Stone and Kevin Jeffay. An Empirical Study of Delay Jitter Management Policies.
Multimedia Systems, 2(6):267-279, 1995.

[6] Toshiyuki Urabe, Hassan Afzal, Grace Ho, and Pramod Pancha Magda El Zarki. MPEGTool:
An X Window-Based MPEG Encoder and Statistics Tool. Multimedia Systems, 1(6):220-229,
1994.

22

A Additional Test Results

Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R Rus
C 30 1 quat 100 29766828 | 15654828 | 2400 | 2186 | 27.32 | 2.94 | 2157 | 26.96 | 8.37
C 30 3 quat 100 27746068 | 13634068 | 2400 | 2166 | 27.07 | 4.43 | 2149 | 26.86 | 9.03
C 30 5 quat 100 27310408 | 13198408 | 2400 | 2189 | 27.36 | 3.55 | 2192 | 27.40 | 7.84
C 30 10 quat 100 26985084 | 12873084 | 2400 | 2194 | 27.43 | 3.37 | 2173 | 27.16 | 6.88
C 30 1 quat 75 29449976 | 15337976 | 2400 | 2185 | 27.31 | 3.76 | 2176 | 27.20 | 8.15
C 30 3 quat 75 26442288 | 12330288 | 2400 | 2190 | 27.38 | 3.46 | 2171 | 27.14 | 8.68
C 30 5 quat 7b 25860228 | 11748228 | 2400 | 2193 | 27.41 | 3.02 | 2185 | 27.31 8.44
C 30 10 quat 75 25421516 | 11309516 | 2400 | 2193 | 27.41 | 3.17 | 2166 | 27.07 | 6.36
pV 30 1 quat 100 46998831 | 32886831 | 2400 | 2029 | 25.36 | 5.93 | 1903 | 23.79 | 8.92
V 30 3 quat 100 42843008 | 28731008 | 2400 | 2084 | 26.05 | 4.94 | 1968 | 24.60 | 11.82
V 30 10 quat 100 41322935 | 27210935 | 2400 | 2107 | 26.34 | 5.19 | 2037 | 25.46 | 9.22
V 30 1 quat 75 38400471 | 24288471 | 2400 | 2129 | 26.61 | 3.64 | 2023 | 25.29 8.52
V 30 3 quat 75 32259404 | 18147404 | 2400 | 2155 | 26.94 | 4.04 | 2103 | 26.29 9.60
V 30 10 quat 75 30045289 | 15933289 | 2400 | 2174 | 27.18 | 3.31 | 2144 | 26.80 | 7.69
J 30 1 quat 100 78918203 | 64806203 | 2400 | 616 | 7.70 | 1.01 | 177 | 2.21 | 0.37
J 30 1 quat 75 36138726 | 22026726 | 2400 | 1006 | 12.57 | 3.27 | 444 | 5.55 | 1.12
C 15 1 quat 100 21939432 | 7827432 | 1200 | 1143 | 14.29 | 0.67 | 1124 | 14.05 1.24
C 15 3 quat 100 21037560 | 6925560 | 1200 | 1138 | 14.22 | 0.77 | 1122 | 14.03 | 1.39
C 15 5 quat 100 20823272 | 6711272 | 1200 | 1136 | 14.20 | 0.88 | 1119 | 13.99 1.42
C 151 quat 7b 21780904 | 7668904 | 1200 | 1146 | 14.32 | 0.61 | 1120 | 14.00 1.26
C 15 3 quat 75 20319956 | 6207956 | 1200 | 1144 | 14.30 | 0.66 | 1122 | 14.03 | 1.39
C 15 5 quat 7b 20029612 | 5917612 | 1200 | 1143 | 14.29 | 0.67 | 1119 | 13.99 1.42
V 15 1 quat 100 30546740 | 16434740 | 1200 | 1146 | 14.32 | 0.61 | 1149 | 14.36 0.80
V 15 3 quat 100 28887319 | 14775319 | 1200 | 1141 | 14.26 | 0.71 | 1124 | 14.05 1.24
V 15 1 quat 75 26254172 | 12142172 | 1200 | 1140 | 14.25 | 0.73 | 1141 | 14.26 0.96
V 15 3 quat 75 23659209 | 9547209 | 1200 | 1143 | 14.29 | 0.67 | 1131 | 14.14 1.13
J 15 1 quat 100 46508263 | 32396263 | 1200 | 632 | 7.90 | 1.48 | 219 | 2.74| 0.24
J 15 1 quat 75 25122290 | 11010290 | 1200 | 1050 | 13.12 | 1.32 511 6.39 0.78

Figure 12: PPC 7100/80 and Quadra 950/33, 160 x 120 — Played off Disk

23

Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R Rus
C 30 1 half 100 65668948 | 51556948 | 2400 | 2397 | 29.96 | 0.04 | 2398 | 29.98 | 0.05
C 30 3 half 100 55288196 | 41176196 | 2400 | 2393 | 29.91 | 0.08 | 2399 | 29.99 | 0.01
C 30 5 half 100 53200812 | 39088812 | 2400 | 2392 | 29.90 | 0.11 | 2400 | 30.00 | 0.00
C 30 10 half 100 51599160 | 37487160 | 2400 | 2389 | 29.86 | 0.14 | 2388 | 29.85 | 0.90
C 30 1 half 75 56272532 | 42160532 | 2400 | 2399 | 29.99 | 0.01 | 2388 | 29.85 | 0.13
C 30 3 half 75 48114560 | 34002560 | 2400 | 2389 | 29.86 | 0.12 | 2396 | 29.95 | 0.05
C 30 5 half 75 46467008 | 32355008 | 2400 | 2392 | 29.90 | 0.11 | 2396 | 29.95 | 0.05
C 30 10 half 75 45253496 | 31141496 | 2400 | 2394 | 29.93 | 0.07 | 2400 | 30.00 | 0.00
V 30 1 half 100 138782648 | 124670648 | 2400 | 2358 | 29.48 | 0.55 | 461 | 5.76 | 73.18
V 30 3 half 100 126319334 | 112207334 | 2400 | 2370 | 29.62 | 1.61 | 1516 | 18.95 | 47.70
V 30 5 half 100 123699495 | 109587495 | 2400 | 2375 | 29.69 | 1.02 | 1662 | 20.77 | 50.62
V 30 10 half 100 121666111 | 107554111 | 2400 | 2384 | 29.80 | 0.49 | 1809 | 22.61 | 60.69
V 301 half 75 110761808 | 96649808 | 2400 | 2351 | 29.39 | 0.66 | 296 | 3.70 | 47.48
V 30 3 half 75 89538819 | 7H426819 | 2400 | 2371 | 29.64 | 1.43 | 1280 | 16.00 | 70.92
V 305 half 75 85251859 | 71139859 | 2400 | 2376 | 29.70 | 1.09 | 1540 | 19.25 | 76.51
V 30 10 half 75 81892471 | 67780471 | 2400 | 2372 | 29.65 | 0.91 | 1713 | 21.41 | 73.07
J 30 1 half 100 94238136 | 80126136 | 2400 | 473 | 5.91 | 0.53 - - -
J 30 1 half 75 76101834 | 61989834 | 2400 | 491 | 6.14 | 0.72 - - -
C 15 1 half 100 39892376 | 25780376 | 1200 | 1200 | 15.00 | 0.00 | 1199 | 14.99 | 0.01
C 15 3 half 100 34932804 | 20820804 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 5 half 100 33894160 | 19782160 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 151 half 75 35187128 | 21075128 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 half 75 31257064 | 17145064 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 155 half 75 30448024 | 16336024 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 1 half 100 76406147 | 62294147 | 1200 | 1200 | 15.00 | 0.00 | 1195 | 14.94 | 0.06
V 15 3 half 100 71468196 | 57356196 | 1200 | 1198 | 14.97 | 0.11 | 1197 | 14.96 | 0.04
V 15 5 half 100 70419248 | 56307248 | 1200 | 1197 | 14.96 | 0.20 | 1197 | 14.96 | 0.04
V 15 1 half 75 62437907 | 48325907 | 1200 | 1200 | 15.00 | 0.00 | 1196 | 14.95 | 0.05
V 15 3 half 75 53301189 | 39189189 | 1200 | 1197 | 14.96 | 0.20 | 1197 | 14.96 | 0.04
V 155 half 75 51404010 37292010 | 1200 | 1197 | 14.96 | 0.20 | 1198 | 14.97 | 0.02
J 15 1 half 100 109158425 | 95046425 | 1200 282 3.52 | 0.62 - - -
J 15 1 half 75 45082267 | 30970267 | 1200 | 528 | 6.60 | 0.82 | 194 | 2.42 | 0.27

Figure 13: PPC 7100/80 and Quadra 950/33, 320 x 240 — Played from RAM

24

Test Movie Size PPC Quadra
Codec/FPS/KFD/Size/Quality Total Video Fr | Fp R | Ru | Fp R | Ru
C 30 1 quat 100 29766828 | 15654828 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 3 quat 100 27746068 | 13634068 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 5 quat 100 27310408 | 13198408 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 10 quat 100 26985084 | 12873084 | 2400 | 2398 | 29.98 | 0.02 | 2400 | 30.00 | 0.00
C 30 1 quat 75 29449976 | 15337976 | 2400 | 2398 | 29.98 | 0.02 | 2400 | 30.00 | 0.00
C 30 3 quat 75 26442288 | 12330288 | 2400 | 2395 | 29.94 | 0.06 | 2400 | 30.00 | 0.00
C 30 5 quat 75 25860228 | 11748228 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
C 30 10 quat 75 25421516 | 11309516 | 2400 | 2399 | 29.99 | 0.01 | 2400 | 30.00 | 0.00
V 30 1 quat 100 46998831 | 32886831 | 2400 | 2395 | 29.94 | 0.06 | 2400 | 30.00 | 0.00
V 30 3 quat 100 42843008 | 28731008 | 2400 | 2391 | 29.89 | 1.01 | 2400 | 30.00 | 0.00
V 30 10 quat 100 41322935 | 27210935 | 2400 | 2393 | 29.91 | 0.24 | 2400 | 30.00 | 0.00
V 30 1 quat 75 38400471 | 24288471 | 2400 | 2392 | 29.90 | 0.09 | 2399 | 29.99 | 0.01
V 30 3 quat 75 32259404 | 18147404 | 2400 | 2389 | 29.86 | 1.50 | 2399 | 29.99 | 0.01
V 30 10 quat 75 30045289 | 15933289 | 2400 | 2395 | 29.94 | 0.44 | 2400 | 30.00 | 0.00
J 30 1 quat 100 78918203 | 64806203 | 2400 | 859 | 10.74 | 1.32 | 306 | 3.83 | 0.42
J 30 1 quat 75 36138726 | 22026726 | 2400 | 1478 | 18.48 | 3.06 | 578 | 7.22 | 0.82
C 15 1 quat 100 21939432 | 7827432 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 quat 100 21037560 | 6925560 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 5 quat 100 20823272 | 6711272 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 1 quat 75 21780904 | 7668904 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 15 3 quat 75 20319956 | 6207956 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
C 155 quat 75 20029612 | 5917612 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 1 quat 100 30546740 | 16434740 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 3 quat 100 28887319 | 14775319 | 1200 | 1198 | 14.97 | 0.11 | 1200 | 15.00 | 0.00
V 15 1 quat 75 26254172 | 12142172 | 1200 | 1200 | 15.00 | 0.00 | 1200 | 15.00 | 0.00
V 15 3 quat 75 23659209 | 9547209 | 1200 | 1197 | 14.96 | 0.20 | 1200 | 15.00 | 0.00
J 15 1 quat 100 46508263 | 32396263 | 1200 | 858 | 10.72 | 1.25 | 336 | 4.20 | 0.33
J 15 1 quat 75 25122290 | 11010290 | 1200 | 1197 | 14.96 | 0.04 578 7.22 | 0.67

Figure 14: PPC 7100/80 and Quadra 950/33, 160 x 120 — Played from RAM

25

