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Gyrofluid models to describe plasma turbulence combine the advantages of

fluid models, such as lower dimensionality and well-developed intuition, with those

of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows

gyrofluid models to be more tractable computationally while still capturing much

of the physics related to the FLR of the particles.

We present a gyrofluid model derived to capture the behavior of slow solar wind

turbulence and describe the computer code developed to implement the model. In

addition, we describe the modifications we made to a gyrofluid model and code

that simulate plasma turbulence in tokamak geometries. Specifically, we describe a

nonlinear phase mixing phenomenon, part of the E × B term, that was previously

missing from the model. An inherently FLR effect, it plays an important role in

predicting turbulent heat flux and diffusivity levels for the plasma. We demon-

strate this importance by comparing results from the updated code to studies done

previously by gyrofluid and gyrokinetic codes. We further explain what would be



necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport

code, thus allowing gryffin to play a role in predicting profiles for fusion devices

such as ITER and to explore novel fusion configurations. Such a coupling would

require the use of Graphical Processing Units (GPUs) to make the modeling process

fast enough to be viable. Consequently, we also describe our experience with GPU

computing and demonstrate that we are poised to complete a gryffin port to this

innovative architecture.
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Chapter 1

Introduction

1.1 Motivation

Turbulence in plasmas is an ubiquitous phenomenon. It is observed in the

largest scales man can probe, on the order of galaxies, and can be observed in

terrestrial fusion devices in laboratories. In the heavens, an understanding of tur-

bulence can potentially lead us to an understanding of high energy cosmic rays, of

the process through which stars accrete, and of how stellar clusters form. On earth,

a growing comprehension of turbulence has already aided mankind in the design of

better fusion devices and configurations and can potentially lead us to the goal of

sustained fusion energy.

Since turbulence extends through so many scales, several sets of approxima-

tions are needed to describe the entire system. When turbulent eddies are much

larger than the Larmor radius of the particles that make up the plasma, a model that

treats the plasma as a magnetized fluid, such as Magnetohydrodynamics (MHD),

is an adequate description of the dynamics of the system. However, as turbulent

structures approach the Larmor radius of the particles in question, MHD ’s assump-

tions begin to break down. A model such as gyrokinetics, which accounts for the

finite Larmor radius (FLR) effects of the particles, becomes necessary to accurately

capture the behavior of the plasma.
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Gyrokinetics was developed as a model to describe low frequency fluctuations

in plasmas with gentle equilibrium gradient scale lengths compared to the parti-

cles’ Larmor radii [32] [35] [25] [16]. It has been quite successful over the years

in predicting turbulent behavior in both astrophysical and laboratory contexts [19]

[14]. Gyrokinetics starts with a description of the evolution of the particle distribu-

tion function through the Fokker-Plank equation and adds assumptions to create a

tractable equation. The result is five dimensional and retains much of the physics

needed to describe turbulent systems. Despite this reduction, nonlinear gyrokinetic

simulations can still take tens of thousands of computer hours to investigate a single

parameter set or a single plasma discharge.

Gyrofluid models further simplify the gyrokinetic equation by considering only

moment expansions of the distribution function. With carefully and cleverly chosen

closures, they are able to capture FLR effects within a fluid framework, allowing

theorists to maintain much of the intuition developed through working with MHD.

At the same time, they are more computationally tractable as they have two fewer

dimensions to evolve than the corresponding gyrokinetic model.

In the context of astrophysical plasmas, computational codes based on gy-

rofluid models are able to probe a larger span of spatial scales than their gyrokinetic

counterparts for the same computational cost. This allows them to capture gross

features, such as the Kolmogorov spectra found in the solar wind and interstellar

medium, over a wider range of spatial scales. This also makes broad parameter

studies of Kolmogorov spectra, including transition regions, more feasible. While

the details of what causes transitions and shifts in astrophysical Kolmogorov spec-
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tra is better explored by a gyrokinetic code, a gyrofluid code can be used to narrow

the parameter space of interest, allowing for a more efficient use of computational

resources.

In the context of fusion plasmas, gyrofluid codes have the potential to probe

more of parameter space in less time. Again, the fine details of the calculation

can be investigated with a gyrokinetic code, but a gyrofluid code can be used to

find parameter ranges of potential interest or potential disaster, making the overall

process of searching through parameter space more efficient.

In the past, gyrofluid models have not always agreed with turbulent flux pre-

dictions made by gyrokinetic models. There had been some concern that these

models did not capture enough of the relevant physics to make them useful tools

[12]. However, with the inclusion of closures that account for both zonal flows

and nonlinear phase mixing by E × B drifts, we believe that these models can be

resurrected and used to aid in the study of viable fusion configurations.

Fortunately, there are several studies that have been performed by multiple

gyrofluid and gyrokinetic codes or multiple gyrokinetic codes that can be used as

a benchmark for updated gyrofluid codes. One widely used example was written

up by Dimits, et al and involved parameters from the Cyclone base case [12]. This

study involved eight codes and found relatively good agreement for predicted heat

flux at experimentally relevant parameters among the gyrokinetic codes used. Such

wide spread benchmarking exercises are rare, but there exist other studies that can

be used to validate a gyrofluid code against a gyrokinetic one.

The state of the art in gyrokinetic modeling goes one step further than predict-
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ing heat fluxes and involves using gyrokinetic turbulence simulations in conjunction

with transport equations to model and predict equilibrium density and temperature

profiles for fusion devices. One such framework, TRINITY, employs several turbu-

lence simulations for each point on a coarse space-time grid [2]. The latest reported

transport simulation required roughly 25,000 computer hours and must be run on

supercomputers. Such cost makes it impractical to run sensitivity studies or explore

a large parameter space looking for innovative new fusion device designs.

Recently, however, GPUs have started to compete with supercomputers in the

realm of scientific computing. State of the art GPUs have on the order of 500 cores

designed to be used in parallel. If an algorithm is employed which requires little or

no communication between GPUs, speed-ups have the potential to be significant -

on the order of ten to a hundred times their CPU counterparts. Due to their five

dimensional nature, well-resolved gyrokinetic simulations are too large to fit on a

single GPU. However, a three dimensional gyrofluid code should be able to do so,

allowing an entire TRINITY transport/turbulence calculation to be run on a single

GPU cluster. With the appropriate combination of physics model, computational

algorithm and hardware, a simulation of an entire tokamak (minus the edge) could

be performed on an inexpensive, local CPU/GPU cluster.

1.2 Outline of Thesis

In Chapter 2, we give an overview of Kolomogorov energy spectra and describe

the gyrofluid model we have developed to study plasma behavior in conditions sim-
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ilar to those found in the solar wind. In Chapter 3, we describe the computer code

we have developed to solve the nonlinear equations of the solar wind model and

present our results. In Chapter 4, we transition to the toroidal, fusion perspective

and describe the process of nonlinear phase mixing in the context of a well estab-

lished gyrofluid model. In Chapter 5, we give an overview of the gyrofluid code

gryffin used to study nonlinear phase mixing and present the results of several

test cases where nonlinear phase mixing should bring gyrofluid turbulence flux pre-

dictions into better agreement with gyrokinetic predictions. In Chapter 6, we give

an overview of the turbulent transport solver TRINITY and an overview of what

would be required to incorporate gryffin into the TRINITY framework. Finally, in

Chapter 7, we discuss our experience using GPUs for scientific computing and our

plans to use that experience to port gryffin to the GPU as part of the TRINITY

framework.
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Chapter 2

Gyrofluid Model for the Slow Solar Wind

2.1 Introduction

In this chapter we seek to develop a model that accurately captures the turbu-

lent physics of the slow solar wind. We begin by describing some of the properties

of the slow solar wind. In Section 2.2 we describe the Kolmogorov power law, a

common framework used to understand turbulent systems. In Sections 2.3 and 2.4

we introduce the model and closures we have developed to study the Kolmogorov

Power spectrum of the slow solar wind. In Section 2.6 we describe the properties of

the linear dispersion relation of our model. Finally, in Section 2.7 we compare our

model to the Chew-Goldberger-Low (CGL) model.

The slow solar wind is a weakly collisional system. This is mainly due to the

long mean free path of its particles - close to 1 AU. Ions and electrons have a nearly

constant temperature that is approximately equal. The constant temperatures sug-

gest an adiabatic system with at most weak heat fluxes. (For a detailed discussion of

solar wind parameters, see [33] and references therein.) There is some evidence that

Landau damping plays a role in solar wind dynamics. However, the effect appears

to be roughly 10% or less [20].

Turbulence in the solar wind is anisotropic. That is, energy is not distributed

evenly between the parallel and perpendicular directions. Instead, more energy can
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be found in turbulent structures perpendicular to the background magnetic field.

This suggests that the turbulence is the result of interacting Alfvén waves whose

nonlinear interactions lead to an anisotropic distribution of energy, as explained in

the next section.

2.2 Kolmogorov Power Laws

Due to its complexity, turbulence is difficult to characterize. Fortunately, in

the early 1940s, Kolmogorov noticed a general relationship between turbulent energy

and eddy scale size, often referred to as a power law spectrum or a Kolmogorov

spectrum [26]. This relationship depends on the rate of energy transfer ε and the

viscosity or damping mechanism. Assuming that the value of ε is set at some scale

larger than that of interest and that damping only occurs at some scale smaller than

that of interest, an “inertial range” can be defined where the details of the large-scale

energy injection or stirring and the small-scale viscous damping mechanism do not

affect the dynamics. The quantity ε is assumed to be constant in time, and energy

in this inertial range is assumed to be only transferred locally, between eddies of

similar sizes.

If in addition to the above assumptions we add homogeneity and isotropy, a

power law spectrum for the turbulence can be found to within a constant using

dimensional analysis. To make this easier, the relationship is considered in k-space,

the inverse of the eddy scale size, and in logarithm space. Energy is binned at each

k value. In log space, the width of each bin is given as ∆k ≈ k, so the total energy
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in each bin can be expressed as kEk.

In hydrodynamic flows, turbulent energy comes from the shearing of eddies

within the flows. For an eddy being torn apart by oppositely moving shear flows,

the difference in velocity ∆u between a fluid element on one side of the eddy and the

other side is related to the turbulent energy as (∆u)2 ∼ kEk. The amount of time

it takes for this eddy to break up depends on the velocity difference and the size

of the eddy, τ ∼ 1/ (k∆u). Assuming that all the energy injected into the system

becomes turbulent energy, we can write ε ∼ kEk/τ , and solve for Ek.

Ek ∼ ε2/3k−5/3 (2.1)

This relation gives us our power law spectrum.

Magnetohydrodynamic turbulent energy is equivalent to the energy found in

perturbations to the magnetic fields (magnetic energy) and flows (kinetic energy.)

Because all Alfvénic eddies travel along the magnetic field with the same phase

and group velocities, Alfvénic turbulence is characterized by interacting, counter-

propagating Alfvén waves with a dispersion relation ω = k‖vA. Here, k‖ is the

parallel wave number and vA is the Alfvén speed [27] [23]. 1

As the Alfvén waves travel along the magnetic field lines and pass through each

other, they interact nonlinearly in the direction perpendicular to the magnetic field.

This nonlinear behavior acts as the “shear” that creates perpendicular perturbations

- allowing energy to transfer to smaller scales in that direction. Eventually, the

perpendicular interactions grow to the same scale as the parallel interactions, k⊥δu ∼
1Since the Alfvén waves are an exact solution to the nonlinear system along the field lines,

co-propagating Alfvén waves never have the opportunity to interact along the field lines.
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k‖vA, where k⊥ is the perpendicular wave number and δu is a typical perturbation

to the flow. This state is described by Goldreich and Sridhar as “critical balance.”

[17] In critical balance, the turbulent interactions drive cascades of energy parallel

and perpendicular to the background magnetic field, though k‖ % k⊥.

In this critically balanced state, one can find the relationship between energy

and perpendicular wave number by following an argument similar to the one in

hydrodynamics. The magnetic and flow perturbations are assumed to be of the

same order and are related to the turbulent energy as (δu)2 ∼ k⊥Ek⊥. Using the

same assumption that our injected energy becomes turbulent energy, we are able to

write

Ek⊥ ∼ ε2/3k−5/3
⊥ . (2.2)

(Because k‖ % k⊥, it is experimentally difficult to observe the steeper parallel

fluctuation spectrum Ek‖ and we choose not to focus on this quantity.)

At scales near the ion Larmor radius, the plasma no longer can be represented

by a set of propagating Alfvén waves. At this scale, perpendicular structures affect

the linear dynamics which can be described by a set of kinetic Alfvén waves (KAWs).

They have a linear dispersion relation of the form, ω = k‖vAk⊥ρi which allows both

counter- and co-propagating KAWs to interact, since the group velocities of different

wave packets now vary. The energy in the perturbed fields are no longer equivalent,

δu ∼ k⊥δb ∼ δe where δb denotes a magnetic field perturbation and δe an electric

field one. This dependence on k⊥ affects the energy spectra as well, so that

Eb,k⊥ ∼ ε2/3k−7/3
⊥ (2.3)
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Ee,k⊥ ∼ ε2/3k−1/3
⊥ (2.4)

This splitting between the magnetic and electric field energy spectra has been ob-

served in the Solar Wind [1]. Nonlinear gyrokinetic simulations of the Alfvén/KAW

transition have been performed [19]. We have developed a fluid description of this

turbulence to allow larger and more convincing simulation-based studies (e.g., with

a wider intertial range).

2.3 Gyrofluid Model for Solar Wind Parameters

Gyrofluid equations are obtained by taking velocity moments of the gyrokinetic

equation. The gyrokinetic equation is derived from the Fokker-Planck equation with

the following assumptions: first, there is a strong background magnetic field, so that

δB/B0 % 1; second, the strong magnetic field guarantees that quantities of interest

fluctuate more slowly than the ion gyroperiod; and, third, fluctuations with parallel

wavelengths are much larger than the ion gyroradius. No such length assumption

is made for the perpendicular direction. An ordering parameter, ε, is defined such

that

ε =
ρ

L
(2.5)

where ρ is the gyroradius of the species of interest and L is a typical parallel wave-

length of the system. A derivation of the gyrokinetic equation can be found in

Appendix A. Our model includes equations for both ions and electrons. For both
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species we start with Equation A.61.

∂ 〈δf1,s〉
∂t

+
qs
Ts

F0,sv‖,s∇‖ 〈φ〉+
qsv‖,s
TsB0

F0,s

〈[

φ,A‖
]〉

−
〈

qsδB‖

TsB0
F0,sv⊥,s · ∇⊥φ

〉

+ v‖,s∇‖ 〈δf1,s〉

−
c

B0
〈[δf1,s, φ]〉+

v‖,s
B0

〈[

δf1,s, A‖
]〉

−
〈

δB‖

B0
v⊥,s · ∇⊥δf1,s

〉

+
qs
cTs

F0,sv‖,s
∂
〈

A‖
〉

∂t

+
qs
cTs

F0,s

〈

v⊥,s ·
∂A⊥

∂t

〉

+

〈

Ωc,s
∂δf2,s
∂θ

〉

= 〈C (δf1,s, F0,s)〉+ 〈C (F0,s, δf1,s)〉

(2.6)

where s is the species label and the angle brackets, 〈〉, denote a gyroaverage, defined

in Equation A.31. Square brackets, [ ], indicate a Possion bracket, [f, g] = ∂xf∂yg−

∂yf∂xg. F0 is the zeroth order pertrubation to the particle distribution function(pdf)

and δf1 is the first order perturbation to the pdf. The ‖ and ⊥ subscripts are used to

denote directions with respect to the background magnetic field, B0. The quantity

q is charge, T is temperature (a constant), φ is the electrostatic potential, v is

velocity, and ∇ denotes a derivative. Here, c is the speed of light, and A is the

magnetic vector potential. The collisions are represented on the right hand side of

the equation.

We start with the electrons and assume that k⊥ρe % 1. This allows us to treat

the gyro-radius of the electrons as a small perturbation, and we can Taylor expand

around it.

φ

(

R−
v × ẑ

Ωe
, t

)

= φ (R, t)−
∂φ (R, t)

∂R
·
(

v × ẑ

Ωe

)

+ · · · (2.7)

where φ is representative of any of the fields or the pdf. The first term in the expan-

sion is independent of gyroangle. The second term depends on gyroangle through

a single power v⊥. For terms in the equation with no additional θ dependence, the

contribution from the second term in the expansion is zero. Applying this expansion
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and the gyroaverages leaves

∂δf1
∂t

+ v‖∇‖δf1 +
q

T
F0v‖∇‖φ−

c

B0
[δf1, φ] +

v‖
B0

[

δf1, A‖
]

+
qv‖
TB0

F0

[

φ,A‖
]

+
q

cT
F0v‖

∂A‖

∂t

−
mv2⊥
2TB0

F0
∂δB‖

∂t
+

mecv2⊥
2eB2

0

[

δf1, δB‖
]

−
mecv2⊥
2TB2

0

F0

[

φ, δB‖
]

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(2.8)

This version of the gyrokinetic equation is used to find the electron velocity moments.

We keep four electron moments for our model.

∂

∂t

(

ne

n0
−
δB‖

B0

)

+
c

B0

[

φ,
ne

n0
−
δB‖

B0

]

+∇‖u‖,e+
1

B0

[

u‖,e, A‖
]

+
c

eB0

[

p⊥,e

n0
,
δB‖

B0

]

= 0

(2.9)

∂

∂t

(

u‖,e −
e

cme
A‖

)

+
c

B0

[

φ, u‖,e −
e

cme
A‖

]

−
e

me
∇‖φ+

1

me
∇‖

p‖,e
n0

+
1

meB0

[

p‖,e
n0

, A‖

]

+
c

eB0

[

q⊥,e

n0
,
δB‖

B0

]

= 0

(2.10)

∂

∂t

(

p‖,e
n0T0,e

−
δB‖

B0

)

+
c

B0

[

φ,
p‖,e

n0T0,e
−
δB‖

B0

]

+∇‖
q‖,e

n0T0,e

+
1

B0

[

q‖,e
n0T0,e

, A‖

]

+
mec

eB0

[

r‖,⊥,e

n0T0,e
,
δB‖

B0

]

= 0

(2.11)

∂

∂t

(

p⊥,e

n0T0,e
− 2

δB‖

B0

)

+
c

B0

[

φ,
p⊥,e

n0T0,e
− 2

δB‖

B0

]

+∇‖
q⊥,e

n0T0,e
+

1

B0

[

q⊥,e

n0T0,e
, A‖

]

+
mec

eB0

[

r⊥,⊥,e

n0T0,e
,
δB‖

B0

]

= 0

(2.12)

For the ions, we again start with Equation A.61. We do not, however, use the Taylor

expansion, since k⊥ρi is not always small for the regime in which we are interested.

Instead, we can use Equation A.46 to replace δf1 inside the nonlinear terms.

∂ 〈δf1〉
∂t

+
q

T
F0v‖∇‖ 〈φ〉+

qv‖
TB0

F0

〈[

φ,A‖
]〉

−
〈

qδB‖

TB0
F0v⊥ · ∇⊥φ

〉

+ v‖∇‖ 〈δf1〉

−
c

B0

〈[

δf1,h −
q

T
F0φ, φ

]〉

+
v‖
B0

〈[

δf1,h −
q

T
F0φ,A‖

]〉

−
〈

δB‖

B0
v⊥ · ∇⊥

(

δf1,h −
q

T
F0φ

)

〉

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t
+

q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

+

〈

Ωc
∂δf2
∂θ

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(2.13)
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We assume that the gyroaverage of the last term on the right hand side also evaluates

to zero as it has for the previous orders. If we remove terms that cancel out and

terms that evaluate to zero, we are left with

∂ 〈δf1〉
∂t

+
q

T
F0v‖∇‖ 〈φ〉+ v‖∇‖ 〈δf1〉 −

c

B0
〈[δf1,h, φ]〉+

v‖
B0

〈[

δf1,h, A‖
]〉

+
1

B0
〈[δf1,h,v⊥ ·A⊥]〉

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t
+

q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(2.14)

We can now exploit the fact that δf1,h is independent of gyroangle and move the

gyroaveraging operator in the nonlinear terms to just the fields. If we then use

Equation A.48 to replace δf1,h (introduced by using Equation A.46), and take the

appropriate gyroaverages, we can write

∂ 〈δf1〉
∂t

+
q

T
F0v‖∇‖J0φ+ v‖∇‖ 〈δf1〉 −

c

B0
[〈δf1〉 , J0φ] +

v‖
B0

[

〈δf1〉 , J0A‖
]

+
qv‖
TB0

F0

[

J0φ, J0A‖
]

−
[

〈δf1〉 ,
v2⊥
Ωi

J1

k⊥v⊥/Ωi

δB‖

B0

]

−
q

T
F0

[

J0φ,
v2⊥
Ωi

J1

k⊥v⊥/Ωi

δB‖

B0

]

+
q

cT
F0v‖J0

∂A‖

∂t
−

q

cT
F0

v2⊥
Ωi

J1

k⊥v⊥/Ωi

∂δB‖

∂t
= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(2.15)

where the operator J0 is the zeroth order Bessel function of the first kind in k-space,

and J1 is the first order Bessel function of the first kind. Both have an argument of

k⊥v⊥/Ωi.

This dependence on both space and velocity coordinates makes it impossible

to integrate the nonlinear terms without knowing expressions for the fields and the

pdf. In other words, the Bessel function operators do not commute with the Poisson

bracket or the velocity integral. Instead of trying to integrate this equation exactly,

we approximate the effect of the Bessel functions. We replace J0 and J1/ (k⊥v⊥/Ωi)

with appropriate approximations denoted J̃0 (Equation 2.30) and J̃1 (Equation 2.31),
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that are independent of velocity but not space. This allows us to integrate over

velocity.

Since this equation expresses the evolution of the gyroaveraged ion pdf, the

corresponding moments are for gyroaveraged density, fluid flow, pressure, etc. We

initially keep four moments for the ions as well.

∂

∂t

(

n̄i

n0
− 2J̃1

δB‖

B0

)

+
c

B0

[

J̃0φ,
n̄i

n0
− 2J̃1

δB‖

B0

]

+∇‖ū‖,i +
1

B0

[

ū‖,i, J̃0A‖

]

−2
c

eB0

[

p̄⊥,i

n0
, J̃1

δB‖

B0

]

= 0

(2.16)

∂

∂t

(

ū‖,i +
e

mic
J̃0A‖

)

+
c

B0

[

J̃0φ, ū‖,i +
e

mic
J̃0A‖

]

+
e

mi
∇‖J̃0φ+

1

mi
∇‖

p̄‖,i
n0

+
1

miB0

[

p̄‖,i
n0

, J̃0A‖

]

−2
c

eB0

[

q̄⊥,i, J̃1
δB‖

B0

]

= 0

(2.17)

∂

∂t

(

p̄‖,i
n0T0,i

− 2J̃1
δB‖

B0

)

+
c

B0

[

J̃0φ,
p̄‖,i

n0T0,i
− 2J̃1

δB‖

B0

]

+∇‖
q̄‖,i

n0T0,i
+

1

B0

[

q̄‖,i
n0T0,i

, J̃0A‖

]

−2
mic

eB0

[

r̄‖,⊥,i

n0T0,i
, J̃1

δB‖

B0

]

= 0

(2.18)

∂

∂t

(

p̄⊥,i

n0T0,i
− 4J̃1

δB‖

B0

)

+
c

B0

[

J̃0φ,
p̄⊥,i

n0T0,i
− 4J̃1

δB‖

B0

]

+∇‖
q̄⊥,i

n0T0,i
+

1

B0

[

q̄⊥,i

n0T0,i
, J̃0A‖

]

−2
mic

eB0

[

r⊥,⊥,i

n0T0,i
, J̃1

δB‖

B0

]

= 0

(2.19)

where the overbar indicates a gyroaveraged moment. For example,

n̄i =

∫ ∞

−∞
〈δf1〉 d3v (2.20)

where 〈δf1〉 is defined in Equation A.48. In addition to the particle moments, we

will need to use field equations to close our system. We start with the gyrokinetic

field equations (see Section A.5) and use our definitions of the moments to evaluate

the velocity integrals.
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We start with the gyrokinetic version of Poisson’s equation, Equation A.70.

∫ ∞

−∞
(qeF0,e + qeδf1,e) d

3ve+

∫ ∞

−∞

(

qiF0,i + qi 〈δf1,i〉+
q2i
T0,i

F0 〈φ〉 −
q2i
T0,i

F0φ

)

d3vi = 0

(2.21)

Evaluating this in particle position coordinates gives

−en0,e − ene + en0,i + eJ̃0n̄i +
e2n0,i

T0,i

(

J̃2
0 − 1

)

φ = 0 (2.22)

This must be satisfied order by order to maintain quasineutrality. We assume

quasineutrality and get n0,e = n0,i = n0. And

−
ne

n0
+ J̃0

n̄i

n0
+

e

T0,i

(

J̃2
0 − 1

)

φ = 0 (2.23)

For the parallel part of Ampere’s Law, we start with Equation A.83. For our model,

this becomes

−
c

4π
∇2

⊥A‖ =

∫ ∞

−∞

(

qev‖,eF0,e + qev‖,eδf1,e
)

d3ve

+

∫ ∞

−∞

(

qiv‖,iF0,i + qiv‖,i 〈δf1,i〉+
q2i
T0,i

v‖,iF0,i 〈φ〉 −
q2

T0,i
v‖,iF0,iφ

)

d3v

= −en0u‖,e + en0J̃0ū‖,i

or more succinctly

−
c

4πen0
∇2

⊥A‖ = J̃0ū‖,i − u‖,e (2.24)
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And for the perpendicular part of Ampere’s Law, we start with Equation A.85.

c

4π
∇2

⊥δB‖ = ∇⊥ ·
∫ ∞

−∞
qe 〈ẑ× v⊥,e (F0,e + δf1,e)〉 d3ve

+∇⊥ ·
∫ ∞

−∞
qi

〈

ẑ× v⊥,i

(

F0,i + 〈δf1,i〉+
qi
T0,i

F0,i 〈φ〉 −
qi
T0,i

F0,iφ

)〉

d3vi

=
qek2

⊥
2Ωe

∫ ∞

−∞
v2⊥,e

(

qe
T0,e

F0,eφ+ δf1,e

)

d3ve

+
qik2

⊥
Ωi

∫ ∞

−∞
v2⊥,i

J1

(

k⊥v⊥
Ωi

)

k⊥v⊥/Ωi

(

〈δf1,i〉+
qi
T0,i

F0,i 〈φ〉
)

d3vi

=
qek2

⊥
meΩe

(−n0eφ + p⊥,e) +
qik2

⊥
Ωi

J̃1

(

2p̄⊥,i

mi
+

2n0qiT0,i

T0,imi
J̃0φ

)

= −∇2
⊥

c

B0
(p⊥,e − n0eφ)−∇2

⊥
mic

B0
J̃1

(

2p̄⊥,i

mi
+

2n0qi
mi

J̃0φ

)

again succinctly as

δB‖

B0
= −

4π

B2
0

(p⊥,e − n0eφ)−
8π

B2
0

J̃1

(

p̄⊥,i + n0eJ̃0φ
)

(2.25)

2.4 Closures

Fluid models are based on the idea that the bulk behavior of a group of

particles, which can be described by a particle distribution function, can be captured

as meaningful quantities by taking the average behavior of the whole group [34].

This bulk behavior is broken into an infinite number of quantities - density, mean

velocity, pressure, heat flux, etc. If taken all together, these moments would exactly

capture the dynamics of the particles as described by the Fokker-Planck equation.

However, to avoid keeping track of a potentially infinite number of moments, higher

order moments are often assumed to describe only small to negligible corrections to

the overall behavior of the system.
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On examination of the evolution equations for the moments, one finds that

each moment needs information from a higher order moment to accurately capture

its behavior. In order to close the system, one must determine how many moments

to keep and how to approximate the effect of moments not evolved.

Here we are considering the case of the slow solar wind which is nearly adi-

abatic. This allows us to close the system of equations with the assumption that

q = 0. This closure is somewhat brutal and does not allow us to capture Landau

damping. However, it does allow us to capture the correct linear kinetic response in

the fluid limit of large ξs where ξs =
ω√

2k‖vt,s
. Particularly at low β, this is a good

approximation since vA > vti, vte. For higher values of β the long mean free path

closures of Hammett and co-workers could be employed to model the small parallel

heat fluxes [18] [13]. Here, we are focused on understanding the consequences of ion

gyration on fluctuations with perpendicular wavelengths in the range of the thermal

ion Larmor radius.

In addition, we assume that ū‖,i = 0. If we were to combine the ū‖,i evolution

equation with the u‖,e evolution equation to investigate how A‖ evolves in time, we

find that the contribution from the ū‖,i equation would be smaller than that of the

u‖,e by a factor of the electron to ion mass ratio. We choose not to keep the ū‖,i

evolution equation and simply allow ū‖,i = 0.

We choose J̃0 and J̃1 so that the ion moments capture the corresponding linear

kinetic behavior from the gyrokinetic model. We solve for the linear version of the

field equations in the gyrokinetics framework in Section A.5. We can compare those

results to the linear version of our field equations in the gyrofluid framework to
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choose appropriate approximations.

If we linearize equations 2.9 - 2.12 and 2.16 - 2.19, we can express each of the

moments in terms of fields. This allows us to eliminate the moments from our field

equations in preparation for comparing them to results from gyrokinetics. Poisson’s

equation becomes

[

1− J̃2
0

(

1 +
1

2ξ2i

)

−
T0,i

T0,e

1

2ξ2e

]

φ+
ω

ck‖

[

1

2ξ2i
J̃2
0 +

T0,i

T0,e

1

2ξ2e

]

A‖

−
T0,i

e

[

2

(

1 +
1

2ξ2i

)

J̃1J̃0 −
(

1 +
1

2ξ2e

)]

δB‖

B0
= 0

(2.26)

Because we have made the assumption that ū‖,i = 0, we do not need to consider the

parallel part of Ampere’s Law. However, the perpendicular part tells us

−
[

2J̃1J̃0

(

1 +
1

2ξ2i

)

−
(

1 +
1

2ξ2e

)]

φ+
ω

ck‖

[

2J̃1J̃0
1

2ξ2i
−

1

2ξ2e

]

A‖

−
2T0,i

e

[

4J̃2
1

(

1 +
1

2ξ2i

)

+
T0,e

T0,i

(

1 +
1

2ξ2e

)

+
1

βi

]

δB‖

B0
= 0

(2.27)

In order to compare equations 2.26 and 2.27 to gyrokinetic results, we need to make

a few additional assumptions for the gyrokinetic equations. First, we are in a limit

where k2
⊥ρ

2
e % 1. This allows us to write Γ0,e ≈ 1 − k2

⊥ρ
2
e and Γ1,e ≈ 1 − 3/2k2

⊥ρ
2
e

(see Equations A.66 and A.67). We also take the large argument limit of the plasma

dispersion function, Z (ξ , 1) ≈ −ξ−1 − 2−1ξ−3. This is consistent with the long

mean free path assumption - any short scale perturbations in the parallel direction

are eliminated quickly by free streaming particles. Using these assumptions, we can

write the gyrokinetic version of the equations as

[(

1− Γ0,i

(

1 +
1

2ξ2i

))

−
T0,i

T0,e

1

2ξ2e

]

φ+
ω

ck‖

[

Γ0,i
1

2ξ2i
+

T0,i

T0,e

1

2ξ2e

]

A‖

+
T0,i

e

[

−Γ1,i

(

1 +
1

2ξ2i

)

+

(

1 +
1

2ξ2e

)]

δB‖

B0
= 0

(2.28)
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−
[

Γ1,i

(

1 +
1

2ξ2i

)

−
(

1 +
1

2ξ2e

)]

φ+
ω

ck‖

[

Γ1,i
1

2ξ2i
−

1

2ξ2e

]

A‖

−
2T0,i

e

[

Γ1,i

(

1 +
1

2ξ2i

)

+
T0,e

T0,i

(

1 +
1

2ξ2e

)

+
1

βi

]

δB‖

B0
= 0

(2.29)

Comparing the two sets of equations allows us to fix approximations for J̃0 and J̃1:

J̃2
0 = Γ0,i

(

k2
⊥ρ

2
i

)

= ek
2
⊥ρ

2
i I0

(

k2
⊥ρ

2
i

)

(2.30)

J̃2
1 =

1

4
Γ1,i

(

k2
⊥ρ

2
i

)

= ek
2
⊥ρ

2
i
(

I0
(

k2
⊥ρ

2
i

)

− I1
(

k2
⊥ρ

2
i

))

(2.31)

where I0 and I1 are the zeroth and first order modified Bessel functions of the first

kind, respectively.

2.5 Final Equations

We use our closure assumptions from the previous section to write a final form

for our equations. In addition, we note that the u‖,e terms found in the second and

third electron moments will be smaller than the rest of the terms in their equations

by a factor of the electron to ion mass ratio. We will drop these terms as well.

d

dt

(

ne

n0
−
δB‖

B0

)

= −∇‖u‖,e −
1

B0

[

u‖,e, A‖
]

−
c

eB0

[

p⊥,e

n0
,
δB‖

B0

]

(2.32)

dA‖

dt
= −c∇‖φ+

c

e
∇‖

p‖,e
n0

+
c

eB0

[

p‖,e
n0

, A‖

]

(2.33)

∂

∂t

(

p‖,e
n0T0,e

−
δB‖

B0

)

= 0 (2.34)

∂

∂t

(

p⊥,e

n0T0,e
− 2

δB‖

B0

)

= 0 (2.35)

d

dt

(

n̄i

n0
− 2J̃1

δB‖

B0

)

= 2
c

eB0

[

p̄⊥,i

n0
, J̃1

δB‖

B0

]

(2.36)

d

dt

(

p̄⊥,i

n0T0,i
− 4J̃1

δB‖

B0

)

= 0 (2.37)
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where for the electrons, d
dt =

∂
∂t + [φ, ] and for the ions, d

dt =
∂
∂t +

[

J̃0φ,
]

.

e

T0,i

(

J̃2
0 − 1

)

φ =
ne

n0
− J̃0

n̄i

n0
(2.38)

c

4πen0
∇2

⊥A‖ = u‖,e (2.39)

δB‖

B0
= −

4π

B2
0

(p⊥,e − n0eφ)−
8π

B2
0

J̃1

(

p̄⊥,i + n0eJ̃0φ
)

(2.40)

2.6 Linear Dispersion Relation

In ensure that our model captures the dynamics of Alfvén waves and kinetic

Alfvén waves, we examine the linear dispersion relation of our system of equations.

When linearized, they can be written as
















ω
(

J̃2
0 − 1

)

k‖v
2
Ak

2
⊥ρ

2
i ω

(

2J̃0J̃1 − 1
)

k‖ −ω −
1

τ
k‖

2J̃1J̃0 − 1 0
2

βi
+

2

τ
+ 8J̃2

1



































e

T0,i
φ

e

cT0,i
A‖

δB‖

B0



















= 0 (2.41)

This leads to a dispersion relation of the form

ω2 = k2
‖v

2
Ak

2
⊥ρ

2
i

(2 (τ + βiτΓ1,i) + βi (1 + Γ1,i))

βiτ (1− Γ1,i)
2 − 2 (Γ0,i − 1) (τ + βi + βiτΓ1,i)

(2.42)

where we have replaced J̃0 and J̃1 with their approximations. In the limit where

k2
⊥ρ

2
i % 1, Γ0 → 1 − 1/2k2

⊥ρ
2
i and Γ1 → 1 − 3/2k2

⊥ρ
2
i . We expect Alfvén waves to

dominate in this regime. Our dispersion relation becomes

ω2 = k2
‖v

2
A (2.43)

which recovers the Alfvén wave dispersion relation exactly. In the k2
⊥ρ

2
i , 1 limit,

Γ0,Γ1 → 0. Our dispersion relation becomes

ω2 = k2
‖v

2
Ak

2
⊥ρ

2
i

2τ + βi
2τ + 2βi + 2τβi

(2.44)
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This recovers the kinetic Alfvén wave dispersion relation for small βi and τ = 1.

Though it does not exactly recover the KAW behavior, it does allow for a qualitative

model that can begin to capture finite δB‖ effects.

2.7 Chew-Goldberger-Low Closure

The assumption that q = 0 is reminiscent of the closure used by Chew, Gold-

berger, and Low for their fluid equations, commonly referred to as the CGL equa-

tions [9]. They argue that a consequence of setting q = 0 is that the pressure obeys

the following relations

d

dt

P‖B2

n3
= 0 (2.45)

d

dt

P⊥

nB
= 0 (2.46)

where n is density, B is the magnitude of the magnetic field, and P is the pressure.

If we consider the ions, remove the assumption that their fluid velocity is zero,

and take the k⊥ρi % 1 limit, we can write their continuity and pressure equations

as

∂

∂t

(

ni

n0
−
δB‖

B0

)

+∇‖u‖,i = 0 (2.47)

∂

∂t

(

p‖,i
n0T0,i

−
δB‖

B0

)

+ 3∇‖u‖,i = 0 (2.48)

∂

∂t

(

p⊥,i

n0T0,i
− 2

δB‖

B0

)

+∇‖u‖,i = 0 (2.49)

Using the continuity equation to replace the ∇u‖,i terms in the pressure equations
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allows us to write them as

∂

∂t

(

p‖,i
n0T0,i

+ 2
δB‖

B0
− 3

ni

n0

)

= 0 (2.50)

∂

∂t

(

p⊥,i

n0T0,i
−
δB‖

B0
−

ni

n0

)

= 0 (2.51)

This can be further simplified to

∂

∂t

(

p‖,iδB2
‖

n3
i

)

= 0 (2.52)

∂

∂t

(

p⊥,i

δniB‖

)

= 0 (2.53)

which is consistent with the CGL approximation.
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Chapter 3

Numerics and Computational Results

3.1 Introduction

In this chapter, we describe the code we developed to study the kinetic physics

in the slow solar wind. In Section 3.2, we report the normalizations used, and in

Section 3.3 we describe the numerical algorithms employed. In Section 3.4, we

discuss our verification procedures, and in Section 3.5 we report results from the

initial nonlinear runs.

3.2 Normalizations

Because we are interested in studying the behavior of Alfvén and kinetic Alfvén

waves, we have chosen to normalize our equations to the Alfvén speed, vA, and the

ion Larmor radius, ρi. Relevant quantities can be expressed as

n̂s =
ns

n0
; û‖,s =

u‖,s

vA
; p̂s =

ps
n0T0,i

; ∇̂ = ρi∇

φ̂ =
c

vAB0ρi
φ ; Â‖ =

1

B0ρi
A‖ ; δB̂‖ =

δB‖

B0
; t̂ =

vA
ρi

t

(3.1)

In our equations, we also include a source term that serves to drive the system

at large scales. This is modeled as a virtual antenna.

∇2
⊥A‖ = J‖,plasma + J‖,antenna (3.2)

where J‖,plasma = u‖,e. We choose to write the antenna current in terms of a magnetic
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potential as well, J‖,antenna = ∇2
⊥AA.

The slow solar wind is a nearly collisionless system. However, a few collisions

are necessary to dissipate the energy at high k⊥’s. Our model is not designed to

accurately capture the details of this damping mechanism, but we need some form

of dissipation at small scales to balance the driving term. We express our dissipation

terms in the form

νd
(

−∇̂2
⊥

)m
f (3.3)

where νd = ν and f = n̂e,i for the virtual viscosity term and νd = η and f = Â‖

for the virtual resistivity term. m is a parameter that allows us to control how

much dissipation is included in the system [7]. To guarantee that the dissipation

scale is removed from the inertial range scale, we set m = 3. Our normalized set of

equations with driving and damping becomes

d

dt̂

(

n̂e − δB̂‖

)

= −∇̂‖û‖,e −
[

û‖,e, Â‖

]

−
√

βi
2

[

p̂⊥,e, δB̂‖

]

+ ν∇̂2m
⊥ n̂e (3.4)

dÂ‖

dt̂
= −∇̂‖φ̂+

√

βi
2
∇̂‖p̂‖,e +

√

βi
2

[

p̂‖,e, Â‖

]

+ η∇̂2m
⊥ Â‖ (3.5)

d

dt̂

(

τ p̂‖,e − δB̂‖

)

= 0 (3.6)

d

dt̂

(

τ p̂⊥,e − 2δB̂‖

)

= 0 (3.7)

d

dt̂

(

ˆ̄ni − 2J̃1δB̂‖

)

= 2

√

βi
2

[

ˆ̄p⊥,i, J̃1δB̂‖

]

+ ν∇̂2m
⊥ ˆ̄ni (3.8)

d

dt̂

(

ˆ̄p⊥,i − 4J̃1δB̂‖

)

= 0 (3.9)
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√

2

βi
(Γ0,i − 1) φ̂ = n̂e − J̃0 ˆ̄ni (3.10)

√

2

βi
∇̂2

⊥

(

Â‖ − ÂA

)

= û‖,e (3.11)

2

βi
δB̂‖ = −

(

p̂⊥,e −
√

2

βi
φ̂

)

− 2J̃1

(

ˆ̄p⊥,i +

√

2

βi
J̃0φ̂

)

(3.12)

3.3 Numerical Algorithms

We have employed a 3rd order Adams-Bashforth/2nd order Backwards Dif-

ference Formula (AB3/BDF2) algorithm to advance our equations in time. This

method was first suggested by Hulsen [22] as part of a study of hybrid algorithms

for stiff systems. This hybrid algorithm allows us to take stable large time steps

early on while the contributions from the nonlinear terms are small. The time

step adjusts itself to guarantee that if the shortest wavelength mode is traveling at

the fastest speed of any in the simulation domain, the time step can capture this

behavior. The algorithm can be expressed as

3

2
un+1−2un+

1

2
un−1 =

8∆t

3
N (un)−

7∆t

3
N (un−1)+

2∆t

3
N (un−2)+L (un+1) (3.13)

where u is the state vector, N () is the nonlinear operator, and L () is the linear

operator.

Typically, implicit schemes such as this require a matrix inversion every time

step to solve for un+1. However, we have analytically performed the inversion for

our six time-stepping equations, thus negating the need for the costly operation

each time step. (See Appendix B.) In addition, we have treated ∆t as an analytic

parameter, so no inversions are necessary when the time step changes.
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The spatial grid for the code employs Fourier modes (e−ik·x) as the basis set

in a pseudospectral scheme. Most of the calculations are done in three-dimensional

k-space, taking advantage of the fact that spatial derivatives in real space become

simple multiplications in k-space. This minimizes the memory needed for a given

accuracy since the error of calculating a derivative goes like (1/N)N .

Spectral methods have the advantage that they use the whole grid to calculate

a derivative.

∂f

∂x
= i k f ⇒ ∼ O

(

hN
)

(3.14)

and since h = L
N , this ultimately becomes an error estimate of order (1/N)N .

The non-linear, Poisson bracket terms are calculated in real space where they

can be treated as pure multiplication. The Fourier transforms necessary to carry

this out require de-aliasing, which mandates that we retain only the k-modes that

satisfy k ≤ 2
3kmax, where kmax is the highest k mode our basis set can resolve. This

is due to the fact that the transform will try to resolve wave numbers higher than

kmax and only capture data at the discretization points.

For example, imagine a three point grid in space as in Figure 3.1. The red

mode would describe a wave that has zero value at the end points and a finite value

at the middle point. The green mode would have a zero value at all three grid

points. The blue mode would have zero value at the end points and a finite value

at the middle point - making it indistinguishable from the red mode! The grid has

no way to account for the extra wiggles in the blue mode, and thus cannot resolve

it. For these higher k modes, we set the amplitudes to zero so that their values do
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Figure 3.1: A three point grid would be unable to distinguish the red
mode from the blue mode. They are both zero at the end points and
have some finite value at the middle point. Dealiasing is used to remove
higher modes that cannot be fully resolved by the grid.

not “alias” to a lower mode when transformed.

3.4 Verification

In computation, verification is the process by which one demonstrates that

a given algorithm can solve a desired set of equations accurately. As one moves

from the continuous ideal of pure mathematics to the discrete approximation of

mathematical operators, there are a wealth of potential errors and instabilities into

which one might fall. As a result, an entire branch of computational science and

mathematics has dedicated itself to the study of such potential problems.
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Numerical analysis has developed, and continues to develop, tests that allow

a programmer to assess the strengths and weaknesses of a given algorithm. For

example, through numerical analysis, we can determine the size of a time step that

will allow the maintenance of a given level of accuracy. Through numerical analysis,

we know that dealiasing is a necessary part of an algorithm employing discrete

Fourier transforms. Numerical analysis helps us to determine if a given algorithm

will be able to capture solutions to a given set of equations.

The difficulty comes when we try to study a system of equations of which we do

not know all of the properties. Often, we use computers to probe the boundaries of

what we do not know or understand. In these cases, it is crucial that the algorithms

employed can accurately solve problems which have known solutions and are similar

to or part of larger, more complicated problems.

In order to verify our algorithms, we looked at two different cases. The first

was to test the linear part of the algorithm, including the subroutine to drive the

system and the treatment of the artificial damping terms. The second was to test

the Poisson bracket subroutine.

3.4.1 Linear Test Case

For the linear test case, we used Fourier and Laplace transforms to find the

response of Â‖ to a virtual antenna perturbing the magnetic field, represented as
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ÂA. Analytically, this can be written as

Â‖ = −ω̂2
LÂA

(

e−iω̂dt

(ω̂d − ω̂−) (ω̂d − ω̂+)
+

e−iω̂+t

(ω̂+ − ω̂d) (ω̂+ − ω̂−)
+

e−iω̂−t

(ω̂− − ω̂d) (ω̂− − ω̂+)

)

(3.15)

where ω̂d is the normalized driving frequency of the antenna, ω̂L is the linear disper-

sion relation without damping or driving (the normalized version of Equation 2.42),

and ω̂± are the normalized frequencies from the linear dispersion relation without

driving, but with damping. The frequencies are

ω̂± = −ik̂2m
⊥

2νb+ η (2b− βic2fgτ)

2 (2b− βic2fgτ)

±
i

2 (2b− βic2fgτ)

√

k̂4m
⊥ (2νb− η (2b− βic2fgτ))

2 + 4qk̂2
‖ k̂

2
⊥ (2b− βic2fgτ)

(3.16)

where b, c, f , g, and q are functions of βi, τ , and the Bessel approximations. They

are defined in Appendix B. Figure 3.2 shows the analytic response to the driving

and damping, as well as what the code calculated. Figure 3.3 show the absolute

value of the relative error for the calculation. It is consistent with a second order

accurate scheme.

3.4.2 Nonlinear Test Case

For the Poisson bracket test case, we used a set of reduced MHD equations to

run the Orszag-Tang MHD benchmark [30]. This system consists of two equations

∂

∂t
∇2

⊥φ = −
[

φ,∇2
⊥φ

]

+
[

A‖,∇2
⊥A‖

]

+ ν∇2
⊥φ (3.17)

∂

∂t
A‖ = −

[

φ,A‖
]

+ η∇2
⊥A‖ (3.18)
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Figure 3.2: Verification of the driven, damped linear system. The pre-
dicted and calculated responses agree to within less than 1%.
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Figure 3.3: The absolute value of the relative error between the predicted
and calculated responses for the driven, damped linear system. The
high initial error is due to the error by the computer in calculating the
exponential of a tiny number.
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and initial conditions

φ = −2 (cos x+ cos y) ; A‖ = cos y +
1

2
cos 2x (3.19)

We note that the initial conditions in the original paper contain a sign error or

that the plots in the original paper are oriented incorrectly. These initial conditions

describe two vortices in a hyperbolic tangent type configuration. The calculation

follows them as they collide and form a thin current sheet. Figures 3.4 can be

compared to Figure 5 in the original paper. It shows the total, magnetic, and

kinetic energies as a function of time. Figure 3.5 can be compared to Figure 7 of the

original paper. It shows a contour plot of the current at t = 1. The current sheet

in the middle of the plot is clearly visible.

3.5 Results

The driving mechanism for turbulence in the solar wind is still an open ques-

tion. However, observational evidence suggests that an inertial region with the

appropriate Kolmogorov scaling does exist [1]. We use a virtual antenna to intro-

duce energy into our system at the largest wavelengths, simulating the arrival of

energy at our system size from larger, presumably turbulent scale sizes.

We drove our antenna at three low k⊥ modes corresponding to (kx, ky, kz) =

(1, 2, 1) , (1, 1, 2) , (2, 1, 1) at ωA = 1.2 × 10−4 − i0.6 × 10−4 and amplitude of 500.0

in normalized units. Dissipation was determined by η = ν = 0.5. Our system

encompassed k⊥ρi values of 0.015 through 1.4 in a box that in real space is composed

of 2403 grid points. We used a low β = 0.01 value and τ = 1.0.
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Figure 3.4: Verification of the coding that solves for the nonlinear, Pois-
son bracket terms using the Orszag-Tang problem. These graph shows
the evolution of the energy as a function of time. The top graph is the
result from our code. The bottom graph is Figure 5 of Orszag and Tang’s
paper [30].
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Figure 3.5: Verification of the coding that solves for the nonlinear, Pois-
son bracket terms. This shows a contour of the current at t = 1. A
current sheet is clearing forming in the center of the simulation domain.
This can be compared to Figure 7 of Orszag and Tang’s paper [30].
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The resulting energy spectrum is plotted in Figure 3.6. The magnetic and

electric field energies are aligning themselves with the expected slope of (k⊥ρi)
−5/3.

A slope of (k⊥ρi)
−3/2 fits the data better if we were to include the modes that

are being driven. However, we do not wish to diagnose our virtual antenna, and

conclude that (k⊥ρi)
−5/3 is a better fit for the turbulent system.

Density perturbations are not expected to be seen in purely Alfvénic turbu-

lence, but KAW turbulence would predict the energy in density perturbations to

have a slope of (k⊥ρi)
1/3 at long wavelengths (small k⊥ρi values). The δB‖ spec-

trum appears to be following the same trend.
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Figure 3.6: Energy in the perpendicular magnetic and electric fields are
aligned with a (k⊥ρi)

−5/3 slope as predicted by a Goldreich and Sridhar
Kolmogorov-type argument [17]. Energy in the parallel magnetic field
appears to be following the trend predicted for density fluctuations in
kinetic Alfvén waves in the long wavelength limit corresponding to a
(k⊥ρi)

1/3 slope.
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Chapter 4

Gyrofluid Modeling of Fusion Plasmas and Nonlinear Phase Mixing

4.1 Introduction

Since Alfvén introduced MHD, fluid models have had a rich history of pro-

viding physicists with a greater understanding of plasma systems, their waves, and

instabilities. Using the MHD framework, the plasma community has been able to

create MHD stable fusion devices and to probe the next level of plasma complexity

- their kinetic nature. This has led most notably to the development of gyrokinetic

theory [25] [16] which provides an even richer understanding of a plasma system.

Gyrokinetic models can be expensive to investigate computationally and, as

they involve a fully time, space, and velocity-dependent particle distribution func-

tion, the results can sometimes be difficult to conceptualize. Gyrofluid models seek

to find a compromise between the physics-rich kinetic models and the more intuitive,

less expensive fluid models. The fluid model we describe in this chapter is obtained

by taking moments of the gyrokinetic equation (see Appendix A), thus reducing the

complexity of the equations from five dimensions to three. Closures are chosen to

capture the linear response of the kinetic system - thus capturing kinetic behavior

such as Landau damping and FLR effects.

The model we describe in Section 4.2 was originally developed by Beer et al,

[4]. There has been concern in the past, however, that this model is not sufficiently
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rich enough to capture some of the more important features of turbulence in fusion

devices. In Section 4.3, we propose a potential remedy to this situation, nonlinear

phase mixing by E × B drifts. We describe the physical mechanism involved and

introduce a mathematical representation that can be incorporated into the original

equations.

4.2 Equations

For our modeling of kinetic fusion systems, we use the equations developed by

Beer, et al. [4]. These equations were derived to model low frequency fluctuations

consistent with gyrokinetic orderings (see Equations A.1 and A.2), and maintain

toroidal effects such as curvature and∇B drifts, toroidal finite Larmor radius effects,

and the mirroring force.

This introduces additional terms into the gyrokinetic equation beyond what is

discussed in Chapter 2 and Appendix A. Curvature and ∇B drifts are expressed as

vd =
v2‖
Ω
b̂×

(

b̂ · ∇b̂
)

+
v2⊥
2BΩ

b̂×∇B (4.1)

and are included in addition to the parallel velocity and the E × B drift. We also

keep track of equilibrium gradients for the density and temperatures.

This model evolves six gyrofluid moments - density, parallel velocity, parallel

and perpendicular temperature, and parallel and perpendicular heat flux. As in the

slab geometry case described in Chapter 2, the gyroaveraging operator, J0, needs to

be approximated in order to evaluate the integrals. For this model, the gyro average

of J0 is approximated as Γ1/2
0 where Γ0 is defined in Equation A.66. Gyroaverages
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of more complicated combinations of J0’s and velocities are treated as explained in

[4]. The equations can be written as

∂n

∂t
+ vΨ · ∇n +

[

1

2
∇̂2

⊥vΨ

]

· ∇T⊥ +B∇‖
u‖

B
−

(

1 +
η⊥
2
∇̂2

⊥

)

iω$Ψ+

(

2 +
1

2
∇̂2

⊥

)

iωdΨ

+ iωd

(

T‖ + T⊥ + 2n
)

= 0

∂u‖

∂t
+ vΨ · ∇u‖ +

[

1

2
∇̂2

⊥vΨ

]

· ∇q⊥ +B∇‖
T‖

B
+B∇‖

n

B
+∇‖Ψ+

(

T⊥ + n +
1

2
∇̂2

⊥Ψ

)

∇‖ lnB

+ iωd

(

q‖ + q⊥ + 4u‖
)

= 0

∂T‖

∂t
+ vΨ · ∇T‖ +B∇‖

q‖ + 2u‖

B
+ 2

(

q⊥ + u‖
)

∇‖ lnB − η‖iω$Ψ+2 iωdΨ+ iωd

(

6T‖ + 2n
)

+ 2 |ωd|
(

ν1T‖ + ν2T⊥
)

= −
2

3
νii

(

T‖ − T⊥
)

∂T⊥

∂t
+ vΨ · ∇T⊥ +

[

1

2
∇̂2

⊥vΨ

]

· ∇n+

[

ˆ̂∇⊥
2

vΨ

]

· ∇T⊥ − B∇‖
u‖

B
+B2∇‖

q⊥ + u‖

B2

−
[

1

2
∇̂2

⊥ + η⊥

(

1 + ˆ̂∇⊥
2
)]

iω$Ψ+

(

1 +
1

2
∇̂2

⊥ + ˆ̂∇⊥
2
)

iωdΨ+ iωd (4T⊥ + n)

+ 2 |ωd|
(

ν3T‖ + ν4T⊥
)

=
1

3
νii

(

T‖ − T⊥
)

∂q‖
∂t

+ vΨ · ∇q‖ +
(

3 + β‖
)

∇‖T‖ +
√
2D‖

∣

∣k‖
∣

∣

(

q‖ − q(0)‖

)

+ iωd

(

−3q‖ − 3q⊥ + 6u‖
)

+ |ωd|
(

ν5u‖ + ν6q‖ + ν7q⊥
)

= −νiiq‖

∂q⊥
∂t

+ vΨ · ∇q⊥ +

[

1

2
∇̂2

⊥vΨ

]

· ∇u‖ +

[

ˆ̂∇⊥
2

vΨ

]

· ∇q⊥ +∇‖

(

T⊥ +
1

2
∇̂2

⊥Ψ

)

+
√
2D⊥

∣

∣k‖
∣

∣

(

q⊥ − q(0)⊥

)

+

(

T⊥ − T‖ +
ˆ̂∇⊥

2

Ψ−
1

2
∇̂2

⊥Ψ

)

∇‖ lnB

+ iωd

(

−q‖ − q⊥ + u‖
)

+ |ωd|
(

ν8u‖ + ν9q‖ + ν10q⊥
)

= −νiiq⊥

where

Ψ = Γ1/2
0 (b) Φ ;vΨ =

c

B
b̂× Γ1/2

0 Φ

1

2
∇̂2

⊥ = b
∂Γ1/2

0

∂b
; ˆ̂∇

2

⊥Ψ = b
∂2

∂b2

(

bΓ1/2
0

)

Φ

iω$ =
cTi0

eB2n0
B×∇n0 · ∇ ; iωd =

cTi0

eB3
B×∇B · ∇

(4.2)
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η‖ is the ratio of the density gradient scale length to the parallel temperature gradient

scale length, and η⊥ is the ratio of the density gradient scale length to the perpen-

dicular temperature gradient scale length. νii is the ion -ion collision frequency. β‖,

D‖, D⊥, and ν1−10 are coefficients that are set by the closure assumptions.

This set of equations is ultimately closed using a technique developed by Ham-

mett and Perkins [18] and further expanded by Dorland and Hammett [13] and Beer

and Hammett [4]. Higher moments are expressed as linear functions of lower mo-

ments. The linear functions are then compared to their kinetic counterparts and

the coefficients of the lower moments are adjusted to match the kinetic response of

the system. In this way, the fluid model is able to capture kinetic effects such as

Landau damping and toroidal phase mixing.

In addition to the closure coefficients, q(0)‖ and q(0)⊥ are closure approximations

that allow the gyrofluid equations to capture the linearly-undamped, persistent,

zonal flow behavior [5]. These terms are written as

q(0)‖ = 3ikrρi
qB0

εB
T‖ ; q(0)⊥ = ikrρi

qB0

εB
T⊥ (4.3)

The superscript indicates that these terms are only included when the toroidal wave

number is zero. The q (without subscript) on the right hand side of the equation is

the safety factor and ε is a normalized distance from the magnetic field axis.

4.3 Nonlinear Phase Mixing

The model described in the previous section is able to capture much of the

relevant physics needed to describe tokamak turbulence. However, in a survey of
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models investigating transport by Ion Temperature Gradient(ITG) turbulence in

tokamaks, this gyrofluid model overestimated the flux by a factor of roughly 2

compared to more inclusive gyrokinetic models [12]. We believe the discrepancy can

be remedied by the inclusion of nonlinear phase mixing by E×B drifts.

Imagine that there existed an approximately sinusoidal potential, a simplified

version of the potential one might expect in a system with large zonal flows. If there

existed a density perturbation with a Maxwellian distribution of velocities at the

point were the gradient of the potential was the greatest, as represented by the first

half of the cartoon in Figure 4.1, particles with lower energies and smaller gyroradii

would be accelerated more than particles with greater energies and larger gyroradii.

This is due to the difference in effective gradient of the gyroaveraged potential for

the different sized gyroradii. Larger gyroradii would feel a weaker gradient. This

effect would smear or phase mix away the density perturbation.

This effect was originally introduced by Dorland [13] for the case of slab ge-

ometry, but the belief was that it would not be important in toroidal geometry.

Specifically, simulations did not exhibit large fluctuations at high k⊥ρi’s where this

effect would be strongest. In fact, we expect the strength of this effect to depend on

the gradient of the potential and the relative size of the gyroradii compared to that

gradient. Such that, gradient scale lengths that are long compared to the gyroradii

of the perturbation would take longer to phase mix away the perturbation as in

Figure 4.2. So while the effect might take longer at smaller at k⊥ρi, it can still be

important.

In order to find a mathematical representation of this phenomenon, we start
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Figure 4.1: A cartoon describing nonlinear phase mixing by the E ×B
drift. The rings represent a density perturbation with a Maxwellian dis-
tribution of velocities. The colored ovals represent contours of the elec-
tric potential. Particles with larger gyroradii average over more variation
in the potential’s gradient and feel a weaker electric field than particles
with smaller gyroradii. This creates a mechanism for dissipating the
density perturbation.
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Figure 4.2: Like the previous figure, particles with different gyroradii
experience a different acceleration. However, the distribution of acceler-
ations depends on the size of the gradient compared to the size of the
gyroradii of the particles.
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with the E×B nonlinearity. In a convenient conservative form, we can write it as

∇ ·
(

F
c

B
J0

(

k⊥v⊥
Ω

)

b̂×∇Φ

)

(4.4)

where J0 only acts on the potential. To approximate the Bessel function, we Taylor

expand to

∇·
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F
c

B
b̂×∇Φ

)

−∇·
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B
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i

Φ
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+ · · · (4.5)

To take care of the closure for this sequence of terms, we again assume that

higher moments can be expressed as linear combinations of lower moments. We will

use the parallel pressure moment to demonstrate the closure technique. First, we

integrate over velocity space.

∇ ·
( c

B
p‖b̂×∇Φ

)

−∇ ·
(

r‖,⊥
c

B
b̂×∇

k2
⊥

4Ω2
i

Φ

)

+ · · · (4.6)

We don’t want to evolve r‖,⊥ so we choose a closure such that r‖,⊥ = α1n +

α2T‖ + α3T⊥. If our perturbed distribution function were a Maxwellian, α1 = α2 =

α3 = 1. This technique of assuming the perturbation is itself a Maxwellian is known

as the cumulant discard approximation, because the difference between the actual

value of α and the value of α pertaining to a Maxwellian is known as the cumulant.

However, this is a poor model for describing turbulence [28]. Instead, we choose

α1 and α3 such that all the density and perpendicular temperature terms in the

expansion can be recombined and expressed as vΨ ·∇n+
[

1
2∇̂

2
⊥vΨ

]

·∇T⊥ where any

error is assumed to be in α2 and higher order k⊥ terms. The convective derivative

term vΨ ·∇T‖ also comes from this expansion and is included as part of the full time

derivative. At this point, we neglect any terms of order k4
⊥ or higher. Taking all of
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this into account, we are left with

− (α2 − 1)∇ ·
(

T‖
c

B
b̂×∇

k2
⊥

4Ω2
i

Φ

)

(4.7)

This term of order k2
⊥ is what is missing from our gyrofluid model and represents

the nonlinear phase mixing behavior. It depends on the gradient of the gyroaverage

of Φ as well as the wave number of the perturbation itself.

We can get a better sense of the effect of this term by considering how it alone

effects the particle distribution function in a kinetic formulation. We use a simplified

model for the potential, Φ (x) = Φ0eikxx which approximates zonal flow behavior.

Since J0 only acts on Φ, the argument of J0 will only have kx dependence, too.

∂f

∂t
+ b̂× J0

(

kxvx
Ω

)

∇Φ0e
ikxx · ∇f = 0 (4.8)

Now we consider a simplified pdf f that has a Maxwellian velocity distribution

and sinusoidal variation in the y-direction. If we introduce it at t = 0, we find that

f = FMeikyye
−J0

(

kxv⊥
Ω

)

ikxΦkyt (4.9)

If we Taylor expand the J0 function in order to take moments, we will find

that the moments will depend on time as

m (t) ∝
e−iky(kxΦ)t

1− kyk2
xρ

2
i (kxΦ) t

(4.10)

where the kx’s come from the derivatives of Φ and the ky from derivatives of the

moment. Based on the form of the solution, we would expect the nonlinear phase

mixing term to not only effect the phase of the oscillations, but also provide damping.
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For this reason, our nonlinear phase mixing term will be approximated by

νpm
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∣

∣
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1
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∣

∣

∣

T‖ (4.11)

where the absolute value guarantees damping. We further simplify this expression

by summing over the contribution from the E×B flow so that

ν ′pm = νpm
∑

kx

1

2

∣

∣

∣
∇̂2

⊥vy
∣

∣

∣
(4.12)

This form retains the dependence on the magnitude of vy (the zonal flow), and on

k4
⊥, though in a more simplified fashion. Like our other closure coefficients, we are

free to choose νpm so as to match the kinetic response of the system. This term can

be included in the appropriate moment equations by making the transformation

∂

∂t
→

∂

∂t
+ ν ′pm |ky| (4.13)

It is important to note that this term only represents the damping by the

zonal flows on the other fluctuations and not the reciprocal damping of the other

fluctuations on the zonal flow potential. Because zonal flow structures are typically

large amplitude and persist in time, the last term in the denominator of Equation

4.10, proportional to Φ, is larger for longer. For the smaller amplitude, shorter-lived

perturbations, this term is much smaller, and consequently, so is the damping.

In the next chapter, we describe how we have incorporated this term into a

gyrofluid code and its effect on predicted turbulent heat fluxes.
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Chapter 5

Gyrofluid Models - Results

5.1 Introduction

Gyrofluid models are able to capture trends in turbulent plasma behavior

without the computational and algebraic expense of a complete treatment of all

of the physics, whether the physics is relevant to the behavior or not. Clearly,

we would like to ultimately understand all of the relevant physics, but such an

exhaustive study is currently not practical given time and monetary constraints.

To find a cost effective way forward requires us to make judicious approximations

and find tools that allow us to use what resources we have more efficiently. This is

the niche for gyrofluid models. They are useful for parameter scans and directing

attention to broad features that merit further investigation. They also allow us to

extend our fluid intuition into kinetic regimes.

The gyrofluid model described in Chapter 4 is implemented in the gyrofluid

code gryffin. The equations are solved using local flux tube geometry. The simu-

lation domain is elongated along the field lines and follows them as they twist and

shear. However, this behavior is mapped to a rectangular representation [31] [11]

that allows for the use of periodic boundary conditions and a Fourier representa-

tion [3]. The domain is large enough to accommodate several turbulent correlation

lengths both parallel and perpendicular to the magnetic field.
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gryffin was originally developed to study ITG turbulence. In 2000 it was

included in a study of gyrokinetic and gyrofluid ITG codes. Its predicted turbulent

diffusivity was a factor of roughly 3.5 too high compared to the other codes for an

experimentally relevant set of parameters [12]. With a view to remedy this discrep-

ancy, we have introduced the nonlinear phase mixing term described in Chapter 4.

In this chapter, we present a wide study of the effect of the nonlinear phase mixing

term on gryffin-predicted turbulence levels.

gryffin was not been used actively as a research code in the past decade. As

such, it needed to be updated to work with present day versions of mathematical,

FFT, and data storage libraries. With the changes in the code, we wanted to be

sure that it recovered the same results as previously reported. We have run the code

in linear mode and recovered the predicted growth rates and frequencies originally

reported by Beer, et al. in Figure 6 of [4] and in Figure 2 of [6]. We have also

recovered the results reported in Dimits, et al. [12] which will be described below.

In Section 5.2 we present results from the updated gryffin code and compare

them to studies performed previously that included gyrofluid codes. Specifically,

we look at the Cyclone base case in Section 5.2.1. In Section 5.2.2 we reproduce

a trapped particle scan used to investigate if the inclusion of persistent zonal flow

behavior remedied discrepencies between gyrokinetic and gyrofluid predictions. In

Section 5.2.3 we present the results of a study of Electron Temperature Gradient

turbulence. In Section 5.3 we investigate a situation where general geometry is used.

In Section 5.4, we compare results from gryffin to results from two gyrokinetic

codes showing the applicability of the local flux tube approximation in systems for
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which the gyroradius of the dominant species is small compared to the size of the

device.

5.2 Comparisons to Previous Gyrofluid Studies

5.2.1 Cyclone Base Case

The Cyclone base case is a set of parameters developed from DIII-D H-mode

shot #81499. This case was used to compare various gyrofluid and gyrokinetic codes.

In addition to closely matching experimental parameters, assumptions include ion

and electron densities and temperatures that are equivalent, a ratio of density to

temperature gradient scale length that is Ln/LT = ηi = 3.114, a safety factor

q = 1.4, perfectly toroidal geometry, a shear ŝ ≈ 0.786, a ratio of the major radius

to the temperture gradient scale length R/LT = 6.92, and ε = r/R = 0.18 where

R is the major radius, and r is the distance from the center of the plasma to the

flux surface being studied. In addition, only electrostatic fluctuations are modeled.

Electrons are assumed to be adiabatic, and only one ion species is evolved.

Figure 5.1 is a reproduction of Figure 3 from the comparison paper by Dimits,

et al.[12]. The plus signs represent gryffin’s original predicted diffusivity which was

too high by roughly a factor of 3.5 at the experimentally relevant value of R/LT =

3.114 [12]. With the inclusion of closures that account for the long-time zonal

flows 1, represented by the black diamonds, the discrepancy at that temperature

1Zonal flow behavior is already included in the gyrofluid model. However, it is damped away

over time. The zonal flow closures allow the system to relax to a non-zero zonal flow state.
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gradient drops to a factor of 2. This suggests that while the long-time zonal flows

are important to include, they do not fully account for the discrepancy between the

predictions from gyrofluid and gyrokinetic codes.

We ran a similar temperature gradient scale scan to the one found in the paper,

with and without nonlinear phase mixing. We find that including nonlinear phase

mixing decreases the predicted diffusivity by a factor of roughly 2.5 as can be seen

in Figure 5.2. Thus, the inclusion of nonlinear phase mixing brings the gyrofluid

results into the regime of the gyrokinetic ones.

5.2.2 Trapped Particle Scan

The discrepancy between gyrofluid and gyrokinetic results was originally hy-

pothesized to be the suppression of turbulent flux by long term persistence of large

amplitude zonal flows. Zonal flows were ultimately damped out completely in the

gyrofluid treatment. In order to test this idea, cases were run at three different minor

to major radius ratios, ε = r/R. In the limit ε→ 0, the number of trapped particles

also goes to zero and the zonal flows disappear. Consequently, any discrepancies due

to zonal flows should disappear as well. The initial comparison between gyrofluid

and gyrokinetic results failed to show an ε dependence, maintaining a discrepancy

of roughly a factor of 2 across the scan as shown in Figure 5.3.

The parameters for this test case come from an L-mode shot (#41309) of the

Tokamak Fusion Test Reactor(TFTR) that was originally part of the Numerical

Tokamak Project [10]. For this case, again the ion and electron densities and tem-
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Figure 5.1: Figure 3 from the comparison paper by Dimits, et al. [12].
gryffin’s results originally differed from the gyrokinetic codes by a fac-
tor of 3.5 at the experimentally relevant temperature gradient of 3.114.
With the inclusion of a closure that accounts for long-time zonal flows,
the factor drops to roughly 2.
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Figure 5.2: We ran a similar temperature gradient scan with and without
nonlinear phase mixing. We found that including nonlinear phase mixing
decreases the predicted diffusivity by a factor of roughly 2.5, bringing it
closer to the gyrokinetic code predictions.
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peratures are assumed equal. Electrostatic fluctuations, adiabatic electrons, one ion

species, and perfectly toroidal geometry are again assumed. This time, however,

ηi = 4.0, q = 2.4, ŝ = 1.55, and R/LT = 10.0. The initial case has ε = 0.2; a case

with more trapped particles and a higher ε = 0.4 as well as a no trapped particle,

ε = 0.0 case were also considered. Once again, we replicated the scan and found

that including nonlinear phase mixing decreases predicted diffusivities by roughly

2.5, even in the ε = 0 case. (See Figure 5.4.) Thus, the nonlinear phase mixing is

able to suppress flux even for cases where there is little to no persistent zonal flows.

5.2.3 Electron Temperature Gradient Turbulence

Unlike ITG turbulence, Electron Temperature Gradient (ETG) Turbulence

is not susceptible to large secondary instabilities that create zonal flows. As a

result, we would not expect that including our nonlinear phase mixing term would

have as much of an effect on an ETG simulation. Using the Cyclone Base Case

parameters with gyrokinetic codes, Jenko and Dorland [24] showed that the relative

heat transport for an ETG mode is significantly higher than that of an ITG mode.

Figure 5.5 is taken from their paper and shows an ETG run (top) and an ITG

run (bottom). Figure 5.6 shows two gryffin runs, again with an ETG run (top)

and an ITG run (bottom) on a log scale. Nonlinear phase mixing is included in

both gryffin runs. The results suggest that the effect of nonlinear phase mixing is

enhanced by persistent zonal flow behavior.

53



Figure 5.3: Figure 4 from the comparison paper by Dimits, et al. [12].
gryffin’s results originally differed from the gyrokinetic codes by a fac-
tor of 2 for this parameter set. If the discrepancy were due to zonal flows,
the gyrofluid and gyrokinetic results should agree in the ε = 0 limit.
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Figure 5.4: Ratio of ion thermal diffusivities for models with and without
nonlinear phase mixing for TFTR shot # 41309 parameters. The nonlin-
ear phase mixing brings the predicted diffusivities into better agreement
with gyrokinetic predictions for all values of ε.
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Figure 5.5: Figure 1 from the paper by Jenko and Dorland [24]. The top
curve represents flux from ETG turbulence and the lower curve heat flux
from ITG turbulence. ETG turbulence has a higher relative heat flux
than ITG turbulence because secondary instabilities in ETG turbulence
are weaker and do not lead to the formation of strong zonal flows.
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Figure 5.6: ETG turbulence is not squelched by the nonlinear phase
mixing model. The larger relative flux compared to ITG turbulence is
maintained. This suggests that the effect of nonlinear phase mixing does
have some dependence on zonal flows as expected. Note that this figure
uses a log scale along the ordinate.
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5.3 General Geometry

The Cyclone base case assumes ideal toroidal geometry. However, we would

like to ensure that both gryffin and our nonlinear phase mixing model work in

cases of general geometry. We choose to run a study similar to one included in a

Mikkelsen and Dorland paper on the effect of collisions on zonal flows in a realistic

geometry [29]. Since zonal flows suppress turbulent transport, the fear was that

too high of collisionality would weaken the effect of the zonal flows. The model

they used, and that we use here, is based on the H-mode Alcator C-Mod shot #

960116027 that is included in the ITER Profile Database [15]. We assume adiabatic

electrons and use a collisionality consistent with experimental parameters.

Figure 5.7 shows the temperature gradient scan from the original paper. Figure

5.8 shows the results from gryffin with the nonlinear phase mixing term. We find

that we over predict the heat flux at lower temperature gradients - near marginal

stability, and under predict at higher temperature gradients, thus missing the steep

dependence on temperature gradient scale length originally reported by Mikkelsen

and Dorland. This suggests that our current model of nonlinear phase mixing is too

crude to capture an accurate dependence of flux on LT in a model that also includes

additional complexities such as collisionallity.

5.4 Local Limit

The final test case we consider comes from a study of the radial profile of the

turbulent diffusivity as a function of ρ$, the ratio of the ion sound gyroradius to
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Figure 5.8: Results from gryffin show underdamping at low LT , and
overdamping at high LT , thus missing the stiff dependence of the heat
flux on the temperature gradient scale length.
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the minor radius. In the limit of small ρ$, gyrokinetic codes based on a local, flux

tube geometry should predict the same diffusivities as global gyrokinetic codes. 2

Cyclone base case parameters are again employed. Figure 5.9 is from the original

paper by Candy, Waltz, and Dorland [8] and shows that this is indeed the case.

We ran the gyrofluid code for the same r/a values using a varying safety factor

profile and a varying temperature gradient profile given by

q (r) = 0.854 + 2.184r2 (5.1)

dT

dr
=

(

dT

dR

)

0

[1 + 0.3 (r/a− 0.5)] (5.2)

as in the original paper. Our results are presented in Table 5.1. The second and

third column are the numerical values read from Figure 5.9. The fourth and fifth

columns have converted the numbers to units consistent with gryffin’s output.

Column six reports the values from gryffin. gryffin is able to capture the trend

of the diffusivity radial profile.

5.5 Conclusions

Overall, the inclusion of nonlinear phase mixing brings gyrofluid-predicted,

turbulent heat flux and diffusivity into better agreement with gyrokinetic predic-

tions. Our current model of nonlinear phase mixing appears to suppress turbulent

flux even in the case of little to no persistent zonal flows as shown in the trapped

particle example. At the same time, it does appear to have move of an effect when

2The local, flux tube geometry is explicitly derived in the small ρ! limit.

61



Figure 5.9: Time average diffusivities ξ or Cyclone base case parameters
and varying values of ρ$, the ratio of the ion sound gyroradius to the
minor radius. The lines are from a global gyrokinetic code, GYRO, and
the dots are from the local gyrokinetic code gs2. The results from the
local gyrokinetic code agree with the global code in the limit of small ρ$,
where the local approximations are valid. [8]
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Table 5.1: Comparisons of Diffusivity

r/a Global GK (ρ
2vt
a ) Local GK (ρ

2vt
a ) Glob GK (ρ

2vt
Ln

) Loc GK (ρ
2vt
Ln

) Loc GF (ρ
2vt
Ln

)

0.4 1.0 1.0 1.2 1.2 1.8

0.5 1.9 1.9 2.4 2.4 2.3

0.6 2.1 2.2 2.6 2.8 3.0

persistent zonal flows are present, as demonstrated in the ETG examples. However,

we find that the current model for the nonlinear phase mixing tends to overdamp

the flux at higher temperature gradient scale lengths and underdamp at lower tem-

perature gradient scale lengths. This trend is consistent for the first two and the

fourth studies presented here, but is particularly evident in the case where realistic

geometry is used and collisionality is included.

From these results, we see that our current model is too crude to accurately

track the effect of nonlinear phase mixing for higher temperature gradient scale

lengths particularly when richer physics is included in the model as well. In the

future, we hope to improve the crude model presented here by retaining the spatial

dependence of the E×B drift’s contribution.

Even without the improved model for nonlinear phase mixing, the predicted

fluxes from gryfifn are now close enough to those predicted by gyrokinetics codes

to be used in a turbulent transport solver where the details of turbulent flux calcu-
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lations are less important than the overall flux predicitons. In the next chapter, we

discuss plans for such a coupling.
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Chapter 6

Coupling gryffin to TRINITY

6.1 Introduction

TRINITY is a turbulent transport solver designed to predict and model density

and temperature profiles in fusion devices. Fusion devices often have equilibrium

scale gradients on the order of the size of the device (meters) in addition to the

turbulent structures on the order of the ion Larmor radius (millimeters). Also,

transport time scales are on the order of the lifetime of the discharge (seconds)

while turbulent fluctuations vary on the order of milliseconds.

To resolve behavior at these disparate scales using a single algorithm or grid,

the most direct approach, would require simulation sizes and computational time far

beyond the capacity and lifetime of current supercomputers (see Table 6.1 ). Instead,

carefully constructed algorithms can be used to create density and temperature

equilibrium profiles based on underlying turbulence values. TRINITY is designed to

do precisely that. In Section 6.2, we describe the transport equations that TRINITY

solves. In Section 6.3, we describe the algorithm employed.

6.2 TRINITY Equations

TRINITY evolves the density, toroidal angular momentum (summed over species),
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Table 6.1: Computational Cost of Simulations

Model Spatial Spatial Velocity Velocity Time Time Total
Resolution Grid Resolution Grid Resolution Grid

Points Points Points

Direct
Approach 10−3 cm 1015 107 cm/s 106 10−7 s 107 1028

Full - f
Gyrokinetics 10−3/10 cm 1011 107 cm/s 104 10−6 s 106 1021

Coupled
Gyrokinetic 10−3/10 cm 1011 107 cm/s 104 10−6/10−2 105 1020

Coupled
Gyrofluid 10−3/10 cm 1011 N/A N/A 10−6/ 10−2 105 1016

and pressure moments of the large scale, slowly varying equilibrium of the plasma.

Like the other fluid models described herein, the derivation begins with the Fokker-

Planck equation, Equation A.32, and the gyrokinetic orderings are applied (see

Equations A.1 and A.2). The slow variation of the background distribution func-

tion enters at order ε2, the same order as the time and space variations of δf2.

In order to avoid solving for δf2, we assume that there are no intermediate scale

dynamics that are important to either the equilibrium evolution or the turbulence.

This allows us to average over the intermediate scales in both space and time for

which we expect the variations in δf2 to average to zero. We choose to ignore time

variations of the magnetic field since it evolves on a slower resistive time scale. The

resultant equations can be written in a simplified form as
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∂n

∂τ
=−

∂ψ

∂V

∂

∂ψ

(

∂V

∂ψ
〈〈Γ · ∇ψ〉〉

)

+ C + 〈〈Sn〉〉 (6.1)

∂ 〈L〉t
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= −
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s

∂ψ

∂V

∂
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(

∂V

∂ψ
〈〈Π · ∇ψ〉〉

)

+
∑

s

〈〈SLs〉〉 (6.2)

3
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∂p

∂τ
=−

∂ψ

∂V

∂

∂ψ

[

∂V

∂ψ
〈〈Q · ∇ψ〉〉

]

+ C + Sp +
3

2
n
∑

u

νεu (T − Tu) (6.3)

The double brackets represent the spatial and temporal averaging operators. C

represents the contribution from collisions at this order that are associated with

neoclassical transport. Sn,Ls,p represent source terms for density, species-specific

toroidal angular momentum, and temperature, respectively. The last term in the

heat flux equation represents heat exchange between species. The flux functions in

the gyrokinetic formulation are written as

Γ =

∫ ∞

−∞
[vχδf1,h] d

3v (6.4)

Π =

∫ ∞

−∞

[(

mR2v · ∇φ
)

vχδf1,h
]

d3v (6.5)

Q =

∫ ∞

−∞

[

mv2

2
vχδf1,h

]

d3v (6.6)

where R is the major radius and φ is the toroidal angle. vχ represents the drifts

from the perturbed fields c
B0
b̂×∇χ where χ = Φ+ 1

cv ·A. For the gyrofluid model,

we integrate over velocity. Using the moments from the gyrofluid model described

in Chapter 4 these are written as
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Q =

[

Γ1/2
0

(

T⊥ +
1

2
T‖ +

3

2
n

)

+
1

2
∇̂2

⊥Γ
1/2
0 (n+ T⊥)

]

∇Φ (6.9)

where vt,s is the thermal speed for a given species s and Ω0,s is the gyrofrequency

for a given species s. The transport equations are closed by prescribing boundary

conditions. At the outer edge, boundary conditions can be set by experimental

values or by an analytic form that is appropriately well behaved. The inner boundary

condition is assumed to be the magnetic axis.

6.3 TRINITY Algorithm

TRINITY has the arduous task of trying to resolve short turbulent time scales

while simultaneously capturing behavior on much longer transport scales in fusion

devices. Its approach is to run copies of a sophisticated turbulence code for various

points on a rough spatial and temporal grid on the scale of the full device and the

lifetime of the discharge. Inputs for the turbulence code are dependent on their

position within the grid. The turbulence calculations are allowed to run until the

turbulence reaches a state where the time-averaged flux does not vary much - a sort

of quasi steady state. 1 The flux values are then used at the coarse grid scale and at

each coarse time step, Newton’s method is used to iterate to a converged solution.

1True steady state is not practical in a turbulent system. However, turbulence can settle into a
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Fluxes from the turbulence code at each coarse grid point depend nonlinearly

on the local values of density, temperature, and angular momentum of the overall

system. In order to take large, implicit time steps on the transport level (to solve

Equations 6.1 - 6.3), the nonlinear terms involving the flux functions need to be

linearized. This is done using a Taylor expansion about the grid point, where spatial

dependence is assumed to come through the moments.

In fact, empirical evidence from experiment and numerical simulations suggests

that the fluxes are stiffly dependent on the gradients of the moments at each grid

point. TRINITY’s algorithm is designed to take advantage of this stiffness by only

considering the local, partial derivative of the fluxes with respect to the gradient

scale lengths. To find the local, partial derivative, four turbulence simulations are

run at each grid point: the original plus one each for a slightly different value of one

of the gradient scale lengths - density, electron temperature, and ion temperature.

Fortunately, TRINITY only requires a single number per turbulence simulation

per species for each of the fluxes. This significantly reduces communication from

the turbulence simulations to the transport calculation. Likewise, communication

of the evolution of the profile density and temperature gradients to the turbulence

calculation requires minimal communication.

The minimal communication coupled with the independent turbulence simula-

tions makes TRINITY a good candidate for improved efficiency through a CPU/GPU

hybrid implementation. The next chapter describes GPU computing and ends with

state where it appears to be fluctuating around a nearly constant value. This constant value can

be considered the flux of the quasi steady state.

69



a discussion of how TRINITY can be ported to a CPU/GPU cluster.

70



Chapter 7

GPU Computing

7.1 Introduction

In the last couple of years, GPU computing has established itself as a likely

candidate to join the ranks of High Performance Scientific Computing options. Sci-

entific research groups have reported code speed-ups of anywhere between 10 and

150 times their CPU versions. Graphical Processing Units (GPUs) were originally

developed to speed up graphics rendering, in particular to allow computer games to

include more visual details without slowing down the pace of the game. As a result,

designers developed chips with many arithmetic logic units (ALUs), making it more

efficient to calculate and extrapolate image data than to store and retrieve it. ALUs

are where most of the numerical calculations on a chip occur and as their number

increases, so does the potential to perform more calculations per clock cycle. It

also creates the potential for these calculations to happen in parallel, making GPUs

particularly attractive for scientific computing applications, and allows for the code

accelerations reported.

In the past, however, it has only been possible to program GPUs using an

application programming interface (API) specifically designed for graphics. This

required not only specialized knowledge of graphics computer languages, but also

the ability to cast one’s problem in a graphics framework. This programming model
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had a reputation for a steep learning curve and was generally avoided.

In 2007, nVIDIA released a new approach to programming on GPUs, particu-

larly for non-graphics programmers. Compute Unified Device Architecture (CUDA)

was designed as a hybrid software and hardware architecture for utilizing GPUs with

its own APIs. CUDA as a language is a natural extension of C for working on a

parallel architecture, making it readily accessible to C programmers. Unfortunately,

the hybrid nature of the approach does mean that CUDA only works on nVIDIA

hardware. 1

CUDA was designed with the C/C++ programmer in mind. However, it is not

impossible for FORTRAN programmers and codes to take advantage of CUDA. In

this chapter, we describe the middleware library we developed to allow FORTRAN

to take advantage of CUDA and GPUs. We also describe some of our successes and

failures in adapting CUDA to our scientific applications.

7.2 FLAGON

FLAGON (Fortran-9x Library for GPU Numerics) is an interface between C-

based nVIDIA CUDA and scientific codes written in FORTRAN-9x. The goal of

FLAGON is to allow a user to program on a GPU in a framework that is native

to FORTRAN. In order to do this, FLAGON allows the user to call functions and

subroutines that allocate data on the GPU, transfer data between the GPU and

1An open source language known as OpenCL has been developed which is based very closely on

CUDA and can be used on a wide variety of proprietary architectures. Its main focus is creating

a language that can be used across heterogenous hardware.
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CPU, and call the CUDA FFT library, CUFFT, the CUDA linear algebra package,

CUBLAS, and the open source scanning package, cudpp. FLAGON also includes a

consistent framework to call kernels written on the GPU. All of this is done through

wrappers which hide the C/C++ specific details.

FLAGON’s framework to call GPU kernels makes it particularly powerful and

easy to use. Loops on CPUs are easily ported to GPU kernels. For example, consider

the following simple loop:

do i = 1, N

a(i) = b * c(i)

end do

where a and c are arrays of rank 1, and b is a scalar.

The CPU executes this code in serial, meaning that the middle line is executed

sequentially N number of times. On a GPU, the number of serial trips through the

loop can be replaced by many threads doing the same line of code at the same time,

but with different i values. The corresponding code in a CUDA kernel would look

like

int tid = blockIdx.x*blockDim.x + threadIdx.x;

a[tid] = b * c[tid]

where blockIdx.x, blockDim.x, and threadIdx.x are CUDA intrinsic variables

unique to each thread.

FLAGON provides a way to call GPU kernels from FORTRAN using the

CUDA Driver API. This API assigns objects, such as kernels, modules, or processes,
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“handles” or unique identifiers that are assigned when the object is created. These

handles are then passed to functions that assign it various attributes or act on it

some way. For example, a handle belonging to a kernel would be sent to a function

that assigns it a certain number of threads organized into a user-specified format.

The handle might then be sent to a function that tells it what parameters the kernel

will need for execution - including pointers to any arrays. Ultimately, the handle

would be sent to a function that actually executes the kernel.

FLAGON hides all of this handle passing, written in C, in wrapper functions.

These wrapper functions accept as input the name of the kernel, the parameters

needed by the kernel (organized into arrays), and the block size and shapes desired

for execution. Block size and shape determinations are left to the user since these

can be factors in optimization that can vary from application to application.

A typical program might be structured in the following way:

• FLAGON is opened and some initial parameters are set with a call to open devObjects

• The file containing specialized kernels is loaded onto the GPU with a call to

fc LoadDevFunc.

• Memory on the GPU is allocated by defining a data object of type devVar.

This is done through use of the function allocate dv. This data type stores

the pointer to the GPU memory as well as information about the data size,

shape, and type.

• Data is initialized on the CPU and transfered to the GPU through the use of

the transfer subroutines.
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• Data on the GPU is manipulated through the use of custom-made kernels.

Kernels are launched through calls to devf explicit execute. Arguments

passed to these execute subroutines require their arguments in a specific order:

first, the number of devVar’s needed by the kernel; second, the number of

integer parameters needed by the kernel; third, the number of real parameters

needed by the kernel; fourth, an array of pointers to the devVar’s; fifth, an

array of the integer parameters; sixth, an array of the real parameters; seventh,

the number of bytes of shared memory needed by the kernel; eighth - tenth,

the number of thread blocks desired in the x-,y-,and z-directions; eleventh and

twelfth, the number of grids desired in the x- and y-directions.

• Data on the GPU is transfered back to the CPU for diagnostics, plotting, etc.

• FLAGON is closed with a call to close devObjects

7.3 Test Cases

7.3.1 Orszag-Tang

As a proof of principle exercise, we took the code developed to solve the

Orszag-Tang reduced MHD equations (see Section 3.4) and ported it to the GPU.

This version of this code only used the explicit part of the algorithm described in

Section 3.3 and is structured such that each mode can be evolved in time almost

in parallel. Loops, like those used in the time-stepping algorithm, were replaced

by kernel calls. The calculation of the nonlinear terms requires the use of FFTs, a
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process that requires information from all of the modes. These can be solved using

CUDA’s FFT library, CUFFT.

This code gave us the opportunity to test FLAGON’s ability to transfer data

to and from the GPU, to execute custom-made kernels, and to interact with the

CUDA libraries. Table 7.1 compares the amount of time the Orszag-Tang code took

to run on a GPU, a dual core CPU, and on eight cores of a CPU. The GPU used

was a GeForce 9800 GTX with 128 cores and 512 MB of memory. The dual core

CPU was an IntelR© PentiumR© 4. The eight cores were part of the Supercomputer

Bassi at NERSC, and the processors are IBM Power 5 cores.

Table 7.1: Comparison of run times for an Orszag-Tang Reduced MHD code. N2 is

the problem size. The next three columns are total run times reported in seconds.

Numbers in parenthesis indicate the number of processors on the CPU. The last

two columns are ratios. Run times were calculated to include initializations and

I/O time.

N2 CPU (2) CPU (16) GPU CPU (16)/GPU CPU (2)/GPU

2562 209 209 26 8 8

10242 40,991 19,107 1,455 13 28
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7.3.2 MPI and FLAGON

In addition to the two-dimensional Orszag-Tang Reduced MHD code, we

ported a three-dimensional Reduced MHD code with twice as many nonlinear terms

to the GPU. On the GeForce 9800 GTX GPU, we were able to run on a grid of 512

x 512 x 4 at a rate of approximately 6 timesteps/sec. Like the Orszag-Tang code,

this includes 2 FFTs each timestep.

However, in order to run the more sophisticated six-moment model with a

fully hybrid algorithm, we would need more memory. As a result, we added the

capability of using MPI with FLAGON and developed a dual GPU version of the

original Orszag-Tang code.

This dual GPU version splits the calculation such that one of the two variables

(stream function or parallel magnetic potential) resides on each card. Since the

equations are coupled, copies of the variables are exchanged once each time step.

The calculation of kinetic energy is performed on one card, magnetic energy on the

other. Both are sent back to the CPU and then to a single thread to be written to

output.

We compared the dual GPU version to the single GPU version, to a serial CPU

version, and to an OpenMP version of the code. The OpenMP version of the code is

similar to the serial version of the code, but the compiler parallelizes the do-loops.

For the machine and architecture used, four threads were spawned to perform the

work.

We timed the four versions of the code for five different problem sizes. The
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three smallest sizes were run with a time step of 10−3. The two larger sizes were

run with a time step of 10−4. The results can be found in Table 7.2.

Table 7.2: Time for a single run of the Orszag-Tang code in seconds.

Size 1 GPU 2 GPUs CPU OpenMP

642 17.2 16.2 1.4 2.3

1282 19.1 18.2 5.7 7.8

2562 27.2 28.3 31.4 34.4

5122 612.0 796.5 2122.4 2249.4

10242 2123.4 3135.4 12075.0 12458.2

For the smallest two problem sizes, the serial CPU version runs faster than

the other code versions. We assume that the overhead to spawn OpenMP threads is

greater than the advantage of having multiple threads perform the calculations for

so small a problem size. However, this does not explain why the OpenMP version

runs slower even for larger problem sizes.

Assuming the overhead is the same whether four threads or eight threads are

spawned, we ran the 512 x 512 case with eight threads. However, this calculation

took nearly twice as long - 4120.6 sec. If we decreased the number of threads to two,

the calculation took 2182.4 sec. This implies that whatever is causing the OpenMP

version to run longer is dependent on the number of threads.

For the smaller problem sizes, we assume that the time it takes to transfer
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data between the CPU and GPU dominates the run time for the GPU versions of

the code causing them to take longer than the CPU versions.

For the larger problem sizes, the single GPU code runs more quickly than the

MPI dual GPU code. This implies that the time it takes to transfer data from one

GPU to another is greater than the time saved by splitting up the calculation. We

timed how long it took transfer data between the CPU and GPU and the time it

took to transfer data between two MPI threads. The results are found in Table

7.3. The larger problem sizes require a smaller time step, thus requiring more data

transfers per run.

Our Orszag-Tang code does not fit well into the distributed memory, embar-

rassingly parallel regime that one might expect to benefit the most from a combined

GPU, MPI approach. However, it does serve to show that MPI can be used to-

gether with FLAGON to generate correct results. In addition, this exercise allowed

the development of functions required for such an approach.

7.4 Conclusions and Future Work

GPU computing is a powerful tool for solving complicated physical systems.

As long as the code maintains an ‘embarassingly’ parallel structure, a single problem

can be distributed over several GPUs. However, if communication between GPUs

is necessary, the technology does not yet exist to make this efficient.

nVIDIA, however, has taken a different approach and has released a new line

of GPUs known as the “Fermi” or “Tesla” series. The newest cards boast 6.0 GB of
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Table 7.3: Amount of time for data transfers in the Orszag-Tang code. Time values

are in seconds. The GPU/CPU time reflects the total time it takes to transfer data

to the GPU and back to the CPU. This dual transfer occurs once per GPU per time

step. The CPU/CPU time reflects the total time it takes for each MPI thread to

receive and send data. This operation also occurs once per time step.

Size GPU / CPU CPU / CPU

64 x 64 7.8 x 10−5 6.3 x 10−5

128 x 128 1.6 x 10−4 1.6 x 10−4

256 x 256 3.9 x 10−4 5.9 x 10−4

512 x 512 1.6 x 10−3 3.4 x 10−3

1024 x 1024 6.0 x 10−3 1.8 x 10−2
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memory and 448 cores. Even our more sophisticated model and algorithm described

in Chapters 2 and 3 should be able to fit on a card this size.

The high parallelism of TRINITY’s algorithm makes it an ideal candidate to be

run on a heterogeneous architecture where the more sparse, equilibrium level grid

can live on the CPU and the individual turbulence calculations can be run each on

its own GPU. Fortunately, gryffin is a small enough code that it should easily fit

onto the state of the art GPUs. While gryffin is not in a position to capture the

details of accurate turbulence and transport calculations, it can certainly be used to

direct the fusion community’s focus to potentially interesting regions of parameter

space. In this way, we hope to create a tool for understanding the vast parameter

space for fusion devices that have as of yet gone unexplored due to limited resources.
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Appendix A

Derivation of the Gyrokinetic Equations

This appendix contains a derivation of the gyrokinetic equation that is used

as a basis for taking moments to develop the gyrofluid equations. I follow similar

derivations worked out by Greg Howes, et al.[21] and Alex Schekochihin, et al. [33].

A.1 Initial Assumptions

These equations are derived in a slab geometry with a background magnetic

field, B0 = B0ẑ, and a spatially uniform equilibrium distribution function, ∇F0 = 0.

Weak coupling, strong magnetization, low frequencies, and small fluctuations are

assumed. Weak coupling is inherent to the definition of a plasma. Small fluctua-

tions mean that the ion Larmour radius is much smaller than the macroscopic scale

length(ie the system size), and low frequencies mean that structures of interest are

evolving much more slowly than the ion cyclotron frequency. In symbols,

ρi % L , ω % Ωi
(A.1)

Our ordering parameter is defined based on length scales so that

ε =
ρi
l0

% 1 (A.2)

where l0 is a typical parallel wavelength of the fluctuations of the system. We also

assume a separation of three time scales:
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• A large ion cyclotron frequency, Ωi

• A smaller turbulence/fluctuation frequency, ω ∼ vti
l0

∼ O (εΩi)

• And a transport rate, 1
theat

∼ ε2ω ∼ O (ε3Ωi)

Collisions are on the order of the turbulence frequency.

There are only four quantities of which we keep track: the ion distribution

function, the electron distribution function, the magnetic field, and the electric

field. These quantities can be expanded in orders of epsilon. The equilibrium

portion of all four quantities is assumed to vary on the slowest time scale, that of

the transport rate. We choose to work in a frame where the electric field has no

equilibrium component, and there are no initial equilibrium flows. Our quantities

can be written as follows:

fs (r,v, t) = F0,s (v, t) + δf1,s (r,v, t) + δf2,s (r,v, t) + . . . (A.3)

B (r, t) = B0 + δB (r, t) = B0ẑ+ δB‖ (r, t) ẑ+∇×A‖ (r, t) ẑ (A.4)

E (r, t) = δE (r, t) = −∇φ (r, t)−
1

c

∂

∂t
A (r, t) (A.5)

where fs is the particle distribution function with the subscript s denoting the

species, and φ and A are the electric and magnetic potentials, respectively.

Perturbed fields are assumed to order as follows:

δB

B0
∼ ε ;

δE

B0vt/c
∼ ε (A.6)

Spatial scales are anisotropic so that fluctuations perpendicular to the back-

ground magnetic field are on the order of the ion Larmor radius, and the fluctuations
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parallel to the background magnetic field are on the order of the system size.

k⊥ ∼
ẑ×∇δf

δf
∼

ẑ×∇δB
|δB|

∼
ẑ×∇δE
|δE|

∼ O
(

1

ρi

)

(A.7)

k‖ ∼
ẑ · ∇δf
δf

∼
ẑ · ∇δB
|δB|

∼
ẑ · ∇δE
|δE|

∼ O
(

1

l0

)

(A.8)

A.2 Useful Mathematical Definitions

We can describe the particles’ position as:

r = Rgc −
v × ẑ

Ωi
(A.9)

where Rgc is the position of the guiding center. The velocity can be expressed (in

cylindrical coordinates) as

v = v‖ẑ+ v⊥ (cos θx̂+ sin θŷ) (A.10)

where v‖ and v⊥ are constants.

We will sometimes use the following coordinates to describe the velocity

ε =
mv2

2
+ qφ ; µ =

v2⊥
2B0

; θ = tan−1

(

vy
vx

)

(A.11)

where ε is the energy of the particle, µ is the magnetic moment, and θ is the

gyroangle. The velocity derivative in these coordinates is

∂

∂v
= v

∂

∂ε
+

v⊥

B0

∂

∂µ
−

v⊥ × ẑ

v2⊥

∂

∂θ
(A.12)
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The differential in the integral becomes

d3v =
B0

v‖
∂ε∂µ∂θ (A.13)

The derivative w.r.t. time of the particle position can be expressed in guiding

center coordinates as follows:

(

∂

∂t

)

r

=

(

∂

∂t

)

Rgc

+
dRgc

dt
·

∂

∂Rgc
(A.14)

The derivative w.r.t. time in guiding center coordinates can be written as

follows

dRgc

dt
= v +

1

Ωc
a× ẑ (A.15)

= v +
1

Ωc

q

m

(

δE+
1

c
v× B0ẑ+

1

c
v × δB

)

× ẑ (A.16)

= v +
c

B0
δE× ẑ− v⊥ + v‖

δB⊥

B0
− v⊥

δB‖

B0
(A.17)

= v‖ẑ+
c

B0
δE× ẑ+ v‖

δB⊥

B0
− v⊥

δB‖

B0
(A.18)

= v‖ẑ+
c

B0
δE× ẑ+ v‖

δB⊥

B0
− v⊥

δB‖

B0
(A.19)

(A.20)

Expressing this in terms of potentials:

dRgc

dt
= v‖ẑ −

c

B0
∇⊥φ× ẑ −

1

B0

∂A⊥

∂t
× ẑ +

v‖
B0
δB⊥ −

δB‖

B0
v⊥

vth
c
B0

1
ρs
εB0

vth
c ρ

1
B0
ωεB0ρ

vth
B0
εB0 εB0

B0
vth

(A.21)

The top line contains the terms in the equation, and the bottom line contains
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various constants and the expansion parameter. I will be using this method to

express the order of various terms throughout the rest of this derivation.

dRgc

dt
= v‖ẑ −

c

B0
∇⊥φ× ẑ −

1

B0

∂A⊥

∂t
× ẑ +

v‖
B0
δB⊥ −

δB‖

B0
v⊥

vth εvth ε2vth εvth εvth

(A.22)

Keeping terms through O (ε)

dRgc

dt
= v‖ẑ−

c

B0
∇⊥φ× ẑ+

v‖
B0
δB⊥ −

δB‖

B0
v⊥ (A.23)

We will also use the second derivative w.r.t. time

d2R

dt2
=

1

v‖

dε

dt
ẑ−

B0

2v‖

∂µ

∂t
ẑ+

[

B0

v⊥
cos θ

∂µ

∂t
− v⊥ sin θ

∂θ

∂t

]

x̂+

[

B0

v⊥
sin θ

∂µ

∂t
+ v⊥ cos θ

∂θ

∂t

]

ŷ

(A.24)

Using ∂µ
∂t = 0 and ∂θ

∂t = Ωc, we can write

d2R

dt2
=

1

v‖

dε

dt
ẑ− v⊥ sin θΩcx̂+ v⊥ cos θΩcŷ (A.25)

The energy derivative can be expressed as

dε

dt
= mv ·

dv

dt
+ q

∂φ

∂t
+ qv‖∇‖φ+ qv⊥ · ∇⊥φ (A.26)

= qv · E+ qv · v ×B+ q
∂φ

∂t
+ qv‖∇‖φ+ qv⊥ · ∇⊥φ (A.27)

= −qv‖∇‖φ−
q

c
v‖
∂A‖

∂t
− qv⊥ · ∇⊥φ−

q

c

∂A⊥

∂t
+ q

∂φ

∂t
+ qv‖∇‖φ+ qv⊥ · ∇⊥φ(A.28)

= −
q

c
v‖
∂A‖

∂t
−

q

c

∂A⊥

∂t
+ q

∂φ

∂t
(A.29)
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We use two types of gyroaverages, one keeps Rgc fixed and the other keeps r

fixed. The first is the ring average at fixed guiding center:

〈a (r,v, t)〉
Rgc

=
1

2π

∮

dθ a

(

Rgc −
v× ẑ

Ωi
,v, t

)

(A.30)

The second is the ring average at fixed position:

〈a (R,v, t)〉
r
=

1

2π

∮

dθ a

(

r+
v × ẑ

Ωi
,v, t

)

(A.31)

both integrations are done keeping v constant.

A.3 The Fokker-Planck Equation

We begin with the Fokker-Planck equation.

∂fs
∂t

+ v · ∇fs +
qs
ms

(

−∇φ −
1

c

∂A

∂t
+

1

c
v ×B

)

·
∂fs
∂v

=

(

∂fs
∂t

)

c

(A.32)

where qs is the charge for a given species, ms is the mass of a given species, c is the

speed of light, and ()c represents collisions.

We consider only one species and drop the subscript s. Including perturbations

and explicitly separating parallel and perpendicular directions, we can write
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∂F0

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+ v⊥ · ∇⊥δf1 + v⊥ · ∇⊥δf2 + v‖∇‖δf1 + v‖∇‖δf2 −
q

m
∇⊥φ ·

∂F0

∂v⊥

−
q

m
∇⊥φ ·

∂δf1
∂v⊥

−
q

m
∇⊥φ ·

∂δf2
∂v⊥

−
q

m
∇‖φ

∂F0

∂v‖
−

q

m
∇‖φ

∂δf1
∂v‖

−
q

m
∇‖φ

∂δf2
∂v‖

−
q

m

∂A⊥

∂t
·
∂F0

∂v⊥

−
q

m

∂A⊥

∂t
·
∂δf1
∂v⊥

−
q

m

∂A⊥

∂t
·
∂δf2
∂v⊥

−
q

m

∂A‖

∂t

∂F0

∂v‖
−

q

m

∂A‖

∂t

∂δf1
∂v‖

−
q

m

∂A‖

∂t

∂δf2
∂v‖

+
q

mc
v⊥ ×B0 ·

∂F0

∂v⊥
+

q

mc
v⊥ ×B0 ·

∂δf1
∂v⊥

+
q

mc
v⊥ ×B0 ·

∂δf2
∂v⊥

+
q

mc
v⊥ × δB‖ ·

∂F0

∂v⊥

+
q

mc
v⊥ × δB‖ ·

∂δf1
∂v⊥

+
q

mc
v⊥ × δB‖ ·

∂δf2
∂v⊥

+
q

mc
v⊥ ×B⊥ ·

∂F0

∂v‖
+

q

mc
v⊥ ×B⊥ ·

∂δf1
∂v‖

+
q

mc
v⊥ ×B⊥ ·

∂δf2
∂v‖

+
q

mc
v‖ ×B⊥ ·

∂F0

∂v⊥
+

q

mc
v‖ ×B⊥ ·

∂δf1
∂v⊥

+
q

mc
v‖ ×B⊥ ·

∂δf2
∂v⊥

= C (F0, F0) + C (δf1, F0) + C (δf2, F0) + C (F0, δf1) + C (F0, δf2) + C (δf1, δf1) + C (δf1, δf2)

+C (δf2, δf1) + C (δf2, δf2)

(A.33)

We order these terms based on ω, remembering that the equilibrium quantities

change on the order of the transport rate, ε2ω.
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∂F0

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+v⊥ · ∇⊥δf1

ε2ωF0 εωF0 ε2ωF0 ωF0

+v⊥ · ∇⊥δf2 +v‖∇‖δf1 +v‖∇‖δf2 −
q

m
∇⊥φ ·

∂F0

∂v⊥

εωF0 εωF0 ε2ωF0 ωF0

−
q

m
∇⊥φ ·

∂δf1
∂v⊥

−
q

m
∇⊥φ ·

∂δf2
∂v⊥

−
q

m
∇‖φ

∂F0

∂v‖
−

q

m
∇‖φ

∂δf1
∂v‖

εωF0 ε2ωF0 εωF0 ε2ωF0

−
q

m
∇‖φ

∂δf2
∂v‖

−
q

mc

∂A⊥

∂t
·
∂F0

∂v⊥
−

q

mc

∂A⊥

∂t
·
∂δf1
∂v⊥

−
q

mc

∂A⊥

∂t
·
∂δf2
∂v⊥

ε3ωF0 εωF0 ε2ωF0 ε3ωF0

−
q

mc

∂A‖

∂t

∂F0

∂v‖
−

q

mc

∂A‖

∂t

∂δf1
∂v‖

−
q

m
c
∂A‖

∂t

∂δf2
∂v‖

+
q

mc
v⊥ ×B0 ·

∂F0

∂v⊥

εωF0 ε2ωF0 ε3ωF0
1
εωF0

+
q

mc
v⊥ ×B0 ·

∂δf1
∂v⊥

+
q

mc
v⊥ ×B0 ·

∂δf2
∂v⊥

+
q

mc
v⊥ × δB‖ ·

∂F0

∂v⊥
+

q

mc
v⊥ × δB‖ ·

∂δf1
∂v⊥

ωF0 εωF0 ωF0 εωF0

(A.34)
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+
q

mc
v⊥ × δB‖ ·

∂δf2
∂v⊥

+
q

mc
v⊥ ×B⊥ ·

∂F0

∂v‖
+

q

mc
v⊥ ×B⊥ ·

∂δf1
∂v‖

+
q

mc
v⊥ ×B⊥ ·

∂δf2
∂v‖

ε2ωF0 ωF0 εωF0 ε2ωF0

+
q

mc
v‖ ×B⊥ ·

∂F0

∂v⊥
+

q

mc
v‖ ×B⊥ ·

∂δf1
∂v⊥

+
q

mc
v‖ ×B⊥ ·

∂δf2
∂v⊥

= C (F0, F0)

ωF0 εωF0 ε2ωF0 ωF0

+C (δf1, F0) +C (δf2, F0) +C (F0, δf1) +C (F0, δf2)

εωF0 ε2ωF0 εωF0 ε2ωF0

+C (δf1, δf1) +C (δf1, δf2) +C (δf2, δf1) +C (δf2, δf2)

ε2ωF0 ε3ωF0 ε3ωF0 ε4ωF0

(A.35)

A.3.1 Lowest Order: Constraints on F0

To lowest order, O (1/ε), this gives

q

mc
v⊥ ×B0 ·

∂F0

∂v⊥
= 0 (A.36)

which simplifies down to

∂F0

∂θ
= 0 (A.37)

This means that F0 can not depend on gyro-angle.
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A.3.2 The next lowest order: F0, a particular solution for δf1, and

constraints on the particular solution of δf1

The next order, O (1), equation gives,

v⊥ · ∇⊥δf1 −
q

m
∇⊥φ ·

∂F0

∂v⊥
+

q

mc
v⊥ ×B0 ·

∂δf1
∂v⊥

+
q

mc
v⊥ × δB‖ ·

∂F0

∂v⊥

+
q

mc
v⊥ ×B⊥ ·

∂F0

∂v‖
+

q

mc
v‖ ×B⊥ ·

∂F0

∂v⊥
= C (F0, F0)

(A.38)

The fourth term doesn’t survive due to the constraint on F0 from the previous

order. At this point, we can multiply the above equation by 1 + lnF0 and integrate

over all of phase space. We argue that the perturbed quantities average to zero in

physical space. This assumption eliminates all terms except for the collisional term.

∫

d3x

∫

d3v (lnF0C (F0, F0)) = 0 (A.39)

Boltzmann’s H-theorem tells us that F0 must be Maxwellian in order for F0

to satisfy the above equation while keeping entropy constant.

F0 =
n0

(2π)3/2 v3t
exp

(

−
v2

2v2t

)

(A.40)

If we plug this solution back into Equation A.38, the fifth and sixth terms

cancel out. Also, because F0 is a Maxwellian, C (F0, F0) = 0.

v⊥ · ∇⊥δf1 − Ωi
∂δf1
∂θ

+
q

m
v⊥ · ∇⊥φ

1

v2t
F0 = 0 (A.41)

Assuming the temperature is a constant, we can write this as
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v⊥ · ∇⊥δf1 − Ωi
∂δf1
∂θ

= −v⊥ · ∇⊥

(

qφ

Ti

)

F0 (A.42)

The particular solution can be chosen to be

δf1,p = −
q

T
φF0 (A.43)

= −
q

T
φ

n0

π3/2v3t
exp

(

−
v2

2v2t

)

(A.44)

The homogenous solution must then satisfy

v⊥ · ∇⊥δf1,h − Ωi
∂δf1,h
∂θ

= Ωi

(

∂δf1,h
∂θ

)

Rgc

= 0 (A.45)

We see that δf1,h is independent of gyrophase as well. Altogether, we have

δf1 = δf1,h −
q

T
φF0 (A.46)

We can express δf1 in terms of its gyrophase dependent and independent parts.

In order to do this, let’s take

〈δf1〉Rgc
= 〈δf1,h〉Rgc

−
〈 q

T
φF0

〉

Rgc

(A.47)

We’ve already shown that δf1,h and F0 are independent of θ at fixed guiding

center, Rgc, and q and T are constants.

〈δf1〉Rgc
= δf1,h −

q

T
F0 〈φ〉Rgc

(A.48)

Eliminating δf1,h allows us to write,
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δf1 = 〈δf1〉Rgc
+

q

T
F0

(

〈φ〉
Rgc

− φ
)

(A.49)

A.4 Transformation to Guiding Center Coordinates and Alternate

Velocity Coordinates

Before we proceed, we choose to write out a new Fokker-Planck equation for

δf1 in guiding center coordinates and the alternate velocity coordinates. We note

that in the alternate velocity coordinates

F0 =
n0

(2π)3/2 v3t
exp

(

−
ε

T
+

qφ

T

)

(A.50)

The Fokker-Planck equation becomes

∂F0

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+ v‖∇‖F0 −
c

B0
∇⊥φ× ẑ · ∇⊥F0 +

v‖
B0

∇⊥ ×A‖ẑ · ∇⊥F0 −
δB‖

B0
v⊥ · ∇⊥F0

+v‖∇‖δf1 −
c

B0
∇⊥φ× ẑ · ∇⊥δf1 +

v‖
B0

∇⊥ ×A‖ẑ · ∇⊥δf1 −
δB‖

B0
v⊥ · ∇⊥δf1

+v‖∇‖δf2 −
c

B0
∇⊥φ× ẑ · ∇⊥δf2 +

v‖
B0

∇⊥ ×A‖ẑ · ∇⊥δf2 −
δB‖

B0
v⊥ · ∇⊥δf2

−
q

c
v‖
∂A‖

∂t

∂F0

∂ε
−

q

c
v⊥ ·

∂A⊥

∂t

∂F0

∂ε
+ q

∂φ

∂t

∂F0

∂ε
+ Ωc

∂F0

∂θ

−
q

c
v‖
∂A‖

∂t

∂δf1
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf1
∂ε

+ q
∂φ

∂t

∂δf1
∂ε

+ Ωc
∂δf1
∂θ

−
q

c
v‖
∂A‖

∂t

∂δf2
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf2
∂ε

+ q
∂φ

∂t

∂δf2
∂ε

+ Ωc
∂δf2
∂θ

= Collisions

(A.51)

The F0 derivatives can be expressed as
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∂F0

∂t
=

q

T
F0
∂φ

∂t
(A.52)

∇‖F0 =
q

T
F0∇‖φ (A.53)

∇⊥F0 =
q

T
F0∇⊥φ (A.54)

∂F0

∂ε
= −

1

T
F0 (A.55)

∂F0

∂θ
= 0 (A.56)

Plugging these back in to the full equation leaves

q

T
F0
∂φ

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+
q

T
F0v‖∇‖φ−

cq

TB0
F0∇⊥φ× ẑ · ∇⊥φ+

qv‖
TB0

F0∇⊥ × A‖ẑ · ∇⊥φ

−
qδB‖

TB0
F0v⊥ · ∇⊥φ+ v‖∇‖δf1 −

c

B0
∇⊥φ× ẑ · ∇⊥δf1 +

v‖
B0

∇⊥ × A‖ẑ · ∇⊥δf1 −
δB‖

B0
v⊥ · ∇⊥δf1

+v‖∇‖δf2 −
c

B0
∇⊥φ× ẑ · ∇⊥δf2 +

v‖
B0

∇⊥ ×A‖ẑ · ∇⊥δf2 −
δB‖

B0
v⊥ · ∇⊥δf2

+
q

cT
F0v‖

∂A‖

∂t
+

q

cT
F0v⊥ ·

∂A⊥

∂t
−

q

T
F0
∂φ

∂t
+ Ωc

∂F0

∂θ
−

q

c
v‖
∂A‖

∂t

∂δf1
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf1
∂ε

+q
∂φ

∂t

∂δf1
∂ε

+ Ωc
∂δf1
∂θ

−
q

c
v‖
∂A‖

∂t

∂δf2
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf2
∂ε

+ q
∂φ

∂t

∂δf2
∂ε

+ Ωc
∂δf2
∂θ

= Collisions

(A.57)

We can rewrite terms of the form∇⊥g×ẑ·∇⊥h as [h, g] and note that [g, g] = 0.
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q

T
F0
∂φ

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+
q

T
F0v‖∇‖φ+

qv‖
TB0

F0

[

φ,A‖
]

−
qδB‖

TB0
F0v⊥ · ∇⊥φ+ v‖∇‖δf1

−
c

B0
[δf1, φ] +

v‖
B0

[

δf1, A‖
]

−
δB‖

B0
v⊥ · ∇⊥δf1 + v‖∇‖δf2 −

c

B0
[δf2, φ] +

v‖
B0

[

δf2, A‖
]

−
δB‖

B0
v⊥ · ∇⊥δf2 +

q

cT
F0v‖

∂A‖

∂t
+

q

cT
F0v⊥ ·

∂A⊥

∂t
−

q

T
F0
∂φ

∂t
−

q

c
v‖
∂A‖

∂t

∂δf1
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf1
∂ε

+q
∂φ

∂t

∂δf1
∂ε

+ Ωc
∂δf1
∂θ

−
q

c
v‖
∂A‖

∂t

∂δf2
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf2
∂ε

+ q
∂φ

∂t

∂δf2
∂ε

+ Ωc
∂δf2
∂θ

= C (δf1, F0) + C (F0, δf1)

(A.58)

Writing this with the ordering parameter, we have

q

T
F0
∂φ

∂t
+
∂δf1
∂t

+
∂δf2
∂t

+
q

T
F0v‖∇‖φ +

qv‖
TB0

F0

[

φ,A‖
]

εωF0 εωF0 ε2ωF0 εωF0 εωF0

−
qδB‖

TB0
F0v⊥ · ∇⊥φ +v‖∇‖δf1 −

c

B0
[δf1, φ] +

v‖
B0

[

δf1, A‖
]

−
δB‖

B0
v⊥ · ∇⊥δf1

εωF0 εωF0 εωF0 εωF0 εωF0

+v‖∇‖δf2 −
c

B0
[δf2, φ] +

v‖
B0

[

δf2, A‖
]

−
δB‖

B0
v⊥ · ∇⊥δf2 +

q

cT
F0v‖

∂A‖

∂t

ε2ωF0 ε2ωF0 ε2ωF0 ε2ωF0 εωF0

+
q

cT
F0v⊥ ·

∂A⊥

∂t
−
q

T
F0
∂φ

∂t
−
q

c
v‖
∂A‖

∂t

∂δf1
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf1
∂ε

+q
∂φ

∂t

∂δf1
∂ε

εωF0 εωF0 ε2ωF0 ε2ωF0 ε2ωF0

+Ωc
∂δf1
∂θ

−
q

c
v‖
∂A‖

∂t

∂δf2
∂ε

−
q

c
v⊥ ·

∂A⊥

∂t

∂δf2
∂ε

+q
∂φ

∂t

∂δf2
∂ε

+Ωc
∂δf2
∂θ

ωF0 ε3ωF0 ε3ωF0 ε3ωF0 εωF0

= C (δf1, F0) +C (F0, δf1)

εωF0 εωF0

(A.59)

The O (ε) equation is
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∂δf1
∂t

+
q

T
F0v‖∇‖φ+

qv‖
TB0

F0

[

φ,A‖
]

−
qδB‖

TB0
F0v⊥ · ∇⊥φ+ v‖∇‖δf1 −

c

B0
[δf1, φ] +

v‖
B0

[

δf1, A‖
]

−
δB‖

B0
v⊥ · ∇⊥δf1 +

q

cT
F0v‖

∂A‖

∂t
+

q

cT
F0v⊥ ·

∂A⊥

∂t
+ Ωc

∂δf2
∂θ

= C (δf1, F0) + C (F0, δf1)

(A.60)

To get rid of the δf2 term, we gyro-average.

∂ 〈δf1〉
∂t

+
q

T
F0v‖∇‖ 〈φ〉+

qv‖
TB0

F0

〈[

φ,A‖
]〉

−
〈

qδB‖

TB0
F0v⊥ · ∇⊥φ

〉

+ v‖∇‖ 〈δf1〉 −
c

B0
〈[δf1, φ]〉

+
v‖
B0

〈[

δf1, A‖
]〉

−
〈

δB‖

B0
v⊥ · ∇⊥δf1

〉

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t
+

q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

+

〈

Ωc
∂δf2
∂θ

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(A.61)

Using Equation A.49, we can write this in several different ways. If we want

an expression for the full δf1, we can write

∂δf1
∂t

−
q

T
F0
∂ 〈φ〉
∂t

+
q

T
F0
∂φ

∂t
+

q

T
F0v‖∇‖ 〈φ〉+

qv‖
TB0

F0

〈[

φ,A‖
]〉

−
〈

qδB‖

TB0
F0v⊥ · ∇⊥φ

〉

+v‖∇‖δf1 −
q

T
F0v‖∇‖ 〈φ〉+

q

T
F0v‖∇‖φ−

c

B0
[δf1,h, 〈φ〉] +

v‖
B0

[

δf1,h,
〈

A‖
〉]

−
qv‖
TB0

F0

〈[

φ,A‖
]〉

−
〈

δB‖

B0
v⊥ · ∇⊥δf1,h

〉

+

〈

qδB‖

TB0
F0v⊥ · ∇⊥φ

〉

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t

+
q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(A.62)

The fourth and fifth terms of the first line cancel with the second term of the

second line and the first term of the third line, respectively. The last term of the

first line cancels with the third term of the third line.
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∂δf1
∂t

−
q

T
F0
∂ 〈φ〉
∂t

+
q

T
F0
∂φ

∂t
+ v‖∇‖δf1 +

q

T
F0v‖∇‖φ−

c

B0
[δf1,h, 〈φ〉] +

v‖
B0

[

δf1,h,
〈

A‖
〉]

−
〈

δB‖

B0
v⊥ · ∇⊥δf1,h

〉

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t
+

q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(A.63)

If we replace δf1,h in all but the last term of the right hand side, we have

∂δf1
∂t

−
q

T
F0
∂ 〈φ〉
∂t

+
q

T
F0
∂φ

∂t
+ v‖∇‖δf1 +

q

T
F0v‖∇‖φ−

c

B0
[δf1, 〈φ〉]−

cq

TB0
F0 [φ, 〈φ〉]

+
v‖
B0

[

δf1,
〈

A‖
〉]

+
qv‖
TB0

F0

[

φ,
〈

A‖
〉]

+
q

cT
F0v‖

∂
〈

A‖
〉

∂t
+

q

cT
F0

〈

v⊥ ·
∂A⊥

∂t

〉

−
〈

δB‖

B0
v⊥ · ∇⊥δf1,h

〉

= 〈C (δf1, F0)〉+ 〈C (F0, δf1)〉

(A.64)

A.5 Gyrokinetic Maxwell’s Equations

In Sec. A.4, we transformed to guiding center coordinates. However, Maxwell’s

equations need to be solved in particle coordinates. We can use Eqn. A.31 to

transform back. We are only concerned with matching the linear response of our

model to the linear part of Maxwell’s equations, so we drop the nonlinear terms for

this derivation.

We assume that our fields can be written in the form φ = φei(k·R−ωt) =

φeik·(r+
v×ẑ

Ωs
)−iωt. If this is the case, the gyroaverage back to particle coordinates

will introduce Bessel functions. Applying this to Eqn. A.64 leaves

δf1 =
q

T
F0

(

−
(

1 +
ω

k‖v‖ − ω
J2
0

)

φ+
ω

ck‖
J2
0

(

1 +
ω

k‖v‖ − ω

)

A‖ +
mv2⊥
q

ω

k‖v‖ − ω

J1

k⊥v⊥/Ω
J0
δB‖

B0

)

(A.65)
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This form can be used in the definitions of Maxwell’s equations below. The

following integrals will also be helpful as we proceed:

∫ ∞

0

e−v2⊥/2v2t J2
0

(

k⊥v⊥
Ω

)

v⊥ dv⊥ = v2t e
−k2⊥ρ

2

I0
(

k2
⊥ρ

2
)

= v2tΓ0

(

k2
⊥ρ

2
)

(A.66)

∫ ∞

0

v2⊥e
−v2⊥/2v2t J0

(

k⊥v⊥
Ω

)

J1

(

k⊥v⊥
Ω

)

k⊥v⊥/Ω
v⊥ dv⊥ = v4t e

−k2⊥ρ
2 (

I0
(

k2
⊥ρ

2
)

− I1
(

k2
⊥ρ

2
))

= v4tΓ1

(

k2
⊥ρ

2
)

(A.67)

where I0 is the zeroth order modified Bessel function, and I1 is the first order

modified Bessel function. In the parallel direction, we will want to use the plasma

dispersion function:

Z (ξ) =
1√
π

∫ ∞

−∞

e−t2

t− ξ
dt (A.68)

where ξ = ω√
2k‖vt

and its derivative w.r.t. its argument:

Z ′ (ξ) = −2 (1 + ξZ) = −2
1√
π

∫ ∞

−∞

te−t2

t− ξ
dt (A.69)

A.5.1 Poisson’s Equation

Poisson’s equation is normally written as

∇ · E = 4π
∑

s

qsns (A.70)

In terms of potentials, this becomes
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−∇2
⊥φ −∇2

‖φ −
1

c

∂∇‖A‖

∂t
−
1

c

∂∇⊥ ·A⊥

∂t
= 4π

∑

s qsns

ω ω ε2ω εω 1
εω

c2

v2A

(A.71)

The term on the right hand side of the equation is bigger than the other

terms in the equation by a factor of 1/ε as well as c2/v2A. This allows us to assume

quasineutrality and write Poisson’s Equation in gyrokinetics as

∑

s

∫ ∞

−∞
qsfs d

3v = 0 (A.72)

where fs is the full pdf. Substituting in through first order gives,

∑

s

∫ ∞

−∞
d3v

(

qsF0,s −
q2s
T0,s

F0,sφ+
ω

ω − v‖,sk‖

q2s
T0,s

F0,sJ
2
0φ+

ω

k‖

(

1−
ω

ω − v‖,sk‖

)

q2s
cT0,s

F0,sJ
2
0A‖

−
ω

ω − v‖,sk‖

eqs
cT0,s

F0,s
v⊥,s

k⊥
J1J0δB‖

)

= 0

(A.73)

Using the definitions above, we integrate over velocity.

∑

s

(

qsn0,s −
q2s
T0,s

n0,s (1 + Γ0,sξsZs)φ+
q2s
T0,s

n0,s

c

ω

k‖
Γ0,s (1 + ξsZs)A‖

+
n0,sq2s
qsB0

Γ1,sξsZsδB‖

)

= 0

(A.74)

We assume that Poisson’s equation holds at each order. Zeroth order tells us

n0,e = n0,i = n0 (A.75)

The next order gives
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−e2n0

(

1

T0,e
(1 + Γ0,eξeZe) +

1

T0,i
(1 + Γ0,iξiZi)

)

φ

+
e2n0

c

ω

k‖

(

1

T0,e
Γ0,e (1 + ξeZe) +

1

T0,i
Γ0,i (1 + ξiZi)

)

A‖

+
n0e

B0
(−Γ1,eξeZe + Γ1,iξiZi) δB‖ = 0

(A.76)

A.5.2 Parallel Ampere’s Law

The parallel part of Ampere’s Law can be written

(∇×B)‖ =
∂E‖

∂t
+

4π

c
J‖ (A.77)

In terms of potentials, this can be written as

−∇2
⊥A‖ = −

1

c

∂∇‖φ

∂t
−

1

c2
∂2A‖

∂t2
+

4π

c
J‖

ε
v2A
v2ti

v2A
c2

1
ε
v2A
c2 ε

(A.78)

The two time derivative terms are smaller than the others by a factor of v2A/c
2

which is much less than 1 in the non-relativistic limit as is used in gyrokinetics.

Ampere’s Law in the parallel direction in gyrokinetics can be written as

−∇2
⊥A‖ =

∫ ∞

−∞

(

4π

c

∑

s

qsv‖,sfs

)

d3v (A.79)

Substituting in through first order gives

−∇2
⊥A‖ =

4π

c

∑

s

∫ ∞

−∞
d3vqsv‖,s

(

F0,s −
qs
T0,s

F0,sφ+
ω

ω − v‖,sk‖

qs
T0,s

F0,sJ
2
0φ

+
ω

k‖

(

1−
ω

ω − v‖,sk‖

)

qs
cT0,s

F0,sJ
2
0A‖ −

ω

ω − v‖,sk‖

e

cT0,s
F0,s

v⊥,s

k⊥
J1J0δB‖

)

(A.80)
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and integrating leaves

−∇2
⊥A‖ =

4π

c

∑

s

(

−
n0,sq2s
T0,s

ω

k‖
Γ0,s (1 + ξsZs)φ+

n0,sq2s
cT0,s

Γ0,s
ω2

k2
‖
(1 + ξsZs)A‖

+
n0,sqs
B0

ω

k‖
Γ1,s (1 + ξsZs) δB‖

)

(A.81)

We note that the integrals over the zeroth order p.d.f are odd w.r.t. parallel

velocity, and thus evaluate to zero. We are left only with the first order relation.

−
4πn0e2

c

(

1

T0,e

ω

k‖
Γ0,e (1 + ξeZe) +

1

T0,i

ω

k‖
Γ0,i (1 + ξiZi)

)

φ

4πn0e2

c2

(

−
c2k2

⊥
4πn0e2

+
1

T0,e
Γ0,e

ω2

k2
‖
(1 + ξeZe) +

1

T0,i
Γ0,i

ω2

k2
‖
(1 + ξiZi)

)

A‖

+
4πn0e

cB0

ω

k‖
(−Γ1,e (1 + ξeZe) + Γ1,i (1 + ξiZi)) δB‖ = 0

(A.82)

A.5.3 Perpendicular Ampere’s Law

In order to isolate the perpendicular part of Ampere’s Law, we cross it with

the parallel unit vector.

ẑ×∇×B = ẑ×
∂E⊥

∂t
+

4π

c
ẑ× J⊥ (A.83)

It is often easier to work with the divergence of the above equation. This can

be written as

−∇2
⊥δB‖ = −

1

c2
∂2δB‖

∂t2
+

4π

c
∇⊥ · ẑ× J⊥

ε
v2A
v2ti

1
ε
v2A
c2 ε

(A.84)

Once again, the time derivative is smaller than the other terms by a factor of

v2A/c
2. We can write our field equation for δB‖ as
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∇2
⊥δB‖ = ∇⊥ ·

∫ ∞

−∞

4π

c

∑

s

qs 〈ẑ× v⊥,sfs〉 d3v (A.85)

where fs is still in guiding center coordinates, before we have used the gyroaverage

defined in Eqn. A.31. This can be written as

fs = F0,s −
qs
T0,s

F0,sφ+
ω

ω − v‖,sk‖

qs
T0,s

F0,sJ0φ+
ω

k‖

(

1−
ω

ω − v‖,sk‖

)

qs
cT0,s

F0,sJ0A‖

−
ω

ω − v‖,sk‖

e

cT0,s
F0,s

v⊥,s

k⊥
J1δB‖

(A.86)

Plugging it in gives us

−k2
⊥δB‖ =

4π

c

∫ ∞

−∞
d3v

∑

s

qsik⊥ · ẑ× v⊥,s

(

F0,s −
qs
T0,s

F0,sφ+
ω

ω − v‖,sk‖

qs
T0,s

F0,sJ0φ

+
ω

k‖

(

1−
ω

ω − v‖,sk‖

)

qs
cT0,s

F0,sJ0A‖ −
ω

ω − v‖,sk‖

e

cT0,s
F0,s

v⊥,s

k⊥
J1δB‖

)

(A.87)

The first two terms are already in particle positions, so they end up evaluating

to zero.

The gyro-average for a field requires the following integral:

1

2π

∫ 2π

0

ik⊥ · ẑ× v⊥,se
ik⊥·

v⊥,s×ẑ

Ωs dθ =
1

2π

∫ 2π

0

ik⊥v⊥,s sin θe
∓i

k⊥v⊥,s
Ωi

sin θ dθ (A.88)

= ∓k⊥v⊥,sJ1

(

k⊥v⊥,s

Ωi

)

(A.89)

= ∓
k2
⊥v

2
⊥,s

Ωs

J1

k⊥v⊥,s/Ωs
(A.90)

NB: The ions have a negative sign out front and the electrons have a positive

sign. Plugging that back in, we can write
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−k2
⊥δB‖ = −

4π

c

∫ ∞

−∞
d3v

∑

s

e
k2
⊥v

2
⊥,s

Ωs

J1

k⊥v⊥,s/Ωs

(

ω

ω − v‖,sk‖

qs
T0,s

F0,sJ0φ

+
ω

k‖

(

1−
ω

ω − v‖,sk‖

)

qs
cT0,s

F0,sJ0A‖ −
ω

ω − v‖,sk‖

e

cT0,s
F0,s

v⊥,s

k⊥
J1δB‖

)

(A.91)

Evaluating the velocity integrals leaves

−δB‖ = −
4π

c

∑

s

(

−
n0qsc

B0
Γ1,sξsZsφ+

n0qs
B0

ω

k‖
Γ1,s (1 + ξsZs)A‖ +

2n0cT0,s

B2
0

Γ1,sξsZsδB‖

)

(A.92)

which expands to

−δB‖ =

(

−
4πn0e

B0
Γ1,eξeZe +

4πn0e

B0
Γ1,iξiZi

)

φ

−
(

−
4πn0e

cB0

ω

k‖
Γ1,e (1 + ξeZe) +

4πn0e

cB0

ω

k‖
Γ1,i (1 + ξiZi)

)

A‖

−
(

8πn0T0,e

B2
0

Γ1,eξeZe +
8πn0T0,i

B2
0

Γ1,iξiZi

)

δB‖

(A.93)
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Appendix B

Inverted Matrix Equations

In this appendix we note the results of the matrix inversion needed for the

implicit scheme described in Sec. 3.3, and define the functions that are used therein.

a =

√

βi
2
∆tk̂‖ o = 6dhτ + l = 1 + 3dhqτ

b =
(

〈J0〉2 − 1
)

q = 2 + βicfg

c = (2 〈J1〉a 〈J0〉 − 1) r = 2− q (l − 6bh) = 2
(

1− 2bhqν∆tk̂2m
⊥

)

d = 2 〈J1〉a 〈J0〉 s =
1

3 (2b+ βicfglτ) + 4bν∆tk̂2m
⊥ − 4lmq (∆t)2 k̂2

‖k̂
2
⊥

e = 4 〈J1〉a 〈J1〉b v = 3lτ − 4mo (∆t)2 k̂2
‖ k̂

2
⊥

f =
1

1 + βie
w = 3βicfgτ − 4mq (∆t)2 k̂2

‖ k̂
2
⊥

g =
1

τ + βif
x = 6b+ βicfgv

h =
1

2b
(

3 + 2ν∆tk̂2m
⊥

)

− 3βicdfgτ
y = 3βibcfghτν∆tk̂2m

⊥ +mr (∆t)2 k̂2
‖ k̂

2
⊥

l = 1 + 3βicdfghτ = 2bh
(

3 + 2ν∆tk̂2m
⊥

)

z = 1 + 4lmqs (∆t)2 k̂2
‖ k̂

2
⊥

m =
1

3 + 2η∆tk̂2m
⊥
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n̂n+1
e = 4bsn̂e,rhs + i

16abms

βi
k̂2
⊥Â‖,rhs −

16bms

3
(∆t)2 k̂2

‖ k̂
2
⊥p̂‖,e,rhs −

2βibfgsv

3
p̂⊥,e,rhs

+4bhsw 〈J0〉 ˆ̄ni,rhs −
2βibfgsv

3
2 〈J1〉b ˆ̄p⊥,i,rhs +

4sx

3
n̂n
e + i

32abms

βi
k̂2
⊥Â

n
‖ −

32bms

3
(∆t)2 k̂2

‖k̂
2
⊥p̂

n
‖,e

−
16sy

3
〈J0〉 ˆ̄n

n
i −

sx

3
n̂n−1
e − i

8abms

βi
k̂2
⊥Â

n−1
‖ +

8bms

3
(∆t)2 k̂2

‖k̂
2
⊥p̂

n−1
‖,e +

4sy

3
〈J0〉 ˆ̄n

n−1
i

−i
8abs

βi
k̂2
⊥Â

n+1
A

(B.1)

Ân+1
‖ = −i4almqsn̂e,rhs + 2mzÂ‖,rhs + i

4amz

3
p̂‖,e,rhs − i

2βiafgm

3
(o− lqsv) p̂⊥,e,rhs

+i4almqs 〈J0〉 ˆ̄ni,rhs − i
2βiafgm

3
(o− lqsv) 2 〈J1〉b ˆ̄p⊥,i,rhs

+i
4am

3b
(βicfgo− lqsx) n̂n

e + 4mzÂn
‖ + i

8amz

3
p̂n‖,e + i

4am

3b
(r + 4lqsy) 〈J0〉 ˆ̄n

n
i

−i
am

3b
(βicfgo− lqsx) n̂n−1

e −mzÂn−1
‖ − i

2amz

3
p̂n−1
‖,e − i

am

3b
(r + 4lqsy) 〈J0〉 ˆ̄n

n−1
i

−4lmqs (∆t)2 k̂2
‖ k̂

2
⊥Â

n+1
A

(B.2)

p̂n+1
‖,e = −2βicfglsn̂e,rhs − i8acfglmsk̂2

⊥Â‖,rhs +
2

3

(

1 + 4βicfglms (∆t)2 k̂2
‖ k̂

2
⊥

)

p̂‖,e,rhs

−
βifgl

3
(1− βicfgsv) p̂⊥,e,rhs + 2βicfgls 〈J0〉 ˆ̄ni,rhs −

βifgl

3
(1− βicfgsv) 2 〈J1〉b ˆ̄p⊥,i,rhs

+
2βicfgl

3b
(1− sx) n̂n

e − i16acfglmsk̂2
⊥Â

n
‖ +

4

3

(

1 + 4βicfglms (∆t)2 k̂2
‖ k̂

2
⊥

)

p̂n‖,e

+
8βicfg

3b

(

lsy − bhν∆tk̂2m
⊥

)

〈J0〉 ˆ̄n
n
i −

βicfgl

6b
(1− sx) n̂n−1

e + i4acfglmsk̂2
⊥Â

n−1
‖

−
1

3

(

1 + 4βicfglms (∆t)2 k̂2
‖ k̂

2
⊥

)

p̂n−1
‖,e −

2βicfg

3b

(

lsy − bhν∆tk̂2m
⊥

)

〈J0〉 ˆ̄n
n−1
i + i4acfglsk̂2

⊥Â
n+1
A

(B.3)

105



p̂n+1
⊥,e = −4βicfglsn̂e,rhs − i16acfglmsk̂2

⊥Â‖,rhs +
16βicfglms

3
(∆t)2 k̂2

‖ k̂
2
⊥p̂‖,e,rhs

+
2

3
(1− βifgl (1− βicfgsv)) p̂⊥,e,rhs + 4βicfgls 〈J0〉 ˆ̄ni,rhs

−
2βifgl

3
(1− βicfgsv) 2 〈J1〉b ˆ̄p⊥,i,rhs +

4βicfgl

3b
(1− sx) n̂n

e − i32acfglmsk̂2
⊥Â

n
‖

+
32βicfglms

3
(∆t)2 k̂2

‖k̂
2
⊥p̂

n
‖,e +

4

3
p̂n⊥,e +

16βicfg

3b

(

lsy − bhν∆tk̂2m
⊥

)

〈J0〉 ˆ̄n
n
i −

βicfgl

3b
(1− sx) n̂n−1

e

+i8acfglmsk̂2
⊥Â

n−1
‖ −

8βicfglms

3
(∆t)2 k̂2

‖ k̂
2
⊥p̂

n−1
‖,e −

1

3
p̂n−1
⊥,e −

4βicfg

3b

(

lsy − bhν∆tk̂2m
⊥

)

〈J0〉 ˆ̄n
n−1
i

+i8acfglsk̂2
⊥Â

n+1
A

(B.4)

ˆ̄n
n+1
i = −12βibcfghsτ2 〈J1〉a n̂e,rhs − i48abcfghmsτk̂2

⊥2 〈J1〉a Â‖,rhs

+16βibcfghmsτ (∆t)2 k̂2
‖k̂

2
⊥2 〈J1〉a p̂‖,e,rhs − 2βibfghτ (1− βicfgsv) 2 〈J1〉a p̂⊥,e,rhs

+4bh (1− 3βicdfghswτ) ˆ̄ni,rhs − 2βibefghτ (1− βicfgsv) ˆ̄p⊥,i,rhs + 4βicfghτ (1− sx) 2 〈J1〉a n̂
n
e

−i96abcfghmsτk̂2
⊥2 〈J1〉a Â

n
‖ + 32βibcfghmsτ (∆t)2 k̂2

‖ k̂
2
⊥2 〈J1〉a p̂

n
‖,e

+4h (2b− βicdfgτ (1− 4sy)) ˆ̄n
n
i − βicfghτ (1− sx) 2 〈J1〉a n̂

n−1
e + i24abcfghmsτk̂2

⊥2 〈J1〉a Â
n−1
‖

−8βibcfghmsτ (∆t)2 k̂2
‖ k̂

2
⊥2 〈J1〉a p̂

n−1
‖,e − h (2b− βicdfgτ (1− 4sy)) ˆ̄n

n−1
i

+i24abcfghsτk̂2
⊥2 〈J1〉a Â

n+1
A

(B.5)
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ˆ̄p
n+1
⊥,i = −4βicfglsτ2 〈J1〉a n̂e,rhs − i16acfglmsτk̂2

⊥2 〈J1〉a Â‖,rhs

+
16βicfglmsτ

3
(∆t)2 k̂2

‖ k̂
2
⊥2 〈J1〉a p̂‖,e,rhs −

2βifglτ

3
(1− βicfgsv) 2 〈J1〉a p̂⊥,e,rhs

+4βicdfglsτ ˆ̄ni,rhs +
2

3
(1− βiefglτ (1− βicfgsv)) ˆ̄p⊥,i,rhs +

4βicfglτ

3b
(1− sx) 2 〈J1〉a n̂

n
e

−i32acfglmsτk̂2
⊥2 〈J1〉a Â

n
‖ +

32βicfglmsτ

3
(∆t)2 k̂2

‖ k̂
2
⊥2 〈J1〉a p̂

n
‖,e

+
16βicdfgτ

3b

(

lsy − bhν∆tk̂2m
⊥

)

ˆ̄n
n
i +

4

3
ˆ̄p
n
⊥,i −

βicfglτ

3b
(1− sx) 2 〈J1〉a n̂

n−1
e

+i8acfglmsτk̂2
⊥2 〈J1〉a Â

n−1
‖ −

8βicfglmsτ

3
(∆t)2 k̂2

‖k̂
2
⊥2 〈J1〉a p̂

n−1
‖,e

−
4βicdfgτ

3b

(

lsy − bhν∆tk̂2m
⊥

)

ˆ̄n
n−1
i −

1

3
ˆ̄p
n−1
⊥,i + i8acfglsτ k̂2

⊥2 〈J1〉a Â
n+1
A

(B.6)
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