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This dissertation investigates the general structure from motion problem. That

is, how to compute in an unconstrained environment 3D scene structure, camera

motion and moving objects from video sequences. We present a framework which

uses concatenated feed-back loops to overcome the main difficulty in the struc-

ture from motion problem: the chicken-and-egg dilemma between scene segmenta-

tion and structure recovery. The idea is that we compute structure and motion in

stages by gradually computing 3D scene information of increasing complexity and

using processes which operate on increasingly large spatial image areas. Within this

framework, we developed three modules. First, we introduce a new constraint for

the estimation of shape using image features from multiple views. We analyze this

constraint and show that noise leads to unavoidable mis-estimation of the shape,

which also predicts the erroneous shape perception in human. This insight pro-

vides a clear argument for the need for feed-back loops. Second, a novel constraint

on shape is developed which allows us to connect multiple frames in the estima-

tion of camera motion by matching only small image patches. Third, we present



a texture descriptor for matching areas of extended sizes. The advantage of this

texture descriptor, which is based on fractal geometry, lies in its invariance to any

smooth mapping (Bi-Lipschitz transform) including changes of viewpoint, illumi-

nation and surface distortion. Finally, we apply our framework to the problem of

super-resolution imaging. We use the 3D motion estimation together with a novel

wavelet-based reconstruction scheme to reconstruct a high-resolution image from a

sequence of low-resolution images.
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Chapter 1

Introduction

1.1 Background

The field of Computer Vision has made great progress over the last few years.

This is due to theories and algorithms as well as working applications related to the

computation of scene models. A large amount of research has been devoted to the

problem of structure from motion and the stereo correspondence problem. Solutions

have been proposed to the segmentation problem using a variety of cues such as

motion, texture, intensity or color. Other studies have developed constraints for

the reconstruction of the scene from single images, so-called shape from X modules.

Some of the techniques have been implemented in systems also, which have proven

to work in constrained environments. The general reconstruction problem, that is

the computation of scene models from image data acquired by a system (robot)

moving in unconstrained environments, however, cannot be solved yet.

First, let us give a short discussion of the issues involved in structure from

motion. The term has been used for the computations related to the reconstruction

of the geometry from multiple images. These include the estimation of the structure

of the scene and the 3D motion of the camera relative to the world from image

sequences or multiple views. In a broader meaning, the problem also encompasses

the estimation of the calibration parameters and the segmentation of the scene on
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the basis of motion and structure. However, in the most common formulation only

one rigid motion is considered; either the camera is moving in a static world or the

whole scene is moving rigidly with the same motion. The literature distinguishes

between two approaches, the discrete and the continuous ones, with major advances

in different areas of application.

The so-called discrete techniques use views of the scene which are significantly

separated in space [5, 6, 7, 8] and require corresponding image features in the dif-

ferent views, usually salient points [9] and lines [10] . Using the correspondences,

the discrete rigid displacement of the camera between the views is computed. Then,

the intersection of viewing rays provides the structure. This approach has been

shown to be successful in many applications of 3D model reconstruction, where eas-

ily distinguishable features can be identified, for example in man-made structures,

or when markers can be used, or correspondence can be established off-line. The

limitations to this approach arise from the correspondence problem, which cannot

be completely automated (without any prior knowledge of motion and structure).

Without doubt, significant advances have been made on the correspondence prob-

lem using robust statistical techniques, most prominently, the RANSAC technique.

But a general robust solution that would allow accurate estimation of structure and

motion for general scenes does not seem to be possible.

The continuous techniques use as input video, that is sequences of images with

small changes in viewing geometry between consecutive views [11, 12, 13]. From the

time-varying image brightness pattern the image motion between pairs of views, or

at least the image motion field of intensity gradients can be estimated rather easily,
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although not very accurately. Using this, the 3D velocities and the structure of the

scene (up to a scale factor) are estimated. Since biological systems use image motion,

there is evidence for the success of such an approach in real world environments.

Thus, naturally, image motion has been used in navigation tasks, such as 3D motion

estimation [14], tracking [15, 16], segmentation and obstacle avoidance for robotic

systems [17, 18].

Despite all the tremendous progress, neither image motion by itself nor cor-

respondence by itself is sufficient to develop accurate human-like model building

capabilities. It is clear that dense correspondence cannot be solved for general

scenes and image motion cannot be estimated very accurately and does not allow

for accurate localization of the discontinuities. Even worse, the structure from mo-

tion problem, which considers one rigid motion, is a simplification. Moving systems

deal with a world of moving objects, and thus they also have to segment the moving

objects from the static world. Detection of independently moving objects has to

be solved together with structure and motion estimation, making the problem even

harder. We call all these components together the ”general structure from motion

problem”.

The classical approach to solving problems in Computer Vision, is much like

in Engineering, a modular one. Given a complex problem, one breaks up the larger

problem into multiple modules, which are then connected together to solve the orig-

inal problem. In this spirit, the structure from motion problem has been addressed

in three modules. First, the correspondence or image flow between frames is com-

puted. In a second step, the geometric transformation, i.e. rigid motion between the
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views is estimated. Then, in a last step, the camera views are placed in the world

on the basis of the rigid motion estimate, and using the correspondence estimates,

scene points are obtained through triangulation. In this way, a 3D model of the

world is built.

Researchers in other vision fields have long pointed out that biological vision

systems are not modular. They do not compute in a purely feed-forward fashion.

Instead, it has been found in the Neurosciences that many neural connections are

lateral and feed-back; modules higher in the hierarchy feed information to lower,

earlier modules. Since nature is working rather well, this appears to be a better ap-

proach, and we should adapt it in Computer Vision. But the question still remains,

what are these processes? To gain a better understanding, we will first take a look

at the nature of the difficulties.

The main reason for structure reconstruction being difficult is that we have

to segment the scene while we recover it. In terms of computations this means, in

order to recover the scene structure, that is to estimate the parameters of a scene

surface we need to know where the surfaces which belong to the same model are,

or where the discontinuities are. But finding the discontinuities, that is segmenting

the scene, requires some knowledge about the scene models. It is clear that there is

an intricate interplay in the recovery and segmentation processes.
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1.2 Overview of the thesis

Inspired from biological vision systems, a framework of great potential is solv-

ing the structure recovery and scene segmentation through computational loops

(forward and backward processes). More specifically, 3D scene structure and seg-

mentation are refined over stages. In every stage, using the information of the scene

structure and camera motion computed in the previous stage, the 3D scene structure

is re-estimated employing a more sophisticated scene model, and the segmentation

is refined on the basis of information over larger spatial areas. A rough outline of the

architecture of such a vision system for solving the general structure from motion

problem is as follows:

1. Image motion from single flow fields and static cues (texture, intensity, color,

edges) provides a first segmentation of the images. Then, image motion and

matching over three (or more) frames provides occlusion and ordinal depth

information, which is used to detect and locate independently moving objects.

2. Excluding the background from the independently moving objects in the scene,

an initial estimate of the camera motion in the background is obtained. Multi-

ple flow fields are then combined. The combination only requires the matching

of image patches as opposed to pixel-wise matching. Then, from the matched

frames, accurate camera motion and better 3D structure is estimated.

3. After obtaining accurate 3D motion and fairly good structure over multiple

frames, we can now use many frames or frames significantly separated by
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baseline to better segment, and refine the 3D structure estimation employing

more sophisticated surface representations. The reason is that now, with some

preliminary models of the scene, we can employ larger spatial areas and develop

global spatial constraints. Thus, better matching can be achieved and more

complicated structure models can be implemented.

In this thesis, we developed an elementary architecture with feed-back loops for

solving the structure from motion in unconstrained scenes. The whole process begins

with an ”over” segmentation based on color information. Then, scene structure and

segmentation are gradually improved over several stages. More specifically, an initial

”over” segmentation, based on local constant flow, provides sufficient information for

further refinement. At this stage we model the scene structure as a piece-wise planar

surface. After that, a better 3D model is estimated by using multiple motion fields.

Then, a better segmentation is obtained using the improved estimation of scene

structure and camera motion. Thus in each stage, we obtain a more sophisticated

scene model and better segmentation based on the input from previous stages.

In our implementation, accurate camera motion estimation and fairly good

scene structure recovery are crucial to the performance of such a system. However,

the accurate estimation of camera movement and scene structure is not feasible

on the basis of two frames or consecutive frames with small baseline displacement

only. On one hand, many researchers showed that camera translation is confused

with camera rotation [19, 20, 14, 21]. Furthermore, the recovered scene structure

is very sensitive to errors in camera motion estimation. On the other hand, our
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studies (Chapter 1) on visual estimation process, through which humans perceive

structure, shape and motion, show that statistical bias caused by noise in low level

signal processing is unavoidable. All these arguments make the point that we have

to do ego-motion estimation over multiple frames.

In order to combine the ego-motion estimation of multiple frames, we de-

veloped a novel constraint which allows simultaneous estimation of structure and

motion from multiple frames. Instead of following the current approach of enforcing

the structure to be the same, which is not computationally feasible, we enforce a

weaker constraint. We require that the 3D shapes (surface normals) don’t change

under the moving camera. The computational advantage is that the shape of the

scene is only related to the camera rotation, not to the camera translation. Thus,

much more robust numerical algorithms can be employed to enforce this constraint.

Since multiple frames have to be linked together in the ego-motion estimation,

some matching process is necessary. Luckily, our framework doesn’t require match-

ing of pixels, but only requires a matching of patches. Although matching patches is

much easier than matching points, it is by no means an easy task, especially for two

frames with large displacement. Thus, we developed the so-called MFS texture de-

scriptor to match large image patches. Based on Fractal Geometry theory, the MFS

(multifractal spectrum vector) texture descriptor is a framework which combines

global statistics and local image features. The invariance of the MFS descriptor to

various environmental changes, including changes of view-point, illumination and

surface distortion, makes it a good candidate for the patch matching process, and

also makes it a useful tool for many applications including texture retrieval and
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classification.

A robust solution to the general structure from motion problem not only has

important applications in visual navigation, but also has many other applications

in AI, Graphics and Video Processing. The last part of the thesis is devoted to

one important vision application called super-resolution imaging. Super-resolution

imaging is the process of enhancing the image resolution of an image by utilizing

a video sequence. Essentially such a process can be broken into two parts. One is

the estimation of the sub-pixel displacement between multiple frames, so multiple

low-resolution images can be aligned in the same coordinate system. The other is

the signal processing problem, that is how to reconstruct the high resolution image

from multiple aligned low-resolution images.

Our work on ego-motion estimation from multiple frames provides a good tool

for accurate sub-pixel alignment. The remaining task is then a robust reconstruction

of a high-resolution image from aligned low-resolution images. By modeling the

image formation process using filter bank theory, we discovered that in general we

couldn’t perfectly reconstruct the high-resolution image. Instead only a blurred

version can be perfectly recovered. Based on this discovery, we then designed an

iterative reconstruction scheme which reconstructs the least- blurred high-resolution

image under this theoretical limit. Therefore some un-necessary blurring operator

is avoided. Our algorithm is based on perfect reconstruction filter bank theory

(wavelet theory). A powerful wavelet-based denoising operator is then built into

the algorithm with little extra computational expense. The new reconstruction

algorithm not only is more robust to various noises (it reduces the blurring process),
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but it also avoids the smoothing effect inherent to regular interpolation methods.

1.3 Organization of the thesis

Chapter 2 examines a problem inherent to 3D shape perception from multiple

views. Noise in lower level processes causes bias in the estimation of higher level

information. This bias phenomena predicts the underestimation of slant found in

psychophysical and computational experiments. We first present a mathematical

analysis of the estimation of 3D shape from motion and stereo using orientation

disparity. This analysis shows that bias predicts the anisotropy in the perception

of horizontal and vertical slant. Then, we demonstrate the bias by means of a new

illusory display based on the analysis for the differential motion case. In the last part

of Chapter 2, we discuss statistically optimal strategies for the estimation problem,

which leads to possible avenues for visual systems to deal with noises.

In Chapter 3, we discuss a framework for solving the structure from motion

problem in feed-back loops, with interplay between segmentation and ego-motion

estimation. Our main technical contribution is a new module for the estimation of

3D motion. The new technique combines the information from multiple motion fields

by enforcing a constraint on the surface normals (3D shape) of the scene in view.

The fact that the shape vectors in the different views are related only by rotation

can be formulated as a rank = 3 constraint. This constraint is implemented in an

algorithm which solves 3D motion and structure estimation is a practical constrained

minimization.
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Chapter 4 introduces a new texture signature, based on fractal geometry the-

ory, which is called the multifractal spectrum (MFS). It provides an efficient frame-

work for combining global spatial invariance and local robust measurements. The

MFS is invariant under the bi-Lipschitz map, which includes view-point changes

and non-rigid deformations of the texture surface, as well as local affine illumination

changes. The MFS constitutes a useful tool for patch matching over large displace-

ments, which is necessary in the framework presented in Chapter 3 and also is useful

for other applications such as texture retrieval and classification. Moreover, it is a

useful tool for ”place recognition” in robotics, where one needs to recognize places

which previously have been seen under different viewpoints and different illumina-

tions. We demonstrate its robustness to environmental changes in real settings, as

well as its performance in comparison to other top methods in texture classification,

which have much larger feature dimension.

In Chapter 5, the ego-motion estimation method over multiple frames is ap-

plied to the problem of super-resolution imaging, which requires multiple images

to be aligned in the same coordinate system. Furthermore, we develop a com-

plete super-resolution imaging system by introducing a new reconstruction scheme

which reconstructs the high-resolution image from an aligned low-resolution image

sequence. A new analysis of modeling image formation from the viewpoint of filter

bank theory tells us that the best we can reconstruct is a HR image blurred by

a specific low- pass filter. Based on this analysis we present a new wavelet-based

iterative reconstruction algorithm which is very robust to noise without much extra

computational expense.
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Finally, Chapter 6 explores open problems and possible avenues of further

research.
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Chapter 2

Bias in shape perception

2.1 Overview

In this chapter we will examine the computations that allow us to recover

the 3D shape of scene surfaces. These computations are often referred to as shape

from X, because cues such as motion [9, 22, 23], stereo [24], texture [25, 26, 27, 28],

shading [29, 30] and contours [31, 32] encode information from which the the shape

of scene surfaces can be obtained. The recovery of 3D shape is difficult. The main

reason is that we have to segment the scene while we recover it. It is clear that there

is an intricate interplay in the recovery and segmentation processes, which we do

not fully understand yet. But we have a good understanding of the computations of

the inverse geometric image formation allowing for the recovery of shape [11]. That

is, if we know where the continuous surfaces are (i.e. if we know the segmentation)

and we know the surface property parameters, then we can obtain the shape.

However, computational experiments indicate that often the shape cannot be

estimated correctly. For example when shape is estimated from multiple views, and

even when the 3D viewing geometry is estimated correctly, the shape often is es-

timated incorrectly. It is known also in the psychophysical literature that human

shape estimation is not veridical [31, 33]. For a variety of conditions and from a

number of cues there is an underestimation of slant. Planar surface patches esti-
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mated from texture [34, 27], contour [35], stereopsis [1, 36], and motion of various

parameters [37] have been found to be estimated with smaller slant, that is, closer

in orientation to a front-parallel plane than they are. In this chapter we are asking

whether there are computational reasons for the mis-estimation.

In previous work it has been shown that there is a statistical problem with

the estimation of image features [38, 39]. Here we extend these concepts to the

visual shape recovery processes. We show that there is bias and thus consistent

erroneous mis-estimation in the estimation of shape. The underlying cause is the

well known statistical dilemma. Since image data is noisy, in order to estimate

well, we would need to obtain the statistics of the noise. However, because of the

complexity of the computations it is most often not possible to accurately estimate

the noise parameters. The result is that bias cannot be avoided.

We investigated the effects of bias and found that it is consistent with the

empirical findings. In particular, we show in this chapter that in the case of shape

from motion for many 3D motions and for shape from stereo the bias causes an

underestimation of slant. In [40, 41], we have demonstrated that bias also causes

underestimation in shape from texture. Thus, we find, that one of the reasons for

inaccuracy in shape estimation is systematic estimation error, i.e. bias, which affects

machine vision as well as biological vision.
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2.1.1 The main concept and what this thesis is about

The concepts underlying the statistical analysis are simple. The constraints

in the recovery of shape can be formulated as linear equations in the unknown

parameters. Thus we need to find the “best” solution to an over-determined equation

system. We have equations in two unknown shape parameters (x, y) of the form

a1i
x + a2i

y = bi. (2.1)

In our problem (x, y) encode the two components of the surface normal vector N =

(N1, N2, 1) = (x, y, 1). a1i
and a2i

are the observations, which are composed of

multiple components. These components are the parameters of the image texture,

that is the lines (edges) in the image and in the case of motion in addition the

rotational parameters.

Consider, that we have n such equations, which we write in matrix for as

Ax = b (2.2)

with A an n by 2 matrix, b an n dimensional vector and x = (x, y) the 2 dimensional

vector of unknowns. The observations a1i
, a2i

and bi are always corrupted by errors.

In the sequel unprimed letters are used to denote estimates, primed letters to denote

the actual values, and δ’s to denote errors, where A = A′ + δA and b = b′ + δb. Thus

(2.2) can be written as

(A′ + δA)x = (b′ + δb). (2.3)

The most common choice to solving the system is by means of Least Squares

(LS) estimation. Denoting by superscripts T the transpose and by −1 the inverse of
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a matrix, the solution of the LS estimator xLS is characterized by

xLS = (AT A)−1AT b. (2.4)

However, it is well known, that under noisy conditions this estimator generally is

biased [42, 43].

What does this mean? Consider a problem for which you have a set of noisy

measurements and you make an estimate. Then you choose another set of mea-

surements and make another estimate. Continue many times. The expected value

of your estimate is the average of your estimates in the limit. This expected value

is not the true value. This is what we call statistical bias. Notice, there are no

particular assumptions on the noise; it only needs to be symmetric around the true

value.

Consider the simple case where all elements in δA and δb are independent

identically distributed (i.i.d.) random variables with zero mean and variance σ2.

Then under quite general conditions the expected value E(xLS) of the estimate

amounts to [42]

E(xLS) = x′ − σ2( lim
n→∞

(
1

n
A′T A′))−1x′, (2.5)

which implies that xLS is asymptotically biased [43, 44].

The bias here is σ2(limn→∞( 1
n
A′T A′))−1x′. Please note, the bias does not

depend on n, the number of measurements, which only shows up for the purpose of

normalization, because A′T A′ is proportional to n.

An analysis of the bias term allows us to understand the errors in estimation.

In general we can conclude that large variance in δA, an ill-conditioned A′, or an
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x′ which is oriented close to the eigenvector of the smallest eigenvalue of A′T A′ all

could increase the bias and push the LS solution xLS away from the real solution.

Generally it leads to an underestimation of vector x.

The main reason for the bias are the errors in the explanatory variables A.

If there are no errors in A, and there are errors only in b, least squares estimation

is unbiased. Basically the bias originates from the quadratic term (A′T A′)−1 =

((A+ δA)T (A+ δA))−1 and can be obtained from a second order expansion of (2.4).

To give the reader an intuition about the bias, we illustrate it by means of

the line equations. Referring to Figure 2.1, consider two lines a11x + a21y = b1

and a12x + a22y = b2 (the solid lines), which intersect in an acute angle. We want

to find the intersection point. We don’t have the exact lines, but we have noisy

observations of these lines (the dashed lines). That is, the observed lines have

orientations (a11 + δa, a21 + δa) and (a21 + δa, a22 + δa) and intercepts (b1 + δb and

b2 + δb) with δa and δb i.i.d. random variables of zero mean. (However, note δb, the

error in the intersections with the y-axis, does not contribute to the bias.) The least

squares solution to the intersection of the noisy lines is found as the point closest in

distance ( L2 norm) to all the lines. This is not the correct intersection, but a point

closer to the origin, because ‖(x, y)‖ is underestimated.

The main assumption underlying our explanation is that our vision system uses

least squares estimation. One may argue then that the bias is just an artifact of linear

estimation. In Section 2.6.1 we discuss that this is not the case by taking a short

digression into the statistical literature. In general classical estimation techniques

will not be able to alleviate the bias significantly. The main reason is that usually
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Figure 2.1: Illustration of the bias by means of line equations: The solid lines denote

the true constraints, and the dashed lines denote the noisy observations. The LS

solution to the intersection of the noisy lines is the point with closest distance

(smallest sum of squares distance) to all the dashed lines. The distances to the

true solution (denoted by red lines) are larger than the distances to the estimated

solution (denoted by blue lines). Thus the estimated intersection point is the blue

point, and not the correct red one. It is closer to the origin, because the bias leads

to underestimation.
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there is not enough data available. If in some cases there is data to extract statistics,

the best thing to do is to partially correct the bias, and this does not change the

form of the bias. In section 2.6.2 we present our hypothesis that the human visual

system actually does partial correction and we show experiments that support this

point of view.

The question is then, does this insight about the bias tell us anything about the

way the human system estimates or about how theoretically machine vision should

estimate shape? Section 2.6.3 discusses these issues. First, we could do better in

the geometrical estimation problems by using color information. Three color pixels

usually do not contain more information than one gray value pixel from a geometrical

point of view. They do, however, contain statistical information, which we could

exploit to improve the estimation. Second, in order to do good statistics, whatever

we do, we do it better with larger amounts of data. We can only use large amounts of

data if we have models of the scene. Thus the bias makes a computational argument

for the need to solve the estimation of image features, motion, structure, shape, and

the segmentation in feed-back loops. Having estimates about the 3D motion and

the structure, we can segment the scene and apply our methods to larger amounts

of data.

A number of previous studies have analyzed the statistics of visual processes.

In particular, [45] discussed bias for some visual recovery processes. A few studies

analyzed the statistics of structure from motion [46, 19, 12, 47]. However, these

analyses stayed at the general level of parameter estimation; no one has shown

before the effects on the estimated shape.
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2.2 Shape from multiple views

The 3D shape of a surface patch is described by the surface normal. In the

literature on multiple view geometry, 3D shape is considered a by-product of the

estimation of structure (the 3D coordinates of the scene). 3D shape is obtained as the

spatial derivative of structure. However, one could estimate the 3D shape directly

from the image texture without estimating the structure and without knowing the

displacement (translation) between the cameras. Let us describe a surface patch by

its local tangent plane. Estimating the structure of the patch means estimating three

parameters: two parameters for the surface normal and one parameter for the depth

(how far is the surface patch?). There is reference to this idea in the psychophysical

stereo literature, where it is referred to as estimation from orientation disparity.

The geometric constraints are explained next.

Consider two views of a planar patch separated only by translation T as in

stereo (Fig. 2.2). Assume the patch contains a line L (an edge due to texture). The

projections of this line on the two views with centers O and Õ are then the two image

lines ` and ˜̀. Usually a line in the image is described by an equation of the form

ax + by + c = 0, which we can also write as (a, b, c) · (x, y, 1) = 0. This means, that

the vector (a, b, c) is perpendicular to any vector (x, y, 1) representing the points on

the line, assuming that the image is at distance one from the center O. Thus, such

a line can be represented by the vector (a, b, c), and we normalize it to have a unit

z-component as ` = (a
c
, b

c
, 1). Geometrically, vector ` is perpendicular to the plane

through O and L. Similarly, vector ˜̀ is perpendicular to the plane through Õ and
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Figure 2.2: Orientation disparity constraint in stereo: A line L in space is projected

on the two views as ` and ˜̀. The representation for ` and ˜̀ are the vectors normal

to the planes defined by the line in space and each of the centers O and Õ. Since

` and ˜̀ are both perpendicular to the line L, it follows that `× ˜̀ is parallel to the

line L. N is normal to the plane containing L. Thus we have (`× ˜̀) ·N = 0.

Figure 2.3: Plücker representation of a line L as (Ld, Lm) and its image `.
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L. The line L is perpendicular to vector `, and it is also perpendicular to vector

˜̀. Thus the cross-product vector ` × ˜̀ is parallel to the line L. Since the surface

normal N is perpendicular to the patch, which includes the line L, we obtain

(`× ˜̀) ·N = 0, (2.6)

where “·” denotes the scalar product. This is the linear equation that we use to

estimate N .

2.2.1 Analysis of Equation (2.6)

In order to analyze the bias and predict parametric influences we need to

relate the image lines to the line in 3D. To facilitate the analysis in the following

discussion, we present 3D lines by their Plücker coordinates. A line L in 3D space,

which is a four-dimensional object, is then represented by the two vectors (Ld, Lm).

Ld is a unit vector parallel to the line L in space, and thus it denotes its orientation.

Lm, which is called the moment of the line, is a vector perpendicular to the plane

through L and the origin O with value the distance of L from O. Lm is parallel to `

and perpendicular to Ld (Fig. 2.3). Then the line coordinates in the two views are

related as (see Appendix 2.7.1)

L̃d = Ld

L̃m = Lm + T × Ld,

where T is the translation between two views. Thus

`× ˜̀ = Lm
ẑ·Lm

× L̃m

ẑ·L̃m

= Lm
ẑ·Lm

× (Lm+T×Ld)

ẑ·L̃m

= − (Lm·T )Ld

(ẑ·Lm)(ẑ·L̃m)
.
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For comparing the different configurations, we will simply use the projective relation

( with ∼ denoting equality up to a scale factor)

`× ˜̀∼ (T · Lm)Ld. (2.7)

2.3 Shape from stereo

Let us write the estimation equation (2.6) as

e ·N = 0,

with e = ` × ˜̀. Let N = (N1, N2, 1) then be the surface normal, and let {`i =

(ai, bi, 1)} denote the lines in the left image and { ˜̀
i = (ãi, b̃i, 1)} the corresponding

lines in the right image. Substituting these coordinates into equation (2.6), we

obtain for every observed line an equation in the two parameters (N1, N2) of the

form

(e1i
, e2i

) · (N1, N2) = −e3i
, (2.8)

where 

e1i
= bi − b̃i

e2i
= −ai + ãi

e3i
= aib̃i − ãibi

The line measurements (ai, bi) are always corrupted by noise in practice. Let

the noise δai = ai − a′i, δbi = bi − b′i and δãi = ãi − ã′i, δb̃i = b̃i − b̃′i be independent

random variables with zero mean and covariance δ2. Thus eki
, k = 1, 2, 3 are also

corrupted by noise. Then we have:

(e′1i
+ δe1i

)N1 + (e′2i
+ δe2i

)N2 = −(e′3i
+ δe3i

). (2.9)
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Let E, E ′ and δE denote the n× 2 matrices incorporating the n measurements e1i

and e2i
and G, G′ and δG denote the n × 1 matrices incorporating the e3i

. Then

the estimation of x = (N1, N2) is obtained by solving the equation

Ex = G or

(E ′ + δE)x = G′ + δG. (2.10)

Assuming that the errors are much smaller then the real values, we develop the LS

solution of x in a second order Taylor expansion and obtain as an approximation

for the estimate of x (see appendix 2.7.2):

E(x) = x′ − 2nδ2M ′−1x′ = (I − 2nδ2M ′−1
)x′ with M ′ = E ′T E ′. (2.11)

Since M ′ is a positive definite matrix, so is M ′−1. Considering the perturbation

2nδ2M ′−1 being small, we have ‖I − 2nδ2M ′−1‖2 < 1. Then we conclude that

‖E(x)‖ = ‖(I − 2nδ2M ′x−1x′‖ < ‖Ix′‖ = ‖x′‖, (2.12)

i.e. generally vector x is underestimated, and the degree of underestimation highly

depends on the structure of matrix M ′.

2.3.1 The effects on slant

The slant σ is the angle between the surface normal and the negative z-axis

(0o slant corresponds to a plane parallel to the image plane, 90o to a plane that

contains the optical axis) and the tilt τ is the angle between the direction of the

projection of the surface normal onto the image plane and the x-axis (see Figure

2.4). Using these coordinates N = (cos τ tan σ, sin τ tan σ, 1).
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Figure 2.4: The slant of a surface is the angle σ between the negative z-axis and the

surface normal, the tilt τ is the angle between the projection of the surface normal

onto the image plane and the x-axis.

We know from the previous section (eq. (2.12)) that ‖x‖ is underestimated.

Since σ = cos−1(1 + ‖x‖)− 1
2 is a strictly increasing function of ‖x‖, by linear ap-

proximation, the slant σ is also underestimated. That is,

E(σ) < σ′, (2.13)

i.e. the expected value of the estimated slant is smaller than the actual value.

The degree of underestimation can be found by analyzing matrix M ′, or more

specifically, the inverse of matrix M ′. The inverse of a matrix can be written as its

adjoint over its determinant, i.e. M ′−1 = adj(M ′)
det(M)

, which shows that large bias results

from a small determinant and an x′ close to the smaller eigenvalue of M ′.
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2.3.2 Anisotropy in the perception of stereoscopic slant

An interesting phenomenon in stereoscopic vision is the anisotropy in the per-

ception of slanted (or tilted) planes. A surface slanted about the horizontal axis is

estimated much easier and more accurately than a surface slanted about the vertical

axis [48, 1, 49]. In both cases there is an underestimation of slant, but it is much

larger for slant about the vertical. [48] argued that this effect is due to orientation

disparity, which generally (assuming the texture lines to be mostly vertical and hor-

izontal) is smaller for surfaces slanting about the vertical. However, as shown in

[1], the effect also exists, even though in weaker form, when the texture is made up

of lines oriented at 45◦. For such a configuration the orientation disparity in the

two differently slanted planes should be the same. From this result, the authors

argue that orientation disparity can not be the cause. We now show that bias in

orientation disparity can account for this anisotropy.

2.3.3 Analysis of stereoscopic slant

Consider a front-parallel plane which is textured with two sets of orthogonal

line segments of orientation θ and π
2

+ θ (see Fig. 2.5a ). When we slant this

plane with angle σ about the vertical axis (Fig. 2.5b) the corresponding surface

normal N v = (xv, 1) = (tan σ, 0, 1). When we slant the front-parallel plane about

the horizontal axis (Fig. 2.5c), the surface normal is Nh = (xh, 1) = (0, tan σ, 1).

Substituting the components of e into eq. (2.11) and relating x to the slant σ we

obtain the estimated slant of the vertical and horizontal tilted plane, σv and σh, (
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Figure 2.5: (a) In the fronto-parallel setting the orientation of the line elements on

the plane is θ. The plane is rotated (slanted) by angle σ about the (b) vertical axis

and (c) about the horizontal axis.

see appendix 2.7.3):

E(σv) = σ − δ2 sin 2σ

2

nE(
∑

e′22v
)

E(det(M ′
v))

= σ − δ2 sin 2σ

2
Cv (2.14)

E(σh) = σ − δ2n sin 2σ

2

E(
∑

e′21h
)

E(det(M ′
h))

= σ − δ2 sin 2σ

2
Ch. (2.15)

In the equations above the effects of M ′−1x′ = adj(M ′)x′
det(M ′)

show up as the terms Cv and

Ch. The terms E(
∑

e′22v
) and E(

∑
e′12h

) originate from adj(M ′)x′ , and the terms

E(det(M ′
v) and E(det(M ′

h) are the determinants of M ′ . Cv and Ch determine the

degree of underestimation. The larger they are the more the underestimation will

be, and their ratio is a measure of the relative error.

Denoting the displacement between the cameras as t in appendix 2.7.3 we

derive:

Cv =
1

t2
(sin4 θ + cos4 θ)

cos4 σ(sin2 θ cos2 θ)
(2.16)

Ch =
2

t2 cos2 σ
, (2.17)
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and thus their ratio amounts to:

Cv

Ch

=
1

cos2 σ

tan2 θ + cot2 θ

2
> 1. (2.18)

Let us get an intuition for the above equations. The differences in the bias

can be understood from the relation

e ∼ (T · Lm)Ld.

The two parameters involved in eq. (2.18) are σ, the slant (or rotation) of the

surface and θ, which defines the orientation of the image lines (Figure 2.5). The

effect of σ enters through the determinants. A slant about the vertical axis shortens

the x component of Lm and Ld by a multiplicative factor of cos(σ). A slant about

the horizontal axis effects in the same way the y component of Lm and Ld. Since

the translation is parallel to the x-axis, i.e. T = (t, 0, 0) and the product (T · Lm)

has only the x-component of Lm, there is more shortening effect in the determinant

of the vertically slanted plane, and the ratio of Cv

Ch
is 1

cos2 σ
.

The effect of θ enters due to adj(M ′)x′: The components involving θ are the

same for both matrix Mv and Mh. (Only the components due to slant are different).

Because of the product T · Lm, for both matrices there is a smaller θ component

parallel to the x-axis than parallel to the y-axis (smaller e′21 than e′22. In other

words, the smaller eigenvalue component is closer to the x axis than to the y axis,).

xv = (tan σ, 0) is parallel to the x-component and xh = (0, tan σ) is parallel to the

y-component, and thus there is larger bias for vertical slant. The ratio of the two

terms amounts to tan2 θ+cot2 θ
2

.
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(a) (b)

Figure 2.6: Stereoscopic images of a plane slanted by 30◦ about the vertical (a) and

horizontal (b) axes. View the images with red-blue glasses with the red on the right.

Now, using (2.18) we can predict the perception of slanted planes [48, 1]. For a

pattern with vertical and horizontal line segments (θ ≈ 90o) the ratio Cv

Ch
>> 1. This

predicts the estimation for the plane slanted about the vertical to be significantly

worse than for the plane slanted about the horizontal. When the line segments are

at 45◦ the bias is still larger for the slant about the vertical since Cv

Ch
= 1

cos2 σ
> 1.

Thus the perception for the slant is still predicted to be more erroneous, but with

much less anisotropy.

2.3.4 Experiments and predictions

We created stereograms on a computer display as follows: A plane textured

with lines in two orthogonal directions was slanted in space about the vertical and

horizontal axes with the slant in the range of 0◦ to 55◦, and its images were created

by projection. In order to keep the number of lines constant (between 4 and 5 lines

in one direction) we zoomed in. We tested two line orientations, a pair with 45◦

and 135◦ degrees and a pair with 30◦ and 120◦. Three observers were shown first

28



Figure 2.7: Free fusion versions of 2.6 for uncrossed viewing.

a random sequence of horizontally, then a sequence of vertically slanted planes and

asked to adjust a cardboard on the desk next to the screen to denote the perceived

slant. Figures 2.6 and 2.7 show the stereograms for 30◦ slant and the lines oriented

at 45◦ (and 135◦ ).

Figure 2.8 plots the measurement along with our predictions. The data points

shown are the mean values over all all trials and all three subjects. The standard

deviation was about 20%. Mostly one of our subjects was much more accurate in

his estimates than the the other two. Fig. (2.9) shows the data of the individual

subjects for one configuration.

As can be seen from Fig. 2.8 the predictions model the data very well within

this range of angles. We should note that we do not attempt to model larger slants.

First, we think that because at larger angles texture is very compressed, additional

information about the texture distortion and the vanishing lines becomes important,
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(a) (b)

Figure 2.8: Our experiments: Predictions and measurements for textures oriented

at (a) 45◦ and (b) 30◦.

Figure 2.9: Measurements from the three subjects for a plane slanted about the

horizontal axis and textured with lines of 45◦ orientation.

which has more influence on the perception than the bias. Second, our equations

are approximations which are valid only for smaller angles. In particular, the Taylor

expansion in (2.46) is not a justified for larger angles. Our measurements indicate

the same general behavior as found in [48, 1]. To allow for comparison we show data

of [1] for one of their subjects. Referring to Figure 2.10, one can see that Mitchison

and McKee found a worse estimation for vertically slanted planes, and they found

a nearly linear measurement function.
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Figure 2.10: Slant perceived by one of the subjects in [1] for 45◦ oriented texture

lines.

2.4 Shape from motion

In the case of differential motion, when the camera (or eye) moves with in-

stantaneous translational velocity t and rotational velocity ω, (2.6) takes a similar

form. If N is the normal of a plane containing a line with image ` and temporal

derivative ˙̀ the estimation equation (2.6) becomes (see appendix 2.7.1)

(`× ( ˙̀− ω × `)) ·N = 0 or

e ·N = 0 (2.19)

with e = `× ( ˙̀− ω × `). (see appendix 2.7.1).

Let {`i = (ai, bi, 1)} denote the lines on the plane, and { ˙̀
i = (ȧi, ḃi, 0)} denote

the motion parameters of the lines `i. Then in the prime equations

(e1i
, e2i

) · (N1, N2) = −e3i
, (2.20)
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the parameters are:

e1i
= −ḃi + (−(1 + b2

i )ω1 + aibiω2 + aiω3)

e2i
= ȧi + (aibiω1 − (1 + a2

i )ω2 + biω3)

e3i
= −(ȧibi − ḃiai) + (aiω1 + biω2 − (a2

i + b2
i )ω3).

There is noise in the measurements of the line locations and the measurements

of the line movement. Let the error random variables be δai = ai−a′i and δbi = bi−b′i

with expected value 0 and variance δ2
1 and δȧi = ȧi−ȧ′i and δḃi = ḃi−ḃ′i with expected

value 0 and variance δ2
2. Then from the second order Taylor expansion of the LS

solution we obtain the expected value of x = (N1, N2) (see appendix 2.7.2) as

E(x) = x′ −M ′−1(δ2
2D

′ + δ2
1F

′)x′ −M ′−1δ2
1H

′, (2.21)

where

D′ =

 n 0

0 n

 , H ′ = ω3

n∑
i

 ω1(6b
′
i
2 + c′i + 3)

ω2(6a
′
i
2 + c′i + 3)

 ,

F ′ =
n∑
i

 6b′i
2ω2

1 + c′iω
2
2 + ω2

3 + 2ω2
1 2c′iω1ω2 + 2ω1ω2

2c′iω1ω2 + 2ω1ω2 c′iω
2
1 + 6a′i

2ω2
2 + ω2

3 + 2ω2
2


with c′i = a′i

2 + b′i
2.

For the case when rotation around the z-axis can be ignored (i.e, ω3 = 0)

equation (2.21) simplifies to

E(x) = (I −M ′−1(δ2
2D

′ + δ2
1F

′))x′ = (I − δA)x′. (2.22)

D′ and F ′ are positive definite matrices and the perturbations δ1 and δ2 are

small. Thus δA is also a positive definite matrix, and by the same arguments as in

the case of stereo, the slant can shown to be underestimated.
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To show the degree of underestimation, next we will analyze the determinant

of matrix M ′; the smaller the determinant the larger the underestimation. The

velocity of rotation also contributes to the magnitude of the bias as can be seen

from matrix F ′; larger velocity more bias.

2.4.1 Predictions and illusory display

To say more about the dependence of slant estimation on the texture distri-

bution we use the relation (2.31):

e ∼ (t · `)Ld.

Let us consider a slanted plane with a texture of two major directional compo-

nents. Let the directional components be Ld1 = (cos τ1 sin σ1, sin τ1 sin σ1, cos σ1)

and Ld2 = (cos τ2 sin σ2, sin τ2 sin σ2, cos σ2). That is σ1 and σ2 are the angles be-

tween the texture lines on the world and the negative z-axis, and τ1 and τ2 are the

angles between the projections of the texture lines on the image plane and the x-axis

(see Figure 2.11). The determinant det(M) of M amounts to (appendix 2.7.4)

det(M) =
∑

(t · `1i
)2

∑
(t · `2i

)2(sin σ1 sin σ2 sin(τ1 − τ2))
2. (2.23)

In this equation the term
∑

(t · `1i
)2 ∑

(t · `2i
)2 is due to the products t · `1 and t · `2

in the e’s and the term (sin σ1 sin σ2 sin(τ1 − τ2))
2 is due to Ld1 and Ld2 .

Using our model we can predict the findings from experiments in the literature.

In ([37]) it has been observed that an increase in the slant of a rotating surface causes

increased underestimation of the slant. This can be understood from the change of
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Figure 2.11: A plane with a texture of two orientations Ld1 and Ld2 is imaged under

motion. σ1 and σ2 are the angles between the texture lines on the world and the

negative z-axis, and τ1 and τ2 are the angles between the projections of the texture

lines on the image plane and the x-axis.

Ld in eq. (2.23). Intuitively, larger slant causes an increase in the z- and decrease

in the x- and y-component of Ld and thus a smaller det(M). By our formula in eq.

(2.23) this is manifested in the factor sin(σ1) sin(σ2), where σ1 and σ2 are the the

angles between the directions of the line in space and the negative z-axis. Unless,

they are 0 degree, these values decrease with an increase of the slant of the plane, and

this leads to a smaller det(M). Hence, we get a larger error towards underestimation

of the slant.

To demonstrate the predictive power of the model we created two illusory dis-

plays. In the first one, the scene consists of a plane with two textures, one in the

upper half, the other in the lower half. Figure 2.12a shows the plane when it is paral-

lel to the screen. The texture in the upper part consists of two line clusters with slope

8o and 98o. The lower part has two lines clusters with slope 45o and 135o. A video

was created for the camera orbiting the sphere along a great circle in the yz-plane as
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shown in Figure 2.12b – that is the camera translates and rotates such that it keeps

fixating at the center. At the beginning of the motion, the slant of the plane with re-

spect to the camera is 15o, at the end it is 45o. The image sequence can be seen from

the website (http://www.cfar.umd.edu/users/fer/optical/Newsite/shape/video.avi).

As can be experienced, it creates the perception of the plane being segmented

into two parts, with the upper part having a much smaller slant. This is pre-

dicted by the biases in the different textures. For the upper texture the bias

is much larger, thus producing larger underestimation of the slant, and the un-

derestimation gets worse as the slant increases. The difference in the values of

the bias can be understood from the difference in the values for (t · `) (the term

∑
(t ·`1i

)2 ∑
(t · `2i

)2 in (2.23)). t is nearly parallel to the y-axis, and thus t ·` is close

to zero for vertical texture lines, making the determinant very small. In a second

display (www.cfar.umd.edu/users/fer/optical/Newsite/shape/video4.avi) the plane

is divided into multiple segments with two alternating textures. In every other seg-

ment there is large bias, and this gives rise to the perception of the plane folding as

if it were a staircase.

Before going on, let us note that the underestimation of slant is not due to

the particular constraints we employed. We may instead compute structure from

normal flow (the component of optical flow perpendicular to edges) by fitting a plane

to the flow data. The surface normal vector obtained this way (from the structure

estimates) will have a qualitatively similar behavior.
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(a) (b)

Figure 2.12: (a) The plane in view. (b) Scene geometry in the shape from motion

demonstration.

2.5 Summary of the parametric influences on the bias

Table 1 summarizes the findings of the last two sections. It displays the effects

of the viewing geometry parameters and the texture on the bias for general 3D

motion between the cameras and for stereo in particular. T and R denote the

translation and rotation, and |T | and |R| their absolute value. `1 and `2 are are two

orthogonal image lines expressed in projective coordinates. Notice that any texture

may be represented by two orthogonal directions corresponding to the eigenvectors

of the matrix M ′.
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large bias small bias

Two view geometry

(motion and stereo)
small |T | large |T |

large |R| small |R|

large slant small slant

small (T · `1)(T · `2) large (T · `1)(T · `2)

Stereo horizontal and vertical texture lines at 45◦

texture lines

surface slanted about surface slanted about

vertical axis horizontal axis

Table 2.1: Influence of viewing geometry and texture on the size of the bias.

2.6 Discussion

2.6.1 Why is estimation so difficult

The statistical model used to describe the data in our equation Ax = b is the

errors-in-variable model, which is defined as:

Definition 1 (Errors-In-Variable Model)

b′ = A′x + ε

b = b′ + δb

A = A′ + δA

x′ are the true but unknown parameters. A = (Ai,j) and b = (bi) are observations of
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the true but unknown values A′ and b′. δAi,j
, δbj are the measurement errors and ε

is the modeling error. This is the error due to our model assumptions.

It is well known that for this model Least Squares (LS) estimation is biased.

The main reason is that it does not consider errors in the explanatory variables, that

is the δA. Let us then investigate the theoretical question. Are there better ways to

estimate? Are there better statistical estimators that do not suffer from bias? The

answer is that in general we cannot avoid bias. We may be able to reduce the bias,

if there is enough data available to obtain reasonable error statistics. In this case

the bias will still be of the same form, only smaller. Simply weighting the data to

make it uniform is statistically not justified as it would increase the variance in the

direction of lesser data significantly. Choosing a nonlinear estimator (such as Total

Least Squares), which would give a different form of bias, does not appear to give

better results because of the noise to be expected. A short discussion summarizing

the main arguments is given next.

The so-called Corrected Least Squares (CLS) estimator is the classical

technique to address bias. If the statistics of the noise, that is the covariance matrix

of δA, is known, an asymptotically unbiased linear estimator could be constructed.

The problem is that for small amounts of data, accurate estimation of the variance

of the noise is a very difficult problem, and has high variance itself, and this leads

to higher variance for the CLS estimation. It is well known that the scale of the

error variance is difficult to obtain in practice.
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In the computational vision literature more attention has been given to the

non-linear technique of Total Least Square (TLS), which deals with the errors in

A and b symmetrically and only requires the ratio of the error variances. If all the

errors δAi,j
and δbj are identical and independent, or their ratio can be obtained,

then TLS estimation is asymptotically unbiased. Estimation of the ratio of errors is

not easy either. However, the main problem for TLS is modeling error (or also called

system error [42]). Theoretically one can use multiple tests to obtain the measure-

ment errors, like re-measuring or re-sampling; but unless the exact parameters of the

model are known, one cannot test for the modeling error. The noise we expect is ac-

tually much more complicated than simple i.i.d. additive noise. It is correlated, and

this would cause further problems for TLS, causing convergence problems for the

corresponding nonlinear non-convex objective function to be minimized [50]. TLS

is attractive in the sense that it has an obvious geometrical explanation, but it does

not appear advantageous for the vision applications discussed. Its improvement over

usual least squares in the statistical sense would be offset with more complicated

error models or if mis-modeling the error.

We can classify the errors into two categories: measurement noise and modeling

error. In the problem at hand the measurements are the line parameters {ai, bi}, and

the image motion parameters of the lines {ȧi, ḃi}. We can expect measurement errors

due to sensor noise which effects the measurements of image intensity I(x, y, t). It

seems reasonable to approximate the sensor noise as i.i.d. But we have to consider

dependencies when the images are smoothed. Other errors in measurement are

due to bad fitting, when estimating the line parameters with edge detectors and
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discretization due to the edge detectors and difference operators computing the

derivatives.

Modeling errors are due to erroneous assumptions. When computing the mo-

tion of lines, we assume that the image intensity is constant between frames. Sig-

nificant errors occur at specular components. We use first order expansions when

deriving velocities. Thus, errors are expected for large local velocities. Furthermore,

the modeling of the scene as consisting of planar patches is an approximation to the

actual surface of the scene.

Sensor noise may be considered i.i.d. and is easier to deal with ([51, 52]).

But other errors could be more significant, and they are more elaborate, making

the statistics rather complicated. It is too difficult to estimate the statistics of the

combined noise, which is necessary to apply the classical techniques.

There is another technique widely known in Economics which theoretically

may be well suited for vision, the technique of instrumental variables (IV

technique), which deals with the errors in the explanatory variables but does not

require the error variance as a priori. This techniques uses additional variables, the

instrumental variables, which could be additional measurements of the explanatory

variables. Let these variables be called W . If the errors in the measurements of the

two methods can be treated as independent, an asymptotically unbiased estimator

[42] can be created, whose variance is close to the variance of the CLS estimator,

by solving the replaced equation system

(W T A)x = (W T )b, (2.24)
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with standard least square estimation. But even, if the errors are not fully indepen-

dent, but not completely related, the technique can help reduce the bias.

Possible ways to obtain instrumental variables are by taking multiple measure-

ments of the explanatory variables, for example by using multiple edge detections,

fitting schemes, or difference operators.

Using color image sequences we could create even better instrumental vari-

ables. We may use one color channel as instrumental variables to another color

channel. It is quite reasonable to assume that the sensor noise components are in-

dependent in the different color channels. The approximation errors in the image

gradients would not be completely independent since there is a similarity in the

structure of the color intensity functions. This means, we could not completely

remove the bias from approximation error, but we could partially correct the bias

caused by this error. We cannot correct the bias from the modeling error. But this

is the advantage of this technique despite the presence of modeling error, it still can

deal with the other errors.

2.6.2 Is our vision system doing the best?

Bias is only one component of estimation, the other is variance; and there is a

trade-off between the two. Generally an estimator correcting for bias increases the

variance while decreasing the bias. In statistics, the performance of an estimator

is evaluated by a risk function. Usually the mean squared error (MSE) is used

as performance criterion. It is the expected value of the square of the difference
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between the estimated and the true value. If x′ is used to denote the actual value, x̂

to denote the estimate, and E(·) to denote the expected values, the MSE is defined

as

MSE(x̂) = E((x̂− x′)2)

= (E(x̂)− x′)2 + E(x′ − E(x̂))2

= bias2(x̂) + cov(x̂), (2.25)

that is, as the sum of the square of the bias (denoted as bias(x̂)) and the variance

(denoted as cov(x̂)).

Let us assume we know the variance of the error as well as the covariance

of the LS estimate exactly. In appendix 2.7.5 we derive an expression for the best

linear estimator. This would be a partial correction using CLS. How much to correct

depends on the covariance of the LS estimate. The larger the covariance, the less

the correction.

Thus, theoretically the best we could do is to partially correct. If there is

a sufficient amount of data we should be able to somewhat correct the bias. A

good choice for doing so, would be a conservative, that is slight correction using

CLS or the IV method. Such a correction would lead to an estimation with bias

qualitatively of the same form as LS but smaller in value.

What about the human vision system? We assume that it is doing the best

it can. If it has enough data, it should be able to perform some correction. Two

observations make us believe that it does.

Partially corrected estimation would explain why the illusory perception in
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Figure 2.13: Influence of texture density on estimation. The plane is slanted with

an angle of 45◦. The denser pattern appears to be estimated closer to the veridical

than the sparser pattern.

many optical illusions weakens after extended viewing, in particular when subjects

are asked to fixate ([53]). In these cases, we can assume that the noise parameters

stay fixed, and the visual system can reasonably well estimate them.

We can draw conclusions by varying the covariance (of the estimator) in a

pattern. Two patterns created by line segments of same orientation but different

density give rise to the same bias, but different covariance. The smaller the covari-

ance of the estimator, the more the correction and thus the less the bias should

be. Thus, a pattern with higher density and smaller covariance should be estimated

better. We tested different textures and found our perception to be consistent with

the hypothesis. An example is shown in Figure 2.13. Patterns of larger density and

thus smaller covariance of the estimator appear to result in better estimation.
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2.6.3 Structure and motion in the feed-back loop

We have analyzed the effects of noise on the estimation of shape and found

that there is bias. We showed that this bias predicts the underestimation of slant,

which is known from computational and psychophysical experiments. Our analysis

was based on LS estimation, but we showed that other estimators suffer from bias

too, and for the most appropriate estimators the bias is of the same form as for

LS estimation. The main reason for the inability to correct for the bias lies in the

difficulty to obtain good estimates of the statistics of the data.

Vision scientists have long realized that a large part of the visual processes are

carried out by feeding information from higher processing areas to lower processing

areas. The Computer Vision literature creating algorithms, however, has not em-

braced this view yet. That is nobody will argue that recognition requires top-down

process, but the problems of reconstruction discussed here have been studied in a

pure feed-forward fashion. This brings us to the question: Is there a need for compu-

tational feed-back? It is clear that the problems of model parameter estimation and

segmentation are computationally antagonistic to each other. The idea was that it

is possible set up a large minimization which includes discontinuity localization and

parameter estimation that will solve the problems. However the approach has not

been proven to be successful. It appears that the information one can extract from

the signal without having knowledge of the scene model is not sufficient to perform

good reconstruction.

Better estimation techniques are not the answer to bias. Thus we have to use
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the data such that bias does (mostly) not effect the goal, that is, what we want to

do with the data. First, we should use the data selectively. Since we understand

how the the different parameters influence the bias, we can choose data that is

not effected much by the bias. For example in computing shape from motion we

can avoid patches with textures corresponding to a badly conditioned matrix M .

Second, we should use as discussed above, the data globally. Large amounts of

data usually are not directionally biased, and thus the bias in estimation will be

small. Third, the statistics becomes easier if the data available is less correlated.

For example, structure (or shape) from motion is easier for the discrete case than

the continuous case, since in the discrete case the errors in the image measurements

are expected to be less correlated. Thus, it is advantageous to estimate shape from

views far apart. Of course, using far away views we run into the difficulty of finding

good correspondence. The way to address structure from motion then is to use

continuous motion to obtain a preliminary estimate of the 3D motion and shape,

and subsequently use these estimates to obtain shape from views far apart.

2.7 Appendix

2.7.1 Shape from lines in multiple views: The constraint

Consider the general stereo configuration of two cameras displaced by a rigid

motion with translation T and rotation R. Let the scene be a textured plane with

surface normal N . The texture is described by the lines on the plane. A line L

in 3D space is a four-dimensional object and can be elegantly described by Plücker
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coordinates. Let P 1 and P 2 be two points with unit distance and P any point on

L = (Ld, Lm). Then 
Ld = P 1 − P 2;

Lm = P × Ld = P 2 × P 1.

(2.26)

Ld denotes the direction of the line in space, and Lm its moment. Geometrically Lm

is a vector perpendicular to the plane through L and the coordinate center O with

value the distance of L from O (Figure 2.3). Ld and Lm are perpendicular, that is

Ld · Lm = 0. The projection ` of the 3D line L on the image is just Lm normalized,

i.e to have the third coordinate 1, it is ` = Lm
ẑ·Lm

, where ẑ is a unit vector parallel

to the z-axis.

Since points in the two views are related as P̃ = RP + T , the line parameters

in the two views are related as
L̃d = P̃ 1 − P̃ 2 = R(P 1 − P 2) = RLd;

L̃m = P̃ 2 × P̃ 1 = (RP 2 + T )× (RP 1 + T ) = RLm + T ×RLd.

(2.27)

Thus, the orientation of the line can be obtained as

`× (RT ˜̀) =
Lm

ẑ · Lm

× Lm + RT T × Ld

ẑ · L̃m

=
−(Lm ·RT T )Ld

(ẑ · Lm)(ẑ · L̃m)
=
−(` ·RT T )

ẑ · L̃m

Ld. (2.28)

Since Ld is perpendicular to the surface normal N we have that

(`×RT ˜̀) ·N = 0. (2.29)

In the case of differential motion, where the motion of a point in space has velocity

Hence

˙̀ =
L̇m

(ẑ · Lm)
− ( ˙Lm · ẑ)

(ẑ · Lm)

Lm

(ẑ · Lm)
=

1

(ẑ · Lm)
t× Ld + ω × `− ( ˙Lm · ẑ)

(ẑ · Lm)
`, (2.30)
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and the constraint in (2.2.1) takes the form

`× ( ˙̀− ω × `) = − t · `
ẑ · Lm

Ld. (2.31)

Thus if the 3D line is on the plane with normal vector N , its image ` must obey

N · (`× ( ˙̀− ω × `)) = 0. (2.32)

To clarify the use of these equations; slant is estimated using equations (2.29) and

(2.32). The relations (2.28) and (2.31) are used to analyze the bias.

2.7.2 Expected value of Least Squares solution

Consider the equation system

(e1i
, e2i

) · (N1, N2) = −e3i
, (2.33)

with corrupted measurements

eki
= e′ki

+ δeki
, k = 1, 2, 3.

The Least Square solution amounts to x = (ET E)−1ET G, where E and G are the

n×2 and n×1 matrices E = E ′+δE = (e1i
, e2i

)n, G = G′+δG = (−e3i
)n. Assuming

that the errors are much smaller than the real values, we develop the LS solution

of x in a second order Taylor expansion. Since the noise terms are considered i.i.d.

with mean 0, we obtain as an approximation for the expected value E(·):

E(x) ≈ x′ +
∑

i

∑
δti∈δV

∂2E(x)

∂δti
2

⌋
δti=0

E(δti
2)

2
, (2.34)
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where in the case of motion δV is the set of all variables {δa′
i
, δb′

i
, δȧ′

i
, δḃ′

i
}, and in the

case of stereo δV is the set {δa′
i
, δb′

i
, δã′

i
, δb̃′

i
}. Let M ′ denote E ′T E ′. Using the fact

that for any arbitrary matrix Q

−∂Q−1

∂x
= Q−1∂Q

∂x
Q−1 (2.35)

the expected value of x is approximated as

E(x) = x′−
∑

i

∑
ti∈V

δt2i
2

(
M ′−1


∂2e′2

1i

∂t2i

∂2e′
1i

e′
2i

∂t2i

∂2e′
1i

e′
2i

∂t2i

∂2e′2
2i

∂t2i

 x′ + M ′−1


∂2e′

1i
e′
3i

∂t2i

∂2e′
2i

e′
3i

∂t2i

 )
, (2.36)

with V the set {a′i, b′i, ȧ′i, ḃ′i}, or {a′i, b′i, ã′i, b̃′i}.

2.7.2.1 Motion analysis

Let the variances of δai and δbi be δ2
1, and the variance of δȧi and δḃi be δ2

2. We

then substitute for ei in (2.36) from (2.20) and write out the derivatives piecemeal:

∂2e′21i

∂a′2i
+

∂2e′21i

∂b′2i
= 2(b′iω2 + ω3)

2 + 2(a′iω2 − 2b′iω1)
2

+4ω1(ḃ
′
i + (1 + b′i)

2ω1 − a′ib
′
iω2 − a′iω3)

∂2e′1i
e′2i

∂a′2i
+

∂2e′1i
e′2i

∂b′2i
= 2(b′iω2 + ω3)(b

′
iω1 − 2a′iω2)

+2ω2(ḃ
′
i + (1 + b′2i )ω1 − a′ib

′
iω2 − a′iω3)

−2ω1(ȧ
′
i + a′ib

′
iω1 − (1 + a′2i )ω2 + b′iω3)

+2(a′iω2 − 2b′iω1)(a
′
iω1 + ω3)

∂2e′22i

∂a′2i
+

∂2e′22i

∂b′2i
= 2(b′iω1 − 2a′iω2)

2

−4(ȧ′i + a′ib
′
iω1 − (1 + a′2i )ω2 + b′iω3)ω2

+2(a′iω1 + ω3)
2
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∂2e′1i
e′3i

∂a′2i
+

∂2e′1i
e′3i

∂b′2i
= 2(b′iω2 + ω3)(ḃ

′
i + ω1 − 2a′iω3)

+4ω3(ḃ
′
i + (1 + b′2i )ω1 − a′ib

′
iω2 − a′iω3)

−2ω1(ḃ
′
ia
′
i − ȧ′ib

′
i + a′iω1 + b′iω2 − (a′2i + b′2i )ω3)

+2(−2b′iω1 + a′iω2)(−ȧ′i + ω2 − 2b′iω3)

∂2e′2i
e′3i

∂a′2i
+

∂2e′2i
e′3i

∂b′2i
= 2ω2(ȧ

′
ib
′
i − ḃ′ia

′
i − a′iω1 − b′iω2 + (a′2i + b′2i )ω3)

+2(b′iω1 − 2a′iω2)(ḃ
′
i + ω1 − 2a′iω3)

−4ω3(ȧ
′
i + a′ib

′
iω1 − (1 + a′2i )ω2 + b′iω3)

+2(a′iω1 + ω3)(−ȧ′i + ω2 − 2b′iω3)

∂2e′2
1i

∂ȧ′2
i

+
∂2e′2

1i

∂ḃ′2
i

= 2
∂2e′2

2i

∂a′2
i

+
∂2e′2

2i

∂ḃ′2
i

= 2

∂2e′
1i

e′
3i

∂ȧ′2
i

+
∂2e′

1i
e′
3i

∂ḃ′2
i

= −2a′i
∂2e′

2i
e′
3i

∂ȧ′2
i

+
∂2e′

2i
e′
3i

∂ḃ′2
i

= −2b′i

(2.37)

and all other second order derivatives are 0. For the simplicity of expression, we

consider ai and bi to be independent random variables which are symmetric with

respect to the center of the image coordinate system; in other words, E(ak
i ) =

E(bk
i ) = 0, k = 1, 3. The ȧi and ḃi are very small and set to 0. Then with enough

equations, the expected value for the LS solution of x is well approximated by

E(x) = x′ −M ′−1(δ2
2D

′ + δ2
1F

′)x′ −M ′−1δ2
1H

′, (2.38)

where

D′ =

 n 0

0 n

 , H ′ = ω3

n∑
i

 ω1(6b
′
i
2 + c′i + 3)

ω2(6a
′
i
2 + c′i + 3)

 , (2.39)

F ′ =
n∑
i

 6b′i
2ω2

1 + c′iω
2
2 + ω2

3 + 2ω2
1 2c′iω1ω2 + 2ω1ω2

2c′iω1ω2 + 2ω1ω2 c′iω
2
1 + 6a′i

2ω2
2 + ω2

3 + 2ω2
2

 (2.40)

with c′i = a′i
2 + b′i

2.

49



2.7.2.2 Stereo

Substituting in (2.36) from (2.8) and setting the variance E(δa2
i ) = E(δb2

i ) =

E(δã2
i ) = E(δb̃2

i ) = δ2 we obtain for the derivatives:

∑
δti

δ2e′
1i

e′
2i

δt2i
= 0,

∑
δti

δ2e′
1i

e′
3i

δt2i
= −2(a + ã),

∑
δti

δ2e′
2i

e′
3i

δt2i
= −2(b + b̃),

∑
δti

δ2e′2
1i

δt2i
= 4,

∑
δti

δ2e′2
2i

δt2i
= 4.

(2.41)

To simplify, we align the image center such that E(ai + ãi) = 0 and E(bi + b̃i) = 0,

and we obtain for the expected value of x

E(x) = x′ − 2nδ2M ′−1x′. (2.42)

2.7.3 Stereo: slant about the vertical and horizontal

Let us use Nv = (xv, 1) = (tan σ, 0, 1) and Nh = (xh, 1) = (0, tan σ, 1) to denote

the surface normals in the planes slanted about the vertical and the horizontal axes

respectively. Denoting the real slant as σ we derive from (2.8) the expected value

of x = (N1, N2) as:

E(x) =

 N ′
1

N ′
2

− δ2


1
n

∑
e′21i

1
n

∑
e′1i

e′2i

1
n

∑
e′1i

e′2i

1
n

∑
e′22i


−1  N ′

1

N ′
2



=

 N ′
1 − nδ2|E(M ′)|−1(E(

∑
e′22)N

′
1 − E(

∑
e′1e

′
2)N

′
2)

N ′
2 − nδ2|E(M ′)|−1(E(

∑
e′21)N

′
2 − E(

∑
e′1e

′
2)N

′
1)

 . (2.43)

Then for the two settings above, omitting terms of O(δ4), we have

E(||xv||2) = (1− εv)||x′||2 = (1− (2nδ2 E(
∑

e′2
2v )

|E(M ′
v)| ))||x′||2, (2.44)
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E(||xh||2) = (1− εh)||x′||2 = (1− (2nδ2 E(
∑

e′2
1h

)

|E(M ′
h
)| ))||x′||2. (2.45)

Consider the following Taylor expansion:

E(σ) = cos−1(((1− ε)||x′||2 + 1)−
1
2 )

= cos−1(((1− ε) tan2 σ + 1)−
1
2 )

= σ − (
1

4
sin 2σ)ε + O(ε2), (2.46)

which is a reasonable approximation only for smaller angles σ, because for larger

angles ε becomes large. We then have

E(σv) = σ − nδ2 sin 2σ

2

E(
∑

e′22v
)

|E(M ′
v)|

= σ − nδ2 sin 2σ

2
Cv, (2.47)

E(σh) = σ − nδ2 sin 2σ

2

E(
∑

e′21h
)

|E(M ′
h)|

= σ − nδ2 sin 2σ

2
Ch. (2.48)

Denote the lines in the front-parallel view by

L̂mi
= (− sin θ, cos θ, ki), L̂di

= (cos θ, sin θ, 0),

L̂mj
= (− cos θ,− sin θ, ki), L̂dj

= (− sin θ, cos θ, 0). (2.49)

Then through rotation we obtain the parameters in the vertically and horizontally

tilted plane as

Lmv = Ry(σ)L̂m, Ldv = Ry(σ)Ldh
,

Lmh
= Rx(σ)L̂m, L̂d = Rx(σ)Ldh

, (2.50)

where

Ry(σ) =



cos σ 0 − sin σ

0 1 0

sin σ 0 cos σ


and Rx(σ) =



1 0 0

0 cos σ − sin σ

0 sin σ cos σ


.
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We have

e ≈ (T · Lm)Ld.

Let T = (t, 0, 0). Then under the assumption that the images have small fields of

view, that is the magnitude of the kis is small, we have that

1

n
E(M ′

v) ∼ t2cos2 σ

 2 cos2 σ sin2 θ cos2 θ cos σ sin θ cos θ(sin2 θ − cos2 θ)

cos σ sin θ cos θ(sin2 θ − cos2 θ) sin4 θ + cos4 θ

 ,

1

n
E(M ′

h) ∼ t2

 2 sin2 θ cos2 θ cos σ sin θ cos θ(sin2 θ − cos2 θ)

cos σ sin θ cos θ(sin2 θ − cos2 θ) cos2 σ(sin4 θ + cos4 θ)

 .

Therefore

Cv = n
E(

∑
e′22v

)

|E(M ′
v)|

=
1

t2
(sin4 θ + cos4 θ)

cos4 σ(sin2 θ cos2 θ)
, (2.51)

Ch = n
E(

∑
e′21h

)

|E(M ′
h)|

=
2

t2 cos2 σ
. (2.52)

and

Cv

Ch

=

E(
∑

e′2
2v )

|E(M ′
v)|

E(
∑

e′2
1h

)

|E(M ′
h
)|

=
1

cos2 σ

sin4 θ + cos4 θ

2 sin2 θ cos2 θ
=

1

cos2 σ

tan2 θ + cot2 θ

2
> 1. (2.53)

2.7.4 Matrix M for motion

Consider a slanted plane with a texture of two major directional components.

Let the directional components be Ld1 = (cos τ1 sin σ1, sin τ1 sin σ1, cos σ1) and Ld2 =

(cos τ2 sin σ2, sin τ2 sin σ2, cos σ2). From (2.31) we have that

e =



e1

e2

e3


∼ (t · `)Ld.
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Thus

M = ET E =


∑

e2
1i

∑
e1i

e2i∑
e1i

e2i

∑
e2
2i



=
∑

(t · `1i
)2 sin2 σ1

 cos2 τ1 sin τ1 cos τ1

sin τ1 cos τ1 sin2 τ1



+
∑

(t · `2i
)2 sin2 σ2

 cos2 τ2 sin τ2 cos τ2

sin τ2 cos τ2 sin2 τ2

 (2.54)

and the determinant det(M) of M amounts to

det(M) =
∑

(t · `1i
)2

∑
(t · `2i

)2(sin σ1 sin σ2 sin(τ1 − τ2))
2. (2.55)

2.7.5 Bias correction

Consider the equation system Ax = b. Let the errors be described by the

errors in variable model. The bias of the LS estimator xLS amounts to

bias(xLS) = lim
n→∞

E(xLS − x′) = −σ2( lim
n→∞

(
1

n
A′T A′))−1x′. (2.56)

Assuming the variance of the error δA is known, the bias can be removed with the

CLS estimator, which amounts to

xCLS = (AT A− nσ2I)−1(AT b), (2.57)

and can be rewritten as

xCLS = (I − nσ2(AT A)−1)−1xLS. (2.58)

The variance, denoted as as cov(·), of xCLS amounts to

cov(xCLS) = (I − nσ2(AT A)−1)−2cov(xLS). (2.59)

53



Let us now investigate what the theoretically best linear estimator should be.

We have to adjust the corrected least squares estimator, such that we achieve the

smallest MSE (as defined in (2.25)). Let xα = αxCLS + (1 − α)xLS denote the

adjusted CLS estimator.

Then we have that

MSE(xα) = α2cov(xCLS) + (1− α)2(bias2(xLS) + cov(xLS))

= α2(1− nσ2(AT A)−1)−2cov(xLS) + (1− α)2(bias2(xLS) + cov(xLS)).

. (2.60)

which is a quadratic expression in α. Thus, the MSE minimum is achieved for

α =
bias2(xLS) + cov(xLS)

bias2(xLS) + cov(xLS) + cov(xLS)(1− nσ2(AT A)−1)−2

= 1− cov(xLS)(1− nσ2(AT A)−1)−2

bias2(xLS) + cov(xLS) + cov(xLS)(1− nσ2(AT A))−2

= 1− (1− nσ2(AT A)−1)−2

(1 + (1− nσ2(AT A)−1)−2) + bias2(xLS)
cov(xLS)

. (2.61)

This shows that according to the MSE criterion a less bias corrected xα is

better than a bias corrected xCLS. The larger the variance of the LS estimates, the

less the correction should be.
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Chapter 3

A shape constraint for linking frames

3.1 Overview

Structure from motion from single flow fields has been extensively studied and

over the years many good techniques have been developed. However, the information

in one motion field is not rich enough to allow for accurate estimation of 3D motion

and structure. There are two issues. First, there is the ambiguity in the estimation

of the motion parameters. For standard cameras with limited field of view, there

is a confusion between translation and rotation [19, 20, 14, 21]. Thus any motion

algorithm, because of noise, can estimate the motion only within a range of the true

solution. The second issue is the stability of structure estimation. An erroneous

estimate of the motion parameters clearly will lead to errors in the estimation of

structure. Furthermore, even for the correct motion parameters, the estimation of

structure, because of the small displacement between the cameras (small baseline),

is very unreliable. Usually a global description of the scene, that is the relative

depth estimates of different scene patches, can be obtained rather well. However,

a local description of structure, that is shape estimates of scene patches, is very

unstable.

To obtain good motion and structure estimates we need to combine the infor-

mation of consecutive motion fields. One flow field, or in the abstraction two image
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frames, are constrained only by the rigidity of 3D motion. The rigidity can be ex-

pressed with two constraints on the image measurements; the epipolar constraint,

which says that individual flow vectors lie on a line, and the depth positivity con-

straint, which says that the reconstructed scene points have to be in front of the

camera. Two or more motion fields are constrained in addition by the observed

scene which remains constant. Existing approaches formulate this as a constraint

enforcing the estimated structure, or depth of the scene, to be the same. In order to

make use of this constraint, image points (or lines) over multiple frames need to be

corresponded. However, automatic correspondence usually is not possible. Drifting

occurs, that is errors in correspondence accumulate till eventually the correspon-

dence cannot be established anymore. Another problem is, that since structure in

the coordinate system of one frame is related to structure in the coordinate system

of another frame through both the translation and rotation, the resulting constraints

are not simple and don’t allow for robust estimation of structure and motion. We

have the trilinear constraint resulting in 27 and the quadrilinear constraint resulting

in 64 parameters whose estimations are very sensitive. [10, 54, 55, 56].

In this chapter we propose to combine multiple motion fields, not through

depth or inverse depth values, but through 3D shape. The 3D shape of a scene

patch is described by the surface normal of the patch, that is by two parameters.

Consider the scene as consisting of planar patches. The surface normal of a planar

patch in one view is related to the surface normal of the corresponding patch in

another view only through rotation. That is, let r1 and r2 be the surface normals

of a patch in the first and second frame, and let Ω be the rotation relating the two
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frames, then r2 = Ωr1. This relationship can be formulated as a rank 3 constraint

on a matrix containing the normal vectors of all the patches over all views. The

advantage of this constraint is two-fold. First, we do not need to correspond image

points over multiple frames, but we need to correspond image patches only, which

is a much easier task. Second, the constraint can be combined easily with the

estimation of motion and structure from individual flow fields. This way we can

estimate structure and motion from multiple flow fields as a practical constrained

minimization, where the constraint is the rank constraint on the surface normals.

The new constraint is implemented in an algorithm, which involves the fol-

lowing computations: We first segment planar patches in the scene and match the

patches over the image sequence. The segmentation (Section 3.5) is based on color

and motion information. Then using as input the image gradients, the 3D motion

parameters and the shape of the extracted scene patches are estimated (Section

3.3). Starting from motion estimates from single flow fields we solve the constrained

minimization iteratively in a two-step optimization; in one step the surface normal

are obtained, in the next step the motion parameters. Section 3.6 presents exper-

iments, and Section 3.7 discusses the role of the approach in a complete structure

from motion framework.

The multiple view constraints defined on point correspondences are well un-

derstood [10, 54, 55, 56]. Nowadays most point correspondence methods employ the

technique of bundle adjustment [57] to refine 3D structure and viewing parameters.

Oliensis et al. [58, 59] proposed algorithms, which first eliminate the rotational

components and then decompose the residual correspondences into structure and
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translation. A number of studies considered the estimation from multiple flow fields

assuming continuity in the motion [60, 61, 62, 63].

[64] and [65] developed algorithms using line and point correspondences for the

reconstruction of scenes with planar objects. The first ones to present a subspace

constraint on homographies of planes in multiple views were Shashua and Avidan

[66]. In the sequel [67] presented a subspace constraint on the relative homographies

of pairs of planes across the different views. Most closely related to our work is the

study of Zelnik-Manor and Irani [2], which introduced a subspace constraint on

image motion. The approach assumes that differential motion between a reference

frame and any other frame at the same scene points can be obtained. Clearly,

this assumption limits its application to small image sequences. The improvement

from our methods stems from the use of 3D shape, which makes it computationally

feasible to use longer sequences.

3.2 Preliminaries

In this section, we summarize the basic concepts in structure from motion,

and explain how the relative motion of the camera and the scene manifests itself in

the sequence of images which the observer obtains.

3.2.1 Optical flow and motion field

In a pinhole camera model, the camera is defined as a point, the center of

projection, and a planar retina (image plane). The projection of a scene point can
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Figure 3.1: Image formation of a pinhole camera.

be found as the intersection of the image plane and the straight ray connecting the

point with the projection center (See Fig. 3.1).

Let R = (X, Y, Z)t denote a 3D scene point and r = (x, y, f) denote its

corresponding point in the image plane Z = f , then we have

r = f
R

R · ẑ
(3.1)

where ẑ = (0, 0, 1)t. Without loss of generality, we assume f = 1.

As the camera moves, scene features change position with respect to the cam-

era and their image projections also move within the image. If the temporal interval

between successive frames is small, the image sequence can be considered as a rep-

resentation of a continuous image brightness function. So the image intensity at

image position r = (x, y) at time t can be written as I(r, t). The relative motion

between the scene and camera induces a 3D velocity field dR
dt

which denotes an in-

stantaneous velocity relative to the camera. The projection of this 3D motion field

onto the image plane is then called the motion field dr
dt

. The optical flow field is an

approximation of the motion field computed from the image sequence.
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We make the standard brightness constancy assumption, assuming constant

brightness of the projection of a scene point in the different images. Based on this

assumption, differentiating I(r, t) with respect to t yields:

dI

dr
· dr

dt
+

dI

dt
=

∂I

∂x
· dx

dt
+

∂I

∂y
· dy

dt
+

∂I

∂t
= 0, (3.2)

This equation relates the image velocity dr
dt

with the spatio-temporal derivatives of

the image intensity function. Thus, the brightness constancy assumption provides

the component of image velocity parallel to the image brightness gradient direction.

We call this component normal flow. It is easy to see that the velocity component

perpendicular to the gradient direction cannot be directly recovered from the first

order derivatives. This is the so-called aperture problem.

If the scene in view is static, the relative motion of the camera and of the scene

is rigid, and is composed of a translation and a rotation. Suppose the observer

is moving rigidly with instantaneous translation t = (tx, ty, tz) and instantaneous

rotation ω = (ωx, ωy, ωz) around the nodal point of the camera. Then each scene

point R = (X, Y, Z)t moves relative to the camera with velocity dR
dt

:

dR

dt
= −t− ω ×R.

The velocity of its projected image point r is then obtained by differentiating (3.1)

as follows:

dr

dt
=

dR
dt

R · ẑ
−

(dR
dt
· ẑ)R

(R · ẑ)2
=

ẑ × (dR
dt
×R)

(R · ẑ)2
.

or equivalently, it could be expressed as:

dr

dt
=


dx
dt

dy
dt

 =
1

Z

 −tx + tzx

−ty + tzy

 +

 xyωx − (x2 + 1)ωy + yωz

−xyωy + (y2 + 1)ωx − xωz

 , (3.3)
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where t = (tx, ty, tz) and ω = (ωx, ωy, ωz) are the translation and rotation parameters

respectively.

Thus (3.3) tells us how the depth Z and the camera motion {t, ω} are related

to the motion field dr
dt

. Recall that (3.2) provides us partial information on the

relation of the motion field dr
dt

to the image gradients in the spatial and temporal

domain. Thus the combination of (3.3) and (3.2) gives us an approach for computing

the structure of the scene (depth) and camera movement based on image spatial-

temporal gradients.

3.2.2 Motion and shape estimation from individual flow fields

Since we can obtain only normal flow fields from image gradients, we only have

one linear constraint at each image point. Totally, we will have N (the number of

valid image points) linear constraints. However, there are also N unknown depth

variables Z and six motion parameters {t, ω}. Thus structure from motion generally

is not solvable without some assumption on the scene depth. Here we model the

scene as a piece-wise planar surface. Such a model actually covers a wide range of

indoor scenes.

Consider R on the world plane Γ which is determined by its plane parameter

vector n = (α, β, γ)t as follows:

n ·R = αX + βY + γZ = 1.

The plane parameter vector n = (α, β, γ), describes the distance of the plane to
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original point and its surface normal. Thus, the inverse depth at P amounts

1

Z
= n · R

Z
= αx + βy + γ.

Substituting the expressions for the image motion and the plane into the brightness

constancy constraint (3.2), we obtain the constraint

[−Ixtx − Iyty + (Ixx + Iyy)tz][xα + yβ + γ]

+(Ixxy + Iy(y
2 + 1))ωx − (Iyxy + Ix(x

2 + 1))ωy + (Ixy − Iyx)ωz = −It, (3.4)

which relates the image gradients to the motion and plane parameters. This equation

is bilinear in the motion parameters and the plane parameters. That is, knowing t

we can solve linearly for ω and n, and vice versa. Or, similarly knowing n we can

solve linearly for t and ω. Because of the scaling ambiguity between translation and

depth, we can only estimate the direction of vectors t and n.

Let pi = (xi, yi), i = 1, · · · , N denote the image points on a single world plane.

From (3.4) we obtain an equation system for this plane, which we write as:

f(t, ω, n) = 0 =

[txA1 + tyA2 + tzA3]



α

β

γ


+ B



ωx

ωy

ωz


− b,

(3.5)

where A1, A2, A3, B are N × 3 matrices and b is an N × 1 vector, whose elements

are described by the image point coordinates and the intensity gradients at points

pi. That is,

A1 = −Ixi
(xi, yi, 1),
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A2 = −Iyi
(xi, yi, 1),

A3 = (Ixi
xi + Iyi

yi)(xi, yi, 1),

b = (Iti),

B = (Ixi
xy + Iyi

(y2
i + 1)− (Iyi

xiyi + Ixi
(x2

i + 1)) + (Ixi
yi − Iyi

xi)).

Our method starts with 3D motion estimates from individual flow fields. In

principal, many of the algorithm from the literature could be employed. We used

the algorithm in [68], which is based on the equations above.

Consider a segmentation of the scene into P planar patches V 1, V 2 · · ·V P .

Combining equations (3.5) for all the patches we obtain an over-determined bilinear

equation system of the form

fp(t, ω, np) = 0 for p = 1, · · · , P, (3.6)

whose solution provides estimates for the direction of translation, the rotation and

the structure parameters for the individual patches. The algorithm in [68] solves this

minimization as a search in the space of translational directions. For each candidate

translation one can solve closed-form for the rotation and the plane parameters.

The translational direction minimizing eq. (3.6) in the least squares sense provides

the solution. Note the algorithm does not require optical flow, but only the image

gradients, which define the so-called normal flow.

3.2.3 Ambiguities in 3D motion estimation from a single flow field

Several studies have addressed the noise sensitivity in structure from motion.

In particular it has been shown that for standard cameras with small field of view
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(a) Pure translational motion field induced by tx

(b) Pure rotational motion field induced by ωy.

Figure 3.2: Within a small field of the view, translational and rotational motion

fields of scenes with small depth variation are similar.

imaging a shallow scene, translation and rotation are easily confused (See Fig. 3.2

in [19]). This can be understood by examining the differential flow equation (3.3).

Notice that for a shallow scene with Z(x, y) varying very little, a zeroth order

approximation of the flow amounts to dx
dt
≈ −tx

Z
− ωy and dy

dt
≈ ty

Z
+ ωx. Intuitively,

we can see how tx translation along the x axis can be confused with ωy rotation

around the y axis, and ty with ωx for a small field of view. Thus, in the presence

of noise it is hard to distinguish these motions. The most likely estimation error is

such that the projection of the translational error and the rotational error on the

image are perpendicular to each other, and the estimated translation direction lies

along a line passing through the true translation direction and the viewing direction
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[19, 20, 14, 21]. [20] shows that if no prior information about the motion is available,

the error of camera motion estimation satisfies the follow equations:

γε = 0,

αε

βε
= −x0ε

y0ε
,

x0

y0
= x0ε

y0ε
,

where unprimed letters with subscript ε denote the estimation error and (x0, y0) is

so-called FOE defined as

(x0, y0) =
1

tz
(tx, ty).

Since the estimated motion field always is noisy, we can obtain only a range of

possible solutions for the motion parameters, among which the correct one lies. If

we consider the 2D subspace of translational directions of this range and visualize

it on the image (or on a sphere), we usually obtain an elongated region, which we

refer to as the motion valley of solutions. Each translation direction in the motion

valley, along with its best corresponding rotation and structure will agree with the

observed noisy flow field. Figure 3.3 from [69] shows error functions (residual of

the minimization) plotted on the 2D spherical surface. The best solutions lie in

the bright area of the surface. The error function makes it evident that attempting

to pick a single solution in this valley is futile. Such valleys are ubiquitous, and

if we pick an erroneous motion estimate, this results in the estimation of distorted

structure [70].
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Figure 3.3: The motion valley is the area of smallest values on the error surface in

the 2D space of translational directions. The error is found by computing for each

translation the optimal rotation.

3.3 Rank constraint on 3D shape parameters

Let the image frames be denoted as I1, I2, · · · , IF and the scene patches as V p
f ,

where subscript f indicates the frame index and superscript p indicates the patch

index. The translational and rotational velocities of the normal flow field at frame

If are tf and ωf . One thing to be emphasized here is that the frames we use do

not need to be consecutive. Actually, there is no need to combine all consecutive

frames; one may combine frames far apart. The reason is that because of temporal

smoothing and because of the small baseline, views close by do not provide very

different information. However, note that the motion parameters tf and ωf are the

differential velocities computed from the flow field at frame f between consecutive

frames, and not the motions between the chosen frames. The normal flow field at

every frame If provides an equation system {f(tf , ωf , n
p
f )} (3.6) for the estimation

of motion and depth. In order to combine the systems of the different If we need to
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formulate some constraint which models the fact that all the frames view the same

static scene.

Many researchers have been working on some form of constraints to integrate

multiple frames. [2] provides a nice rank constraint to enforce the fact that all the

frames view the same static scene. However such a rank constraint is derived under

the assumption that sequence is a short video, in other words, the motion between all

the pair-wise frames could be well approximated by the differential motion. Such an

assumption holds true for some applications such as short airborne video sequences.

However, the benefit of this constraint aimed mostly toward improving the optical

flow field. It couldn’t overcome the motion ambiguity, because only frames with

short baseline are integrated.

[67] attempted to integrate multiple frames with large baseline with another

rank constraint. The authors derived a rank constraint on the so-called relative

homography between planes, which essentially is a constraint on the relative param-

eters of all the planes in the scene to a large background plane. The effectiveness of

this constraint heavily depends on the accuracy of the estimation of the background

plane. In practice, an accurate estimation of the background plane is not always

feasible. Furthermore, we have no reliable way to measure whether the estimation of

the background plane is accurate or not. The residual from the flow field estimation

is not exactly equivalent to the error in 3D information estimation.

Hence, our goal is to develop a constraint which is able to integrate multiple

frames with large baseline, but also is practically feasible for general settings. The

basic idea is to enforce the fact that the surface normals of scene patches to be the
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same. The surface normals in the different coordinate systems of the frames are

easily related. The relative orientation of the different patches is invariant across

views. The absolute orientations of a patch in the different views are related by

rotation only. This invariance can be expressed as a rank constraint on a matrix

containing the surface normals.

Let np
f be the parameter vector of the inverse depth which describes the plane

with index p in frame If . The normal vector rp
f of this plane is obtained by normal-

izing the vector np
f , i.e

rp
f =

1

||np
f ||2

np
f .

Let Rf denote the matrix which collects normal vectors of all planes in frame

If as follows:

Rf = (r1
f , r

2
f , · · · , rP

f ).

Furthermore, we combine Rf of all F frames into a a matrix 3F × P matrix M as

follows:

M =



R1

R2

...

RF


. (3.7)

Then we get a rank constraint on M .

Theorem 3.1. The rank of the matrix M defined in (3.7) is 3.

Proof. The normal vectors of a plane in two frames If1 , If2 are related by the
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rotation matrix Ωf1,f2 as

rp
f1

= Ωf1,f2r
p
f2

for p = 1, · · · , P,

Thus Rf1 amounts to

Rf1 = (r1
f1

, r2
f1

, · · · , rP
f1

)

= (Ωf1,f2r
1
f2

, Ωf1,f2r
2
f2

, · · · , Ωf1,f2r
P
f2

)

= Ωf1,f2(r
1
f2

, r2
f2

, · · · , rP
f2

) = Ωf1,f2Rf2 .

Then the 3F × P matrix M is

M =



R1

R2

...

RF


=



I3R1

Ω2,1R1

...

ΩF,1R1


=



I

Ω2,1

...

ΩF,1


R1. (3.8)

Notice that R1 is a 3× P matrix; the rank of M is thus 3. 2

A simple, straightforward way to utilize this constraint would be to perform

ego-motion estimation independently on each frame If and subsequently perform

a subspace projection on the estimated rp
fs to regularize the estimates. Since the

individually estimated rp
fs are already very erroneous, such an approach will not lead

to significant improvement. Instead, we incorporate the rank 3 constraint directly

into the estimation process.

3.4 Motion and shape estimation from multiple flow fields

The exposition in this chapter is as follows. We first reformulate the estimation

of motion and structure on the basis of individual flow fields only. Then we embed
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the 3D shape estimation into this formulation (3.4.1) and (3.4.2).

For every frame If there is a bilinear system {fp
f (tf , ωf , n

p
f ) = 0} which we

rewrite as:

Ap
f (tf )n

p
f = dp

f (ωf ), (3.9)

with

Ap
f (tf ) = txf

Ap
1f

+ tyf
Ap

2f
+ tzf

Ap
3f

and

dp
f (ωf ) = −Bp

fωf + bp
f .

The estimation of motion and structure from the individual flow fields is formulated

as a least squares optimization, that is

min
ωf ,tf ,np

f

∑
p

||Ap
f (tf )n

p
f − dp

f (ωf )||2 = min
ωf ,tf

min
np

f

∑
p

||Ap
f (tf )n

p
f − dp

f (ωf )||2. (3.10)

We can address this minimization in two iterative steps as follows: Given initial

values for tf and ωf ,

Step 1: Solve for structure: Substitute the values tf , ωf into the system and solve

the over-determined linear system for all np
f using linear least squares estima-

tion.

Step 2: Solve for motion: Substitute the values np
f into the system, and solve for

tf and ωf using least squares estimation.

Go back to Step 1 until the estimation converges.
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3.4.1 Adding the shape constraint to the estimation

The motion constraint above is defined on the vectors np
f , but our shape con-

straint is defined on the normalized surface normal vectors rp
f . Thus, we first need

to transform the non-homogeneous system Ap
fn

p
f = dp

f for the unknown vector np
f

into a homogeneous system W p
f rp

f = 0 with ||rp
f || = 1. This is shown next.

Let Hp
f be the matrix, such that the vector dp

f spans the null space of Hp
f , i.e.

Hp
fdp

f = 0. Hp
f amounts to

Hp
f = I −

dp
fd

p
f

t

dp
f

tdp
f

.

Then multiplying Hp
f on both sides of the equation Ap

fn
p
f = dp

f yields

(Hp
fAp

f )n
p
f = Hp

fdp
f = 0.

Let W p
f = Hp

fAp
f and rp

f =
np

f

‖np
f
‖ (the normalized version of np

f ). We then obtain the

following homogeneous constraint on the normal vectors rp
f :

W p
f rp

f = 0 for p = 1, · · · , P f = 1, · · · , F.

Incorporating the shape constraint, the minimization becomes:

min
tf ,ωf

min
‖rp

f
‖=1

∑
p,f

||W p
f (tf , ωf )r

p
f ||2, subject to rank(M(rp

f )) = 3. (3.11)

We adopt the two-step optimization for the estimation of motion and structure

from multiple frames presented in [71]. Step 2, that is, the estimation of tf and

ωf remains the same; given np
f = ‖np

f‖r
p
f we minimize (3.10) using least squares.

However, Step 1, the estimation of np
f is rather different and more difficult. We solve

it by first estimating rp
f and then estimating ‖np

f‖. See Fig. 3.4 for the outline of

the algorithm, the details are described in the next subsection.
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Figure 3.4: The sequence of optimizations.

3.4.2 Estimating the shape parameters

We are given estimates of tf and ωf and wish to estimate the rp
f . We can

pick frames which we want to combine, for example the first, tenth and twentieth

frame of the sequence. In the general case, we will not concatenate the estimates

ωf to obtain a rotation between the selected frames, but re-estimate the rotation

matrices.

Recall from Section 3.3 that Rf = Ωf,1R1. Therefore

Rt
fRf −Rt

1R1 = Rt
1(Ω

t
f,1Ωf,1 − I)R1 = 0.

In words, Rt
fRf , which is the matrix encoding the relative orientations between the

different patches, does not depend on the frame number. Using this we can rewrite

the minimization (3.11) as:

min
∑
f,p

||W p
f rp

f ||2, subject to ||rp
f || = 1, Rt

fRf = Rt
1R1. (3.12)
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This is a well defined least squares minimization with quadratic constraints. There

are many standard algorithms dealing with such types of minimization. We used

the Mukai-Polak version of the Augmented Lagrangian method (ALS) ([72]) which

guarantees super-linear convergence.

After having obtained the rp
f from (3.12), we need to estimate ‖np

f‖, the length

of the np
f , in order to solve subsequently for translation and rotation. This is done

using the first equation in Ap
fn

p
f = dp

f .

3.4.3 Consecutive frames

When combining a few consecutive frames (as opposed to significantly sepa-

rated frames) Ωf,1 is well approximated by concatenating the differential motions

ωf . That is, Ωf,1 = (I + [ωf ]×)Ωf−1,1 . For this case, the problem is much sim-

pler. Since Ωf,1 is known, the minimization (3.11) becomes finding the least squares

solution of an homogeneous system. That is,

min
||rp

1 ||=1,rp
f
=Ωf,1rp

1

∑
p,f

||W p
f rp

f ||2 = min
||rp

1 ||=1

∑
p

(
∑
f

||W p
f Ωf,1r

p
1||2), (3.13)

which is solved using SVD decomposition. Although the combination of a few

consecutive frames couldn’t help much in resolving motion ambiguity, it could be

utilized for accurate optical flow estimation for planar surfaces. We will adopt

this technique for computing accurate optical flow used in the application of super-

resolution imaging (Chapter 5).
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3.5 Patch segmentation and matching

For our purpose the image segmentation does not need to give an “object-

related” division of the scene. It only needs to locate some planar patches which

are suitable for ego-motion estimation and which can be matched over the image

sequence. Therefore the segmentation could be a little bit “ too fine” in the sense

that different patches could correspond to the same planar surface in space. How-

ever, the segmentation should not be be “too coarse” in the sense that individual

image patches should not correspond to heavily curved surfaces or multiple planar

surfaces.

3.5.1 Basic idea and algorithm outline

We perform segmentation and matching using a graph-based approach, con-

sisting of the following components:

1. An edge enforced color segmentation in the individual frames, which provides

an over-segmentation.

2. Matching of the color patches in the different frames of the sequence. The

geometric transformation of the patches between the frames is described by

the motion model T (x, y) (involving 2D translation, rotation and scaling) as

T (x, y) = s

 cos θ 0

0 sin θ


 x

y

 +

 b1

b2

 .

The matching is carried out by phase correlation.
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3. Taking a bottom-up approach to segmentation, neighboring color patches are

merged using a graph-based algorithm. The criterion for merging is based

on a combined rank constraint on the flow fields. It is evaluated how well

all the normal flow fields of a patch, which has been matched over the image

sequence, model a plane.

Next we describe in more detail the individual steps of the algorithm and

explain why it should result in a good patch segmentation and good matching.

Segmentation based on color usually works best for weakly textured regions, while

segmentation based on flow information works best for well textured regions. Thus

these two cues complement each other. The procedure starts with an edge-enforced

color segmentation which leads to an over-segmentation, and most likely many of

the components are too small for ego-motion and shape estimation. However, color

segmentation usually does not break smooth regions in space. There exist many

color segmentation techniques which can achieve such a segmentation.

Next the patches need to be merged on the basis of flow information. This is

done not on the frames individually, but by linking the patches between the frames

first, and then merging them on the basis of the flow information in all frames. We

model the movement of each color patch by the transform T (x, y), and find the best

matching color patch in every frame. This transform proved to be sufficient for the

tracking of color patches. Then we perform merging on the linked patches based

on some function, which measures how well the flow fields of the merged patch over

all frames fit the planar motion model. Such measurement function V is defined as
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follows. Let V = {Vf , f = 1, · · · , F} be the patches matched from frame I1 to IF .

The measurement function R(V ) is defined as

R(V ) =
∑
f

1

kf

||(S(Vf ))||2,

where kf is a value denoting how good the matching of the patch in frame f is, In our

implementation, kf is the least square residual of the affine transform estimation

between the matched patches. S(Vf ) is the value denoting how well the flow for

patch Vf fit the planar motion model, which is also the least square residual from

the fitting of a planar motion model to the flow.

It is important that flow information from multiple frames is used in the seg-

mentation. A patch may be tracked well across multiple frames, but be non-planar.

In this case the multiple rank constraint will most probably find the non-planarity.

Alternatively, a patch may be tracked badly across the frames. In this case either

there is an occlusion, or the movement of the patch is too complicated to be modeled

by the transform T . In the latter case the patch most likely cannot be approximated

well by a planar surface. In both cases, the combined rank constraint will not allow

merging. This is exactly what we want, leaving out the patches close to occlusions

or corresponding to non-planar regions. A shortage of such an approach is that it

could leave only a small fraction of patches in the image. However, for the purpose

of ego-motion estimation, this does not matter.
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3.5.2 Detailed algorithm

We take a graph-based approach implementing bottom-up merging. Our al-

gorithm is derived from [73], where it is used for color segmentation. The algorithm

is closely related to Kruskal’s minimum spanning tree for graphs [74]. The initial

graph is constructed as follows: each color patch set V k (the patches matched across

different frames) denotes a vertex in the graph, and each neighboring pair of such

vertices (U, V ) denotes an edge e in the graph. The weight of an edge is defined as

R(U ∪ V ). Then given a graph G = (V, E), the procedure is as follows:

1. Sort E into π = (e1, e2, · · · , em) according to no-decreasing edge weight.

2. Start with a segmentation S0, where each vertex is a component.

3. Repeat step 4 until all edges in π are checked out.

4. Construct Sk from Sk−1 as follows: Let Vi, Vj be two vertices connected by

an edge ek. If Vi and Vj in Sk−1 are different components and the weight

of the corresponding edge is not greater than the internal difference of the

components, merge the two vertices, otherwise do nothing.

5. Final segmentation S = Sm.

For our method, we define the internal difference of two component U, V as

Mint(U, V ) = κ
R(U ∪ V )

size(U ∪ V )
,

where size(W ) is the size of the patch W and κ is the threshold which determines

the average patch size. From the definition of the function Mint it is clear that when
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Figure 3.5: Key frame for the sequence “Office”.

the patch size grows, the internal difference becomes smaller. Hence the resulting

segmentation regions are neither too large (the gain in numerical stability is little and

the risk for bad patch increases), nor too small (which causes numerical instability

in later computations).

3.6 Experiments

3.6.1 3D motion estimation

The color image sequence, “office” (see Fig. 3.5) was taken by a hand-held

camera. The motion is a translation mostly along the x- and y-axes and a rotation.

For this motion, because of the camera’s small field of view, the ambiguity between

translation and rotation makes the motion estimation very difficult. Fig. 3.6 com-

pares the effects of different segmentations on the motion estimation from single flow

fields. Although the residual value decreases (by a factor of 2.5) with better segmen-

tation, the valleys are qualitatively very similar, demonstrating that the ambiguity

in motion estimation cannot be avoided.

Next we integrated multiple flow fields using the algorithm described in the
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(a)Brute-force segmentation

(b) Automatic segmentation

(c) Manual segmentation

Figure 3.6: Residual spheres from single frame ego-motion estimation in the sequence

“office”.

(a) Automatic segmentation (b) Manual segmentation

Figure 3.7: Residual for multi-frame motion estimation in the sequence “office”.
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Figure 3.8: Key frame of the synthesized sequence used for comparison.

previous sections. We used three frames separated by a significant baseline. Fig. 3.7

demonstrates significant reduction in the ambiguity. It also shows that our segmen-

tation performs similar to the manual one. The table below compares the absolute

smallest values for the translational directions (x0, y0) = ( tx
tz

, ty
tz

).

Single frame Multiple frame

Automatic Partition (3.14, 0.02) (2.15, -0.02)

Manual Partition (2.30, 0.01) (2.07, -0.01)

We compared our algorithm to the method of Zelnik-Manor and Irani [2] using

the synthetic scene in 3.8. This method only estimates 8-parameters of the projec-

tive flow model for each patch. We added another step to obtain the 3D motion

from these parameters. The results of the comparison for four different motions

are presented in Figure 3.9. The error in translation is measured by the angular

difference between the estimated translation direction and the true direction. The

error in rotation is measured by the L2 norm between estimated and true values.

Referring to Figure 3.9,

It can be seen that our algorithm performs significantly better on data set 1

and 2 and a bit better on data set 3 and 4. The reason for the decreased performance

on data set 3 is the large noise in the image gradients due to the large image dis-
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(a) Translation

(b) Rotation

Figure 3.9: Comparison of errors in motion estimation for different types of camera

motion between [2]’s and our algorithm. The bars from black to white denote in

turn: The algorithm in [2] for single image motion fields, the algorithm in [2] for

multiple frames, our ego-motion estimation for single flow fields, our approach for

multiple frames. The motions in the four data sets are as follows. Data set 1:

translation in the x− z plane and small rotation. Data set 2: translation along the

y− axis and small rotation. Data set 3: dominating translation along the z−axis

and small rotation. Data set 4: mostly rotation and small translation.
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placement caused by zooming. This could be remedied by introducing a hierarchical

framework. All algorithms perform poorly on data set 4. The reason is the large

displacement. Since there is only small translation, and thus the flow carries very

little information on structure, the combination of multiple frames cannot improve

the estimation significantly.

3.7 The structure from motion feedback loop

We want to convey with this chapter that multiple image motion fields can be

combined through a constraint on 3D shape. We have implemented this constraint

in a technique, and demonstrated that it provides very good 3D motion estimation.

However, there may be better ways of utilizing this constraint. We consider our

estimation as one module in a structure from motion framework.

We cannot obtain good models using only local measurements (image motion

or correspondence) in a bottom up approach. Local image measurements do not al-

low for good structure estimation and localization of the discontinuities. 3D motion

is not effected very much by noise, because it is globally encoded in the image, but

structure is spatially local. To obtain good structure we need processes that involve

larger spatial areas. But to employ such processes we need models of the scene. In

other words, there need to be feed-back loops.

Our algorithm provides us with 3D motion estimates over multiple frames. In

the sequel we can obtain depth from image motion and we can fit shape models

to the segmented patches. Using this information we can then go back to better
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segment and estimate structure using images significantly separated by baseline.

Figure 3.10 shows first experimental results. Using the 3D motion estimate

we rectified two significantly separated frames and computed the depth map using

stereo. Then we inserted the boundaries obtained from stereo into the segmentation

of our algorithm and merged areas for which the flow gave continuous depth values

(Fig. 3.10a). This gives a segmentation based on motion, stereo and color. Fig. 3.11

shows the the depth map. On the basis of the 3D motion estimate, the parametric

motion (corresponding to planes) was fit to the image intensity derivatives within

the segmented areas. As can be seen, this computation, although based on flow and

not disparity between far away views, leads to a very good reconstruction.
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(a)Segmentation from color information

(b) Segmentation from affine flow information

(c) Segmentation from stereo and depth

Figure 3.10: Segmentation from motion and stereo and corresponding depth esti-

mation from normal flow.
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(a) Depth map from segmentation (b) in Fig. 3.10

(b) Depth map from segmentation (c) in Fig. 3.10

Figure 3.11: Depth estimations from various segmentations.
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Chapter 4

A Projective invariant for texture

4.1 Overview

A key component in the description of images is texture. The ideal descriptor

of texture for visual homing should be able to capture essential perceptual properties

of the texture structure, and it should be invariant to environmental changes, such as

changes in view-point, illumination and geometry of the underlying surface. In the

Computer Vision literature, the search for invariance started in the nineties [75],

when researcher dug up the mathematical literature on algebraic and geometric

invariants. Great importance has been given to the study of quantities which are

invariant to the viewpoint from which the image is taken. A number of projective

invariants [76] have been found, which are defined on feature sets of points and

lines and planar curves [75], and they have been used for object recognition and

calibration. However, none of these descriptors provides a high-level characterization

of textures.

Numerous texture descriptors have been proposed. Most of them are either

statistics-based or filter-based ([77, 78, 79, 80]), which makes them sensitive to

changes in viewpoint. Lazebnik, Schmid and Ponce ([3]) proposed a texture rep-

resentation which is invariant to view-point changes in a weak form (it is locally

invariant to affine transforms).
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Here we introduce a novel texture descriptor called the MFS (multifractal

spectrum vector), which is based on fractal geometry theory. The MFS is globally

invariant under the bi-Lipschitz transform, a very general transform which includes

perspective transforms (viewpoint changes) and smooth texture surface deforma-

tions. Furthermore, the MFS has extraordinary low dimension (26 using one feature

and three times that much using three features as in our implementation here for a

typical 640×480 image texture). We demonstrate with a number of experiments on

synthesized and real image textures that, first the MFS in practice is very robust to

3D transforms and non-rigid smooth transforms. Second, its performance is similar

to the top methods in traditional texture retrieval and classification on standard

texture data sets, but by using much lower dimensional feature vectors.

Fractal geometry has been used before in the description of textures ([81, 82])

and texture segmentation ([83, 84, 85]). However, the invariance of the fractal

dimension to bi-Lipschitz maps has not been utilized in the vision community. Fur-

thermore, existing approaches either simply compute a single fractal dimension, a

scalar number, which does not provide enough information for a good character-

ization of the texture; or they utilize the multi-fractal-spectrum for local feature

description, in which there is no global invariance to bi-Lipschitz maps. Moreover,

the fractal dimension was defined only on the image intensity, which makes it sen-

sitive to changes in luminance. Intuitively, the MFS (multi-fractal-spectrum) is the

extension of the fractal dimension. The MFS encodes the fractal dimension of every

level set under a level set categorization of image points. Different categorizations

of image points lead to different MFS vectors. The categorizations in our MFS
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approach are based on the density function defined on (functions of) the image

intensity, and this makes it robust to luminance variations.

This chapter is organized as follows. Section 2 gives a brief introduction to

fractal geometry and multi-fractal spectrum theory. Section 3 presents our MFS

texture descriptor and its invariance to spatial bi-Lipschitz transforms and local

affine illumination changes. Section 4 provides experiments on texture retrieval and

classification and a comparison to other methods. Section 5 presents the conclusions

and future work.

4.2 Fractal theory and textures

4.2.1 Brief introduction to Fractal Geometry

We first give a brief introduction to fractal theory. In the later eighties it

has been realized that irregular objects provide a much better representation of

many natural phenomena than do the regular objects of classical geometry. Fractal

geometry was developed, which provides a general framework for studying irregu-

lar sets as well as regular sets. The term ”fractal” was coined in 1975 by Benoit

Mandelbrot [86], meaning ”broken” or ”fractured’. Mathematically, a fractal is a

geometric object whose Hausdorff dimension greater than its topological dimension.

Fractal properties include scale independence, self-similarity, complexity, and infi-

nite details. Fractal theory offers methods for describing the inherent irregularity of

natural objects. In fractal analysis, the Euclidean concept of ”length” is viewed as

a process characterized by a constant called the fractal dimension.
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Fractal dimension is the key quantity in the study of fractal objects. Funda-

mental to the fractal dimension is the concept of ”measurement at scale δ”. For

each δ, we measure an object in a way that ignores irregularity of size less than δ,

and we see how these measurements behave as δ goes to 0. In other words, given

a fractal object, how many balls of radius δ would cover this object; and how does

this number scale as δ becomes smaller.

Scientists found that most of the natural phenomena satisfy the power law,

which states that the the estimated quantity (for example the length of a coastline

[86]), is proportional to (1
δ
)
D

for some D. For most natural objects, D is almost

the same for small scales δ. Thus we can compute its limit, which is called the

fractal dimension. For the case of an irregular point set defined on R2, the fractal

dimension of the set E is defined as

dim(E) = lim
δ→0

log N(δ, E)

− log δ
, (4.1)

where N(δ, E) is the smallest number of sets of diameter less than δ that cover E.

Closely related to this approach is the so-called box-counting dimension, which

considers, if the space were divided up into a grid of the boxes of size δ, how does

the number of boxes scale, which contains that object. It is easy to see these two

approaches are more or less the same.

Intuitively, the fractal dimension is a summary statistics measurement, which

measures the overall ”complexity”. It gives a global description of how complex or

how irregular a geometric object is. Like many summary statistics (e.g. mean), it is

obtained by ”averaging” variation in data. Some information is necessarily lost. For
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(a) (b) (c)

Figure 4.1: Fractal dimension D in 2d space. (a) Smooth spiral curve with D = 1.

(b) The checkerboard with D = 2. (c) Fractal fern leaf with D ≈ 1.7.

example, it tells us nothing about the actual size or overall shape of a object, nor

can we reproduce the object from its fractal dimension alone. However, the fractal

dimension of the object does tell us a great deal about the relative complexity of

the object, and as such it is an very powerful and important descriptor.

The fractal dimension D of any object in 2D space is in the range of 1 ≤ D ≤ 2.

If the object’s fractal dimension is integer, then it is a regular object. For example,

any smooth curve has a fractal dimension of 1, and a completely filled rectangle or

ellipse has a fractal dimension of 2, which are the same as their integer topological

dimensions. Irregular sets have a fractional dimension between 1 and 2. Indeed,

most man-made geometric objects have an integer fractal dimension D, while most

objects in nature have a fractional fractal dimension. An illustration is given in

Fig. 4.1.

4.2.2 Fractal dimension and textures

The question arises then whether natural textures are objects with fractional

dimension information. Let’s check first some typical texture. A typical grass tex-
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(a) (b)

Figure 4.2: (a) Original texture image. (b) 3D surface visualization of the image

with D = 2.79.

ture image from [87] is shown in Fig. 4.2 (a). If we represent the image as a 3D-

surface in Fig. 4.2 (b) by taking the image intensity as the height, it is easy to

see that such a surface is a highly irregular surface. And its box-counting fractal

dimension in 3D is actually 2.79.

So, the answer is positive: nature textures general are fractal objects and

the fractal dimension does encode its regularity information. However the fractal

dimension alone, as defined above, does not provide a rich description. As a scalar

number, it is a global parameter which measures the ”overall worst” behavior and

does not account for a possible variability of the degree of regularity. Physicists

and Applied Mathematicians have developed multifractal analysis as an extension

to classical fractal analysis for more detailed and more powerful description.

To overcome the drawback of the scalar fractal dimension, the concept of the

fractal dimension is extended to the concept of the MFS (Multifractal spectrum) as

follows: First define a point categorization on the object function according to some

criteria. Then the fractal dimensions are calculated for every point set from this
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(a) (b)

Figure 4.3: (a) Black-white image obtained by thresholding intensity values between

100 and 120, its box-counting fractal dimension D = 1.67. (b) Black-white image

obtained by thresholding intensity values between 80 and 100, its box-counting

fractal dimension D = 1.49.

categorization. A such defined MFS gives a rich description of the inherent texture

structure by providing a compact representation of the ”spectral decomposition” of

the function into parts of equal strength based on some strategy. Different strategies

lead to different types of multifractal spectra.

To give a demonstration, we first take a simplistic categorization of image

points based on the gray values of the pixels. The image pixels are categorized by

their intensities. Each point set includes the image pixels whose intensity values

fall into the same interval. Then for every point set, we obtain a black-and-white

image by assigning 0 to pixels in this set and 1 to all other pixels. The collection

of the fractal dimensions for all the black-and-white images is called an MFS. Two

examples of such obtained images are shown in Fig. 4.3 (a) and Fig. 4.3 (b). Clearly

these are fractal objects with fractional fractal dimensions.

As we mentioned earlier, different criteria for defining the point categoriza-

tion lead to different fractal spectra. The simplistic approach demonstrated above

has serious drawbacks in practice. A categorization based on image intensity is nu-
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merically unstable in its computation, and it is sensitive to illumination changes.

Therefore, we will adopt a more sophisticated categorization method which Mathe-

maticians have developed in the past. Such a categorization is based on the idea of

the “density function”. The density function can be defined on different functions

of the image intensity. Intuitively, the density function of a quantity defines the

change of that quantity over scale. Our categorization leads to an MFS which is

robust to illumination changes, as well as better discrimination. It is also important

to point out that there exists an efficient and robust algorithm for computing it [88].

4.3 MFS for textures

The MFS is the vector of the fractal dimensions of some categorization of the

image points. Using the idea of the local density function in the categorization has

the advantage that we can compute the fractal spectra in a robust and efficient way.

4.3.1 General model of the MFS for texture

Let µ be a finite Borel regular measure on R2. A regular measure is a function

defined over a set of R2 with the following important properties:

1. The empty set � has measure zero: µ(�) = 0.

2. µ is monotonic: µ(E1) ≤ µ(E2), if E1 ⊆ E2.

3. µ is a countable additive: if E1, E2, · · · is countable sequence of pair-wise
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disjoint sets, then:

µ(∪∞i=1Ei) =
∞∑
i=1

µ(Ei).

The details of µ for texture images will be discussed in the practical algorithm

thereafter. Let’s assume we have such a µ in hand. For x ∈ R2, denote B(x, r) the

closed disc with center x and radius r > 0. It is easy to see that µ(B(x, r)) → 0 and

log µ(B(x, r)) →∞ when r → 0. Then the local density function of x is defined as

D(x) = lim
r→0

log µ(B(x, r))

log r
. (4.2)

For α ∈ R, define

Eα = {x ∈ R2 : D(x) = lim
r→0

log µ(B(x, r))

log r
= α}. (4.3)

That is, Eα is the set of all image points x with the local density α. Usually this

set is irregular and has a fractional fractal dimension dim(Eα). Thus we obtain a

point categorization {Eα : α ∈ R} of the image with an MFS denoted as

f(α) = {dim(Eα) : α ∈ R}. (4.4)

The MFS f(α) defined by (4.4) is the natural extension of the concept of the

fractal dimension, and it has clear physical meaning. However, the computation of

the MFS directly based on such a definition is not stable in practice. The process

of estimating local density for each point would suffer seriously from the limited

resolution of the image in practice. Fortunately, there exists another equivalent

expression for f(α) based on generalized moment measurements. (See [88] for more

details.) The new expression of the MFS is both efficient and robust in practical

computations.
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4.3.2 Practical algorithm for computing the MFS

First, we partition R2 into a r-mesh squares set {B(x, r)}. {B(x, r)} is the

collection of all disks with length r which are pair-wise non-overlapping. Then we

define the q-th moment of a measure µ on the r-mesh squares {B(x, r)} as

Mr(q) =
∑

µ(B(x, r))q, (4.5)

where the sum is over the r-mesh squares {B(x, r)} for which µ(B(x, r)) > 0. For

a series of r = 1, 2, · · · , n, we have corresponding measurements Mr(q). Then the

power law behavior of Mr(q) is identified by the number β(q) which is defined as:

β(q) = Slope of log(Mr(q)) vs log(r). (4.6)

In other words, β(q) is the slope of the line which best fits the data set {log(Mr(q)), log(r)}.

It is shown in [88] that the MFS and β(q) are related to each other by a Legendre

transform as

f(α) = inf
−∞≤q≤∞

(β(q) + αq). (4.7)

Using equations (4.7), we can estimate the MFS. The reliability of f(α(q)) is mea-

sured by the residual of fitting β(q) in (4.6).

Intentionally we haven’t given the definition of the measurement function

µ(B(x, r)) yet. The first approach is to work directly on the intensity domain.

Define µ(B(x, r)) as

µ(B(x, r)) =
∫

B(x,r)
(Gr ∗ I)dx, (4.8)

where ′′∗′′ is the 2D convolution operator and G is a Gaussian smoothing kernel

with variance r. In other words µ is the average intensity value inside the disc
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B(x, r). This results in the definition of the density of the intensity function, which

describes how the intensity at a point changes over scale (as we change the size of

the neighborhood). Finally, the corresponding MFS encodes the fractal dimension

for multiple values of the density of the intensity. The algorithm is summarized

below.

Algorithm 1 Computation of the MFS.

1) Compute Mr(q) from (4.5) and (4.8).

2) Estimate β(q) from (4.6) by fitting Mr(q) linearly.

3) Compute f(α) from (4.7).

In practice the measurement function µ(B(x, r)) is not very robust to large

illumination changes. But we can define the density function on other quantities.

One can imagine many meaningful definitions for µ(B(x, r)), such that the cor-

responding MFS is less effected by illumination changes. One choice is to define

µ(B(x, r)) on the energy of the gradients. Consider {fk, k = 1, 2, 3, 4} to be four

directional differential operators along the vertical, horizontal, diagonal and anti-

diagonal directions. Then we define the measurement function µ(B(x, r)) for the

image texture I as:

µ(B(x, r)) =
∫

B(x,r)

∑
k

(fk ∗ (Gr ∗ I))2dx)
1
2 . (4.9)

Another meaningful choice for µ(B(x, r) is the sum of the Laplacians of the image

inside B(x, r), i.e

µ(B(x, r)) =
∫
B(x,r) |∇2(Gr ∗ I)|dx

=
∫
B(x,r) |

(
∂2

∂x2 + ∂2

∂y2

)
Gr ∗ I|dx.

(4.10)
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Figure 4.4: Four textures: cloth, tree, wood, grass from left to right.

(a) (b) (c)

Figure 4.5: (a) Intensity image of the grass texture. (b) The energy of image

gradients as defined in Eqn. (4.9). (c) The energy of the Laplacian of the image.

Different definitions of µ(B(x, r)) lead to different MFS which capture different

aspects of the texture’s structure. Multiple MFS could and should be combined to

better describe the texture.

Fig. 4.6 (a) shows the MFS (based on (4.9)) for the four textures in Fig. 4.4.

It demonstrates that the MFS of the different textures are significantly different.

Fig. 4.6 (b) shows the three MFS based on the three measurement functions µ

described above. From this and other textures we found that the density of the

intensity and the density of the edge energy give similar MFS, whereas the density

of the Laplacian leads to a significantly different MFS.
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(a) (b)

Figure 4.6: (a) The MFS of the intensity for the four textures shown in Fig. 4.4.

(b) The MFS for all three measurement functions shown in Fig. 4.5

.

4.4 Invariance of the MFS to various deformations

4.4.1 Spatial invariance

A very attractive property of the MFS is its is invariance under the so-called

bi-Lipschitz transform. A function f : R2 → R2 is called a bi-Lipschitz transform, if

there exist two constants c1 > 0, c2 > 0 such that for any x, y ∈ R2,

c1‖x− y‖ < ‖f(x)− f(y)‖ < c2‖x− y‖, (4.11)

where ‖x−y‖ is the Euclidean metric between points x and y. Basically, any smooth

transform is a bi-Lipschitz transform. It is a very general mapping which includes

translation, rotation, perspective transformation, and texture warping on regular

surfaces. Then we have the following theorem (See Appendix in this chapter for the

proof).
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Figure 4.7: Perspective images of texture tree on different general smooth surfaces.

Theorem 4.1. The MFS is invariant under any spatial bi-Lipschitz transform.

Thus, the MFS not only is invariant to perspective transformations, but also to

non-rigid deformations.

Let us stress that the invariance of the MFS to bi-Lipschitz maps has been

proven for images of infinite resolution. In practice we are dealing with finite reso-

lution images. Nevertheless, we found that the MFS is very robust to perspective

transforms and surface warping, even for low resolution images. Usually four to five

levels of resolution (defined by radius r) are sufficient for a good estimation of the

MFS.

Two examples are given: Fig. 4.8 shows the same plant texture on a plane seen

from different view-points. It can be seen that the corresponding MFS in Fig. 4.9

(a) are nearly the same.

Fig. 4.7 shows six images of a tree texture on general smooth surfaces under

perspective projection. Their MFSs are given in Fig. 4.9 (b). Although there is

some self-occlusions in these images, the MFS are nearly the same.
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Figure 4.8: Six perspective texture images of the foliage texture.

(a) (b)

Figure 4.9: (a) The MFS of the intensity for six perspective views of the foliage

textures in Fig. 4.8. (b) The MFS of the intensity for the tree texture warped on

six different surfaces as shown in Fig. 4.7.
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4.4.2 Illumination invariance

Another important factor to be considered is the illumination. In theory it

can be proven that the MFS (for all three definitions of measurement function µ) is

illumination invariant.

In practice we don’t have illumination variance. We can show, however, that

for the density defined on first order derivatives and the Laplacian the MFS is locally

invariant to affine changes in illumination. For the density defined on the intensity

we have invariance to multiplicative changes. Consider, a brightness change due

to a constant being added to each image pixel. This will not affect µ(B(x, r)) (as

defined in 4.9 and 4.10), because these measures are based on pixel differences.

Next, consider a multiplicative change of each pixel value by a constant. This will

just multiply M(r, q) by a constant. Thus, this change will also not affect the

estimation of β(q), because the slope of the line fitting log(M(r, q)) is invariant

to this multiplication. Therefore, the MFS is invariant to affine (multiplicative)

changes in illumination. Even non-linear illumination changes do not much effect

the MFS, because the fractal dimension is quite robust to small variations of its

point set.

Fig. 4.10 shows nine real texture images taken by a family digital camera. The

three images in each row depict the same scene from different view-points under

different illumination conditions. The computed MFS is shown in Fig. 4.11. As can

be seen the MFSs of different textures are significantly different, while the MFSs of

the same texture under different view-points are almost identical. Fig. 4.13 shows
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Figure 4.10: Three real 3D texture images under different lighting conditions and

view points.

Figure 4.11: The MFS of the intensity for the nine texture images in Fig. 4.10. B1,

B2, B3 are bulrushes, G1, G2, G3 are grasses and T1, T2, T3 are trees.
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Figure 4.12: One frame of a human gesture video.

A B C D

E F G H

Figure 4.13: The arm parts of the human gesture video under different illumination

conditions and views.

eight views of a cloth texture on the moving arm of a person. The illumination is not

controlled. The corresponding MFSs are shown in Fig. 4.14, again demonstrating

the robustness under geometric and illumination deformations.

4.4.3 Comparison to other texture descriptors

The most popular global texture descriptor is the histogram. It could be

interpreted as a descriptor defined on some categorization of the image, such as for

example a categorization of pixels based on intensity thresholding. The descriptor

for each category is simply the number of pixels in the category. The drawback of
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Figure 4.14: The MFS of the intensity corresponding to Fig. 4.13.

such a description is that the spatial information of how pixels are distributed is lost.

In contrast, the fractal dimension encodes the spatial information (as irregularity).

The intensity-based histogram is quite robust to small changes, but not invariant

to perspective transformations, and it is very sensitive to changes in illumination.

The modified texton-based histograms could reduce the effects of illumination but

in trade-off to larger sensitivity to global geometric transforms. In contrast, the

MFS is capable of incorporating various low-level local feature measurements, such

as the Laplacian, the energy, or Gabors without sacrificing global spatial invariance.

Another type of texture descriptor utilizes clusters of locally spatial invariant

descriptors of textons (elements of textures). In the following section we compare

our approach against the sophisticated texture representation of Lazebnik et al [3],

which we call the LA-method. The basic idea of the LA-method is to characterize

the texture by clusters of elliptic regions. The elliptic regions are localized with the

Harrison (H) and Laplacian (L) operators. The ellipses are transformed to circles.

Thus this descriptor is locally invariant to affine transforms. Each region is repre-

sented by two descriptors: one encoding the histogram of the intensity distribution

104



in a neighborhood (S); the other encoding the histogram of edges in a neighborhood

(R) (a variation of SIFT features).

The LA-method essentially represents an image texture by its pattern of tex-

ture elements. It doesn’t have global spatial invariance, because the pattern itself is

the 2D projection of a 3D pattern. Different view-points lead to different patterns.

The dimension of the LA texture descriptor is very high (thousands for a typical

image texture). Furthermore, the LA-method requires sophisticated preprocessing

to compute the texture elements and k-mean clustering to construct a good texture

descriptor. In comparison, the MFS is simple and straightforward to compute as it

neither relies on feature detection nor on clustering techniques.

4.5 Experimental evaluation and summary

We evaluated the performance of the MSF descriptor on classic texture re-

trieval and classification and compared it to two top methods: the LA-method

(described before) and VZ-Joint method ([4]). Varma and Zisserman’s VZ-Joint

method is a non-invariant algorithm which uses a dense set of 2D textons. The de-

scriptor is a one-dimensional texton histogram encoding the joint distribution of all

pixel values in the neighborhood. For the comparison we use the data sets provided

in ([3]), which consists of 1000 uncalibrated, unregistered images of size 640× 480:

25 different textures each with 40 samples (See Fig. 4.15, which is available at

http://www-cvr.ai.uiuc.edu/ponce).

Within each class, significant viewpoint changes and scale differences are present,
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Figure 4.15: Four samples each of the 25 texture classes in Ponce’s data sets.
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Figure 4.16: Retrieval curves for the Ponce database by our method and the methods

in [3].

and the illumination conditions are uncontrolled. Additional sources of variability

include non-planarity of the textured surface, significant non-rigid deformations be-

tween different samples of the same class, inhomogeneities of the texture pattern,

and viewpoint-dependent appearance variations. (For details see [3].)

We used three MFS (as defined by the measurement functions 4.8, 4.9 and

4.10), and for each vector we computed 26 values. There is no clustering in our

method. As distance function between the MFS we used the weighted L1 norm.

The weight coefficients are from the residuals in the computation of β(q).

Retrieval and classification are implemented as described in [3]. Briefly, for

retrieval, given a query image we selected other images from our database in an

increasing order of the distance, i.e., from the most similar to the least similar.

Each image in the database is used as a query image once, and the performance is

summarized as a plot of average recall vs. the number of retrievals. For classification

we used the nearest-neighbor technique. The training set is selected as a fixed size
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(a)

(b)

(c)

Figure 4.17: Classification rate vs. number of training samples. Three methods

are compared: the MFS method, the (H+L)(S+R) method in [3] and the VZ-Joint

method in [4]. (a) Classification rate for the best class. (b) Mean classification rate

for all 25 classes. (c) Classification rate for the worst class.
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random subset of the class, and all remaining images are used as test set. The

reported classification rate is the average over 200 random subsets. The results for

the methods [3] and [4] are from the paper [3].

Fig. 4.16 presents a comparison of our method to the techniques in [3] for re-

trieval. Our method performs better than the ”(H+L)R” channel of the LA-method,

but not better than the ”(H+L)(S+R)” channel. The reason is that the MFS is not

as robust as [3]’s methods to illumination changes. [3]’s robustness is due to the use

of only edge and corner information. In addition there is parameter-dependent clus-

tering. It is worth stressing that the dimension of the MFS is significantly smaller

than the ones of the methods in [3] (seventies vs thousands).

Fig. 4.17 evaluates classification and shows the influences of the number of

samples on the classification rate. The mean classification rate is plotted for our

method using 3 MFS vectors as well as for a single MFS defined on the density of

the intensity (26 numbers only). The figure demonstrates that our method has a

classification rate which is slightly worse than the LA-method, but generally much

better than the VZ-Joint method. It is worth mentioning that the MFS performs

worse than the LA-method only in four of the 25 classes; it is those with signif-

icant illumination changes. For all other classes it actually has a very impressive

classification rate (see Figure 4.17a and c).

We would like to address that a major advantage of our method is its low

dimension. Also, our algorithm will behave much better for larger images. The

images used in the experiment are not large enough to obtain very good estimates

of the fractal dimension. As a result the estimated MFS is not perfectly invariant
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anymore. The performance of our method increases a lot with an increased image

size. In comparison, the feature-based method ([3]) will not benefit much from larger

image size, as it strongly depends on clustering.

In summary, we showed both in theory and experiment that the MFS offers

a new and promising efficient texture description. Not only it is comparable to

other top methods in classifying textures, but also it has a mathematically justified

global bi-Lipschitz invariance. To our knowledge, no other approach proposed in

the past has such global properties. In practice, the MFS is very robust to spatial

transformations and somewhat less robust to changes in illumination, but compa-

rable to feature-based methods. Experiments on standard data sets demonstrated

its effectiveness and efficiency in texture retrieval and classification tasks, achieving

a performance comparable to the top feature based methods but with far lower di-

mension (seventies vs thousands). Furthermore, the MFS is very efficient and simple

to compute without requiring feature detection and clustering. In future work, we

will investigate how to better combine MFS from different measurement functions

in order to achieve greater robustness to illumination changes.

4.6 Appendix: Proof of Theorem 4.1

Let f denote the bi-Lipschitz transform, then the new image after applying such a

transform on the original image I(x) could be written as I ′(x) = I(f(x)). In order

to prove the invariance of the MFS to bi-Lipschitz transforms, we first prove that

110



for each α,

E ′
α = f(Eα),

where E ′
α denotes the corresponding level set of I ′(x). Following, we prove that

f(Eα) has the same fractal dimension as Eα.

For a constant α, let x be any point in the set of Eα, then from (4.3) we have

lim
r→0

log µ(B(x, r))

log r
= α.

Thus, for the point f(x) in the new image I ′(x) = I(f(x)), we have

log µ((B(f(x), r)))

log r
≤ log c2

2µ(B(x, r))

log r

=
2 log c2 + log µ(B(x, r))

log r
.

Similarly, we have

log µ(B(f(x), r)))

log r
≥ 2 log c1 + log µ(B(x, r))

log r
.

Taking the limit on both sides of the two inequalities above, we obtain

lim
r→0

log µ(B(f(x), r))

log r
= lim

r→0

log µ(B(x, r))

log r
= α.

Thus, we conclude that E ′
α = f(Eα).

To complete the proof, we need to show that the fractal dimension of f(Eα)

and the fractal dimension of Eα are the same. Suppose Eα is covered by N(δ, Eα)

sets, which is the smallest number of sets with diameter less than δ. Then the

N(δ, Eα) images of these sets under f form a cover of f(Eα) by sets of diameter less

than c2δ. By the definition the fractal dimension, we have

dim(f(Eα)) = lim
c2δ→0

log N(c2δ, f(Eα))

− log c2δ
≤ lim

δ→0

log N(δ, Eα)

− log c2δ
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= lim
δ→0

log N(δ, Eα)

− log c2 − log δ
= lim

δ→0

log N(δ, Eα)

− log δ

= dim(Eα).

On the other hand, suppose f(Eα) is covered by N(δ, f(Eα)) sets, which is the

smallest number of sets of diameter at most δ. The same argument yields

dim(Eα) ≤ lim
δ→0

log N(δ, f(Eα))

− log c−1
1 − log δ

= dim(f(Eα)).

Thus, dim(Eα) = dim(f(Eα)). The MFS of the new image I(f(x)) equals the MFS

of the original image I(x). 2
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Chapter 5

Application: Wavelet-based Super-resolution imaging

5.1 Overview

The problem of super-resolution imaging, which is defined as restoring a high-

resolution (HR) image from a sequence of low-resolution (LR) images (See Fig. 5.1),

has been studied by many researchers in recent years. Most super-resolution algo-

rithms formulate the problem as a two-stage process: one is aligning the images of

the sequence; the other is reconstructing a high-resolution image from the aligned

image frames. Both processes are critical for the success of the super-resolution

reconstruction. There is extensive literatures on solving image alignment problem.

Many researchers takes a flow-based approach for image alignment ([89, 90, 91, 92]).

Here we adapt the algorithm described in Chapter 3 to the case of large image dis-

placement to provide a homography-based alignment of multiple frames. This is

described in Section 5.6. The remained of the chapter focuses on how to reconstruct

a HR image from aligned LR images.

Image restoration remains an important research topic since digital computers

made the process of large amounts of data possible. Image restoration may be

broadly categorized into two classes based on the number of observed frames: single-

input and multi-input. While the field of single-frame image restoration appears to

have matured, the processing of digital video is still in its infancy. Since video
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Figure 5.1: Illustration of super-resolution imaging.

typically consists of a sequence of similar, though not identical frames, it becomes

possible to use all the information contained in an image sequence to increase spatial

resolution of the still image. However, such a process is difficult. It turns out that

super-resolution restoration is an ill-posed inverse problem:

1. Usually, a LR image sequence is acquired by an imaging system recording

a scene. The imaging process creates the observed image sequence. The

corresponding inverse problem is to determine estimates of the scene given the

observed image sequence and a model of the image formation process. Thus

restoration is the inverse problem and simulation is the forward problem, given

the image formation process.

2. Super-resolution image restoration is an ill-posed problem according to the

Hadamard conditions.

(a) Non-existence of the solution. The presence of noise in the image forma-
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tion process may result in an observed image sequence which is inconsis-

tent with any scene.

(b) Non-uniqueness of the solution. The operator, which characterizes the

image formation process, is a many-to-one mapping. Thus, there exists

a nontrivial space of solutions consistent with any given image sequence.

(c) Discontinuous dependence of the solution on the given data. Depending

on the characteristics of the image formation process, the inverse problem

may be highly sensitive to perturbations of the date. For example, con-

sider an imaging system with a spectral response which decreases asymp-

totically toward zero with increasing frequency. An arbitrarily small noise

component at sufficiently high frequencies will lead to an arbitrarily large

spurious signal in the computed restoration.

Despite the difficulties caused by the ill-posedness of super-resolution image

restoration, researchers have made great progress toward stable algorithms. Iter-

ative back-projection methods ([89, 93]) have been shown to be effective for high-

resolution image reconstruction. It is known, however, that the de-blurring process,

which is part of this approach, makes it very sensitive to the noise. Thus, the require-

ment of very accurate image alignment estimates limits its practical use. Various

regularization methods have been proposed to deal with the noise issue. However,

these methods either are very sensitive to the assumed noise model (Tikhonov reg-

ularization) or are computationally expensive (Total-Variation regularization). See

[94] for more details.
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Our contributions to the reconstruction process are two-fold. First, we model

the image formation procedure from the point of view of filter bank theory . Then

based on this new formulation, we provide an analysis of the limits of the high-

resolution reconstruction. The conclusion is that in general full recovery is not

possible without enforcing some constraints on the recovered images. At best we

could reconstruct the image convolved with a specific low-pass filter (namely 1
4
(1, 1)⊗

(1, 1) for the case of the Box-type PSF).

Second, based on our new formulation, we present a robust wavelet-based algo-

rithm to reconstruct the image. The iteration scheme in our algorithm is inherently

more robust to noise than that of classic back-projection methods ([89, 93]), since

the projection matrix of our new back-projection scheme has a better condition

number. We will show that, both in theory and experiments, it has better per-

formance in suppressing the error propagation than other back-projection iteration

schemes.

Furthermore, our algorithm allows us to include a wavelet-based de-noising

scheme in each iteration of the reconstruction which effectively removes the noise

without creating smoothing artifacts. The advantage of our de-noising scheme over

regularization methods is that it is nearly optimal with respect to the risk bound.

That is, it has the theoretical minimal error in removing noises of unknown models.

Its effectiveness in removing mixed noises and relatively large amounts of noise is

demonstrated in experiments. It is worth mentioning that our de-noising scheme

adds very little computational burden compared to other complicated regularization

methods. Briefly, our method could be described as a generalized iterative back-
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projection method with a fast and optimal regularization criteria in each iteration

step.

Wavelet theory has previously been used for image de-noising and de-blurring

from static images ([95, 96]). However, it has not been studied much with respect

to the super-resolution problem. In recent work wavelet theory has been applied to

this problem [97], but only for the purpose of speeding up the computation. Our

contribution lies in an analysis that reveals the relationship between the inherent

structure of super-resolution reconstruction and the theory of wavelet filter banks.

This relationship is fully exploited by using various techniques from wavelet theory

in the iterations of the reconstruction.

5.2 Formulation of high-to-low image formation

We first formulate the high-to-low image formation process in the same way as

[98] did. To simplify the exposition, in the following we only discuss 1D signals with

resolution enhancement by a factor 2. Later, without much difficulty, the analysis

will be extended to the 2D case with arbitrary resolution enhancement.

Adopting Farsiu’s notation ([94]), the image formation process in the pixel

domain can be modeled as

y = σ[H ∗X(F (t))] + N, (5.1)

where t is the spatial variable; X(t) is the continuous signal and y is the discrete

signal; H is the blurring operator (either optical blurring or motion blurring or

both); F is the geometric transform; N is the noise in the low-resolution image; σ is
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the decimation operator; and “∗” is the convolution operator. Not considering the

noise now, the high-resolution (HR) signal x and the low-resolution (LR) signal y

can be defined as:

x = σ[X], y = [σ[H ∗X(F (t))]] ↓2 . (5.2)

where ↓2 is the downsampling operator with rate 2.

Next we derive the relationship between the LR signal y and the HR signal x.

Define the velocity of the signal by ε(t) = F (t) − t, which is also called the optical

flow in computer vision. For the simplicity of notation, here we assume a sub-pixel

flow model with 0 < ε(t) < 2 on the denser grid of the HR image x (Larger flow

could always be reduced to the case of sub-pixel flow by re-assigning the pixel value).

Thus, in the LR image the flow values are all sub-pixel shifts (Recall a 1-unit shift

on the coarse grid of y equals a 2-unit shift on the fine grid of x).

Let {j} be a fine grid for the spatial coordinates x , then for point j of y on the

coarse grid (it’s coordinats is 2j in the fine grid) with 0 ≤ ε(2j) < 1, the first-order

Taylor approximation of Equation (5.2) at point 2j can be written as

y(j) = [H ∗X(F (t))]t=2j

= [H ∗X(ε(t) + t)]t=2j

= [H ∗X(t)]t=2k + ε(2j)[H ∗X ′(t)]t=2j

= [H ∗X(t)]t=2k + ε(2j)[H ′ ∗X(t)]t=2j.

For all other points j′ of y with 1 ≤ ε(2j′) < 2, a similar argument yields

y(j′) = [H ∗X(t)]t=2j′+1 + ε(2j′ + 1)[H ′ ∗X(t)]t=2j′+1.
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Thus, a LR sequence y could be expressed in the pixel domain as a sub-

sequence of the following two sequences:

[a ∗ x] ↓2 +ε ·∗[b ∗ x] ↓2

a ∗ x(·+ 1)] ↓2 +(ε− 1)∗ [b ∗ x(·+ 1)] ↓2,

(5.3)

where a, b are discrete versions of the convolution kernels H and H ′ respectively,

and ·∗ denotes the component-wise multiplication operator. Having available the

optical flow values εk for multiple low-resolution images yk, we can extract the four

components:

[a ∗ x] ↓2, [a ∗ x(·+ 1)] ↓2

[b ∗ x] ↓2, [b ∗ x(·+ 1)] ↓2 .

(5.4)

As will be shown in the next subsection, the two filters a and b (which are determined

by the blurring kernel H and its derivative H ′) characterize the super-resolution

reconstruction.

Let us next look at some examples of filters a and b for different blurring

kernels.

Example 2.1. Consider the box-type blurring kernel H = 1
2n

χ[−n,n]. Let E(t) =

ε ≤ 1. Then we have

y(j) =
∫ ∞

−∞
χ(2j − t)X(F (t))dt =

1

2n

∫ 2j+n

2j−n
X(F (t))dt =

1

2n

∫ 2j+n

2j−n
X(t + ε)dt.

Approximating the integration by quadrature rules, we obtain

y(j) =
1

2n
(
1

2
(1− ε)x(2j − n) +

n−1∑
i=−n+1

x(2j − i) +
1

2
(1 + ε)x(2j + n)).

Or equivalently,

y = [a ∗ x + ε(b ∗ x)] ↓2, (5.5)
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where a and b are the following low-pass and high-pass filters respectively:

a =
1

4n
(1, 2, · · · , 2, 1), b =

1

4n
(−1, 0, · · · , 0, 1).

Example 2.2. Consider a Gaussian-type blurring kernel H. Using the Cubic

Cardinal B-spline B(t) as approximation to the Gaussian function we have

y(j) =
∫ ∞

−∞
B(2j − t)X(F (t))dt.

Again, by the quadrature rule, we have the approximation

y =
∑

i

x(2j − i)(a(i)− εb(i)),

where a = 1
96

(1, 8, 23, 32, 23, 8, 1), b = 1
48

(3, 12, 15, 0,−15,−12,−3).

5.3 Analysis of the HR reconstruction

Given multiple LR signals yk with different motions εk, theoretically we can

obtain two complete sequences a ∗ x and b ∗ x from (5.4). An interesting question

arises. Without any assumption on a given finite signal x, can we reconstruct the

signal sequence x exactly from these two sequences a ∗ x and b ∗ x?

To answer this question, let us write the sequence in another form, namely, as

its Z-transform. The Z-transform of a signal sequence x = {x(i)} is defined as

x(z) =
∑

i

x(i)z−i.

It is easy to see that such a transform is a one-to-one mapping between sequence

space and polynomial space. Let a(z) and b(z) denote the Z-transforms of the filters

a and b, then the Z-transforms of a∗x and b∗x are a(z)x(z) and b(z)x(z) respectively.
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Now the question can be addressed by checking whether the polynomial equa-

tion

(a(z)x(z))u(z) + (b(z)x(z))v(z) = x(z), (5.6)

is solvable for the two unknowns u(z) and v(z). Eliminating x(z) from both sides

of (5.6) yields

a(z)u(z) + b(z)v(z) = 1. (5.7)

From the theory of Diophantine equation we know the follows

Lemma 4.1. Given two polynomials a(z) and b(z), (5.7) is solvable if and only if

the greatest common divisor of a(z) and b(z) is a scalar, that is, a(z) and b(z) are

co-prime.

It is observed that a(z) and b(z) in our two examples (Example 1 and 2) both

have a common divisor

c(z) = (1 + z).

This can be seen from the fact that a(−1) = b(−1) = 0, and therefore z = −1 is the

root of both a(z)and b(z). Thus, for these blurring kernels we cannot reconstruct

x(z) from a(z)x(z) and b(z)x(z) exactly. This observation is not an incident. It

actually holds true for general blurring kernels, as we will show next.

We follow Baker’s modeling of the blurring kernel H ([99]). The blurring kernel

(Point spread function) can be decomposed into two components:

H = Ω ∗ C,

where Ω(X) models the blurring caused by the optics and C(X) models the spatial
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integration performed by the CCD sensor. Typically Ω is modeled by a Gaussian-

type function and C is modeled by a Box-type function. Notice that

H ′ = Ω′ ∗ C.

Thus we can express the corresponding discrete filters as:

a = ` ∗ c; b = τ ∗ c,

where c is the discrete version of the spatial integration kernel C, and ` and τ are

the discrete versions of H and H ′. Since a(z) and b(z) have a common divisor c(z),

we cannot reconstruct x(z) for general x(z), unless C is a Dirac function, which

generally is not true. Based on Lemma 1, we then have the following claim.

Claim 4.1. Given multiple LR finite signals yk, we can not perfectly reconstruct

the HR finite signal x without any assumptions on x. At most we can reconstruct c∗x

for some low-pass filter c. The corresponding Z-transform c(z) of c is the greatest

common divisor of a(z) and b(z), which includes the spatial integration filter.

Notice that c is a low-pass FIR (finite impulse response) filter. To recover x

from c ∗ x, we have to apply a high-pass filter on c ∗ x and impose some boundary

condition on the signal x. Such a de-blurring process generally is sensitive to the

noise and creates artifacts in the recovered image. A good strategy then is to modify

our reconstruction goal during the intermediate iterative reconstruction process:

Instead of trying to reconstruct x, we reconstruct c ∗ x in the iterative process, and

we leave the recovery of x from c ∗ x to the last step after finishing the iterative

reconstruction.
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Thus, the modified HR signal to be reconstructed is x̃ = c ∗ x. Now the LR

sequence {yk} is a subset of the following two sequences:

[` ∗ x̃] ↓2 +εk · [τ ∗ x̃] ↓2 (5.8)

and

[` ∗ x(·+ 1)] ↓2 +(εk − 1) · [τ ∗ x̃(·+ 1)] ↓2,

where the Z-transform of ` and τ are a(z) and b(z) divided by their greatest common

divisor c(z) respectively. It is worth mentioning that we model the blurring proce-

dure from HR to LR by a first-order Taylor approximation. But our reasoning could

easily be extended to a modeling by higher-order Taylor approximations, leading to

the same conclusion.

5.4 Reconstruction based on PR filter banks

5.4.1 Introduction to PR filter banks

Before presenting our algorithm, we first give a brief introduction to 2-channel

PR (perfect reconstruction) filter banks, also called wavelet filter banks (see [100]

for more details). A two-channel filter bank consists of two parts: an analysis filter

bank and a synthesis filter bank. In our case, the signal x̃ is first convolved with a

low-pass filter ` and a high-pass filter h and then subsampled by 2. In other words,

we analyze the signal by an analysis filter bank. Then a reconstructed signal x̂ is

obtained by upsampling the signal by zero interpolation and then filtering it with a

dual low-pass filter g and a dual high-pass filter q. In other words, we reconstruct
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Figure 5.2: The two-channel filter bank.

the signal by synthesizing the output from the analysis bank with a synthesis filter

bank. See Fig. 5.2 for an illustration.

Such a filter bank is called a PR filter bank if x̂ = x̃ for any input x̃. The

question then is, what makes {`, h, q, g} a PR filter bank. It is easy to see that the

process illustrated in Fig. 5.2 could be expressed using Z-transforms as follows:

x̂(z) =
1

2
(x̃(z) + x̃(−z))

 `(z) h(z)

`(−z) h(−z)


 g(z)

q(z)

 .

Thus the sufficient and necessary condition for x̂(z) = x̃(z) is 2zm

0

 =

 `(z) h(z)

`(−z) h(−z)


 g(z)

q(z)

 ,

or equivalently,  g(z)

q(z)

 =

 `(z) h(z)

`(−z) h(−z)


−1  2zm

0

 .

Then in order to obtain FIR g and q, we require that

det(H(z)) = det(

 `(z) h(z)

`(−z) h(−z)

) = czn.
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In summary, the synthesis filters {`, h} of a perfect reconstruction filter bank

have to satisfy the following condition:

`(z)h(−z)− `(−z)h(z) = zm for some integer m, (5.9)

and the corresponding synthesis filters amount to

g(z) = h(−z); q(z) = −(`(−z)).

Thus, given any low-pass filter `(z), we can find the corresponding high-pass filter

h(z) such that we have a PR filter by solving the linear system (5.9).

Example 2.3. For well-known “Harr” wavelet filter bank, the synthesis and anal-

ysis filters amount to:

` =
1

2
(1, 1), h =

1

2
(1,−1);

g =
1

2
(1, 1), q =

1

2
(−1, 1).

5.4.2 Iterative reconstruction scheme

We have available a number of signals yk and the corresponding estimates of

the optic flow values εk. We also have estimates of the convolution kernels ` and τ .

Obviously, it is not wise to directly estimate ` ∗ x and τ ∗ x from Equation (5.3).

Special attention is necessary here for numerical stability. Fortunately the scheme

of PR filter bank provides us with an iterative scheme.

Let ` which corresponds to the blurring kernel be the low pass filter of a PR

filter bank, then the corresponding high-pass filter h could be computed by solving
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(5.9). Note h may be different from τ . Recall that for each LR signal yk, we have

yk = [` ∗ x̃] ↓2 +εk ·∗[τ ∗ x̃] ↓2 .

Notice that the incompleteness of the original sequence could be overcome by a

simple interpolation. Thus [` ∗ x̃] ↓2 amounts to

[` ∗ x̃] ↓2= yk − εk ·∗[τ ∗ x̃] ↓2 . (5.10)

Notice that the process of a signal x̃ passing through a PR filter bank as shown in

Fig. 5.2 can be expressed as:

x̃ = g ∗ [(` ∗ x̃) ↓2] ↑2 +q ∗ [(h ∗ x̃) ↓2] ↑2 . (5.11)

Combining (5.10) and (5.11), we obtain the iterative reconstruction of x̃ from K LR

signals yk as follows: At step n + 1

x̃n+1 = q ∗ [(h ∗ x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)
. (5.12)

Theorem 1. The iteration of Equation (5.12) converges to the true value x under

the condition that

‖g ∗ τ‖ ≤ 1

2
. (5.13)

Proof of Theorem 1. As in [89] for simplicity we omit the down-sampling and

upsampling process, as well as the fusion process. That is, we write

y = ` ∗ x̃ + ε ·∗(τ ∗ x̃)
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Then the iteration is

x̃(n+1) = g ∗ (y − ε ·∗(τ ∗ x̃(n))) + q ∗ (τ ∗ x̃(n)). (5.14)

Subtracting x̃ on both sides of (5.14) yields

x̃(n+1) − x̃ = g ∗ (y − ε ·∗(τ ∗ x̃(n))) + q ∗ (τ ∗ x̃(n))

= g ∗ (` ∗ x̃ + ε ·∗(τ ∗ (x̃− x̃(n)))) + q ∗ (τ ∗ x̃(n))− x̃.

Recall that we have

x̃ = g ∗ (` ∗ x̃) + q ∗ (h ∗ x̃).

Then

x̃(n+1) − x̃ = −g ∗ (ε ·∗((τ ∗ (x̃(n) − x̃)) + q ∗ h ∗ (x̃(n) − x̃)

= (g ∗ (−ε ·∗τ∗) + q ∗ h∗)(x̃(n) − x̃).

Let A denote the operator which represents g ∗ (−ε · ∗τ ∗+q ∗ h∗). Then the above

equation can be rewritten as

x̃(n+1) − x̃ = A(x̃(n) − x).

Since we have (See [100] for more details):

‖q ∗ h‖ = ‖g ∗ `‖ =
1

2
,

from the fact, ‖ε‖∞ < 1, we obtains

‖A‖ ≤ ‖g ∗ τ‖+ ‖q ∗ h‖ < ‖g ∗ τ‖+
1

2
.

Thus ‖g ∗ τ‖ ≤ 1
2

is sufficient for the convergence of the iteration. 2
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5.4.3 Relation to other back-projection methods

Applying (5.11), we can rewrite (5.12) in the form

x̃n+1 = (x̃n − g ∗ [` ∗ (x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)

= x̃n + g ∗
( 1

K

K∑
k=1

[yk − (` ∗ x̃n + εk · ∗(τ ∗ x̃n)) ↓2] ↑2

)
.

It can be seen that the iteration scheme presented here falls in the class of back-

projection methods. But it has advantages over the usual back-projection iterations.

Consider the well-known method by Irani and Peleg [89]. Its iteration can be de-

scribed as:

xn+1 = xn +
1

K

K∑
k=1

T−1
k

(
((yk − [` ∗ Tk(x

n)] ↓2) ↑2) ∗ p
)
, (5.15)

where Tk is the geometric transform between yk and x̃, and the high-pass filter p

is the de-blurring kernel. Notice that the two methods differ in the de-blurring

kernel: one uses g with g(z) = h(−z) defined in (5.9); the other is p in (5.15), the

approximate inverse filter of `.

The requirement on p in (5.15) is

||δ − ` ∗ p|| < 1, (5.16)

where δ is the ideal unit impulse response filter. In other words, p should be a good

approximation for the inverse of `. In comparison, g in our iteration only needs to be

a companion filter for the smooth filter ` with sufficient decay, such that condition

(5.13) holds. This difference makes g more desirable than p. Let’s investigate this

in more detail in the following paragraph.
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The noise will be propagated exponentially as O(‖p‖n) in (5.15) and as O(‖g‖n)

in (5.12). Generally the flexibility of g(z) makes it possible to design a g that has

much smaller norm than p. This leads to much better resistance to noise propaga-

tion. Here is an example: Consider ` = 1
4
(1, 2, 1). Then

g = (−1/8,−1/4, 3/4,−1/4,−1/8)

is a dual PR filter for ` with

`(z)g(−z) = −1 + 9z−2 + 16z−3 + 9z−4 − z−6.

It is easy to check that ‖g‖2 is around 0.85. The minimum for the norm of all filters

with the same length as g is around 1.1. The corresponding p is

p = (
1

2
,−2

3
,
4

3
,−2

3
,
1

2
).

In order to make the norm of p close to the norm of g, a lengthy p with much slower

decay is necessary. Such a filter is not desirable since it causes artifacts, like the

“ring” effect. This clearly indicates that our iteration scheme is more robust to noise

and causes less artifacts in the reconstructed image.

5.5 Robust algorithm on 2D images with de-noising

Next we generalize the algorithm to 2D images. Then we introduce a de-noising

process during the iterative reconstruction to suppress the noise in the optical flow

estimation. Furthermore, the algorithm is adjusted to handle outliers.
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5.5.1 Extension to 2D images with a built-in de-noising process

All the previous analysis can be generalized using the tensor product. By an

argument similar as for the 1D case, we approximate the LR image ILR with the

HR image IHR as follows:

ILR = [(a⊗ a) ∗ IHR + u ·∗((a⊗ b) ∗ IHR) + v · ∗((b⊗ a) ∗ IHR)] ↓2,

where “⊗” is the Kronecker tensor product and (u, v) is the 2D optical flow vector.

Then the 2D analysis bank is

Low-pass filter: L = `⊗ `,

High-pass filters: H1 = `⊗ h,H2 = h⊗ `, H3 = h⊗ h

,

and the 2D synthesis filter bank is

Low-pass filter: G = g ⊗ g,

High-pass filters: G1 = g ⊗ q, G2 = q ⊗ g,G3 = q ⊗ q.

It is easy to verify that the 2D filter bank defined above is a perfect reconstruction

filter bank with the analysis filter bank {L, Hi} and the reconstruction filter bank

{G, Qi}. Then generalizing (5.12), the iterative equation for the reconstruction of

the HR image Ĩ from LR images ILR
k amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

( ∑K
k [ĨLR

k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ `) ∗ Ĩ(n)) ↓2] ↑2 )

Recall that here Ĩ is the blurred version of the true I with Ĩ = (c⊗ c) ∗ I.

There always is noise in the estimated flow u, v. However, the deconvolution

operator could make the HR image reconstruction very sensitive to such noise. It is
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known that the noise variance of the solution will have hyperbolic growth when the

blurring low-pass filter has zeros in the high frequencies. Thus, de-noising is neces-

sary in order to suppress the error propagation during the iterative reconstruction.

To suppress the noise, we introduce a wavelet de-noising scheme which sub-

tracts some high-frequency components from Ĩn. Briefly, we first do a wavelet de-

composition of the high-pass response, then apply a shrinkage of wavelet coefficients

to the decomposition, and then reassemble the signal.

Our iteration scheme with built-in de-noising operator amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [Ψ(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

( ∑K
k [ĨLR

k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ `) ∗ I(n)) ↓2] ↑2

)
.

The de-noising operator Ψ defined in the equation above is

Ψ(Hi ∗ Ĩn) = G ∗ [(L ∗ (Hi ∗ Ĩn)) ↓2] ↑2 +
3∑

i=1

[Qi ∗
(
Γ[Hi ∗ (Hi ∗ Ĩn)]

)
↓2] ↑2,

where Γ is the shrinkage operator.

5.5.2 Shrinkage operator and robust regression

The basic idea of wavelet de-noising is to reduce the noise by shrinking the

wavelet coefficients where typically most noise exist. Here we take a hybrid shrinkage

approach. The hybrid shrinkage operator Γ is defined as:

Γ(ν) =



0 |ν| ≤ µ1;

sign(ν)µ2
|ν|−µ1

µ2−µ1
µ1 < ν ≤ µ2;

ν Otherwise.

(5.17)
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Such a shrinkage offers both benefits from hard shrinkage (uniformly small risk) and

soft shrinkage (overall small risk). The reasoning as follows: The optical flow we

adopt here is a parametric model. Therefore the noise introduced by the optical

flow is not related to the local intensity variation. Thus, a hard shrinkage with

appropriate threshold µ1 could effectively remove such noise. Moreover, noise in

illumination which is related to the intensity of the pixels should be removed adap-

tively. Therefore, a soft-shrinkage is needed in some range. Finally, in order to keep

the sharp edges, we keep the large intensity variations. Occasional outliers will be

handled by the median operator when fusing multiple frame reconstruction.

In summary, our algorithm is as follows: Given an initial HR image I(0), for

each low-resolution Ik, we have

I(n+1) = G ∗mediank{[ILR − uk ·∗(`⊗ γ ∗ I(n)) ↓2

− vk ·∗(γ ⊗ ` ∗ I(n)) ↓2] ↑2}

+
( ∑3

i=1 Qi ∗ [Φ(Hi ∗ I(n)) ↓2] ↑2

)
.

(5.18)

The algorithm above could be easily adapted to different blur filters. We

only need to adjust the dual filters G, Qi to make a new perfect reconstruction

filter bank. Also, here we only considered a doubling of the image resolution. But

any other resolution increase could be achieved by changing the 2-channel perfect

reconstruction filter bank to an M-channel perfect reconstruction filter bank.

5.5.3 Relation to regularization methods

One popular de-noising technique used for robust reconstruction is regulariza-

tion ([101]). Recall that back-projection methods basically find x̃ by minimizing
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∑K
k ‖yk− ỹk(x̃)‖2

2, where ỹk(x̃) is the LR signals derived from our estimated x̃. Such

a least squares estimation problem usually is ill-conditioned. One way to increase

the stability is to enforce a regularization term and solve:

min
x̃

K∑
k

‖yk − ỹk(x̃)‖2
2 + α‖Φ(x̃)‖,

where Φ is some regularization function and α is some pre-defined smoothing fac-

tor. If the regularization is a least squares problem, we call it a Tikhonov-type

regularization. The advantage is its simplicity and efficiency, the disadvantage is its

relatively poor performance. A nonlinear diffusion regularization, like Total Varia-

tion regularization usually performs better, but is computationally expensive.

Wavelet de-noising is closely related to nonlinear diffusion regularization. [102]

discussed the relationship of wavelet de-noising and Total Variation regularization

for two simple cases. More specifically, consider a wavelet de-noising scheme based

on Haar wavelet (` = 1
2
(1, 1), h = 1

2
(1,−1)). Then for the case of the shrinkage

operator in wavelet de-noising being a soft thresholding operator defined as (5.19),

it was shown that such a wavelet de-noising process is equivalent to Total Variation

based nonlinear diffusion (Φ(x̃) = ‖x̃‖1) for a two-pixel signal.

Γ(µ) =


µ− τsgn(µ) if (|µ| ≥ τ);

0 Otherwise

(5.19)

Although [102] only showed the equivalence between Total Variation regular-

ization and a simplistic wavelet de-noising scheme for a signal with 2 pixels, these

results still demonstrate that the wavelet de-noising process in our reconstruction

is comparable to some nonlinear diffusion regularization schemes in its ability to
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suppress the error propagation. However, it doesn’t have the computational burden

of most nonlinear diffusion regularizations, since it only needs a linear wavelet de-

composition over one level. In comparison nonlinear regularizations need to solve a

nonlinear optimization.

5.6 Flow estimation for super-resolution

5.6.1 Basic notations

We consider here the planar motion model. In other words, we assume that the

underlying 3D structures of the interesting image regions are planar surfaces. Let

I0, I1, I2, · · · , IK be the image frames in the sequence. Fix frame I0 as the reference

image. We need to estimate the homographies between the reference frame I0 and

the frames Ik. There is the following constraint on the planar homography Pk from

reference frame I0 to frame Ik:

Pk = Rk + ~vk~n
t, (5.20)

where Rk is a rotation matrix, ~vk is the translation and ~n is the normal of the

plane. For two frames close by, the optical flow ~u at a point ~r is constrained by the

brightness consistency constraint

(
dI

d~r
)t~u(~r) = −dI

dt
. (5.21)

Let ~pk = vec[Pk] = (p1k
, p2k

, · · · , p9k
)t be the vectorized version of the homography

Pk. Assume Ik very close to I0, then under the small motion assumption, the
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brightness consistency constraint becomes

(
dI

d~r
)t(~pk(~r)− ~r) =

dI

dt
, (5.22)

with

~pk(~r) =


p1x+p2y+p3

p7x+p8y+p9

p4x+p5y+p6

p7x+p8y+p9

 .

~pk(~r) is a 2D linear rational polynomial. Thus multiplying the denominator of ~pk(~r)

on both sides of (5.22) yields a linear homogeneous equation system on ~pk:

Ak~pk = 0.

5.6.2 Multi-frame homography estimation

We need to simultaneously estimate all homographies between the reference

image I0 and the frames Ik. The Pks are not independent. They share the same

plane normal. That is,

Pk = Rk + ~vk · ~nt, for k = 1, · · · , K.

In order to improve the estimation of the Pks, this constraint on the surface normal

has to be incorporated into a batch algorithm to Furthermore we need to deal with

frames Ik with large displacement to the reference frame I0.

Here we take an iterative approach to estimate the homographies Pk. Suppose

that at the jth step we are given the approximate solution P j
k = Rj

k + vj
k · (nj)t for

the true homography Pk. Then Equation (5.22) could be applied to Pk as follows:

(
dI

d~r
)t(~pk(~r)− ~pj

k(~r)) = Ik(~r)− I0(p
j
k(~r)).
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In other words, we apply the differential brightness consistency constraint between

the frame I0(p
j
k(~r)) (the image obtained by warping I0 from the homography pj

k)

and Ik(~r). The differential motion is due to the the difference between the actual

homography and its estimation in the current stage.

We write these linear equations on ~pk as

Ak(P
j
k )~pk = 0.

Then the minimization across all homographies Pk could be written as

min
Rk,~n,vk

∑
k

‖Ak(P
j
k )vec[Rk + ~vk~n

t]‖2 (5.23)

subject to the constraints that the Rks are rotation matrices and ‖~n‖ = 1. This

is a constrained minimization, bilinear in Rk, ~vk and ~n. In the remaining of this

section we show how to robustly solve the minimization (5.23) using an alternative

two-steps optimization.

Given P j
k at step j, we compute P j+1

k = Rj+1 + ~vj+1
k (~nj+1)t at step j + 1.

Given P j
k = Rj

k + ~vj
k(~n

j)t, we first update ~nj+1. This minimization of (5.23) is

just a regular least squares minimization over the sphere of ~nj+1 and can be written

as:

min
~nj+1

∑
k

‖Ak(P
j
k )vec[Rj

k + ~vj
k(~n

j+1)t]‖2 (5.24)

subject to ‖~nj+1‖ = 1. The minimization of (5.24) could easily be solved by SVD

decomposition. The algorithm is as follows: Given A and ~b, the following procedure

computes a vector n such that ‖A~n − ~b‖2 is minimum, subject to the constraint

‖~n‖ = 1. Compute the SVD A = UΣV t and save

V = {v1, v2, · · · , vn}, b = U tb, Σ = diag(σi).
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Find λ∗ such that

∑
i

(
σibi

σ2
i + λ∗

)2 = 1.

Then

~n =
∑

i

(
σibi

σ2 + λ∗
)vi.

Then given P j
k , ~nj+1, we estimate {Rj+1

k , vj+1
k } for k = 1, · · · , K. We need to

solve the following minimization: For each k

min
Rj+1

k
,vj+1

k

‖Ak(P
j
k )vec(Rj+1

k +~vj+1
k (~ni+1)t)‖2, subject to (Rj+1

k )tRj+1
k = I3. (5.25)

This is not a trivial task. Here we present a fast linear method to obtain an

approximate solution. Let Rj+1
k be approximated by (I + [ω]×)Rj

k, where [ω]×

is a skew-symmetric matrix from rotation vector ω. Using the observation that

P j+1
k = Rj+1

k + ~vj+1
k (~nj+1)t we perform the following decomposition

P j+1
k = (I + [ωj

k]× + ∆vj
k · (R

j
kn

j+1)t)P j
k ,

with

vj+1
k = (I + [ω]x)v

j
k + (1 + (Rj

kn
j+1)tvj

k)∆vj
k. (5.26)

Then the the minimization (5.25) is simplified to a standard least squares minimiza-

tion on ωi
k and ∆vi

k:

min
ωj

k
,∆vj

k

‖Ak(P
j
k )vec[(I + [ω]× + ∆vj

k · (R
j
k~n

j+1)t)P j
k ]‖2. (5.27)

Thus Rj+1
k and vj+1

k could be derived from ∆vj
k and ωi

k after solving the least squares

minimization of (5.27).
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We adopt the procedure in [103] to compute initial values for the homographies

P 0
k s from multiple relative motions Pk1,k2 between frames Ik1 and Ik2 related by small

displacement. Briefly, the P 0
k s are determined by an overdetermined linear system:

Pk1,k2P
0
k1
− P 0

k2
= 0.

See [103] for more details. The iteration algorithm is as follows: Given P j
k = Rj

k +

~vj
k(~n

j)t at Step j,

1. The minimization (5.24) is solved by SVD to obtain ~nj+1.

2. The minimization (5.27) is solved by least squares to obtain ωj
k, ∆

j
k.

3. ~vj+1
k is obtained through (5.26) and the rotation matrix is obtained as:

Rj+1
k = I + [ωj

k]× + (1− (1− ‖ω‖2)
1
2 )([ωj

k]×)2.

The iteration is terminated after the pj+1
k s are close enough to the pj

ks.

At a quick glance, it seems that decomposing Pk is an overkill since we don’t

need motion and structure. But actually it doesn’t make much difference. It is

known that the decomposition of P = R + ~t · ~nt is unique up to two solutions. By

enforcing the consistency between the Pk, the decomposition becomes unique, and

the decomposition is not difficult to obtain.

5.7 Experiments and conclusion

We compare our algorithm’s high-resolution reconstruction to standard meth-

ods using both simulated and real data.
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5.7.1 Simulated data

We simulated 4 low-resolution images (16× 16) from a high resolution image

by shifting, blurring and downsampling. The blurring filter is

` =
1

16



1 2 1

2 4 2

1 2 1


.

Three kinds of noise were simulated:

1. Error in motion estimation. It is modeled by local Gaussian white noise with

parameter σ. The local covariance matrix is due to the magnitudes of the

image gradients.

2. Noise in pixel formation. We added a Gaussian white noise with parameter γ

to the pixel values.

3. Error in PSF modeling. We also checked how error in the PSF modeling influ-

ences the performance. The approximated PSF ˆ̀ used in the reconstruction

was

ˆ̀=
1

16



1 1 1

1 8 1

1 1 1


. (5.28)

We compared our wavelet-based method to the popular “POCS” back-projection

method ([104]) enforced by Tikhonov regularization (See Fig. 5.3). It may be pos-

sible that another scheme, namely Total Variation regularization would give a bit

better results. However, this would require solving a nonlinear minimization over
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(a) Original image (b) Noisy LR image

(c) Wavelet method (d) Tikhonov regularization

Figure 5.3: The HR images (c) and (d) are reconstructed from four LR images by

five iterations. (c) is reconstructed by our method. (d) is reconstructed by the

back-projection method with Tikhonov regularization. The motion noise is local

Gaussian noise with σ = 0.2. The image formation noise is Gaussian noise with

γ = 0.01. The approximation ˆ̀ in (5.28) is used in the reconstruction instead of the

true PSF `.
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each iterative step during the reconstruction, which is computationally expensive. In

our implementation, the regularization term is the 2-norm of the Laplacian smooth-

ness constraint with parameter α = 1.

Fig. 5.4 demonstrates how well the wavelet-based method performs for various

noise settings. Performance is measured by the SNR (Signal-to-Noise ratio) of the

reconstructed image to the true image, which is defined as:

SNR = 20 log10

‖x‖2

‖x− x̂‖2

,

where x̂ is the estimate for the true image x. Fig. 5.4 clearly indicates the advantage

of our wavelet-based method in suppressing the noise. Especially when noise is large,

the boost in performance is significant.

5.7.2 Real data

We used an indoor sequence depicting 13 image frames of a paper box (Fig. 5.5).

An interesting planar region was chosen manually. Fig. 5.6 and Fig. 5.7 show a

comparison of the results by four different methods for different regions. Here the

reconstructed HR images double the resolution of the LR images. The HR image

in Fig. 5.6-5.7(a) were obtained by cubic interpolation from a single LR image. In

Fig. 5.6-5.7(b) we used the POCS method, where the flow field is estimated by an

affine motion model. Fig. 5.6-5.7(c) show the results from our reconstruction scheme.

The difference can be visually evaluated. Clearly, there is large improvement from

(b) to (c) in Fig. 5.6 and Fig. 5.7. The letters in Fig. 5.6(c) and Fig. 5.7(c) are the

clearest, and there are minimal artifacts around the edges.
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(a) Comparison for motion noise

(b) Comparison for image formation noise

(c) Comparison for PSF error

Figure 5.4: Comparison between the two methods for various amounts of motion

noise and image formation noise. The reconstructed image is obtained by 5 itera-

tions. The x-axis denotes the variance of the noise, the y-axis denotes the SNR of

the reconstruction.
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(a) Reference frame (b) LR planar image region

Figure 5.5: Reference image frame of first indoor video and its selected region.

(a) Interpolation (b) POCS+affine

(c) POCS+Homography (d) Wavelet+Homography

Figure 5.6: Comparison of one reconstructed HR region for various methods.
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(a) Interpolation (b) POCS + Affine

(c) POCS + Homography (d) Wavelet + Homography

Figure 5.7: Comparison of another reconstructed HR region from Fig. 5.5 for various

methods.

Figure 5.8: Reference frame from second indoor video.
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(a) Interpolation (b) Irani’s + Affine

(c) Irani’s + Homography (d) Wavelet + Homography

Figure 5.9: Comparison of one reconstructed HR region from Fig. 5.8 for various

methods.

A second indoor sequence depicting a box wrapped in newspaper (Fig. 5.8) is

tested. This time, we compared our method against Irani’s method [89]. See Fig. 5.9

for a visual comparison. The same conclusion holds as for the previous experiment;

both our homography-based motion estimation and our reconstruction method lead

to improved results.

We also used an outdoor sequence of 11 frames with some warning sign in

the scene. We compared the reconstructions from different methods for a manually

selected region. Since the regions are too small to provide enough information for

getting estimates from the homography flow model, here instead we use an affine

flow model. See Fig. 5.10 for a visual comparison.

In summary, we have presented a theoretical analysis and a new algorithm for

super-resolution problem based on wavelet theory. It has been demonstrated both
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(a) (b)

(c) (d)

Figure 5.10: (a) The key frame in the video. (b) The reconstruction from the

interpolation. (c) The reconstruction from Irani’s method using affine flow. (d) The

reconstructed image from the wavelet method with de-noising using affine flow.
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in theory and experiments that the proposed method in this chapter is very robust

to noise without sacrificing efficiency. The reconstruction scheme allows for super-

resolution reconstruction from general video sequences, even when the estimated

optical flow is very noisy.
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Chapter 6

Conclusion and future work

This thesis proposes a framework for solving the general structure from mo-

tion problem using feed-back loops. The major reason for the scene recovery being

difficult is that structure recovery is closely related to scene segmentation. On one

hand, structure information is needed to segment images because large spatial re-

gions are needed for good segmentation; on the other hand, the structure can not be

obtained accurately without scene segmentation. This chicken-and-egg situation can

not be resolved with traditional modular approaches. We propose to overcome this

chicken-and-egg dilemma by introducing a feed-back loop approach. Segmentation

and scene recovery interact with each other in our approach. Structure estimation

and scene segmentation are improved gradually over stages. Our first implementa-

tion demonstrates the potential of such an approach for solving the general structure

from motion problem.

The shape constraint we presented for linking multiple frames makes possible

a robust method for estimating accurate camera motion. Accurate camera motion

plays an important role in our feed-back framework. It leads to better scene recovery

and better scene segmentation, but also makes it possible to fuse multiple well-

developed techniques (stereo matching, occlusion detection) into the structure from

motion process.
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However, the approach we proposed in this thesis, is just the first step to-

wards a complete architecture for solving the general structure from motion prob-

lem. There are several modules, which need to be developed in future work. The

first is a module that uses image motion or matching over three or more images to

detect occlusions and ordinal depth information, and uses this information to detect

and locate independently moving objects in a dynamic environment. The second

is a module that refines the scene structure using a more sophisticated surface rep-

resentation such as a PDE-based implicit surface representation, using as input a

fairly good piece-wise planar surface model and an accurate camera motion esti-

mate. Such refinement appears promising, since with some preliminary models of

the scene, we can employ larger spatial areas and develop global spatial constraints.

Thus better matching can be achieved and more complicated structure models can

be implemented.

The MFS (multifractal spectrum) proposed in Chapter 4 serves well the pur-

pose of matching planar patches over large displacements. The advantage of our

texture descriptor over existing texture signatures lies in its invariance to environ-

mental changes. The invariance is justified not only from mathematical derivation,

but also from our experiments on textures in a real settings. Our new MFS texture

descriptor combines global statistics and local image features and results in a very

low feature dimension.

Furthermore, the MFS is useful for other application sectors. We applied our

new texture descriptor for texture retrieval and classification. The experiments show

that the performance of our texture descriptor in texture classification is close to
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the top methods, despite having a much smaller feature dimension. All these clearly

indicate that our texture descriptor does capture some of the essential structure of

natural textures.

In future research, it will be very interesting to investigate how to incorpo-

rate the MFS idea into the segmentation process. The goal would be to find a

computational process for obtaining a cluster of MFS vectors with every element

corresponding to a segmented texture region. Such a representation plus 3D in-

formation from ego-motion could possibly lead to a very good framework which

provides sufficient information for visual homing and is robust in an unconstrained

environment.

A robust solution to the general structure from motion problem benefits visual

navigation, but it also constitutes a necessary module for many interesting appli-

cations. We applied our algorithm of combining flow fields over multiple fields to

provide better alignment of images in a super-resolution imaging system. More-

over, we developed a new wavelet-based reconstruction scheme for reconstructing

a high-resolution image from multiple aligned low-resolution images. Our recon-

struction scheme is based on an analysis of image formation from the view of filter

bank theory. So some unnecessary de-blurring operator is avoided, which improves

the robustness of the algorithm. Furthermore, our wavelet-based algorithm allows

a wavelet de-noising operator to be built in without much computational expense.

It is known that wavelet de-noising is essentially a form of anisotropic diffusion.

Therefore, our reconstruction algorithm not only is more robust to noise (reduces

the blurring process) but also avoids the smoothing effect introduced by regular
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interpolation methods. Our wavelet-based approach could be extended to other

applications in image de-blurring, such as motion de-blurring.
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