University of Maryland College Park

Institute for Advanced Computer Studies UMIACS-TR-94-9.1
Department of Computer Science CS-TR-3211.1

THE ORTHOGONAL QD-ALGORITHM*
Urs von Matt?

January, 1994
revised September, 1994

Abstract. The orthogonal qd-algorithm is presented to compute the singular value decomposition
of a bidiagonal matrix. This algorithm represents a modification of Rutishauser’s qd-algorithm, and
it is capable of determining all the singular values to high relative precision. A generalization of the
Givens transformation is also introduced, which has applications besides the orthogonal qd-algorithm.

The shift strategy of the orthogonal gd-algorithm is based on Laguerre’s method, which is used to
compute a lower bound for the smallest singular value of the bidiagonal matrix. Special attention is
devoted to the numerically stable evaluation of this shift.

Key words. Generalized Givens transformation, implicit Cholesky decomposition, Laguerre’s
method, orthogonal qd-algorithm, singular value decomposition.

AMS subject classifications. 65F20.

* This report is available by anonymous ftp from cs.umd.eduin the directory /pub/papers/TRs.

! Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742;
e-mail: na.vonmatt@na-net.ornl.gov.

THE ORTHOGONAL QD-ALGORITHM

Urs von Matt*

Abstract. The orthogonal qd-algorithm is presented to compute the singular value decomposition
of a bidiagonal matrix. This algorithm represents a modification of Rutishauser’s qd-algorithm, and
it is capable of determining all the singular values to high relative precision. A generalization of the
Givens transformation is also introduced, which has applications besides the orthogonal qd-algorithm.

The shift strategy of the orthogonal gd-algorithm is based on Laguerre’s method, which is used to
compute a lower bound for the smallest singular value of the bidiagonal matrix. Special attention is
devoted to the numerically stable evaluation of this shift.

Key words. Generalized Givens transformation, implicit Cholesky decomposition, Laguerre’s
method, orthogonal qd-algorithm, singular value decomposition.

AMS subject classifications. 65F20.

1. Introduction. In 1954 H. Rutishauser [20] introduced the gd-algorithm to
compute the eigenvalues of a symmetric tridiagonal matrix. In this paper, we present
a related algorithm to compute the singular values of a square bidiagonal matrix.
Since all the transformations consist of Givens rotations we call it the orthogonal
qd-algorithm.

We impose no restriction in only considering the singular value decomposition of
a square bidiagonal matrix. For a general rectangular matrix it is common practice to
first reduce it to the bidiagonal form (cf. [6]). In many applications one is also given
a bidiagonal matrix right from the beginning. Furthermore, it is also known [2] that
all the singular values of a bidiagonal matrix are determined to high relative precision
by the entries of the matrix. We will give evidence that our algorithm can actually
achieve this high relative accuracy.

An outline of the paper is as follows. In Section 2 we review Rutishauser’s pro-
gressive qd-algorithm to compute the eigenvalues of a symmetric tridiagonal positive
definite matrix. The calculation of the singular value decomposition has attracted a lot
of attention recently, and we mention some of this work in Section 3. In Section 4 we
show how Rutishauser’s progressive qd-step can be expressed by means of orthogonal
transformations. For this we have to introduce the generalized Givens transformation
in Section 4.1. We discuss how to use Givens transformations to perform a progressive
qd-step for triangular matrices (Section 4.2) and for bidiagonal matrices (Section 4.3).
In Section 5 we derive the differential qd-algorithm to compute the singular values of a
bidiagonal matrix. The basic orthogonal qd-steps are introduced in Sections 6 and 8.
In order to compute these qd-steps we need the differential form of the generalized
Givens transformation, which is introduced in Section 7. After that we are ready to
present the orthogonal qd-algorithm in Section 9. In Sections 10 and 11 we consider
deflation and the calculation of the singular vectors. The calculation of Newton’s and
Laguerre’s shift is presented in Section 12. Finally, Section 13 gives some numerical
results.

* Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742;
e-mail: na.vonmatt@na-net.ornl.gov.

2 Urs von Matt

Some important algorithms are presented in pseudo-code, and we choose a nota-
tion corresponding to a modern procedural language of the ALGoL-family. This allows
us to concentrate on the mathematical properties of the algorithms, while an actual
implementation in any language can still be readily derived from our code.

2. Rutishauser’s Quotient-Difference Algorithm. Rutishauser used his qd-
algorithm in order to compute the eigenvalues of a symmetric tridiagonal positive
definite matrix A. He started with the Cholesky decomposition

A= RTR,

where

671—1

Tn

is an n-by-n upper bidiagonal matrix. Afterwards, a sequence of so-called progressive
qd-steps is applied to the matrix R.

DEFINITION 2.1. A progressive qd-step with shift s transforms an n-by-n upper
bidiagonal matriz R into another n-by-n upper bidiagonal matriz R'. It is defined by
the Cholesky decomposition

(1) RRT —s1 = RR'.

This transformation is applicable if and only if 5 < Amin(R* R).
By a progressive qd-step the eigenvalues are shifted by the amount of s, i.e.

MN(R'TR'Y = \(RTR) — 5.

All the eigenvalues of A can be computed by a proper shift strategy. Algorithm 1
presents Rutishauser’s progressive qd-algorithm in matrix terms (see also [5, p. 100]).

The performance of the qd-algorithm depends critically on the choice of the
shifts s. In [23] Rutishauser shows that, for s =0, the matrices R converge to a
diagonal matrix with the square roots of the eigenvalues of A. The convergence is lin-
ear and becomes worse when the eigenvalues are clustered. Algorithm 1 is not suited
for this shift strategy because, in general, its inner loop would not terminate.

We can obtain a much better rate of convergence by choosing the shifts

1
o trace(RTR)=1"

In [24, pp. 484—486] it is shown how this shift can be computed easily from the ma-
trix R. Reinsch and Bauer observe in [19] that this shift can be seen as a Newton step
for the solution of the characteristic polynomial

p(s) = det(RTR — sI).

The Orthogonal QD-Algorithm 3

ALGORITHM 1. Progressive qd-Algorithm.
t:=0
Compute the Cholesky decomposition A = RTR.
for k:=nto1 by —1 do
while v; # 0 do
Choose a shift s with 0 < s <)\min(RTR).
Execute the progressive qd-step RRT — sI = RTR.
t:=1t+s
R:=FR
end
A =1
Compute the Cholesky decomposition RRT = RTR.
R := (k — 1)-by-(k — 1) leading principal submatrix of R’
end

This observation also explains the quadratic convergence of this shift strategy.

In [22] Rutishauser describes a shift strategy that even leads to an asymptotically
cubic convergence. He uses trial qd-steps with shifts s > /\min(RTR). Although these
steps must fail one can usually extract enough information to obtain an improved

lower bound on Apin(RTR).

3. Review of Related Work. In 1990 J. Demmel and W. Kahan presented
a modified QR-algorithm which computes the smallest singular values to maximal
relative accuracy and the others to maximal absolute accuracy [2]. Asin the standard
QR-algorithm the singular vectors are also available. Their work represents a major
improvement over the original SVD-subroutine svdc as it has been implemented in
the LINPACK linear algebra library [3].

On the other hand K. V. Fernando and B. N. Parlett discovered in 1992 a variant
of the qd-algorithm for obtaining maximal relative accuracy for all the singular val-
ues [4]. Their approach is based on the so-called differential form of the progressive
qd-algorithm. In contrast to the work of Demmel and Kahan their algorithm cannot
compute the left and right singular vectors simultaneously with the singular values.

4. Progressive Quotient-Difference Step. The Cholesky decomposition (1)
represents the heart of Rutishauser’s qd-algorithm. As it turns out this transformation
can also be expressed by means of an orthogonal matrix. In order to see this let us
first look at a slightly more general problem.

Let L be an n-by-n lower triangular matrix, and let ¢ denote a nonnegative lower
bound for the singular values of L. We consider the problem of computing an upper
triangular matrix U such that

(2) 'L -0’1 =v'w.

The matrix U may be obtained from the Cholesky decomposition of LTI — ¢%I. How-
ever, it is also possible to compute U directly from L and ¢ by means of an orthogonal
transformation. If we could find an orthogonal matrix ¢ such that

L U

(3) Qozal’

4 Urs von Matt

© e T
lo1 o @ 22 0 e
: : — — —
o : :
. 0 0
L 0 | L 0 | L 0 |
[x x] [w vl T
0
. . L/
>< e ><
— =
o o
0 0
. 0 - . 0 -

Fia. 1. Stage in the Implicit Cholesky Decomposition.

we would have solved our problem, since (3) implies LTL = UTU + o%I, which is
equivalent to (2). We call this approach the implicit Cholesky decomposition.

We can obtain the decomposition (3) by a properly chosen sequence of Givens
transformations. In Figure 1 one stage of this decomposition is depicted which reduces
the dimension of the problem by one. By applying this step n times we can obtain
the desired decomposition (3).

The nontrivial part of this stage consists in the first Givens transformation. In-
stead of zeroing the entry ly1, it introduces the value o. Obviously, we cannot use
an ordinary Givens transformation for this purpose. Rather, we have to introduce a
generalization of the Givens transformation.

4.1. Generalized Givens Transformation. Usually the Givens transforma-

tion
c s
(4) G =
-5 ¢
with ¢ + s% = 1 is determined such that
1 T
G =
9 0

The matrix G is therefore used to selectively annihilate elements in a vector or a
matrix. But it is also possible to introduce another value o different from zero:

(5) G =

The Orthogonal QD-Algorithm)

ALGORITHM 2. Generalized Givens Transformation (rotg?2).
scale := max(|z1], |z2])
if scale = 0 then

c:=1
s:=0
else
T1 := x1/scale
T := T2 [scale
sig := o /scale
norm2 := xf + x%
r :=+/norm?2 — sig?
c:=(z1 -1+ x2 - sig)/norm?2
s:=(x2-r — z1 - sig)/norm?2
x1 :=scale - r
To =0
end

The value of r is given by

7=ty /2l + 2l — o2

The choice of the sign is of no concern. One may opt for a positive r, or it may be
more useful to let r have the same sign as z7. Obviously, the transformation (5) is
only possible if |o| < (/2% + 23.

We now demonstrate how to compute the quantities ¢ and s in G. It is easily
verified that

[& 1 i) T2 T

2 2
s 1+ 23 | zg —x4 o

An implementation which avoids overflow is presented as Algorithm 2.

We intend to present a detailed error analysis in a future paper. Let us just
mention that the computed matrix G is orthogonal up to a small multiple of the
machine precision, and the equation (5) is also satisfied to high accuracy for the
computed quantities.

4.2. Implicit Cholesky Decomposition. So far, we have only described one
stage of the implicit Cholesky decomposition in Figure 1. By applying this step
n times, we can compute the decomposition (3). This procedure is presented in
pseudo-code as Algorithm 3. We describe the construction and application of or-
dinary Givens rotations by calls of the BLAS routines rotg and rot. Their precise
definition is given in [3, 11]. We also postulate the procedure rotg2 which calculates
a generalized Givens transformation according to Algorithm 2. More specifically, the
call rotg2 (21, z3, 0, ¢, s) determines the values of ¢ and s such that equation (5)
holds. The parameters x1 and xo are overwritten by their transformed values. In the
case of 0% > 2% + 2% an error condition is raised.

The following Theorem ensures that the generalized Givens transformation nec-
essary in each stage will never fail.

6 Urs von Matt

ALGORITHM 3. Implicit Cholesky Decomposition of an n-by-n Lower Triangular Matriz L.
U:=0
for j:=1ton do
ugy =1
tmp:=0
rotg2 (uy;, tmp, o, ¢,)
for::=j5+4+1tondo
rotg (ujj, lij, ¢, s)
for k:=j5+1to:do
rot (ujk, lix, ¢, 8)
end
end
end

THEOREM 4.1. Let L be an n-by-n lower triangular matriz, and let o denote a
nonnegative lower bound for all the singular values of L. Under these assumptions, Al-
gorithm 3 will compute the decomposition (3) which is equivalent to (2). In particular
the generalized Givens transformation necessary in each stage will never fail.

Proof. The proof of this Theorem is organized as follows. We consider a single
stage of Algorithm 3 as depicted in Figure 1 and show:

1. This step can be carried out if the matrix LT L — 621 is positive semidefinite.
2. The matrix L'T I/ — ¢2I will be positive semidefinite as well.
These two conditions establish Theorem 4.1.
First, we can see that |ly1| > 0. Let L = USVT be the singular value decomposi-
tion of L. This implies
n n
G =1L el = IVETU ell3 = D (oiuni)* 2 Y o?uf; = o,
=1 =1
which ensures that the generalized Givens transformation will succeed.

Now we show that the matrix L'T L' — o217 is positive semidefinite as well. If we

take the notation from Figure 1, we get

u2 UVT

6 L'L - 6%l =
(6) wv LTI+ vl — o]

Additionally, let us define the vector

whose partition is commensurable with (6). Then

u? uv’ Y

T T 2 T
x (L L—c“l)x= |y =z
() [] wv LD +wvwT -0l | |2

=u?y? + 2uyviz + ZT(L’TL’ +vvi = o?l)z
= (uy +vT2)?2 + 251" L' - 621)z > 0.

The Orthogonal QD-Algorithm 7

First we assume u # 0. In this case we can determine a y corresponding to each z
such that uy + vz = 0. This implies

(7) 20 (L - 0%z > 0

for all z.
Finally, assume that « = 0. As the orthogonal Givens transformations leave the
norm of the first column intact, we have

n
o? = Zl?l > 13, > o
=1

But this implies |l;4| = o and [;; = 0 for i = 2,...,n. Consequently, the ordinary
Givens transformations in this stage need not be carried out. The important point
here is, that we have v = 0 in this special case. This implies uy + vz = 0 too, and
the inequality (7) can be established for all z as well. But this observation proves the
claim that L'T L’ — 021 is a positive semidefinite matrix. 0

Note that if the decomposition (3) exists, then from (2) it follows immediately
that LTL — %1 is a positive semidefinite matrix. Therefore, the implicit Cholesky
decomposition of a square lower triangular matrix L exists if and only if LTL — %I
is a positive semidefinite matrix.

There are a number of problems where the implicit Cholesky decomposition ex-
hibits its advantages over its explicit counterpart. The explicit Cholesky decompo-
sition is based on the factorization of the matrix A := LTL — 0?I. The condition
number of A is at least the square of the condition number of L. This means that
even for a modestly ill-conditioned L the matrix A can become numerically singular.
In this case the explicit Cholesky decomposition breaks down. Also, if A is close to a
singular matrix the explicit Cholesky decomposition may loose accuracy. The reader
may find a more detailed comparison in [26, pp. 47-53].

4.3. Bidiagonal Matrices. In the special case of a progressive qd-step the ma-
trix L has the shape of the n-by-n lower bidiagonal matrix

(&3]

5

ﬁn—l Qy,

Due to the special structure of the matrix L we can use a simplified version of the
general Algorithm 3. This is shown graphically in Figure 2 and as Algorithm 4. Note
that Algorithm 4 takes care of not overwriting the vectors a and .

5. Differential Quotient-Difference Algorithm. The evaluation of the Chol-
esky decomposition (1) represents the heart of Rutishauser’s qd-algorithm. As we have
already seen in Section 4.2 this factorization can also be obtained with the help of gen-
eralized Givens transformations. Algorithm 4 gives us the decomposition

RT R’
Q = ;
0 VsT

8 Urs von Matt

Bo s Bo s B2 as

0 0 0
(v & i [vm & i
0 @ 0 Y2 52
5 o .
a a
a a
0 0

Fia. 2. Implicit Cholesky Decomposition of a Lower Bidiagonal Matriz L.

ALGORITHM 4. Implicit Cholesky Decomposition of an n-by-n Lower Bidiagonal Matrix L.

1=y

for k:=1ton—1do
tmp:=0
rotg2 (yx, tmp, o, cos, sin)
tmp := fx
rotg (v&, tmp, cos, sin)
b =0

Vh41 1= Qg1

rot (&x, Yr+1, cos, sin)
end
tmp:=0
rotg2 (yn, tmp, o, cos, sin)

which is equivalent to (1).

It is now possible to modify the qd-Algorithm 1 to directly compute the singular
values of an upper bidiagonal matrix B. We get Algorithm 5, which corresponds to
the differential qd-algorithm by Fernando and Parlett (cf. [4, Section 5]).

This algorithm enables us to compute all the singular values of R to high relative
accuracy (cf. [4, Section 7]). On the other hand, it is not suited to also compute the
corresponding singular vectors simultaneously with the singular values. The primary
reason for this is that the matrix R is transposed in each step. Consequently, it is
not possible to interpret Algorithm 5 as a sequence of orthogonal transformations
applied from the left and the right to the matrix R, as it is the case with the ordinary
QR-algorithm (cf. [7, Section 8.3]).

In order to remedy this deficiency we will propose a new orthogonal qd-algorithm

The Orthogonal QD-Algorithm 9

ALGORITHM 5. Differential qd-Algorithm.
o:=0
for k:=nto1 by —1 do
while v; # 0 do
Choose a shift s with 0 < s < omin(R).
Compute the implicit Cholesky decomposition

R" R
o[V =[]
o :=+0? + 52
R:=FR
end
oL =0
Compute the QR-decomposition RT = QR’.
R := (k — 1)-by-(k — 1) leading principal submatrix of R’
end

which transforms the (2n)-by-n matrix

A=
0

to a diagonal matrix with the help of orthogonal transformations applied from the left

and the right. So-called orthogonal qd-steps are the tool for doing this, and they will
be presented in the next sections.

6. Orthogonal Quotient-Difference Steps I. Let

(&3]

5

ﬁn—l Qy,

denote an n-by-n lower bidiagonal matrix, and let

be an n-by-n upper bidiagonal matrix.

DEFINITION 6.1. Let) be an orthogonal (2n)-by-(2n) matriz. We call the trans-
formation

q L B U
(8) @ ol | Vo? 4+ s2]

10 Urs von Matt

Bo s Bo s B2 as

a a a
(v & i [vm & i
0 @ 0 Y2 52
5 o .
P P
P P
a a

Fia. 3. Orthogonal Left lu-Step with Shift s.

an orthogonal left lu-step with shift s.

It follows from Theorem 4.1 that this transformation exists if and only if the
condition |s| < omin(L) holds. The singular values of L are diminished by the amount
of the shift s, i.e.

o} (U)=o?(L)— s

The matrix @ can be constructed by the sequence of Givens rotations depicted in Fig-
ure 3. The quantity p is an abbreviation for /o2 4+ s2. The use of generalized Givens
transformations may become problematic for small values of s, however. Assume, for
instance, that oy and s are tiny, and o is so large that ¢ + af = 02 numerically.
In such a case, Algorithm 2 would transform «; into 74 = 0 even if af — s? > 0. In
order to avoid this pitfall we introduce the differential form of the generalized Givens
transformation in the next section.

7. Differential Form of the Generalized Givens Transformation. The
generalized Givens transformation, as it has been introduced in Section 4.1, is de-
signed to introduce a given value into an element of a vector. Now, consider the
related problem of determining a Givens transformation (4) such that

a1 1
(9) G = ’

T2 T2
where
(10) ry = sign(ay)y/a? — o2,

(11) 9 1= sign(zy)y /73 + 0.

The Orthogonal QD-Algorithm 11

ALGORITHM 6. Differential Form of the Generalized Givens Transformation (rotg3).

if o =0 then
c:=1
s:=0

elsif |x2| > |z1| then
r:=+/1—(0/z1)?
ro:=+/14 (0/22)?
pi=1/w2
denom =1+ p
c:= (r1 + r2)/denom
§ = ((r1—r2)/denom
r1 =717
o = T2+ T2

elsif |z2| > |o| then
r:=+/1—(0/z1)?
ro:=+/14 (0/z2)?
pi=1z2/31

denom =1+ p2
c:=(r1 + o r2)/denom
§ = (p “(r1 — m))/denom

r1 =1 °"M
o = T2+ T2
else
r:=+/1—(0/z1)?
ro:=+/14 (z2/0)?
pi=1z2/31
denom =1+ p2
c:= <r1 +lp-(o/z1)]- m)/denom
8= (p 11 — (sign(z2) - |o|/z1) - m)/denom
r1 =1 °"M
z2 :=sign(zz) - |o] -2
end

Of course, this is only possible if |o| < |z1|. In this context the sign-function is defined

by

. 1, if x >0,
sign(e) =1 1 i, <o,

Because we only prescribe the difference ¢ in 27 and x5 we call this matrix G the
differential form of the generalized Givens transformation.
It is easily verified that the values of ¢ and s are given by

c 1 r1 T2 (1
(12) R —
$2_|_$2

S 1 2 |2 —I1 T2

A stable numerical implementation must be immune to overflow and underflow
as long as the results r; and ro can be represented by floating-point numbers. This
objective can be achieved by an appropriate scaling of the expressions in (10,11,12).
A numerical implementation is presented as Algorithm 6. In the following we will

12 Urs von Matt

ALGORITHM 7. Orthogonal Left lu-Step with Shift s.

=g
for k:=1ton—1do
tmp ;=0
rotg3 (yx, tmp, s, cos, sin)
tmp := fx
rotg (v&, tmp, cos, sin)
b =0

Vh41 1= Qg1

rot (&x, Yr+1, cos, sin)
end
tmp ;=0
rotg3 (yn, tmp, s, cos, sin)

abbreviate this computation by the subroutine call rotg3 (z1, z2, o, ¢, s) which over-
writes the parameters 21 and x5 by their transformed values. The name rotg3 stems
from the BLAS subroutine rotg for the calculation of an ordinary Givens transforma-
tion [3, 11]. Tt is erroneous to call rotg3 with |o| > |z4].

It is planned to give an error analysis in a future paper. We will show that the
matrix G is orthogonal up to a small multiple of the machine precision. Furthermore,
the key equation (9) always holds to high accuracy for the computed quantities.

8. Orthogonal Quotient-Difference Steps IT. An implementation of the or-
thogonal left lu-step of Figure 3 is given by Algorithm 7.

DErFINITION 8.1. Let) denote an orthogonal (2n)-by-(2n) matriz. We call the
transformation

3 0 U L
(13) ol | Vo? 4+ s2]

an orthogonal left ul-step with shift s.

This transformation represents the dual version of the orthogonal left lu-step. It
can be carried out if and only if |s| < opyin(U). The singular values of U are reduced
by the amount of the shift s, i.e.

oX(L)=c?(U) — s

An orthogonal left ul-step, too, can be executed by a sequence of Givens rotations. The
mechanism is the same as in Figure 3, with the only exception that the transformations
are applied from bottom to top.

DEFINITION 8.2. Let () denote an orthogonal n-by-n matriz. We call the trans-
formation

(14) QT ol Q= ol

an orthogonal right ul-step.

The Orthogonal QD-Algorithm 13

& o o .
) 0
T | |hnee |_|ne o |
R Y3 . P2 a3 -,
FiG. 4. Orthogonal Right ul-Step.
ALGORITHM 8. Orthogonal Right ul-Step.
ap =
for k:=1ton—1do
tmp := bk
rotg (a, tmp, cos, sin)
Br:=0

Opt1 = Vkt1
rot (Bk, akrt1, cos, sin)
end

This transformation can always be executed, and it leaves the singular values of U
unchanged. If v, = 0 we have a,, = 8,1 = 0 after the transformation. This property
will be useful to deflate a matrix U with ~,, = 0.

The sequence of Givens rotations necessary for an orthogonal right ul-step is
depicted as Figure 4. The corresponding implementation is presented as Algorithm 8.

DErINITION 8.3. Let () denote an orthogonal n-by-n matriz. We call the trans-
formation

(15) Q=

an orthogonal right lu-step.

This transformation represents the dual version of the orthogonal right ul-step.
It can also be executed unconditionally, and it preserves the singular values of the
matrix L. If the first row of L is zero, i.e. if 1 = 0, we get a matrix U with v = §; = 0.
We will therefore use this transformation to deflate a matrix I with a7 = 0.

An orthogonal right lu-step can also be carried out by a sequence of Givens rota-
tions. The same technique is used as shown in Figure 4, except that the transforma-
tions are applied from bottom to top.

We will refer to the four transformations, that have been introduced in this section,
by the generic term of orthogonal qd-steps.

Fernando and Parlett also present a root-free version of the orthogonal left lu-
step in [4]. However, such a root-free algorithm has the disadvantage that it operates
on the squares of the singular values. Consequently, the largest singular value must
not exceed the square root of the largest machine-representable number. Similarly,
singular values smaller than the square root of the smallest machine number underflow
to zero. We refrain from this version in order not to restrict the domain of calculation
more than necessary.

14 Urs von Matt

TABLE 1
Chotce of Orthogonal qd-Steps.

Matrix | Grading | qd-Step Result

lower ar| > |an left lu-step v1| > |
bidiagonal a1| < |an| | right lu-step v1| < |n

upper Y1l > |vn right ul-step | |a1| > |an
bidiagonal Y| < [Tn left ul-step a1| < |ap

The orthogonal qd-steps are closely related to the QR-algorithm for calculating
the singular value decomposition (cf. [7, Section 8.3]). If we execute an orthogonal left
lu-step (8) with shift zero and an orthogonal right ul-step (14) in succession we get
the same result as by applying one unshifted QR-step. This has also been observed
in [14, 15]. The same transformations are also useful for refining a URV-decomposition
(see [14, 25] for more details).

9. Orthogonal Quotient-Difference Algorithm. Now, we have available the
full set of orthogonal qd-steps to introduce the orthogonal qd-algorithm. We start
from a given n-by-n lower bidiagonal matrix B whose singular value decomposition is
desired. The orthogonal qd-algorithm can be expressed as a sequence of left and right
qd-steps applied to the (2n)-by-n matrix

A=

The matrix A is transformed into the (2n)-by-n matrix

gl

where 3 denotes an n-by-n diagonal matrix with the singular values of B. In matrix
terms this process can be described by the equation

0
_ T
ey

where P denotes an orthogonal (2n)-by-(2n) matrix, and @ denotes an orthogonal
n-by-n matrix.

In order to obtain rapid convergence the orthogonal qd-steps must preserve the
grading of the bidiagonal matrix (cf. [2, p. 891]). For instance, if we have a lower
bidiagonal matrix L with large entries in the top left corner and small entries in the
lower right corner we will execute an orthogonal left lu-step. If the same matrix L
were graded the opposite way we would choose an orthogonal right lu-step. In our
implementation we only look at the first and last diagonal entry to determine the
grading of the matrix. We present all the four possible cases as Table 1. If, for

B

(16) 0

instance, we have a lower bidiagonal matrix L with |ay| > |a,|, we execute a left
lu-step and get an upper bidiagonal matrix U with |y1| > |7,].

The Orthogonal QD-Algorithm 15

10. Deflation. We would like to execute a deflation step as soon as an element
in the bidiagonal matrix L or U has become so small that it can be neglected. This
means that we can set this matrix entry to zero without changing the numerical
singular values of the matrix B in (16).

Let us first analyse the situation when we set to zero a diagonal element ay in the
matrix L. For this we compare the original matrix

L
ol

(17) A=

with the modified matrix

(18) A=

where we obtain the matrix

(19) L:=1 - ajere}

from the matrix L by setting aj to zero. As an immediate consequence of the defini-
tion (17) we get the equation

(20) MN(ATA) = N(LTL) + 02 = \(LLY) + o2

By taking into account the definition (19) we can express the matrices LTL and LLT
by

(21) 'L =111 + Ey,
(22) LIt = LI + E,,
where

2 T T T

Ey = ajerej + apfr_1(ex_1e; +erej_q),
2 T T T

By := ajerej, + apfBr(erepyy +erpiep).

The Fuclidean norms of the two perturbation matrices Fy and F5 are given by

11l = lal(lod + yfa? + 452,) < lanl (ol + 1Bea),
1Eallo = el (lowl + /o7 +452) < lo] (o] + 1541).

As a consequence of Weyl’s monotonicity theorem (cf. [18, pp. 191-194] and [27,
pp. 101-103]) the norms of the perturbations F; and E3 represent an upper bound for

the change of the eigenvalues in (21,22). More precisely, we can express the eigenvalues
of LTL and LLT by

(LYL) + uil | Enll2.

(23) MN(LTL)y = N(LT
' (LLY) + wil B2,

Ai
(24) /\Z'(LL) A

16 Urs von Matt

with |u;| <1 and |v;| < 1. If we substitute these results into equation (20), we get

(25) 0}(A) = o} (L) + 0® + uill Exllz = 07(L) + 0% + vil| Ea]| -

K3

We conclude that the singular values of A and A are equal to working precision, if the
equation

o2 + min(|| Eq)2, || Eal|2) = o

applies numerically. Therefore, the condition

(26) o2 + || (o] + min(|B5-1], |B4]) = o2

represents our numerical deflation criterion for neglecting a diagonal element ay. It
should be noted that 8y = 3, = 0. And, of course, the equivalent deflation criterion
for the upper bidiagonal matrix U is given by

(27) o2 1 |7k|(|7k| —|—min(|6k_1|,|6k|)) _ o2,

where 6 = 6, = 0.

Secondly, let us analyse the situation when an off-diagonal element 3 in L be-
comes small. We also compare the two matrices A and A from (17,18) except that the
matrix L is now given by

L:=L - Brepyref.

Equations (20,21,22) also apply for this case, and the perturbations £y and FE3 are
given by

T T T

Ey = Biere; + ary1Be(eriiel +exery),
T T T

by = ﬁzek+1ek+1 + o Br(erer i +exrie;),

with the norms

12l = 1060 (1414 /B2 + dadr) < 196 (18] + leral),
| E2ll2 = %|ﬁk|(|ﬁk| + /B + 404%) < |ﬁk|(|ﬁk| + |ak|)-

The eigenvalue equations (23,24) as well as equation (25) still apply for the new
perturbation matrices. Consequently, we are led to the numerical deflation criterion

(28) o2 + |3kl (18] + min(lasl, lassa])) = o2

for neglecting an off-diagonal element ;. The equivalent criterion for an upper bidi-
agonal matrix U reads

(29) o2 + 8] (16¢] + min(7], [ye41])) = 02,

The deflation criterions (26,27,28,29) ensure the high relative accuracy of the
computed singular values. If we also compute the left singular vectors additional
conditions need to be satisfied. This issue is discussed in the next section.

The Orthogonal QD-Algorithm 17

11. Singular Vectors. If we accumulate the orthogonal transformations in the
orthogonal qd-algorithm we can compute the decomposition (16). In most cases,
however, we would like to get the singular value decomposition

(30) B=Uxv?

of the n-by-n lower bidiagonal matrix B, where U and V denote orthogonal n-by-
n matrices. We will identify the matrix ¢) from (16) with the matrix V in (30). On
the other hand we can recover the left singular vectors as a part of the matrix P. In
order to see this we partition P into four n-by-n submatrices as follows:

| P P
Py Pnl
Then equation (16) is equivalent to
B B Py Pro 0 T
0| |[Pa Pl |Z]|

If 3 is nonsingular this implies Pj; = P22 = 0, and Py is an orthogonal matrix with
the left singular vectors. We will now show that we can get the same result in the
presence of rounding errors, even if B has small or zero singular values.

Let us first analyse the effects of deflation. We assume that we have a lower
bidiagonal matrix I which satisfies the equation

B
0

L
ol

=P Qr,

where P and () are orthogonal matrices. In order to express deflation in I we write I,
as

L=1L+AL,

where I denotes the deflated matrix, and AL is a rank-one matrix consisting of the
matrix entry that has been removed from L. If we assume that all the calculations
after the deflation are executed exactly we get the decomposition

B AL

0

=P QT +p vigrp Q.

AL
=
0

ol

Again U and V are orthogonal matrices. If we partition U/ and P into n-by-n subma-
trices we get

AL
0

BV
0

Ul 1 Ul 2
U2 1 U2 2

0
%

Pll P12
P21 P22

18 Urs von Matt
This implies that
0 = UypY + P ALQTV.

Note that all the singular values of Y are greater than o. Consequently, we can
write Uygy as

Uyy = =Py ALQTVE Y
and the norm of Uss can be bounded by

|ALY.

g

|Ua2]l2 <

We conclude that Uy; and Usyy are zero numerically if ||AL|l; < €0, where ¢ denotes
the unit roundoff of the computer. This condition is met by the deflation criterions

(32) lag| < eo
and
(33) |ﬁk| S E0.

The equivalent criterions for an upper bidiagonal matrix are

(34) el < eo
and
(35) |6k| S £0.

Note that the conditions (32,33,34,35) only ensure that the matrix Uy in (31) will be
numerically orthogonal. We still need the conditions (26,27,28,29) to guarantee the
accuracy of the singular values.

The deflation criterions (32,33,34,35) only work properly if o is sufficiently large.
In particular, we require that

m
o> —
£

b

where m denotes the underflow threshold. If B has some tiny or zero singular values
this condition will not be satisfied right away. In this case we use zero-shift qd-steps
to determine the tiny singular values. We may expect these initial zero-shift qd-steps
to converge rapidly. Our implementation sets an off-diagonal entry 8i or 5 to zero as
soon as the deflation criterion 1 by Demmel and Kahan [2, p. 889] is met. Note that
two zero-shift qd-steps are equivalent to one zero-shift QR iteration.

The Orthogonal QD-Algorithm 19

12. Shifts. The performance of the orthogonal qd-algorithm mainly depends on
the choice of the shift s in each step. In this section we present two different shift
strategies based on Newton’s and Laguerre’s method to compute the zeros of a poly-
nomial.

Laguerre’s method leads to a cubically convergent process. However, it is quite
expensive to compute and it must also be carefully implemented to avoid numerical
overflow problems. Unlike Wilkinson’s shift, Laguerre’s method will always compute
a lower bound for the smallest singular value of the bidiagonal matrix.

In what follows we will compute Newton’s and Laguerre’s shift for an upper bidi-
agonal matrix U. If we have to compute these shifts for a lower bidiagonal matrix L,
we simply transpose it since this does not change the singular values.

We may assume that U does not decouple, i.e. 7; # 0 and 6; # 0. Otherwise we
could execute a deflation step and reduce the size of the problem.

12.1. Newton’s and Laguerre’s Shift. The zeros of the characteristic poly-
nomial

p(A) = det(UTU — AI).

are the eigenvalues of UTU, which are equal to the squares of the singular values

of U. Thus if we use Newton’s or Laguerre’s method to approximate the smallest zero

of p(A) we can also get an approximation for the smallest singular value of U.
Newton’s method can be described by the iteration

p(Ax)
A = A\; —
STk

and in the case of Laguerre’s method we have

p(

Mgl = A — M)
P(Ae) | w; (nEQeLZpOR"0n) _ 1)

n

The value of r denotes the multiplicity of the zero that is being approached by the
iteration (see also [8, 9, 10, 13, 16, 17] and [27, pp. 441-445]).

If all the entries on the two diagonals of U are nonzero, then the eigenvalues
of UTU must be distinct [18, p. 124]. Consequently, p(A) has n distinct positive zeros,
and we can always set » = 1. However, some of these zeros may lie so closely together
that they seem to be a multiple zero numerically. Unfortunately, the corresponding
numerical multiplicity = is usually not known a priori. This is another reason why we
will always set r = 1 in this section.

We choose A\g = 0 as our initial value. It is well-known (cf. [8, 10, 16] and [27,
pp. 443-445]) that both methods will then converge monotonically to the smallest zero
of p(A). In particular we have

0=20 <A < Amin(UT V).

Laguerre’s method enjoys cubic convergence provided that the multiplicity r is chosen
properly (cf. [16, pp. 353-362] and [27, pp. 443-445]). On the other hand Newton’s
method will converge only quadratically [27, p. 441].

20 Urs von Matt

We intend to use /Ay as the shift in an orthogonal qd-step. Thus we define
Newton’s shift and Laguerre’s shift as follows:

(36) SNewton = -T

0
(37) SLaguerre = \/_]Z:/((O)) ' :2 0)p"(0 ‘

For r = 1, we can also view Sy aguerre as an enlarged Newton step, and the second term
in (37) serves as an acceleration factor for Newton’s method.

In the rest of this section we will be concerned with the numerically stable evalu-
ation of these shifts. In [12] T. Y. Li and Z. Zeng discuss the same problem when they
evaluate Laguerre’s shift for the symmetric tridiagonal eigenproblem. They avoid the
calculation of the characteristic polynomial p and its derivatives since these values are
likely to underflow or overflow. Fortunately, the key quantities in (36) and (37) are
given by

PO (Z Y2 (et ™

o1
gi= P'(0)* — p(0)p"(0) _ ;; 7 _ trace(UUT)~2
‘ p'(0)? - i ? trace(UUT)~1 :
(,; Uz) ()

It is easy to see that f and ¢ can be bounded as follows:
0 S f S Umin(U)v

1
—<g<1l
n

Obviously, both f and g are well-scaled and are not in danger of numerical overflow.
However, the value of f may underflow if U has tiny singular values close to or smaller
than the underflow threshold. If this happens we choose s = 0 as our shift.

The following lemma holds the key for the stable evaluation of f and g.

LeMMA 12.1. Let U be a nonsingular n-by-n upper bidiagonal matriz, and let P
and) be orthogonal matrices such that

(38) UPej = riey,
(39) PTUTQey, = spe.

Then we have

1
(40) e (UUT) ey, = —,
Tk
1

(41) e (UUT) e = —

The Orthogonal QD-Algorithm 21

Proof. Since U is nonsingular r; must be nonzero, and equation (38) is equivalent
to

Pe;, = rkU_lek.
But this implies (40). Similarly sj is nonzero, and equation (39) is equivalent to
Qep = skU_TPek = rkskU_TU_lek,

from which (41) follows. D
If we can construct a sequence of orthogonal matrices P and) such that (38)
and (39) hold for k = 1,...,n, then we would have

“1
trace(UUT)™! = > ot
k=1 k
1
trace(UUT)™2? = Z 5 -
k=1 "k%k

We will now show how this can be accomplished.
First it is necessary to apply an orthogonal right lu-step to U'. This means that
we determine an orthogonal matrix W such that

R=U"W,
where
ST]
J2 b
R=
8o
Y

is an n-by-n upper bidiagonal matrix. Then we obviously have
Uer = meq,
UtWe, = ey,

such that ry = v and 51 = 97.
In order to compute ry we postmultiply U by the first Givens rotation G from a
right ul-step:

(&3]

UG = v3 03
V4

22

Urs von Matt

Consequently, we have ro = d3. Because of Lemma 12.1 we also must premultiply R

by Gi:

GiR

The next two Givens rotations are used to zero the entries

GLRGT =

and

G1RGIGY =

At this point we have s; = m),.

The rest of the sequences {r;} and {s;} can be determined by the same technique.
In each step we need one Givens rotation to compute r; and two additional rotations
to get sg. Consequently, the sequences {r;} and {s;} can be computed efficiently

with O(n) operations.

mi1 M1z Mis |
ma1 Mgz Ma3
Y3 b
Ya

myz and my3. We get

-, -
myy mi3
mby mbL, m
21 22 23
3 03
Y4
-, -
mn
" 7 7
Mgy Mgy Mg
msi maz 03
Y4

Now we can express the quantities f and ¢ in terms of the sequences {r;} and {s;}

as follows:

(42)

(43)

i3
> oz
k=1 k%
"1

(Za)

k=1

n 1 —1/2
k=1 "k
1

In order to avoid problems with numerical underflow or overflow we must scale the

The Orthogonal QD-Algorithm 23
expressions in (42) and (43). We propose the following two scaling factors:

Pk = g.nslglml,

T 1= Erlsillgu/|ri|\/|si|.

We also introduce two sequences of scaled partial sums:

It is important to note that we always have

1§l/k<k.

These two sequences can be evaluated recursively as follows:

=1,
pe \° .
() pr—1 + 1, if |re] < pr-1,
[y = Pk-1)
fr—1 + (p—k) , if |7 > pr-1,
Tk
v = 1,
m * .
(Tk—l) vp—1 + 1, it /Jre[v/Isk] < Th—1,
k= Tk S
Vg1 + (mm) i e[VIse] > et

Now the values of f and ¢ can be written as

_ P
f_\/u_n’

B (pn)4l/n
g_ Tn ,u%7

and Newton’s shift and Laguerre’s shift are given by

SNewton = f7

n

1—|—¢(n—1)(ng—1)‘

SLaguerre — f

24

Urs von Matt

TABLE 2
Test Cases with Graded Matrices.

Test Case | n | c Omin Ormax
1 50 | 2 8.325- 1071 6.450 - 10%*
2 50 | 4 9.662-1071 | 3.273.10%°
3 50 | 0.5 2.189-1071¢ | 1.467-10°
4 50 | 0.25 4.326 -10721 | 1.426 -10°
5 100 | 2 8.325-1071 | 7.262-10%°
6 100 | 0.5 1.370-107% | 1.467 - 10°
7 500 | 1.1875 | 3.475-1071 2.637 -10%7
8 500 | 0.875 2.510-107°% | 1.672-10°

12.2. Bisection Shift. In theory an orthogonal qd-step with Newton’s or La-
guerre’s shift s must always succeed since s is a lower bound for the singular values of
the bidiagonal matrix. In floating point arithmetic, however, an orthogonal qd-step
may occasionally fail due to rounding errors. The chance of failure increases as the
shift s approaches the smallest singular value from below.

If such a breakdown occurs we divide s by two and restart the orthogonal qd-step.
We call this a bisection step. In unusual circumstances it may be necessary to repeat
this procedure several times.

13. Numerical Results. We will now report on the numerical results obtained
from the orthogonal qd-algorithm. Our analysis is based on the performance of our
implementation for two classes of test matrices, graded matrices and Toeplitz matrices.

Let us first consider the class of graded matrices

Bgraded =

which are also used as test matrices by Demmel and Kahan [2, Section 7] and by
Fernando and Parlett [4, Section 9.3]. The singular values o; of these matrices are of a
vastly different size. The approximation o; ~ ¢'~' gives a rough estimate of the order
of magnitude of o;.

In Table 2 the different values of n and ¢ are summarized that we have used for our
test matrices. We have run all the test cases in single precision on a DECstation 3100
with a relative machine precision of ¢ = 2724 & 5.9605- 10~%. The smallest positive
normalized number (underflow threshold) is given by m = 27126 ~ 1.1755- 1072% and
the largest number (overflow threshold) is M = 2'28(1 — ¢) &~ 3.4028 - 10%%.

In Tables 3 and 4 we compare the orthogonal qd-algorithm with the subrou-
tine sbdsqr from the LAPACK library [1]. This subroutine represents an implemen-
tation of the work of Demmel and Kahan [2]. We have also used the procedure dbdsqr,
which is an implementation of sbdsqr in double precision, to assess the accuracy of the

The Orthogonal QD-Algorithm 25

TABLE 3
Accuracy and Sweeps for Graded Matrices.

Orthogonal qd-Algorithm sbdsqr
Test Error Sweeps Error Sweeps
Case no Vectors | Vectors no Vectors | Vectors
1 5.399-10~7 | 4.359 - 107" 0.840 0.820 | 4.359-1077 | 0.220
2 2.702-10"7 | 2.702- 1077 0.580 0.600 | 1.192-1077 | 0.120
3 8.497-1077 | 8.497-107 0.800 0.780 | 6.739-10"7 | 0.200
4 3.898-1077 | 3.898 - 1077 0.540 0.560 | 5.168-10"7 | 0.100
5 4.359-1077 | 5.399-10"" 0.500 0.490 | 4.359-10"7 | 0.110
6 7.321-1077 | 6.145- 1077 0.490 0.490 | 6.739-10"7 | 0.100
7 1.659-107°¢ | 1.479-107° 0.310 0.312 | 8.486-10"7 | 0.084
8 2.052-107% | 2.289.107¢ 0.376 0.378 | 2.204-107% | 0.108
TABLE 4

CPU-Times for Graded Matrices.

Test | Orthogonal qd-Algorithm sbdsqr

Case | no Vectors | Vectors no Vectors | Vectors
1 0.094 sec 0.539 sec 0.031 sec 0.152 sec
2 0.062 sec 0.402 sec 0.020 sec 0.145 sec
3 0.098 sec 0.539 sec 0.027 sec 0.141 sec
4 0.066 sec 0.383 sec 0.016 sec 0.094 sec
5 0.199 sec 2.176 sec 0.066 sec 0.957 sec
6 0.176 sec 2.129 sec 0.062 sec 0.484 sec
7 3.211 sec 143.284 sec 1.293 sec 97.240 sec
8 3.769 sec 175.290 sec 1.363 sec 87.533 sec

computed singular values. The column labelled “Error” in Table 3 gives the maximal
relative error in the computed singular values &;, i.e.
Frror := max M.
7 ag;
The column “Sweeps” indicates the average number of orthogonal qd-steps per singular
value in the orthogonal qd-algorithm and the average number of QR-sweeps in the
procedure sbdsqr.

The CPU-times needed to solve these test cases are given as Table 4. There are
two columns per algorithm depending on whether the singular vectors are computed
or not.

As our second class of test matrices we consider the Toeplitz matrices

BToeplitz =

1 ¢

For |¢| < 1, these matrices have n — 1 singular values on the order of 1 and one tiny
singular value o, &~ ¢".
In Table 5 we give an overview of the test parameters used for this class of matrices.

It should be noted that all the values of the different ¢’s can be represented exactly

26 Urs von Matt

TABLE 5
Test Cases with Toeplitz Matrices.

Test Case | n | c | Omin Omax

9 50 | 0.5 6.661-107° [1.499 - 10°
10 50 | 0.25 7.396 -107°% | 1.250 - 10°
11 100 | 0.75 1.403-107% | 1.750 - 10°
12 100 | 0.5 5.916 - 107> | 1.500 - 10°
13 500 | 0.875 | 2.366-107°° | 1.875-10°
14 500 | 2 1.000 - 10° 3.000 - 10°

TABLE 6

Accuracy and Sweeps for Toeplitz Matrices.

Orthogonal qd-Algorithm sbdsqr
Test Error Sweeps Error Sweeps
Case no Vectors | Vectors no Vectors | Vectors
9 5.061-10~7] 1.337-107° 4.160 5.640 | 8.620-1077 | 1.660
10 | 7.016-1077 | 1.468-107° 4.180 5.680 | 6.677-1077 | 1.660
11 1.333-107° | 2.425.107° 4.140 5.790 | 7.303-10"7 | 1.610
12 | 7.701-1077 | 2.866-10° 4.180 5.890 | 1.433-107° | 1.650
13 | 4.007-107% | 1.039-107° 4.042 5.574 | 4.625-107% | 1.446
14 | 3.426-107% | 1.230-107° 4.060 5.524 | 4.063-107% | 1.452

by machine numbers; no truncation errors happen while reading the matrix Broeplitz-
The corresponding results are shown as Tables 6 and 7. Note that in the case of the
orthogonal qd-algorithm the number of sweeps is usually higher if the singular vectors
are also computed. This is due to the fact that the additional deflation criterions of
Section 11 also need to be satisfied.

The reader will have noticed that the orthogonal qd-algorithm computes all the
singular values for both classes of test matrices to high relative precision. In this re-
spect our algorithm compares well with the procedure sbdsqr by Demmel and Kahan.

Demmel and Kahan use Wilkinson’s shift, which is easy to compute and leads
to rapid convergence. Unfortunately, it can only be applied in conjunction with the
QR-algorithm since it does not compute a lower bound for the smallest singular value.

On the other hand, Laguerre’s shift is more expensive to evaluate. If n is the size
of the matrix, the calculation of Laguerre’s shift needs on the order of O(n) operations,
whereas Wilkinson’s shift only needs O(1) operations. As we can see from Tables 3
and 6 the number of sweeps per singular value is also larger. However Laguerre’s shift
always gives us a lower bound on the smallest singular value of the bidiagonal matrix,
which is essential for the orthogonal qd-algorithm.

Finally, Fernando and Parlett [4] also report significant speedups of their algorithm
over the LINPACK-routine dsvdc [3]. Their performance advantage can be partly
attributed to the fact that they use a root-free algorithm. However, this approach
limits the domain of matrices to which it can be applied. Whether this is acceptable
or not depends on the application.

14. Conclusions. We have presented the orthogonal gqd-algorithm to compute
the singular values of a bidiagonal matrix to high relative accuracy. Our approach
differs from the qd-algorithm by Fernando and Parlett as we do not transpose the

The Orthogonal QD-Algorithm 27

TABLE 7
CPU-Times for Toeplitz Matrices.

Test | Orthogonal qd-Algorithm sbdsqr

Case | no Vectors | Vectors no Vectors | Vectors
9 0.395 sec 3.000 sec 0.105 sec 0.551 sec
10 0.410 sec 2.765 sec 0.109 sec 0.684 sec
11 1.984 sec 18.893 sec 0.445 sec 3.586 sec
12 1.492 sec 19.190 sec 0.414 sec 4.605 sec
13 32.654 sec | 2068.582 sec 8.164 sec 579.436 sec
14 32.994 sec | 2074.473 sec 7.824 sec 555.707 sec

bidiagonal matrix in each step. This enables us to accumulate the orthogonal trans-
formations and thus obtain the singular vectors.

It would be fairly straightforward to modify the orthogonal qd-algorithm to com-
pute only the k smallest singular values and their corresponding singular vectors.
Special attention would be required if the bidiagonal matrix decouples. But this ap-
proach would enable us to compute the k smallest singular values in O(kn) operations.
If the singular vectors are also needed this operation count would increase to O(kn?).
This represents a significant savings compared to O(n>) which is the computational
complexity of a complete singular value decomposition.

We use Laguerre’s method to compute the shifts for the orthogonal qd-steps.
Special attention is given to the numerically stable evaluation. Although Laguerre’s
shift does not quite attain the efficiency of Wilkinson’s shift it has the advantage that
it always computes a lower bound on the smallest singular value of the bidiagonal
matrix.

We have also presented two generalizations of the Givens transformation. They
come in very handy in the context of the implicit Cholesky decomposition and the
orthogonal qd-algorithm, but they should also be useful in other applications. A
detailed error analysis of the generalized Givens transformation and its differential
form will be the subject of a future paper.

Acknowledgments. Our thanks go to W. Gander, G. H. Golub, and J. Wald-
vogel for their support. The author also thanks G. W. Stewart for his helpful com-
ments.

REFERENCES

[1] E. ANDERSON, Z. Barl, C. BiscHoF, J. DEMMEL, J. DONGARRA, J. DU CROZ, A. GREENBAUM,
S. HAMMARLING, A. McKENNEY, S. OSTROUCHOV AND D. SORENSEN, LAPACK Users’
Guide, SIAM Publications, Philadelphia, 1992.

[2] J. DEMMEL AND W. KAHAN, Accurate Singular Values of Bidiagonal Matrices, STAM J. Sci.
Stat. Comput., 11 (1990), pp. 873-912.

[3] J. J. DoNGARRA, C. B. MOLER, J. R. BUNCH AND G. W. STEWART, LINPACK Users’ Guide,
STIAM Publications, Philadelphia, 1979.

[4] K. V. FERNANDO AND B. N. PARLETT, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191-229.

[5] W. GANDER, L. MoLINARI AND H. SvEcovA, Numerische Prozeduren aus Nachlass und Lehre
von Prof. Heinz Rutishauser, Internat. Ser. Numer. Math., Vol. 33, Birkhauser, Basel, 1977.

[6] G. H. GoLUuB AND W. KaAHAN, Calculating the singular values and pseudo-inverse of a mairiz,
SIAM J. Numer. Anal., 2 (1965), pp. 205-224.

G.

E.

W.

U.

Urs von Matt

H. GoruB AND C. F. VAN LoaN, Matriz Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, 1989.

HANSEN AND M. PATRICK, A Family of Root Finding Methods, Numer. Math., 27 (1977),
pp. 257-269.

KaHaN, Where does Laguerre’s method come from?, in Proceedings of the Fourth Annual
Princeton Conference on Information Sciences and Systems, Department of Electrical Engi-
neering, Princeton University, Princeton, 1970, p. 143.

. KAHAN, Notes on Laguerre’s Iteration, unpublished manuscript, Berkeley, 1992.
. L. Lawson, R. J. HansonN, D. R. Kincab AND F. T. KroGH, Basic Linear Algebra

Subprograms for Fortran Usage, ACM Trans. Math. Softw., 5 (1979), pp. 308-325.

. Y. L1 AND Z. ZENG, The Laguerre iteration in solving the symmetric tridiagonal eigenprob-

lem, revisited, STAM J. Sci. Comput., 15 (1994), pp. 1145-1173.

. J. MAEHLY, Zur iterativen Auflésung algebraischer Gleichungen, ZAMP, 5 (1954), pp. 260-

263.

. MATHIAS AND G. W. STEWART, A Block QR Algorithm and the Singular Value Decomposi-

tion, Linear Algebra Appl., 182 (1993), pp. 91-100.

. MoonNEN, P. VAN DOOREN AND F. VANPOUCKE, On the QR Algorithm and Updating the

SVD and the URV Decomposition in Parallel, Linear Algebra Appl., 188/189 (1993), pp. 549—
568.

M. OsTrOWSKI, Solution of Equations in Fuclidean and Banach Spaces, Third Edition of
“Solution of Equations and Systems of Equations”, Academic Press, New York, 1973.

. N. PARLETT, Laguerre’s Method Applied to the Matrix Eigenvalue Problem, Math. Comp.,

18 (1964), pp. 464-485.

. N. PARLETT, The Symmetric Figenvalue Problem, Prentice-Hall, Englewood Cliffs, 1980.
. H. REINscH AND F. L. BAUER, Rational QR Transformation with Newton Shift for Symmetric

Tridiagonal Matrices, Numer. Math., 11 (1968), pp. 264-272.

. RUTISHAUSER, Der Quotienten- Differenzen-Algorithmus, ZAMP, 5 (1954), pp. 233-251.
. RUTISHAUSER, Der Quotienten-Differenzen-Algorithmus, Mitteilungen aus dem Institut fiur

angewandte Mathematik Nr. 7, Birkhauser, Basel, 1957.

. RUTISHAUSER, Uber eine kubisch konvergente Variante der LR-Transformation, ZAMM,

40 (1960), pp. 49-54.

RUTISHAUSER, Les propriétés numériques de lalgorithme quotient-différence, Rapport
EUR 4083f, Communauté Européenne de ’Energie Atomique - EURATOM, Luxembourg,
1968.

H. RUTISHAUSER, Lectures on Numerical Mathematics, Birkhauser, Boston, 1990.
G.

W. STEWART, An Updating Algorithm for Subspace Tracking, IEEE Trans. Signal Processing,
40 (1992), pp. 1535-1541.
VON MATT, Large Constrained Quadratic Problems, Verlag der Fachvereine, Zirich, 1993.

J. H. WILKINSON, The Algebraic Figenvalue Problem, Clarendon Press, Oxford, 1965.

