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Since 2006 it has been discovered experimentally that the superconducting

state spontaneously breaks time-reversal symmetry (TRS) in several materials, such

as Sr2RuO4, UPt3, URu2Si2, PrOs4Sb12, and Bi/Ni bilayers. This dissertation stud-

ies three physical phenomena related to time-reversal symmetry breaking (TRSB)

in these superconductors.

The experimental evidence for TRSB comes from the magneto-optical polar

Kerr effect, which is determined by the high frequency ac Hall conductivity. How-

ever, these superconductors are also expected to exhibit a spontaneous dc Hall effect

in the absence of an applied magnetic field. In the first part of this dissertation we

propose a method for measuring the low frequency Hall conductivity in supercon-

ductors with TRSB. The method is based on a Corbino disk geometry where an

oscillating co-axial magnetic field induces circular electric field, which, in turn, in-

duces radial charge oscillations due to the Hall conductivity.

In the second part, we propose an explanation for the polar Kerr effect observed

in the Hidden-Order phase of the heavy-fermion superconductor URu2Si2. Using a



Ginzburg-Landau model for a complex order parameter, we show that the system

can have a metastable ferromagnetic state, which produces the Kerr signal, even if

the Hidden-Order state respects TRS. We predict that applying a reversed magnetic

field should reset the system to the non-magnetic ground state, resulting in zero Kerr

signal.

In the third part of the dissertation, we investigate the conditions for the

existence of a Majorana bound state on a vortex in a 2D dxy+idx2−y2 superconductor

with strong spin-orbit coupling. This TRSB pairing was proposed earlier for the

Ni/Bi bilayer. We find that the Majorana bound state can exist for a dxy + idx2−y2

pairing under conditions similar to those for s-wave pairing.



SUPERCONDUCTORS THAT BREAK
TIME-REVERSAL SYMMETRY

by

Lance L. Boyer

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Victor M. Yakovenko, Chair/Advisor
Professor Steven Anlage
Assistant Professor Maissam Barkeshli
Professor Theodore Einstein
Associate Professor Jeremy Munday



c© Copyright by
Lance L. Boyer

2019





Table of Contents

Table of Contents ii

List of Figures iv

List of Abbreviations vi

1 Background 1
1.1 Phenomenological Superconductivity . . . . . . . . . . . . . . . . . . 1
1.2 Time-Reversal Symmetry Breaking . . . . . . . . . . . . . . . . . . . 7
1.3 Magneto-Optical Polar Kerr Effect . . . . . . . . . . . . . . . . . . . 9

2 The Hall Effect as a Probe of Time-Reversal Symmetry Breaking in Super-
conductors 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Electrodynamics of Superconductors . . . . . . . . . . . . . . . . . . 16
2.3 AC Meissner Screening for σH = 0 . . . . . . . . . . . . . . . . . . . . 18
2.4 Radial Charge Oscillation for σH 6= 0 . . . . . . . . . . . . . . . . . . 23
2.5 Estimating the Hall Conductivity . . . . . . . . . . . . . . . . . . . . 26
2.6 Experimental Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Induced Hall Conductivity . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Charge Oscillation in General . . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 Local Oscillation in Charge Density . . . . . . . . . . . . . . . 34
2.8.2 Oscillation in Total Surface Charge . . . . . . . . . . . . . . . 37

2.9 Solenoid Threading the Superconductor . . . . . . . . . . . . . . . . . 39
2.9.1 Field in “Vacuum” Rs < r < Ri . . . . . . . . . . . . . . . . . 41
2.9.2 Screening in the Superconductor r > Ri . . . . . . . . . . . . 42
2.9.3 Radial Charge Oscillation . . . . . . . . . . . . . . . . . . . . 48

2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 URu2Si2 and Metastable Magnetism in the HO Phase 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Haule-Kotliar Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Competition of Hidden Order and Antiferromagnetism . . . . . . . . 64
3.5 Competition of Hidden Order and Ferromagnetism . . . . . . . . . . 65
3.6 Field-Reversal Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ii



3.7 Comparison with Experiment . . . . . . . . . . . . . . . . . . . . . . 70
3.8 The magnetic field terminating hidden order . . . . . . . . . . . . . . 72
3.9 The Staggered Magnetic Moment . . . . . . . . . . . . . . . . . . . . 74
3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Majorana Modes in Bi/Ni Bilayers 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Majorana Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 The BdG Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Spin-Orbit-Pseudospin . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Radial BdG Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Solving the BdG Equation in the Electron Sector . . . . . . . . . . . 86
4.7 Inside the Vortex Core (∆′ = 0) . . . . . . . . . . . . . . . . . . . . . 88
4.8 Outside the Vortex Core (∆′ 6= 0) . . . . . . . . . . . . . . . . . . . . 89
4.9 Matching solutions at r = ξ . . . . . . . . . . . . . . . . . . . . . . . 91
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95

iii



List of Figures

1.1 Schematic diagram of a simplified Sagnac interferometer in which a
beam and its reciprocal under time-reversal interact with a sample
and then interfere at the detector. Since the beam paths are reciprocal
with respect to time-reversal, only a time-reversal symmetry breaking
sample produces a signal. (Credit: This figure was modified from a
freely available Creative Commons image owned by Wikipedia user
Krishnavedala.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Our setup consists of a superconducting cylinder of inner radius Ri,
outer radius Ro and length L. Most effects occur near the outer edge
of the superconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Our proposed experimental setup uses a waveguide nozzle at the end
of a coaxial cable to measure the potential difference V H

r . The thick
black lines represent insulating coating on the inside of the waveguide,
so that the voltage measurement is contactless. The applied magnetic
field B0 of the external solenoid is represented by purple arrows. . . . 30

2.3 A solenoid of radius Rs threading an superconducting annular cylin-
der of inner radius Ri, outer radius Ro, and length L. The axial mag-
netic field Bs of the solenoid induces radial Hall current jHr which is
compensated by radial supercurrent jSr within a London penetration
depth λL of the inner surface of the superconductor. Since the effects
happen near the inner surface of the superconductor, the outer radius
Ro can be taken to be infinite. . . . . . . . . . . . . . . . . . . . . . . 40

iv



3.1 This figure shows the A2g symmetry breaking of the local 5f2 elec-
tron wavefunctions. (A) The crystal structure and wavefunctions are
presented in the paramagnetic state. The high-temperature wave-
functions have two vertical mirror plane symmetries σv and σd. (B)
A schematic band structure of the low-lying states and conduction
band is shown. (C) The crystal structure remains the same below
the transition temperature, but the hybridized wavefunctions break
the vertical mirror plane symmetries and pick up chirality. (D) An
antiferric ordering of chiralities is shown, indicating a chirality density
wave. Figure from Ref. 1. Reprinted with permission from AAAS. . 61

3.2 Phase diagram for the free energy in Eq. (3.5) as a function of mag-
netic energy b and temperature T . The numbers in circles and the
degree of shading indicate the number of minima of f [ψHO, ψFM]. Ev-
ery shaded domain has two degenerate HO minima with |ψHO| 6= 0
and may have one or two FM minima with ψFM > 0 or ψFM < 0,
as schematically indicated around T = 10 K. The HO (FM) minima
have lower energy to the left (right) of the dashed first-order transition
line labeled I. The solid line labeled II represents a second-order phase
transition from paramagnetism to HO. Blue, red, and green lines rep-
resent the Zero-Field Cooling (ZFC), High-Field Cooling (HFC), and
Field-Reversal Test (FRT) protocols. . . . . . . . . . . . . . . . . . . 66

3.3 Contour plots of the free energy f [ψHO, ψAF] given by Eq. (3.4) or
f [ψHO, ψFM] given by Eq. (3.5) for points A-H in Fig. 3.2. The hori-
zontal and vertical axes represent the non-magnetic, ψHO, and mag-
netic, ψAF for (a)-(c) and ψFM for (a)-(i), components of the order
parameter. Global minima, local minima, and saddle points are in-
dicated by red disks, orange squares, and black triangles, while red
arrows indicate the state of the system reached following the paths
in Fig. 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Phase diagram as in Fig. 3.2 recalculated using ∆ = 7 K and γ =
525 K (in contrast to ∆ = 35 K and γ = 64 K in Fig. 3.2). Notice
the greater scale for the magnetic energy b. . . . . . . . . . . . . . . . 72

v



List of Abbreviations

AF Anti-Ferromagnetic or Anti-Ferromagnetism
BCS Bardeen, Cooper, and Schrieffer
CGS Centimeter-gram-second
FM Ferromagnetic or Ferromagnetism
HO Hidden Order
PKE Polar Kerr Effect
SI International System
TR Time-Reversal
TRS Time-Reversal Symmetry
TRSB Time-Reversal Symmetry Breaking
VMP Vertical Mirror Plane

vi



Chapter 1: Background

This chapter provides a brief background on time-reversal symmetry breaking

superconductors as they relate to the projects presented in the following chapters

of the thesis.

1.1 Phenomenological Superconductivity

Superconductivity is a state of perfect conductivity in which electrical current

can flow forever without resistance. Some metallic systems can reach this state by

being cooled below a critical temperature Tc. When the temperature of a metal

falls below its Tc, it undergoes a second order phase transition and its resistivity

suddenly drops from a finite value to zero.

This phenomenon was first seen by H. Kamerlingh Onnes shortly after he

invented liquid helium refrigeration in 1911 [2] and began using it to study other

materials at low temperatures. In particular, Ohnes measured the low temperature

resistance of mercury and found that below a temperature of 4K the material entered

the state of zero resistance.

Almost two decades later in 1933, Meissner and Ochsenfeld discovered that

in addition to perfect conductivity, superconductors display perfect diamagnetism
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[3]. During the phase transition to superconductivity, magnetic flux through thick

samples would be completely expelled. Perfect superconductivity only explains the

resistance to a change in magnetic flux through a sample, but not the expulsion

of magnetic flux. Both the perfect conductivity and the perfect diamagnetism of

superconductors were explained phenomenologically in 1935 by the London brothers.

The London brothers proposed two phenomenological equations relating a su-

perconductor’s current density j to the electric field E and magnetic field B,

∂j

∂t
=

1

Λ
E (1.1)

∇× j = − 1

Λc
B (1.2)

where

Λ =
m

nse2
=
λ2
L

c2
(1.3)

is a phenomenological parameter related to the density of supercharge carriers ns,

the electron charge e, the effective mass of supercharge carriers m, the speed of light

c, and a London length scale λL. The first London equation (1.1) predicts perfect

conductivity and the second London equation predicts perfect diamagnetism (1.2).

The perfect conductivity can be seen by replacing the current density j with the

average charge carrier velocity v using the definition of current density, j = nsev.

In this case, equation (1.1) gives free acceleration according to Newton’s Second
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Law without any friction term,

m
dv

dt
= eE. (1.4)

Meanwhile, perfect diamagnetism can be seen by combining the second London

relation (1.2) with Ampere’s Law,

∇×B =
4π

c
j +

1

c

∂E

∂t
, (1.5)

to obtain

∇2B =
1

λ2
B. (1.6)

This Helmholtz differential equation predicts the exponential decay of B on the

length scale λ from B’s value at the surface of the superconductor and thus describes

the Meissner screening of the magnetic field from the bulk of a large superconducting

sample. The London equations therefore explain the electrodynamic properties of

superconductors. However, they do not explain these properties’ microscopic origin.

It is worth noting that Fritz London argued that both of the London equa-

tions may follow from a quantum mechanical condition on the quantum mechanical

ground state |Ψ0〉 of the superconductor. In terms of the canonical momentum of

an electric particle, p̂ = mv̂ + eA, which incorporates the vector potential A, the
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ground state condition is for the total momentum to be zero:

〈Ψ0| p̂ |Ψ0〉 = 〈Ψ0|mv̂ + eA |Ψ0〉 = 0. (1.7)

In this case, the supercurrent j = nse〈v̂〉 satisfies

j = −nse
2

m
A. (1.8)

The two London equations (1.1) and (1.2) can be derived from this last expression,

but only in the Coulomb gauge.

The microscopic mechanism of superconductivity was discovered in 1956 by

Leon Cooper [4]. He argued that the exclusion principle and Coulomb screening

made it possible for electrons to have a net attractive interaction, which makes the

electron gas unstable to the pairing of electrons. We can understand this instability

in terms of the quantum field theory of fermionic annihilation operators ψ̂σ(k),

corresponding to electrons of momentum k and spin σ. If there is an attractive

effective interaction between electrons given by

Ĥint =

∫
d3kgσσ

′
(k)ψ̂†σ(k)ψ̂†σ′(−k)ψ̂σ(k)ψ̂σ′(−k), (1.9)

then the system of electrons will possess a resonance that makes it unstable to a

perturbation of the form

Ĥp =

∫
d3k

[
∆σσ′

(k)ψ̂†σ(k)ψ̂†σ′(−k) + ∆†σσ
′
(k)ψ̂σ(k)ψ̂σ′(−k)

]
(1.10)
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below a particular temperature Tc, which can be computed diagramatically. The

effective interaction (1.9) has the U(1) gauge symmetry typical of electrons,

ψ̂σ → e−iφψ̂σ, ψ̂†σ → eiφψ̂†σ. (1.11)

However, if Cooper pairing occurs, then there is an anomalous average which breaks

this symmetry,

∆σσ′
(k) = gσσ

′
(k)〈ψ̂σ(k)ψ̂σ′(−k)〉. (1.12)

The mean-field ∆σσ′
(k) is known as the superconducting gap and is an order param-

eter for superconductivity. Since the only gauge transformations that preserve the

gap are multiplication by 1 and −1, we say that superconductivity has U(1) → Z2

symmetry breaking. If ∆σσ′
(k) breaks additional symmetries other than the U(1)

gauge symmetry, then we say the superconductivity is unconventional.

After the discovery of Cooper pairing, Schrieffer constructed the many-body

wavefunction for the superconducting ground state and shortly afterwards a full

theory of superconductivity was presented by Bardeen, Cooper, and Schrieffer (BCS)

in 1957 [5]. The BCS theory assumes a simple spin-singlet Cooper pairing,

∆(k) = g〈ψ̂↑(k)ψ̂↓(−k)〉+ g〈ψ̂↓(k)ψ̂↑(−k)〉. (1.13)

This allows us to admit a mean-field approximation that replaces the quartic inter-

action term in (1.9) with a quadratic mean-field interaction like the one in (1.10),
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to obtain

ĤMF =

∫
d3k

[
ψ̂†σ(k)εσkψ̂σ(k) + ∆ψ̂†↑(k)ψ̂†↓(−k) + ∆∗ψ̂↓(−k)ψ̂↑(k)− |∆|

2

g

]
(1.14)

where εσk gives the kinetic energy of an electron with spin σ and momentum k.

The mean-field theory of (1.14) can be used to derive the BCS theory of super-

conductivity and describes conventional superconductors, also referred to as s-wave

superconductors. Everything seemed well-understood in terms of BCS theory un-

til the discovery in 1986 of high-temperature superconductors and unconventional

superconductivity [6].

The era of unconventional superconductivity began with Anderson and Morel

investigating superconducting phases that would later be known as the A− and

B− phases in superfluid 3He [7]. In contrast with conventional s-wave supercon-

ductors, the A− and B− phases are characterized by angular momentum L = 1

and spin-triplet configurations. Although unconventional pairing was studied both

theoretically and in heavy Fermion compounds in the early 80s [8], the concept did

not become widely popular until the 1986 discovery of high-temperature supercon-

ductivity in cuprates.

The unexpected discovery of high-Tc superconductivity in cuprates such as

La2CuO4 and Sr2CuO4 led to the eventual discovery by Yoshiteru Maeno and col-

laborators of an analog superconductor Sr2RuO4 in 1994 [9]. This superconductor

drew immediate interest because it has the same perovskite structure as La2CuO4

and Sr2CuO4, but is not a cuprate. Soon after the discovery of Sr2RuO4, it was pro-
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posed that this material had p-wave and spin-triplet pairing based on its similarity

to 3He and closely related ferromagnetic compounds such as SrRuO3 [10]. Muon spin

resonance experiments eventually found that Sr2RuO4 breaks time-reversal symme-

try (TRS) [11].

1.2 Time-Reversal Symmetry Breaking

The question of broken TRS has a special place in the study of superconducting

systems, because TRS is a property of conventional s-wave superconductivity and

has multiple implications that are violated in interesting unconventional supercon-

ductors. TRS refers to the preservation of physical observables under a time-reversal

(TR) operator that exchanges physical time with its opposite, T : t→ −t. In clas-

sical physics, time-reversal amounts to changing the sign of quantities with an odd

dependence on the sign of the time parameter, such as velocity or angular momen-

tum. In quantum physics, time-reversal is represented by an antiunitary operator

which has the action 〈Tψ| |Tφ〉 = 〈φ| |bra〉. Additionally, due to Fermi statistics,

time-reversal must also have a non-trivial exchange operation on fermionic opera-

tors,

T : ψ̂↑ → −ψ̂†↓ (1.15)

T : ψ̂↓ → ψ̂†↑. (1.16)

The BCS mean-field Hamiltonian in equation (1.14) is invariant under appli-

cation of T, so the dynamics of the system are time-reversal symmetric. On the
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other hand the Hamiltonian for a spin-triplet (p-wave) superconductor

ĤP =
∑
k

c†↑c↑ + ∆(k)c†↑c
†
↑ + ∆∗(k)c↑c↑ (1.17)

clearly is not preserved by TR, since T inverts all of the spins.

One important consequence of TRS is that conventional superconductors can

be surprisingly dirty. Philip Anderson showed that if a Cooper pair is formed be-

tween an electron and its exact time-reverse counterpart, then the system will be

immune to scattering from non-magnetic (or TRS respecting) impurities [12]. A

significant fraction of chemical centers in a conventional superconductor can be im-

purities without significant modification of the transition temperature Tc. Since this

is no longer the case in TRS breaking (TRSB) superconductors, impurity scattering

can actually be used to study deviations from conventional superconductivity. For

example, it has been seen that superconductivity is suppressed by increasing the

number of non-magnetic impurities in Sr2RuO4 [13].

Another consequence of TRS more directly related to the work in this thesis

is the impossibility of transverse Hall conductivity in a system that has TRS. This

follows from the Onsager-Casimir relation for conductivity tensor [14]

σ(B) = σT (−B), (1.18)

which guarantees that the conductivity tensor σ is symmetric unless there is an

applied magnetic field B 6= 0. The symmetric part of the conductivity can be
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diagonalized by a choice of coordinates, so an anti-symmetric part of the conductivity

tensor is necessary for transverse Hall conductivity σH . Therefore, if a system has

intrinsic Hall conductivity (in the absence of an applied magnetic field), it must

break time-reversal symmetry. Consonant with this result, some theoretical TRSB

systems are predicted to have an anomalous Hall effect [15, 16].

A superconductor which breaks TRS cannot be an s-wave superconductor, and

so by definition it belongs to the open category of unconventional superconductors.

It is therefore worthwhile to search for TRSB superconductors, because they will

have interesting pairing mechanisms. We can do this by looking for systems which

have anomalous Hall conductivity detectable through experiment. So far a handful

of materials have been found to break TRS, and it is possible that each of these

materials is a chiral superconductor.

1.3 Magneto-Optical Polar Kerr Effect

A direct probe of time-reversal (TR) symmetry (TRS) has been constructed

based on the magneto-optical polar Kerr effect (PKE). If a material breaks TRS

then it is possible for there to be a small Kerr angle θK of rotation between the

incoming beam and outgoing beam. Experiments carried out by Xia et al., which

identified TRS-breaking (TRSB) in several superconductors, were done with a zero-

area Sagnac interferometer [17, 18].

The basic premise of using a Sagnac interferometer is that a beam of light and

its reciprocal under TR follow the same path closed but in opposite directions as

9



Sample

Detector

Beam Splitter
Light

Source

Figure 1.1: Schematic diagram of a simplified Sagnac interferometer in which a beam
and its reciprocal under time-reversal interact with a sample and then interfere at
the detector. Since the beam paths are reciprocal with respect to time-reversal, only
a time-reversal symmetry breaking sample produces a signal. (Credit: This figure
was modified from a freely available Creative Commons image owned by Wikipedia
user Krishnavedala.)

in Fig. 1.1. A phase shift between the beam and its reciprocal then indicates the

presence of some non-reciprocal or TRSB effect during the path of the light, since

otherwise TRS implies the two beams will be treated equivalently. However, since a

Sagnac interferometer is known to display an unrelated phase shift proportional to

area, the actual interferometers used to measure PKE use no area - the branches of

the interferometer are the vertical and horizontal modes of a waveguide occupying

the same physical space. Additionally, the vertical and horizontal modes of the

waveguide have different propagation speeds for light, allowing the two reciprocal

beams to interact with the sample separately. The interpretation of a phase shift in

this interferometer arising from TRSB is associated with the Reciprocity Theorem

by Alexander Fried.

The Reciprocity Theorem is a generalization of the Onsager-Casimir relation

10



discussed above. It shows that, if TRS is respected, then no Kerr rotation is per-

mitted in a material [19]. It is shown that for small perturbations, the Feynman

propagator GF
++ for positively circularly polarized light traveling from r1 → r2, is

identical to the Feynman propagator GF
−− for negatively polarized light traveling

from r2 → r1,

GF
++(t2, r2, t1, r1) = GF

−−(t2, r1, t1, r2). (1.19)

The propagator GF
µν is given in terms of the ground state of the material |g〉 and

the time-ordered product of vector potential field operators Âµ(r, t),

GF
µν(t2, r2, t1, r1) = 〈g|T [Âµ(r2, t2)Âµ(r1, t1)] |g〉 . (1.20)

The result follows from the TR behavior of the Hamiltonian Ĥ → Ĥ, the time-

evolution operator exp(−iĤt) → exp(iĤt), and the ground state |g〉 → |Tg〉∗ of

the TRS system. Since T is anti-unitary, it takes the ground state to the complex

conjugate and time-reversed state |Tg〉∗, where 〈v|∗ |u〉∗ = 〈u| v〉. Under TR the

vector potential obeys:

Aµ(t, r)→ T exp(iĤt)Aµ(0, r) exp(−iĤt)T† (1.21)

= T exp(iĤt)T†TAµ(0, r)T†T exp(−iĤt)T† (1.22)

= − exp(iĤt)Aµ(0, r) exp(−iĤt) = −Aµ(−t, r). (1.23)
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Then one can show Eq. (1.19) by basic time-reversal using the following series of

equalities:

GF
µν(t2, r2, t1, r1) = 〈g|T [Âµ(r2, t2)Âµ(r1, t1)] |g〉 (1.24)

= 〈g|T†T [TÂµ(r2, t2)T†TÂν(r1, t1)T†]T |g〉 (1.25)

= 〈Tg|∗ T [Âµ(r2,−t2)Âν(r1,−t1)] |Tg〉∗ (1.26)

= 〈Tg|T [Âν(r2,−t1)Âµ(r1,−t2)] |Tg〉 (1.27)

= 〈Tg|T [Âν(r2, t2)Âµ(r1, t1)] |Tg〉 (1.28)

= 〈g|T [Âν(r2, t2)Âµ(r1, t1)] |g〉 (1.29)

= GF
νµ(t2, r1, t1, r2). (1.30)

The Eq. (1.28) was reached using time-translation symmetry and Eq. (1.29) was

reached using the TRS of the ground state |Tg〉 = |g〉. From the symmetry in

equation (1.19), it follows that the Kerr rotation in the phase of circularly polarized

light is zero:

θK =
1

2
argG++(t2, r2, t1, r1)− 1

2
argG−−(t2, r1, t1, r2) = 0. (1.31)

The Reciprocity Theorem provides support for the interpretation of the Kerr effect

as evidence of microscopic TRSB.

The zero-area Sagnac interferometer has been used to detect a small but clearly

discernible Kerr signal in several chiral superconductors: Sr2RuO4 [20], UPt3 [21],

URu2Si2 [22], PrOs4Sb12 [23], and Bi/Ni bilayers [24]. The response tends to be
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on the order of nanoradians, which agrees with subsequent theoretical calculations

[25,26] that give θK in terms of the imaginary part of the Hall conductivity σ′′H ,

θK ≈
4π

ω

σ′′H
n(n2 − 1)

≈ 10−8 ∆2

T 2
c

rad. (1.32)

Here n is the index of refraction in a TRSB sample, ω ≈ 239 THz is the frequency

of light used to probe the PKE, and ∆ is the superconducting gap. In these TRSB

superconductor systems, the Kerr angle is proportional to Hall conductivity, and so

the anomalous Hall effect should be possible in these systems in addition to the Kerr

effect. In the next chapter we explore the possibility of measuring the anomalous

Hall conductivity directly.
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Chapter 2: The Hall Effect as a Probe of Time-Reversal Symmetry

Breaking in Superconductors

2.1 Introduction

Chiral superconductivity breaks time-reversal symmetry and is regarded as

desirable since it may enable quantum information processing [16, 27, 28]. One

experimental probe of chiral superconductivity looks for time-reversal symmetry

breaking through non-zero ac Hall conductivity. The existence of ac Hall conduc-

tivity implies a Magneto-optical Kerr effect (MOKE) that has been seen in several

superconducting systems: Sr2RuO4 [20], UPt3 [21], URu2Si2 [22], PrOs4Sb12, and

Bi/Ni bilayers [24]. Despite the success of these MOKE experiments, they have some

limitations. The MOKE probes the surface of a material, rather than its bulk, and

it produces only a small signal. Also, the photons used to detect the MOKE have

a much higher energy than the superconducting gap (~ω � ∆, kTc). These MOKE

measurements leave open the question of time-reversal symmetry at low frequency

in the bulk of a superconductor. This chapter therefore proposes an alternative and

low-frequency experiment capable of observing anomalous dc Hall conductivity σH

directly.
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Although time-reversal symmetry breaking implies an anomalous dc Hall con-

ductivity, it is controversial whether this effect appears in superconductors [?]. Since

resistivity is the inverse of conductivity, ρ = σ−1, the experimental observation of

zero transverse resistivity ρxy = 0 is often taken to indicate zero transverse conduc-

tivity σxy = σH = 0. However, ρxy and σH can be zero independently [29] since

ρxy = σH/(σxxσyy + σ2
H) with σxx →∞. It is further difficult to measure bulk Hall

conductivity using the typical bar geometry, because supercurrent shunts Hall cur-

rent in the bulk and both bulk and edge states may carry current. Since it is difficult

to observe the Hall effect in the bar geometry, we consider a low-frequency Hall effect

experiment in a geometry where the symmetry is more favorable to distinguishing

the effect.

One of the early Hall effect measurements was by Von Corbino in a thin

cylindrical annulus called a Corbino disk [30]. We consider a qualitatively similar

infinitely long cylindrical annulus placed inside an axial time-varying magnetic field.

The applied magnetic field induces a circular electric field Eθ which in turn produces

a Hall radial Hall current jHr = σHEθ. We find that a surface charge oscillation

occurs at the outer boundary of the cylinder which corresponds to a radial potential

difference V H
r between the inner and outer radii of the cylinder. Due to axial

symmetry, the charge oscillation effect can only result from the transverse Hall

conductivity.

We calculate the linear response of oscillating surface charge and propose a

contactless measurement of V H
r using a modified coaxial cable. Numeric predictions

of the surface charge and potential difference are given in terms of σH estimated
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from a particular microscopic theory of TRSB d-wave superconductivity [16]. We

also compare our result with Hall conductivity resulting from the external magnetic

field and find that only intrinsic Hall conductivity gives rise to a linear response at

frequency of the applied magnetic field.

2.2 Electrodynamics of Superconductors

Let us review the relevant electrodynamic equations. We will assume the axis

of magnetization in the TRSB superconductor is oriented along the z-axis, so that

any Hall effect is in the x, y−plane. Maxwell’s equations describe the electric field

E, the magnetic field B, supercurrent density jS, transverse Hall current density

jH , and bulk charge density ρ (in cgs units),

∇ ·E = 4πρ, ∇ ·B = 0, (2.1)

∇×E = −1

c

∂B

∂t
, (2.2)

∇×B =
4π

c
(jS + jH) +

1

c

∂E

∂t
. (2.3)

In the Coulomb gauge, the supercurrent density jS is generally given in terms

of the vector potential A and the local superfluid phase φ,

jS = −nse
2

mc
(A− ~

2e
∇φ). (2.4)

We assume ∇φ = 0 because we are working in the linear response regime of small

fields in which vortices are not created at any time. The expression for supercurrent
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in Eq. (2.4) gives us the London equations relating supercurrent density to the

electric and magnetic fields,

∂jS

∂t
=
nse

2

m
E, (2.5)

∇× jS = −nse
2

mc
B. (2.6)

The Hall current density jH is given in terms of the anomalous Hall conduc-

tivity σH ,

jH = σHE × ẑ. (2.7)

In a conventional superconductor (σH = 0), taking the curl of Ampere’s Law

and using the second London equation (2.6) gives a differential equation for Meissner

screening of the magnetic field,

∇2B =
4πnse

2

mc2
B. (2.8)

The coefficient of proportionality in the Meissner screening equation gives a temperature-

dependent (T ) frequency ωL and length scale λL related as

ωL(T ) =
c

λL
=

√
4πns(T )e2

m
. (2.9)

This London frequency ωL is the characteristic timescale over which supercharge

responds to perturbation and λL is the length scale over which the electromagnetic
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field exponentially decays into the bulk of a superconductor. At finite temperature

T 6= 0, the number of supercharge carriers ns(T ) is less than the total number

of charge carriers n, and so the London frequency ωL(T ) is less than the plasma

frequency,

ωp =

√
4πne2

m
, (2.10)

in general. However, the London frequency approaches the plasma frequency (ωL →

ωp) only in the clean limit T → 0.

2.3 AC Meissner Screening for σH = 0

In place of the Corbino disk of finite thickness, we consider an infinitely long

annular cylinder of inner radius Ri and outer radius Ro placed coaxially inside a

larger solenoid of radius Rs > Ro. This qualitatively similar, but mathematically

simpler system is depicted in figure 2.1.

We have a cylindrical system with coordinates x = (r, θ, z) in which an axial

magnetic field induces circular electric field and supercurrent. For simplicity, we

assume the applied magnetic field of the solenoid Bs(t) = B0 sin(ωt)ẑ, which is

valid in the low frequency approximation,

ω � c/Rs. (2.11)

Consequently, the boundary condition for the magnetic field inside the cylinder will
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be continuity with the uniform field of the solenoid,

Bs(t) = B(r = Ro, t) = B0e
−iωtẑ. (2.12)

Figure 2.1: Our setup consists of a superconducting cylinder of inner radius Ri,
outer radius Ro and length L. Most effects occur near the outer edge of the super-
conductor.

We treat the superconducting system perturbatively in σH by first finding

the electromagnetic response of a normal superconductor (σH = 0) to the applied

magnetic field B0(t) and then by showing that surface charge density oscillations

occur at the outer edge of the superconductor for σH 6= 0. We begin by writing

Maxwell’s equations in the superconducting region (Ri < r < Ro) in the frequency

domain for σH = 0. In the frequency domain, Faraday’s Law (2.2) is given by

∇×E =
iω

c
B. (2.13)
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In Ampere’s Law (2.3) with σH = 0, we replace jS using the first London relation

(2.5) to obtain

∇×B = −iω
c

[
1− ω2

L

ω2

]
E. (2.14)

Since we are assuming an infinitely long system with cylindrical symmetry, the θ

and z derivatives vanish in equations (2.13) and (2.14). This simplification allows

us to set Br = 0, Bθ = 0, Er = 0, and Ez = 0 while Eθ and Bz satisfy the two

coupled equations,

∂Eθ
∂r

+
Eθ
r

=
iω

c
Bz (2.15)

∂Bz

∂r
=
iω

c

[
1− ω2

L

ω2

]
Eθ. (2.16)

Combining the equations for Eθ and Bz (2.15) and (2.16) gives us modified

Bessel differential equations in r,

∂2Eθ
∂r2

+
1

r

∂Eθ
∂r
− 1

r2
Eθ =

ω2
L − ω2

c2
Eθ (2.17)

∂2Bz

∂r2
+

1

r

∂Bz

∂r
=
ω2
L − ω2

c2
Bz, (2.18)

of order one and zero, respectively. Both Bessel equations have the same frequency-

dependent length scale,

λ(ω) =

√
c2

ω2
L − ω2

, (2.19)
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which is the characteristic length scale for screening. In general, the modified Bessel

equation of order n has two solutions, Kn and In, but we discard the solution

Kn because it grows exponentially with decreasing radius and is non-zero in the

bulk. Using the boundary condition in Eq. (2.12), we find the solution to (2.18) for

magnetic field Bz for Ri < r < Ro,

Bz(r) = B0
I0(r/λ(ω))

I0(Ro/λ(ω))
. (2.20)

Substituting this expression for Bz(r) into Eq. (2.16) gives a corresponding electric

field,

Eθ(r) =
λ(ω)

c
iωB0

I1(r/λ(ω))

I0(Ro/λ(ω))
. (2.21)

We then make the low-frequency assumption

ω � ωL, (2.22)

in which case the screening length is approximately the London penetration depth

λ(ω) ≈ λL. Assuming λL < Rs, the low-frequency limit in Eq. (2.22) is less restric-

tive than the low-frequency limit we assumed to avoid electromagnetic retardation

in Eq. (2.11), so it follows naturally. In this limit, since r > Ri � λL, we can

use the large-argument Bessel function approximation, In(z) ≈ exp(z)/
√

2πz, with
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z = r/λ(ω)� 1, in Eq. (2.20) and Eq. (2.21), to obtain

Bz(r) ≈ B0

√
Ro

r
e(r−Ro)/λ(ω) (2.23)

Eθ(r) ≈ iωB0
λ(ω)

c

√
Ro

r
e(r−Ro)/λ(ω). (2.24)

In Eqns. (2.23) and (2.24), the electric and magnetic fields decay exponentially to a

value of zero in the bulk. This is the Meissner effect, in which the magnetic field is

shielded from the bulk of the superconductor.

The non-zero circular electric field in Eq. (2.24) corresponds to circular super-

current that is shielding magnetic flux from the superconductor, given by:

jSθ (r, ω) =
iω2

L

4πω
Eθ ≈ −

ωL
4π
B0

√
Ro

r
e(r−Ro)/λ(ω). (2.25)

The supercurrent jSθ flows near the outer surface of the superconductor and forms

a surface current density IS2D of radius r ≈ Ro, which we find by integrating in the

radial direction

IS2D =

∫ Ro

Ri

jSθ dr = − c

4π
B0. (2.26)

From Ampere’s Law, one can see that B0 + 4πIS2D/c = 0 imples the the magnetic

field vanishes in the bulk (Ro − r � λL) as expected.

So far, we have found the electromagnetic response of the Corbino disk to be

the usual Meissner screening of magnetic field from the superconducting bulk via
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supercurrent. As a consequence of σH = 0, we found there is no radial field Er = 0

and, obviously, no Hall current. This changes in the next section when we consider

σH 6= 0.

2.4 Radial Charge Oscillation for σH 6= 0

Now suppose the superconducting annulus at Ri < r < Ro breaks time-reversal

symmetry and has a non-zero Hall conductivity σH 6= 0. The immediate consequence

from Eq. (2.7) is a radial Hall current given by

jHr (r) = σHEθ(r). (2.27)

Since charge flows in the radial direction, it is possible for there to be a radial electric

field Er and a buildup of charge.

We may solve for Er by considering the radial-component equation of Ampere’s

Law (2.3). The radial component of the curl in Eq. (2.3) vanishes due to symmetry,

giving us a relationship between the charge and displacement currents. In the Fourier

domain we have

iω

c
Er =

4π

c
(jSr + jHr ) =

ω2
L

cω
Er +

4πσH
c

Eθ. (2.28)

We solve for Er to find

Er(r, ω) = i
4πσHωc

2

ω2
L − ω2

Eθ(r, ω). (2.29)
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The radial electric field is proportional to the radially screened circular electric field.

The radial electric field can only exist at the boundary of the charge-neutral

superconductor if there is a surface charge density q as required by Gauss’ Law,

q = − 1

4π
Er(Ro, ω). (2.30)

We consider this surface charge density to be located entirely at the surface because

the Thomas-Fermi distance over which it is spread is much smaller than the London

penetration depth. The surface charge q is also necessary to balance the radial

current leaving the bulk of the superconductor. Using our expression for Er from

Eq. (2.29) in Eq. (2.30) we find

q(ω) =
σHω

2

(ω2
L − ω2)3/2

B0
I1(Ro/λ(ω))

I0(Ro/λ(ω))
. (2.31)

The surface charge density indicates an oscillator with resonant frequency ωL which

is driven by the external magnetic field B0.

The surface charge density at the outer edge of the cylinder is compensated

by a bulk charge density ρ. From Gauss’ Law we have

ρ =
1

4π
∇ ·E =

1

r

∂

∂r
(rEr). (2.32)

Substituting using Eqs. (2.29) and (2.21), we find

ρ = − σHω
2c

ω2
L − ω2

B0
I0(r/λ(ω))

I0(Ro/λ(ω))
. (2.33)
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The charge density is largest near the surface and exponentially decays into the

bulk over the London screening distance, and the bulk charge density is proportional

to the shielded magnetic field in Eq. (2.20). Integrating the bulk charge density over

the volume of the annular cylinder gives a charge opposite to the charge on the outer

surface: 2πL
∫ Ro

Ri
ρ(r)rdr = −2πLRoq.

The surface charge q also results in a radial potential difference between the

inner and outer surfaces of the superconductor,

V H
r = −

∫ Ro

Ri

Erdr =
4πσHω

2c

(ω2
L − ω2)2

B0. (2.34)

Using our assumption ω � ωL, we have λ(ω) → λL, so we can repeat the

exponential approximation for the Bessel functions used in Eq. (2.24) for Eqs. (2.31)

and (2.34) to obtain the approximations

q(ω) ≈ σHω
2

ω3
L

B0, (2.35)

V H
r ≈

4πσHω
2c

ω4
L

B0. (2.36)

We will estimate these values in the next section.

Aside from the radial current and oscillation of charge, which are first-order in

σH , there is a second-order correction to the circular current from the Hall current

in Eq. (2.7),

jHθ = −σHEr(r) ≈ −i
4πσ2

Hω

ω2
L

Eθ(r). (2.37)
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However, the Hall contribution to circular current in Eq. (2.37) is negligible com-

pared to the circular supercurrent in Eq. (2.25), jHθ � jSθ , assuming that

σ2
H �

ω4
L

ω2
, (2.38)

which is the case based on our estimate in the next section. Note that in Gaussian

units, σH has units of frequency.

2.5 Estimating the Hall Conductivity

In this section we estimate the magnitude of the 3D Hall conductivity σH =

σ3D
H in order to estimate the strength of the superconducting Hall effect in the previ-

ous section. To do this, we relate the 3D Hall conductivity used in our calculation to

the 2D Hall conductivity previously calculated for multi-band TRSB superconduct-

ing systems [15,16,31]. For n layers of material of height L, the 3D Hall conductivity

and 2D Hall conductivity are related in the following way:

Lσ3D
H = nσ2D

H . (2.39)

Using Eq. (31) of Ref. 16 (with ω = 0) we find an estimate of the 2D Hall conductivity

in terms of the chemical potential µ, superconducting gap ∆, and a numeric factor

F ,

σ2D
H (ω) =

e2

h

µ

t

(
∆

t

)2

F (2.40)
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in units of a hopping energy t. The numeric factor F is given by

F = −48πt5
∫
BZ

d2k
sin2(

√
3

2
ky)
(

cos(3
2
ky)− cos(

√
3

2
kx)
)2

E1,kE2,k(E1,k + E2,k)3
. (2.41)

This numeric factor can be estimated analytically as a consequence of E2,k

dominating the integral near the K and K’ points where ∆� E2,k ≈ −∆−v ·k � t.

Near these points, it is the case that

F ∝ −
∫ t

∆

d|k|
|k|

= c log(∆/t), (2.42)

where c is a band-structure-dependent constant. We use this estimate in the follow-

ing section.

The specific form of Eq. (2.41) is calculated as follows. Setting ω = 0 in

Eq. (31) of Ref. 16 gives a Masubara sum over the frequencies vm = 2πm/β,

σH =
~3e2

Aβ

∑
k,vm

4µ(v∗k × vk)zTr{∆(k)sz∆
†(k)}(ivm)2

((i~vm)2 − E2
1,k)2((i~vm)2 − E2

2,k)2
, (2.43)

where β is the inverse temperature and the sum is taken for each integer m. The

numerator (2.43) in the model of Ref. 16 is given by

(v∗k × vk)zTr{∆(k)sz∆
†(k)} (2.44)

= 24|∆|2 sin2(

√
3

2
kya)

[
cos(

3

2
ky)− cos(

√
3

2
kxa)

]2

. (2.45)

The expression (2.43) comes from a loop current model of d-wave superconductivity
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on a honeycomb lattice, but a similar formula may apply to other multi-band chiral

superconductivity models.

The Matsubara sum in (2.43) is over the following summand:

f(i~vm) =
4(i~vm)2

((i~vm)2 − E2
1,k)2((i~vm)2 − E2

2,k)2
. (2.46)

Th Matsubara summation over f(i~vm) can then be replaced with a contour integral,

1

β

∑
i~vm

f(i~vm) = − 1

2π

∫
C

f(v)

1 + exp(βv)
dv, (2.47)

in which C encloses only the imaginary axis. By deforming the contour to infinity in

all directions, we find that this sum is given by residues of the integrand in Eq. (2.47)

at the poles r of f(v):

1

β

∑
i~vm

f(i~vm) =
∑
r

Res

[
f(v)

1 + exp(βv)
, v = r

]
(2.48)

=

[
3E2

1,k + E2
2,k

E1,k(E2
1,k − E2

2,k)
3

]
tanh(

βE1,k

2
) (2.49)

+

[
3E2

2,k + E2
1,k

E2,k(E2
2,k − E2

1,k)
3

]
tanh(

βE2,k

2
) (2.50)

− β/2

E2
1,k − E2

2,k

[
1

cosh2(
βE1,k

2
)
− 1

cosh2(
βE2,k

2
)

]
. (2.51)

In the zero-temperature limit β →∞, the Matsubara sum simplifies to

1

β

∑
i~vm

f(i~vm)→ − 1

E1,kE2,k(E1,k + E2,k)3
. (2.52)
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The Hall conductivity in the zero-temperature limit is then given by formula

σH =
e2

~
~2

A

∑
k

µ(v∗k × vk)zΞk

E1,kE2,k(E1,k + E2,k)3
= −e

2

h

µ

t

(
|∆|
t

)2

F (2.53)

F = 48πt5
∫
BZ

d2k
sin2(

√
3

2
ky)
(

cos(3
2
ky)− cos(

√
3

2
kx)
)2

E1,kE2,k(E1,k + E2,k)3
. (2.54)

We estimate σH by combining equations (2.39), (2.40), and (2.42) to obtain

σH ≈
e2

h

µ

t

(
|∆|
t

)2

ln(
t

∆
)
1

d
= 4× 1013 Hz = 40 THz (CGS ESU) (2.55)

= 4000 S/m (SI). (2.56)

Here we assume the chemical potential to be µ ≈ 0.5t, the superconducting gap to

be ∆ ≈ 0.1t, and the interlayer spacing in the z-direction to be d ≈ 1 × 10−8 cm.

Our estimate for the Hall conductivity satisfies our prior assumption (2.38).

2.6 Experimental Proposal

We propose a simple measurement of the Hall voltage V H
r across a supercon-

ducting sample with Corbino geometry. In our analysis we considered the limit of

an infinitely long cylinder, because it is simpler in theory, but in an experiment a

thin washer geometry is more practical. In Fig. 2.2 we depict an annular sample

with intermediate thickness brought into proximity with a coaxial cable by a conical

metallic waveguide and subjected to an oscillating magnetic field along the z-axis.

As discussed in section 2.4 this oscillating magnetic field should give rise to charge
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oscillations and a potential difference V H
r across the sample.

The sample does not touch the waveguide due to insulating material indicated

by thick black lines in Fig. 2.2, but the potential difference V H
r is induced between

the inside and outside of the coaxial cable when charge oscillations are present.

This contactless measurement avoids difficulties in establishing an Ohmic contact

for current-based voltage measurement.

Figure 2.2: Our proposed experimental setup uses a waveguide nozzle at the end
of a coaxial cable to measure the potential difference V H

r . The thick black lines
represent insulating coating on the inside of the waveguide, so that the voltage
measurement is contactless. The applied magnetic field B0 of the external solenoid
is represented by purple arrows.

There have been many Hall effect measurements for normal metals and semi-

conductors using microwave cavities and microwave resonators [32–35]. However,

the superconducting case is complicated by the presence of Meissner screening, and
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it would take some additional work to see how those methods may be adopted to

the superconducting case.

An estimate for the Hall voltage (2.36) depends on the material’s London fre-

quency, which we estimate to be ωL = c/100nm = 3000 THz, and its Hall frequency,

which we take from (2.56) to be σH = 40 THz.

As for the applied magnetic field, in our calculation we assumed the magnetic

field was low enough to avoid the creation of vortices (B0 < Hc1) for theoretical

simplicity, but in experiment the only real limit is the upper critical field (B0 < Hc2).

We also assumed the frequency of the solenoid creating the field is low enough to

avoid electromagnetic retardation in our calculation, but this is also not binding on

experiment. For our calculation, we assume the magnetic field of the relatively low

magnitude B0 = 100 mT that is driven at a linear frequency f = ω/2π = 100 GHz.

Using the numbers we have given, we find the magnitude of the Hall voltage

in (2.36), in SI units, to be the following:

V H
r = 7 nV

(
f

100GHz

)2(
B0

100mT

)(
λL

100nm

)4

. (2.57)

The power at the end of the coaxial cable with resistance R = 50Ω would then be

given by P = (V H
r )2/R ≈ 10−18 W. The surface charge density in (2.35), in SI units,

is then

q = 2× 10−16 C/cm2. (2.58)
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It should also be noted that a trade-off exists between exploring the anomalous

Hall conductivity at lower frequencies and obtaining a large enough Hall voltage to

make the experiment practical.

Our analysis considered an infinite cylinder for simplicity, however in practice

the sample would be of finite. The experimentally relevant geometry is a Corbino

disk with a small thickness, but this situation is more complicated. For a thin-film

in the shape of a Corbino disk, the London penetration depth would be superseded

by the longer Pearl distance λ2
L/L [36], where L is thickness, but since the thin-

film does not perfectly shield the bulk the situation is different and would need

a separate analysis in some future work. The thin-film should also have strongly

enhanced magnetic flux at its edges making the nucleation of vortices more likely.

2.7 Induced Hall Conductivity

So far we have assumed that the Hall conductivity is intrinsic to the superfluid

and not induced by the applied axial magnetic field. In the previous sections we

found that a spontaneous Hall conductivity leads to a charge and voltage response

linear in the applied axial magnetic field Bs(t). However, the applied magnetic

field inside the London penetration depth can produce an extrinsic non-linear Hall

effect, which we can compare with the linear Hall effect caused by intrinsic Hall

conductivity. Hall conductivity of extrinsic origin depends on the magnetic field,

σEH(r, t) = sHBz(r, t), (2.59)
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and therefore have the time dependence of the applied axial magnetic field. The

circular electric field and axial magnetic fields in Eq. (2.21) and Eq. (2.20) have the

time-dependence

Bz(r, t) = Bz(r) cos(ωt) (2.60)

Eθ(r, t) = −λL
c
Bz(r) sin(ωt) (2.61)

where Bz(r) gives the radial dependence of the magnetic field in the superconductor.

If we replace σH → σEH(r, t) then the radial Hall current from Eq. (2.7) is given

by

jHr (r, t) = −sHBz(r) cos(ωt)
λL
c
Bz(r) sin(ωt) (2.62)

= −sHλL
2c

B2
z (r) sin(2ωt). (2.63)

Hall conductivity induced by the external magnetic field responds non-linearly at

the frequency 2ω. This second harmonic response is also seen in the surface charge

density and Hall voltage. Rederiving the Hall voltage and surface charge density

using Eq. (2.29) and Eq. (2.30) in the time domain (with σH → σEH(r, t)) we find

q(t) ≈ −ω
2sH

2ω3
L

B2
z (Ro) cos(2ωt) (2.64)
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and

VH ≈ −
2πsHω

2c

ω4
L

B2
z (Ro) cos(2ωt). (2.65)

Both a conventional and TRSB superconductor may have non-linear 2ω charge

oscillations caused by the applied magnetic field, but only a TRSB superconductor

with a spontaneous Hall conductivity has a linear response at the driving frequency.

2.8 Charge Oscillation in General

So far we have investigated charge oscillation in a specific geometry. Now let

us consider this phenomenon more generally. We will begin by deriving a differential

equation for the dynamics of charge in the bulk. For completeness we will include

a possible normal current jN = σNE.

2.8.1 Local Oscillation in Charge Density

Consider Ampere’s Law in the case of normal, Hall, and super- currents,

∇×B =
4π

c
(jS + jN + jH) +

1

c

∂E

∂t
. (2.66)

Taking the divergence of Ampere’s Law gives the charge continuity equation,

∂ρ

∂t
= −∇ · (jS + jN + jH). (2.67)
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Writing the normal and Hall currents in terms of the electric field, equation (2.67)

becomes

∂ρ

∂t
= −∇ · jS − σN∇ ·E − σH(∇×E)z. (2.68)

Using Gauss’ Law and Faraday’s Law, our expression becomes

∂ρ

∂t
= −∇ · jS − 4πσNρ−

σH
c

∂Bz

∂t
. (2.69)

Finally, by taking the time-derivative of both sides of our equation and using the

first London relation (2.5), we obtain a differential equation relating the local charge

ρ to the local magnetic field Bz:

∂2ρ

∂t2
= −ω2

Lρ− 2ωN
∂ρ

∂t
− σH

c

∂2Bz

∂t2
, (2.70)

where we define ωN = 2πσN .

We can first solve the homogenous part of equation (2.70) in the case where

there is no applied magnetic field,

∂2ρ

∂t2
= −ω2

Lρ− 2ωN
∂ρ

∂t
. (2.71)

If we substitute ρ = Pe−ωN t in (2.71), we obtain the simpler equation

∂2P

∂t2
= −

(
ω2
L − ω2

N

)
P. (2.72)
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This second-order differential equation describes simple harmonic motion at the

frequency
√
ω2
L − ω2

N . The solution for ρ can then be found easily:

ρ(r, t) = ρ(r) cos
(
t
√
ω2
L − ω2

N

)
e−ωN t. (2.73)

The initial charge distribution ρ(r, 0) maintains its shape in space with each point

acting as a damped oscillator. At zero temperature, σN = 0 and the charge should

oscillate at the plasma frequency forever, but until now no one has claimed to observe

these plasma oscillations in the superconductor. However, without the inhomoge-

nous term coming from Hall conductivity, there is no source for these oscillations.

Now let us solve the inhomogenious case of equation (2.70) for a magnetic field

Bz(r, t) = Bz(r)eiω0t. Once again we make the substitution ρ = Pe−ωN t to obtain a

simplified equation,

∂2P

∂t2
= −

(
ω2
L − (2πσN)2

)
P − σH

c
e2πσN t

∂2Bz(r, t)

∂t2
. (2.74)

We can then solve it in the frequency domain,

P (r, ω) =
σH
c

ω2
0

ω2
L − ω2

N − ω2
Bz(r)δ(ω − ω0 + iωN). (2.75)

Finally, we find the bulk charge density in the time domain,

ρ(r, t) =
σH
c

ω2
0

ω2
L − ω2

0 + 2iωNω0

Bz(r)eiω0t. (2.76)
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Thus, we see the Hall effect leads to oscillations in the local charge density ρ(r, t),

while in the absence of the Hall effect the oscillating charge is exponentially damped

by normal current. From this perspective it makes sense that experimenters have

not seen plasma oscillations in the superconductor.

2.8.2 Oscillation in Total Surface Charge

An alternative way to view the oscillation of charge in a superconductor can be

understood by considering a simply connected superconducting sample occupying

the volume V and having net zero charge. In this case we will derive a damped

harmonic oscillator involving the total charge on the boundary ∂V ,

Q(t) = −
∫
V

ρ(r, t)d3r, (2.77)

defined as opposite the charge in the total volume of the bulk.

We can obtain a charge continuity equation for Q(t) by integrating the conti-

nuity equation (2.67):

∂Q

∂t
=

∫
V

∇ · (jS + jH + jN)d3r. (2.78)

Then, using the Gauiss’s Law and the definition jN = σNE, we write

∂Q

∂t
=

∫
∂V

(jS + jH + σNE) · dA = IS + IH − 2ωNQ(t). (2.79)
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Here IS and IH are the total supercurrent and Hall current at the boundary ∂V ,

respectively. The Hall current at the boundary can be related to the total flux

through the superconducting sample in the following way:

IH =

∫
∂V

jH · dA = σH

∫
V

∇ · (E × ẑ)d3r =
σH
c

∂

∂t

∫
V

Bz(r)d3r. (2.80)

Next, we obtain an equation of motion for Q(t) by integrating the first London

equation (2.5) over ∂V to obtain

∂IS

∂t
=
nse

2

m

∫
∂V

E · dA = −4πnse
2

m
Q = −ω2

LQ. (2.81)

Combining our two equations, we have a damped harmonic oscillator driven

by the total magnetic field penetrating the superconductor:

∂IS

∂t
= −ω2Q(t), (2.82)

∂Q

∂t
+ 2ωNQ(t) = IS + IH , (2.83)

IH =
σH
c

∂

∂t

∫
V

Bz(r)d3r. (2.84)

These oscillator equations apply to any TRSB superconductor placed in a time-

varying magnetic field or moving in a non-uniform magnetic field.
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2.9 Solenoid Threading the Superconductor

In this section, we consider the alternative of placing the solenoid inside the

annular cylinder of inner radius Ri and outer radius Ro, and find that the results

are the same as placing the solenoid outside of the superconductor, except that

the screening of the electromagnetic field is more complicated. This approach has

the downside of the solenoid being smaller, which limits the possible current and

field through the solenoid. The smaller solenoid has the advantage that it has less

inductance and can be driven at a higher frequency. Consequently, we work in terms

of an ac linear current density I2D
ω (measured in biots/cm) of the solenoid, which

occurs at the radius Rs inside the circular cavity of radius Ri.

Since the superconductor shields electrodynamic activity from its bulk, nothing

interesting happens far away from the interface at r = Ri, and for our purposes

the outer edge of the cylinder can be taken to be infinity. We treat the solenoid-

superconductor system perturbatively in σH by first finding the electromagnetic

behavior for a normal superconductor (σH = 0) and then showing that charge

oscillation occurs as a first-order effect in σH 6= 0. Throughout this section we work

in the Fourier domain.

The electromagnetic field in the cavity is determined both by the driving linear

current density I2D
ω of the solenoid and the supercurrent response current density I2D

sc

of the superconductor. Since the solenoid current creates a time-dependent magnetic

flux, we know from Lenz’s law that there should be a current in the superconductor

to create an opposing magnetic flux. The electric field in vacuum (Rs < r < Ri)
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Figure 2.3: A solenoid of radius Rs threading an superconducting annular cylinder
of inner radius Ri, outer radius Ro, and length L. The axial magnetic field Bs of the
solenoid induces radial Hall current jHr which is compensated by radial supercurrent
jSr within a London penetration depth λL of the inner surface of the superconductor.
Since the effects happen near the inner surface of the superconductor, the outer
radius Ro can be taken to be infinite.

and in the superconductor (r > Ri) depend on each other, and we must use the

condition that the electric and magnetic fields be continuous at r = Ri to find a

solution which is self-consistent.
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2.9.1 Field in “Vacuum” Rs < r < Ri

In the region Rs < r < Ri there is vacuum between the solenoid at r = Rs

and the edge of the superconductor at r = Ri. We assume the quasi-static limit,

ω � c

Ri

(2.85)

in which retardation can be neglected. In this low-frequency limit [37], it is known

that an ideal solenoid with ac current density I2D
ω contains a time-dependent mag-

netic field B′z(r < a) = 4πI2D
ω /c completely contained within its coils, and produces

a circularly oriented electric field Eθ(r) at r > Rs. By Faraday’s Law (2.2), we

determine the electric field E′ produced by the solenoid:

∫
|s|=r

E′ · ds = −1

c

d

dt

∫
B′ · dA, (2.86)

B′z(Rs < r < Ri) = 0, (2.87)

E ′θ(Rs < r < Ri) =
i2πωR2

s

c2r
I2D
ω , (2.88)

where we have integrated over a circular contour of radius r.

However, since this circularly oriented electric field can also excite a circular

current density I2D
sc on the inner surface of the superconductor, we expect an ad-

ditional constant contribution to the magnetic field B′′z (r < Ri) = 4πI2D
sc /c and a

corresponding contribution to the electric field E ′′θ determined by Faraday’s Law
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(2.2),

∫
|s|=r

E′ · ds = −1

c

d

dt

∫
B′′ · dA, (2.89)

B′′z (Rs < r < Ri) =
4π

c
I2D
sc , (2.90)

E ′′θ (Rs < r < Ri) =
iωr

2c
B′′z =

i2πωr

c2
I2D
sc . (2.91)

The total electromagnetic field inside the cavity (Rs < r < Ri) is then

Eθ(r) = E ′θ(r) + E ′′θ (r) =
i2πωR2

i

c2r
I2D
ω +

iωr

2c
B′′z , (2.92)

Bz(r) = B′z(r) +B′′z (r) = B′′z . (2.93)

Because the electric and magnetic field must be continuous at the interface

between vacuum and the superconductor at r = Ri, we use Eq. (2.91) as a boundary

condition to find the electromagnetic field in the superconductor at r > Ri. We then

find an expression for B′′z in terms of the driving current density I2D
ω .

2.9.2 Screening in the Superconductor r > Ri

Now we solve for the screened electromagnetic field within the superconducting

cylinder. In contrast to the case of the outer solenoid, in this section we do not treat

the Hall effect as a perturbation. In the Fourier domain, Faraday’s Law, Eq. (2.2),

is given by

∇×E =
iω

c
B. (2.94)
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Similarly, for Ampere’s Law, Eq. (2.3), we replace jS using the London relation,

Eq. (2.5), and jH using Eq. (2.7). This gives us

∇×B =
4πσH
c

E × ẑ − iω

c

[
1− ω2

L

ω2

]
E. (2.95)

Since we are assuming that the system is infinitely long and cylindrically sym-

metric, the θ and z derivatives vanish in equations (2.94) and (2.95). The vanishing

of these derivatives leads to the r-component of the curl being zero, as seen in the

discussion preceding equation (2.28). Consequently, the r-component equation of

(2.95) gives a relationship between Er and Eθ:

iω

c
Er =

4π

c
(jSr + jHr ) =

ω2
L

cω
Er +

4πσH
c

Eθ, (2.96)

which we solve to find

Er(r, ω) = i
4πσHωc

2

(ω2
L − ω2)3/2

Eθ(r, ω). (2.97)

As a result, we can eliminate Er together with the θ and z derivatives from the

Maxwell equations (2.94) and (2.95) to obtain Br = 0, and the following two un-

coupled sets of equations:

∂Eθ
∂r

+
Eθ
r

=
iω

c
Bz (2.98)

∂Bz

∂r
= −ic

ω

[
ω2
L − ω2

c2
− 4πσ2

H

c2

ω2

ω2
L − ω2

]
Eθ, (2.99)
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and

∂Ez
∂r

=
iω

c
Bθ (2.100)

∂Bθ

∂r
+
Bθ

r
= −ic

ω

ω2
L − ω2

c2
Ez. (2.101)

These equations differ from (2.15) and (2.16) by a modification to the dielectric

function. Since only Eθ 6= 0 at the boundary, we can also assume Ez = Bθ = 0

and focus on the equations for Eθ and Bz. Combining Eq. (2.98) and Eq. (2.99), we

obtain modified Bessel differential equations,

∂2Eθ
∂r2

+
1

r

∂Eθ
∂r
− 1

r2
Eθ = κ2(ω)Eθ (2.102)

∂2Bz

∂r2
+

1

r

∂Bz

∂r
= κ2(ω)Bz, (2.103)

of order one and zero respectively. Here

κ2(ω) =
1

λ2(ω)

ω2
L − ω2

c2
− 4πσ2

H

c2

ω2

ω2
L − ω2

. (2.104)

The modified Bessel equation of order n has an exponentially decaying solution Kn

and an exponentially growing solution In, which we discard. The Bessel Equation

(2.17) gives us an electric field inside the superconductor,

Eθ(r) = CsK1(κ(ω)r). (2.105)

If we substitute our expression for Eθ(r) in Eq. (2.105) into Eq. (2.98), we obtain a
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magnetic field that solves Eq. (2.99):

Bz(r) = i
cκ(ω)

ω
CsK0(κ(ω)r). (2.106)

Using the continuity of Eθ(r) and Bz(r) at the interface, we can find Cs for r > Ri

and B′′z for r < Ri by setting the expressions in Eq. (2.92) and Eq. (2.93) equal to

the expressions in Eq. (2.105) and Eq. (2.106) with r = Ri. We find

Cs = i
4πωR2

s

2Ric2K1(κRi) + κR2
i c

2K0(κRi)
I2D
ω , (2.107)

B′′z = − 4πκa2K0(κb)

2RicK1(κRi) + κR2
i cK0(κRi)

I2D
ω . (2.108)

If, for a consistency check, we set ωL → 0 and σH → 0 in Eq. (2.104), i.e., there

is no superconductor, we can show that our electromagnetic field becomes the solu-

tion for a solenoid in vacuum. Then, in the limit ωL → 0, κ→ iω/c. Since ω � c/Ri

(from Eq. (2.85)), we can then use the small argument expansions of the Bessel func-

tions, K0(κr) ≈ − ln(ωr/c) and K1(κr) ≈ c/(iωr), where − ln(ωr/c)� c/(iωr), to

reduce (2.105) and Eq. (2.106) to the field of a solenoid in vacuum given in Eq. (2.88)

and Eq. (2.87).

For our case we make the low-frequency assumption,

ω � ωL, (2.109)
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in which case the screening length

λ(ω) =
1

κ(ω)
(2.110)

is approximately the London length, λ(ω � ωL) = λL. Assuming c/Ri < ωL, the

low-frequency limit in Eq. (2.109) is less restrictive than the low-frequency limit we

assumed to avoid electromagnetic retardation in Eq. (2.85), so it follows naturally.

In this limit, since r > Ri � λL we can use the large argument Bessel function

approximations, Kn(z) ≈
√
π/2ze−z, with z = r/λ(ω) � 1, in Eq. (2.105) and

Eq. (2.106),

Eθ(r) ≈ i
4πR2

s

cR2
i

ω

ωL
I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω) (2.111)

Bz(r) ≈ −
4πR2

s

cR2
i

I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω). (2.112)

The Eqns. (2.111) and (2.112) are the electrical analog of the usual Meissner effect

in which a static magnetic field is shielded from the bulk of a superconductor.

The electric field, which was initially caused by the changing flux of the

solenoid, creates a circular supercurrent,

jSθ = i
ω2
L

4πω
Eθ ≈ −

R2
s

R2
i

ωL
c
I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω). (2.113)

The supercurrent jSθ flows near the inner surface of the superconductor and forms a

solenoidal linear current density I2D
sc of radius r = Ri coaxial to the physical solenoid
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at r = Rs. We calculate I2D
sc and see that it gives rise to a flux Φsc in the cavity

(r < Ri) exactly opposite to that of the solenoid flux Φsol:

I2D
sc =

∫ ∞
b

jSθ dr ≈ −
R2
s

R2
i

I2D
ω (2.114)

B′′z =
4π

c
I2D
sc ≈ −

4π

c

R2
s

R2
i

I2D
ω (2.115)

Φsc = πR2
iB
′′
z ≈ −πR2

s

4π

c
I2D
ω = −Φsol. (2.116)

The zero-net-flux condition

Φsc + Φsol = 0 (2.117)

is an expression of Lenz’s Law in the case where there are no vortices in the su-

perconductor, consistent with our discussion below Eq. (2.4). The supercurrent

density I2D
sc is always proportional to I2D

ω because the superconductor opposes any

net change to the total flux. These two solenoidal currents are even proportional in

the dc limit ω → 0 because their changes must always be coordinated to keep the

total flux constant. Since the total flux through the superconductor cannot change,

the electric field is shielded from the bulk of the superconductor.

In this section we considered a solenoid threading the inside of the supercon-

ductor, rather than being outside of the superconductor. In this case we did not

treat σH perturbatively, to show that the only effect is a renormalization of the

inverse penetration depth κ in (2.104) by the addition of a negligible factor propor-

tional to σ2
H . This factor is negligible so long as σH � ω2

L/ω, as in equation (2.38).
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The Hall conductivity has only a tiny impact on the circular electric field or on the

axial magnetic field in the material. In the next section we consider the radial Hall

effect and charge oscillation induced by the circular electric field.

2.9.3 Radial Charge Oscillation

If the superconductor at r > Ri breaks time-reversal symmetry, then a small

anomalous Hall conductivity σH is possible. The immediate consequence is a Hall

current density jH 6= 0 from Eq. (2.7) that allows for a radial electric field Er 6= 0.

The radial Hall current is given by:

jHr (r) = σHEθ(r). (2.118)

Using the approximation of Eθ(r) in Eq. (2.111), we see the radial Hall current

decays into the bulk,

jHr (r) ≈ i
σH
c

4πR2
s

R2
i

ω

ωL
I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω). (2.119)

We also saw that the radial electric field Er in equation (2.97) is given in terms

of Eθ, which is given by Eq. (2.111). Thus, the radial electric field also exponentially

decays into the bulk,

Er(r) ≈
4πσH
ω2
L − ω2

4πR2
s

R2
i

ω2

cωL
I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω). (2.120)
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The radial electric field has several implications: a surface charge on the inner bound-

ary of the superconductor, a Hall voltage between the inner and outer boundaries

of the superconductor, and a radial supercurrent.

The jump in the radial component in the electric field from Er(r < Ri) = 0 in

the cavity to Er(r > Ri) 6= 0 in the superconductor corresponds to a surface charge

QRi
within a Thomas-Fermi screening length of the surface at r ≈ Ri. Because

the Thomas-Fermi length is small compared to the length scale λ(ω), we treat the

charge as residing on the cylindrical surface of area A = 2πRiL. From Gauss’ Law

and Eq. (2.120), we conclude

QRi
=

A

4π
Er(Ri) ≈

2πRiLσH
ω2
L − ω2

4πR2
s

R2
i

ω2

cωL
I2D
ω . (2.121)

The radial electric field in Eq. (2.97) can also be integrated to give us the

Hall voltage VH between the inside and outside of the cylinder associated with the

built-up charge QRi
:

V H
r = −

∫ ∞
b

Erdr = −i 4πωσH
ω2
L − ω2

∫ ∞
b

Eθdr. (2.122)

Using Eq. (2.99) to substitute for Eθ, we find

V H
r = −i 4πωσH

ω2
L − ω2

iω

cκ2

∫ ∞
b

∂Bz(r)

∂r
dr = − 4πcσH

ω2
L − ω2

ω2

cκ2
Bz(b). (2.123)

Using Eq. (2.112) to approximate the Hall voltage in Eq. (2.123) in terms of I2D
ω we
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obtain,

VH ≈
4πσH
ω2
L − ω2

ω2

ω2
L

4πR2
s

R2
i

I2D
ω . (2.124)

The Hall resistance of the superconducting cylinder can then be defined as

RH =
VH

dcoilI2D
ω

=
4πσH
ω2
L − ω2

ω2

ω2
L

4πR2
s

dcoilR2
i

, (2.125)

where dcoil is the distance between coils in the solenoid.

The radial electric field also causes supercurrent to contribute to the total

radial current. We find the radial supercurrent by substituting our expression for

Er from from Eq. (2.97) into Eq. (2.5):

jSr (r) = i
ω2
L

4πω
Er(r) = − σHω

2
L

ω2
L − ω2

Eθ(r). (2.126)

The combined supercurrent and Hall current in the radial direction is

jr(r) = jSr (r) + jHr (r) = − σHω
2

ω2
L − ω2

Eθ(r). (2.127)

In terms of our approximation for Eθ from Eq. (2.111), our expression Eq. (2.127)

gives

jr(r) ≈ i
4πσHω

2

ω2
L − ω2

ω

ωL

R2
s

cR2
i

I2D
ω

√
Ri

r
e−(r−Ri)/λ(ω). (2.128)
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The total current is proportional to the small factor ω2/ω2
L, since the supercurrent

partially cancels the effect of the Hall current. Since both the supercurrent and

Hall currents decay into the bulk with the electromagnetic field, the charge QRi

that accumulates at the boundary must be compensated by a charge distribution

ρ within the London penetration depth of the superconductor. We solve for ρ(r)

using Eq. (2.70) (with σN = 0) in the Fourier domain:

ρ(r) = −σH
c

ω2

ω2
L − ω2

Bz(r). (2.129)

Using Eq. (2.112) in Eq. (2.129) gives us a charge distribution which also decays

into the bulk,

ρ(r) ≈ 4πσHω
2

ω2
L − ω2

R2
s

c2R2
i

I2D
ω

√
Ri

r
e−(r−Ri)/λL . (2.130)

We can compare the bulk charge density with the surface charge density by

integrating ρ in Eq. (2.129) over the volume of the superconductor:

Q = 2πL

∫ ∞
Ri

drrρ(r) (2.131)

= −2πLσH
c

ω2

ω2
L − ω2

∫ ∞
Ri

rBz(r)dr. (2.132)

The integrand rBz(r) can be replaced using Eq. (2.98) to simplify the integral and
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give

Q =
2πLσH

c

ω2

ω2
L − ω2

∫ ∞
Ri

∂(rEθ)

∂r
dr (2.133)

= −i2πRiLσHω

ω2
L − ω2

Eθ(Ri), (2.134)

where ARi
= 2πRiL is the area on the inner surface of the superconducting cylin-

der. The charge in the bulk is opposite to the charge on the inner surface of the

superconductor, as one would expect:

QRi
= −Q. (2.135)

We have seen that the details are similar whether the magnetic field comes

from a solenoid outside or inside of the superconductor. The practical difference is

that a solenoid inside the superconductor must be small. It would be difficult for

an experimenter to obtain a high magnetic field in a small solenoid. On the other

hand, a smaller solenoid has lower inductance and may make it easier to have a

high-frequency ac current.

2.10 Conclusions

In this chapter, we considered the feasibility of testing a superconductor for

TRSB by directly measuring the low-frequency Hall conductivity. This measurement

would shed light on the controversy as to whether the spontaneous dc Hall effect

exists in TRSB superconductors [15, 31,38].
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For theoretical clarity, we considered an infinite annular cylinder of super-

conducting material and showed that, if the cylinder is placed inside a magnetic

field (or, equivalently, a solenoid with ac current), a circular electric field occurs as

a part of Meissner screening. We showed that if there is Hall conductivity, then

Hall current flows in the radial direction, causing a surface charge to accumulate

at the boundary of the superconductor. This surface charge is compensated by ra-

dial supercurrent, leading to radial charge oscillations at the London frequency. We

estimated the surface charge and Hall voltage across the inner and outer surfaces,

which could be measured in an experiment.

Our schematic experiment used a conical waveguide attached to a coaxial

cable to measure the potential difference across a Corbino disk. In order to de-

velop an experimental estimate, we obtained a formula for Hall conductivity from

a model of chiral d-wave superconductivity, and then provided a possible estimate

for the Hall voltage in the nanovolt range. We argued that the intrinsic Hall effect

produces a first harmonic response, while the extrinsic Hall effect would produce

a second harmonic response. Consequently, the first harmonic response uniquely

implies spontaneous Hall conductivity.

We also argue for an important difference between transverse Hall current and

linear current. The linear supercurrent is oscillatory at the frequency ωL ≈ ωp and

the normal current is purely dissipative, while the Hall current is able to couple to the

local electric field and drive charge oscillations. That bulk charge density oscillates

at the frequency ωL was already expected for conventional superconductors [39],

but to our knowledge has not been seen in experiment. Since prior work did not
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consider the unique role of Hall current in driving charge oscillations, our work may

provide guidance in locating the plasma oscillations in superconductors.

54



Chapter 3: URu2Si2 and Metastable Magnetism in the HO Phase

3.1 Introduction

The heavy-fermion material URu2Si2 exhibits a second-order phase transition

from paramagnetism to a puzzling hidden order (HO) phase at THO = 17.5 K [40,41],

where the corresponding symmetry breaking has not been definitively established.

Particularly interesting is the question of whether time-reversal (TR) symmetry in

the HO phase is preserved or broken. Raman spectroscopy gives evidence for the

spontaneous breaking of mirror symmetries, so Kung et al. [1] interpreted HO as

a chirality density wave that preserves TR symmetry (TRS). However, Schemm et

al. [42] observed a non-zero polar Kerr effect (PKE) in the HO phase, indicating

possible TRS breaking (TRSB)1. In this chapter, we attempt to reconcile the ex-

perimental results of Refs. 1 and 42 within a unified theoretical framework based on

an earlier model of HO developed by Haule and Kotliar in Refs. 43, 44.

According to Ref. 42, URu2Si2 exhibits zero PKE when cooled without an

applied magnetic field, which is consistent with TRS preservation in the HO phase.

However, when URu2Si2 is cooled in a training magnetic field up to 2 T, which is then

1The primary focus of Ref. 42 was on TR symmetry breaking in the superconducting phase
of URu2Si2 below Tc = 1.5 K, whereas our focus is on TR symmetry breaking in the HO phase,
which was also studied in Ref. 42.
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removed at low temperature, a non-zero PKE is observed on warm-up in the HO

phase. Apparently, the external magnetic field induces magnetism in the material

that is preserved even after the field has been removed. Schemm et al. [42] inter-

preted this persistent magnetism as extrinsic in origin, resulting from unspecified

magnetic states due to strain or defects. While explanations due to sample inho-

mogeneity are possible [45–48], we advance an alternative proposition - that the

induced magnetism is intrinsic to HO and would occur even in a perfectly uniform

sample.

We approach this problem from the perspective of the Haule-Kotliar model

[43, 44] characterized by a two-component complex order parameter. The real part

represents chiral order consistent with the observations of Ref. 1, whereas the

imaginary part represents magnetic order. Using a modified version of the associated

free energy, we study the interplay and competition between the two components

of the order parameter. We find that, when the system is cooled in a magnetic

field, it may become trapped at a local minimum of the free energy, corresponding

to a metastable ferromagnetic (FM) state and exhibiting the PKE. This conjecture

of a metastable FM state is supported by the observation of hysteresis in direct

magnetization measurements of single crystals of URu2Si2 cooled in zero and non-

zero fields [49].

Our proposition can be tested by applying a reversed magnetic field at low

temperature. We predict that, when the reversed field exceeds a certain threshold,

the system will make an irreversible transition from the metastable FM to the true

HO ground state, thereby resetting the PKE (or magnetization) to zero. In contrast,
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an extrinsic FM would change sign in a reversed magnetic field instead of being

eliminated. An experimental verification of this prediction would be a crucial test

of the metastable intrinsic FM scenario and would qualitatively discriminate it from

other possible explanations of the induced PKE.

3.2 URu2Si2

URu2Si2 is one of multiple U alloys that have been studied since the 1980s due

to the unusual properties which result from the U-5f electron shell. For the U-5f

electrons, the exchange interaction, the 5f bandwidth, the spin-orbit interaction,

and the intra-atomic f − f Coulomb interaction are all on the same energy scale,

leading to multiple interesting consequences [40]. The U-based compounds have in-

termediate behavior between that of transition metals and that of rare earth metals.

They also have intermediate behavior between localized and itinerant 5f electrons.

Additionally, there are multiple possible valences for the 5f electrons and there is a

large spin-orbit coupling.

In URu2Si2, the 5f electrons are partially itinerant and partially reside in Ising-

like magnetic moments [40]. The coexistence of local and itinerant electrons is re-

lated to the Kondo interaction between conduction electrons and the local moments,

which enable the electron mass to have a renormalized value that is heavy [50]. The

effective conduction electron masses vary from 10 to 25 times the electron mass [51].

Since the material evidences both itinerant and local electron phenomena, theories

of HO are typically divided on whether HO is an itinerant or local phenomenon.
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The symmetry breaking that occurs at THO has a large associated entropy,

S =
∫ THO

0
(∆C/T )dT ≈ 0.2R ln 2, which is a sizable fraction of the ideal gas con-

stant. In line with the antiferromagnetic phases that often exist in the uranium-

based heavy-fermion materials, this phase transition was reported as magnetic. And

in fact, X-ray scattering did reveal magnetic Bragg peaks corresponding to an anti-

ferromagnetic structure, but the ordering magnetic moment was a very small fraction

of the Bohr magneton, µ = (0.03 ± 0.01)µB per uranium atom. This “small mo-

ment antiferromagnetism” was too small to explain the total entropy of the phase

transition and made the HO order parameter very controversial.

A magnetic explanation for HO may seem tempting because other uranium-

based heavy fermion compounds often have magnetic phases. Indeed, if we consider

the pressure vs temperature phase diagram in Fig. 3.2, we can see there is an an-

tiferromagnetic (AF) phase adjacent to the HO. Elastic neutron scattering at high

pressure reveals the AF phase to have a magnetic order that is uniform within a− b

plane layers, but staggered between adjacent layers in the c direction, thus doubling

the unit cell along the c axis. This moment agrees with c-axis period doubling seen

in the HO phase by ARPES measurements [52], and there is an “adiabatic continu-

ity” between the HO and AF phases in which the resistivity changes continuously

from the AF to the HO phase [53,54]. On the other hand, neutron scattering and Si

nuclear magnetic resonance (NMR) studies have suggested that the ordered moment

is contained in small AF pockets that may exist within the HO phase [47, 55]. HO

may respect TRS and only contain pockets of TRSB AF, since the two phases are

separated by a first-order phase transition at high pressure [40]. These pockets may
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be the result of defects, but it is also possible that the two phases are close enough

in energy that they are metastable and may occur in a clean sample.

Although 600 papers have been published on URu2Si2 with many different

theories by dozens of authors, we focus on a particular conception of HO based

on a localized 5f 2 electron configuration. With respect to the point group D4h

giving the symmetry of URu2Si2, potential wavefunctions can be decomposed into

different representations of the group. An early crystalline electric field scheme

reproduced some of the thermodynamic properties of HO by assuming that the

two low-lying states had symmetries Γ
(1)
1 = A1g and Γ2 = A2g corresponding to

“hexadecapolar order” [56, 57]. This scheme saw renewed attention due to a first-

principles calculation by Haule and Kotliar using a combination of dynamic mean

field theory and density functional theory to calculate the the local wavefunction

of the 5f 2 electrons [43]. The calculation predicted an A2g ground state and A1g

excited state, which can hybridize to produce the hexadecapolar order in the ground

state. More intriguing still, Haule and Kotliar showed that in general the A2g-valued

hybridization of the two low-lying states produces a complex order parameter that

can be hexadecapolar or dipolar 44. They formulated a mean-field theory model for

the complex order parameter and argued that both the HO and AF phases emerge

as the real and imaginary parts of the same complex order parameter.

The A2g complex order parameter gained further support from two Raman

scattering experiments. The first experiment used polarized Raman spectroscopy

to directly observe the symmetry of the transition between the low-lying states and

a nearby conduction band [1]. They found broken A2g, which can be understood
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as the breaking of four vertical mirror planes, as depicted in Fig. 3.1 and discussed

in the next section. They then argue that HO is a “chirality density wave”. The

same group carried out a follow-up experiment in which a HO to AF transition was

carried out in URu2−xFexSi2 by doping [58]. The A2g Raman signal disappears at

the transition from HO to AF and then reappears and increases with further doping.

Since HO and AF are separated by a first-order phase transition, the disappearance

and re-emergence of the signal is interpreted as a transition from a ground state

where the order parameter is real to a ground state where the order parameter is

imaginary. The chirality density wave is depicted in Fig. 3.1.

3.3 Haule-Kotliar Model

URu2Si2 is a body-centered tetragonal crystal, where uranium atoms are ar-

ranged in square-lattice layers perpendicular to the c axis. The crystal has a four-

fold rotational symmetry about the c axis and four vertical mirror planes (VMP)

through the c axis. According to Ref. 43, the 5f2 electrons of the uranium atoms

have the ground state |A2〉 = i(|4, 4〉 − |4,−4〉)/
√

2 and the lowest excited state

|A1〉 = cosφ(|4, 4〉 + |4,−4〉)/
√

2 + sinφ |4, 0〉, written in the angular momentum

basis |J, Jz〉, where the z axis is taken along the c axis, and φ ≈ 0.37π. Inelastic

non-resonant X-ray spectroscopy supports the conjecture that |A1〉 and |A2〉 are

indeed the low-lying states of the system [59].

A model Hamiltonian H consistent with both VMP and TR symmetries can

be constructed [44] using Pauli matrices {σxj , σ
y
j , σ

z
j} in the basis of |A2〉j and |A1〉j
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Figure 3.1: This figure shows the A2g symmetry breaking of the local 5f2 electron
wavefunctions. (A) The crystal structure and wavefunctions are presented in the
paramagnetic state. The high-temperature wavefunctions have two vertical mirror
plane symmetries σv and σd. (B) A schematic band structure of the low-lying states
and conduction band is shown. (C) The crystal structure remains the same below the
transition temperature, but the hybridized wavefunctions break the vertical mirror
plane symmetries and pick up chirality. (D) An antiferric ordering of chiralities is
shown, indicating a chirality density wave. Figure from Ref. 1. Reprinted with
permission from AAAS.

at each uranium site labeled by coordinate j:

H =
∑
〈j,k〉

[Jxjkσ
x
j σ

x
k + Jyjkσ

y
jσ

y
k ]−

∑
j

[∆σzj + bσyj ]. (3.1)

Here 2∆ = 35 K is the energy splitting of the A1 and A2 states 2, b = µeffB is the

energy of interaction with an external magnetic field B applied along the c axis, and

2Our definition of ∆ differs by a factor of 2 from Ref. 44. We choose ∆ = 17.5 K for consistency
with Ref. 44.
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the amplitudes Jx,yjk describe interaction between the nearest neighboring sites 〈j, k〉.

The Pauli matrices transform as σx,y → −σx,y and σz → σz, upon VMP reflections

because |A2〉 is odd and |A1〉 is even. Thus, the first two terms in H are bilinear in

σx,y, and the third term is linear in σz. Additionally, σy → −σy upon TR due to

complex conjugation, so σy couples linearly to the magnetic field in the last term.

At low temperature, the system described by Eq. (3.1) may undergo a phase

transition that breaks VMP symmetries and results in hybridization of the even |A1〉

and odd |A2〉 states. It is characterized by the anomalous average

ψj = 2 〈A1|j ρ |A2〉j = Tr[ρ(σxj + iσyj )] = ψxj + iψyj , (3.2)

where ρ is the density matrix, whereas ψxj = 〈σxj 〉 and ψyj = 〈σyj 〉 are the real

and imaginary parts of the complex order parameter ψj. The real part repre-

sents HO and is equivalently characterized by a non-zero expectation value ψxj =

−Tr[ρJxJy(J
2
x − J2

y )]/8 cosφ of the hexadecapolar operator [43], which is antisym-

metric with respect to VMP reflections and symmetric with respect to TR. The

associated ground state is a real superposition of |A2〉j and |A1〉j asymmetric with

respect to VMP reflections, so it breaks chiral symmetry [1] but preserves TR sym-

metry. The imaginary part of the order parameter ψyj = Tr[ρJz]/4 cosφ represents

a magnetic moment along the c axis and is non-zero for a complex superposition of

|A2〉j and |A1〉j. Below, we analyze the emergence of the chiral and magnetic orders

using a mean-field theory.

In the mean-field approximation σαnσ
β
m → ψαnσ

β
m + σαi ψ

β
m − ψαnψ

β
m, the free
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energy at temperature T = 1/β is given by

F =
∑
j

γ(ψxjψ
y
j )

2 − T ln [cosh (βλj)]−
∑
〈j,k〉
α=x,y

Jαjkψ
α
j ψ

α
k

λj =

√√√√∆2 +

(∑
k

Jxjkψ
x
k

)2

+

(∑
k

Jyjkψ
y
k − b

)2

. (3.3)

Here we have introduced the additional term γ(ψxjψ
y
j )

2 with γ > 0 to discourage

on-site co-existence of the chiral and magnetic orders, which is necessary to account

for the first-order phase transition between HO and antiferromagnetism (AF) under

pressure [40].

Elastic neutron scattering in the high-pressure AF phase [60, 61] reveals a

magnetic order that is uniform within layers, but staggered between adjacent lay-

ers, thus doubling the unit cell along the c axis. A similar c-axis period doubling

is also discussed for the HO phase, based on ARPES measurements [52] and the

“adiabatic continuity” between the HO and AF phases seen in resistivity stud-

ies [53, 54]. Therefore, we take HO to be staggered, ψxn = (−1)nψHO, as a function

of the layer number n, in agreement with the notion of a chirality density wave [1].

Similarly, we decompose the magnetic order into the uniform and staggered compo-

nents, ψyn = ψFM + (−1)nψAF, representing FM and AF. Then, we rewrite Eq. (3.3)

in terms of the three order parameters ψHO, ψAF, and ψFM coupled to the effective

interaction constants Jα± = −(4Jα‖ ± 8Jα⊥), where Jα‖ < 0 and Jα⊥ > 0 are the in-

tralayer and interlayer values of Jαij. Positive values of the interaction amplitudes

Jx− > Jy− > Jy+ > 0 favor HO over AF over FM.
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3.4 Competition of Hidden Order and Antiferromagnetism

Equation (3.3) was used in Ref. 44 to study the interplay between HO and

AF as a function of pressure in the absence of magnetic field. In this case ψFM = 0,

and free energy per site f = F/N (N is the site count) is

f [ψHO, ψAF] = Jx−ψ
2
HO + Jy−ψ

2
AF + γψ2

HOψ
2
AF (3.4)

−T ln

[
cosh

(
β

√
∆2 + (Jx−ψHO)2 + (Jy−ψAF)2

)]
.

Let us examine how the energy landscape given by Eq. (3.4) changes with the

decrease of temperature for points A, B, and C on the schematic phase diagram in

Fig. 3.2. In Figs. 3.3(a)-(c) we show contour plots of f [ψHO, ψAF] vs. ψHO on the

horizontal axis and ψAF on the vertical axis. The red arrows in Fig. 3.3 indicate

the state of the system during the described evolution. At point A for T > THO,

the system is at the energy minimum ψHO = ψAF = 0 as shown in Fig. 3.3(a). At

point B for T = 15.3 K < THO, the minimum at the origin splits into two degenerate

minima on the horizontal axis shown in Fig. 3.3(b). Consequently, the system

spontanelously breaks symmetry and acquires ψHO 6= 0 via a second-order phase

transition. Using the condition ∂2f/∂ψ2
HO = 0 at ψHO = ψAF = 0 for the transition

temperature THO = 17.5 K, the interaction constant Jx− = 2∆/ tanh(∆/THO) ≈ 46 K

can be deduced [44]. At a lower temperature, such as T = 3 K for point C, the

free energy develops a second pair of shallower (local) minima along the vertical

(magnetic) axis as shown in Fig. 3.3(c), but the system stays at one of the global
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minima with ψHO 6= 0 and ψAF = 0. Under pressure, the AF minima on the vertical

axis become deeper than the non-magnetic minima on the horizontal axis, so the

system undergoes a first-order phase transition from HO to AF with ψAF 6= 0 and

ψHO = 0 at high pressure [44]. To explain the first order of the phase transition,

we choose a large enough γ ≈ 64 K to ensure an energy barrier separating the

minima on the magnetic and non-magnetic axes. This picture is supported by

Raman spectroscopy [58] in Fe-doped URu2Si2, where optically-induced transitions

between the HO and AF minima in the energy landscape were observed. Using the

value TAF = 15 K extrapolated to ambient pressure [44] and its associated condition

∂2f/∂ψ2
AF = 0 at the origin, we deduce Jy− = 2∆/ tanh(∆/THO) ≈ 43 K.

3.5 Competition of Hidden Order and Ferromagnetism

A staggered AF order does not explain the field-induced PKE observed in

Ref. 42, because it cannot be trained by a uniform magnetic field, and the contribu-

tions from alternating layers cancel out. So, we turn our attention to non-staggered

FM order ψFM. The training magnetic field B couples to it linearly in Eq. (3.1),

thus lowering the energy of the FM state and making it competitive with HO. In

contrast, AF has higher energy than HO at ambient pressure, so we set ψAF = 0,

and the free energy per site in Eq. (3.3) becomes

f [ψHO, ψFM] = Jx−ψ
2
HO + Jy+ψ

2
FM + γψ2

HOψ
2
FM (3.5)

−T ln

[
cosh

(
β

√
∆2 + (Jx−ψHO)2 + (Jy+ψFM + b)2

)]
.

65



Figure 3.2: Phase diagram for the free energy in Eq. (3.5) as a function of magnetic
energy b and temperature T . The numbers in circles and the degree of shading
indicate the number of minima of f [ψHO, ψFM]. Every shaded domain has two de-
generate HO minima with |ψHO| 6= 0 and may have one or two FM minima with
ψFM > 0 or ψFM < 0, as schematically indicated around T = 10 K. The HO (FM)
minima have lower energy to the left (right) of the dashed first-order transition line
labeled I. The solid line labeled II represents a second-order phase transition from
paramagnetism to HO. Blue, red, and green lines represent the Zero-Field Cooling
(ZFC), High-Field Cooling (HFC), and Field-Reversal Test (FRT) protocols.

Eq. (3.5) differs from Eq. (3.4) by the coefficient Jy− → Jy+ and the presence of

magnetic energy b. The difference between Jy+ and Jy− is only due to the small

interlayer coupling Jy⊥, so Jy+ still has a positive sign favorable for FM. Since the

value of Jy⊥ is unknown, we take Jy+ ≈ 43 K as an estimate. The observation of a

FM phase in Re, Tc, and Mn doped samples [62–65] indicates that FM can, indeed,

be a close competitor of HO.

Let us compare two experimental protocols employed in Ref. 42 for going from
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point A to point C in Fig. 3.2: zero-field cooling (ZFC) via A-B-C and high-field

cooling (HFC) via A-D-E-F-G-C. The energy landscape of Eq. (3.5) at points A, B,

and C is shown in Fig. 3.3(a)-(c) and has already been discussed below Eq. (3.4),

but now the vertical axis represents ψFM instead of ψAF. During ZFC, the system

undergoes a second-order phase transition to the HO ground state with ψHO 6= 0

and ψFM = 0, and stays there as temperature decreases.

Now let us consider HFC starting at point A, where the energy minimum is

located at ψHO = ψFM = 0 as shown in Fig. 3.3(a). Next, a training magnetic

field b = 0.4 K is applied (point D in Fig. 3.2) shifting the energy minimum in the

FM direction ψFM > 0 as shown in Fig. 3.3(d). At point E with T = 15.3 K, the

free energy develops two shallow degenerate HO minima, but the system stays in

the pre-existing FM global minimum as shown in Fig. 3.3(e). At nearby point F

with T = 15 K, the HO minima become deeper than the FM minimum as seen in

Fig. 3.3(f), but the energy barriers prevent a transition. So, the system stays in the

metastable FM minimum all the way down to T = 3 K at point G, as shown in

Fig. 3.3(g). Removing the magnetic field at T = 3 K takes the system to point C

in Fig. 3.2 while preserving its FM state as depicted in Fig. 3.3(h). Although the

energy landscape in panel (h) is exactly the same as in panel (c), the state of the

system is different: It is HO for ZFC and FM for HFC. The metastable FM state

is reached because HFC crosses the first-order rather than the second-order phase

transition line in Fig. 3.2. Finally, when temperature is increased along the path

C-B-A at b = 0, the FM metastable state exhibits a non-zero PKE, as observed on

warmup at zero field in Ref. 42.
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The theoretical scenario presented above offers a qualitative explanation of

experiment [42] but has shortcomings. First, the experimental PKE persists on

warmup to T > THO, whereas in our model the FM minimum in free energy disap-

pears at T < THO. Second, the PKE magnitude observed in Ref. [42] increases with

the increase of the training magnetic field. This feature can be explained theoret-

ically by considering partial statistical population of different states in the energy

landscape due to thermal fluctuations. However, further refinements of the model

are beyond the scope of this chapter and are left for future studies.

3.6 Field-Reversal Test

The proposed scenario can be tested by applying a reversed magnetic field, in

the opposite direction relative to the HFC training field, at low temperature. When

the magnetic energy reaches a critical magnitude −b1 ≈ −0.22 K corresponding to

point H in Fig. 3.2, the metastable FM minimum transforms into a saddle point as

shown in Fig. 3.3(i), so the system makes an irreversible transition to one of the HO

minima indicated by the red arrows. This transition can be detected by applying

and removing a progressively increasing reversed magnetic field at low temperature,

while measuring the PKE at b = 0 in each cycle.

Instead of using the optical PKE technique, the metastable FM can also be

observed by direct magnetization measurements [49] using a sensitive probe, such

as a SQUID magnetometer. The magnetic moment in the FM state can be crudely

estimated to be of the same order as the staggered magnetic moment mAF = 0.3µB
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experimentally measured [61] in the AF phase. However, the magnetic moment in

the metastable FM state would be greatly reduced by thermal fluctuations between

the global and local minima in Fig. 3.3. Therefore, the effective FM moment is

expected to be small, so that direct measurement of magnetization would require

high sensitivity, consistent with the PKE sensitivity. The field-reversal test of the

metastable FM state can also be performed using direct magnetization measure-

ments.

Figure 3.3: Contour plots of the free energy f [ψHO, ψAF] given by Eq. (3.4) or
f [ψHO, ψFM] given by Eq. (3.5) for points A-H in Fig. 3.2. The horizontal and
vertical axes represent the non-magnetic, ψHO, and magnetic, ψAF for (a)-(c) and
ψFM for (a)-(i), components of the order parameter. Global minima, local minima,
and saddle points are indicated by red disks, orange squares, and black triangles,
while red arrows indicate the state of the system reached following the paths in
Fig. 3.2.
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3.7 Comparison with Experiment

The magnetic energy b1 in the field-reversal test is one of the several charac-

teristic magnetic energies b1, b2, b3 shown in Fig. 3.2, indicating qualitative changes

in the free-energy landscape in Fig. 3.3. The magnetic energy b2 corresponds to the

first-order phase transition between ψHO and ψFM, where the free energy fHO of the

HO minima in Fig. 3.3 is equal to the free energy fFM of the FM minimum. The

magnetic energy b3 corresponds to the termination of the metastable HO phase,

where the HO minima in Fig. 3.3 disappear. Experimentally, HO terminates at a

magnetic field of about 35 T [66]. For comparison of theory with experiment, we

need to convert magnetic energy b in Kelvins into magnetic field B in Teslas. The

conversion coefficient can be estimated as B/b = µ−1
eff = 1.2 T/K using the effective

magnetic moment µeff = | 〈A2|Lz + 2Sz |A1〉 |µB = 1.25µB quoted in Ref. 44. How-

ever, for b3 = 0.93 K in Fig. 3.2, this µeff gives the terminating field B3 = 1.1 T,

which is far short of the 35 T seen in experiment. This discrepancy can be resolved

in two ways.

The value b3 = 0.93 K shown in Fig. 3.2 was obtained for particular values

of the unknown parameters ∆, Jy+, and γ and can be increased by adjusting those

parameters. A formula for b3 is derived in section (3.8), and the maximal value

b
(max)
3 = THO is achieved in the limit γ →∞ and ∆→ 0. Using µ−1

eff = 1.2 T/K and

b
(max)
3 = THO = 17.5 K, we obtain B3 = 21 T, which is closer to the experimental

value.

Moreover, the conversion coefficient µeff can be estimated from experiment,

70



rather than from the theoretical quote in Ref. 44. The staggered moment observed

in the antiferromagnetic phase in experiment [61] is mAF = 0.3µB per uranium

atom. Comparing with the theoretical formula in Eq. (3.17) computed in section

3.9, we find µeff = 0.3µB in the limit ∆ → 0, which is four times lower than the

prior estimate. Combining this estimate for µeff with the estimate for the maximal

b
(max)
3 = THO = 17.5 K, we obtain B3 = 87 T, which exceeds 35 T by a wide margin.

It shows that the theoretical estimate of the HO terminating magnetic field can be

made large enough to match experiment by tuning the parameters of the model.

For illustration we repeat the calculation for alternative values ∆ = 7 K and

γ = 525 K and the corresponding generated values of Jx− = 2∆/ tanh(∆/THO) =

37 K, Jy+ = Jy− = 2∆/ tanh(∆/TAF) = 32 K, and µeff ≈ 0.33µB. The new phase

diagram, shown in Fig. 3.4, shares qualitative features with Fig. 3.2, but the char-

acteristic energies b1 and b2 are interchanged. The HO termination energy b3 = 6 K

translates into B3 = 27 T, and the field-reversal energy b1 = 4 K translates into

B1 = 18 T.

So, there is a wide range of possible values for the characteristic fields B1 and

B3 depending on the model parameters. However, the phase diagram of URu2Si2 in

a strong magnetic field is complicated with multiple phase transitions [67–69] not

captured by our simple model. Additionally, the applicability of the Haule-Kotliar

framework in very strong fields is not clear, as the basis states may change. So, our

model should be primarily considered a qualitative, rather than quantitative, guide

to experiment.
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Figure 3.4: Phase diagram as in Fig. 3.2 recalculated using ∆ = 7 K and γ = 525 K
(in contrast to ∆ = 35 K and γ = 64 K in Fig. 3.2). Notice the greater scale for the
magnetic energy b.

3.8 The magnetic field terminating hidden order

Here we evaluate the critical magnetic field energy b3 corresponding to the

termination of HO at T = 0 on the phase diagrams shown in Figs. 3.2 and 3.4. It

can be derived from the free energy in Eq. (3.5) at T = 0,

f [ψHO, ψFM] = Jx−ψ
2
HO + Jy+ψ

2
FM + γψ2

HOψ
2
FM (3.6)

−
√

∆2 + (Jx−ψHO)2 + (Jy+ψFM + b)2.

A general consideration is somewhat complicated, so we study the limiting cases of

γ = 0 and γ →∞.
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The case of γ = 0 corresponds to the Haule-Kotliar model of Ref. 44, but

we arrive at a different result for b3. At γ = 0, minimization of the free energy in

Eq. (3.6) gives two equations ∂f/∂ψHO = ∂f/∂ψFM = 0:

2ψHO =
Jx−ψHO√

∆2 + (Jx−ψHO)2 + (Jy+ψFM + b)2
, (3.7)

2ψFM =
Jy+ψFM + b√

∆2 + (Jx−ψHO)2 + (Jy+ψFM + b)2
. (3.8)

From Eq. (3.7) we find

2
√

∆2 + (Jx−ψHO)2 + (Jy+ψFM + b)2 = Jx−, (3.9)

and then from Eq. (3.8) we find ψFM = b/(Jx− − Jy+). The HO vanishes at the

termination field b = b3, where ψHO = 0. Using these values for ψHO and ψFM in

Eq. (3.9), we find a formula for b3:

b3(γ = 0) =
Jx− − J

y
+

2

√
1−

(
2∆

Jx−

)2

. (3.10)

Eq. (3.10) replaces an incorrect formula on page 3 of Ref. 44 for the critical field bc

corresponding to our b3. The formula in Ref. 44 gives bc ∝ Jx− + Jx+, which cannot

be valid, because a correct formula must give b3 → 0 in the limit Jx− → Jy+, where

an infinitesimal magnetic field would be necessary to favor FM over HO.

In the case γ → ∞, the term γψ2
HOψ

2
FM in Eq. (3.6) imposes a high energy

penalty for the co-existence of ψHO and ψFM, so we set ψFM = 0. Using this value
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and ψHO = 0 in Eq. (3.9), we find

b3(γ →∞) =
Jx−
2

√
1−

(
2∆

Jx−

)2

=
∆

sinh( ∆
THO

)
, (3.11)

where the second equality follows from 2∆/Jx− = tanh(∆/THO).

Comparing Eqs. (3.10) and (3.11), we observe that the highest termination

field is achieved in our model in the limit γ →∞ and ∆→ 0, where Eq. (3.11) gives

b
(max)
3 = THO. (3.12)

3.9 The Staggered Magnetic Moment

Here we evaluate the staggered magnetic moment in the antiferromagnetic

phase under pressure. We introduce a local magnetic field bj, so that the free energy

is given by Eq. (3.3) with b→ bj. The local on-site magnetic moment mj at bj = 0

and T = 0 is given by

mj = − ∂F

∂Bj

= −µeff
∂F

∂bj
= (3.13)

= µeff

(∑
k J

y
jkψ

y
k

)√
∆2 +

(∑
k J

x
jkψ

x
k

)2
+
(∑

k J
y
jkψ

y
k

)2
. (3.14)

In the antiferromagnetic phase, we have ψyn = (−1)nψAF and ψxn = 0, so the

staggered magnetic moment is mn = (−1)nmAF where

mAF = µeff
Jy−ψAF√

∆2 + (Jy−ψAF)2.
(3.15)
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Using the minimum condition ∂f/∂ψAF = 0 for f in Eq. (3.4) at T = 0, we find

ψAF =

√
1−

(
2∆

Jy−

)2

(3.16)

and

mAF = µeff

√
1−

(
2∆

Jy−

)2

=
µeff

cosh(∆/TAF)
. (3.17)

where we have used 2∆/Jy− = tanh(∆/TAF).

The formula for the staggered magnetic moment m(0,0,1) given on page 3 of

Ref. 44 differs from our Eq. (3.17) by an extra factor of 1/2, which we believe is

incorrect.

3.10 Conclusions

We have proposed a theoretical scenario reconciling the TR invariance of the

HO state with observation of a non-zero magnetic-field-induced PKE [42]. Com-

petition between the real and imaginary parts of a complex order parameter in a

generalized Haule-Kotliar model [44] results in either ground-state HO or metastable

FM, depending on the path taken through the phase diagram. Our theory can be

tested by applying a strong enough reversed magnetic field at low temperature,

which should trigger a transition from FM to HO and cause the PKE to vanish.

Although some issues remain open in our scenario, it has the advantage of giving

a unified description of the HO and FM states within a single theoretical model
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without invoking extrinsic effects.

In principle, the general approach presented in this chapter can be adapted

to other two-level models of HO in the literature. In particular, the hastatic order

proposed in Refs. 70, 71 is based on the 5f3 configuration described by the effective

spin 1/2 and could also be used to explain intrinsic magnetism. However, the

hastatic model predicts an in-plane magnetic moment in the HO phase which is not

observed experimentally [72,73].

A non-zero PKE is also observed in the superconducting phase of URu2Si2 [42]

emerging from the HO phase below Tc = 1.5 K. A generalized model for the two

separate TR symmetry breakings in the HO and superconducting phases, indepen-

dently controllable by a training magnetic field [42], remains a challenge for future

study.
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Chapter 4: Majorana Modes in Bi/Ni Bilayers

4.1 Introduction

In a recent report it has been seen that superconducting Bi/Ni bilayers ex-

hibit the PKE signal characteristic of TRSB [24](see Chapter 1). The Kerr signal

is reported for a sample with Bi (25 nm)/Ni (2 nm) that is first cooled at zero

magnetic field and then measured on warm-up in zero magnetic field. The onset

of ZF Kerr signal occurs at the superconducting transition temperature Tc = 4.1

K and reaches θK ≈ 120 nrad at low temperature. The authors argue the signal

emerges from superconductivity and not from the Ni magnetic moments. Since the

Ni moments are parallel to the surface, they do not couple to the PKE probe. Also,

the strength of the signal is stronger with increasing opacity of the Bi layer. Finally,

the ferromagnetic Curie temperature of Ni is 400 K, which is much greater than the

Tc at which the effect appears.

The authors of the Bi/Ni study [24] then discuss a possible superconducting

condensate f(p) = 〈φpφ̃p〉 between the Fermion field φp and its partner under time-

reversal, φ̃p = ν∗pφ−p (νp is a phase factor s.t. νpν−p = −1). Such a pairing must be
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even in momentum p due to the behavior of the Fermion fields under time-reversal,

f(p) = 〈φpφ̃p〉 = ν−pν
∗
p〈φ̃−pφ−p〉 (4.1)

= −ν−pν∗p〈φ−pφ̃−p〉 = 〈φ−pφ̃−p〉 = f(−p). (4.2)

Consequently, the TRS paired condensate must be even in the pairing momentum.

Expanding in 2D harmonics f(p) =
∑

m e
imθpfm, they argue that since the m = 0

component is TRS and the m = ±1 component is forbidden, then m = ±2, which

corresponds to d-wave superconductivity, is a natural candidate to explain the TRSB

superconductivity in Bi/Ni. Based on the symmetry of the crystal, they argue for

a dxy ± idx2−y2 superconductivity state.

If Bi/Ni is a d+id superconductor, then it is a rare example of a 2D topological

superconductor that may have topologically protected edge modes. In particular, it

may have topologically protected Majorana zero-energy modes around half-quantum

vortices. A Majorana operator γ̂ has the property γ̂† = γ. A prior work found that

vortices in a spin-singlet dxy + idx2−y2 superconductor have no zero-energy bound

state [74]. However, our case is different because we consider spin-orbit coupling

and a Zeeman magnetic in addition to dxy + idx2−y2 superconductivity, and we show

that a Majorana zero-mode can exist around a vortex. To do this, we set up the

problem to follow the argument of Sau et al. [75] for Majorana zero-modes in the

topological s-wave superconductor. The structure of their argument is qualitative

similar to the work by Gurarie and Radzihovsky [76], in which a Majorana bound

state is shown to exist for a chiral p-wave superconductor. In the following sections,
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we set up and solve the Bogoliubov de Gennes (BdG) equation for the topological

dxy + idx2−y2 system and then show that a Majorana zero mode can exist.

4.2 Majorana Quasiparticles

Supposing a superconducting condensate exists, then we can represent it with

a quadratic mean-field theory (as discussed in chapter 1). We assume the standard

Majorana mode ingredients of spin-orbit coupling and Zeeman splitting are present

in the single particle Hamiltonian

H0 = ηp2 + α(~σ × ~p) · ẑ + Vzσz − µ (4.3)

where Vz gives the Zeeman splitting, α gives spin-orbit coupling, and η = 1/2m∗

gives effective mass of the superconducting electrons. The d + id superconducting

order parameter near an n-fold vortex is given by

∆n(r) =
√

∆0 exp(iθn/2)
∆0

p2
F

(px + ipy)
2
√

∆0 exp(iθn/2). (4.4)

The quadratic Hamiltonian for the 2D superconductor can be written in BdG form

in terms of electron field operators cσ(z),

Ĥ =

∫
d2r

c†(r)

c(r)


† H0 ∆

∆∗ −H∗0


c†(r)

c(r)

 (4.5)

where c(r)† = [c†↑(r), c†↓(r)].
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In general, the excitations of a quadratic Hamiltonian are given in terms of

Bogoliubov quasiparticle operators, but we’re interested specifically in a Majorana

excited state of the form

γ† =

∫
d2r

∑
σ

[
uσc

†(z) + vσc(z)
]

(4.6)

which acts on the ground state of the system |Φ0〉 to create a state of equal energy,

Ĥγ† |Φ0〉 = γ†Ĥ |Φ0〉 . (4.7)

This condition for a zero-energy excitation can be rewritten as the BdG equation

for a zero-energy state,

H0(r) ∆(r)

∆∗(r) −T†H0T

Φ(r) = 0, (4.8)

where Φ(r) = [u↑(r), u↓(r), v↓(r),−v↑(r)] is a wavefunction for the bound state

in the Nambu spinor basis and T = iσyK is the time-reversal operator. The first

two components of the Nambu spinor represent the ‘electron sector’ wavefunction

and the latter two parts are the ‘hole sector’ (which has been time-reversed for

simplicity).
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4.3 The BdG Hamiltonian

The BdG matrix in equation (4.8) can be written in terms of Nambu-space

Pauli matrices τi in addition to the spin-space Pauli matrices σi to give the BdG

Hamiltonian

HBdG =
[
ηp2 + α(~σ × ~p) · ẑ + Vzσz − µ

]
τz + ∆nτ+ + ∆∗nτ−. (4.9)

where τ± = 1
2
(τx ± iτy). Similarly, following the notation of Sau et al. [75] for

consistency we define the ladder operator σ± = σx ± iσy and p-wave terms p± =

px±ipy. In polar coordinates, p± = e±iθ(−i∂r± 1
r
∂θ), the single particle Hamiltonian

is given by

H0 = −η(∂2
r +

1

r
∂r +

1

r2
∂2
θ ) +

iα

2
(σ+p− − σ−p+) + Vzσz − µ (4.10)

and the pairing function is given by

∆n(r) =
√

∆0

p2
+

p2
F

√
∆0 =

∆0

p2
F

einθ/2[eiθ(−i∂r +
1

r
∂θ)]

2einθ/2 (4.11)

= eiθ(n+2) ∆0

p2
F

[−i∂r +
1

r
∂θ + i

2 + n

2r
][−i∂r +

1

r
∂θ + i

n

2r
]. (4.12)

The bound state wavefunction Ψ(r, θ) around the vortex will be given by a

solution to the time-independent BdG equation

HBdGΨ(r, θ) = EΨ(r, θ). (4.13)

81



with E = 0. This equation has an important “particle-hole symmetry” under the

particle-hole operator P = Kσyτy,

PHP−1 = −H (4.14)

which implies eigenvalues of the BdG Hamiltonian come in pairs ±E.

4.4 Spin-Orbit-Pseudospin

A crucial question for the existence of a bound state around a vortex is whether

the angular dependence of the gap ∆ can be eliminated by a mere gauge transfor-

mation of the components u and v of the form,

u→ ueiθn/2 (4.15)

v → ve−iθn/2. (4.16)

Since the pair u, v must be single-valued in θ this is possible if n is even, but not if

n is odd. As Gurarie and Radzihovsky argue, for an even vortex, the extra terms

created in gauging away the θ dependence of the Hamiltonian can be smoothly

deformed away, so that the situation is topologically equivalent to no vortex.

The question of non-trivial vortex is related to another quantity in this prob-

lem, which is the combined spin-orbit-pseudospin symmetry of the BdG equation.
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This symmetry is given by the pseudospin operator

Jz = Lz +
1

2
(σz − (n+ 2)τz). (4.17)

This pseudospin operator generalizes the angular momentum so that it commutes

with the Hamiltonian,

[Jz, HBdG] = 0. (4.18)

The σz in (4.17) comes from the Rashba spin-orbit coupling and n+2 is the vorticity

of the vortex combined with the l = 2 angular momentum of the chiral d-wave

Cooper pairing.

Since Jz commutes with the Hamiltonian, a solution to the time-independent

BdG equation will be an eigenstate of Jz. If we apply the particle-hole transforma-

tion to the Jz operator we obtain

PJzP
−1 = KLzK +

1

2
(σyσzσy − (n+ 2)τyτzτy) = −Lz −

1

2
(σz − (n+ 2)τz) = −Jz.(4.19)

Consequently, under particle-hole symmetry E, Jz → −E,−Jz and a non-degenerate

eigenstate with E = 0 must have Jz = 0. We will therefore consider solutions Ψ(r, θ)

such that

JzΨ(r, θ) = 0 (4.20)
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and

LzΨ(r, θ) =
1

2
[−σz + (n+ 2)τz]Ψ(r, θ). (4.21)

Since Lz generates translations in the θ direction, we can use this operator to elim-

inate angular dependence.

For the non-degenerate zero-mode state, we use (4.21) to eliminate θ depen-

dence as follows:

Ψ(r, θ) = exp[−iLzθ]Ψ(r) = exp[−i(−σz + (n+ 2)τz)θ/2]. (4.22)

In order for Ψ(r, θ) to be single valued in (4.22), n ± 1 must be an even integer,

implying that n must be odd for a bound state solution (even if m 6= 0). Thus, the

condition we get from Jz = 0 agrees with our discussion of Gurarie and Razihovsky

above.

On the other hand, if we had combined spin-orbit coupling with p-wave super-

conductivity l = 1 or if we did not have spin-orbit coupling, the bound state would

require an even vortex and not produce a Majorana bound state.
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4.5 Radial BdG Equation

Now, given the assumption that n is odd, we eliminate θ dependence from the

BdG Hamiltonian

H ′BdG = exp [i(−σz + (n+ 2)τz)θ/2]HBdG exp [−i(−σz + (n+ 2)τz)θ/2] . (4.23)

to obtain a θ independent BdG equation within the particular Jz = 0 eigenspace,

H ′BdGΨ(r) = 0. (4.24)

Commuting the exponential operator through the Hamiltonian in (4.23) gives us the

expression

H ′BdG = −η
[
∂2
r +

1

r
∂r −

(−σz + (n+ 2)τz)
2

4r2

]
τz + α

[
iσy(∂r +

1

2r
) + σx

n+ 2

2r
τz

]
τz

+Vzσzτz − µτz

+τx
∆0

p2
F

(
∂r −

(n+ 2)(τz + 1)− σz
2r

)(
−∂r +

(n+ 2)τz − σz + n

2r

)
. (4.25)

Only the superconducting gap term in H ′BdG exchanges the electron and hole

Nambu subspaces with the matrix τx. Since there are potentially two E = 0 solutions

(due to particle-hole symmetry), but since our radial BdG Hamiltonian is real, we

can assume the possible solutions can combine to give a real solution. If this real

solution is non-degenerate then it must be preserved under the particle-hole operator
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up to a sign,

PΨ(r) = σyτyΨ(r) = λΨ(r) (4.26)

where λ = ±1. Because of this particle-hole relationship, when τx acts on the

non-degenerate zero-energy state Ψ(r) we obtain

τxΨ(r) = λτxτyσyΨ(r) = λτziσyΨ(r). (4.27)

Using the property in (4.27) in (4.25) we obtain a matrix diagonal in the Nambu

space:

H ′′BdG = −η
[
∂2
r +

1

r
∂r −

(−σz + (n+ 2)τz)
2

4r2

]
τz + α

[
iσy(∂r +

1

2r
) + σx

n+ 2

2r
τz

]
τz

+ Vzσzτz − µτz +
∆0λ

p2
F

{(
∂r −

n+ 2− σz
2r

)(
−∂r +

n− σz
2r

)
− (n+ 2)2

4r2

}
τziσy

−∆0λ

p2
F

(
n+ 2

r
∂r −

n+ 2

2r

)
iσy. (4.28)

Now we have a BdG Hamiltonian in which the electron and hole subspaces are

decoupled, and we can solve a 2 by 2 matrix differential equation instead of a 4 by

4 equation.

4.6 Solving the BdG Equation in the Electron Sector

Given the particle-hole symmetry of the BdG problem, we only have to solve

the BdG equation in the electron or hole subspace, so we will assume τz = +1 to
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obtain a two by two matrix differential equation. We will also assume n = −1 for

simplicity. After replacing ∆0λ/p
2
F → ∆′, the two by two electron part of the BdG

Hamiltonian is given by

He = −η
[
∂2
r +

1

r
∂r −

(−σz + 1)2

4r2

]
+ α

[
iσy∂r + σ+

1

2r

]
+ Vzσz − µ

+∆′
{(

∂r −
1− σz

2r

)(
−∂r −

1 + σz
2r

)
− 1

4r2
−
(

1

r
∂r −

1

2r2

)}
iσy(4.29)

= −η
[
∂2
r +

1

r
∂r −

(−σz + 1)2

4r2

]
+ α

[
iσy∂r + σ+

1

2r

]
+ Vzσz − µ

+∆′
{
−iσy(∂2

r +
1

r
∂r −

1

4r2
)− σx

1

r
∂r + σ+

1

2r2

}
. (4.30)

In matrix form, the BdG equation for the electron part of the Majorana zero mode

is given by

−η
[
∂2
r + 1

r
∂r
]
− µ+ Vz α(∂r + 1

r
)−∆′(∂2

r + 2
r
∂r − 5

4r2
)

−α∂r + ∆′(∂2
r − 1

4r2
) −η

[
∂2
r + 1

r
∂r − 1

r2

]
− µ− Vz

Ψe(r) = 0 (4.31)

In the following two sections, we will solve this equation inside and outside of the

vortex core and find conditions for the existence of a Majorana zero mode in the

d+ id superconductor.
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4.7 Inside the Vortex Core (∆′ = 0)

For a radius r < ξ smaller than the coherence length, ∆′ = 0 and (4.31)

becomes

−η
[
∂2
r + 1

r
∂r
]
− µ+ Vz α(∂r + 1

r
)

−α∂r −η
[
∂2
r + 1

r
∂r − 1

r2

]
− µ− Vz

Ψe(r) = 0. (4.32)

This equation admits a solution in terms of Bessel functions Ψe(r) =

[
u↑J0(zr) u↓J1(zr)

]
since the Bessel functions satisfy

(∂2
r +

1

r
∂r)J0(zr) = z2J0(zr) (4.33)

(∂2
r +

1

r
∂r −

1

r2
)J1(zr) = z2J1(zr) (4.34)

(∂r +
1

r
)J1(zr) = zJ0(zr) (4.35)

∂rJ0(zr) = z

(
∂2
zr +

1

zr
∂zr −

1

(zr)2

)
J1(zr) = −zJ1(zr). (4.36)

Using the Bessel equation relations we find

−η
[
∂2
r + 1

r
∂r
]
− µ+ Vz α(∂r + 1

r
)

−α∂r −η
[
∂2
r + 1

r
∂r − 1

r2

]
− µ− Vz


u↑J0(zr)

u↓J1(zr)

(4.37)

=

[(−ηz2 − µ+ Vz)u↑ + αzu↓]J0(zr)

[αzu↑ + (−ηz2 − µ− Vz)u↓]J1(zr)

 . (4.38)
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The RHS of (4.38) can be zero only if

−ηz2 − µ+ Vz αz

αz −ηz2 − µ− Vz


u↑
u↓

 = 0, (4.39)

which gives us the characteristic equation

(ηz2 + µ)2 − V 2
z − α2z2 = 0 (4.40)

for potential solutions. Since this equation is quadratic in z2 it will in general have

two solutions. In the next section we will discuss matching this solution for r < ξ

to a series solution for r > ξ.

4.8 Outside the Vortex Core (∆′ 6= 0)

For r > ξ, where ∆′ 6= 0, we can use a series solution to (4.31),

Ψe(r > ξ) =
ezr

r1/2

∞∑
n=0

An
Bn

 1

rn
(4.41)

By applying He to (4.41) we obtain an equation

∞∑
n=0

M↑↑ M↑↓

M↓↑ M↓↓


An
Bn

 = 0 (4.42)
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where

M↑↑ = −η
[
∂2
r + 2z∂r + z2 +

1

4r2

]
− µ+ Vz (4.43)

M↑↓ = α(∂r +
1

2r
+ z)−∆′(∂2

r +
1

r
∂r −

3

2r2
+
z

r
+ 2z∂r + z2) (4.44)

M↓↑ = −α(∂r −
1

2r
+ z) + ∆′(∂2

r −
1

r
∂r +

1

2r2
− z

r
+ 2z∂r + z2) (4.45)

M↓↓ = −η
[
∂2
r + 2z∂r + z2 − 3

4r2

]
− µ− Vz (4.46)

which leads to the recursion relations

M (0)
n

An
Bn

+M (1)
n

An−1

Bn−1

+M (2)
n

An−2

Bn−2

 = 0 (4.47)

M
(0)
1

A1

B1

+M
(1)
1

A0

B0

 = 0 (4.48)

M (0)

A0

B0

 = 0 (4.49)
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where

M (0)
n =

−ηz2 − µ+ Vz αz −∆′z2

−αz + ∆′z2 −ηz2 − µ− Vz

 (4.50)

M (1)
n =

 2zη(n− 1) −α(n− 3
2
) + ∆′2z(n− 3

2
)

α(n− 1
2
)−∆′2z(n− 1

2
) 2zη(n− 1)

 (4.51)

M (2)
n =

−η[(n− 2)(n− 1)− 1
4
] −∆′[(n− 2)(n− 2)− 3

2
]

∆′[(n− 2)n+ 1
2
] −η[(n− 2)(n− 1)− 3

4
]

 . (4.52)

The recursion relations can be solved if (4.49) is satisfied. Consequently, solutions

can exist if M (0) has a vanishing determinant giving us another characteristic equa-

tion for z,

(ηz2 + µ)2 − V 2
z + (αz −∆′z2)2 = 0. (4.53)

which agrees with (4.40) for ∆′ = 0. The characteristic equations (4.40) and (4.53)

determine the number of solutions which must be matched at r = ξ in order for a

solution to exist.

4.9 Matching solutions at r = ξ

In this section we find the condition for a single non-degenerate solution to

exist by using the characteristic equations (4.40) and (4.53) to find the number of

solutions and comparing with the number of constraints at the boundary r = ξ.
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Because our BdG Hamiltonian has second-order differential operators, matching

solutions at r = ξ requires us to satisfy four equations:

Ψe(r = ξ−) = Ψe(r = ξ+) (4.54)

∂rΨe(r = ξ−) = ∂rΨe(r = ξ+) (4.55)

Combined with the normalization condition, this gives five constraints on the solu-

tion Ψe(r). A solution can therefore exist if there are 5 total linearly independent

solutions between the r < ξ and r > ξ cases.

In the case η = 0 we can easily solve the characteristic equations (4.40) and

(4.53) in the cases ∆′ = 0 and ∆′ 6= 0 to obtain

zr<ξ = ±
√
V 2
z − µ2

α
(4.56)

zr>ξ =
α

2∆′
±

√( α

2∆′

)2

±
√
V 2
z − µ2

∆′
(4.57)

For the choices λ = −1 and V 2
z > µ2 so that ∆′ < 0 this gives us 2 total solutions for

r < ξ and 3 normalizable solutions for r > ξ. Therefore, a non-degenerate bound

state solution to (4.13) exists for η = 0. There is also a bound state solution for

η 6= 0, but the solution is much more complicated in that case.

The condition |Vz| > µ, a strong perpendicular magnetic field, is the same

necessary as in the work of Sau et al. making the conditions for a Majorana in

Bi/Ni similar to the conditions in a topological insulator / superconductor system.
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4.10 Conclusions

In this chapter we investigated whether or not a Majorana bound state can

exist on a vortex in a 2D dxy + idx2−y2 superconductor with spin-orbit coupling and

a perpendicular magnetic field. This study was motivated by the recent proposal of

dxy + idx2−y2 pairing in the 2D Ni/Bi bilayer with strong spin-orbit coupling [24].

It had already been predicted that normal superconductivity, spin-orbit coupling,

and a perpendicular magnetic field enable Majorana bound states on odd vortices

in 2D [75], but we extended this result to the dxy + idx2−y2 .

We found that the existence of the bound state depends heavily on spin-orbit

pseudo-spin, because this quantity determines whether the bound-state wavefunc-

tion is singlevalued around the vortex. With spin-orbit coupling and a Cooper

pairing with even angular moment (l = 2), the bound state wavefunction is sin-

glevalued around an odd vortex. Without spin-orbit coupling, the bound state

wavefunction is singlevalued around an even vortex and can be gauged away [76].

Consequently, our result makes sense when compared with a previous study that

considered dxy + idx2−y2 without a Rasbha spin-orbit coupling term and found no

zero-mode [74].

We use particle-hole symmetry and spin-orbit pseudo-spin symmetry to obtain

a radial differential equation acting only on an electron wavefunction. We solve the

equation for ∆0 = 0 in the vortex and ∆0 6= 0 outside the vortex and match solutions

at the edge of the vortex to find the condition for exactly one real solution to exist.

Namely, the perpendicular magnetic field must be sufficiently strong. This may
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be more possible for the Ni/Bi bilayer than an s-wave superconductor, since it has

intrinsic TRSB.
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