
 

 

 

ABSTRACT 

 

 

 

Title of dissertation: DETERMINING OPTIMAL RELIABILITY 
TARGETS THROUGH ANALYSIS OF 
PRODUCT VALIDATION COST AND FIELD 
WARRANTY DATA 

  

 Andre V. Kleyner, Doctor of Philosophy, 2005 
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This work develops a new methodology to minimize the life cycle cost of a product using 

the decision variables controlled by a reliability/quality professional during a product 

development process.  This methodology incorporates all product dependability-related 

activities into a comprehensive probabilistic cost model that enables minimization of the 

product's life cycle cost using the product dependability control variables.  The primary 

model inputs include the cost of ownership of test equipment, forecasted cost of warranty 

returns, and environmental test parameters of a product validation program.  Among 

these parameters, an emphasis is placed upon test duration and test sample size for 

durability related environmental tests.  The warranty forecasting model is based on data 



 

mining of past warranty claims, parametric probabilistic analysis of the existing field 

data, and a piecewise application of several statistical distributions. 

 

The modeling process is complicated by insufficient knowledge about the relationship 

between product quality and product reliability.  This can be attributed to the lack of 

studies establishing the effect of product validation activities on future field failures, 

overall lack of comprehensive field failure studies, and the market's dictation of warranty 

terms as opposed to warranties based on engineering rationale.  As a result of these 

complicating factors an innovative approach to estimating the quality-reliability 

relationship using probabilistic methods and stochastic simulation has been developed.  

The overall cost model and its minimization are generated using a Monte Carlo method 

that accounts for the propagation of uncertainties from the model inputs and their 

parameters to the life cycle cost solution. 

 

This research provides reliability and quality professionals with a methodology to 

evaluate the efficiency of a product validation program from a life cycle cost point of 

view and identifies ways to improve the validation test flow by adjusting test durations, 

sample sizes, and equipment utilization.  Solutions balance a rigorous theoretical 

treatment and practical applications and are specifically applied to the electronics 

industry. 
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Warranty 

},{ 00 MTW =  = two-dimensional warranty,  

T0 = warranty time limit (typically 36 months) 
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θ = Vector of design parameters 

F(T)Warranty = portion of accumulated failures covered by warranty by time T 
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αW = warranty cost per unit 
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Cost 
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P’ = seller’s profit 

αpv = cost of product validation for the program 
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αe = cost of equipping one test sample 

αm = cost monitoring one test sample 

αW = warranty cost per unit 



 

x 

αparts = cost of the spear parts per repair – random variable 

αPM = cost of each preventive maintenance 
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Probability and Monte Carlo Simulation 
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L(Data|R) = likelihood of obtaining the observed test data if the reliability of  

each unit is R 

π(R) = prior distribution (Bayesian analysis) 

ρ = knowledge factor 

QCorr = correction factor (correlation coefficient between demonstrated and forecasted 

reliabilities at the expected mission life) 
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r = correlation coefficient 
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1. Introduction 

Reliability engineering and environmental testing includes the product development 

activities directed at improving the reliability of the product, i.e., its ability to better 

survive its mission life without failures.  Reliability engineering and environmental 

testing represent significant portions of the product development process (measured in 

resources and time) in many industries including the automotive.  The costs of those 

activities are essential parts of the life cycle cost (LCC) model and should always be 

considered as part of a product business cycle.  

 

Life cycle cost analysis is one of the important tools for choosing the most cost effective 

approach from a series of design alternatives.  It is an excellent tool for finding the best 

design trade-off and ultimately the best product value for the customer.  However since 

the product lifetime in the automotive industry can extend to the period of 10-15 years 

the process of accounting for the total cost of the product can be extremely complex due 

to lack of data and a random nature of many cost factors associated with automotive 

products.  The product warranty in automotive industry is a significant contributor to the 

‘afterlife’ portion of life cycle cost.  For example, according to [Nasser et al. (2002)] on 

average General Motors spends around $3.5 billion per year (roughly 22.5 million 

warranty claims) paying the dealerships to repair broken parts under warranty.  Various 

prediction models are used for the LCC analysis in the automotive industry, however 

since it is not known in advance how much warranty, in terms of number of claims and 

dollar amount, the product is expected to cause, guesswork and assumptions comprise a 
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significant part of these models.  In addition to the random nature of the variables 

involved in the cost modeling, there remains a gap in determining a relationship between 

the product development activities and future warranties of the product.  That gap also 

adversely affects the accuracy of the models currently used for LCC analysis in the 

automotive industry since warranty is a significant contributor to LCC, which is both 

directly and indirectly linked to product reliability   

 

Product reliability always remains in the focus of any product development effort. 

Clearly, improving reliability leads to a reduction in life cycle cost through cost savings 

and cost avoidance during the sustainment of the product within the warranty period and 

beyond.  However, what kind of reliability can be feasibly targeted and demonstrated 

during the design stage?  How will the product testing activities affect the future warranty 

costs? How much information can be obtained from the previous models?  These and 

other questions need to be answered in order to optimize the test and validation portion of 

the product development process.  To keep the failure related aspect in perspective and 

have a realistic estimate of their causes and effects there is a clear need for the 

methodologies focusing on product reliability and its related engineering activities and 

their effects on product development as a whole.  These methodologies would be 

primarily intended for reliability engineers and other engineering professionals involved 

in product test and validation and would allow the analysis of LCC and other long-term 

effects of these activities.   To develop these methodologies we will need to concentrate 

on the life cycle model from the reliability engineering perspective, i.e., the model with 

various input variables comprising the parameters of the test and validation process 
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controlled by a reliability/validation engineer1 during a product development cycle.  This 

type of methodology should also be able to optimize the design process with the ultimate 

goal of reducing the overall LCC of the product.   

 

1.1. Key Definitions 

Many reliability terms have more than one meaning.  Below are the terms and their 

definitions the way they are applied in this dissertation. 

 

Reliability - Reliability is the probability that the item will perform its functions without 

failure in specified environments for specified period of time. 

Quality – Fitness for use [Juran and Gryna (1980)] or conformance to original product 

specifications. Quality is sometimes referred as reliability at time zero and often 

expressed in PPM (parts per million defects) 

Dependability – A qualitative characteristic of any device that constitutes an integral 

view of its Reliability, Availability, Maintainability, Quality, and Safety [Fernández 

(2001)].  

Product Validation – A formal process with legal weight confirming that the product 

meets defined requirements.  In this dissertation the term Validation will be mostly used 

in the context of product reliability and environmental testing. 

                                                 

1 In this dissertation terms reliability engineer and validation engineer will be used interchangeably. 
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Life Cycle Cost (LCC) Analysis - A method of calculating the effective cost of a system 

over its entire life span.  For our purposes we will bound the definition of LCC to the 

components essential to the original equipment manufacturer or its supplier. 

Failure rate – Number of failures per accumulated time.  Often expressed by λ-character 

and used as a sole parameter of exponential distribution. 

Product warranty – The seller’s assurance to a buyer that a product or service is or shall 

be as represented. Warranty terms may vary, but it usually includes a contractual 

obligation on the part of a seller to repair of refund the cost of the failed item. 

Warranty claim – The customer complaint regarding the failure or malfunction of a 

specific vehicle system typically followed by the repair by an automotive dealer free of 

charge.  Warranty claim typically contains all the relevant information about the vehicle 

including manufacturing date, repair date, vehicle mileage, etc.  

Reliability-Cost curve – A graphical relationship between pursued reliability and the 

overall product cost required to achieve it. 

Quote process (often referred as Quoting process) – An initial phase of a product business 

cycle, where seller and buyer negotiate the price of a new product to be designed and 

manufactured by the seller. 

Bathtub curve – A traditional model linking failure rates with the mission life of the 

product.  ‘Classic’ bathtub curve has three sections: Infant mortality, Useful life, and 

Wear-out period. 

Validation engineer – Technical specialist ultimately responsible for the planning, 

conducting, and analyzing the environmental testing of the product. This term will be 

used here interchangeably with the term ‘Reliability engineer’. 
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1.2. Dependability-Related Activities in Automotive Electronics and Other Mass 

Production Industries 

Typically in a mass production industry, including automotive electronics, a product 

development process goes through various stages of the design cycle. The specifics of 

this cycle will vary from industry to industry and even from company to company, but in 

general this process will include the steps shown in Figure 1.1. 

. 

 

Figure 1.1. Dependability-related activities in product development process 

The first three blocks of the diagram in Figure 1.1 (Quoting, Design, and Validation) are 

directly affected by the product validation activities and the last two are related to 

warranty and affected by the activities of a reliability engineer in an indirect manner.  

Comprehensive analysis of these relationships will help to build a model, which can 

subsequently be optimized to minimize the life cycle cost.  In the later chapters of this 

Product Quoting
process

Product 
Design ManufacturingProduct Test 

And Validation

Warranty Claims 
Processing and Analysis

Warranty Service

Sales

Quality + Reliability

Reliability

Product Validation

Service

Relationship
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dissertation each box in this diagram will be given special attention as a contributor to the 

LCC model of the product. 

 

1.3. Motivation for this Study 

A closer look at the activities presented in Figure 1.1 explains the important role 

dependability-related activities would play in the overall economic model of product 

development. 

 

1.3.1. Dependability Related Portion of the Life Cycle Cost of the Product 

Life cycle cost (LCC) analysis is an important tool for choosing the most cost effective 

approach from a series of design alternatives.  If a complete LCC mathematical model 

could be formed it would enable the optimization (minimization) of the total ownership 

cost, thus providing the opportunity for significant life cycle cost reduction.  Clearly, 

minimizing the LCC will give the company a competitive advantage. According to 

[Kececioglu (1991)] it will affect competitive posture of the product in the marketplace, 

increase the profit and market share of the product, and other important business factors.  

Even though LCC models sometimes have credibility gaps due to lack of data [Barringer 

and Weber (1996)] they are effective as comparison trade-off tools and should be an 

integral part of the design and support process to achieve the lowest long-term product 

costs [Barringer and Weber (1996); Blanchard and Fabrycky (1998)].   
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It is important to note that from a supplier point of view the LCC of an automotive 

product will probably be different from the LCC of the same product from a consumer 

point of view.  The supplier will normally be dealing with the ‘truncated’ version of 

LCC, which is different from the ‘classic’ cost models (see for example [Fabrycky and 

Blanchard (1991)]) and limited mostly to the development cost, manufacturing cost, and 

warranty cost of future failures or perceived failures of the product (see Chapter 2 for 

more details).  Within that LCC structure the cost of product validation activities is a 

significant variable in the overall economic model.  However, even within the framework 

of cost analysis, it appears that the issue of product validation cost and its impact on the 

whole program are rarely given enough attention in the early stages of business and 

engineering planning.  In the literature, the various cost of ownership (COO) models (see 

[Fabrycky and Blanchard (1991); Barringer and Weber (1996); Blanchard and Fabrycky 

(1998)] for further details) lack the emphasis on test and validation equipment making it 

difficult to apply the models to estimate the overall cost of product validation.  There are 

even fewer models, which attempt to interconnect these costs with future costs of 

warranty [Vintr (1999)].  The main reason for this kind of deficiency is the complexity of 

the task and the lack of field data.  Real life LCC analysis, which includes detailed 

accounting for product validation cost and warranty data processing, is a task requiring 

unrestricted access to the industry data, which is not often available to external or even 

internal researchers.  At the same time people in the industry, who have the necessary 

access, often do not have the time or expertise to approach it at a sufficient fundamental 

level.   
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There are a variety of specialists involved in the product development process, which 

includes designers, development engineers, reliability engineers, manufacturing 

engineers, materials specialists, accountants, buyers, marketing personnel, etc.  All these 

engineering and business competencies are responsible for impacts on the life cycle cost 

of the product.  Even though most of these activities are well coordinated, it is very 

difficult to develop a comprehensive mathematical model of their interactions and 

impacts on the LCC of the product.  This also is partially due to a noticeable gap between 

everyday engineering practices and the latest developments in cost modeling and 

statistical simulation.  An additional need for a comprehensive approach to cost analysis 

of automotive products arises from the recent trend in the automobile industry to make 

suppliers responsible for the partial or sometimes entire cost of a part’s warranty [Ward’s 

(1998)].  In this type of environment it is even more important to have a complete picture 

of a long-term cost of supplied products.  Accounting for the total LCC would also 

provide quantitative decision support in frequent arguments between the OEM customers 

and their suppliers regarding specifics of various validation programs. Those 

disagreements often focus on test durations, schedules, sample sizes, and other 

engineering and business aspects of product development cycles.   

 

One of the goals of this work is to create a methodology that enables an engineer to find a 

quantitative LCC-based solution to these and other related problems and subsequently 

optimize these solutions. 
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1.3.2. Quality-Reliability Relationship in the Automotive Industry 

Despite the extensive coverage of various aspects of warranty in the literature reviewed 

by [Murthy and Djamaludin (2002)] the relationship between product quality and 

reliability unfortunately continues to be a gray area and analyses (if ever conducted) 

remain largely specific to a particular product.  Even though most reliability textbooks 

contain the general concepts of the relationship between achieved reliability and expected 

warranty, and also their connection to the overall cost of the program (see Chapter 2 for 

details), they typically lack the specifics needed to generalize the model and make it 

applicable to a wide variety of product development programs. 

 

Many if not most of the large manufacturing companies have separate quality and 

reliability departments, which typically have little or no interaction with one another.  

Even now quality and reliability professionals in the automotive industry have not 

established a clear connection between their activities and have not learned to place a 

realistic estimate on the cost of product validation in conjunction with expected costs of 

product warranty claims.  This situation leads to certain deficiencies in a product 

development process such as an inability to combine all failure related activities into one 

comprehensive process and make a realistic cost estimate. Also it is not uncommon for 

each organization to blame the other for the product failures in the field, which often 

creates an inaccurate picture of failure root-causes and makes it difficult to identify 

proper corrective actions.  
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There is a multitude of other reasons why the relationship between quality and reliability 

has not been fully established, of which the difficulties in conducting comprehensive 

warranty data analyses would be high on the list. In the automotive industry only a 

portion of field failures can be associated with design problems (see Chapter 4 for more 

details) thus the link between product reliability and field failures can only be established 

on a statistical level as oppose to deterministic models favored by most engineers.  

Therefore, there is a need to bring a reliability-related approach to the issues of product 

warranty and to combine reliability and warranty into a comprehensive probabilistic 

model.  Accomplishing this task would allow a more sophisticated approach to the 

comprehensive analysis of all product dependability-related activities. 

 

1.3.3. Contribution of Warranty Cost 

At present, validation engineers in the automotive industry do not have a consistent 

methodology to evaluate the effect of their activities on the long-term program cost.  In 

the initial phase of the business cycle during the product quoting, the cost of product 

validation is treated as a one-time expense and is rarely given enough priority and never 

treated in conjunction with its effect on the rest of the product life.  This often leads to a 

customer’s insistence on the highest possible reliability without any consideration for the 

costs involved in the process.  In order for a reliability, validation, or test engineer to 

generate feasible reliability requirements with achievable and cost effective reliability 

targets, it would be beneficial to find the optimal point where the sum of validation and 

warranty cost as a portion of the total LCC is minimized.  The current deficiency in 

establishing a connection between reliability and quality mentioned in Section 1.3.2 
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creates an enormous potential for improvement of the process of product development.  

The need for this kind of prediction models, design tradeoffs, and warranty estimates was 

previously emphasized in the literature [Economou (2004)].  Unfortunately, it is rare for 

the automotive designer to have any indication of predicted warranty cost for initial 

concept ideas [Nasser et al. (2002)], although the ability to estimate it would provide a 

certain engineering and business advantages. However due to complexity of this problem 

and lack of data, most authors prefer to deal with this relationship only on a theoretical 

level.  For example [Vintr (1999)] presents the LCC minimization model assuming that 

the relationship between product reliability expressed in terms of the failure rate λ and its 

manufacturing cost is a known function C(λ), when in reality, determining this function 

is expected to be the most challenging portion of the proposed effort. 

 

Since the terms of automotive warranty are primarily dictated by marketing conditions, 

the future failures of the product are not part of the initial business model and only come 

into consideration later in the process.  In the early 1990s the warranty databases in major 

automotive manufacturing companies existed primarily for accounting purposes.  

Fortunately, lately there has been a significant effort in the automotive industry to 

improve the process of bringing warranty analysis back to the OEM and their suppliers, 

both in terms of accounting and engineering data. Despite the latest improvements in this 

area, the process of bringing this information back into the reliability organization has 

been slow and inadequate for meeting all the product development needs. [Jauw and 

Vassiliou (2000)] list various reasons why many organizations are unable to take 

advantage of field product-failure or field performance data and have difficulty providing 
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comprehensive reliability data analyses based on quality/field data.  Thus improving, or 

in some cases establishing a feedback loop from warranty to early design may 

significantly improve the process not only in terms of minimizing LCC, but also in 

bringing a better value to the customer.   

 

1.3.4. Motivation Summary 

As presented above, there is a need to provide reliability engineers with an approach that 

allows them to conduct the necessary LCC analysis and make a business case for changes 

in a validation program, which would also minimize a life cycle cost of the product and 

have a positive effect on customer’s bottom line. 

 

Therefore, the goal of this dissertation is to provide reliability professionals with a 

methodology to evaluate the efficiency of a product validation program from a life cycle 

cost point of view with the emphasis on cost of validation and product warranties, and 

ultimately minimize that cost by optimizing the environmental test flow of the product 

validation process. 

 

1.4. Problem Formulation 

Product validation activities (full-scale environmental, mechanical, electrical, and other 

types of testing at various stages of product development) are an important portion of the 

product life cycle cost and they greatly affect the warranty returns and service costs.  The 

main goal of this work is to create a model of the life cycle cost with input variables that 
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can be controlled by a reliability/validation engineer during a product development 

process.  This could be achieved by incorporating all dependability-related activities into 

a single comprehensive statistical cost model of a product’s life cycle.  After this model is 

created, the reliability test flow can be optimized to achieve the lowest possible cost of 

the dependability-related activities.  The numerical optimization methods will not be the 

focus of this study. Instead, the emphasis here will be made on formulating the 

methodology and generating the model, with comprehensible inputs and outputs suitable 

for optimization by most of the available engineering methods. 

 

Main Questions: 

The completed model should be able to answer the following questions: 

• What are the leverages available to a reliability engineer to affect the cost of the 

product validation process?  

• How do the reliability testing activities affect the expected warranty returns of the 

product during its mission life? 

• How can the program be optimized to achieve the minimum of dependability-

related share of the LCC? 

• What is the most suitable model to simulate and forecast future automotive 

electronics warranty claims? 

 

1.5. Dissertation Objectives and Tasks. Focus of the Research and Solution Strategies 

 



 

 14

1.5.1. Objectives 

Research objective: To minimize the life cycle cost by utilizing the design and 

management options available to a reliability engineer.  This will be accomplished 

primarily by optimizing product validation procedures (mostly in the form of reliability 

targets, test durations, and sample sizes) based on historical product information and the 

attributes of the product test flow.  Solutions shall have to balance rigorous theoretical 

treatment and practical applications and will be specifically applied to automotive 

electronics products. The goal of this research is to create a statistical model to be utilized 

by a reliability engineer in order to minimize the dependability-related portion of the life 

cycle cost.  To achieve these objectives the specific tasks presented below need to be 

accomplished.   

 

Important Note: It is important to mention here that this work does not involve studies 

of risk analysis.  Risk analyses involve an assessment of ‘consequence,’ which is outside 

the scope of this dissertation.  The probability of failure is the focus of this dissertation, 

the effects of these failures will not be analyzed at a probability-consequence level 

beyond the scope of repair warranty costs.  Therefore the methodology presented in this 

dissertation, though covering reliability, quality, and warranty, will not be directly 

involving any risk-specific terms, methods, or techniques. 
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1.5.2. Tasks 

The following tasks should be accomplished as a part of the overall solution strategy. 

 

1.   Create statistical models to analyze product validation costs.  

• Product validation cost model with inputs that include reliability targets, equipment 

cost of ownership, test duration, test sample size, and others  

• Bayesian model of test sample size reduction with a knowledge-based mix of prior 

distributions.  

• Account for the effect of parametric binomial relationship between test duration and 

test sample size. 

2.   Create statistical models to analyze expected warranty returns. 

• Detailed warranty data analysis going back 10 years for the select automotive 

electronics product lines with the emphasis on audio systems (radio, cassette player, 

CD player) 

• Analysis of the warranty trends for those product lines in terms of statistical 

distribution parameters based on past field performance data for each product line, 

key product features, years in production, novelty of the process, etc. 

• Generate an innovative warranty prediction model based on best-fit statistical 

distribution for a 2-D warranty, estimate of expected failures, and repair cost 

distributions. 
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 Inputs include detailed warranty claims data, hazard rate stabilization time, 

and NTF failures 

 Outputs will include expected failures and cost of unreliability with an option 

of accounting for the effect of a particular production lot and the model year.  

3.   Combine the sub-models into a comprehensive model to obtain an optimized LCC 

that reflects the ways and means available to a reliability engineer. 

 

1.6. How the Remainder of this Document is Organized 

The rest of the dissertation is organized as follows.  Chapter 2 will present a high level 

overview of the proposed cost model and will outline the direction of this research.  It 

will describe the proposed LCC model discussing its probabilistic and deterministic 

inputs and outputs.  Chapter 3 will focus solely on the inputs related to the cost of product 

validation and on reliability demonstration activities focused on achieving certain 

reliability levels with a significant emphasis on the role of the test duration and sample 

size. Chapter 4 will deal with the ways to reduce the cost of validation using Bayesian 

techniques. Chapter 5 will cover the model inputs related to product warranty and the 

costs of service and repairs associated with warranty claims.  Chapter 5 will also cover 

the methods of forecasting future warranty based on the repair history of the existing 

products.  Chapter 6 will cover the modeling process combining all the input variables 

and providing the Monte Carlo simulated outputs.  It will also present a case study of an 

automotive electronics example for the purpose of illustrating the proposed methodology.  

Chapter 7 will summarize this work, outline the contribution of this research, and discuss 

future work and remaining problems. 
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2. Life Cycle Cost Model Structure 

This chapter presents a high level overview of the model utilized to optimize the product 

validation program in order to minimize the life cycle cost of the product. 

 

2.1. Life Cycle Cost Analysis and its Dependability-Related Variables 

The objective of life cycle cost (LCC) analysis is to choose the most cost effective 

approach from a series of alternatives.  The lowest possible long term cost of ownership 

can be achieved while accounting for the cost ingredients that include design, 

development, production, operation, maintenance, support, and final disposition of a 

major system over its anticipated useful life span [Barringer and Weber (1996); Landers 

(1996)]. LCC varies with events, time, and conditions.  It is important to mention here 

that there is no uniform definition of what is included in LCC.  The real life cycle cost of 

an automotive product will probably be different from its ‘classic’ content defined for 

example in [SAE (1993)].  Some manufacturing LCC categories, such as sustainment 

cost or performance cost [LaFrance and Westrate (1993)] would not apply to an 

automotive part, thus the supplier’s definition of LCC becomes a truncated version of the 

‘classic’ definition. Even though the accuracy of LCC models can vary significantly due 

to lack of data and consensus on how to account for it [Barringer (1996)] they are 

effective as comparison tools and should be an integral part of the design and support 

process to achieve the lowest long-term product costs [Barringer (1996); Blanchard and 

Fabrycky (1998)]. The benefits of LCC minimization are even greater in mass production 
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industries since every cost improvement will bring additional profits multiplied by high 

volumes.  

 

Life cycle cost (LCC) analysis is a complicated process consisting of many steps and 

various inputs [Fabrycky and Blanchard (1991)]. Many cost variables are not 

deterministic but are probabilistic. This usually requires starting with arithmetic values 

for cost and then growing the cost numbers into more accurate, but more complicated, 

probabilistic values and their statistical distributions.  In many industries including 

automotive, the activities directed at addressing the possible failure of the product play a 

significant role in the product development cycle.  In Figure 1.1 these activities include 

new business quoting and all product validation and warranty/service related activities.  

Therefore product validation engineers often need to focus their activities on 

dependability-related variables of LCC analysis, since these are the inputs they can 

influence the most. 

 

The dependability-related activities focus mostly on quality and reliability problems.  

However, as mentioned in Chapter 1, the link between the reliability and future 

warranty/service expenses is not always easy to establish, thus determining this 

relationship will be an important part of this model, even though it can only be done 

probabilistically.  Also the costs of each of the activities comprising LCC are often 

difficult to estimate due to the random nature of quality-reliability relationship.  For 

example, determining the cost of warranty can be quite complicated, since each repair 

involves the costs of parts, labor, diagnostics, removal of parts (both good and bad), 
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replacements, etc., and there is a significant variation of these parameters from case to 

case.  In the same manner, the cost of equipment involved in testing will also have a 

certain degree of uncertainty, varying from test to test based on environment type, 

requirements, usage, and many other parameters. 

 

2.2. Failure Related Activities 

The relationship between the reliability/dependability of a product defined by [Fernandez 

(2001)] and its LCC has been occasionally discussed on a theoretical level in the 

literature (see for example [Kececioglu (1991); Blischke and Murthy (1994)]), and can be 

roughly presented by the diagram similar to the one shown in Figure 2.1. This graph 

presents a relationship between the reliability and cost associated with the product 

development.  The higher the pursued reliability of the product, the higher the product 

development cost (the ascending curve in Figure 2.1).  At the same time the higher the 

achieved dependability of the product, the lower the cost of the associated warranty and 

service (the descending curve in Figure 2.1).  Thus the sum of these two costs would 

resemble a U-shaped curve bottoming around the value of the lowest sum of product 

validation and warranty cost thus minimizing the total LCC.  Charts similar to Figure 2.1 

have been referred to as ‘Contractor’s cost vs. Reliability’ [Blishke and Murthy (1994)], 

‘Dependability vs. non-dependability cost’ [Fernandez (2001)], ‘Producer’s Cost’ 

[Kececioglu (1991)], and several others.  For simplicity and consistency, from this point 

on this chart will be referred as the ‘Reliability-Cost’ curve. 
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2.2.1. Reliability-Cost Curve 

In all the mentioned literature Reliability-Cost models are presented in very general terms 

and often in reference to products with highly predictable cost of scheduled maintenance, 

like aircraft or heavy machinery with the emphasis on maintenance schedules and the 

cost of spare parts [Kececioglu (1991); Monga and Zuo (1998)]. In this dissertation, the 

concept of LCC minimization based on pursued reliability will be applied to the mass 

production industry with service cost largely expressed in terms of automotive 

warranties.  In addition, the emphasis will be made on the reliability engineering costs as 

a significant part of the product development process.  

 

Figure 2.1. Theoretical ‘Product Development Cost versus Reliability’ Curve. 

As mentioned previously, the concept shown in Figure 2.1 was originally developed and 

is most widely used for products requiring scheduled maintenance, however most 

automotive parts are not designed to be maintained on a regular basis.  The costs and 

occurrences of automotive repairs are far less predictable, therefore the model presented 

in Figure 2.1 will have a certain number of random inputs and outputs. Therefore this 
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model cannot be solved on the simple deterministic level presented in Figure 2.1 and 

would require a probabilistic approach.  In order to generate a real-life Reliability-Cost 

diagram it is important, among other things, to find the probabilistic relationship between 

future warranty returns and designed reliability.  This relationship is a cornerstone of the 

descending curve in Figure 2.1 and its accuracy is essential to the accuracy of the whole 

LCC model. 

 

2.2.2. The Relationship between Quality and Reliability 

In engineering economic analysis the cost of product validation is rarely considered in 

conjunction with the expected costs of product warranty claims. Typically the quality-

based approaches to warranty lack any reliability focus [Blicshke and Murthy (1994); 

Murthy and Djamaludin (2002); Kececioglu (1991)].  The unclear relationship between 

reliability and expected warranty, and the random nature of that relationship add to the 

list of reasons why validation activities and warranty forecasting and processing are 

budgeted, planned, and conducted separately. 

 

Many cost models associated with the ‘Reliability – Cost’ concept consider the overall 

cost of the design cycle, but often ignore the specific contribution of product validation 

cost (for further details see [Blishke and Murthy (1994)]).  The knowledge about the cost 

of a product validation program can be a very important piece of information during a 
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quoting process.2 A reliability engineer is expected to accurately estimate validation cost 

based on the reliability requirements presented by the OEM customer.  However this kind 

of estimate is frequently based on the existing product information and it can often be 

inaccurate or outdated.   

 

As mentioned before, quality and reliability professionals in the automotive industry are 

still working on the process of establishing the links between their respective activities.  

Since warranty data in the automotive industry accumulates all the reported incidents [Lu 

(1998)] and according to [Pecht (1997); Thomas et al. (2002); Majeske and Herrin 

(1995)] only a portion of the field failures can be associated with design problems, the 

link between product reliability and field failures can only be established on a statistical 

level as oppose to deterministic models3 that are favored by engineers (see chapters 3 and 

5 for more details). As a result the descending curve in Figure 2.1 is not as well defined 

as it appears in most textbooks.  One of the objectives of this work is to bridge this gap 

and to improve the understanding of this relationship.  

 

Further complicating the issue, the warranty periods are typically much shorter than the 

mission life (in the automotive industry it can be a 3 year warranty vs. 10-15 years 

                                                 

2 A quoting price estimate is given to the potential consumer as he/she decides which company to award the 

business to.  A company may be legally bound to honor this quote in some jurisdictions and/or lines of 

business. 

3 A deterministic model or algorithm consistently produces exactly the same result for exactly the same 

input, where probabilistic or stochastic models have random characteristics. 
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mission life) and failure information beyond the standard or optional warranty period is 

rarely available.  This makes it difficult to correlate any warranty-related prediction with 

the real life data and creates the need for certain experience-based assumptions, which 

will be covered in more details in Chapters 3 and 5. 

 

2.2.3. Optimization of Product Validation Flow Using the Reliability-Cost 

Relationship 

Finding the lowest point of the total cost curve in Figure 2.1 can be achieved first by 

constructing a realistic and practical model for both the ascending and descending parts 

of the curve while incorporating all dependability-related activities into a comprehensive 

statistical cost model of the product life cycle.  In this dissertation this will be achieved 

by utilizing the general concepts of the Reliability-Cost relationship, while seeking a 

statistical solution focusing on the reliability engineering activities and their costs, thus 

effectively making LCC an objective function for optimization.  In other words the 

process can be optimized by finding the minimum point of the sum of the two cost 

curves.  It is important to note again that this dissertation will not focus on the 

mathematical and computational attributes of the minimization process, but rather on the 

reliability aspects of the model and on feasibility of finding the minimum LCC by 

optimizing the product validation process. 
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2.2.4. LCC Optimization Process Influence Diagram 

This section presents an influence diagram for the LCC optimization process.  Influence 

diagrams can be useful tools in describing inter-system relationships including all the 

factors that affect the process of modeling and decision-making.  An influence diagram is 

a graphical tool that shows the relationships among the decision elements of a system 

[Ayyub (2003)].  The influence diagram in Figure 2.2 shows the relationship of the 

factors influencing the modeling of the dependability-related portion of LCC.  The 

influence diagram symbols used in this dissertation are presented in Table 2.1 and are 

consistent with those used in [Ayyub (2003)]. 

Table 2.1. Influence diagram symbols used in this dissertation (based on [Ayyub (2003)]) 

 

Decision Node: Indicates where a decision must be made 

 

Chance Node: Represents a probabilistic or random 
variable 

 

Deterministic Node: Determines from the other nodes or 
other non-deterministic variables 

 

Value Node: Defines consequences over the attributes 
measuring performance 

 

Arrow: Denotes influence among nodes and the direction 
of the decision process flow 

 

The influence diagram in Figure 2.2 shows all the factors affecting this LCC decision 

making process.  Those factors include the variety of inputs affecting the process from 

the new business quoting event through design, validation, and warranty.  All the 

influence factors fall under the following major categories: (1) Business-Finance, (2) 

Design and Validation, (3) Service and Warranty, and (4) Assumptions and Models.  The 
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first three represent the flow of product development from business contract to design, 

validation, and consequent repair/service.  The fourth group (Assumptions and Models) 

influences all of the above blocks since the modeling process incorporates a number of 

engineering assumptions, utilized models, and equations (both previously existing and 

developed in this dissertation). Each of the four categories has at least one major 

decision-making block and a variety of probabilistic and deterministic node inputs.  All 

of these inputs will directly and indirectly affect the outcome value node, where the final 

dependability-related portion of LCC is calculated and minimized. 

Figure 2.2. Influence diagram.  All potential factors are included. 
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It is important to mention that not all the nodes shown in the influence diagram  

Figure 2.2 can be effectively accounted for in the model developed in this dissertation, 

therefore the truncated version of this diagram is presented in Figure 2.3, which reflects 

only the factors that will actually be included in this work.  The removed blocks in this 

diagram are bypassed for various reasons including minimal influence on the product 

design with rare or unpredictable occurrence (e.g., ‘Law suites’ and ‘Loss of goodwill’). 

Even though these two factors can have a profound effect on the LCC of the product, 

their financial impact is rarely taken into consideration by the design and validation team 

with the exception of the passenger safety related products, such as airbags or vehicle 

breaks.  

 

Other influence factors, such as re-negotiated contracts, spare parts cost accounting, 

quality spills, and recalls are eliminated from the original diagram because they fall 

outside the scope of the problem addressed in this work, i.e., they are not within the realm 

of responsibility of the professionals who work the optimization procedure addressed 

here.  In other words, these items are addressed by different engineering and business 

competencies and are out of control of the reliability engineer.  Regarding the additional 

redesign cost; the data supporting this particular node is virtually non-existent, however 

based on the Delphi institutional knowledge, the effect of this node is believed to be low.  

Also this effect is mitigated by partial allocation of separate funds specifically to address 

this during the initial quoting process.  
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Despite the fact that several influence factors have been eliminated in Figure 2.3, the 

diagram in Figure 2.2 acknowledges their existence, legitimacy, and importance, even 

though they were not reflected in the final model developed in this dissertation. The 

removed factors still remain important and could be used to improve the accuracy of LCC 

analysis in future modeling work, which could expand the scope of the problem to 

include a more comprehensive inter-functional approach. 

 

 

Figure 2.3. Truncated influence diagram reflecting the content of the model developed in 

this dissertation 
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The final diagram in Figure 2.3 shows the decision/solution process presented in this 

work and contains only the factors included for consideration in this dissertation. 

 

2.3. Block Diagram of the LCC Methodology Flow 

The following is the high-level overview block diagram, which will be discussed in detail 

in Section 2.4.  Each box in this diagram represents a combination of several sub-

systems, which will be discussed in details in the later chapters. 

 

Figure 2.4. Block Diagram of the LCC Methodology Flow 

The diagram in Figure 2.4 provides the outline of the LCC model. The top path 

corresponding to the ascending curve of Figure 2.1 includes the cost of ownership (COO) 

model (for more information on COO see [Dance (1996)] and Chapter 3 of this 

dissertation) of the test equipment required to conduct particular environmental tests as 

part of a product validation program. The second important contributor to the ascending 

part of the curve is the costs associated with test units, which is highly influenced by a 

test sample size.  This includes the cost of producing each test sample (which can be 
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quite high in some industries), equipping each sample with monitoring equipment, 

adequate test capacity equipment to accommodate all the required samples, and many 

others.  The bottom path (Descending curve) deals solely with the expenses related to 

future product failures, such as warranty and service costs (see Chapter 5 for details).  

The main source for this type of information would typically be a company’s warranty 

database and other types of failure and repair related information. All these inputs are 

incorporated into the total cost model by the means of stochastic simulation with the 

random variable inputs.  Minimization of total costs will allow finding an optimal 

duration of the most expensive tests and the respective sample sizes, while at the same 

time satisfying reliability requirements for the product. 

 

2.4. LCC Model Inputs 

There are a variety of LCC computation methods.  The SAE model is considered as one 

of the most comprehensive LCC methods in the automotive industry [SAE (1993)].  

However, as mentioned before, most of these models apply to maintenance intensive 

products, which do not include the majority of automotive components and automotive 

electronics in particular. The variety of cost inputs needed to populate the model 

developed in this dissertation is obtained from various sources such as automotive 

warranty databases, COO analysis for the test lab equipment, costs associated with test 

and validation lab, etc. Specific data inputs will be detailed in their respective chapters 

and will include various expenses required to take a product through a complete series of 

environmental and functional tests.  The following sections describe the categories of 

model inputs with many of the inputs being random variables. 
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2.4.1. Product Definition and Reliability Requirements 

Typically the first step in product development includes some form of product definition, 

which requires a wide variety of information including complete product specification, 

functionality, usage, and others attributes. However the main focus for a validation 

engineer usually remains on the technology utilized in the product and the usage 

conditions.  Both items are very critical to defining the validation part of the product 

development sequence.  However in most of industries, including automotive, OEM 

customers often provide the requirements pertinent to the reliability performance of the 

product in the field. It is important to collect and understand all the reliability 

specifications in terms of required environmental and functional tests and also in 

statistical terms of reliability and confidence level.  Reliability requirements are typically 

specified by the OEM customer in terms of percent survival, cumulative failures, MTBF, 

MTTF, failure rate, BX-life4, and various others. 

 

Reliability requirements usually come in a variety of shapes and forms.  More 

information on automotive reliability requirements and how they are derived can be 

found in [Krasich (2003); Lu and Rudy (2000)].  Most of the environmental tests for 

automotive electronics can be divided into two major categories: durability and capability 

tests (see Chapter 3 for more details).  Durability tests are intended to simulate the field 

environment as applied to a product mission life.  Usually some form of fatigue failure 

                                                 

4 BX-life is the product’s service life where X% of the population is expected to fail. 
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mechanism is caused by those types of environments.  Capability tests do not simulate 

the mission life, but instead are used to verify that the product is capable of functioning 

under certain environmental conditions.  This work concentrates on environmental test 

formats most typical to automotive electronics requirements, although it is important to 

note that other mass production industries, especially consumer electronics, have similar 

product validation procedures.  Typical reliability requirements contain the detailed 

information about the types of environmental tests to be conducted on the product with 

some specific parameters like 10 hours at high temperature of 125° C or 3 hours of 

random vibration with specified profile.  In addition, the test sample sizes for each test 

are often specified in order to demonstrate certain target reliability – this is one of the key 

variables where validation engineer can affect the ultimate LCC of the product.  

Durability testing is more involving and takes longer time, therefore the potential cost 

savings can be more substantial compared to much shorter capability tests targeted to 

discover the immediate design flaws. Since a big part of the equipment costs are driven 

by the type of tests and their durations, understanding the reliability requirements is the 

first critical step in determining the cost inputs associated with the test equipment 

involved in product validation. 

 

2.4.2. Cost of Ownership for Product Validation 

After finalizing the reliability requirements and determining the types of environmental 

tests needed we can start the process of calculating a test equipment cost of ownership 

(COO).  COO relates to the total cost of acquiring, installing, using, maintaining, 

changing, upgrading, and disposing of a piece of equipment over its predicted useful 
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lifespan (for further details see [LaFrance and Westrate (1993); McKenzie (2004); Dance 

(1996)]). Sometimes it is referred as TCO (Total Cost of Ownership), however the term 

COO will be primarily used in this dissertation.  COO analysis usually includes the 

equipment depreciation, installation, sustainment cost (energy, repair and maintenance, 

etc.), disposal cost, and various other contributions.  However, despite the uncomplicated 

math COO models have a substantial degree of uncertainty.  In many cases the process of 

accounting for these costs can be complicated by lack, incompleteness, or inaccuracy of 

the equipment data pertinent to the maintenance (both scheduled and unscheduled), cost 

of replacement parts, duration of repairs, etc., thus contributing to the uncertainty of the 

cost model.  A method of dealing with the common problem of missing and incomplete 

equipment maintenance records and its effect on the process of calculation of the 

equipment COO will also be discussed in this dissertation. 

 

As mentioned earlier, certain portions of the equipment cost are driven by the type of 

tests, their durations, and test sample sizes.  The cost associated with test equipment can 

reach millions of dollars, especially in large manufacturing or testing organizations.  The 

effect of these variables on life cycle cost has not been fully studied in either reliability or 

warranty literature.  More detailed analysis of these and other related issues will be 

discussed in Chapter 3.  COO analysis will be the main source of cost input associated 

with the ascending part of the Reliability-Cost curve in Figure 2.1. 
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2.4.3. Test Sample Size  

Since demonstrated reliability is typically a function of test sample size, the latter 

becomes one of the control factors available to a reliability engineer (also referred here as 

validation engineer) whose function is to detect a potential nonconformance to the 

specification of the product and to communicate this information to a design engineer.   

 

When the result of a test has only two outcomes (in the case of reliability testing it is pass 

or fail) the Binomial distribution is often applied to calculate the reliability (see Appendix 

A). In their pursuit of high quality and high reliability in a mass production environment, 

the automotive manufacturers require their suppliers to prove target reliability with an 

assigned confidence level on a supplied product.  This is often done through a reliability 

demonstration test by running a specific number of samples under conditions simulating 

the mission life sometimes called test to a bogey.  Most of the time the number of 

samples is determined by the required reliability and the confidence level.  Test sample 

size in turn can be affected by a test duration (see Appendix A) or application of 

knowledge-based techniques, such as Bayesian analysis (see Chapter 4 and Appendix B 

for details).  Test sample size carries the cost of producing each test sample (which can 

be quite high in some industries), equipping each sample with monitoring equipment, and 

adequate test capacity equipment to accommodate all the required samples.  The last 

contribution to test sample size can present a significant cost problem, since a large 

sample may require additional capacities of expensive test equipment, such as 

temperature/humidity chambers or vibration shakers costing tens or hundreds of 

thousands of dollars. 
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Several different approaches to determining and consequently reducing test sample size 

and overall cost of product validation is considered and analyzed in this dissertation. 

 

2.4.4. Warranty/Service Cost 

Warranty cost is a significant part of the overall product’s cost.  As mentioned in Chapter 

1, on average General Motors spends around $3.5 billion on warranty [Nasser et al. 

(2002)]. Most companies maintain some form of FRACAS reporting system, where they 

collect and analyze past field and test failures. All automotive manufacturers and most of 

their suppliers maintain internal and external warranty databases. There are a variety of 

warranty database formats, but generally they are organized in a similar fashion and 

contain information specific to a FRACAS reporting system.  For example, the structure 

of a DaimlerChrysler automotive warranty database was described by [Hotz et al. (1999)] 

and General Motors database by [Walters (2003)]. A typical automotive warranty claim 

contains all the relevant information about the vehicle and the failed system including 

manufacturing date, repair date, vehicle mileage, problem description, some geographical 

data, repair code, cost of repair, and many others.  Some general information about how 

the General Motors warranty database is organized can be found in [Walters (2003)] and 

DaimlerChrysler warranty reporting system in [Hotz et al. (1999)].  Also a typical 

warranty database being a large entity contains a certain amount of noise and unusable 

data, like inaccurate reporting, wrong codes, and NTFs (No Trouble Found) as described 

in [Thomas et al. (2002); Salzman and Liddy (1996)].  The issues of statistical analysis of 

warranty data will be discussed in more details in Chapter 5.   
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It is important to remember that product warranty is an inseparable part of a business 

model.  Market conditions have traditionally been the main factor that determines the 

terms of automotive warranties.  While expected reliability and quality of the product is 

considered an important supporting factor, in reality, the actual warranty terms are most 

often determined by marketing pressures.  [Mitra and Patankar (1997)] analyze the effect 

of warranty decisions on market share, examine market share as a function of warranty, 

and analyze the option of extending the warranty at the end of the base warranty period. 

Currently the terms of the standard automotive warranty, often referred to as the 

manufacturer's basic warranty are 36 months or 36,000 miles, whichever comes first 

[Auto Warranty Advise (2004)] on all of the vehicle systems with additional optional 

extended warranties or standard longer term warranties on selected sub-systems, such as 

catalytic converters or engine controllers. 

 

Warranty history and warranty expectations greatly affect the market value of new and 

used cars sold and lease residual values. Because of these and other financial and 

marketing considerations, a multitude of business decisions are being made based on the 

forecasted number of warranty returns for the overall warranty period and subsets 

thereof.  More detailed warranty information will be presented in Chapter 5. 

 

As mentioned above, the information presented in warranty databases is extensive and 

can be used for various types of statistical analysis both parametric and non-parametric. 
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In this dissertation warranty claims information is used extensively to calculate the after 

shipment factor of automotive part LCC. 

 

In many industries quality and reliability engineers who are involved in the warranty 

forecasting process often use empirical models based on past warranty claims of products 

with similar design and complexity adjusted by certain, experience-based correction 

factors accounting for the design and technology changes in the product. A reasonably 

accurate, scientific, and user-friendly model could help to accomplish these types of 

forecasting with better precision and improve the overall quality of business decisions 

requiring estimates of future warranty claims.  

 

Warranty terms are not determined by the reliability of the product, but rather by 

financial and marketing considerations.  In addition to practical reasons, longer warranty 

periods are often used as an enhanced marketing tool.  Clearly product validation 

activities affect both cost of the product development and future service cost (mostly in 

the form of the cost of warranty returns), but how can it be quantified? 
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Figure 2.5. Extended warranty charts compiled from Delphi Corporation’s 5-year 

warranty data for the four different automotive radios mounted on several vehicle lines. 

The data shows no wear-out mode for at least 5 years of service. 

 

The diagram in Figure 2.5 suggests that in the majority of the cases the warranty failure 

model is sufficiently represented by the infant mortality and useful life phases of bathtub5 

curve.  A detailed study of the existing warranty of various product lines of automotive 

parts performed at Delphi Electronics & Safety showed a clear trend of diminishing 

failure rate for the first 8 to 18 months (see also Figure 5.2) followed by a flattening of 

                                                 

5 The reliability of electronic devices has often been represented by an idealized plot called a bathtub curve, 

which consists of three regions: infant mortality, useful life, and wear-out [O’Connor (2003)] 
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the failure rate curve for the remainder of the time period that warranty and extended 

warranty data were available. 

 

Field failures can result from inadequate design, defects generated during component 

manufacturing, errors in the assembly process, and other effects mentioned by [Majeske 

(2003)].  There is a variety of warranty analysis and prediction methods including both 

parametric (see for example [Yang and Zaghati (2002); Majeske and Herrin (1995); Oh 

and Bai (2001)]) and non-parametric ([Lawless (1998); Kalbfleisch et al. (1991)]). In this 

dissertation the focus is made on parametric methods due to the emphasis on forecasting, 

where parametric models can typically do a better job of extrapolating the results of 

warranty analysis. The prediction model is based on probabilistic analysis of the existing 

warranty data and will be discussed in more details in Chapter 5.  The forecasted cost of 

warranty claims will be the main input corresponding to the descending part of the 

Reliability-Cost curve in Figure 2.1. 

 

2.5. Proposed Cost Model 

One of the objectives of this work is to create a cost model to be used by reliability 

engineers and which can be optimized based on decision variables controlled by these 

engineers. The ideal cost model in our case would be practical and intuitively obvious to 

reliability practitioners and at the same time mathematically descriptive and conducive to 

optimization.  
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In general terms, the cost model for a mass production automotive component can be 

described by the equalities below presented by [Kleyner et al. (2004)].  Equations (2.1), 

(2.2), and (2.3) show the cost components of the buyer’s cost for the products in general 

and automotive products in particular. 

 

Buyer’s Cost = Design Cost + Validation Cost + Manufacturing Cost + Warranty Cost + Seller’s Profit 

(2.1) 

Writing equation (2.1) more explicitly, 

')(),()()(),(),( PWnnWWn Wfmpvdb ++++= θαθθαθαθαθα  

(2.2) 

Where: 

αb = per unit cost to the buyer (customer’s price) α 

αd = design cost of the project 

αpv = total cost of product validation 

αm = manufacturing cost on per unit basis 

αw = cost of warranty on per unit basis 

P’ = seller’s profit 

},{ 00 MTW =  = two-dimensional warranty, where T0 is the warranty time limit 

(typically 36 months) and M0 is the warranty mileage limit (typically 36,000 

miles). 

θ = vector of design parameters 
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Equation (2.2) assumes that the number of manufactured units n approximates the 

number of units sold, which is usually true for high-volume products.  Equation (2.2) can 

also be regrouped the following way: 

)(),()(')(),(),( θαθθαθαθαθα Wfpvmdb WnPnWWn +=−−−  

(2.3) 

On the left-hand side of equation (2.3), the cost of design αd represents the value, which 

is most difficult to estimate, since it often involves engineering time, prototype 

fabrication, testing, training, overhead, and many other factors.  However most of αd is 

estimated prior to the beginning of new product quoting process, i.e., during product 

specification phase.  The quoting process specifically consists of documenting technical 

characteristics, cost estimates with risk analysis, engineering requirements, 

manufacturing plan, and preliminary product price.  The cost of product development that 

is included in product quotes is usually based on forecasting methods, such as analogy 

models, expert judgment, prototype models, top-down calculations, and others (see for 

example [Rush and Roy (2000); Bashir and Thompson (2001)]). Thus, the first order 

approach will associate αd with the value, which based on historical development cost of 

similar product lines and assume it is not significantly affected by product validation 

activities and therefore will be considered as constant of test sample size and test 

duration.  Other left-hand side components of equation (2.3) also will not be affected by 

either test sample size or test duration. 
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In addition to the ‘traditional’ costs listed above, companies should consider the 

‘intangible’ factors, such as the cost of tarnishing brand image associated with poor 

product quality and reliability.  Also the cost of future lawsuits can significantly increase 

the LCC (see influence diagram in Figure 2.2).  However these aspects of cost will not be 

covered in this dissertation due to their extreme unpredictability. 

 

Now let’s look at the terms on the right-hand side of equation (2.3).  Assuming the 

validation procedures will be similar across products with similar application conditions, 

which for automotive electronics are largely dictated by product location in a vehicle.  

The requirement of reliability and associated confidence level submitted by the OEM 

customers are linked to reliability demonstration procedures, which are in turn related to 

a sample size and test duration. Thus, the main factor, affecting the variable cost of 

product validation will again be the test sample size, and test duration, 

 

),()( Tpvpv tNαθα ≅  

(2.4) 

For a given rate of defects, the number of products that reach the market and trigger 

warranty claims will be approximately proportional to the number of products shipped.  

Therefore, the number of units, nf, expected to fail under warranty, will be proportional to 

unreliability (1-R) of the product and thus partially dependent on validation procedures.  

In fact, assuming that the demonstrated reliability would be reflected in product 
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performance in the field, nf will also become dependent on not only the warranty terms, 

but also on demonstrated reliability and thus the test sample size: nf = nf(W, N, tT) 

 

Thus equation (2.3) will take form: 

)(),,(),(')(),(),( θααθαθαθα WTfTpvmdb tNWntNPnWWn +=−−−  

(2.5) 

The left-hand side of this equation is primarily determined during the new product 

quoting process and often based on previous cost data as well as competitive pressures. 

Therefore, we assume, to first order that the left-hand terms of the equation (2.5) cannot 

be significantly affected by product validation efforts. Thus the right-hand side of the 

equation (2.5) would be used to optimize the life cycle cost if only the variable cost of 

validation can be controlled.  

 

)(),,(),( θαα WTfTpv tNWntNCostityDependabil +=  

(2.6) 

In automotive electronics applications the biggest share of product validation expense 

generally comes from various environmental testing and durability-temperature related 

testing in particular.  Environmental type testing will remain largely (but not exclusively) 

in the focus of this analysis. 

 

The portion )(),,(),( θαα WTfTpv tNWntN +  of equation (2.6) would be consistent 

with the classical Reliability-Cost model (Figure 2.1) where it can be optimized based on 
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the inverse relationship between target reliability and expected warranty cost.  As 

mentioned before, most of the models presented in the literature (e.g., [Blischke and 

Murthy (1996); Rush and Roy (2000)]), typically lack specifics due to unavailability of 

the real cost data (which can be quite extensive).  In this dissertation the general 

relationship represented by equation (2.6) will remain in the focus of the probabilistic 

cost model. 

 

2.6. Model Development and Solutions 

The LCC modeling will focus on the mathematical equations described in Section 2.5.  

Though seemingly simple, equation (2.6) comprises all the probabilistic and deterministic 

inputs described in Section 2.4. 

 

2.6.1. Model Description 

The model includes the calculation of the total dependability-related LCC, which 

includes the inputs from both descending and ascending parts of the cost curve Figure 

2.1.  Each variable in equation (2.6) is considered in detail and included into the model 

described in detail in Chapter 3 and Chapter 5. 

 

Cost of product validation αpv will be comprised of the inputs described in the Sections 

2.4.1 through 2.4.3 and warranty cost αW will come from the Section’s 2.4.4 inputs.  The 

information needed to populate this model will be obtained from a combination of 
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warranty databases and the COO for the test laboratory at Delphi Electronics & Safety.  

The final cost model will be implemented using Monte Carlo simulation in order to 

account for all the probabilistic and deterministic input variables. As with any 

probabilistic model, the uncertainty will be a factor in the calculations, thus confidence 

intervals will accompany any optimization solution. 

 

2.6.2. Monte Carlo and Other Stochastic Simulation Techniques 

There are various ways to generate and analyze a probabilistic model, mostly with some 

form of stochastic simulation. It is important to mention here again that it is outside the 

scope of this work to determine the best and most mathematically sound stochastic 

simulation approach. In this dissertation the Monte Carlo technique will be utilized as a 

tool to process random data as an input to the probabilistic LCC model.  

 

As mentioned in Section 2.4 the model has inputs of both deterministic and probabilistic 

nature.  The random inputs will be modeled using Monte Carlo techniques.  The data 

sources for the necessary statistical distributions, such as daily vehicle mileage, repair 

cost, failure rates, and many others will be obtained from the analysis of the existing field 

data, most of which comes from the automotive dealerships.  The stochastic simulation 

will be carried out using @Risk® 4.5 along with certain programming features of 

Microsoft Excel. Mathcad® will be utilized for numerical and analytical integration and 

other types of mathematical calculations. 
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2.6.3. Model Outputs 

The following outputs are expected as a result of the model simulation.  The outputs can 

be subdivided into two groups: interim and final: 

 

Interim Outputs: 

 

• Warranty forecasting model and the failure function F(t) for the mission life of the 

product 

• Expected number of warranty claims for the warranty period. 

• Statistical distribution of daily/yearly mileage for the products under consideration. 

• Expected cost of warranty for any product under consideration based on 2-D 

warranty model. 

• Per unit cost of product validation. 

• Equipment cost and statistical distribution of its maintenance schedule and cost. 

 

Final Outputs: 

 

• Optimal sample size and duration of the test requiring to achieve lowest possible 

LCC value for the product. 

• Target reliability to be pursued to obtain the lowest possible share of LCC 

associated with failure related activities of product development. 

 

Chapters 3, 4, and 5 will detail the process of obtaining these outputs. 
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2.7. Application of the Model to Optimization 

The dependability-related portion of the LCC will play the role of the objective function 

in the optimization procedure performed using the models developed in this dissertation.  

A direct search method will be used to find the minimum of this function.  However, as 

mentioned before, it is outside the scope of this dissertation to determine the best 

numerical optimization approach to solving the optimization problem.  Rather in this 

dissertation we are interested in demonstrating that an optimum point exists and can 

actually be achieved.  The important aspect of this approach is that the output of the 

model will be minimized utilizing the decision variables available to a validation 

engineer.  The mathematical aspects of numerical optimization will not be the focus of 

this study.  Instead, the emphasis here will be made on formulating the methodology and 

compiling the model with comprehensible inputs and outputs suitable for optimization by 

most of the available engineering and mathematical methods.  More emphasis will be 

made on the existence of the solution and its finding, rather than on determining the most 

efficient mathematical aspects of this process.  Thus the overall goal is to find the input 

parameters of the model delivering the lowest output of the model, i.e., the total LCC of 

the product. 

 

The proposed methodology is intended to be applied mostly by reliability engineers and 

project managers involved in the new business quoting process and following product 

development.  Also this model can be used by reliability engineers negotiating validation 

programs with the OEM customer and trying to find the optimal solution.  It can be 
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effectively applied during the conceptual stage of the product as well as at the later 

development stages.  However the benefits of this model will be considerably higher at 

the product planning, development, and validation stages, since these are the stages, 

where the program outcome and the future LCC can be influenced the most.  An 

additional advantage of this methodology is that it can be split into independent 

segments, thus enabling parts of this model be applied independently of other model 

segments or on the other hand be eliminated from the model altogether depending on the 

field of application and the user’s choice. 

 

2.8. Summary and the Remaining Chapters 

This chapter presented a high level overview of the proposed cost model, its critical 

inputs and expected outcomes. Each block of the cost model in Figure 2.4 will be covered 

in detail in Chapters 3, 5, and 6.  Chapter 3 will give a detailed analysis of the 

development and product validation cost represented by ascending curve of the diagram 

Figure 2.1.  Chapter 5 will focus on warranty cost and other aspects of the field life of the 

product (descending curve in Figure 2.1). Chapter 6 will cover details of the modeling 

process, model integration, and Monte Carlo simulation with uncertainty analysis.  It will 

also present a case study of the existing product and a step-by-step procedure of practical 

application of this model.  Chapter 4 will discuss the ways to reduce the cost of validation 

using Bayesian techniques. Chapter 7 will summarize the work, outline the contribution 

of this research, and discuss future directions of this research. 
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3. Product Validation Cost 

The important part of Life Cycle Cost (LCC) analysis is forecasting the values of 

business variables, such as future sales, expected failure-related expenses, future service 

costs, etc. This chapter addresses the issue of estimating the cost of product validation 

with an emphasis on environmental tests. Even though the business forecasting has a 

certain degree of art [Verzuh (1999)] and may have various degrees of uncertainty, the 

goal is to increase the accuracy of every aspect of forecasting, since most projects are 

viewed as investments [Verzuh (1999)].  Test and validation of the product is an integral 

part of the product development cost.  In the automotive industry the cost of product 

validation can easily reach several million dollars depending on the type of the product, 

its geometry, technology, functional requirements, reliability specifications, and many 

other parameters. 

 

3.1. Validation Cost  

Considering that a product is normally designed to survive a predetermined service life 

(e.g., 10 years and/or 100,000 miles for automotive products) it is not always possible to 

predict accurately its expected failures, which are often a result of variations in the design 

characteristics of the product.  Thus testing to demonstrate the particular reliability would 

reveal the adequacy of the design as well the consistency of the product parameters 

across the production lot. Thus, even a properly designed product may or may not 

demonstrate the required reliability depending on the amount of variation from product-

to-product.  Based on this consideration, it is very difficult to predict in advance the 
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additional cost required to make improvements in a non-conforming product so that it 

will adhere to reliability requirements.  Variability of product parameters usually belongs 

to the realm of manufacturing engineering and is only partially addressed by reliability 

engineers via the size of an environmental test sample.  The typical focus of a reliability 

organization remains on a test plan and its execution, which would include the set of 

environmental tests, appropriate sample size, and test duration. These are parameters that 

can be controlled by the reliability organization and they will be the main focus of this 

study.  

 

3.1.1. Quoting Activities – The Role of Reliability Organization 

Knowledge about the cost of the validation program, which is usually application 

specific, can be a very important piece of information during a quoting process, where a 

validation engineer is expected to estimate the validation cost based on the reliability 

requirements presented by the OEM customer.  If the cost of product validation is 

estimated incorrectly it may render the project unprofitable (the case of a low estimate) or 

generate high bidding quotes resulting in a loss of business (the case of a high estimate). 

Thus, accurate modeling of validation cost (as well as the total LCC) would allow the 

company to increase the accuracy of the bidding process and, among other benefits, to 

increase the company’s chances of obtaining profitable business contracts (see [Barringer 

and Weber (1996); Verzuh (1999)] for further details).   

 

During the quoting process the marketing organization often assigns the lowest possible 

value on the development cost following the competitive marketing strategy described in 
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[O'Shaughnessy (1988)], thus making the future profit margin vulnerable to variations in 

actual product development costs. Therefore the importance of achieving accuracy in 

estimating the cost of product validation during the product quoting stage increases as the 

pricing strategy becomes more aggressive. 

 

3.1.2. Product Validation Cost Estimate Diagram 

The diagram in Figure 3.1 presents the steps required to estimate the cost of validation.  

This diagram is a detailed version of the upper branch of the “LCC methodology flow” 

previously shown in Figure 2.4. 

 

A typical validation cost model would include the steps and transitions presented in the 

Figure 3.1.  The steps would begin with product definition followed by the analysis of 

reliability requirements and other relevant product specifications.  The next step would be 

a selection of the types of environmental tests and their durations, the equipment required 

to conduct them, and the required test sample sizes along with environmental test 

durations.   
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Figure 3.1. Validation cost calculation diagram 

The following parallel steps of analysis of equipment Cost of Ownership (COO) and the 

test sample cost analysis are the primary inputs to the total validation cost simulation, 

which is performed using Monte Carlo or other stochastic simulation techniques.  The 

noise parameters, such as incompleteness of input data will be the factors affecting the 

uncertainty of this cost analysis model.  Most of the modeling blocks presented in Figure 

3.1 will be discussed in detail in the following sections of this chapter. 
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3.2. Product Specifications and Requirements 

Analysis of product specifications and the resulting development of the test plan is a 

critical stage of product validation, since it is where most of its engineering and business 

decisions are made. These decisions will affect the overall product LCC and especially its 

ascending branch - cost of product validation, Figure 2.1.  The majority of the products 

designed to be used by consumers in the real world are validated using a series of 

environmental tests.  A classic example of environmental test specifications is the 

General Motors standard for validation of electrical and electronic products [GMW 3172 

(2004)].  This standard covers a wide variety of environmental tests including 

temperature, humidity, vibration, mechanical shock, dust, electrical overloads, and many 

others.  An example test flow based on GMW3172 is presented in Figure 3.2 showing the 

wide variety of tests required for automotive electronics products organized in various 

groups and sequences.  Due to the large variety of required test procedures it would take 

a long time to do all the required tests sequentially on the same set of units.  Therefore in 

the majority of the cases the tests are done in parallel as presented in the example Figure 

3.2.  The test flow has four major parallel test legs, which helps to reduce the total test 

time, but increases the size of the sample population, since each leg would require its 

own set of test units. 

 

As mentioned before, most of the environmental tests for automotive electronics can be 

divided into two categories: Durability tests and Capability tests, [Lewis (2000)]. The 

durability tests are intended to simulate a full mission life and may trigger some fatigue 

failure mechanisms.  The most common automotive durability tests are vibration, high 
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temperature endurance, low temperature endurance, and power temperature cycling 

(PTC).  These types of tests require costly test equipment and are often lengthy and 

expensive to perform. For example the PTC test in Figure 3.2 takes 17 days and is also 

sequenced with other environmental tests. The capability tests do not simulate the 

mission life, but instead are used to verify that the product is capable of functioning under 

certain environmental conditions.  Failures in capability tests can be a permanent damage 

or a temporary loss of function that can be ‘reset’ after the environmental stressing 

condition is withdrawn. The examples of these tests can be found in legs 4, 5, and 6 of 

Figure 3.2 and include dust tests, over-voltage, certain types of a humidity test, and 

several others.  

 

The durability testing is where the potential cost savings can be substantial due to the 

longer tests intended to represent the total mission life as opposed to capability tests that 

are targeted at discovering more easily detectable design flaws.  Since most of the 

validation cost in the automotive industry is driven by the durability tests, they will 

remain in the focus of this study; therefore the main effort of minimizing LCC will be 

directed at the two most expensive types of tests, i.e., PTC and vibration shown in legs 1, 

2, and 3 of Figure 3.2. 
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Figure 3.2. Example of an automotive validation test flow per [GMW 3172 (2004)] 

 

3.3. Approaches to Validation Cost Estimate 

Most of the product life cycle accounting models presented in the literature (e.g., 

[Blischke and Murthy (1996); Fabrycky and Blanchard (1991)]) consider the overall cost 

of the design cycle, but often ignore its specific components such as product validation 

cost.  In the automotive industry however this cost can be quite substantial and should be 

addressed in all stages of LCC analysis. 
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Most of the approaches considered in the literature that account for the cost of reliability 

and its variations include the cost of preventive maintenance [Kececioglu (1991)] and the 

overall cost of the design cycle [Blischke and Murthy (1994)], but do not sufficiently 

address the input of validation activities as well as the cost of ownership of test and 

validation equipment. 

 

Figure 3.3. Life cycle cost versus reliability (with solution confidence bounds) 

The chart presented in Figure 3.3, which already appeared in Chapter 2 illustrates the 

theoretical approach to minimization of the product LCC.  This chart appears again here 

to emphasize the contribution of product validation into the whole LCC model.  It shows 

the growth in product development cost with increasing reliability and decrease in 

warranty/service cost.  It also shows that the minimum LCC can be presented in form of 

an interval due to uncertainties in the model.   
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The cost of validation is an integral part of the ascending curve in Figure 3.3 and it can be 

significant even when compared to the rest of the design and development cost.  However 

most of the literature sources mention it as a built-in part of the overall development cost 

and overlook the significant input of test laboratory cost and the ways they can affect the 

location of the optimal reliability area on the X-axis in Figure 3.3. 

 

3.4. Proposed Approach 

One of the main objectives of this work is to provide a realistic methodology to specify 

the relationships presented in Figure 3.3 and use this model to minimize the life cycle 

cost of a product using the validation cost input variables.  As mentioned before, this 

work presents an analysis of life cycle cost from the viewpoint of a reliability 

organization and suggests ways to optimize the validation procedures with the controls 

available to a reliability engineer as oppose to a product design or any other engineering 

or business competency.  The methodology proposed in this section concentrates on 

estimating the cost required to validate the product according to environmental and 

mission life specifications including meeting the required target reliability. 

 

3.4.1. Main Contributors to the Cost of Product Validation 

There are a variety of cost contributors to the test and validation process, some of them 

also depend on the product applications.  The main cost contributors to the typical 

automotive validation program are:  

• Test equipment cost of ownership (COO) 
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• Labor cost 

• Test sample population related costs 

 

Secondary cost contributors:  

• Floor space 

• Laboratory overheads 

• Other miscellaneous costs 

 

Each contributor will be analyzed in the sections below and compiled within the total 

validation cost model in Section 3.4.5. 

 

3.4.2. Effect of a Test Sample Size and Test Duration 

Some of the cost categories listed in the Section 3.4.1 could be considered as a fixed cost 

of reliability demonstration and some can be categorized as variable cost.  The expenses 

linked to the test sample size could be qualified as variable costs. Their effect has been 

consistently overlooked in everyday product validation practice. Needless to say, the 

larger the test sample size the greater the cost of validation.  Despite that, the cost effect 

of the number of samples required to be tested is usually not given enough attention.  

Meanwhile, each test sample carries the following costs associated with the sample 

population: 

• Cost of producing a test sample. 
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• Cost of equipping each test sample.  In the electronic industry it would include 

harnesses, cables, test fixtures, connectors, etc. 

• Cost of monitoring each sample during the test.  In the electronics industry this 

would include the labor cost of:  

 designing and building the load boards simulating the inputs to the electronic 

units 

 connecting and running the load boards 

 recording the data 

 visual and other types of inspection 

Considering that some tests may run for weeks or even months, these expenses can be 

significant 

 

Most of the time the number of the required test samples is determined from the 

reliability and the confidence level defined by the customer specifications mentioned in 

the Section 3.2.  This process is called Reliability Demonstration, which is most often 

based on the binomial distribution, requiring a particular test sample size in order to 

demonstrate the desired reliability number with required confidence level [Meeker et al. 

(2004)], e.g., 97% reliability with 80% confidence.  The basic relationship between 

reliability and confidence level is provided by equation (3.1), derivation of which is 

presented in detail in Appendix A. 

 

NRC −= 1  

(3.1) 

Equation (3.1) can be solved for the test sample size N as: 
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R
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ln
)1ln( −

=  

(3.2) 

Based on equation (3.2) the demonstration of reliability R approaching 1.0 requires the 

sample size N to approach infinity.  Table 3.2 shows an example of reliability sample 

sizes based on equation (3.2) calculations. 

Table 3.1. Examples of reliability sample sizes 

Reliability, R Confidence Level, C Sample Size, N 
90% 90% 22 
95% 90% 45 
99% 90% 229 

99.9% 90% 2,301 
 

Considering geometric size and complexity of automotive electronic units, and what is 

involved in testing and validating them, test sample sizes above certain level become 

impractical due to the rapidly growing ‘variable’ cost of validation.  With ever-increasing 

reliability requirements, the sample population to be tested would require more and more 

of human resources and capital equipment.  Since reliability demonstration is one of the 

metrics controlled by a reliability engineer, it is only natural to use it as one of the metrics 

in quantifying the future reliability of the product.  Furthermore, it would be 

advantageous to find the optimal target reliability delivering the lowest possible product 

LCC, which is one of the objectives of this dissertation. 

 

It is also important to note that the increase in sample size may actually cause the growth 

of the equipment related costs as a step-function due to the discrete nature of the 
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equipment capacity.  For example, if the capacity of a chamber is 25 units of a particular 

geometric size, then a test sample of 26 units would require two chambers instead of one 

needed for 25 samples.  This trend will be reflected in the equation for the overall 

validation cost in Section 3.4.5.   

 

As mentioned before, the test sample size grows exponentially according to equation 

(3.2) with the increasing target reliability.  Table 3.1 shows that the demonstration of 

99.9% reliability with 90% confidence would require the impractical 2,301 samples.  

Based on the fact that sometimes customer requirements do contain this kind of reliability 

target, other mathematical methods would be required to achieve those high numbers.  

For example, in the cases where prior knowledge about the product’s dependability is 

available, certain methods of sample size reduction based on Bayesian approach can be 

utilized.  These approaches can help to bring the number of test samples within practical 

limits and will be discussed in detail in Chapter 4. 

 

Another factor, which can significantly affect the test sample size is test duration.  There 

is a relationship between the test sample size and test duration referred as Parametric 

Binomial, which allows the substitution of test samples for an extended test time and visa 

versa.  This relationship is sometimes called Lipson equality [Lipson and Sheth (1973)] 

and presented here in the equation (3.3). 

 

βNLRC −= 1  

(3.3) 
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Where: 

L = number of service lives the product intended to be tested for 

β = Weibull slope for primary failure mode 

It is important to note here that equation (3.3) is derived under assumption of Success 

Run testing (see Appendix A), i.e., no failures are experienced during the test.  However 

as L increases (increased test duration) the probability of the failure occurrence is 

increasing.  Therefore the value of L should be limited to provide a reasonable duration 

within the framework of Success Run testing.  Also the Weibull slope in equation (3.3) 

should not be confused with the β-values used for warranty prediction in Chapters 5 and 

6.  The β-values in equation (3.3) are corresponding to the end-of life conditions and 

therefore correspond to wear-out mode with β > 1.  Therefore the higher the β the sooner 

the product will fail (smaller L) and the higher the probability that the zero-failure 

assumption will be violated. 

 

Based on equation (3.3) the required number of test samples can be reduced Lβ times in 

the cases where tests duration is longer than the equivalent of one service life  

(L > 1).  Therefore this approach allows an additional flexibility in minimizing the cost of 

testing by adjusting the test sample size up or down according to this relationship. The 

detailed derivation of equation (3.3) and its applications are presented in [Kleyner and 

Boyle (2005)] and also reproduced here in this dissertation Appendix B. 
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3.4.3. Cost of Ownership Model for Product Test and Validation 

Despite the fact that fixed costs of equipment are covered extensively in the business and 

accounting literature, the cost of ownership has not received the attention it deserves.  

The cost of environmental laboratory equipment is still often calculated based on 

acquisition costs rather than cost of ownership [Avamar Technologies (2004)]. 

 

The concept of cost of ownership (COO) is more complex than just depreciation of the 

equipment and maintenance cost and relates to the total cost of acquiring, installing, 

using, maintaining, changing, upgrading, and disposing of a piece of equipment over its 

predicted useful lifespan.  The concept of COO applied to the semiconductor industry are 

discussed in [LaFrance and Westrate (1993); Dance (1996)] and were later summarized 

and further developed in [Sandborn (2005)].  Most of the manufacturing COO concepts 

are listed in the Table 3.2 and include the major cost categories such as Capital, 

Sustainment, and Performance costs.  The details of these costs can be obtained from the 

listed references, and will not be discussed here.  Even though most of these concepts 

were developed for the wafer fabrication industry, most of them are transferable to COO 

of a validation test laboratory (Table 3.2, column 1), when others are less suitable for 

those purposes (Table 3.2, column 2). 
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Table 3.2. Cost of ownership concepts application to test laboratory equipment 

Transferable concepts Less applicable concepts 

Capital cost 

 Acquisition 

 Installation 

 Depreciation 

 Floor space 

Sustainment Cost 

 Lost production (non-service 

organization) 

Sustainment cost: 

 Personnel training 

 Scheduled maintenance 

 Unscheduled maintenance 

 Indirect maintenance cost 

 Utilities (energy, water, CO2, etc.) 

 Insurance 

Performance cost: 

 Change-over cost 

 Repairable defect cost 

 Scrap cost 

 Lost production due to scrap 

 Cycle time penalty 

 

Due to the objective of this dissertation to concentrate on the engineering and statistical 

aspects of the model without undue complication of the methodology, the equipment 

COO will be combined into three major groups: 

1. Capital and depreciation cost (D), which would include acquisition, installation, 

and cost of scraping, all spread over the useful life of the equipment. 

2. Maintenance cost (M) including both scheduled and unscheduled maintenance, 

plus indirect maintenance cost.  Indirect maintenance may include technician 

training, lost revenue due to the equipment idle time, etc. 
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3. Miscellaneous costs (Y).  Include energy cost, floor space, upgrades, insurance, 

etc. 

 

Based on this grouping, the hourly cost of operation can be calculated as: 

hoursdays
YMDCostHourly

24365 ×
++

=  

(3.4) 

Where D, M, and Y are yearly costs. 

 

3.4.4. Maintenance Cost 

Maintenance cost per year (including both corrective and preventive maintenance) can be 

calculated as the total cost of parts and labor multiplied by the number of maintenance 

actions per year [Wortman and Dovich (2002)] or in simplified form: 

 

M = Number of maintenance actions × [repair duration × labor rate + parts cost per 

repair] 

(3.5) 

However, the only deterministic variable in equation (3.5) is the labor rate, while the 

remaining variables can be defined as random variables and presented in mathematical 

form: 
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( )Partsrepairrepair
EQ

t
MTBF

daysyearlyM αϕ +=
365)(  

(3.6) 

Where: 

MTBFEQ = Mean Time Between Failures of the test equipment (repairable system) – 

random function f1(t; ξ1) 

ϕrepair = repair labor rate 

αparts = cost of the spear parts per repair – random function f2(x; ξ2) 

trepair = duration of each repair – random function f3(t; ξ3) 

ξi = vector of statistical parameters.  These parameters can be obtained from 

statistical analysis of the repair and failure data of a particular test facility 

 

Note: in this dissertation most of the cost variables will be expressed by two Greek 

characters α and ϕ.  Where, with various subscript characters ϕ will denote an hourly rate 

and α will denote the cost per item. 

 

Equation (3.6) groups together both preventive and corrective maintenance.  However 

when the costs of CM and PM differ significantly or in the cases, where it is warranted 

for other reasons [Thevik (2000)], equation (3.6) should separate CM and PM as: 

 

( ) PMPMPartsrepairrepair
EQ

Nt
MTBF

daysyearlyM ααϕ ++=
365)(  

(3.7) 
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Where: 

NPM = number of preventive maintenances per year 

αPM = cost of each preventive maintenance 

 

Due to the random nature of the variables in equations (3.6) and (3.7) it is practical to 

involve statistical analysis methods such as Monte Carlo or some other form of stochastic 

simulation. 

 

3.4.5. Total Validation Cost 

A simplified version of the product validation cost model can be found in [Kleyner et al. 

(2004)].  Below presented is the more detailed version of it, consistent with the above 

COO model.  The total cost of product validation per test is given by, 

 

)(
24365

)(
mepTtestpv N

K
NYDMt αααϕα +++













×
++

+=  

(3.8) 

Where: 

αpv = total cost of product validation per test 

D = equipment depreciation cost per year 

M = maintenance cost per year – random variable 

Y = additional equipment expenses per year 

ϕT = hourly labor rate of performing the test 
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αp = cost of producing one test sample 

αe = cost of equipping one test sample 

αm = cost of monitoring one test sample  

ttest = test duration 

K = equipment capacity 

   = ceiling function, indicating rounding up to the next highest integer 

 

The information needed to populate this model will be obtained from an automotive 

electronics environmental test laboratory case study utilizing the sanitized data from 

Delphi Electronics & Safety (see the case study in Section 3.5 and Chapter 6) 

 

3.5. Effect of Incomplete Test Equipment Data on the Cost of Ownership  

The maintenance cost is an inextricable part of a test laboratory cost of ownership.  

Though not a major COO expense, the maintenance cost for a large environmental test 

laboratory can approach the order of magnitude of the depreciation cost.  However, one 

of the common problems with maintenance accounting in industry is incomplete or 

missing maintenance records.  This is especially true when the company has a blanket 

maintenance contract with an outside vendor or has its own maintenance staff paid 

independently from the actual time spent performing the maintenance.  The maintenance 

staff in these cases have little incentive to maintain good records of repair dates and 

times. In addition, the cost of spare parts is not always accurately recorded and often the 

purchase orders are not explicitly linked to particular repairs.  Parts data is often stored 
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together with non-maintenance related purchases, which makes it difficult to calculate an 

exact cost of any particular repair.  Keeping track of these expenses is important, even in 

the cases of maintenance contracts or salaried laboratory personnel.  It is still important to 

estimate these costs in order to allocate the correct dollar amount associated with a 

particular product or program.  In this section we will present the approaches to evaluate 

parameter M (the maintenance cost per year) in equation (3.8) in the cases where the 

maintenance records are missing, incomplete, or accounted for in the wrong databases. 

 

3.5.1. Accounting for Missing and Incomplete Data 

Missing data can often include repair dates, repair durations, the cost of spare parts, and 

their association with particular repairs.  This dissertation will present a case study of a 

real validation test laboratory and will show the methods of calculating the maintenance 

costs based on incomplete records.  This case study will analyze a large test laboratory 

with the equipment ranging in ages from 1 to 22 years, but with only four years of 

existing maintenance records (2000-2004). 

 

There is a variety of methods to process and analyze missing and incomplete data, most 

of which are covered in [Little and Rubin (2002)].  In addition, the problem of 

incomplete/missing data for parameter estimation has been widely discussed in the 

literature (see for example [Baxter and Tortorella (1994); Oh and Bai (2001), Nelson 

(2003), Zhao et al. (2000), Parthasarathy and Aggarwal (2003); Rai and Singh (2003)]), 

and also specifically in application to maintenance records [Celeux et al. (2002))]. 
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Among those sources [Rai and Singh (2003)] present an especially good review of the 

methodologies of dealing with highly truncated data, both left and right censored.  

 

Since all the missing records are related to the past, our data set can be classified as a left-

censored (see Figure 3.4) with univariate6 missing data. In this case study, we are dealing 

with a large amount of missing data, which may cause a high degree of uncertainty.  This 

can be partially compensated for by the general knowledge of the nature of the data and 

the expectation of the failure trends for this type of maintenance equipment.   

Figure 3.4. Left censored repair records 

The common sense approaches to this kind of data restoration are considered in 

[Parthasarathy and Aggarwal (2003)], which is based on the natural conceptual structure 

of the data.  Since the methodology for this kind of analysis could be a separate research 

topic, the amount of time spent here will be just enough to explain the author’s 

engineering approach and its incorporation into the overall LCC model. 

 

                                                 

6 In univariate cases the missing data is confined to a single variable.  In our case it is the exact time of the 

equipment failure. 

T im e
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3.5.2. Maintenance Cost Case Study 

The case study discussed in this section is based on data from an automotive validation 

test laboratory and resembles the operation of Delphi Corporation’s environmental test 

facility.  The test laboratory has 25,000 ft2 of floor space and contains 42 temperature 

chambers and twelve pieces of other test equipment including vibration shakers, dust 

chambers, thrusters, turntables, and others.  As mentioned before the maintenance data 

was available only for the last four years.  Table 3.3 presents a summary of the known 

and unknown parameters for this analysis. 

 

Table 3.3. Known and unknown parameters for each piece of equipment: 

Known Unknown 

• Acquisition cost including 
transportation, delivery, and installation 

• Date of the purchase/installation.  

• Date of each repair made in the past 
four years. 

• Cost of the parts purchased in the past 4 
years 

• Duration of each repair in 0.5-hour 
increments. 

• Repair dates and durations for each 
chamber for the past 4 years. 

• Number of repairs and their dates going 
back more than four years. 

• There is no clear indication in the 
record which repair was attributed to 
preventive and which to corrective 
maintenance 

• In many cases it was impossible to 
determine which part was purchased 
for which piece of equipment.  
Therefore, not all the spare parts 
purchases can be correctly allocated to 
the appropriate repairs. 

 

This type of left-censored univariate data should first be analyzed using a common sense 

reliability engineering approach.  Speaking in terms of MTTF and consequently the 

failure rate on a bathtub curve, there can potentially be three major data trends: increasing 

failure rate (IFR), decreasing failure rate (DFR), and constant failure rate (CFR). 
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Therefore, based on the characteristics of this repair data and the approaches presented in 

[Parthasarathy and Aggarwal (2003); Rai and Singh (2003); Celeux et al. (2002)] the 

following analysis steps can be suggested: 

 

Table 3.4. Uncertainty analysis of test equipment 

1. Determine the types and attributes of the data to be analyzed and set the 

expectation as if the data set was complete, e.g., when the equipment is old enough 

the expected failure rates would be CFR or IFR. 

2. Analyze the available data and determine their MTTF and failure rates. Determine 

which category they belong to (CFR, DFR, or IFR)  

3. Determine the possible types of statistical distributions appropriate for this kind of 

data 

4. Make assumptions about the missing data based on the existing data trends 

5. Parametric statistical analysis of the existing data 

6. Filling the gaps by ‘reconstructing’ the original data using the methods discussed 

in the literature above. 

7. Conclusions and applications 

 

Following this procedure, the first step in our case study was to analyze the available 

equipment data sheets in order to evaluate the nature and the character of the data. The 

ages of each piece of equipment in months were obtained from the original equipment 

list.  The purchase order list provided the dates and costs of parts purchases and a 

separate spreadsheet was used for the labor records (dates and durations).  Due to the 

non-homogeneous nature of the equipment ages, the procedure determining correlation 

between the equipment service times and the number of repairs made between 2000 and 

2004 was conducted as a second step.  A highly positive correlation would have indicated 
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the increasing failure rate, i.e., the wear-out state.  A highly negative correlation would 

have indicated the decreasing failure rate, typical for the infant mortality stage.  And low 

correlation failures would have indicated that the random nature of the failures, typical 

for the useful life stage would follow the Poisson process. The obtained correlation 

coefficient in this case study was r = 0.19, which implied little correlation between the 

age and number of repairs.  That suggested two possibilities: (A) The majority of the 

chambers are still in their useful life period and have not yet entered the wear-out stage or 

(B) the repair concept called ‘as good as new’ is applicable for this type of repair.  

Though it would not make any difference from statistical standpoint, the hypothesis (A) 

would imply that this stage is only temporary and the failure rate trend may change at any 

time in the future, therefore restricting this hypothesis to a particular time limit.  Whereas 

the hypothesis (B) would suggest a more stationary statistical process thereby simplifying 

the future analysis.  For simplicity purpose we will assume the hypothesis (B) and the 

continuous use of the Poisson process and exponential distribution for the steps 3 and 4 in 

Table 3.4.  Step 5 (parametric statistical analysis) combines all the time and cost data 

available for spare parts and repairs and finds a best distribution for those.  The time 

interval (2000-2004) produced the following distribution of spare parts cost: lognormal 

with parameters µ = 5.845 and σ = 1.371, which translates to the mean of approximately 

$800 with standard deviation of approximately $1400.   

 

The list of repair dates, times, and their durations was based on manual entries to the 

maintenance journal. The distribution for repair durations came out also as lognormal, 

which was consistent with the conventional notion that most of the downtimes associated 
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with repairs are distributed in a lognormal fashion [Ebeling (1997)]. The parameters of 

this distribution were µ = 0.5037 and σ = 0.6159, which translated to the mean of 

approximately 2 hours and the standard deviation of 1.36 hours.  The rest of the data was 

treated as a homogeneous pool of failures distributed over four years and 42 pieces of 

similar temperature chambers.  Total time from January 2000 until September 2004 

covered 56 months.  The 225 repairs recorded during those 1680 days implies MTTF = 

1680/225 = 7.47 for the equipment pool of 42 chambers, resulting in MTTFEQ = 7.47 × 42 

= 313 days per unit.  In statistical terms it can be expressed by the equation below,  

 

2
2252

1680422

×

××
=

χ
daysMTBFEQ  

(3.9) 

 

3.5.3. Uncertainties in the Cost Model 

There is an extensive amount of literature dealing with uncertainties and uncertainty 

propagation in economic and engineering problems.  For example [Morgan and Henrion 

(1992); Schjaer (2002); Serrano (2001)] present high-level overviews of major techniques 

of how to account for uncertainty propagation in the analysis.  The incompleteness of 

data and high degree of its censoring raises the level of data uncertainty in our case study; 

however the low correlation between the equipment age and failures was a positive factor 

reducing the uncertainty.  The Poisson distribution chosen based on this correlation is a 
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‘memory-less’ process; therefore the unknown failure data will have less impact on the 

accuracy of the analysis than that in the case of other types of failure processes. 

 

The major analysis-associated uncertainties in the calculation of our maintenance cost 

are: 

• Uncertainty of calculation of MTTF according to equation (3.9) based on the repair 

history of the equipment 

• The uncertainty of MTTR also obtained from the repair history and presented here 

in a parametric form of a distribution in a case study Section 3.5.2 

Besides the uncertainty associated with the data itself, there is an issue of model 

uncertainty.  Even though the correlation between the equipment age and the number of 

repairs was low, the probability still exists that some of the equipment already entered the 

wear-out stage of their service life therefore questioning the accuracy of the chosen 

process.  The model uncertainty will not be estimated here due to the high complexity of 

the subject and relatively low contribution of maintenance to the overall LCC value (less 

than 5% in our case).  Detailed information on model uncertainty and its estimation can 

be found in [Mosleh (1985); Droguett and Mosleh (2002)] and other relevant sources. 

The total uncertainty will be estimated for the stochastic simulation of overall LCC in 

Chapter 6. 
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3.6. Summary 

This chapter presented the analysis of cost of the product validation involving an 

automotive environmental test lab.  It derived the equations for product validation costs 

and defined the major inputs required to populate this cost model. It also discussed the 

ways to deal with incomplete and missing maintenance records, which is common 

occurrence in an industrial environment.  In particular, Section 3.5 shows the techniques 

to estimate the cost parameter M, in equation (3.8) with a limited amount of accurate 

maintenance data and presents a real life example of this type of analysis.  The model 

presented in this chapter will be integrated with the other inputs in the overall LCC model 

later in Chapter 6 for the purpose of cost optimization.  The data from the case study 

presented in this chapter will also be used in the modeling example in Chapter 6. 

 

Even though the main focus of this validation cost model remains on automotive 

electronics industry, most of the concepts presented above would be applicable to test and 

validation procedures for variety of products outside automotive industry.  However it is 

important to understand certain limitations of this model.  For example, the effect of test 

sample size (Section 3.4.2) may not apply to the products with high cost and low 

production volume, such as airplanes, satellites, heavy machinery, and others, due 

possible imbalance in the right-hand side of equation (3.8).  Also this approach may not 

work in the cases of low cost products, where reliability is not one of the key objectives.  

In these cases the validation cost will be artificially low due to the cost saving efforts at 

the expense of product reliability.  More on application boundaries for this model will be 

presented in Chapter 6. 
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4. Bayesian Approach to Test Sample Size Reduction 

This chapter discusses the Bayes theorem related approaches to calculating the test 

sample size needed to demonstrate required reliability and confidence level during the 

durability-type environmental testing.  These approaches are useful in the cases where the 

required reliability and confidence level are too high to be practical from the cost and test 

facilities stand point.  The use of a prior knowledge about a product can demonstrate a 

significant sample size reduction when used where applicable. 

 

With increasing demands for development cost reduction, and shortening of the product 

development cycle time, the modern validation program should accommodate all the 

available knowledge about the product under development.  Most of the automotive 

products are created through a development cycle of evolutional rather than revolutionary 

changes.  Thus a certain amount of the existing product information can be incorporated 

into a validation program.  One of the possible ways of incorporating this information is 

by utilizing the Bayesian approach of analyzing priors and obtaining posteriors. 

 

This section will present a brief survey of the Bayesian models and their applications to 

test sample size reduction in product development, when prior history is available in form 

of laboratory and/or field testing, warranty data, or some other data formats.  One of the 

ways to achieve a reduction in the cost of a validation program is by reducing the number 

of units subjected to reliability testing.  The importance of cost and development time 

reduction cannot be overstressed in the current competitive environment of automotive 

parts business.  This section will also discuss perspectives and challenges of practical 
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applications of Bayesian techniques in industry in general, and the automotive industry in 

particular. 

 

4.1. Background 

Despite the fact that the concept of Bayesian inference has been known for many years, it 

only started attracting the attention of automotive reliability engineers in the past 15-20 

years.  The interest was caused by an increasing number of automotive specifications 

requiring higher reliability demonstration in automotive parts testing.  The predominant 

use of the binomial distribution in determining test sample sizes caused a steady growth 

in the number of units required to test without failure, due to the fact that under the 

Success Run concept (Appendix A), the number of units tested successfully would be 

calculated from the equation (4.1), which is currently used by the majority of automotive 

manufacturers and their suppliers (see derivations in Appendix A). 

 

NRC 01−=  

(4.1) 

Where R0 = target reliability 

C = required confidence level. 

N = test sample size 

 

Equation (4.1) can be solved for N as: 
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(4.2) 

In the automotive industry, C and R0 are usually stipulated by the OEM customer; and the 

Success Run formula (4.1) is then used for the determination of the required test sample 

size N.   

 

The general approach to this problem can be described as the calculation of a confidence 

level that the reliability of the product lies above minimum required reliability R0 (or R0 ≤ 

R ≤ 1).  For the Bayesian form of the Success Run formulae please refer to Appendix B. 

 

The Bayesian form of this derivation (after processing test data, often consisting of N test 

samples, of which k have failed) can be presented in general form: 

∫

∫
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(4.3) 

Where  L(Data|R) = likelihood of obtaining the observed test data if the reliability of  

                                 each unit is R 

 π(R) = prior distribution of that reliability R 

One of the accepted forms of representing reliability prior π(R) is a Beta distribution: 
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The constants A and B (sometimes called hyper-parameters) have a convenient 

interpretation - A being thought of, sometimes, as the number of successes out of A+B 

trials in a similar pre-experiment, real or imaginary. More importantly, the beta prior 

distribution is conjugate to binomial sampling, that is, the posterior is a beta distribution 

as well.  This allows for a continuous updating of the posterior within the same general 

class of distributions (for further details see the Appendix B) 

 

One can see that in the equation (4.2) the sample size N grows very rapidly with R 

approaching 1.0.  For example, to demonstrate 99% reliability with 90% confidence 

would require 229 test samples, which would be practically impossible to do, considering 

today’s realities of automotive development programs with their high competitive cost 

and time-to-market pressures. 

 

4.1.1. Single Point Estimate 

In the early 1990-s [Bayer and Lauster (1990)] presented a Bayesian method, which 

instead of depending on a complete prior distribution, required only one value as a prior 

information, namely the value of R0 at the confidence level C = 63.2%.  Even though it 
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has all the features of a single point estimate, their method was based on the earlier work 

[Martz and Waller (1982)] and conjugate properties of beta and binomial distributions.  

The main concept was based on beta prior distribution with the fixed parameter B = 1, 

where parameter A of the posterior was increased by the number of successfully tested 

samples m, thus becoming A+m.  The m was indirectly obtained from the success run 

theorem by substituting C = 0.632 into equation (4.1): 
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Thus m, which was calculated according to (4.5), represented the number by which the 

original number of test samples N could be reduced, based on the knowledge of R0 at the 

confidence level of C = 63.2%.  The new required number of test samples will be: 
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This method presented a technique, which was practical and convenient for reliability 

practitioners, especially those accustomed to ‘test to success’ reliability approaches. 

4.1.2. Mixed Priors 

One of the difficulties of applying traditional Bayesian methods to a calculation of 

sample sizes is caused by continuous product development and never ending design 
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changes introduced to a product.  Often this means that the prior distribution obtained 

from the warranty information or prior test result is applicable to the previous models of 

the product.  Naturally, it raises the question of the relevance of the existing data to the 

current version of the product, which is different from the original.  The major concern in 

the industry was that while applying Bayesian technique a reliability engineer might miss 

the problems caused by newly introduced product changes, since they were not 

incorporated in the prior distribution. In order to address this problem, [Kleyner et al. 

(1997)] suggested combining beta prior distribution as suggested by equation (4.4), 

constructed from the product history with the uniform prior, which would account for the 

lack of knowledge on the newly introduced product changes.  This work therefore 

proposed to use a two-component mixture of beta and uniform distributions, with density: 
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The [Kleyner et al. (1997)] paper is reproduced here in Appendix B.  The first component 

of the mixture is a beta prior with parameters A and B to be derived from failure data.  

The second component of the mixture is a uniform prior (a special case of the beta) 

representing uncertainty about the new product reliability.  The two components are 

combined according to weights ρ and (1-ρ), where ρ is a knowledge factor representing 

how similar the new product is to the old one, and (1-ρ) is an innovation factor, reflecting 

the proportion of new content in the new product.  For further details of this method see 

Appendix B. It should be noted that the use of a uniform prior alone would lead to the 
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Bayesian version of the Success Run formula; the use of mixtures represents therefore a 

practical compromise between Bayesian approach and binomial distribution.  Table 4.1 

presents an example of the data with the ‘favorable prior’ obtained from warranty 

analysis (beta distribution parameters  

A = 770 and B = 2.5).  Table 4.1 shows the required number of test samples to satisfy  

R = 99% and C = 90% requirement based on the value of knowledge factor ρ. 

Table 4.1. Required test sample size for R = 99% C = 90% with different values of ρ 

Knowledge 
Factor (ρ) 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Sample Size, N 0 1 2 4 6 9 13 19 30 54 229 

 

The idea of using mixture priors in the context of product reliability was generalized to 

the case of heterogeneous prior information, in particular to the case where failure data is 

available for different past products, some more similar than others to the new product.  

In this case, the analysis could be generalized to the consideration of prior densities of the 

form  
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and the different knowledge coefficients ρι reflect different degrees of similarity between 

the new and the old products.   

 

In addition to the general concept [Kleyner et al. (1997)] presented an improved 

procedure for the computation of the beta parameters A and B based on failure data 

obtained from automotive warranty databases based on IPTV (Incidents per Thousand 

Vehicle) values available for the series of 30-day intervals.  The modified procedure 

introduced by [Martz and Waller (1976)] was utilized for determining the beta-

distribution parameters A and B. 

 

4.1.3. Effect of Lifetime Ratio and Acceleration Factors 

In the past several years a number of interesting articles have been published by the 

group of researchers from the Institute of Machine Components, affiliated with 

University of Stuttgart, Germany.  [Krolo et al. (2002a, b, c)] introduced the effect of 

Lifetime Ratio to both [Bayer and Lauster (1990)], and [Kleyner et al. (1997)] methods. 

The Lifetime Ratio L in this case is the ratio of the test time tT to the test time equivalent 

to one life in the field, sometimes referred as bogey.  Combined with the Weibull slope β, 

assumed to be known for the tested product, the factor Lβ similar to that in equation (3.3) 

was embedded into reliability prior and final posterior computations according to 

equations (4.7) and (4.3) reflect the effect of Lβ further affecting the solution, i.e., the 

sample size required to demonstrate the stipulated reliability. The lifetime ratio approach, 

sometimes referred as Parametric Binomial (see Appendix A) has been commonly used 
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before to account for the effect of shortened or extended lab testing on fatigue life of 

tested parts, however in combination with Bayesian approach it presented a 

comprehensive model able to account simultaneously for prior failure data, existing 

testing results, and the known Weibull slopes.  In [Krolo et al. (2002a)] this model was 

extended to cover accelerated tests, now accounting simultaneously for lifetime ratio, 

acceleration factors, and prior reliability distribution in order to obtain Bayesian solution 

for the test sample size.  The likelihood for the data containing k failures out of N trials 

under conditions of accelerated test with the effect of lifetime ration was expressed in 

modified binomial form: 
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ββ )()()( )1(),|( −= −

 

(4.9) 

Where  Af = acceleration factor  
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One of the sources to obtain prior distribution of reliability is an existing test data, which 

is often gathered in form of life data (time to failure format), which is typically fit by a 

Weibull distribution.  As a further step [Krolo and Bertsche (2003)] applied the Weibull 

distribution to the procedure of determining A and B beta parameters.  Based on the beta-

binomial conjugate properties, linking parameters A and B with N, total number of test 

samples, and k, number of failed items, (A = N - k+1, B = k), the authors suggest using 

median ranks in defining the time-dependent number of failed units by the form of: 
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Where β and η are parameters of the Weibull distribution and t is a time duration, which 

can be a field life or its ‘bogey equivalent’. 

 

In addition, the authors introduced the decrease factor δ, which was applied directly to 

the beta distribution parameters A and B in form of: 
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Where δ reflects the uncertainty of the information on the prior reliability and can be 

assigned the value between 0 and 1.  δ = 0 reverts the distribution to the uniform prior. 

Note that δ is similar to the knowledge factor ρ presented in [Kleyner et al. (1997)], 

equation (4.7) reflects the user’s confidence in prior information and its relevance to the 

product, but it is applied directly to the prior distribution, instead of being used as a 

‘mixing ratio’.  This approach, combined with the earlier introduced lifetime ratio and 

acceleration factor, creates a comprehensive and flexible model able to account for 

various inputs associated with product specifications and reliability demonstration 

techniques. 
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4.1.4. Additional Engineering Methods of Obtaining a Bayesian Prior 

In the past 10 years there have been numerous articles published in the field of Bayesian 

analysis and its implications for reliability testing. Therefore we will only mention 

references, which in the author’s opinion have a bearing on the topic of the sample size 

reduction. [Campodonico (1993)] summarized the work undertaken by several 

individuals at the Institute for Reliability and Risk Analysis of George Washington 

University.  This paper presented a summary of prior distributions and data collection 

procedures, which are often associated with those distributions.  To an engineering 

practitioner it offered a better understanding of associations between failure count data 

and non-homogeneous Poisson prior, life data and Weibull prior, elicitation of expert 

opinion and gamma distribution, and several others. In general, this information can be 

useful in categorizing the choices of prior distribution π(R) (see equation (4.3)) based on 

the types of data available for analysis, before actually running that analysis.  

 

In a different development [Giuntini and Giuntini (1993)] suggested the means of 

deriving a reasonable estimate of reliability prior distribution for situations where there is 

no applicable data available.  One of the sources for obtaining a prior distribution would 

be a combination of component data from military standard [MIL-HDBK-217 (1991)] 

and Monte Carlo simulation.  Even though the data in MIL-HDBK-217 is presented in 

form of failure rates, which automatically assumes an exponential distribution, the 

authors suggest obtaining several data points by applying MIL-HDBK-217 methodology. 

The next step is to fit them with a Weibull distribution, obtaining parameters β and η, and 
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then use Monte Carlo to generate data points for numerical calculation of a posterior 

distribution.  Note, that while a statistician would likely disagree with performing a 

Weibull best fit on exponentially distributed data, an engineer would most likely object to 

the use of MIL-HDBK-217, which has demonstrated a rather low accuracy in predicting 

failure rates for new technologies and is generally a discounted reliability prediction 

approach at this time.  Despite these shortcomings, this approach can certainly be 

considered as an engineering alternative to the use of uniform prior distribution or no 

prior at all. 

 

In the cases where the product is brand new and utilizes new technologies, the prior 

information is often unattainable due to the fact that the product has not been available 

for testing and data collection.  In these cases the data can be collected in the form of less 

certain evidence.  For example, instead of product warranty or previous test data, 

information regarding the expected failure rates provided by industry or technology 

experts can be utilized.  This kind of information contains a certain degree of uncertain 

evidence. In addition, due to limited choices, the information about the prior can be 

obtained from the product, which is noticeably different from the current model.  In these 

cases certain methods of processing the uncertain evidence can be applied, e.g., [Groen 

and Mosleh (2001)]. 

 

4.2. Current State of Bayesian Methods in Automotive Industry 

At present there still exists a certain level of misgivings regarding Bayesian approach to 

reliability demonstration and some automotive customers even view it as a ‘supplier’s 
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trick’.  The sole fact that suppliers may end up testing fewer samples than originally 

planned makes some OEM customers uneasy.  However, since business cost 

considerations became increasingly important, some more cost conscious companies 

started to look more favorably toward the use of prior reliability knowledge when it 

assures them certain cost benefits without violating major product validation integrity.  

The following are the major concerns regarding the use of Bayesian techniques in 

developing product validation programs. 

 

4.2.1. Concerns on Customer’s Side 

It is a responsibility of a supplier to address product test and validation with mathematical 

rigor and engineering diligence.  However, the application of Bayesian techniques in the 

eyes of the customer opens the door to some potential inadequacies.  The customer 

concerns might include the following: 

1. The product will not receive an adequate amount of testing due to the reduced test 

sample size 

2. Since the new product is not an exact carry-over of the old one (for which the 

prior information is obtained), the product modifications might introduce the 

changes, which could produce serious reliability problems and the reduced 

amount of testing would potentially miss those problems. 

3. Reduced sample will not adequately represent variations in product design and 

manufacturing characteristics. 

4. The amount of ‘newness’ in the product is not adequately reflected by the prior 

distribution, therefore producing results, which will not be conservative enough. 
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4.2.2. Concerns on Supplier’s Side 

Even though the supplier is the party generally benefiting from the use of Bayesian 

techniques, there is still some uneasiness on the supplier’s side about use of prior 

knowledge.  These concerns are: 

 

1. Potential negative effect of a prior distribution.  If the history of the product 

performance provides an ‘unfavorable’ prior distribution, the test sample size may 

actually become greater than that defined by the Success Run method described in 

Appendix A.  Thus the result may increase product validation costs, instead of 

decreasing it. 

2. Lack of consensus on how to quantify the innovation portion of the product while 

estimating the knowledge factor ρ in equation (4.7) may lead to disagreements 

between different functional units within the supplier’s organization.  For 

example, the design engineers may want to use a comparative analysis of bills of 

material in order to compare the number of carry-over parts from the old to the 

new design and based on that, calculate the knowledge factor.  In contrast, 

validation engineer might want to take a look at the differences, which might 

directly affect the product reliability.  For example replacing 90Ω resistor with a 

geometrically identical 150Ω resistor, mounted in the same location, will not 

make the product any riskier from a validation stand point, but may change the 

overall performance of the electrical circuit. 
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4.3. Summary of Bayesian Approach to Reliability Demonstration Testing 

There are certainly some advantages as well as challenges in utilizing Bayesian 

techniques in reliability testing.  The challenges include data interpretation, relevance of 

prior data to the posterior, alternative choices of prior distribution, embedded uncertainty, 

interpretation of the posterior, degree of confidence, and some others.  The advantages 

are obviously in potential cost reduction due to decrease in test sample size. However, the 

following can be acknowledged in regards to the automotive and some other mass 

production industries: 

 

1. Bayesian modeling is a valuable statistical tool, which can be utilized in reliability 

demonstration, especially where high reliability requirements are stipulated by the 

OEM customer. It can provide a significant sample size reduction in the cases 

where traditional Success Run testing or life-data analysis would yield a 

prohibitive validation cost. 

2. A certain amount of care and expertise should be exercised in applying this 

technique.  Understanding the product, its development process, and design 

changes is critical in proper statistical application of the Bayesian method. 

3. Knowledge of the method limitations should provide application boundaries and 

help to understand an appropriateness of the method to a particular validation 

program. 

4. The development changes to the product should be quantified and further 

carefully considered before deriving prior distribution or even making decision 

about applying Bayesian models. 
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5. The choice of a Bayesian prior should be based on the type of data available for 

analysis as well as the reliability demonstration targets.  For example the [Krolo et 

al. (2002a, b, c)] methods would be more applicable in the cases of medium 

reliability targets (0.90 ≤ R ≤ 0.98) with the prior obtained from the previous test 

data or other type of data with the medium number of data points (under 100).  

Consequently, [Kleyner et al. (1997)] would be more appropriate where high 

reliability demonstration targets are desired (R ≥ 0.98) and large amount of field 

data with low failure rates is available.   

 

In this dissertation the practical applications of Bayesian analysis will be based on the 

method presented in [Kleyner et al. (1997)].  However other methods discussed in this 

section and beyond can also be applied to reduce the test sample size and therefore the 

overall cost of reliability demonstration testing. 
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5. Warranty/Service Cost 

 

This chapter addresses the cost analysis methods associated with the descending portion 

of Reliability-Cost curve (Figure 3.3) as it applies to the automotive industry in general 

and automotive electronics in particular.  This chapter will deal specifically with the 

issues of automotive warranties and methods of their accounting and prediction. 

 

Automotive warranties amount to a whooping $12 billion per year for North American 

manufacturers alone [Warranty Week (2004a)] and that is not even including any of the 

brands associated with the third biggest contributor DaimlerChrysler, since the company 

is now technically foreign-owned.  According to [Warranty Week (2004b)], this amount 

constitutes more than half of all the warranties for all US manufacturers worldwide. 

Therefore finding the best possible ways of predicting future warranty claims and more 

accurately accounting for the existing warranties can have a great engineering and 

financial impact on the whole process of planning and analyzing warranties in the 

automotive industry. 

 

5.1. Automotive Warranty Overview 

Market conditions have traditionally been the main factor that determines the terms of 

warranties in general [Mitra and Patankar (1997)] and automotive warranties in 

particular.  While expected reliability and quality of the product is considered an 

important supporting factor, in reality, the actual warranty terms are most often 
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determined by marketing pressures.  Currently the terms of the standard automotive 

warranty, often referred to as the manufacturer's basic warranty are 36 months or 36,000 

miles (whichever comes first) on the majority of vehicle parts [Auto Warranty Advise 

(2004)] with additional extended warranties on selected subsystems.  Longer warranty 

periods are often used as an enhanced marketing tool.  Warranty history and warranty 

expectations greatly affect the market value of new and used cars sold and lease residual 

values. Because of these and other financial and marketing considerations, a multitude of 

business decisions are being made based on the forecasted number of warranty returns for 

the overall warranty period and subsets thereof.  All the aforementioned makes the 

process of improving warranty claims forecasting even more important, further 

increasing the need for models that provide an acceptable accuracy for business decision 

making.  A parallel need for warranty forecasting also arises when the first few months of 

warranty claims are being analyzed for the purpose of forward extrapolation and 

development of appropriate corrective actions.   

 

The warranty literature is vast and it is beyond our needs to review it completely here.  

An extensive warranty literature survey was presented in [Murthy and Djamaludin 

(2002)] covering warranty publications between 1987 and 2002; hence this work will not 

attempt to replicate it.  Despite the extensive coverage, the choice of comprehensive 

warranty prediction engineering models capable of addressing practical problems is 

limited, and there is a clear lack of accurate, comprehensive, and application-specific 

models consistent with industry data formats.  The material in this chapter will attempt to 

fill that gap as well as to enhance the statistics arsenal of reliability and quality engineers. 
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In many industries quality and reliability engineers who are involved in the warranty 

forecasting process use empirical models based on past warranty claims of products with 

similar design and complexity adjusted using experience-based correction factors 

accounting for the design and technology changes in the product. A reasonably accurate, 

scientific, and user-friendly model could help to accomplish these types of forecasting 

with better precision and improve the overall quality of business decisions requiring 

estimates of future warranty claims.  

 

5.1.1. Warranty Contributors 

Analysis of automotive warranty problems shows that the range of warranty claims 

contains a wide mix of different types of problems. It contains various types of failures, 

which are qualitatively presented in Figure 5.1. The failure rate curves shown in this 

diagram reflect the general trends in automotive electronics warranty observed at Delphi 

Electronics & Safety, but do not represent any particular set of hard data. 
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Figure 5.1. Conceptual breakdown of warranty claims by problem type 

Following is a non-exhaustive list of problems comprising a typical automotive warranty 

mix per Figure 5.1.  

 

A: Initial performance or quality  

B: Manufacturing or assembly related 

C: Design-related failure or unacceptable performance degradation due to applied 

stresses (environment, usage, shipping, etc.) 

D: Service damage, misdiagnosis, etc. 

E: Software related problems 
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The sum of these types of failures makes up total warranty claims (top curve in Figure 

5.1) and based on the collected data for automotive electronics presented in Figure 5.2 the 

total warranty curve approximately follows the first two sections of the bathtub curve. 

 

Even though the product validation mostly deals with design problems, other types of 

failures as shown in Figure 5.1 will be included in the warranty claims mix. Due to 

variability in manufacturing process, some of the items do not conform to design 

specifications and these are termed ‘nonconforming’. The higher the number of 

‘conforming’ units, the higher the manufacturing quality is. A subset of the existing 

literature is dedicated to statistical analysis of quality problems as part of a product 

warranty, including [Juran and Gryna (1980)]. 

 

Despite the variety of sources, warranty claims tend to follow the first two sections of the 

bathtub curve as can be deduced from Figure 2.5 and Figure 5.2. 
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Figure 5.2. Failure rates, expressed in IPTV (Incidents per Thousand Vehicles) for 

selected passenger compartment mounted electronic products recorded by Delphi 

Electronics & Safety.  Note, the actual IPTV values have been modified to protect the 

proprietary nature of the data. 

Typical automotive warranty claims data would also contain a variety of noise factors, 

the biggest of which is undoubtedly unidentified failures, often referenced as No Trouble 

Found (NTF), Customer Complaint Not Verified (CCNV), and other terms listed in 

acronyms section including misdiagnosed data, duplicate records, and some others 

[Salzman and Liddy (1996); Thomas et al. (2002)].  These factors present a separate 

problem for statistical data analysis since for most automotive electronics product NTFs 

are often 50% of all warranty claims, sometimes reaching 90%.  There are three common 

ways of approaching this problem.  One is to ignore the NTFs and account only for the 

failures with determined root causes.  The second is to include all the failure data in a 

statistical analysis.  And the third is to model the NTF percentage and use it as a random 
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variable for all statistical simulations involving warranty analysis.  In this dissertation the 

NTFs will be included in the total count of failures due to the fact that both NTFs and the 

true failures represent the real expenses to the manufacturer, however their influence will 

be specifically analyzed in the automotive electronics example Chapter 6.  

 

5.1.2. Two-Dimensional Aspects of Warranty 

Since automotive warranty is usually expressed in both time and mileage terms, e.g., 36 

months or 36,000 miles whichever comes first [Auto Warranty Advise (2004)], it can be 

described as a two-dimensional warranty [Blischke and Murthy (1996)]. A two-

dimensional warranty is characterized by a region on a two-dimensional plane as opposed 

to an interval in one dimension.  Different shapes for the region characterize different 

policies.  Even though most of the 2-D policies have rectangular regions, other variations 

are possible, such as triangular shape, where the boundary of that region will be defined 

as an arithmetic combination of time and mileage or other usage parameters analogous to 

cumulative damage models [Ebeling (1997)].  For more information on 2-D shapes see 

[Blischke and Murthy (1994); Singpurwalla and Wilson (1998); Krivtsov and Frankstein 

(2004); Yang and Zaghati (2002); Majeske and Herrin. (1995)].  Higher dimensional 

warranties are also theoretically possible, but they are not common.   

 

Most automotive manufacturers sell vehicles with a basic two-dimensional (time and 

mileage) warranty coverage and provide customers the option to buy an extended 
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coverage.  Most often automotive warranty is specified in terms of {T0, M0} with T0 

being a specified maximum time period and M0 a specified maximum mileage Figure 5.3.  

 

Figure 5.3. Warranty region for two-dimensional automotive warranty 

Usage path 1 in Figure 5.3 shows the case where maximum warranty mileage M0 is 

reached first and path 2 where maximum service life T0 is reached before M0.  Age is 

known for all sold vehicles all the time, but mileage is only observed for a vehicle with a 

claim and only at the time of the claim.  However, for automotive electronic parts it is 

more appropriate to use time as the primary usage variable since there are no moving 

parts involved in the process of wear-out, though the mileage variable is also important in 

estimating the expected warranties. 

 

A generic problem is that warranty information is restricted to failure events occurring 

inside the warranty period and very little or no information about mileage accumulation 

is available for vehicles that have not experienced any failures [Campean et al. (2001)].  

Thus, certain assumptions need to be made about the mileage accumulation in order to be 
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able to properly account for the 2-D aspect of an automotive warranty.  An approach for 

this based on the daily mileage distribution will be presented later in the Section 5.2.3. 

 

5.1.3. Warranty Data Reporting Formats 

There are a multitude of data formats used for warranty data reporting.  Without loss of 

generality, this dissertation will emphasize automotive warranties as they commonly 

appear in the United States.  Most common warranty data formats are based on monthly 

failure reporting, where the number of product failures is presented on monthly basis.  

For example Ford reports the number of failures for each month in service (MIS) in the 

form of a table with failures versus month of occurrence [Yang and Zaghati (2002)].  

Since vehicle sale dates are not linked to a particular calendar month, the ‘30-day 

buckets’ formats are more common among automotive OEMs and their suppliers.  In this 

format, the failure data is divided into 30-day service time intervals counted from the date 

of vehicle sale, where all the failures occurring within each 30-day time interval are 

reported in failed quantities or IPTV.  The ‘30-day buckets’ format presented in Table 5.1 

is an easier, faster, and more common form of data reporting and is usually sufficient for 

the first-level approach to data analysis.  Along with IPTV numbers, many companies 

also report DPTV (defects per thousand vehicles): 

 

DPTV = IPTV – NTF 

(5.1) 
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The DPTV metric helps to reflect the actual failures versus the cases where trouble was 

not found,7 which also helps to report better quality figures. The raw warranty data 

typically contains additional information including vehicle identification number (VIN), 

vehicle mileage, geographical information, cumulative costs, cumulative IPTV, and many 

other parameters. 

Table 5.1. ‘30-day Bucket’ data format  

Days in service Vehicles in the field 
during the time 

period 

Reported failures IPTV 

1-30 10,000 8 0.80 
31-60   9,000 2 0.22 
61-90   7,000 9 1.29 

 

If the failed units can be traced to a specific production lot, this data can be converted 

into a more comprehensive format sometimes referred by quality professionals as ‘layer 

cake’, which usually combines all sold and failed units on a monthly basis, as presented 

in.  This format provides information, which allows the user to trace each failure to a 

particular production group and can be used to conduct more sophisticated statistical 

analyses.  Some commercially available software packages, such as ReliaSoft have this 

format as one of the data entry option for warranty analysis [ReliaSoft (2002)]. 

                                                 

7 Trouble not found means that the unit was functioning normally in the laboratory environment and the 

failure could not be replicated. 
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Table 5.2. ‘Layer cake’ data format 

  Number of Failures by Month 

Month New Vehicles Sold Month 1 Month 2 Month 3 Month 4 

1 15,980 5 3 12 1 

2 23,340  5 7 12 

3 26,541   6 1 

4 18,510    2 

 

The numbers in Table 5.1 and Table 5.2 were created for example purposes and are not 

linked to any real product or to each other. The format in Table 5.2 is easier to understand 

and the data in this format can be processed with Weibull++ [ReliaSoft (2002)] and be 

easily converted into interval-censored life data.  

 

Both formats discussed above are acceptable for the statistical data analysis, however the 

‘30-day bucket’ data can be analyzed only on a percentage-failed basis and is thus 

unusable for the calculation of confidence bounds. In contrast, the ‘layer cake’ data 

provides more options for determining a best-fit distribution including the estimation of 

confidence bounds.  However, it is important to mention, that the ‘30-day bucket’ format 

can be considered as a cost/time saving version of ‘layer cake,’ because it involves fewer 

data processing steps.  Since most of the electronic units during the time period of interest 

remain in the functional state, this data can be considered right censored.  Even though 

some of the automotive electronics units, such as radios, CD, players, engine controllers, 

etc., are often repaired at remanufacturing centers, a vehicle owner receives a different 
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electronic unit from the failed one (new or refurbished) after the claim is submitted, 

therefore the replacement is considered ‘as good as new’. Also, automotive electronics 

products are typically not subject to preventive maintenance (PM), therefore the repairs 

are treated as an unscheduled corrective maintenance (CM). 

 

Considering the practical applications, it is important to know that each automotive 

manufacturer has its own warranty database system and each system, despite 

commonalities, has its own data formatting and processing specifics.  For example, 

General Motors has the database called QWIK (Quality With Information and 

Knowledge). Some of the details on its architecture and interfaces can be found in 

[Walters (2003)].  Similarly, DaimlerChrysler has a system called QUIS (Quality 

Information System) see [Hipp and Lindner (1999)].  Ford in North America has been 

cultivating the AWS database (Analytical Warranty System) for years and Toyota has a 

supplier focused warranty system called SQIDS (Supplier Quality Information Data 

System), which is a limited version of its complete quality/reliability database.  This 

dissertation will not discuss the specifics of those systems, due to their proprietary nature, 

but instead will focus on commonalities as they apply to the warranty analysis and 

prediction.  The author of this dissertation has a direct access to the QWIK database and 

will use its data for statistical analysis.  This data will appear in form of statistical 

distributions only; the actual warranty claim numbers will not be included due to their 

proprietary nature. 
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5.1.4. Current Techniques of Forecasting Warranty Claims in the Industry 

A forecast of a product warranty often becomes an important input in the decision 

making process associated with awarding automotive component business.  Therefore, 

since warranty prediction is usually a part of a general business model; there exists a 

multitude of warranty cost models.  However, due to a contribution of various factors 

(see Figure 5.1) warranties are difficult to predict and the accuracy of these predictions 

are usually poor. 

 

The majority of the existing models involve the existing warranty databases for the 

products already in the field.  The most simplistic methods use the recent warranty 

numbers for the similar products multiplied by an empirical ‘fudge factor’.  For example, 

the last year’s percent failed increased by 25% to account for the newness of the design, 

technology, and production.  Needless to say that these methods are too crude and apply a 

‘one size fits all’ approach to the problem.  More advanced approaches are utilized for 

example at DaimlerChrysler [Hotz et al. (1999)] where the warranty cost prediction has 

been realized by using a conventional planning method based on the amount of warranty 

cost observed in the last budget year.  This amount is modified by information available 

about the expected inflation, quality index of the vehicles, and the development of the 

sales figures for the different vehicle series.  

 

Many warranty analysts who process and analyze warranty data do it at an accounting 

level, i.e., reporting numbers without a comprehensive analysis.  Often the personnel 

involved in warranty reporting produce a large number of tables, bar graphs, Pareto 
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charts, warranty summaries, etc., without doing proper statistical analysis, root cause 

analysis, or any other type of in-depth analysis of product failures.  In the majority of the 

cases, the warranty data is analyzed as homogeneous pool of data without any regard for 

the non-stationary nature of the data, such as possible changes in the trends of warranty 

claims or special attention to unusual patterns of failures occasionally leading to a 

product recall.  Fortunately, there is an enormous existing data cache associated with 

vehicles and their parts warranty claims, which potentially allow more sophisticated 

approaches to the warranty prediction to be performed. 

 

Some companies utilize Weibull analysis to process failure data and to make a prediction 

of future warranty claims based on the obtained Weibull distribution parameters.  This 

approach, though more sophisticated, also has its pitfalls.  The biggest pitfall is the fact 

that most of the electronics failure trends follow the bathtub curve; therefore the 

prediction based on the declining failure rate (infant mortality phase) would be an 

oversimplification underestimating failures for the time periods exceeding the initial 

phase.  Alternatively, detailed statistical approaches addressing the trend change in the 

failure rates [Haupt and Schabe (1992); Xie and Lai (1995); Baskin (2002); Wang 

(2000); Yang and Zaghati (2002)] adequately represent the bathtub curve, but are not 

formulated for forecasting and are generally not practical for use with real data and its 

associated uncertainties.  Several interesting mixture models are presented in [Majeske 

and Herrin (1995); Majeske et al. (1997); Majeske (2003)], however they use additional 

‘tuning’ variables, which unduly complicate the process of analysis and simulation. 
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Classic warranty literature [Lawless et al. (1995); Kalbfleisch (1991); Lawless (1998); 

Robinson and McDonald (1991)] concentrate mostly on Poisson-based and non-

parametric empirical models as opposed to Weibull life data analysis.  The main reason 

for this is the fact that warranty repairs approximately follow the renewal process, which 

is better described by Poisson models, where Weibull is more applicable to life data (time 

duration until failure).  However on an electronic component level only a small portion of 

repaired or replaced parts fail again.  From the author’s experience at several Delphi 

Corporation’s remanufacturing centers, less than 5% of the returned parts have been 

repaired before. Therefore the use of the Weibull distribution can be justified for the 

electronic parts warranty analysis.  The following section will describe the warranty 

forecasting method proposed by the author of this dissertation.  Some of the aspects of 

this approach were presented in [Kleyner and Sandborn (2005)]. 

 

5.2. Proposed Method of Warranty Analysis and Prediction 

Figure 5.4 presents a step-by-step procedure of predicting the warranty and organizing it 

as an input variable to the overall LCC modeling and optimization process. 
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Figure 5.4. Warranty cost analysis flow 

The process starts with product specifications, where the main design characteristics of 

the product should be defined.  Based on the knowledge of geometry, utilized technology, 

applications, and other parameters (see Section 5.2.1 for more details) we can determine 

the products that can be identified as prototypes for the product under development.  The 

warranty numbers for the prototypes can be analyzed for failure rates, trends, statistical 

distributions, and other properties.  This data can be utilized for the warranty analysis and 

prediction described in detail in Section 5.2.2.  Expected warranty will be mathematically 

linked to a product validation process, Section 5.3 and included into the final stochastic 

simulation of the LCC analysis described in Chapter 6. 
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5.2.1. Utilization of the Existing Warranty Data 

Most of the warranty prediction methods are based on the product’s past history. It is 

important to have a database of past warranty claims in order to determine what products 

are applicable based on design and usage similarities.  The existence of the reference 

base, ideally in the form of FRACAS or other type of warranty database, is critical to the 

success of this method and its applications. 

 

The product families should be divided into the groups with similar features.  The 

similarity criteria may include the following: 

• Vehicle platform the product is mounted on (passenger cars, light trucks, heavy 

duty trucks, etc.) 

• Mounting location: (passenger compartment, underhood, on-engine) 

• System function: (powertrain, entertainment, safety, ignition, etc.) 

• Manufacturing site: (USA, Mexico, China, Poland, etc.) 

• Existence of the moving parts inside the unit versus pure electronics 

• Critical parts: (playback mechanisms, capacitors, large microprocessors, etc.) 

• Packaging technology utilized: (flip chip, BGA, leaded SMT, PTH, etc.) 

• Time already in production (new product, first year production, second year, etc.) 

The criteria for choosing the appropriate prototypes for warranty prediction may be based 

on a simple engineering judgment, recommendation from a designer or a quality 

engineer, or a more sophisticated sorting technique such as similarity analysis. Formal 
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similarity analysis will not be discussed here in detail due to the scope of this work, but 

the relevant information can be found in [Yan and Forbus (2004)], [Cuberos et al. 

(2002)], or other similar sources.  In this dissertation the choice of the warranty prototype 

will be based on similarity in the type of product, component types, technology, and 

design. 

 

5.2.2. Proposed Warranty Forecasting Model 

Warranty data usually contains information on all incidents reported during the warranty 

period. As mentioned previously, the product failure behavior can be partially modeled 

by a bathtub curve.  There exist a variety of mathematical models that adequately 

represent the reliability bathtub curve [Haupt and Schabe (1992); Xie and Lai (1995); 

Baskin (2002); Wang (2000); Yang and Zaghati (2002)].  For our purposes we are 

interested in a model’s ability to fit the data presented in the automotive warranty 

reporting formats described in the Section 5.1.3.  Many bathtub-curve models are 

mathematically expressed in terms of hazard rate, while validation engineers are usually 

more accustomed to working with reliabilities and percentages of failures.  Also since 

reliability forecasting is usually the ultimate goal of this kind of analysis, a model 

expressed in terms or reliability would typically be easier to apply directly in engineering 

calculations. 

 

Based on the fact that a typical automotive part is designed for a mission life of 10-15 

years it is very unlikely that it would be subjected to wear-out failures during either 

warranty or even extended warranty period of 3 to 7 years.   
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Figure 5.5. Extended warranty charts compiled from Delphi Corporation warranty data 

for the several model years of the same electronic product mounted in the engine 

compartment. The data shows no wear-out mode for at least 4 years of service. 

 

The data shown in Figure 5.5 provides an illustration of an automotive electronics 

product family recorded in terms of IPTV according to equation (5.2) for seven different 

model years8 of the same automotive electronics family (model years ‘A’ through ‘G’) 

 

                                                 

8 Model year is a manufacturer’s annual production period.  In automotive industry new model year 

production may start as early as July of the previous calendar year. 

Model Year A
Model Year B
Model Year C
Model Year D
Model Year E
Model Year F
Model Year G

Model Year A
Model Year B
Model Year C
Model Year D
Model Year E
Model Year F
Model Year G



 

 111

1000
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)()( ×=
tN

tClaimstIPTV  

(5.2) 

Where  Claims(t) = number of claims reported in the period t 

 N(t) = number of vehicles in the field in the period t 

 

The data suggests that in the majority of cases the warranty failure model is sufficiently 

represented by the infant mortality and useful life phases of bathtub curve.  A detailed 

study of the existing warranty of various product lines of automotive parts performed at 

Delphi Electronics & Safety showed a clear trend of diminishing failure rate for the first 

8 to 18 months (see Figure 5.5) followed by a flattening of the failure rate curve for the 

remainder of the time period that warranty and extended warranty data were available. 

 

To combine the first two sections of the bathtub curve and to provide a best fit for the 

warranty data in Figure 5.2 and Figure 5.5 a conditional reliability equation is suggested: 

 

)()()( ttRtRtR SS →=   (t > tS) 

(5.3) 

Where  R(t) = reliability at the time interval t 

 tS = predetermined time coordinate 

 R(tS) = reliability at the time tS  
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R(tS → t) = probability of reaching the time point t, under the condition that time 

tS has already been reached. 

 

As mentioned earlier, many reliability and quality engineers are more accustomed to 

working with reliabilities expressed in terms of commonly used distributions: Weibull, 

exponential, normal, and lognormal. Analysis of the existing data (Figure 5.2) shows that 

tS can be determined as the time coordinate where hazard rate stabilizes, the failure data 

with decreasing failure rate in the interval [0; tS] could be fit with Weibull distribution. 

Similarly the failure data in the interval [tS; t] could be fit with exponential distribution, 

since the failure rate would remain relatively constant in this range.  Methodologies of 

detecting the changes in the pattern of the data over time and estimating the points where 

these changes occur in application to Statistical Process Control (SPC) was presented in 

[Hawkins and Qiu (2003)].  Under these assumptions, (5.2) becomes: 
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(5.4) 

Where  η = Weibull scale parameter  

λ = constant failure rate after tS  

β = warranty Weibull slope (not to be confused with β used in the parametric 

binomial equation (3.3), where it represents wear-out mode and typically β > 1).  In 

equation (5.4) it represents the infant mortality mode and the expected value β < 1) 
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Time tS can be referred as a change point, the coordinate where the pattern of data 

changes requires a different data-fitting model, [Hawkins and Qiu (2003)].  The 

continuity at the junction point tS can by achieved by equating the hazard rates at the 

point tS.  The hazard rate for Weibull distribution hWeibull is: 
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β
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Thus equating hWeibull with the constant failure rate λ past the point tS would produce:  
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(5.6) 

The overall reliability expressed in (5.4) has four parameters β, η, tS, and λ, using (5.6) to 

eliminate λ, (5.4) can be transformed into: 
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Equation (5.7) is in a suitable format for a stochastic simulation such as Monte Carlo 

method, which has been successfully applied in a variety of parametric studies of 

reliability, e.g., [Chen et al. (1999)].  Each of the parameters, β, η, tS is a random variable 

and could be represented by a statistical distribution. The best way of obtaining those 

distributions is by observing the past history of the product.  The author of this work 

studied warranty returns for several automotive electronics product families including 

Radio-CD players, engine controllers, and climate control modules and identified some 

common trends in the data.  While the variation of statistical parameters between these 

groups was significant, parameter variation within the same group was far less apparent. 

An important factor governing variation within a product family was found to be the 

number of years in production with a tendency for the first year to have the highest 

number of warranty claims.  

 

Besides forecasting the expected warranty returns for the future products, this model can 

also be used for ongoing forecasting of current products, where the final warranty 

prediction is based on the number of claims reported after the product’s first several 

months in the field and is subject to continuous updates.  This type of forecasting is often 

used to compile monthly reports to the management as well as to detect potentially 

serious field reliability problems. 

 

The procedure for determining distribution parameters of the forecasting variables β, η, tS 

starts with obtaining the change point estimation tS. Since any real data would 

demonstrate some form of variation between consecutive 30-day intervals, it can be 
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suggested to use the Bayesian smoothed hazard function described in [Campean et al. 

(2001)]. It would modify the stepwise pattern of the interval-based hazard function and 

would provide a continuous transition between adjacent 30-day intervals using Bayesian 

estimation of hazard rates. For simplicity purposes the average hazard rate havg(t), given 

by equation (5.8) can also be used for this type of analysis: 

 

)(
)()(

tserviceintimedaccumulateTotal
tfailuresdaccumulateofNumberthavg =  

(5.8) 

Graphic analysis of the average hazard rate shows the general trend of saturation starting 

at tS.  One of the criteria used for determining the exact change point tS could be the 

flattening of the curve fit to within ± 10% of the boundaries of the hazard rate value as 

illustrated in Figure 5.6 (other criteria may be practical depending on the specific nature 

of the data). 

 

Figure 5.6. Change point estimation for tS, λS is the failure rate at tS  
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If the characteristics of the data are different from that presented in Figure 5.6 and do not 

have a pattern of decreasing failure rate followed by stabilization, then the parameter tS 

can be estimated from visual observation of the plotted data or the data set can be 

considered as an outlier and be removed from the analysis pool. For each set of data the 

failure numbers should be split between pre-tS and post-tS intervals. Each of the two data 

sets should be Weibull-fit as a separate group for determining Weibull parameters β and 

η.  Analysis of the product groups mentioned previously, demonstrated stable trends, 

showing that pre-tS Weibull slope β (we will refer to it as β1) typically stays in the range 

of 0.65 – 0.85. The statistical analysis of more than forty different data sets with @Risk, 

the risk analysis and simulation add-in for Microsoft Excel [Palisade Corporation (2002)] 

demonstrated that a two-parameter Weibull distribution was indeed the best-fit 

distribution for pre-tS data in almost half of the cases.  For the remainder of the datasets 

Weibull was in a top five out of 28 different distribution options thus supporting the 

choice of Weibull distribution for this procedure.  The similar analysis of post-tS data 

showed that Weibull slopes β2 in all forty cases were within ± 10% of β2 = 1.0, thus 

confirming the constant failure rate assumption for the post-infant-mortality stage.   

 

Different procedures corresponding to the two different data formats discussed in Section 

5.1.3 can be performed using commercially available reliability analysis software.9  The 

                                                 

9 When using ReliaSoft Weibull++ with the ‘30-day bucket’ format, it is best to use a “free form data” 

format, which is made up of X time to failure data and Y position data in % in which ranks are not assigned 
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data presented in ‘Layer cake’ format allows more sophisticated data processing, since 

the user would be able to obtain exact failure time intervals and the number of suspended 

items. This more detailed information would allow the implementation of MLE 

(Maximum Likelihood Estimate) Weibull analysis (or other distribution best fit) and 

provide the confidence intervals for the results of the best-fit approximation.  It is also 

important to address the effect of the production year.  For example, it has been observed 

that quality usually improves with the years in production due to continuous 

improvement of manufacturing procedures. 

 

5.2.3. Effect of Two-Dimensional Warranties 

As mentioned in Section 5.1.2, the automotive industry mostly deals with two-

dimensional warranties usually specified in terms of {T0, M0} with T0 being a specified 

maximum time period and M0 a specified maximum mileage. For automotive electronic 

parts it is more appropriate to use time as the primary usage variable since there are no 

moving parts involved in the process of wear-out, though the mileage variable is also 

important in estimating the expected warranties.  Any of the methodologies described in 

the literature referenced in the Section 5.1.2 can be applied to the proposed model in 

order to add an additional dimension of warranty.  The method utilized in this dissertation 

is slightly different and will be based on constructing CDF(t|M0) for the probability of 

exceeding the maximum mileage M0 at any particular time t. 

                                                                                                                                                 

to the time interval (30-day, 60-days, etc.) would represent X-axis and 0.1×IPTV (percent failed) would be 

plotted on Y-axis. 
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First, using the dealership repair data containing the dates and mileages associated with 

each warranty claim, we can construct a probability distribution function of daily mileage 

fDaily(m).  The daily mileage distribution was obtained from the dealership data of more 

than 1000 data points, each containing the number of days to failure and the 

corresponding vehicle mileage.  At each particular time ti in Figure 5.7 the cumulative 

probability distribution function of exceeding M0 can be calculated as: 

∫
∞

=

it
M

Dailyi dxxfMtCDF
0

)()|( 0  

(5.9) 

where M0/ti is the daily mileage required to reach M0 at the time ti.  For each arbitrarily 

selected ti, the CDF(ti|M0) can be calculated and consequently fit into the analytical 

distribution. Based on a statistically sufficient number of points ti providing the 

refinement of [0; T0] we can run the best fit to determine the PDF: f(t|M0), which would 

be a continuous function of time characterizing the probability of running out of warranty 

at any particular time t.  The obtained best fit for fDaily(m) was two-parameter Weibull 

with the shape parameter β  = 1.55 and the scale parameter η = 41.1miles.  The next step 

was to plot the probability of running out of warranty for the number of time periods t1, 

t2, t3, etc., similar to that presented in Figure 5.7. 
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Figure 5.7. Statistical distribution for daily mileage accumulation 

The ti values were chosen arbitrarily every 100 days in order to provide a sufficient 

number of points to plot the CDF(t|M0) similar to Figure 5.7.  Table 5.3 presents the 

probabilities of exceeding 36,000 miles for the first 1000 days with 100-day increments.  

The criteria for sufficient data points was based on the convergence of the resulting 

distribution.  The best-fit PDF based on 100-day increments (36 data points) overlapped 

98% with the best-fit PDF based on the 200-day increments (22 data points), which 

indicates they were at the state of convergence. 

 

Table 5.3. Probabilities of exceeding 36,000 miles based on daily mileage distribution 

Service time, days 100 200 300 400 500 600 700 800 900 1000 

% probability of 
exceeding 36,000 miles 

1E-11 0.0051 0.51 3.42 9.17 16.51 24.3 31.4 38.3 44.22 

 

Due to lack of space, the numerical data beyond 1000 miles is not shown in Table 5.3.  

Performing a best-fit distribution analysis with the complete data set produced the 
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f(t|36,000) as a lognormal distribution with µ = 7.34, σ = 0.675, which corresponds to the 

mean of 1930 days with standard deviation of 1465 days, Figure 5.8. 

 

Therefore, to approximate the percent of failures, which occurred before T0, causing a 

warranty claim (t ≤ T0, m ≤ M0) the unreliability would have to be multiplied by the CDF 

of not exceeding M0):  

[ ] dtMtfTRTF
T

Warranty ∫
∞

−= )()(1)( 0     T ≤ T0 

(5.10) 

Where F(T)Warranty = failures covered by warranty for the time period T. 

 

After substitution equation (5.7) into equation (5.10) and considering the lognormal 

character of the mileage distribution f(t|36,000), Figure 5.8, the resulting failures can be 

calculated as: 
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Figure 5.8. Plot of f(t|36,000) based on the automotive dealership data 

 

On a separate note, equation (5.7) can be used for ongoing warranty forecasting for 

current products already in production.  Direct application of equation (5.7) in 

conjunction with equation (5.11) would allow using pre-tS data (data from several months 

of warranty return) to predict the post-tS data expanding to the full warranty period, 

extended warranty period, and beyond. 

 

5.2.4. Automotive Electronics Example 

In order to illustrate the warranty forecasting method discussed in Section 5.2.2, an 

automotive electronics example will be presented in this section. For simplicity, only the 

data stored in 30-day bucket format will be considered here. Let’s assume that we must 

forecast the 5-year/50,000 miles extended warranty of the new automotive radio with CD 
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player and let’s also consider the effect of production start (usually the first year 

production) on the rate of returns for this part.  The warranty data is available for four 

different radio models with similar features and complexities.  Due to limited space we 

will present the initial data for only one model called Radio 1, 1st year production lot 

(Table 5.4) and show the rest of the data in a statistical distribution format.  As before, 

the presented warranty numbers will be altered due to proprietary nature of the data. 

Table 5.4. Radio 1, 1st year production lot. ‘30-day bucket’ warranty data for 960 days of 

service 

Days in Service IPTV Total % 
Failed  

Days in Service IPTV Total % 
Failed 

0 -30 3.03 0.30  481 - 510 0.92 2.40 
31- 60 1.50 0.45  511– 540 2.80 2.68 
61- 90 1.41 0.59  541- 570 0.30 2.71 
91- 120 1.39 0.73  571- 600 1.20 2.83 

121- 150 1.32 0.87  601- 630 0.20 2.85 
151- 180 1.31 1.00  631- 660 0.15 2.87 
181- 210 1.37 1.13  661- 690 0.55 2.92 
211- 240 0.49 1.18  691- 720 2.40 3.16 
241- 270 0.36 1.22  721- 750 0.60 3.22 
271- 300 1.70 1.39  751- 780 2.00 3.42 
301- 330 0.45 1.43  781- 810 2.50 3.67 
331- 350 1.70 1.60  811- 840 0.90 3.76 
361- 390 1.76 1.78  841- 870 5.00 4.26 
391- 420 1.74 1.95  871- 900 3.27 4.59 
421- 450 0.65 2.02  901- 930 1.12 4.70 
451- 480 2.90 2.31  931- 960 0.21 4.72 

 

Since the data comes in ‘30-day bucket’ format it is best to apply the free form data 

format (percentages failed) to pre-tS (β1) and post-tS (β2) separately. 
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Table 5.5. Results of Weibull analysis of each data set for four radios 

Product tS (days) β1 (pre-tS) η1 (days) β2 (post-tS) 
Radio 1. 1st year production 390 0.668 205,781 1.21 
Radio 1. 2nd year production 270 0.761 378,248 0.961 
Radio 1. 3rd year production 420 0.872 501,320 1.03 
Radio 2. 1st year production 330 0.890 290,258 0.920 
Radio 2. 2nd year production 420 0.793 483,692 0.986 
Radio 3. 1st year production 240 0.731 242,725 1.06 
Radio 3. 2nd year production 180 0.903 618,440 1.02 
Radio 4. 1st year production 270 0.912 252,551 0.946 
 

Typically the type of information presented in Table 5.5 would contain a much larger 

amount of data with more automotive product categories due to the large number of parts 

and applications.  For example the radio models can be subdivided by vehicle platforms, 

where the same radios would be considered as a different group if they were installed on 

light trucks as opposed to mid-size cars.  The larger the number of similar product lines 

the better the confidence intervals for the results obtained with Monte Carlo simulation. 

 

There are several possible ways of processing the data presented in the Table 5.5.  All the 

data can be analyzed together by finding the best distributions for each of the three 

parameters β1, η, tS, and based on the obtained distributions, model these values for 

Monte Carlo simulation with equation (5.7).  However, if we are for example interested 

in the warranty of the product manufactured within the first year after the start of 

production, only the data pertinent to the first year of production will be analyzed (see the 

four bold rows in Table 5.5).  Based on these four data groups the following distributions 

were obtained: 
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tS – lognormal distribution: µ = 5.71, σ = 0.186 

β1 – 2 parameter Weibull distribution: β = 6.62, η = 0.815 

η1 – normal distribution: µ = 247,830, σ = 30,069  

 

In order to account for the effect of two-dimensional characteristics of warranty we need 

to estimate the probability distribution function f(t|50,000 miles) of mileage reaching 

50,000 miles at time t, analogous to that presented in Figure 5.7. Applying the method 

described in Section 5.2.3 for 50,000 miles mark we can obtain the conditional 

probability distribution f(t|50,000), which is best represented by Lognormal distribution 

with parameters: µ = 7.53 and σ = 0.904, which corresponds to the mean of 2804 days 

with standard deviation of 3152 days. 

 

A 10,000 sample Monte Carlo simulation of expected warranty returns at the 5-year mark 

(1825 days) produced the following results according to equation (5.4).  Mean value for 

cumulative return of claims covered by warranty was F(5yr) = 2.2% (50% confidence).  

With upper 80% confidence this value reaches F80%(5yr) = 3.1%. 

 

This example demonstrates the use of equation (5.11) with real data to perform a 

reliability/warranty prediction.  A common simplistic method to treat the data associated 

with this example would have been a Weibull analysis of early failures for existing parts 

with similar design features.  In our case, a simple Weibull analysis of early failure data 

accounted for 2-D aspect of warranty would produce F(5yr) = 0.74%, which is 
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significantly lower than the result obtained from Monte Carlo simulation using equation 

(5.11).   

 

All stochastic simulations in this work are performed with the software @Risk v. 4.5, 

which is the Monte Carlo simulation add-in for Microsoft Excel [Palisade Corporation 

(2002)].  Random inputs for equations (5.7) and (5.11) are generated using the Latin 

Hypercube sampling technique. 

 

5.2.5. Warranty Prediction Modeling Summary 

The model presented here offers a straightforward solution to a complex two-dimensional 

warranty prediction problem.  The solution is easy to implement within Monte Carlo or 

other types of stochastic simulations because it is represented by a single closed-form 

equation.  The procedure is a practical means of accomplishing two major reliability 

prediction tasks: 1) the forecasting of future product warranty at a product planning stage, 

and 2) the ongoing forecasting for current products, where the warranty returns are 

known for the first several months of production.  This method can be used to predict the 

number of failed parts, which would not be reflected by warranty claims due to mileage 

exceeding the warranty limit.  In addition, the methodology also enables the accurate 

calculation of various life cycle cost components.   

 

Advantages of the presented warranty prediction model: 

1. Used as a prediction model it is based on the production launches of the similar 

models 
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2. For prediction purposes only the first year productions can be used to simulate the 

launch of the new product.  The model can be continuously improved by 

including other years if the forecast over several years is of interest.  Since a 

manufacturing process is always associated with the learning curve process, the 

failure rates usually drop each year of production for the same model with the 

visible drop from the first year to the second year. 

3. Forecast can also be done based on the first months of production.  Based on 

obtained β and η the rest of the life cycle can be predicted.  Also it can be easily 

identified if new product launch has problems – the first months will be quite 

different from the historically obtained distribution parameters. 

 

The approach developed and demonstrated in this section represents a balance between 

correctly modeling the failure rate trend changes and analysis practicality for real world 

reliability analysis organizations.  The automotive electronics example in Section 5.2.4 

clearly showed that simplistic data fitting approaches do not adequately model the real 

application data. 

 

Unlike anything published in the warranty literature, this predictive model is tuned to the 

existing automotive warranty reporting formats and mathematically accommodates the 

projected change point in the failure rate pattern.  It is understandable by decision makers 

while at the same time maintaining statistical rigor.  Mapping the automotive supplier 

warranty data to existing models would be a cumbersome procedure, while this model fits 

naturally into the existing data reporting structures.  This approach is also oriented 
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towards reliability engineering applications and more practical and specific for product 

validation tasks.  It is also important to note here that the stochastic simulation in this 

work is done on the parameters of the observed distributions unlike some other warranty 

prediction methods where Monte Carlo simulation is applied directly to the failure times 

and repair times [Kaminskiy and Krivtsov (1997)]. 

 

5.2.6. Warranty Cost Simulation 

In order to calculate the expected cost of warranty returns it is necessary to estimate the 

number of units expected to fail within the 2-D warranty box, Figure 5.3 along with the 

cost of each warranty claim.  Based on equation (2.5) the total warranty cost will be: 

WfC nW α=  

(5.12) 

Where  WC = total cost of warranty 

nf = number of units expected to fail 

 αW = warranty cost per repair, charged by automotive dealership to the vehicle  

          manufacturer 

 

Number nf can be estimated as a function of time based on the expected reliability at the 

end of warranty period as follows:  

[ ] soldf ntRtn )(1)( −=   t ≤ T0 

(5.13) 
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Where nsold = number of units sold, which approximates the total number of 

manufactured units. 

 

Cost of each repair is an input to the cost model.  In general, the cost to repair a failed 

item is a random variable that can be characterized by a distribution function H(αW). The 

cost of the past warranty repairs will be analyzed and assembled into the statistical 

distribution based on best fit.  This function will be used for Monte Carlo simulation as 

one of the warranty cost inputs later in the Chapter 6. 

 

Since warranty expenses are spread over the period of time (3 years for a standard 

warranty and longer for the extended warranty) the LCC solution may be affected by the 

time value of money.  Warranty cost can be calculated in today’s dollars using the present 

value of money and compounded interest [Ayyub (2003)].  Assuming that warranty 

payments to dealerships are distributed approximately equally over the warranty period 

the equal payment capital recovery approach [Ayyub (2003)] can be applied.  The total 

amount of money spent on warranty can be divided over the total number of months and 

each monthly payment can be approximated as an equal payment.  Therefore the net 

present value (NPV) of warranty cost can be calculated as: 
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Where  i = annual interest rate 

 T0 = warranty period expressed in months (in our case T0 = 36) 

The net present value of the warranty cost given in equation (5.14) will be simulated for 

the total LCC calculations and added to the cost of product validation in equation (2.6). 

 

5.3. Connecting Reliability Demonstration with Future Warranty 

In this section the mathematical link between product validation and the future warranties 

will be defined.  Most of the time warranty reporting systems and product validation 

activities deal with different time horizons.  Product validation is normally intended to 

simulate the product mission life, which in automotive industry is 10-15 year.  However 

warranty mostly deals with shorter time intervals, typically 3 years or in the cases of 

extended warranties 5-7 years.  Therefore the current warranty reporting system does not 

provide enough information to evaluate the failure rates corresponding to the product 

mission life.  Therefore it is not possible to suitably verify if the warranty prediction 

model (5.7) is entirely accurate beyond warranty period.  Therefore the best way to link 

this model with reliability at mission life is to map the projected numbers with the target 

reliabilities demonstrated during product validation.  In order to tie the two models at the 

service life of a product, tL the correction factor QCorr, can be introduced  

 

)()( 0 LCorrLForecast tRQtR =  

(5.15) 

Where QCorr = Correction factor (random variable) 
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R0(tL) = a demonstrated reliability according to equation (5.16) 

( )NL CtR
1

0 1)( −=  

(5.16) 

Where C = confidence level 

N = the number of test samples (see Appendix A for more details) 

Therefore substituting equation (5.7) into (5.15) will equate the predicted and the 

demonstrated reliabilities at the time of a service life tL via correction factor QCorr: 
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Since that correction factor QCorr is also a random variable, it will be modeled using 

Monte Carlo simulation.  Solving equation (5.17) for η gives 
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(5.18) 

Equation (5.18) links the scale parameter η of the warranty distribution model with the 

validation target reliability R0. It has been noticed from the warranty data analysis that η 

fluctuates significantly more than the shape parameter β.  The shape of the warranty 
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distribution remains reasonably consistent within the same product line, where the scale 

parameter η is more volatile due to the fact that it directly linked with the expected life of 

the failed part.  Parameter QCorr in equation (5.18) will be used for mapping η with R0.  

As a result QCorr will be generated as one of the random inputs for Monte Carlo 

simulation. 

 

5.4. Conclusions 

This chapter presented an extended overview of the automotive warranties with an 

emphasis on vehicle electronics.  It covered the analysis of the warranty/service cost part 

of the LCC (the descending curve in Figure 2.1).  The chapter focuses on the introduction 

of a new warranty prediction model, two-dimensional aspect of warranties, warranty 

reporting formats, warranty cost calculations, and the mathematical links of future 

warranties with certain aspects of product validation programs.  This chapter concluded 

the analysis and description of all product validation cost inputs (Chapters 3, 4, 5) 

comprising the total LCC value.  The next two chapters (6 and 7) will focus on 

combining together the inputs presented in the previous chapters in order to model the 

total LCC and consequently minimize its value. 
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6. Stochastic Simulation of Life Cycle Cost.  Case Study and 

Results. 

 

This chapter will cover the methodology of the life cycle cost (LCC) simulation, inputs 

and outputs of the model, a case study for a typical automotive electronics validation 

program, results, and associated uncertainty analysis. 

 

6.1. Stochastic Simulation Methods 

Among the variety of stochastic simulation techniques [Nelson (1995)] the most 

commonly used are Monte Carlo Simulation (MCS) [Craney (2003)], Response Surface 

Methodology (RSM) [Myers and Montgomery (2002)], and Discrete Probability Tree 

[Morgan and Henrion (1992)].  In this dissertation the preference will be given to Monte 

Carlo simulation due to its robustness and wide acceptance in the engineering 

community.  Monte Carlo simulation, though sometimes slow and arduous, has proven its 

robustness and ability to deal with a wide variety of uncertainty types and values caused 

by mathematical and real life engineering models.  For the LCC minimization 

methodology presented in this dissertation more efficient solutions and ways to 

accommodate the uncertainties of this problem may exist, however the target of the work 

in this dissertation is to demonstrate that a solution to the engineering problem can be 

obtained as well as the value of that solution. Finding the most efficient implementation 

of the solution is left to future work. 
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6.2. Monte Carlo Simulation 

There are numerous books and other sources written on Monte Carlo simulation, see for 

example [Nelson (1995); Craney (2003); Morgan and Henrion (1992), etc.]  Monte Carlo 

simulation requires that the key inputs be assigned a probability distribution that 

characterizes the expected variability in the parameters.  Then, random values from these 

distributions are selected and used in the LCC modeling to arrive at a final cost [Brennan 

(1994)].  Monte Carlo simulation is a very practical method and in most cases produces 

the ‘true’ output distribution.  On the downside, the Monte Carlo method is a ‘brut-force’ 

type of simulation that can sometimes be computationally intensive.  However all the 

computations for the model presented in this dissertation could be completed within 30 

minutes or less, making Monte Carlo approaches practical for the types of applications 

presented herein. 

 

6.2.1. General Simulation Info 

The stochastic simulation and optimization process presented in this dissertation consists 

of two distinct analysis steps:   

 

Step 1. Deterministic analysis of LCC intended to find the combinations of the test 

parameters R (reliability), C (confidence level), and L (number of test service lives) that 

deliver the lowest LCC value. This step targets finding the lowest dollar value for LCC 

based purely on the mean values of each distribution.  This step also helps to narrow the 

search for the optimal values of these test parameters R, C, and L to avoid extensive 
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calculations.  However if the computation resources are not limited, one can run a 

stochastic simulation for each set of the input variables in order to enhance the search for 

the optimal set of R, C, and L. For more detail see the case study Section 6.3. 

 

Step 2.  Monte Carlo simulation for the optimal combinations selected during Step 1 to 

estimate the uncertainties associated with the LCC solution.  It is important to note that 

the deterministic value of LCC is based on the mean value of each distribution and, in 

general, it will not coincide with the mean of the output distribution obtained with Monte 

Carlo simulation.  This is caused by the fact that most of the input distributions are not 

generally symmetrical and that the problem is non-linear. 

 

There are a variety of commercially available software packages designed to perform 

Monte Carlo analysis.  [Morgan and Henrion (1992)] emphasize the importance of the 

choice of the appropriate uncertainty propagation software.  Availability, ease-of-use, and 

flexibility are mentioned as the top criteria for the software choice.  All the Monte Carlo 

simulations for this dissertation were performed with @Risk 4.5, the uncertainty analysis 

and simulation add-in for Microsoft Excel [Palisade Corporation (2002)]. The simulation 

model was prepared in Microsoft Excel. For performing the uncertainty analysis on the 

LCC by itself, random inputs were generated from the input uncertainty distributions 

using the @Risk Latin Hypercube (LHC) stratified sampling technique [Palisade 

Corporation (2002)]. This technique is more efficient than random sampling in that it 

achieves a given level of precision with a smaller size sample.  LHC can introduce slight 

bias in the estimate of moments, but in practice the bias is negligible [Morgan and 
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Henrion (1992)].  The dependencies between random variables (correlated inputs) were 

also considered in the simulations (details appear in Section 6.3.1.) 

 

6.2.2. Block Diagram and the Equations 

The LCC simulation block diagram is presented in Figure 6.1.   

 

Figure 6.1. LCC simulation block diagram 

The diagram shows the four major steps in obtaining the uncertainty analysis solution for 

the desired LCC value.  Step 1 from Section 6.2.1 combines together blocks 1 and 2 and 

Step 2 combines blocks 3 and 4 in Figure 6.1. Both the deterministic analysis (Block 1) 

and stochastic simulation (Block 3) use virtually the same set of equations.  The main 

difference between the two blocks is that the first calculation is based on the means of the 

distribution inputs and the second is the actual Monte Carlo simulation.  The key 
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calculations for the product validation portion include the following equations that will 

not be replicated here entirely: total product validation cost equation (3.8), maintenance 

cost equation (3.7), expected equipment failures equation (3.9), and the dependency 

between test mission lives and demonstrated reliability test lives (3.3).  The key equations 

for warranty cost include the sum of the claims cost (2.6), the forecasted warranty claims 

equations (5.7), (5.10), (5.18) and NPV of the total warranty cost equation (5.14).  

However, in the simulation procedure the warranty cost WC in equation (5.14) is 

represented by the sum (6.1) in order to account for variations in repair costs: 

∑
=

=
fn

j
WjCW

1

α  

(6.1) 

Where nf is the number of failed units, which is calculated according to equation (5.13). 

 

6.2.3. Uncertainty Analysis 

As any result of stochastic simulation, the LCC probabilistic solution of the problem will 

have a certain level of uncertainty inherent within it. The task of uncertainty analysis is to 

determine the uncertainty features of the system model itself and the stochastic variables 

involved [Morgan and Henrion (1992)].  There are a variety of types and sources of 

uncertainty.  The list of uncertainty categories according to [Tung (1996)] includes: 

• Natural uncertainties 

 Inherent randomness of natural processes (e.g., unforeseen failures or 

expenses) 



 

 137

• Model uncertainties 

 Reflects inability of a model or design technique to represent precisely the 

system’s true behavior 

• Parameter uncertainties 

 Resulting from the inability to quantify accurately the model inputs and 

parameters (associated with distribution parameters and best fit functions) 

• Data uncertainties 

 Measurement errors 

 Inconsistency and non-homogeneity of data 

 Data handling and transcription errors 

 Inadequate representation of data sample due to time and space limitations 

• Operational uncertainties 

 Factors including construction, manufacture, deterioration, maintenance, and 

human interfaces. 

 Knowledge of the environment, how the system will operate in this 

environment 

• Computational uncertainties 

 Include rounding errors, convergence, etc. 

 

In practice, it is often difficult to separate different types of uncertainties [Hall and Strutt 

(2003)], therefore they are often treated together as a combined effect of contributing 

uncertainties of the LCC solution. 

 

According to [Schjaer-Jacobsen (2002)] the best representation of uncertainty is the one 

that is able to handle all relevant information available.  Therefore, based on the available 
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data, the most straightforward and complete description of uncertainty is a PDF.  It 

provides all the necessary information for the user to be able to study the output, to 

determine all possible confidence intervals, and if need be, to use this output as an input 

for another stochastic simulation.  If a PDF cannot be obtained, an alternative measure of 

uncertainty can be expressed in terms of a probability domain, such as the confidence 

interval.  According to [Nelson (1995)] a confidence interval is a numerical interval that 

captures the quantity subject to uncertainty with a specific probabilistic confidence.  In 

automotive electronics the statistical inputs can be obtained for the existing data, 

therefore in this dissertation the uncertainty will be expressed in terms of a PDF.  Since 

the output results for this model are represented by skewed distributions (see Section 

6.3.2), 80% confidence intervals will most often be used for the numerical representation 

of the results.  80% confidence intervals offer a reasonable spread of the output range 

while providing enough confidence to make an engineering or business decision. 

 

6.3. Case Study 

This automotive electronics case study illustrates the methodology discussed in the 

previous chapters and demonstrates the steps required to perform the analysis and 

optimization.  Since the proposed model requires a large number of calculation steps and 

many input variables, it is easier to explain this methodology by working an example in a 

step-by-step manner.  This case study is an example of the product validation practice 

typical for an automotive electronics supplier.  It contains many similarities to the 

operation of the product validation and quality departments of the Electronics & Safety 

division of Delphi Corporation, however with certain modifications due to the issues of 
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propriety.  The case study will consider the same automotive radio with CD player 

discussed in the Section 5.2.4 with the total production volume of 500,000 units sold to 

the automotive OEM for $150 each.  The remaining cost variables will be presented in 

Section 6.3.1. 

 

6.3.1. Inputs and Outputs 

Table 6.1. Model inputs for the cost of product validation 

Input Symbol, units Value 

Confidence level (search variable) C 0.9

Target Reliability (search variable) R0 0.97

Number of lives tested (search variable) L 2

Test sample size adjusted for L N1, units 19

Depreciation of test chamber  D, $/year $25,000 

Additional equipment expenses Y, $/year $10,000 

Hourly labor rate for equipment maintenance ϕrepair, $/hr $35.00 

Hourly labor rate for product testing ϕT, $/hr $30.00 

Cost: spare parts (random) αparts, $/year /chamber $836.21 

Time of maintenance repair (random) trepair, hr 2.30

Maintenance MTBF, χ2-distr (random) days 313.6

Number of PM  NPM /year /chamber 2

Cost of each PM  αPM, $/year /chamber $2,000 

Maintenance cost M, $/year /chamber $5,067 

Test duration (one mission life) tone-life, hr 800

Chamber capacity, units K, units 25

Cost of producing one test sample αp, $/unit $2,000 

Cost of equipping one test sample αe, $/unit $450 

Cost of monitoring one test sample αm, $/unit $500 
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The model inputs include the mix of probabilistic and deterministic inputs presented in 

Table 6.1 for the cost of product validation and Table 6.2 for the cost of warranty and 

service.  

 

Please note that the random input variables simulated as probability distributions are 

marked “(random)” in the first column of each table titled “Input”.  Also C, R, and L are 

marked as “(search variable)” since they are used for the direct search in the process of 

LCC optimization. 

 

According to the LCC diagram in Figure 2.1, the total dependability-related cost function 

is a result of the sum of the ascending and descending curves.  The ascending curve 

represents all the cost inputs of product validation activities and the descending curve has 

all the cost inputs related to future failures covered by product warranty. 

 

Table 6.2. Model inputs for the cost of warranty and service 

Input Symbol Value 

Production volume n, units 500,000

Service life tL, years 10

Failure rate change point (random) tS, days 305.4

Correlation factor: Warranty to Reliability (random) QCorr 0.9

Shape parameter (random) β 0.780

Scale parameter η, days 101,953 

Percent of NTF NTF, % 0

Cost of one warranty claim (random) αW, $/unit $504.47 

Warranty period T0, days 1095

Warranty covered percent failed,  [1-R(T0)][1-Φ(T0)] 0.120%

Number of failed parts within T0 time nf=n[1-R(T0)], units 601
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One of the inputs requiring special attentions is the percent NTF (Not Trouble Found), 

Table 6.2.  Depending on how the NTFs are viewed within the organization and by the 

OEM customer they may or may not be included into the LCC analysis (in this case study 

they were initially set to 0%). In this dissertation NTFs are discussed in detail in Section 

6.3.7.  

 

The random inputs used for this model were obtained from the analysis of the existing 

automotive data for each of the inputs by finding the best analytical distribution fitting 

the original data.  Goodness of fit of the existing data was used to determine the 

distribution that best describes the analyzed data.  The obtained distributions for each 

random input are presented analytically and graphically in Table 6.3. 

 

Table 6.3. Random inputs and their distributions used in Monte Carlo simulation 

Cost of the yearly 

maintenance spare parts per 

chamber. 

αparts, $/year 

Equation (3.7) 

Lognormal distribution 

(µ = 843.71, σ = 1767.8, 

Shift +30) 
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Time of maintenance 

repair. 

trepair, hours 

Equation (3.7) 

Lognormal distribution 

(µ = 1.8, σ = 0.616,  

Shift +0.5) 

 

Maintenance MTBF, days 

Equation (3.7) 

Chi-square distribution 

2
)450(

120,141
χ

, per equation 

(3.9) 

 

Time change point, tS, days 

Equation (5.7) 

Weibull distribution 

(β = 1.63, η = 117, γ=60) 

Truncated [200; 500] 

days 

-  

Warranty-Reliability 

Correlation factor, QCorr 

Equation (5.18) 

Logistic distribution  

(α = 0.9916, β = 0.0682) 

Truncated [0.6; 1/R0] 

 

Shape parameter for the 

pre-tS portion of Weibull 

distribution, β 

Equation (5.7) 

Normal distribution 

(µ = 0.78, σ = 0.074) 

Truncated: [0.4; 2.0] 
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Cost of a single warranty 

repair, αW, $/unit 

Equation (2.6) 

Normal distribution 

(µ = $499, σ = $177) 

Truncated: [$50; $3000] 

 

 

 

Consideration of the dependencies between random variables is an important part of any 

Monte Carlo simulation.  Not accounting for the correlation between the random inputs 

can lead to the wrong estimates of the output variances; therefore correlated inputs should 

be modeled as such.  The most common way to express the correlation between the 

random inputs is through the correlation coefficient r.  The correlation coefficient may 

vary between 1 (perfect correlation) and –1 (perfect negative correlation). r = 0 would 

mean non-correlated, fully independent variables [Hines and Montgomery (1990)].  In 

order to address this issue, a correlation analysis was performed on the original data used 

for determining the input distributions. 

 

The analysis indicates that the cost of the equipment spare parts and the duration of their 

corrective maintenance are correlated.  Therefore they were simulated as correlated 

inputs with the correlation factor r = +0.4 found from the analysis of the data presented in 

Figure 6.2.  Similarly, the data analysis showed some positive correlation between β and 

tS.  Based on the available data it was modeled with the correlation factor r = +0.2.  No 

correlation was found between other model inputs.   
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Figure 6.2. Correlated inputs: repair duration and spare parts cost 

 

The correlation of input distributions in @Risk is based on the rank order correlations 

[Morgan and Henrion (1992)].  This method is based on rearranging the random numbers 

prior to simulation to achieve the required level of correlation. This type of correlation is 

known as a ‘distribution-free’ approach because any distribution types may be correlated.  

Although the samples drawn for the two distributions are correlated, the integrity of the 

original distribution is maintained [Palisade Corporation (2002)].  The resulting samples 

for each distribution reflect the input distribution functions from which they are drawn. 
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6.3.2. Results of the Simulation 

Each simulation run was conducted with 10,000 iterations sometimes referred as 

samples.10  The choice of 10,000 iterations was based first on the guidelines presented in 

[Garvey (1999)] and second on the convergence characteristics of the simulation run.  

The process demonstrated 3% convergence with 1,000 iterations; therefore 10,000 

appeared to be sufficient.  More on model convergence will be discussed in Section 6.3.5. 

 

Table 6.4. LCC values for deterministic analysis 

 L, number of test mission lives 

R0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.8 1,172,425 1,169,291 1,169,107 1,168,922 1,168,738 1,168,554 1,171,320 1,171,136 1,173,902 1,173,718 1,176,484 

0.85 820,934 814,850 811,716 811,531 811,347 811,163 810,979 810,795 813,561 813,377 816,143 

0.9 596,117 590,033 583,949 577,865 577,681 574,546 574,362 574,178 573,994 576,760 576,576 

0.91 568,030 558,996 549,962 546,828 543,694 540,559 540,375 540,191 540,007 539,823 542,589 

0.92 546,875 531,232 525,148 519,064 515,930 512,795 509,661 509,477 509,293 509,109 508,925 

0.93 528,751 517,133 504,074 495,040 491,906 488,772 485,638 482,504 482,320 482,136 481,951 

0.94 519,801 502,283 490,664 480,189 471,155 468,021 464,887 461,753 461,569 461,385 461,201 

0.95 516,605 499,087 484,519 472,901 459,110 453,026 449,892 446,758 443,624 443,439 443,255 

0.96 534,157 504,130 486,611 472,043 460,425 454,707 443,134 437,050 433,916 430,782 430,598 

0.97 575,164 536,652 510,650 485,791 471,223 459,605 450,936 445,218 432,914 426,830 423,696 

0.98 674,091 618,245 577,859 541,566 518,514 498,411 478,354 466,736 458,068 449,400 443,682 

0.99 1,020,092 900,101 812,537 741,942 685,365 645,344 608,319 582,683 553,410 536,258 522,056 

0.995 1,724,978 1,486,255 1,304,337 1,160,380 1,052,533 964,603 890,692 827,848 776,073 739,369 698,296 

0.996 2,077,462 1,777,178 1,549,157 1,373,848 1,235,425 1,124,628 1,027,893 950,666 894,043 839,318 789,762 

0.997 2,671,732 2,273,000 1,969,400 1,732,529 1,543,613 1,390,441 1,265,304 1,165,575 1,079,864 1,008,170 944,595 

0.998 3,861,674 3,259,072 2,796,606 2,443,588 2,158,443 1,931,908 1,741,529 1,584,674 1,459,493 1,347,277 1,255,665 

0.999 7,424,507 6,219,487 5,296,180 4,580,037 4,009,930 3,548,196 3,170,525 2,860,316 2,600,966 2,377,771 2,192,148 

0.9999 71,585,675 59,496,903 50,277,385 43,085,320  37,365,786 32,744,545 28,949,191  25,798,630  23,153,869 20,911,337 18,989,556 

 

                                                 

10 In this dissertation the term “iteration” rather than “sample” will be used when referring to Monte Carlo 

runs in order to avoid confusion with test samples. 
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The results of the deterministic LCC analysis (see Figure 6.1) are presented in Table 6.4.  

The minimum value of LCC was achieved at C = 90%, R = 0.97, L = 2.0 and equal to 

$423,696 (value in bold). 

 

The 3-D chart corresponding to the results in Table 6.4 is presented in Figure 6.3. 

 

Figure 6.3. 3-D Plot of LCC Deterministic analysis with C = 90% 

 

The 2-D slices of the Figure 6.3 plot are presented in Figure 6.4 for a standard bogey 

testing (1× mission life, L = 1) and an extended bogey testing (2× mission lives,  

L = 2).  
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Figure 6.4. LCC comparison charts for L = 1 and L = 2.  Lowest cost data points are 

circled 

 

An increase in L reduces the LCC value due to the fact that in this particular example the 

hourly cost of testing is lower than the cost of additional test units.  Therefore it is more 

cost effective to test fewer test samples for the longer period of time. The optimal 

reliabilities R0 are circled on the plot and situated in the ranges of  

R0 [0.95; 0.98]. 

After the optimal input set is found per diagram Figure 6.1-step 2 (in this case study  

C = 90%, R = 0.97, L = 2.0, Figure 6.4) the stochastic simulation is run with these three 

variables (Figure 6.1, step 3) and the output results in the form of the histogram are 

presented in Figure 6.5.  
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Figure 6.5. LCC output distribution histogram and the best fit distribution. 

 

The histogram Figure 6.5 can be statistically best approximated by the 3-Parameter 

Weibull distribution (dark curve over the histogram) with β = 0.574 (shape parameter), η 

= $415,750 (scale parameter), and γ = $110,510 (location parameter).  Other close best fit 

choices included lognormal and exponential statistical distributions. 

 

6.3.3. Results of the Uncertainty Analysis 

Any predictive model can be significantly affected by uncertainty propagation.  The 

existence of uncertainty implies the existence of a range of possible solutions [Garvey 

(1999)].  In order to recreate the confidence bounds for the whole LCC optimization 
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curve, fifteen additional simulation runs were conducted for target reliability ranging 

from R = 0.8 to 0.999.  For each run the multiple percentile LCC solutions were obtained 

ranging from 0% to 100% with 5% increments; and three data points 25%-tile, median 

(50%-tile), and 75%-tile were plotted for each solution establishing the effective 50% 

double-sided confidence bounds presented in Figure 6.6.  50% confidence bounds 

provide sufficient engineering data range consistent with a traditional Box and Whisker 

diagram [Hines and Montgomery (1990)] focusing on the two middle quartiles of the 

distribution (50% double-sided).  It was also within the scope of this study to observe if 

the various percentile values of the solution follow the shape of the deterministic 

solution; and see if they yield the same optimization parameters R, C, and L. 

 

Figure 6.6. Results of LCC uncertainty analysis 

 

The LCC chart in Figure 6.6 shows the 50% confidence bounds of the solution. The 

median value from Monte Carlo simulation is matching the optimal value of target 
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reliability R0 = 0.97.  It was also noticed that the confidence bounds are becoming 

narrower along the X-axis showing that the uncertainty of the solution is decreasing with 

the increasing reliability R0.  

 

6.3.4. Sensitivity Analysis 

Sensitivity analysis is an important part of any stochastic simulation modeling process. It 

identifies the inputs, which are significant in determining output variables values.  With 

this analysis, correlation coefficients are calculated between the output values and each 

set of sampled input values.  For our case study the results of sensitivity analysis are 

displayed in Figure 6.7 as a ‘Tornado’ type chart, with longer bars at the top representing 

the most significant input variables.  As follows from the sensitivity chart Figure 6.7, the 

output solution is most sensitive to QCorr, which links the expected warranty with 

demonstrated reliability, β - the Weibull parameter of warranty prediction, and αW, the 

cost of a warranty repair.   
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Figure 6.7. Sensitivity analysis results in form of the Tornado graph 

 

The significant influence of these top three parameters can be explained by the fact that 

expected warranty cost is a major contributor to the LCC, and these three parameters are 

the modeling parameters of the future warranty claims, which has a large effect on the 

LCC output and therefore on the whole mathematical model.   
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6.3.5. Additional Checks on the Stochastic Model  

 

Convergence Monitoring 

Convergence monitoring was utilized to evaluate the stability of the output distributions 

during a simulation.  As more iterations are run, output distributions become more stable 

as the statistics describing each distribution changes less with each additional iteration.  

The statistics monitored on each output distribution are:  

1) The average percent change in percentile values 0% to 100% in 5% increments,  

2) The mean 

3) The standard deviation 

 

The above statistics are calculated on the data generated for each output cell at regular 

intervals throughout the simulation.  The 10,000 iterations run in the case study was 

sufficient to achieve 2.5% stability on the statistics generated on the LCC and other 

monitored outputs.  In fact < 2.5% precision error on all percentile values was noticeable 

between 1,000 and 3,000 iterations in the majority of the simulation runs, much earlier 

than 10,000 iterations conducted in this study. 
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The Effect of the Production Volume 

Warranty cost is roughly proportional to the production volume, therefore the value of 

optimal target reliability will be affected by n, the number of units manufactured and sold 

to the OEM customer.  One of the model checks includes the study of the relationship 

between n, and R0 including the model behavior near the extremes of  

n = 0 and n = ∝.  The optimal target reliability is expected to increase as the production 

volume increases due to the fact that LCC is driven up by the warranty cost.  Several 

additional simulation runs were conducted for the production volume ranging from 1,000 

units to the unrealistically high volume of 1 billion.  The results of those simulations are 

presented in Figure 6.8.  As can be seen from that graph, the optimal target reliability R0 

increases from 0.8 to 0.999 with the rising production volume. 

Figure 6.8. Dependency of the optimal target reliability R0 on production volume n 
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The model clearly shows the expected behavior at the extreme values of production 

volume, where n → 0 would cause R0 → 0 and n → ∝ would make R0 → 1. 

6.3.6. Application Limits 

Like most of the mathematical models, this simulation has its application limits.  There 

are two reasons why this model’s inputs (and therefore outputs) have well defined 

limitations.  The first reason is caused by the fact that certain model assumptions cease 

working when the inputs exceed their acceptable levels, i.e., the model assumptions 

become violated outside the set input ranges.  This happens when the model for example 

loses its linearity or its imbedded mathematical equations no longer work for the inputs 

exceeding predetermined levels.  The second reason is based on the window of 

feasibility, where the model restrictions are based on the practical considerations, such as 

the real world application boundaries. 

 

The input boundaries listed below belong to one of those two categories or to the 

combination of both. 

 

• Production volume for automotive electronics is limited to n [20,000; 40 million] 

for the practical reason.  The maximum possible volume of the vehicles sold defines 

the upper limit, where the low limit is typically the smallest volume acceptable for 

an automotive supplier.  The model will however work correctly outside these 

limits, (see the chart R0 versus n, Figure 6.8). 
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• The number of test mission lives in these applications is limited to L [1.0; 2.0].  The 

lower limit is based on the fact that automotive customers usually will not allow 

testing that is shorter than the equivalent of one mission life. On the other extreme L 

> 2 would constitute a rare event in the automotive business and could only be 

prompted by the availability of excess capacity of the test lab, allowing long test 

time durations without undue delays on other products waiting in the test jobs 

pipeline.  Even though reliability specifications do not set strict limits on the value 

of L, see for example [GMW 3172 (2004)], with today’s tight delivery schedules it 

would be difficult to justify the excessively long test procedures.  In this 

dissertation the search of minimum LCC is conducted under the assumption of full 

utilization of the facilities, i.e., the test facilities do not stay idle.  The chances of 

this assumption being violated increase as L becomes larger than 2.  However it is 

important to note that there is a possibility of special cases, where lax delivery 

schedules and additional cost benefits may prompt longer test times with L > 2.  

Some of these special cases, which go against practical wisdom may suggest certain 

economical advantages of the extended test time - these will be discussed in 

Chapter 7.  An additional reason to limit the value of L is mentioned in Section 

3.4.2 and related to the zero-failure assumption for the derivation of the parametric 

binomial equation (3.3).  With the increasing value of L the probability of failure 

during the extended life test will also be increasing. 

• Test sample sizes in this study are limited to N [3; 100].  Sample size below this 

range will not provide statistically significant information about the product and 
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that above this range will be too costly and impractical to implement.  The practical 

sample sizes will probably be well below the upper limit of 100 listed here. 

• The target reliability should remain above 90%, i.e., R0 [0.9; 1.0) due to the 

customer’s demands for higher quality and reliability.  For example, R0 = 0.8 would 

not be acceptable to an automotive OEM.  In addition, low R may violate the model 

assumptions by adding certain un-quantified though very real costs, such as 

tarnishing of a brand name, potential law suits, recalls, costs of additional 

marketing efforts associated with poor quality, etc.  In order to be able to eliminate 

these cost items from the influence diagram Figure 2.2 reliability demonstration 

target R0 must stay above 90%.  

• Confidence limits are typically restricted between C [50%; 95%], although  

C = 90% seem to be dominant in automotive reliability specifications. 

The input ranges above should not be considered as explicitly ‘rigid’, since it is not 

always possible to determine the exact boundary value where the model loses its validity.  

Instead, those limits should be considered as ‘soft boundaries’ and used as guidelines for 

the model’s practical applications.  Also it is not the intention of this work to embrace 

these limits and therefore to constrain the solution, but rather to acknowledge their 

existence in order to obtain a better understanding of the modeling process.  The limits 

discussed above are generally associated with automotive industry and could be modified 

or even eliminated when this model is applied to other industries. 
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6.3.7. Effect of the Unverified Warranty Claims 

Warranty claims classified as NTF (No Trouble Found) make up sizable part of reported 

automotive electronics warranty problems and have been previously discussed in the 

literature [Kaminskiy and Krivtsov (1997); Salzman and Liddy (1996); Williams et al. 

(1998)].  Most warranty reporting systems report NTFs separately and often exclude 

them from the reported numbers of product failures [Thomas et al. (2002)].  Some 

suppliers tend to discount NTFs since they are often caused by the problems outside the 

part in question, such as failure of other systems communicating with the electronic unit 

under consideration.  However, on the warranty cost side, NTFs are often accounted for 

the same way as ‘true’ claims, since OEMs and their suppliers still pay the dealerships for 

the repair work done on those units including extraction of the ‘faulty’ unit and the 

consequent replacement work.  Therefore, in the majority of cases, NTF-related claims 

will be part of the total LCC dollar value and therefore need to be included in the overall 

LCC model.  ‘Included’ in this context means that all the unconfirmed failures are still 

considered as failures and therefore NTF = 0% (case study Section 6.3.2).  From the LCC 

and statistics point of view it does not make any difference if the claim is real or 

‘imaginary’, therefore NTFs are included and counted as a part of the warranty expense, 

making NTF = 0%.  

 

With that said it is important to note here that there is no uniformity in the way OEMs are 

treating NTF warranty claims, therefore there are cases where NTFs would need to be 

subtracted from the total pool of warranty claims.  Subtracting the NTF values will 

modify equation (5.13) into 
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[ ] soldf ntRNTFtn )(1)1()( −−=  

(6.2) 

In these cases the percent NTF should also be simulated in the form of a statistical 

distribution and included in the model as one of the random inputs.  For the purpose of 

studying the effect of NTF failures, the case study presented in Section 6.3.1 was 

modified by subtracting the NTF percentages based on numbers obtained for the 

Radio/CD player used in the case study.  Historical percentage of NTF relative to the 

total number of warranty claims tend to fluctuate and therefore was also modeled as a 

random variable input.  Based on historical NTF data for this type of products it was 

simulated by the distribution presented in Table 6.5. 

 

Table 6.5. NTF input distribution used in Monte Carlo simulation. 

NTF percentage,  

NTF, decimal value. 
Equation (6.2) 

Weibull distribution 

(β = 3.02, η = 0.473, 

γ=-0.0398) 

Truncated [0; 1] 

 

 

The 2-D results of the simulation are presented here in Figure 6.9 and similar in format to 

that in Section 6.3.2.  Comparing Figure 6.4 and Figure 6.9, it can be seen that the 

minimum LCC point occurs at a different target reliability value.  The numerical 

differences between the simulation results with and without NTF are presented in Table 
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6.6. As you can see, the optimal values of R and L have shifted due to the reduced 

warranty cost caused by the exclusion of NTF warranty claims.   

 

Undoubtedly, NTFs are the important contributors to the model.   

 

Figure 6.9. LCC comparison charts for the model excluding NTF failures for L = 1 and  

L = 2.  Lowest cost data points are circled.  NTF percent assumed for this modeling is the 

distribution described in Table 6.5 

 

As can be seen from the sensitivity chart, Figure 6.7, the random NTF input is the fourth 

most influential input affecting the LCC solution.  NTF exclusion is occasionally 
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requested when design improvements focused on elimination of NTF are planned and the 

positive economic impact of these modifications needs to be assessed. 

 

Table 6.6. Target reliability values minimizing LCC: NTF counted vs. NTF subtracted 

Test mission lives, L NTF counted as failures, 

NTF=0% (Figure 6.4) 

NTF subtracted from the 

failures (Figure 6.9) 

L = 1 R0 = 0.96 R0 = 0.93 

L = 2 R0 = 0.97 R0 = 0.96 

 

 

6.4. Cost Benefit Analysis 

Cost benefit analysis is designed to determine the feasibility of a project or plan by 

quantifying its costs and benefits. It is not always practical to couple a monetary value to 

every implementation benefit, however it is always beneficial to be able to justify the 

project from the standpoint of engineering economics.  A high return on investment 

(ROI) is often a strong argument to move the project implementation forward.  According 

to [Hoisington and Menzer (2004)] quality and reliability professionals should use this 

measurement to show the impact on the organization of investing money to fix or prevent 

a problem or improve the process and the expected return.  Basic information on 

calculating ROI can be found in [Short and Welsch (1990)].  Generally, ROI is an 

amount, expressed in terms of percentage or a ratio, of the profit or loss resulting from a 

transaction or investment.  The application of ROI concepts to engineering projects and 

process improvements is described in [Westcott (2005)].  In the cases of quality or 
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reliability improvement, the ROI is the ratio of the sum of the improvement benefits 

divided by the total cost of the improvement.  Even though the ROI is often just a rough 

estimate, it can be a powerful argument in managerial decision-making.  

 

[Rico (2004)] suggests using a simple set of metrics and models for ROI, as such we will 

ignore taxes and compounded interest in our simple treatment here.  Therefore in the case 

of LCC improvement, ROI can be represented by equation (6.3). 

 

tionimplementaofCost
LCCLCC

ROI AfterBefore −
=  

(6.3) 

Some engineering fields such as risk analysis, civil engineering, and some others use 

Benefit-to-Cost Ratio [Ayyub (2003)] to evaluate the financial benefits of the project.  

Benefit-to-Cost Ratio (B/C) an can be presented by equation: 

 

(6.4) 

In the cases of process optimization projects similar to that described in this dissertation, 

equation (6.4) will produce the same cost benefit value as equation (6.3), therefore they 

can be used interchangeably. 

 

In the case study presented in Section 6.3 the ‘conventional’ reliability demonstration 

parameters were C = 90%, R = 0.90, L = 1.0.  According to the deterministic results 

presented in Table 6.4, the LCC value corresponding to those parameters is LCCBefore = 
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$596,117.  For the optimized parameters C = 90%, R = 0.97, L = 2.0, this value is 

LCCAfter= $423,696.  The engineering expenses for collecting all the required 

information, compiling the model, and running the simulations can be conservatively 

estimated at around $15,000. Substituting those values into equation (6.3) will produce 

ROI exceeding 12×  The stochastic simulation of ROI value according to equation (6.3) 

using simultaneous iterations of two LCC values corresponding to the old and improved 

sets of C-R-L values is shown in Figure 6.10 and can be best represented by the Extreme 

Value distribution with the parameters a = 6.24 and b = 25.11, which produces the 50% 

confidence interval for ROI [0.1×;  24.6×]. 

 

Figure 6.10. ROI simulation results 

This magnitude of ROI could be considered common for a project involving process 

improvement [Rico (2004)].  In the case of LCC stochastic modeling application the ROI 

can be further increased by improving the process and reducing the expenses requiring 
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for the model implementation in each particular product line.  Other economic analysis 

criteria, such as internal rate of return (IRR) or payback period [Ayyub (2003)] could also 

be applied to determine the cost benefits of the LCC improvement project. 

 

6.5. Case Study Conclusions 

The following are the conclusions drawn from the analysis of this model in general and 

the case study in particular. 

 

• This LCC minimization model has a suitable format for optimization.  For the 

ranges of values of R, C, and L; their relationship in the LCC model, and the 

analysis cases considered herein a minima LCC point, which is not an extreme 

always exists. 

• Despite the non-symmetrical nature of most of the distributions used in the model, 

the optimal solution set of R, C, and L for deterministic model based on the means 

of each distribution matches the solution set for the stochastic simulation based on 

the median of the outputs.  However the 10%-tile and 90%-tile solutions are 

different from the deterministic solution.  Therefore the random LCC values retain 

the same rank as the deterministic LCC values.  Therefore the stochastic simulation 

provides an additional level of insight into the internal dependencies between LCC 

and the model inputs and enhances the process of cost optimization. 

• According to [Chauhan and Bowels (2003)], deterministic estimates, which are 

derived from the best estimate inputs (as opposed to the parameters of the input 
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distributions) do not necessarily yield outputs that are equal to the mean or median 

due to nonlinearities in the process that relate outputs to inputs.  Therefore it is very 

important to use Monte Carlo simulation even for the deterministic analysis.  The 

deterministic analysis based on mean or median of the distribution provides a more 

reliable minimization scheme than the same analysis based on the input best 

estimates.  

• The increase in test duration (higher L-value) favorably affects the LCC value: the 

higher the L the lower the total cost.  It can be explained that the cost of each 

additional hour of testing is less that the cost associated with adding more test 

samples.  However assuming that the test laboratory is running close to its full 

capacity and all test jobs should be completed within the timeframe dictated by the 

normal production schedule the L has to be constrained within the reasonable limits 

(see Section 6.3.6).  Scheduling issues are often specific to a particular test 

laboratory and therefore are very difficult to quantify.  Hence the decision makers 

will need to look at the auxiliary costs associated with the extension of the test 

times and make decisions regarding the test duration based on the impact of the 

increased L on the current test schedules and the timing of the other projects 

currently in the test pipeline.  However it is entirely possible that the extended test 

times with L > 2 can carry economic benefits in some particular business cases. 

• As mentioned in Section 6.3.5 the model simulation is most sensitive to the value of 

QCorr. Therefore it places the additional importance on the process of mapping the 

forecasted warranty with the reliability demonstration targets as described in 

Chapter 5.  
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• Although the size of the production volume is an important factor, which 

significantly drives up the cost of warranty, the general behavior of the model is not 

markedly sensitive to the number of the units in production (see Figure 6.8).  In the 

analysis performed in Section 6.3.5 the optimal target reliability R0 has risen from 

0.8 to 0.999, while the production volume increased 10,000 fold.  Production 

volume analysis can also serve as one of the additional model checks proving its 

viability. 

• From the graph Figure 6.6, uncertainty of the solution diminishes with growth of 

R0.  This can be explained by the fact that the contribution of the warranty cost to 

overall LCC diminishes with the growing target reliability, therefore reducing the 

uncertainty.  As mentioned before, the warranty cost is the main source of 

uncertainty. 

• The unverified failures, referred here as NTF have a substantial effect on the 

production economic model.  The case study in this chapter showed that subtraction 

of NTFs changes the optimal points for the key test parameters C, R, and L.  In 

addition, subtraction of NTF failures from the total number of warranty claims has a 

dual effect on the uncertainty of the model.  On one hand it decreases the 

uncertainty by reducing the total contribution of the warranty cost forecasted with 

the higher degree of uncertainty.  However on the other hand it increases the 

uncertainty adding another random input (percent NTF) to the model.  The case of 

exclusion or inclusion of NTF into consideration is specific to the product, design 

process, and the needs of a particular customer; therefore it should be decided on a 

case-by-case basis. 
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• The cost benefit analysis of the proposed methodology yields a potentially high 

return on investment; therefore besides engineering benefits, the implementation of 

this method makes a good business sense.  High ROI numbers on the order of 

magnitude of 1,000%, similar to that presented in the case study would be expected 

for this type of project.  Moderate investments with high returns are usually 

anticipated for the projects involving process improvements.  It is also clear from 

the model that potentially achievable returns can be even higher than those 

presented in this case study.  The engineering cost of implementing the method 

usually goes down when the process becomes more developed and sophisticated, 

while the economic advantage of LCC improvement can be potentially much higher 

as can be inferred from Table 6.4. 

 

The remaining Chapter 7 contains general conclusions, contributions, remaining issues, 

and future directions of the research. 
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7. Summary and Contributions 

 

7.1. Summary 

This dissertation develops a methodology for minimizing a product’s life cycle cost using 

the decision variables controlled by a reliability/quality professional during a product 

development process.  The methodology developed in this dissertation incorporates all 

dependability-related activities into a comprehensive probabilistic cost model that 

enables minimization of the product’s life cycle cost.  The mathematical model utilizes 

the inverse relationship between the cost of product validation activities and expected 

cost of repair service and warranty returns.  Among the key input parameters, an 

emphasis was placed on the test duration and sample size for the environmental tests 

performed in a product validation program.  The overall stochastic cost model and its 

minimization are done with Monte Carlo simulation in order to account for uncertainties 

in model inputs and parameters. 

 

The results of this work provide reliability professionals with a methodology to evaluate 

the efficiency of a product validation program from a life cycle cost point of view with an 

emphasis on the cost of validation and product warranties, and ultimately minimize that 

cost by optimizing the environmental test flow of the product validation process. 
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7.2. Discussion and Conclusions 

Development of this methodology and its consequent application in the automotive 

industry generated several general conclusions regarding various aspects of design 

validation, environmental testing, modeling, and cost analysis. 

 

7.2.1. Life Cycle Cost Model  

The life cycle cost analysis model is introduced in Chapter 2 and implemented in the real 

life example in Chapter 6.  The major model inputs are discussed in Chapters 3, 4, and 5.  

As with any analytical model, this LCC method has its application limits, which are 

discussed in Section 6.3.5.  Some of those limits are based on the automotive industry’s 

rules and preconceptions.   It was important to examine each real life situation and 

determine if it would be beneficial to reconsider those conventionally set boundaries in 

the cases where business conditions call for it.  

 

Among other items, this model suggests the application of extended life testing, where 

the duration of the environmental test exceeds the predetermined one-life test bogey in 

order to reduce the test sample size.  This work shows that the relationship between the 

cost of test sample size and the cost of running those tests is critical in determining the 

economic benefits of extending the test duration.  The relationship is driven by the 

parametric binomial distribution (see Appendix A) defining the connection between test 

duration and test sample size, which enables minimization of validation cost.  From the 

analysis of the case study presented in Section 6.3 and from other applications of this 
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model it was determined that extending the automotive durability tests beyond one bogey 

life is economically beneficial only when the cost of producing and equipping one test 

sample exceeds approximately one day labor cost of running the tests.  In the case of less 

expensive test samples it is better to limit the durability testing to one bogey life or even 

shorter if customer requirements allow it. 

 

7.2.2. Warranty Forecasting 

A new warranty forecasting model based on a piecewise statistical distributions and 

stochastic simulation was presented in Section 5.2.  This model is currently being 

implemented in the procedures for new business quoting at Delphi Electronics & Safety 

and will also be used for expanded warranty forecasting for future products.  In addition 

it will be used to detect alarming trends in current products warranty claims during the 

initial months of production.   

 

7.2.3. Bayesian Analysis 

Application of Bayesian analysis to the test sample size reduction was presented in 

Chapter 4. In cases where customer requirements for target reliability exceed the practical 

range of R [0.9; 0.98], certain statistical techniques of sample size reduction can be used 

to make product validation economically feasible.  One of those practical measures can 

be an application of statistical priors derived from the past reliability or product’s 

performance in the field, where favorable product history allows sample size reduction 

while maintaining the required demonstrated reliability and confidence.  However it is 
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important to understand that unfavorable priors may adversely affect the outcome and 

require a sample size that is larger than that obtained without application of Bayesian 

method. 

 

7.2.4. Stochastic Simulation 

The stochastic simulation of the presented LCC model was implemented using a Monte 

Carlo method and is discussed in Chapter 6.  It is important to use stochastic simulation 

techniques in order to analyze the propagation of data uncertainties through the model 

and obtain the required confidence bounds of the solution.  It is especially important in 

cases where the random inputs are represented by skewed statistical distributions, such as 

lognormal, exponential, Weibull, or others.  In these cases the mean or median of the 

output will be different from the deterministically obtained output, even when the inputs 

are represented by the means of their respective PDF functions. 

 

7.2.5. Cost Benefit Analysis 

An economic analysis of the developed methodology is presented in Section 6.4.  The 

cost benefit analysis utilizes ROI as a measure of its economic feasibility.  This analysis 

shows that reasonably high ROI on the order of 10 are achievable as the result of the 

methodology developed in this dissertation. Moderate investments with high returns are 

usually expected for the projects involving engineering process improvements since the 

ROI analysis is an estimate with a high degree of uncertainty for this type of project.  In 

the case of LCC stochastic modeling, the ROI can be further increased by improving the 
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process and reducing the expenses requiring for the model implementation in each 

particular product line. 

 

7.3. Contributions 

The research work presented in this dissertation can be divided into major and minor 

contribution categories.  

 

7.3.1. Major Contributions 

• First known comprehensive application of statistical modeling approaches to life 

cycle cost analysis covering all product dependability activities and comprising the 

cost of product validation and the consequent warranty/service cost.  This work 

presents a mathematical formulation of the probabilistic version of the ‘Reliability-

Cost’ relationship and addresses many shortcomings of the currently existing 

deterministic models.  This work also introduces a new approach to account for the 

cost of product validation and its relation to the expected warranty and service cost. 

 The methodology developed in this work enables optimization of an 

environmental test flow in order to minimize the life cycle cost of a product. 

The methodology makes use of the input controls and variables available to a 

reliability/validation engineer, such as reliability demonstration targets, test 

sample sizes, and environmental test durations.  This methodology also 

includes a statistical analysis of the cost relationship between product 

reliability and quality and establishes statistical links between product 

validation activities and expected warranty returns.  Previous efforts have 
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failed to establish this link due to the complexity and product specificity of 

this relationship. 

 This methodology will provide a system supplier with economic justification 

for a business case supporting a chosen validation program and will help to 

avoid the issues of unreasonably high reliability targets and therefore 

unnecessary high costs of product validation or potentially delayed delivery 

schedules. 

• This dissertation developed and mathematically formulated the warranty prediction 

model based on a piecewise application of Weibull and exponential distributions.  

The prediction model has three parameters, which are the characteristic life and 

shape parameter of the Weibull distribution and the time coordinate of the junction 

point of the two distributions. The values of the parameters are obtained by data 

mining past warranty claims for products with similar design characteristics. 

• Applications of the developed methodology provided the following insights:  This 

work demonstrated the importance of the relationship between variable cost of 

testing and cost of a test sample needed to make an educated business decision 

about extending the duration of the environmental tests.  It showed that for 

electronics products, where the product validation involves durability testing, such 

as temperature cycling and random vibration simulating 10-15 years of mission life, 

certain simple criteria apply.  When the cost of a test sample exceeds the labor cost 

of approximately one day of validation testing, it would be beneficial to extend the 

environmental testing beyond one mission life as shown in the case study Chapter 

6.  Similarly, under reversed conditions where the test sample cost is lower than the 

one day labor cost it is better to limit the test time to one bogey mission life.  In 

other words, more expensive test samples warrant the extension of the test time 
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while the extended validation of less expensive test samples would not provide any 

cost benefits. It is important to remember that this ‘one-day labor rule is just a rule 

of thumb and may need to be verified for each particular model for better accuracy.  

 

7.3.2. Minor Contributions 

• Development of a comprehensive validation laboratory equipment cost of 

ownership model addressing missing repair data and incomplete maintenance 

records  

• Formulation and introduction of a knowledge factor into the process of generating 

mixed Bayesian priors and suggesting a procedure for its assessment 

• Introduction of a unique method of analyzing the existing warranty data by 

presenting and storing them in the form of statistical distribution parameters.  

• Connecting product reliability and quality by establishing statistical links between 

product validation activities and warranty returns.  Mapping the warranty 

forecasting model to the expected percent failures at the mission life period. 

• Addressed the issue of unverified failures and their economic impact on the overall 

life cycle cost model 

 

7.4. Future Work 

Although this dissertation can be considered as a completed research activity, certain 

steps could be done to further this study.  The future work can be divided into two major 

parts: model enhancement and data improvement.  
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7.4.1. Model Enhancement 

This model was created specifically for automotive electronics applications; therefore the 

next logical step would be to expand this model to non-automotive applications.  Despite 

obvious differences there are many commonalities between product validation programs 

in different industries.  Careful analysis of these specifics would help to adjust the model 

to make it usable for alternative applications.   

 

Also, certain steps can be taken to make this model more robust.  At present the output of 

stochastic simulation is highly sensitive to the value of the correlation coefficient QCorr.  

Reduction of the model dependency on its value would increase the robustness and 

stability of this method.  Future work may also expand the original model by including 

the factors presented in the influence diagram Figure 2.2 and later eliminated from the 

consideration for various reasons (see Figure 2.3).  Taking the factors such as additional 

redesign cost or potential product recalls into consideration may enhance the model and 

make it more versatile. 

 

While this methodology has proven to be practical and beneficial, much remains to be 

done in promoting in the engineering and management community the wider acceptance 

and use of stochastic simulation as opposed to deterministic calculations.  Even though 

Monte Carlo warranty prediction based on the methodology presented in this dissertation 

is currently in the process of being implemented into every day forecasting practices at 
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Delphi Electronics & Safety, most of the analysis and simulation activities are still 

performed using deterministic methods. 

 

On the topic of stochastic simulation, alternative simulation techniques, such as response 

surface methodology could be used in lieu of Monte Carlo in order to increase the speed 

and efficiency of the computation processes.  Also, this model can be expanded by 

including additional input variables, such as equipment utilization or cost of the schedule 

delays, although it is important not to complicate the model beyond the level where it 

remains practical. 

 

7.4.2. Data Improvement 

At present, the availability of warranty data beyond the standard automotive 3-year 

warranty is very limited.  Even with extended warranties on selected systems, such as 

engine controllers or restraint systems, many owners take their vehicles for repair to 

places other than dealerships and therefore data is not captured. With the general trend of 

increasing the standard automotive warranty (e.g., Hyundai Automotive is expanding its 

standard warranty to 10 years) more data is expected to be available in the future 

allowing the analysis of the correlation between the predictive models and the actual 

warranty and also to provide better QCorr for the mapping of the warranty prediction 

model. 

 

Also this model would require future updates due to continuous technological 

developments in the automotive industry and especially in automotive electronics.  Those 
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developments include miniaturization of electronic units, increased functionality, and 

continuous insertion of new packaging technology.  Since warranty prediction is based on 

the existing warranty claims, one of the challenges to this methodology is to address the 

continuous changes in automotive electronics technology based on warranty prediction 

for the old technology.   

 

In certain cases it is important to account for human factors while processing the field 

return data.  For example, even with the extended warranties the number of claims drops 

significantly after 3 years because customers forget, unaware, or not sure whether to 

report the problem to the dealership as opposed to an independent auto mechanic.  In 

addition, the number of warranty claims jumps up shortly before the expiration of 

warranty, since people are trying to repair the old problems before the warranty runs out.  

That brings aberrations to the data patterns and complicates the warranty data processing 

and analysis.  All those factors will need to be taken into consideration to improve the 

accuracy of the model. 
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Appendix A.  

Reliability Demonstration Fundamentals  

From [Kleyner and Boyle (2005)] 

 

Material in this section can be used as a supplement to the topic of reliability 

demonstration.  It provides additional information in the form of the definitions and 

derivations of certain equations, which have been used in the main body of this 

dissertation. 

 

Success Run Formulae 

The following applies to the cases where a test has only two outcomes: pass or fail. The 

random variable x, that denotes the number of successes in Bernoulli trials [O’Connor 

(2003)] has a binomial distribution given by p(x), where 
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Let’s consider p is a probability of the product to fail. The probability of obtaining x bad 
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Where F(k) is cumulative binomial distribution, the probability of obtaining k or fewer 

failures in n trials is also called cumulative reliability. 

 

If n items are tested and k have failed, the reliability of the sample is  

)]1()1([1 ++−−≈ ninvalueorderedthktheofrankCRc  

(A.3) 

Where C denotes the confidence level required 

 

Therefore, based on equations (A.2) and (A.3) 
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Where  n = total number of samples 

If k = 0 (no units failed) the (turns to the well-known ‘Success Run Formula’ 

nRC −= 1  

(A.5) 

Alternative Solution for Success Run with Failures 

In the case of failures during a bogey test there is an alternative solution utilizing Chi-

square distribution.  Assuming that the failures follow exponential distribution pattern 
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R(t)=exp(-λt), one-sided estimate for MTBF [O’Connor (2003)] based on time to failure 

will be: 
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(A.8) 

This (can be used as a simplified form of more complicated binomial equation. 

 

Parametric Binomial Equation (Lipson Equality) 

The relationship between reliability and test time for the two-parameter Weibull 

cumulative distribution failure function is given by [Lipson and Sheth (1973)] 

 

The probability of survival (reliability) then is: 
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Now suppose that n1 items are run without failure to t1 time, and R1 is the reliability at t1 

with a confidence C.  Combining equations (A.5) and (A.9) will produce 
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Or 
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(A.11) 

Next suppose that n2 items are run without failure to t2 time, and R2 is the reliability at t2 

with the same confidence C.   

Now as before: 

 

(A.12) 

Thus equating right hand sides of equations (A.11) and (A.12) would produce 
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Or 
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In some cases we want to test the product to L number of lives in order to reduce the 

number of test samples, that would make  

t2 = Lt1 

(A.15) 

 

Thus combining equations (A.14) and (A.15): 

21 nLn β=  

(A.16) 

With the use of equation (A.16) the classical Success Run formula (A.5) will transform 

into: 
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(A.17) 

 

Equation (A.17) is often referred as parametric binomial equation or Lipson equality. 
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Appendix B.  

Bayesian Techniques to Reduce the Sample Size in Automotive 

Electronics Attribute Testing. Reproduced from [Kleyner et al. 

(1997)] 

 

Introduction 

In the pursuit of high quality and high reliability in a mass production environment, the 

automotive manufacturers require their suppliers to prove a target reliability with an 

assigned confidence level on a supplied product.  This is usually done through a 

reliability demonstration test by running a certain number of samples under conditions 

simulating the mission life, an experiment, which is sometimes called test to a bogey.  

Most of the time the sample size is determined only by the required reliability and the 

confidence level.  Most of the methods currently used in the industry presume no prior 

information about the product or its predecessors, though very often this information is 

available.  With the ever increasing reliability requirements the number of samples to be 

tested is growing out of proportion and out of economical sense, requiring larger and 

larger amounts of human resources and capital equipment.  Based on the fact that many 

new automotive products are evolutionary and not revolutionary, Bayes method can be 

one of the approaches to incorporate prior knowledge about the product, thus reducing 

the number of test samples and the amount of resources dedicated to the test programs. 
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Existing Techniques for Sample Size Determination 

Statistical experiments are generally performed to learn more about unknown parameters 

characterizing our material of interest.  In an automotive setup, the unknown parameter is 

the product reliability R, that is, the probability of surviving a specified mission life under 

standard condition: an attribute reliability experiment is performed to learn more about it.  

The experiment consists of observing N successes out of N reliability test trials. A 

peculiar feature is that most often no less than a 100% success rate is required - failing 

which corrective actions are to be taken- whereas in the usual reliability trials the success 

rate, albeit usually high, is random. 

 

Techniques commonly utilized to calculate sample sizes for reliability demonstration of a 

product when a 100% success rate is required are generally referred to as Success Run 

Formulae [Johnson (1960); Benedict (1967)].  The likelihood function, that is the 

probability of observing all successes given a certain value of the unknown product 

reliability R, is  

 

L data R R N( | ) =  

(B.1) 

Based on this equation, the classical Success Run Formula  

C R L
N= −1  

(B.2) 
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has been obtained in [Benedict (1967)].  In equation (B.2), RL is the lower bound of a 

one-sided C×100% confidence interval for the unknown reliability R. RL is referred to 

from now on as the demonstrated reliability.  In the automotive industry C and RL are 

usually stipulated by the customer; the Success Run formula is then used for the 

determination of the required sample size N.   

 

In a Bayesian approach instead, we use prior distributions on the unknown parameters of 

a statistical experiment to exploit useful pre-experimental information, for example the 

data from previous test results or similar product usage.  For Success Run experiments, 

the likelihood (B.1) has to be combined with the prior distribution on R to obtain a 

posterior distribution on R. Such a posterior distribution summarizes all available 

information about the unknown product reliability R.   

 

The Bayesian version of the classical Success Run Formula uses a Uniform Prior, also 

called a Rectangular Prior, which presumes an equal likelihood for the reliability value to 

fall anywhere between 0 and 1 and expresses the idea of ‘vague’ prior information.  In 

other words, since this prior assigns the same weight to every value of R, we expect it to 

produce results similar to the classical Success Run formula. The uniform prior density is 

simply the constant 1 between 0 and 1, 0 otherwise and is plotted in Figure B.1. 
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Figure B.1. Uniform Distribution 

 

Combining the uniform prior and the likelihood using Bayes theorem we obtain the 

Bayesian version of the Success Run formula from the posterior probability   
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or, 

C RL
N= − +1 1  

(B.4) 

where C is a (Bayesian) confidence and RL is a (1-C) quantile of the posterior distribution 

of R, still referred to as the demonstrated reliability.  For practical reasons we use here 

the word ‘confidence’ for the quantity C, but this is different from the standard use in 

classical statistics.  An interpretation of (B.4) is that, after the successful completion of a 

0 1

1



 

 186

Success Run experiment with N units, there is a C×100% Bayesian confidence that the 

unknown reliability is greater than RL. 

  

The sample size calculated using equation (B.2) is one sample more than what we would 

get using equation (B.4). Some common reliability demonstration requirements and the 

sample sizes for Success Run of these demonstrations are given in Table B.1.  Equation 

(B.4) has been used in the calculation of these sample sizes. 

 

Table B.1. Some Common Reliability Demonstration Requirements 

Reliability to be 

Demonstrated 

Confidence 

Level 

Sample Size 

(Success Run formula) 

0.95 0.9 45 

0.97 0.7 40 

0.99 0.5 69 

0.99 0.9 229 

 

From Beta Priors To Mixtures of Beta Priors For Product Reliability 

 

A generalization of the Success Run formula (B.4) can be obtained from priors other than 

the uniform.  In Bayesian statistics, it is well known that for a binomial likelihood such as 

(B.1), a beta prior distribution on R, with density  
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Where   β( , ) ( ) ( )
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is particularly convenient; the constants A and B (sometimes called hyper-parameters) 

have a nice interpretation - A being thought, sometimes, as the number of successes out 

of A+B trials in a similar pre-experiment, real or imaginary. Figure B.2 shows examples 

of beta distributions with different combinations of A and B.  More importantly, the beta 

prior distribution is conjugate to binomial sampling, that is, the posterior is a beta 

distribution as well.  This allows for a continuous updating of the posterior within the 

same general class of distributions.  The uniform prior is a special case of (B.5) for A = B 

= 1. 

 

The posterior density on R obtained by combining equations (B.1) and (B.5) through 

Bayes theorem is  
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(B.6) 
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Figure B.2. Typical Beta Distributions 

that is, a beta density with parameters (A+N) and B.  The use of beta priors for binomial 

sampling has a long history, starting somewhere in the prehistory of modern Bayesian 

statistics. For an account of the uses of beta distributions in attribute reliability trials, see 

for example [Martz and Waller (1976, 1982)].  As in the case of the standard Success 

Run formula (B.4), the immediate use of posterior (B.6) is to establish a reliability level 

RL above which there is a high Bayesian confidence C that the reliability R will be met.  

For this purpose, we use equation  

C R R
A N B

dR
A N B

RL

=
−

+

+ − −

∫
1 11 1( )

( , )β
 

(B.7) 

which tells us that there is a C posterior probability that R will be greater than RL. 
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If, before the experiment, we require a certain Bayesian confidence C based on the 

contractual specifications, for given A and B the only unknown in expression (B.7) is the 

sample size N. For a given prior (B.5) we have to solve equation (B.7) numerically for N, 

in order to know how large a sample size we have to observe, with 100% success rate, to 

satisfy the required C and RL. 

 

The choice of the parameters of the prior A and B is a crucial one.  It seems reasonable, 

in automotive reliability applications, to base such a choice on failure data, which are 

easily available and contain a lot of relevant information on past models or similar 

products.  In the presence of information on the success rate of n previous life tests, a 

possible way to obtain A and B is based on an empirical Bayes approach discussed in 

[Copas (1972)].  See, for example, [Martz and Waller (1976)] where empirical Bayes 

estimates of A and B are derived as follows: 
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(B.8) 

and 

A A B R= +( )  

 

Where  n is a number of life tests 
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 l j  is a number of units in j th  test. 

 Rj  is the j th  observed failure rate = 
Number of failures in the j test

l

th

j

 

 K lj
j

n

= −

=
∑ 1

1
 

 R
R

n

j
j

n

= =
∑

1  

 

When n is small, sampling error may cause equation (B.8) to yield negative estimates.  If 

this occurs, [Martz and Waller (1976)] suggest using another form of this equation.11 

 

These equations can be applied to processing real life data, where n would be the number 

of test sets for the similar products and Rj would be the reliability data from each set.  

 

Beta priors of the form (B.5) have a long history and are mathematically convenient, but 

for our purposes they are too restrictive.  The best way to understand this is observing 

that an industrial product is in continuous evolution and, although a lot of similarity 

exists between old and new models, we always have a margin of novelty, which should 

                                                 

11 For small n, the following equation may be used in place of equation (B.8): 
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be accounted for.  On the other hand, we do want to use prior information on similar 

products in our research; this is the reason why we want to use Bayesian methods in the 

first place.  The right compromise between these conflicting goals seems to be 

generalizing the class of beta priors to the larger class of finite mixtures of beta priors. 

The plan is then to put together a prior distribution derived from failure data, and a 

margin of uncertainty intrinsic to the new model.  The latter margin of uncertainty can be 

expressed as a uniform prior on the reliability.  

 

Our proposal is therefore the use of a two-component mixture of beta distributions, with 

density 

 

π ρ
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(B.9) 

The first component of the mixture is a beta prior with parameters A and B to be derived 

from failure data.  The second component of the mixture is a uniform prior (a special case 

of the beta) representing uncertainty about the new product reliability.  The two 

components are combined according to weights ρ and (1-ρ), where ρ is a ‘knowledge 

factor’ representing how similar the new product is to the old one, and (1-ρ) is an 

‘innovation factor’, reflecting the proportion of new content in the new product.  Notice 

that the use of a uniform prior alone would lead to the Bayesian version of the Success 

Run formula; the use of mixtures represents therefore a reasonable compromise between 

Bayesian and classical methods. 
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The idea of using mixture priors in the context of product reliability could be generalized 

to the case of heterogeneous prior information, in particular to the case where failure data 

is available for different past products, some more similar than others to the new product.  

In that case, the analysis could be generalized to the consideration of prior densities of the 

form  
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where  ρ ρ= ∑ i
i

 

and the different knowledge coefficients ρι reflect different degrees of similarity between 

the new and the old products.  Another reference to the use of mixture priors in Bayesian 

reliability is [Savchuk and Martz (1994)].   

 

For now, we consider only mixtures with two components of the form given in the 

equation (B.9).  Combining equations (B.1) and (B.9) using Bayes theorem we obtain the 

posterior density 
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and the corresponding expression 

 

C R data dR
RL

= ∫π ( | )
1

 

(B.12) 

where a required demonstrated reliability RL and confidence coefficient C can be 

achieved. The solution of equation (B.12) has to be found, in general, by numerical 

methods.  

 

An Example to Demonstrate Application of the Technique 

The sample size determination technique described in previous sections of this paper has 

been applied to a real life example to demonstrate a significant reduction in sample size.  

Table B.2 shows failure data for an electronic vehicle control product (slightly modified 

from actual data for security reasons) in terms of IPTV (Incidents Per Thousand 

Vehicles).  Table B.2 shows breakdown by model years and body styles, totally 

constituting 12 test sets (n = 12).  The observed failure rates Rj, are calculated from the 

IPTV data using: 

 

R IPTV
j = −1

1000  

(B.13) 
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Using equation (B.8) the values of A and B for the data in Table B.2 are found to be 

769.34 and 2.53 respectively.  The cumulative distribution functions (CDFs) of the 

uniform, beta, and mixture distributions are shown in Figure B.3 for the crucial range of 

0.98 ≤ R ≤ 1 

 

Using equation (B.12) and solving numerically for the sample size, N, for a demonstrated 

reliability of RL = 0.99 with C = 90%, the sample sizes for various knowledge factors are 

as shown in Table B.3.  Using the classical Success Run formula (no prior knowledge 

about the product or knowledge factor ρ = 0), 229 samples of the product A will have to 

be tested with no failures to demonstrate a 0.99 reliability with 90% confidence.  From 

Table B.3 it is seen that with only a 10 % prior knowledge of the product (knowledge 

factor ρ = 0.1), the sample size reduces to 54 and as the knowledge factor increases, the 

sample size decreases. 
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Table B.2. Calculation of Coefficients A and B from IPTV / Reliability Data 

 Product Model Body Style IPTV Volume Sold lj Reliabili

1 Product A 19XX Type I 2.94 170 0.9971 
2   Type II 3.57 121 0.9964 

3   Type III 2.45 206 0.9976 

4   Type IV 5.32 35 0.9947 

5   Type V 2.38 52 0.9976 

6   Type VI 8.68 38 0.9913 

7  19YY Type I 1.75 306 0.9983 

8   Type II 1.12 113 0.9989 

9   Type III 4.06 87 0.9959 

10   Type IV 1.61 27 0.9984 

11   Type V 1.12 173 0.9989 

12   Type VI 4.41 156 0.9956 

n = 12  K =Σ l j -1=1.66E-04 Σ Rj = 

 

Table B.3. Sample sizes for various knowledge factors at R = 0.99 and C = 90% 

Knowledge Factor Sample Size N 
1 0 

0.9 1 
0.8 2 
0.7 4 
0.6 6 
0.5 9 
0.4 13 
0.3 19 
0.2 30 
0.1 54 
0 229 
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Figure B.3. CDFs for Beta, Mixture and Uniform Distributions with A = 769.34,  

B = 2.53 

 

Conclusion 

The method presented in this paper has great potential for cost reduction in reliability 

demonstration testing in a mass production environment like an automotive electronics 

industry.  The failure data on similar products used to build a prior can significantly 

decrease the number of test items to a bogey.  Even in cases with a low knowledge factor 

such as 0.2 or 0.3 (20-30% prior knowledge about the product), the method may present 

significant sample size reductions. 
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In cases with a favorable prior, the number of samples may sometimes go down to zero 

or even become negative.  The zero or negative sample sizes would mean that the 

required reliability has already been demonstrated during the previous stages of product 

development and no further testing is needed. 

 

In instances with an unfavorable prior the number of samples to be tested may actually 

exceed the number computed using the classical method.  This means that the product’s 

prior has already shown that the product’s reliability is most likely less than the desired 

outcome and no further testing should be performed without appropriate design 

corrections. 
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