SRC-TR-87-71

CHEMICAL PROCESS SYSTEMS
LABORATORY

MARYLAND

‘ D ition Strategy for Designi
TECHNICAL S Flexible Chemical Plants
RESEARCH >
I. E. Grossman
REPORT K.

Halemane

SYSTEMS RESEARCH CENTER
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742







RESEARCH REPORT

CHEMICAL PROCESS SYSTEMS
ENGINEERING LABORATORY

DECOMPOSITION STRATEGY FOR DESIGNING FLEXIBLE CHEMICAL PLANTS

I.BE. Grossmann
K.P. Halemane

A CONSTITUENT LABORATORY OF
THE SYSTEMS RESEARCH CENTER

THE UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742






Reprinted from AIChE JOURNAL, July, 1982

Decomposition Strategy for Designing
Flexible Chemical Plants

One of the main computational problems faced in the optimal design of flexible 1. E. GROSSMANN and
chemical plants with multi-period operation is the large number of decision vari-
sbles that are involved in the corresponding nonlinear programming formulation. K. P. HALEMANE
To overcome this difficulty, a decomposition technique based on s projection- Department of Chemical Engineering
restriction strategy is suggested to exploit the block-diagonal structure in the con- Carnegle-Metion University
straints. Successful application of this strategy requires an efficient method to find Pittsburgh, PA 15213

an initial feasible point, and the extension of current equation ordering algorithms
for adding systematically inequality constraints that become active. General trends
in the performance of the proposed decomposition technique are presented through
an example.

SCOPE

Fiexibility in chemical plants is normaily introduced in  equipment that have been designed for & nominal operating

practice by applying empirical overdesign factors to sizes of  condition. This procedure is clearly not very satisfactory as it
has little rational basis. For instance, with empirical overdesi

Correspondence concerning thus should be sddressed 10| E Gromman. » P gn

G001 1541-42-4626-0686.83 00 : T 1 of Chemucal E . 1082 it is unclear what range of specifications the overdesigned plant
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can tolerate, or whether the plant is optimal according to a given
criterion. Therefore, there is clearly a need for developing design
methods that deal with flexibility in a more rational way.
Two classes of problems can be considered in the design of
flexible chemical plants. The first one is the deterministic
multi-period problem wherein the plant is designed to operate
under various specified conditions in a sequence of time periods.
Typical examples are refineries that handle various types of
crudes, or pharmaceutical plants that produce several products.
The second type of problem deals with the design of chemical
plants where significant uncertainty is involved in some of the
parameters. Examples of this case arises when values of feed
specifications, transfer coefficients, physical properties or cost
data are not well established. It must be noted that a design

problem can also be a combination of these two distinct types
of problems.

As has been shown by Grossmann and Sargent (1978, 1979)
the two classes of problems require the solution of a nonlinear
program where the number of decision variables and coastraints
can become rather large. It is the purpose of this paper to present
an efficient solution procedure for the deterministic multi-
period problem, which in fact can also be applied for solving
the problem of design under uncertainty (Halemane and
Grossman, 1981). It is shown that the block-diagonal structure
in the constraints, and the fact that many inequalities become
active at the solution, can be exploited effectively for reducing
the computational requirements in the nonlinear programming
problem.

CONCLUSIONS AND SIGNIFICANCE

It has been shown that the proposed projection-restriction
strategy exploits effectively the mathematical structure of the
multi-period problem for designing flexible chemical plants.
The performance of the decomposition method as seen in the
caanpie shows the most encouraging feature that computational

time only increases moderately with the number of periods in
a problem. Also, the reliability for obtaining the desired solu-
tions is greatly enhanced. Therefore, the proposed method
provides a real possibility for tackling large=scale optimizations
of flexible plants with a reasonable computational effort.

INTRODUCTION

A general approach based on nonlinear programming (NLP) for
the design of flexible chemical plants has been proposed by
Grossmann and Sargent (1978, 1979) The main features of their
formulation are as follows

In the case of the deterministic multi-period problem it is as-
sumed that the plant is subjected to piecewise constant operating
conditions in N successive time periods. Dynamics are neglected,
as it is considered that the length of the transients is much smaller
than the time periods for the successive steady-states. The variables
in this problem are partitioned into three categories. The vector
d of design variables is associated with the sizing of the units. These
variables remain fixed once the design is implemented, and do not
vary with the changes in the operation of the plant. The vector 2!
denotes the control variables that can be manipulated in each pe-
riod i 50 as to meet the specifications and also minimize the oper-
ating cost 1t should be noted that the vector z! corresponds to a
given assignment of variables to the existing degrees of freedom
in the operation of the plant. Finally, the vector 1! corresponds to
the state variables in the operating period i (i = 1,2,. . .N). Thus,
the design problem leads to the nonlinear program,

minimize C = C(d.z!22, . zNx!x2. V)
dzlz?,. . zN
hi{dz'x") = 0]
st g'duzte) <0 i=12. ..N (1)
fldz128,. . 2Nxlx? xN) <0
where d.z'i = 1.2, . N, are the decision variables in this problem,

as the state variables x*s = 1,2, . N, can be determined from the
equality constraints which represent the steady-state equations of

the process. Note that in this formulation the order in which the,

periods are considered can be arbitrary, since the operation in each
period is assumed to be independent of its relative position in the
sequence However, any specifications involving all the periods
can be represented by the Jast inequality constraint.

As for the design problem under uncertainty, consider that 6 is
the vector of uncertain parameters Assuming bounded values of
these parameters, 6L < 6 < 6V, a design strategy may be consid-
ered based on the following reasoning. The initially installed plant

AIChE Journal (Vol. 28, No. 4)

may be defined by the vector of design variables d During the
operation of the plant, the control variables z would be adjusted,
depending on the values of the parameters 6 being realized, so as
to meet the design specifications. Hence the purpose of design is
in selecting d such that the plant will be able to meet the specifi-
cations for all possible realizations of the parameters 8, while
minimizing the expected value of an appropriate cost function. This
may be represented as a two-stage programming problem,

h(dz,2,6)=0
minimize E ) min C{d,2,1,0) | g(d,z,2,68) <0 @
d 8 z fid)s0

st wBOAL<B <0V 3z h(dz120)=0
gldzx8)<0

A direct approach to the solution of Eq. 2 poses the problem of
infinite dimensions in 8, demanding a tremendous computational
effort. However, this difficulty can be overcome by using a
discretization procedure (Grossmann and Sargent, 1979; Halemane
and Grossmann, 1881a), involving a finite number of points 8*,1
=19 . .N,and still ensuring feasibility for all § within the specified
bounds. This reduces problem (Eq. 2) to a special case of problem
(Eq. 1), where the objective function is separable in the N points
(or periods) and where there is no coupling of constraints for z/,x¢,
variables of different periods. That is, the problem has the form

minimize C = Co(d) + )E C'(d z's)

dzlz2.  zN =
st. hidz'x)=0
e [ERE R @
fidy<o

1t should be noted that Eq. 3 is also the most common formula-
tion encountered for the multi-period problems since, very often,
there is no coupling of constraints for z1,x¢, variables of different
periods. Also, the usual cost functions are separable in the invest-
ment cost and operating cost for each period. Since solving the NLP
in Eq. 1 is of fundamental importance for designing flexible plants,
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Figure 1. Block diagonal structure in the constraints of problem 3,

and problem (Eq 3) is a very important case having some inter-
esting properties, this paper will address the problem on how to
snlve the latter NLP in the most efficient way.

COMPUTATIONAL ASPECTS

For large industrial problems the computational requirements
for solving the NLP in Eq 3 can become rather expensive. The
main reason for this is that the number of control variables z* in-
creases with the number of periods N, so that the number of de-
cision variables in the NLP may become too large to be solved ef-
ficiently by the current algorithms. Since the NLP approach for
designing flexible plants has proved to be very effective in small
problems, and it also provides rational basis for overdesign, there
is a very high incentive for deriving an efficient method for solving
problem 3. This requires that its mathematical structure be fully
exploited.

In order to take advantage of the sparsity of the constraints, state
variables x! can be eliminated from the system of equations so as
to reduce the size of the problem. This can be achieved if the system
of equations is ordered 50 as to provide sequence of calculation
where the number of torn variables is minimized (Christensen,
1970). In this scheme, at each iteration of the optimization the
ordered system of equations is solved. It must be pointed out,
however, that by eliminating the equations and state variables the
nonlinear program in Eq. 3 still has to handle the large number of
decision variables given by d,z'{ = 1,2,. . .N. Therefore, it is nec-
essary to exploit additionally another property of Eq. 3 for deriving
an eificient method of solution.

Problem 3 has the interesting feature that it is an NLP with
block-diagonal structure in the constraints, as shown in Figure 1.
Since the cost function is separable in the N periods this implies that
if the vector d is fixed, then the problem decomposes in N uncou-
pled subproblems, each having as decision variables the vectors z,
fori = 1,2, . .N. This would suggest that it should be possible to
derive a suitable decomposition scheme which need not handie
simultaneously all the decision variables. Ideally, this decomposition
scheme should lessen the storage requirements, and more impor-
tantly it should reduce substantially the computational time for
obtaining the optimal solution.

DECOMPOSITION STRATEGIES

The two basic decomposition strategies that can be used for
solving problem 3 are the feasible and infeasible decompaosition
schemes.

The feasible decomposition technique (Rosen and Ornea, 1963;
Umeda, Shindo and Tazaki, 1972) consists of the following
steps:
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Step 1-Find a feasible point d,z*,x,¢ = 1,2,. . .N, for problem
3.
Step 2-By keeping the vector d fixed, solve the N subproblems

(thatis, for¢ = 1,2, . .N):
minimize CYdz'x'},
Z‘
st. hidz'x)=0 ’
g'dz's) <0 @

Step 3-Keeping the vectors 2!, { = 1,2, . N fixed, solve the
problem:

minimize C = Co(d) + }P_i, Cid,z'xt)
d =1

s.t. hydz'x)=0
gdz'x) <0
fd)<o

Step 4-1f convergence is not achieved, return to step 2.

The advantage with this technique is that the original problem
is replaced by a sequence of subproblems with a smaller number
of decision variables. However, convergence to the solution can
become extremely slow particularly in the neighborhood of the
solution (Grigoriadls, 1971), since in fact this decomposition
technique is equivalent to an alternate search in orthogonal di-
rections in the space (d ,(z1,22,. . zN)).

In the infeasible decomposition technique (Brosilow and Lasdon,
1965; Lasdon, 1970; Stephanopoulos and Westerberg, 1975b) it is
first necessary to reformulate problem 3 as:

i=12 ..N (5

N
minimize C = Co(d) + ¥ C'(d*z'x!)
ddidz,. . d¥, =
2tz 2V
st hiyd'zix')=0
gidiz'x') <0
fudh <o
d = d!
fld) <o
Since the Lagrangian of this problem is given by:

{=12 ..N (6)

N
L=cC°d)+ ¥ Cid'z'x')

tm}
+ ‘f:l (MY + (u')Tgt + T + (x)T(d - d)]

+p7f ™M

where M\ u! 14, %! p are the Kuhn-Tucker multipliers, problem 6
can be decompoased into the following N + 1 subproblems:

minimize Cidt z' x!) = (x)Td",
diz!
st hYdiz'an)=0
gdi2x)<0
frdy <0 (8)
for¢ =12 ..N,and
N
minimize C°(d) + 3 (x)7d
a =
st fld <o

The infeasible decomposition strategy then consists of the following
steps:

Step 1-Guess the multipliers ¢, i = 1.2, . N

Step 2-Solve the N + 1 subproblems n Eq. 8.

AIChE Journal {Vol. 28, No. 4)



Step 3-1f the constraintsd = d'{ = 12,.. N, are not satisfied,
adjust the ! by solving the dual problem:

maximize Co(d) + L 1C'd'2'a") + (x)T(d — d9)] (9)
x\x2 xN =1

and then return to step 2.

Note that in this decomposition technique it is not necessary to
start with a feasible point in problem 3 as with the previous strategy.
However, there are basically two difficulties when using this
technique. The first one is that the method may not converge to
the solution due to the nonconvexities that are present in design
problems which give rise to dual gaps. This difficulty can be
overcome with the method proposed by Stephanopoulos and
Westerberg (1975a), but with the disadvantage that it requires a
significant amount of computational effort. A further disadvantage
with the infeasible decomposition scheme is that a feasible solution
is obtained only at the exact solution of the dual problem. Con-
sidering that one is dealing with nonlinear problems, this can be-
come a significant drawback in practice.

With the two decomposition schemes that have been presented
above it is unclear whether problem 3 can be solved more effi-
ciently than when the problem is tackled with all decision variables
simultaneously [t is for this reason that an alternative decompo-
sition scheme must be considered

PROJECTION-RESTRICTION STRATEGY

Grigoriadis (1971) and Ritter (1973) have suggested a decom-
position technique for the case when the objective function is
convex and the constraints are linear in problem 3. As per the
classifications given by Geoffrion (1970) this strategy belongs to
the class of Projection-Restriction Strategies. The basic ideas are
described in the following steps.

Step I-Find a feasible point d,z* x*i = 1.2.. . N, for problem

3

Step 2-(Projection)

Fixing the values of the vector d, solve the N subproblems in Eq.
4.

Step 3-(Restriction)

(a) For each subproblem i convert the n!, inequality con-
straints g', that are active in step 2 into equalities, and
define

1
'n‘{:‘]. gh=gl (=12 N (10)
A

where hh.gh are the redefined sets of equality and in-
equality constraints and g} are the sets of inequality
constraints that are not active in step 2.

(b} Eliminate n', variables 2%, from the vector

i
2 ,
2= { A], 50 as to define
Z

1
z;-z‘,.x',-[’,], {=12...N (11)
%A

where z§ is the redefined vector of control variables
which results from eliminating the vector z/, of n), ele-
ments, and x4 is the expanded vector of state vari-
ables.

Step 4-Solve the restricted problem:

minimize C = Co(d) + %l Ctd,sh.xh)
q-

dzhz}. 2N .

ot hildzhah) =0
8h(d,zh1h) S0

fldyso
Step 5~Return to step 2 and iterate until

(a) no further changes occur in the values of the variables
d,or

=12, N (12)
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TABLE 1 ACTIVE CONSTRAINTS IN PROBLEMS SOLVED BY

GROSSMANN AND SARGENT (1978,1979)

Number of
Inequality Number of
Number of Constraints Active con-
Decision in straints at
Problem © Variables Problem Solution
Pipeline 8 20 5
Multiproduct
Batch Plant
(a) Problem la 10 23 11
(b) Problem 2 14 39 14
Reactor-Separator
System 7 24 4
Heat Exchanger
Network 15 65 15

(b) the same set of inequality constraints become active
again, in step 2.

Note that in step 4 the projection-restriction strategy really consists
in solving problem 3 simultaneously for al} variables, but in general
with a smaller number of decision variables, since many of these
get eliminated by the active constraints determined in step 2.
Clearly, the effectiveness of this strategy relies heavily on the
number of inequality constraints that actually become active at
the solution.

Grigoriadis (1971) and Ritter (1973) found that in their problems
relatively few inequality constraints in the subproblems would
become active. Therefore, they proposed to eliminate all the
variables z',§ = 1.2 . N, in step 3, Grigoriadis (1971) with the use
of the pseudoinverse of the corresponding matrix of z', and Ritter
(1973) with a square matrix which was generated when solving the
subproblems. Unfortunately these techniques can not be extended
readily to the case when constraints are nonlinear, since they rely
heavily on the assumption of linearity of the constraints. However,
as will be shown, the basic idea of the projection-restriction strategy
can indeed be used for designing flexible chemical plants.

An examination of the results for flexible plants obtained by
Grossmann and Sargent (1978, 1979) shows that a surprisingly large
number of inequality constraints are actually active at the solution,
as can be seen in Table 1. The main reason for this appears to be
the monotonicity of the cost functions which is characteristic of
design problems.

Since in general one can expect to have a large number of active
constsaints at the solution, it clearly suggests that the projection-
restriction strategy can greatly simplify solving problems of the
type as formulated in Eq. 3. However, for successful application
of the projection-restriction strategy there are two problems that
have to be considered. The first one is finding an initial feasible
point in step 1. The second is a procedure for the elimination of
variables in step 3 which avoids singularities in the system of
equations. These points are discussed in the following sections.

FINDING A FEASIBLE POINT

The problem of finding a feasible point for a design problemis
in general a nontrivial task, because of the nonlinearities involved
In problem 3 the main difficulty when using the projection-re-
striction strategy consists in finding a value of d such that feasible
solutions exist for the subproblems in Eq. 4. One approach to find
a feasible point is to replace the cost function in Eq 3 by the sum
of squares of deviations of the violated constraints, thus leading to
the nonlinear program:

N
minimize ® = I_ 5" {max {0.g4(d 2.2 ){]?
dzlz?,. . aN ==l
st. hidz'x')=0
gidz'x) <0
ftdy<o

i=12...N (13)
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This problem can be handled by an NLP algorithm based on an
active set strategy for the constraints as indicated by Sargent and
Murtagh (1973). Since the objective function in Eq. 13 has dis-
continuous second order derivatives the optimization should be
performed with the steepest descent direction in the constraint
space As this procedure does not require an estimation of the in-
verse of the Hessian matrix, storage requirements can be re-
duced.

Although solving Eq. 13 simultaneously for all variables works
very well for relatively small problems, it may be desirable to use
a decomposition scheme for large problems. An alternative is to
use the steps similar to those in the feasible decomposition strategy,
with the objective function as given in Eq. 13 above. Hence it
consists of the following steps:

Step 1-Guess a starting pointd.z' x'i =12 . N

Step 2-By keeping the vector d fixed, solve the N subproblems

(ie fori =12.. N)

minimize $! = i": {max {0.g)(d.z* 2 )]?
z! y=

st. hidzix!})=0

g'dz'xN< ¢ (14)
Step 3-By keeping the vectors 2/,i = 12, . .N fixed, solve the
problem
N m .
minimize ® = T Y {max {0,g}(d .z x}}?
d i=] f=]
oyl ==
s.t. hidz'x')=0 (=12 N (15)
ghdztx) <0
fidy=<go

Step 4-1f convergence is not achieved ($ > 0) return to step
2

1t is observed that unlike the case of finding the optimal solution
of Eq. 3, the convergence of this method to find a feasible point
is quite good. The reason for this is that the NLP defined by Eq.
13 has an infinite number of minima when the {easible space is
non-empty In this case the objective function defines a plateau of
zero-value for the feasible region as shown in Figure 2, and hence
there is usually no problem of slow convergence in the neighbor-
hood of a feasible solution. Also, note in Figure 2 that outside the
feasible region the contours of ¢ in Eq. 13 are quadratic in the
constraint functions so that the objective function will tend to be

well behaved.

Figure 2. Contours of objective function in problem 13,
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VARIABLE ELIMINATION IN RESTRICTION STEP

The elimination of variables in step 3 of the projection-restriction
strategy is performed for each period i by including the active
inequality constraints in the set of equations. This imphes that from
the state and control variables x!,z* a set of control variables z§ must
be determined, and that the sequence of calculation for the new
set of equations hy has to be derived, for each period i =
1.2, . .N.

Since a number of algorithms are available for selecting decision
variables and determining sequences of calculation for rectangular
systems (Lee et al., 1966; Christensen and Rudd, 1969, Edie and
Westerberg, 1971, Leigh, 1973; Stadtherr et al., 1974; Book and
Ramirez, 1976, Hernandez and Sargent, 1979) it would seem that
they could be applied without difficulty in our problem of de-
signing flexible plants It must be pointed out, however, that dif-
ficulties may arise when deriving the solution procedure for the
restricted problem (Eq. 12) since the added inequality constraints
can lead to redundant or inconsistent equations, and hence, produce
a singular system of equations Therefore, these algorithms must
be extended according to the following procedure for eliminating
the variables in each period { in the restricted problem.

Step 1-Add all the active constraints g4 (d,z' x*) = O to the system

of equations A*(d,z‘,x') = 0, thus giving rise to a new
system of equations hi(d,z/,x¢) = 0.

Step 2-Perform the optimal reordering of the new system of
equations hj(d.z',x!) = 0, by minimizing the number
of torn variables in z¢,x".

Step 3~Select control variables z} as decision variables, and delete
equations if necessary so as to obtain a non-singular
square system of equations.

1t should be noted that due to the reordering of variables in step
2, the vector z; can in fact contain some of the state variables from
xt. Also, it is essential to keep the design variables d as decision
variables throughout, and not to force them to become either state
or torn variables during the reordering Also, since it is possible that
the resulting system in step 2 has more equations than variables,
a suitable equation ordering algorithm must be used, for instance
the one by Leigh (1973). The optimal sequence determined with
such an algorithm is one where the system hjg(d ,2',x'} = O is reor-
dered as shown in Figure 3 in two sets of equations.

s(u,p) =0 (16)

r(u,0) =0
Here the subsystems s and r are a partition of the vector of equa-
tions hj, whereas the vectors of variables u and v are a partition
of the vector {(z4)T,(x*)7]7. As shown in Figure 3, 5 is the set of
non-recycle equations with lower triangular structure, which can
be solved sequentially for the vector v given a value of u. and r
corresponds to the set of recycie equations. Since v can be treated

E %

N

MN

Je
1
e
T =z —~ X, "
Figure 3. Structure resulting from aquation ordering.
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as an implicit function of u, the system of equationsin Eq 16 can
be reduced to the form

riu,o{u)) =0 (17

The vector u represents the set of decision and torn variables, that
is, uT = |(z3)7,t T} and for the optima} sequence its dimensionality
is at a minimum.

In order to delete the appropriate equations in step 3 it is suffi-
cient to choose the largest nonsingular subset of equations at the
current point. Since for a fixed u, the subsystem s in Eq. 16 can be
assumed to be non-singular due to its lower triangular structure,
the singularity of the system can be analyzed through the jacobian
Je(r.u) of Eq. 17 (Halemane and Grossmann, 1981b), which is
given by
or _2r[ds)-12s
ou  dv\dv] du
This Jacobian matrix can be evaluated numerically at the current
point by performing perturbations in the vector u. To determine
the equations to be deleted the following procedure can be fol-
lowed. The square submatrix J; of highest rank is obtained by
performing a Gaussian elimination on the Jacobian matrix (Eq. 18).
The variables in u that correspond to the columns of the sub-matrix
J¢ will be chosen as torn variables t, whereas the remaining vari-
abies in u will correspond to the decision variables zj. Those
equations r, in r that are not included in the rows of the submatrix
J:, will be deleted and treated as inequality constraints. In this way,
the jacobian matrix of the resulting system of equations can be
ensured to be of full zank and hence non-singular. Also, note that
the Jacobian matrix J. to be analyzed is usually of much smaller
size than the Jacobian of the system in Eq. 16.

The procedures indicated above {or finding an initial {easible
point and for the variable elimination in the restriction step,

.’c('-“) - (18)

|
Twz
Figure 4, Flowsheet of exampie problem.

Heat exchanger, heat balances:

Qhe = FICH(T{ = TY) @1
Qhe = W'Cpy(Thg — Tyy) (22)
Heat exchanger, design equations:
Qhe = AU(AT)., (23)
o P N (T —
(AT)‘", - (Tl Tu:2) (T2 Twl) (24)

T, - T,
lﬂ 1 w2}
‘T‘Z ~ dwi

The values of the parameters of the problem are given in Table

2. The design problem corresponds to an optimization problem

with the equality constraints given by the performance equations

above, and the following inequality constraints for each period i 4
=12...N

complete the algorithm required for the projection-restriction V20 (251
strategy.
(26)
EXAMPLE Viz o (27)
To evaluate the performance of the proposed projection-re- V-vizo (28)
striction strategy, an example problem has been solved. The Wiz 0 (29)
flowsheet consists of a reactor and a heat exchanger as shown in .
Figure 4 The reaction is assumed to be first order exothermic, of Fi20 {30)
the type A — B. The flowrate through the heat exchanger loop is 0.9 £ (C', ~ C4,)/C4, S 10 (31)
adjusted to maintain the reactor temperature below T, as given ’ °
in Table 2 and to get a minimum of 90% conversion. T S T (32)
This plant is to be designed so as to produce different products T —T.20 (39)
in N successive periods within each year. The performance ! 2=
equations of such a system, for any period i,{ = 1,2.. .N, sre as Tw) S Ty <356 (34)
follows: Reactor, material balance . .
T\~ Ty 26 {35)
Fi(Clyo = C4))/Cho = Vi, exp(~E'/RT))CYy  (19) T —To > 6 (36)
27 Tyl =
Reactar, heat balance: The objective function being minimized is the total annual cost
(—AH)WFo(Clao = CA1)/Clte = F.Co(Ti = To) + Q. (20)  ($/yr),
TABLE2 DATA FOR EXAMPLE PROBLEM
T, =333K, Ty = 300K, 5= 111K U =163534k]/m?-h-X
Period 1 2 3 4 .5
(E'/R)= 555.6 583.3 611.1 527.8 500.0 K
“~(AH)\p ™ 23.260.0 25,581.0 27.907.0 20,930.0 18,604.0 kJ/kg - mol
k! = 0.6242 0.6867 0.7491 0.5619 0.4994 m?¥/kgmol + h
Cy= 167.4 1884 . 209.3 146.5 125.6 kj/kg - mol
Clhe = 32.04 40.05 48.06 24.03 32.04 kg - mol/m?
Fi= 45.36 40.82 96.20 49.90 54.43 kg - mol/h
Tiew ™ 3890 383.0 378.0 394.0 400.0 K
t- (8,000/N) h
Starting Point: ¥ = 14.1584 m3
A=1]1484 mt
T'=3%7 K
T, = 328 x} {=1toN.
T,,=333 K
AIChE Journal (Vol. 28, No. 4) July, 1982 Page 691



TABLE 3 EQUATION ORDERING IN PROJECTION STEP

X Variables
Egs V A T\ T{ T. (ATY, QW CY\ V' F{ W
24 X X X X
23 X X X
20 X X X
19 X X X
21 X X X X
22 X X X
TaBLE 4. EQUATION ORDERING IN RESTRICTION STEP
. Variables
Egg ¥ A4 Cu T Tiy V' Qe (AT) Ty F| W
31 X
32 X
34 X
19 X X X
20 X X X
23 X X X
24 X X X X
21 X X X
22 X X X
TABLES SOLUTION OF EXAMPLE PROBLEM
Number of Optimum
Periods A'* Vim%) A(m?) Annual Cost ($/yr)
1 5318 7 562 09480 X 104
2 5318 8417 1010 X 104
3 5318 9513 1042 X 104
4 7915 9 262 1.096 X 10%
5 7.915 9 095 1080 X 10¢

* Number & indicates penods .2, N taken together

C =(2,304V07 4+ 291240%6)03

+ 3 (220 X 107W* + 8.82 X 10-4F{)t' (37)
o=
where t! corresponds to the number of hours of operation for each
periodi = 1.2, . N, in one vear. The objective function includes
the investment cost of the reactor and heat exchanger, and the
operating cost of the cooligg water and recycle.

There are 2 + 9N 'variables V A,C4 | T\ T4TLo . FL WY,
V(AT )m.Qhri= 12, N;6N equationsand 2 + 10N inequality
constraints and bounds, for a problem with N different periods.
This gives rise to 2 + 3N degrees of freedom. Selecting as decision
variables the design variables V, A, and the control variables

T, TLat = 12, . N, the sequence of calculation for the
equations in each period is given in Table 3. The corresponding
NLP consists of 2 +3N decision variables, 6N nonlinear inequality
constraints and N linear inequality constraints. Note that Eqs. 25,
26, 32, 34 and 36 are simple bounds on the decision variables, that
Eq. 33 is a linear inequality and the remaining constraints are
nonlinear.

The problem was solved for five cases corresponding to N =
1,2,...5. In each case, the plant is designed to produce N different
products that have different feed flowrates, concentrations, reac-
tion rate constants, etc. as shown in Table 2. In all the five cases,
when solving the subproblems in the projection step it was found
that constraint 31 is active at its lower bound, and constraints 32
and 34 are active at their upper bounds, for all periods. Adding
these active constraints to the equations in Table 3 the variables

LTETegt = 1,2, . N were eliminated by ordering the new
3'stem of equations. This gives rise to only two decision variables

and A for the restricted problem, as shown in Table 4. In all cases,
the optimum solution was found by solving this restricted problem,
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TABLE 6§ COMPUTATIONAL RESULTS FOR FINDING AN INFTIAL
FeEASIBLE POINT, CPU TIME*

Number of Optimize All Variables Optimize Alternately
Periods N** Simultaneously dand:z )
1 0228 0204
2 ’ 0371 0432
3 3745 0670
4 1.763 0.878
5 2.954 1.083

* DEC System, 205
** Number N indicates penods 1.2, N taken together

TABLE7 COMPUTATIONAL RESULTS FOR PROJECTION-
RESTRICTION ALGORITHM CPU TIME®

Number of
Periods N** Projection Restriction Total CPU Time
i 4 531 1304 5 835
2 12129 2.221 14 350
3 15918 1416 17 334
4 21 998 2 181 24 179
5 27311 3005 30 316

* DEC System. 20.s
** Numbet M indicates penods 1.2, N taken logether

TABLE 8. COMPUTATIONAL RESULTS FOR SOLVING DESIGN
PROBLEM CPU TIME®

Number Number of Number of Computational Time*
Periods  Decision Inequality Without With
Nes Variables  Constraints Decomposition Decomposition
i 5 7 322 60
2 8 14 176 2 148
3 11 21 479.6 180
4 14 28 —_ 250
5 17 35 — 3l 4

* DEC Systemn, 205
** Number N indicstes penods 1.2, N takien together

thus requiring only a single pass for the projection-restriction
strategy.

The starting point given in Table 2, which is infeasible, was used
for all five cases. The initial feasible points used in the projection-
restriction strategy were obtained by minimizing alternately with
respect to d and z,,f = 1,2,. . .N the sum of squares of deviations
of violated constraints. The optimizations were performed using
the variable-metric projection method (Sargent and Murtagh,
1973), and the solutions were obtained with a tolerance of 10~2 for
the norm of the gradient of the objective function projected in the
constrained space.

The optimal sizes of the reactor and the heat exchanger are
presented in Table 5 for the five cases. The formulation of the
problem itself ensures that these optimal designs are flexible, as they
meet the specifications for the various products involved at a
minimum annual cost.

The computing requirements for finding the initial feasible
points are shown in Table 6. Here, it was found that optimizing
alternately for d and z* is more efficient than considering all these
variables simultaneously, particularly when the number of periods
increases. However, the more significant gains in computational
requirements are achieved when the projection-restriction strategy
is applied, once the problem becomes feasible. Table 7 gives the
CPU-time requirements for the projection and restriction steps
Table 8 and Fijgure 5 give a comparison of the computational re-
quirements in solving the design problem with and without the
decomposition. A striking feature in the performance of the pro-
posed decomposition strategy is that the CPU-time increases only
linearly with the size of the design problem. It is interesting to note
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Figure 5. Computstional time (DEC-20, s} lor solving design problem ve. size
of problem.

that the design problem for the five-period case was solved by using
the proposed decomposition strategy in only 31 4 s which is about
the same time required for salving the one-period problem without
using any decomposition.

DISCUSSION

The results of the above example show that the performance of
the proposed decomposition strategy for the design of flexible
chemical plants is very encouraging. An important trend in the
results is that the computational time required is approximately
linear with the size of the design problem (number of periods). This
suggests that reduction in the computational effort with the pro-
posed method in larger problems should be even more dramatic,
when compared with the simultaneous optimization of all the de-
cision variables. This is to be expected, since experience with dif-
ferent nonlinear programming algorithms indicate that they are
much more likely to be successful in converging to the optimal
solution when the number of decision variables is relatively
small,

In the Appendix a simple analysis is presented which explains
the linear relation for the computer time obtained in the example.
It is also shown in the Appendix that when the number of periods
is large the projection-restriction strategy can be expected to per-
form better than the simultaneous solution even if the percentage
of control variables that are eliminated in the restriction step is not
very large.
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NOTATION
A = heat transfer area of the heat exchanger, m? :
Cao = concentration of reactant in the feed, kg - mol/m?
a = concentration of reactant in the product, kg - mol/
m3
C, = heat capacity of the reaction mixture, kj /kg - mol -
K

Cou = heat capacity of cooling water, k] /kg - K
(E'/R) = ratio of activation energy to gas constant, K

AIChE Journa! (Vol. 28, No. 4)

F! = feed flowrate, kg - mol’h
) = flowrate of the recycle, kg - mol/h

ko = Arrhenius rate constant of reaction, h-!
WE = heat exchanger load. kj/h
T, = temperature of feed, K
1 = reactor temperature, K
H = recycle temperature, K
T = inlettemperature of cooling water, K
T, = outlet temperature of cooling water, K
- = jength (time) of ¢th period of operation, h
U = overall heat transfer coefficient, kj/m2 . h.X
v = reaction volume, m3
\% = volume of reactor (design capacity), m3
w, = flowrate of cooling water, kg/h
8 = minimum approach temperature, K
(AR, = heat of reaction, k]/kg - mol
(AT),» = mean temperature difference, K
Superscript
{ = period of operation; 1,2,. . .\N
APPENDIX

Based on some simple assumptions, a relationship can be derived
between the CPU-time and the size of the design problem in ferms
of number of periods.

Let ny be the number of design variables, n, the number of
control variables in each period and N the number of periods
considered in the design problem. Assume that the CPU-time 1,,
for the projection step is given by

tp = Aw("l)’- (Al)

If @0 < a < 1, is the average fraction of the control variables re-
maining in the restriction problem, then the CPU-time tp for the
restriction step can be expressed as

th = A,(ng + Nan,) (A2)

Also, let the CPU-time 1o for solving the problem without de-
composition be

to = Ag(ng + Nn, 38 (A3)

If K is the number of iterations (passes) through the projection
and restriction steps that is required for convergence, then the total
CPU-time needed to solve the design problem using the decom-
position strategy is

ton = KNA,(",)"*? KA,(ng + Nan,) (A4)

In general the exact valuesof p,g.r and A;,4,,A, K depend on
the particular problem at hand. However, for a given problem the
values of A,,A4 and .4, can be expected to be of the same order of
magnitude, and for & gradient based non-linear programming al-
gorithm one can expect to have the values of p,g and r to lie be-
tween 2 and 3. Also, the value of K is likely to be small.

If all the control variables are eliminated in the restriction step,
a = 0 and from Eq. A4 it is then clear that the CPU-time tpy is
linear in N the number of periods, as given in Eq. AS:

a=(: ten = KNA,(n, P + KA,(ngr (AS)

This is in fact the trend that is observed in the results of the example
problem, as can be seen in Figure 5.

The relative savings in computation time in using the decom-
position strategy can be determined from Eqs. A3 and A4,
KNA,(n, ) + KA,(ng + Nan,)Y

Aq(ng + Nn R
Since Ap.Aq.A, are of some order of magnitude, 0 S a < 1and
p.q.r > 1, itis clear from Eq. A6 that the relativd sdvantage in using
the decomposition strategy is enhanced by larger values of N and
smaller values of a. In fact, for a given value of N there is a
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ton/ to= (A6)
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Figure A1. Minimum fraction S ' of control variables that must be etiminated
as given in Eq. AS.

threshold value ¢! for a. below which savings in CPU-time can
be ensured by using the decomposition strategy This threshold
value determines a useful range 0 < o £ at, which can be deter-
mined from Eq A6 with tpg < tg. thus obtaining af as

at =lA,"A,King + Nn,)@
= N, Ao P =gl Nn, (A7)

Assuming A, = A, - A, and p = r = g, Eq A7 can be simplified
as

1 q 1 {!e@ nyg
AP Y PN - — —— 2T - gt
O R e N BT

K

where 3! indicates the minimum fraction of control variables to
be ehminated in the restricted problem Figure Al shows some plots
of 3* versus N as given by the expression in Eq. A8 above for the
case when ny = n,. There are two sets of three plots, forg = 2,3
and K = 1,2,3 As can be seen from this figure, 3¢ 15 smaller for
larger values of g and for smaller vajues of K. Also, for a given g
and K., 3" decreases rapidly with N even for relatively small values
of N, and approaches zero asymptotically for large N.

As an example, take the case when g = 2 and when a single pass
{K = 1) in the decomposition strategy can lead to the optimal so-
luticur If the design problem involves five periods, only 8% of the
control variables must be eliminated to achieve a relative gain in
CPU-time with the decomposition strategy. These percentages
increase to 18% for K = 2 and 28% for K = 3. For a ten period
problem the percentages reduce respectively to 4%, 10% and 15%
for K = 1,2.3. Thus, in general one can expect to obtain significant
gains in computation time when solving the multi-period problem
with the projection-restriction strategy, even when the number of
active constraints in not very farge.
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