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ABSTRACT
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The aim of this thesis is to solve some problems associated with queueing
systems with resequencing of customers. Resequencing is associated with the
presence of some disordering system which operates on an input arrival stream of
customers and delays each customer by a random amount, so that they may leave
the system in a different order than the one in which they entered it. However,
if the constraint that the customers should leave the system in the same order
in which they entered it, is imposed, then a customer may have to undergo an
additional delay, which is known as resequencing delay. Such situations typically
arise due to packet switching in a computer communication network, in an in-
terconnection network of a multi-processor architecture and concurency control
schemes of distributed data bases among other places. The presence of resequenc-
ing makes the analysis of the queueing system intractable in most cases, and very
few analyticél results are known about these systems.

Two general representation results for resequencing systems are the principal
tools used in the thesis. The first representation gives the delay in a general
resequencing system, in a recursive sample path form. It is used to investigate
multistage resequencing systems and also to deduce some interesting structural

properties of multiple server resequencing systems. It is shown that hop-by-hop



resequencing leads to greater delay compared to end-to-end resequencing in N
stage infinite server systems in the sense of strong stochastic ordering. The effect
of varying the number of servers on the resequencing delay in a finite server system
is investigated for both single stage as well as two stage disordering systems, and -
also several useful structural properties which can be used to develop bounds for
intractable resequencing systems, are identified.

The second representation provides a Markovian state space description for
the two server resequencing system with exponential interarrival and service times.
The state occupation probabilities are calculated for the M/M/2/B queue with
resequencing using this representation. The optimal policy for assigning customers
to the two servers in the case when they have different service rates, to minimize
the total delay (including the resequencing delay), is investigated using dynamic
programming arguments. The optimal policy is shown to be of the threshold
type in the number of customers in the main queue buffer and independent of the

number of customers in the resequencing buffer.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis deals with several problems that arise in a queueing system with re-
sequencing of customers. Since these systems can be imbedded in the general
framework of systems with synchronization constraints, we provide in this intro-
ductory chapter, a short discusion of the more general problem.

This chapter is organized as follows. In Section 1.2 we give a number of ex-
amples from computer systems where synchronization constraints are important.
We also provide a generic classification of synchronization constraints that covers
the cases that were discussed. In Section 1.3, we summarize some known analyti-
cal results concerning such systems. A more detailed discussion of the analytical
results that are known about resequencing systems is given in Section 1.4. Finally

in Section 1.5, we summarize the main results developed in this thesis.



1.2 Examples of Systems with Synchronization Constraints

Systems with synchronization constraints are ubiquitious in modern computer and
communication network architectures. The main reason for this can be traced
back to the parallel architecture or distributed nature of these systems. Because
of parallelism several processes may be running in the system at the same time.
However these processes are not independent of each other and they ocassionally
need to communicate to exchange data. Concurrent processes can talk to each
other properly only when they are properly synchronized with each other and this
leads to synchronization constraints.

Parallelism in system architectures has increased dramatically in recent years
[67], [70]. One of the reasons for this is the steep fall in the price of the main
constituents of a computer, such as the CPU and memory, and it has therefore
become economically feasible to design computers with thousands of processing
units. However the speed of the resulting computer does not increase linearly
with the number of procesors because of synchronization constraints. Hence it
is essential to gain a theoretical understanding of synchronization constraints in
order to improve the perfomance of these systems.

Computer networks of various sizes ranging from local area networks to inter-
continental networks have proliferated since the early seventies. Most of the fun-
damental new problems that these networks posed were related to the distributed
nature of the algorithms involved in controlling their operation [38]. This in turn
lead to increased appreciation of the importance of synchronization constraints
since they arise in most distributed algorithms.

Some well known examples of systems with synchronization constraints are
given below.

(1) There are two general approaches in a communication network for trans-
mitting messages, namely circuit switching and store-and-forward packet switch-
ing [15]. In the case of circuit switching, before a session between a source and
destination node can be set up, it is necessary to acquire all the links that connect

them together. Once the links are acquired, they are retained for the duration of
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the session. Since all the messages are sent sequentially over the same path, they
arrive at the dest}i-nation in the same order that they were sent. In the store-and-
forward approach, each session is initiated without reserving any links. Rather,
one packet or message is transmitted on the links hop-by-hop until it reaches its
destination. In some architectures, one or more paths are set up when a session
is initiated and maintained for the duration of the session and all the packets are
sent over those paths. Such multiple paths are useful for the following reasons. If
one of the paths becomes faulty, then the others can take on its function, leading
to a fault tolerant system. Multiple paths also help in distributing the traffic more
evenly in the network. This scheme however has the disadvantage that packets
may arrive at the destination node in a different order than the one in which they
were sent due to variable network delays over different links. Hence there is some
delay incurred due to the necessity of putting the packets back in order before
they are presented to the destination computer. This is known as resequencing de-
lay, and as explained below, it arises in a wide variety of situations, ranging from
interconnection networks of a multi-processor computer to concurrency control

schemes in a distributed data base.

(2) In most computer languages that support concurrent programming, there
is a construct called a fork that transforms a sequential code into a number of
concurrent parts which run simultaneously on different processors [13]. There
is another construct called a join which reunites all these parts together into
a sequential code. The synchronization constraint is that every process should
communicate with every other process at the join before the execution can proceed
. This is a very strong requirement in that if the running times of the parts are very
different, this can lead to significant delays in the system which may neutralize
some of the speed gained due to parallel operation.

(3) The fork-join operation is a coarse form of synchronization in a com-
puter system. If we examine the system more closely, additional and more subtle
forms of synchronization can be discerned which lead to a further degradation of

perfomance. The processes created by the fork operation may need to exchange
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variables among themselves to carry out the computation. If they share memory,
they can read and write from it to carry out the communication. Although they
can read from the common memory simultaneaously, they cannot write in it at
the same time for this would lead to inconsistencies in the memory. Hence if more
than one process attempts to access the memory, only one among them is given
access, while the others have to wait their turn. Software constructs like monitors
and semaphores enforce this synchronization constraint [13], [27]. If the concur-
rent algorithm is poorly designed, then the delay incurred may be large enough

to make it much worse than the corresponding serial algorithm.

If the processes created by the fork operation are running on geographically
distributed computers, as in a computer network, then they no longer have a
common memory and the only way in which they can communicate with each other
is then by sending messages across a communication link. This is the framework
of a distributed programming methodology known as Communsicating Sequential
Processes [26]. If one of the processes needs an input variable from another process
at some point in its execution, it waits at that point until the other process
communicates that variable, thus incurring a synchronization delay.

(4) Another kind of synchronization constraint can be identified upon ex-
amining the system in examples (1) and (2) more closely, and arises due to the
finiteness of the communication capacity of the system. Consider concurrent algo-
rithms running on a multiprocessor machine with thousands of CPU and memory
modules. Clearly a way needs to be found for efficiently connecting the CPU and
memory. One such possible way is to connect each CPU with every memory mod-
ule so that a CPU can instantaneously access any memory that it wishes. Such
total connectivity leads to excessive wiring if the number of components is large.
An alternative method consists in connecting the CPU’s and memory together
by means of what is known as an interconnection network [16]. This is usualy
a multi-layered row of switches between the CPU and the memory. The use of
switches leads to a significant reduction in the amount of wiring required. The

switching strategy can be either circuit-switched or packet-switched. In the case
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of a circuit-switched interconnection network, if a CPU module is accessing some
memory module, then it occupies some of the switches in the interconnection net-
work and some other communications from CPU to memory cannot take place.
In the case of a packet-switched interconnection network, the kind of blocking
described above does not take place but delays due to fhe queueing of the packets
at the switch boxes may occur. One way to reduce this delay is to provide more
than one path between each CPU and memory. As shown by Mitra [51], this can
be done quite easily by adding additional layers of switches to the interconnection
network. However due to multiple paths the message packets may not arrive at
the memory in the same order that they left the CPU and this again translates

into a resequencing delay.

(5) Data base control mechanisms in centralised and distributed systems dis-
play a rich variety of concurrent behaviour and synchronization constraints are

thus of great importance in their performance.

Consider first a centralised multi-user data base. User programs that read
or wrife data are known as transactions. Multiple transactions can read from a
data base concurrently, whereas they cannot write into it at the same time. Data
base consistency is expressed in terms of serializability. Concurrent execution of
several transactions is correct if and only if its effect is the same as that obtained by
running the same transactions serially in some order. The most popular method of
enforcing serializability in the system is by means of locks [14], [76]. The database
is partitioned into items, which are portions of the database that can be locked.
There are two kinds of locks, read locks and write locks. A transaction wishing
only to read an item, executes the readlock which prevents any other transaction
from writing in that item while the readlock is in effect. However any number
of transactions can hold a readlock on the item at the same time. A transaction
wishing to change the value of an item first obtains a writelock on that item and
no other transaction can either obtain a read or write lock on that item. A very
simple rule which maintains consistency of the data base is known as the two

phase protocol. It simply states that consistency is guaranteed if all read and
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write locks precede all unlocking steps in all transactions..

In a distributed data base, multiple copies of the items are kept in geograph-
ically distinct locations. The enforcement of consistency is more difficult because
now we have to ensure that all the copies of the database are kept the same [14],
[76]. There exist a number of algorithms that can enforce consistency, and we
shall describe one such algorithm, known as the Le Lann ticketing scheme [45].
This algorithm provides a nice illustration of the resequencing constraint arising
in a practical situation. The basic idea behind the algorithm is to predefine a total
order among the update transactions on an item, and to process them according
to this order on all the sites. Since the system is distributed, there is only a partial
ordering of the time of updates being generated at different sites. However a total
order can be obtained by putting all the sites on a virtual communication ring,
and circulating tokens for each database item on this ring. Updates generated at a
site are allocated sequentially increasing ticket numbers and attached to the token
when it visits that site. Before being attached, the values of the ticket numbers
from that site are incremented by the maximum of the values of the tickets which
were already in the token in order to get a total order among all tickets. When
the token reaches a site which has a copy of the data base, it delivers all its tickets
to the database manager. The database manager makes updates on the data base
in the order of the tickets attatched to the updates. If an update, say the nt? one
were missing, then the (n + 1)7¢* and higher updates cannot be processed even
though they may be present at the site. This situation reveals the presence of the
resequencing constraint in the algorithm.

To conclude this section, we now provide a generic classification of the syn-
chronization constraints which covers all the cases described in examples (1) -
(5).

e The arrival-arrival synchronization

Consider a system where multiple resources are represented by servers. If

an arriving customer requires service from more than one resource and if it can

receive service from them simultaneously, then we can represent this situation by
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simultaneous arrivals of customers to the resources triggered by the arrival of a
single customer to the system.
¢ The departure-departure synchronization-

Consider the situation where several related processes are running simulta-
neously on different processors, and none of them are allowed to leave the system
unless all the other processes to which they are related do so. This defines the
departure-departure synchronization constraint.

e The departure-arrival synchronization

This is the cause of the resequencing delay, which is the main topic of this
thesis and can be considered to be a special case of the departure-departure kind
of synchronization. If a system has more than one server, then the order in which
the customers leave the system may not be the same as the order in which they
entered it. The departure-arrival synchronization constrains the customers to
leave the system in the same order as the one in which they entered. As a result
of this constraint, a customer may have to suffer an additional delay.

We provide an example of a system which belongs to the class of systems
with the departure-departure synchronization but not to the class of systems with
departure-arrival synchronization. Consider a G/G/K queue with bulk arrivals,
with the constraint that no customer in a bulk can leave the system, unless all
the customers in that bulk have completed service. Then clearly this system
exhibits the departure-departure synchronization but not the departure-arrival
synchronization, since bulks may not leave the system in the same order in which

they entered it.



1.3 Mathematical Modelling of Systems with Synchronization Constraints

In this section we review the few mathematical models of systems with synchro-
nization constraints for whom some analytical results are known. In Section 1.4
. we give a more detailed account for systems with resequencing.

The modelling methodology borrows mainly from queueing theory, though
some researchers have used a Petri-net representation for these systems. Queueing
theory has been used to model resource sharing systems of which of systems with
synchronization constraints are typical examples. Closed form solutions can be
obtained for certain kinds of queueing networks, under assumptions that esentially
imply a weak coupling between queues in the network [12], [36]. However, networks
with synchronization constraints belong to a different class of systems due to the
extremely strong coupling that exists throughout the network. An exact approach
quickly results in an enormous increase in the size of the state space and makes
the model both analytically and computationally intractable. At the present time,
queueing theoretic methods do not handle such complexity very well, if at all and
approximation techniques thus become important in analysing their behaviour.

e Multiple Buffer Fork-Join queueing systems

In a fork-join system, there is a finite number K of servers and a job upon
arrival gets split up into K tasks with each part going to a queue served by a
different server. After a task finishes service, it waits in an output buffer until
the K — 1 other tasks associated with it have finished service. So this system has
arrival-arrival as well as departure-departure synchronization. When the system
has two servers, the model with Poissonian arrivals was investigated for expo-
nential service times by Flatto and Hahn [20], and for general service times by
Baccelli [2]. These authors gave the generating function of the queue size distri-
butions in equilibrium. In the so-called Markovian case, Flatto and Hahn applied
the uniformization technique while in the more general case studied by Baccelli,
the solution involved the transformation of the problem into a Riemann-Hilbert
type boundary value problem. The sheer complexity involved in analyzing the

case K = 2 makes it very unlikely that the more general case K > 2 will be
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analytically tractable.

Hence the focus shifted to finding at least approximate bounds for the per-
fomance measures in the general case. Seminal work in this area was done by
Baccelli, Makowski and Shwartz [6], [7] who obtained computable upper and lower
bounds for the system time of a customer in a fork-join queueing system with K
servers. Here the system time is defined as the time between the arrival of a job
into the system and its departure. The technique used by these authors was based
on the theory of stochastic ordering. Recently, Baccelli, Massey and Towsley (8]
have extended these bounding results to a more general acyclic fork-join network.
In [75] tight bounds were developed for the case K = 2 under the Markovian
assumption, by using matrix geometric techniques. In [54], tight bounds were
developed for the general case of K queues by using a scaling approximation
technique that was guided both by experimental and theoretical considerations.

¢ Single buffer fork-join systems

Towsley and Yu [75] considered a fork-join system with two servers in which
arriving customers join a single queue, and get split into two tasks only when they
reach the servers. Bounds were developed for this system by matrix geometric
techniques and it was shown that the single queue has lower response times than
a fork-join queue with K = 2. In [55] analysis was done for the case of K servers
under the assumption that jobs are already split up into subtasks when they enter
the common buffer (corresponding to bulk arrival). Bounds were developed for
this system using stochastic ordering techniques. In [62], the single queue fork-
join system was analysed for the case when the server operates with the processor
sharing discipline.

¢ Queues with locking

These kind of queueing systems are very similar to the fork-join quueing
systems and provide mathematical model of data-base concurrency mechanisms.
There are K parallel servers and each arriving customer brings work to a subset
of the K servers, instead to all the K servers as in the fork-join case. Mitra and

Weinberger [52], [53] assumed that when an arriving customer finds one or more
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of the servers that it requests already blocked then it is lost. Under this assump-
tion they found a product form solution for the equilibrium state probabilities.
Surprisingly enough, if the assumption of blocking is removed, then exact aﬁalysis

of this model becomes very difficult.
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1.4 Systems with Resequencing

In this section, we review the resequencing models which have been analysed in
the literature. As mentioned earlier, the resequencing problem arises whenever
the order in which the customers leave the system is constrained to be the same
as the order in which they enter tHe system.
¢ Resequencing due to the M/M/oo queue

This is the simplest resequencing model of its kind and the first one to be
analyzed by Kamoun et al. [32]. In this model, there is a Poisson arrival stream
of customers to an infinite server queue and the the service time in each one of the
servers is exponentially distributed with the same parameter. After a customer
finishes service, it leaves immediately if all the customers who arrived before it
have finished their service. Otherwise it waits in a resequencing buffer until all
the customers who arrived before it, finish their service. Kamoun et al. derived
the steady state statistics of the total system time of a customer, the distribution
of number of customers in the resequencing box and the statistics of the output
process from the resequencing box. An interesting fact that emerges from the
analysis of this model is the complicated nature of the output process which is a
bulk departure process whose interdeparture times are correlated with each other
and with the size of the bulks. This behaviour rules out exact analysis of models
which consist of two resequencing systems in tandem, because the input process
into the second system is in fact the output process from the first system, which
as mentioned earlier is highly complex.

¢ Resequencing due to the M/G/co queue

This model is similar in all respects to the model described above except for
the fact that the service times are now identically distributed with some general
distribution. This system was studied by Harrus and Plateau [23] who derived
expressions for the above-mentioned perfomance measures Although the formulae
become considerably more complicated due to the non-exponentiality of the service
time distributions, the analysis is mostly straightforward and similar to the one

carried out for the M/M /oo queue.
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¢ Resequencing due to a M/M /oo queue followed by a single server
queue
This model was introduced to analyse the concurrency control scheme of
Le Lann in a distributed data base [45]. It consists of a M/M/oo queue which
disorders the input arrival stream, the customers are then put back in sequence
and fed into a queue with exponential service times. As noted above, the output
process from an M/M /oo queue with resequencing is a highly complicated bulk
departure process with correlated bulk sizes and interdeparture times. This makes
for a very difficult analysis of the single server queue with this kind of input
process. Baccelli, Plateau and Gelenbe [5] circumvented this difficulty by focussing
directly on the end-to-end delay and by using recursive sample path equations for
the perfomance measures of interest. They derived an integral equation for the
steady state distribution function of the end-to-end delay, by an analysis very
similar to the classical analysis of the GI/G/1 queue. A solution to the integral
equation gave closed form expressions for the distribution function.
e Resequencing due to the M/M/K/B system
In this resequencing system, K servers operate in parallel, each with a possi-
bly different service rate, and the customers wait in a common buffer of size B.
This model was analyzed by Yum and Ngai [80], who obtained the distribution
of the waiting time in the resequencing buffer. Their final formula for the rese-
quencing delay distribution depends upon the calculation of the buffer occupation
probabilities in the M/M/K/B queue with servers operating at different rates,
and involves the solution of a numerical algorithm. Luke Lien [49] investigated
the special case of an M/M/2 (i.e. B = 0o) queue with unequal service rates. To
get a Markovian state representation he extended the state space of the M/M/2
queue in a very clever way and obtained the average resequencing delay. Unfortu-
nately, Lien’s technique does not seem to extend to more general situations such
as M/M/K queues.
¢ Resequencing due to two M/M/1 queues in parallel

This resequencing system is composed of two M /M /1 queues in parallel with

12



a Bernoulli switch routing customers to the two queues. By using sample path
techniques, Jean-Marie [30] obtained the distribution of the resequencing delay.
He also solved the problem of optimum static routing of customers to the the two

queues so as to minimize their total system times.
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1.4 The Main Results in the Thesis

The thesis is divided in two parts. Part I deals with some perfomance evaluation
issues while Part II is devoted to the analysis of an optimal control problem.

Part (I) is subdivided in three chapters. Several structural properties of sin-
gle stage resequencing systems are explored in Chapter 2. Thoughvisolated results
about some these systems have appeared in literature, only the simplest systems
have been solved. We show how the perfomance measures of more complicated
systems can be bounded by those of simple systems. We also investigate the varia-
tion of resequencing delay with the number of servers in a multi-server disordering
system. In Chapter 3, we prove several interesting properties concerning multi-
stage disordering systems with resequencing. Because of their complicated nature,
there are no previous analytical results in the literature concerning these systems.
We investigate the variation of end-to-end delay with resequencing strategies, in
particular we show that end-to-end resequencing is superior to hop-by-hop rese-
quencing when the disordering system has an infinite number of servers. We also
show that several structural properties concerning single stage multiple server sys-
tems, carry over to multistage multi-server systems provided the customers are
resequenced after each queue. In Chapter 4, we provide a detailed analysis of the
M/M/2/B queue with resequencing using matrix geometric techniques.

The model under investigation in Part II is a M/M/2 queue with heterogenous
service rates and resequencing of customers. We deal with the problem of optimal
dynamic allocation of customers to the servers so as to minimize their system
times. There is no prior work in the literature concerning dynamic optimization in
the presence of synchronization constraints. In Chapter 5 we identify the optimal
policy for assigning customers to the faster server which states that it should be
kept busy whenever possible. In Chapter 6 we prove that the optimal policy which
assigns customers to the slower server is independent of the number of customers
in the resequencing buffer and is of the threshold type in the number of customers

in the main queue buffer.
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CHAPTER II

STRUCTURAL PROPERTIES OF RESEQUENCING SYSTEMS

2.1 Introduction

Our objective in this chapter is to identify some structural properties of certain
kinds of resequencing systems. Since most resequencing systems are analytically
intractable, these structural properties help in obtaining bounds for them in some
cases. The main inspiration for this kind of analysis is in [7] and [8] were bounds
were developed for systems of fork join queues.

The chapter is organized as follows. In Section 2.2, a basic representation
result is presented that gives the system delays in general resequencing systems
in recursive sample path form. In Section 2.3, we develop some basic bounding
methodologies which we shall apply in the remainder of the chapter to obtain
bounds for different kinds of resequencing systems. These methodologies are de-
veloped without any particular model in mind. The models will be introduced
with the corresponding notation as the need arises, later on in the chapter. In

Sections 2.4 and 2.5, we identify bounds for infinite server queues and finite server

queues with resequencing, repectively.
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Fig 2.2.1 Basic Resequencing System

2.2 Basic Representations of Resequencing Systems

In this section we introduce a generic resequencing model, from which specific
resequencing structures can be recovered as special cases. There is a stream of
customers which enter a disordering system, and leave in an order different from
the one in which they entered it (Fig 2.2.1). After leaving the disordering system,
they wait in a resequencing buffer until all customers who entered the disordering
system prior to them, have left it.

We now define some RV’s that are useful in discussing properties of this
system. Let the sequences of RV’s {T5}§° and {Dy}§° be defined on some prob-
ability space {1, IF', P}. Here, T, and D, represent the time of arrival of the nth
customer into the system and its disordering delay respectively. We adopt the
convention that the O'* customer comes at time t = 0, so that T = 0. In terms
of these RV’s define the following quantities for alln = 0,1...,

d,: Departure instant of the nth customer from the system.
Y,: End-to-end delay of the nt® customer (i.e., Y = dpn — T.).
W,: Waiting time of the nt* customer in the resequencing box (i.e.,

Wn = Yn - Dn)-
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An: Interarrival interval between the (n + 1)™* and the n!* customer (i.e.,

Ap =Tpy1 — Tp).

Various kinds of disordering systeﬁs can be realized by assuming different
statistical structures on the sequence {D,}&. For examplel, if the delay sequence
{D,}3 is an i.i.d sequence which is independent of the interarrival sequence {A,},
then the disordering system corresponds to an GI/G /oo queue. Similarly we can
realize the disordering system as a G/G/K queue or a system of K parallel G/G/1
queues by imposing a particular structure on {D,}§°.

We now proceed to prove Theorem 2.2.1, which provides a recursive relation-
ship between the sequences {¥,}&, {D,}3° and {A,}$° defined earlier.
Theorem 2.2.1. Consider a resequencing system of the type shown in Fig 2.2.1.
If there is no initial load on the system, the end-to-end delays {Y,}3° are given

by the relations,

Yo = Do, (2.10.)

and

Yn+1 = ma.x{D,,_.H,Yn e An+1} n = 0, 1, e (Z.Ib)

Proof. Since there is no initial load in the system by assumption, the first cus-
tomer in the system will not undergo any resequencing delay and (2.1a) is therefore
immediate.

In order to prove equation (2.1b), consider the (n + 1)7** customer. His
resequencing delay will be zero if the nt? customer has left the system at the time

when he leaves the disordering subsystem i.e.,
Yn+1 = Dn_|.1 if Tn+1 + Dn+1 >Tn +Yn n=20,1... (2.2)

)Tt customer

If the nt* customer has not left the system at the time the (n +1

)rat

leaves the disordering subsystem, then the (n + 1 customer will experience a

resequencing delay of duration Ty, + Yy — (Tnt1 + Dn+1), hence

Yns1 = Dpt1+[Tn+Yn—(Tny1+Dry1)) if  Tpi1+Dpyi <Tp+Yn (2.3)
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By combining (2.2) and (2.3), it is plain that
Yn+1 =ma.x{Dn+1,Yn — (Tn+1 —-Tn)} : n:O,l._.
since Apt1 = Tnt1 — Tn, and this proves (2.1b). i

The recursion (2.1) was first derived by Baccelli, Gelenbe and Plateau [5)
albeit in a different context since they were trying to estimate the end-to-end
delay in an infinite server resequencing system followed by a single server queue.
Equation (2.1) is very basic since it provides us with a relationship between the
disordering delays and the end-to-end system delays. It will be used in a number

of places in making stochastic comparisons in this chapter as well as the next one.

2.3 Some General Bounding Methodologies

Consider the sequences {A,}$° and {D,}$° of IR-valued RV’s defined on some
probability triple (2, I, P). Assume these RV’s to have finite means, i.e.,

E[Ay] < o0, E[Dp] < o0 n=12,...
For any sub o-field ID of IF, define the sequences {A,(ID)}$ and {D(ID)} by
Do(ID) = E[D, | D],  An(ID) = E[A, | ID] n=0,1...(2.4)

The sequences {Y,}3 and {Y(ID)}5° are then defined in terms of the above-

mentioned sequences by the recursions,
Ypt+1 = max{Dpy1,Yn — Ant1} n=0,1...(2.5)
and
Yp+1(ID) = max{Dp4+1(ID),Y,(ID) — Apn+1(ID)} n=0,1...(2.6)

with Yo = Do and Yo(ID) = Do(ID). The recursion (2.5) describes the evolution
of system times of customers passing through a disordering system followed by

resequencing, where A, and D, represent the interarrival time between the nt*
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and the (n — 1)™* customer, and the disordering delay for the nt* customer,
respectively. A similar interpretation is available for (2.6) in terms of the sequences
{An(D)}& and {D,.(D)}&. We now state Theorem 2.3.1, which establishes an
ordering property between the sequences {Y,}§° and {Y,(ID)}&°.

Theorem 2.3.1. For any sub o-field ID of IF, the inequalities

Y.(ID) < E[Y, | D] n=0,1...(2.7)

hold true where the sequences {Y5}§° and {Y,(ID)}&° are defined as in (2.5)-(2.6).
Proof. We will provide an inductive proof of equation (2.7). For n = 0, it is clear

that Yo = Do and Y5(ID) = Do(ID), so that

by invoking (2.4), i.e., (2.7) is satisfled for n = 0. As the induction step, assume
that (2.7) is true for some n = m > 1, we will show that (2.7) also holds for
n = m + 1. Applying Jensen’s inequality to equation (2.5), we obtain

E(Ym41 | D) 2 max{E[Dm1 | D], E[Yr | D] — E[Am41 | D]} (2.8)
Using (2.4), we now get from the induction hypothesis that

E[Yms1 | D) > max{Dm(ID), Ym(ID) — Ams1(ID)}

2.9
= m+1(w) ( )

Thus (2.7) holds for n = m + 1, and since it holds for n = 0, it holds by induction
for all n. [

Theorem 2.3.1 holds for very general resequencing systems. Indeed the proof
of Theorem 2.3.1 does not require any assumptions about the statistical nature
of the sequences {A,}§° and {D,}§°, which may be non-stationary and/or even
correlated with each other. As in [7], we now provide an interpretation for (2.7)
in terms of stochastic ordering. To that end, let f be any integrable convex non-

decreasing function on f : IR, — IR. From Jensen’s inequality, it is clear that
E[f(Y,) | D] > fl[E(Yy | D)] n=0,1...(2.10)
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and using the increasing monotonocity of f, it follows from (2.7) that,
E[f(Yy) | D] > f[Yn(ID)] n=0,1...(2.11)
Taking expectations on both sides of (2.11), we finally obtain the inequality
E[f(Yn)] =2 E[f(Yn(ID)] n=0,1...(2.12)

which reads as the defining relation for the convex-increasing stochastic ordering
henceforth denoted as <.;. Some useful properties of this ordering are stated in
Appendix A.

We now give an interpretation of Theorem 2.3.1 in terms of the convex in-
creasing ordering concept. Note that (2.4) implies that for each n = 0,1...,
(Ap(ID)y Dyp(ID)) <ci (An,Dy), since for any any convex increasing function f,

Jensens inequality and the increasing nature of f imply that
E(f(Dn,An) | ID] = f([Dn (D)}, [An (D)) (2.13)

so that
E[f(Dn, An)] 2 E[f(Dn(ID), An(ID)] (2.14)

Also equation (2.7) can be written as Y, (ID) <.; Y,. Hence the intuitive meaning
of (2.7) is that greater variability in the inter-arrival times and the disordering
delays, causes larger variability in the total system times. This is a very general
statement especially because no assumptions are made about the inter-arrival or
disordering sequences. By giving various structures to the disordering system,
we can derive some special cases of Theorem 2.3.1. Examples are given later in
Sections 2.4-2.5.

In the remainder of Section 2.3, we prove another result which sheds some
light on the bounding problem for resequencing systems. Theorem 2.3.1 presented
a result on convex orderings in resequencing systems, while Theorem 2.3.2 below
deals with the strong stochastic ordering in resequencing systems. The advantage

of using strong stochastic ordering is that proofs can be reformulated in terms
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of direct sample path comparisons between the systems of interest, which con-
siderably reduces their complexity. Extensive use will be made of sample path
comparisons in the remainder of the thesis. The reader may consult Appendix B

for a review of some useful properties of strong stochastic orderings.

The system under consideration is the one described by (2.5), and again no
assumption is made about the statistical properties of the sequences {4,}3° and
{D.}&°. Using the techniques in [59], we are able to prove that strong stochastic
ordering between the disordering delays and inter-arrival times of two systems,

implies stochastic ordering between their system times.

Consider a disordering system with resequencing and zero initial load. Let
the first arrival occur at time zero and the nth arrival at Tp,4;. Let Apyq =
(Tp+1 — Tp) for all n = 1,2.... Order the sequences {A,}5° and {D,}&° as
(Do, A1, Dy, Az,...) and define the transition functions {pn(.)}§° as

po(z) = P[Do < 2]
p1(z;2) = P[A1 < 2| Do = 2]

2.15
p2(z,y;2) = P[Dy < z| Do = z,A; = y] ( )

The methodology of the proof is based on the coupling argument and closely
follows the discussion in [59]. Given two resequencing systems with their transition
functions satisfying certain inequalities, we construct two new queueing systems
on a common probability space such that the new systems individually have the
same probablistic structure as the original systems, and the system time of one

lies entirely below the system time of the other.

Let (12, IF, P) be a fixed probability space on which is defined a sequence
{€,}3° of independent RV’s, each uniformly distributed on (0,1). The following

Lemma is stated without proof. The reader may consult [60] for additional details.
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Lemma 2.3.1. Define the RV’s {A},}3° and {D}}$ on (00, IF, IP) by

D = inf{s € [0,00) : po(s) > &0},
A} = inf{t € [0,00) : p1(D§;t) > &1} | (2.16)
Dj = inf{s € [0,00) : p2(Dg, A3;s) > &2}

and so on. Then RV’s {Ao, Do, Ay,...} and {A§, D}, A} ...} have the same finite
dimensional distributions.

Lemma 2.3.1 is a generalization of the standard construction of Lehmann [44]
(see also Appendix B). We can now state the main result.
Theorem 2.3.2. Suppose {Doy, A11,D11,...} and {Doz2, A12,D12,...} are two
resequencing systems, having transition functions {pL} and {p2} respectively.

Assume that

po(2) < pj(2) (2.170)

and
(~1)"pfl(:co,. oy Tn_132) < (=1)"2 (Yos -+« »Yn—1;2) n=1,2,...(2.17b)

when (—1)7z; < (-1)y;,7 = 0,1.... Using the procedure of Lemma 2.3.1, con-
struct two other resequencing systems on the space (0, IF, P), made up of the
sequences {A%,, D%y, A}y,. .-} and {Afy, Dig, Atg,. ..} respectively. Under these

conditions, the comparisons

ne S An, n=12...
(2.18q)
*
n2ZD;1a n=0,1...
hold and consequently
w1 S Y55, n=0,1...(2.180)
which 1s equivalent to
Ynl <st Yn2 n =0, 1... (2.180)
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Jor the original two systems.
Proof. The proof of (2.18a) is straightforward and proceeds by fixing w €  and
applying Lémma 2.3.1. |

Since the transition functions of Dg; and Dg, are unconditional, the classical

proof by Lehmann [44], applies to yield
Dg, > D§;. (2.19)

For the general case, we will illustrate the technique by proving that A}, < A%,
and leave the proof of the other inequalities to the reader. By (2.16), it follows
that

P1(D5a2; ATp) = & (2.20)

Using (2.17b) with n = 1, we get that
p1(Do1; Alz) > &1 (2.21)
and by the definition of A7},, it now follows that
12 > Al (2.22)

We now give a proof for (2.18b) by induction. Recall that the sequences {Y}};}&°
and {Y,,}5° are defined by the equations

Yoty = max{D{, 1y, Yoi — Alnt1)i}
n=0,1...(2.23)

* __ y*
YOi'—DOi

with ¢ = 1,2. The case n = 0 for (2.18b) now follows easﬂy from the definition in

(2.23) and (2.18a). Assume that (2.18b) holds for n =m >0, i.e.,
m1 < Y (2.24)
From (2.18a) and (2.24), it follows that

m1 = Alma1) < Yoz — Almi e (2.25)
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and combining (2.25) with (2.18a), we finally get

ma.x{Dz‘m_H)p 7:11 - A?m+1)1} < maX{Dfm_i_l)z,Y,;;z - Azm+l)2} (2'26)

hence (2.18b) holds for » = m + 1 and the induction step is now completed.
That (2.18b) implies (2.18c) is immediate since

Yoz < 2] C [V < 7] n=0,1...(2.27)

Thereforel
PlY,2 < z] < P[Yy1 < 7] n=0,1...(2.28)
and the proof is completed. ]

We now specialize Theorem 2.3.2 to the case when the interarrival times are
the same for each queue and do not depend upon the preceding service times.

Corollary 2.3.1. Suppose that

P§n+1($1,- vy T2n32) = P§n+1($1,- v+ 3 Z2n; 2) n=0,1...(2.28a)
and both are independent of z2,z4,...,Z2,. Suppose also
P3n(T0s -+ 1 T2n-152) < P3,(€1,Y2,73,Ys, ., Tan—152) n=0,1...(2.28b)

whenever y2; > x25,7 =1,2,...,n—1. Then

Ynl Sst Yn2 n = 0, 1... (2.29)

Corollary 2.3.1 is a trivial consequence of Theorem 2.3.2, and we omit its
proof. In most of the cases in the sequel, when we have to show that two rese-
quencing systems with the same arrival process are strongly stochastically ordered,
we try to show that in some sample space, the disordering delays of one of them
lies entirely below the disordering delay of the other. This implies, by the proof
of Theorem 2.3.2, that the system delays of the original two systems are strongly

ordered.
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2.4 The Infinite Server Case

This section contains the most elementary applications of Theorem 2.3.1. We
first show that for G/G/oo systems, deterministic inter-arrival and disordering
sequences achieve the lower bound for the end-to-end delay, among all possible
distributions for these sequences. This turns out to be a direct consequence of
Theorem 2.3.1. Next, taking advantage of the special structure of the GI/G/oo

queue, we strengthen the result of Theorem 2.3.1, and obtain a computable upper
bound for the end-to-end delay.

We will make the following assumption.
(A1) The RV’s {A,}{° and {D,}§ form independent sequences of RV’s.

Assumption (Al), defines a G/G/oo queue with resequencing. The RV’s
{D,}& and {A,}$° are constructed on some probability space (£, IF, IP) and let
ID be some sub o-field of IF. Construct another G/G /oo queue in which the dis-
ordering and the interarrival sequences are given by {D, (ID)}$° and {A,(ID)}&

respectively where
D,.(ID) = E[D, | ID] and A,(ID)= E[A, | D). n=0,1...(2.30)

If the sequences {Y,.}$° and {Y,(ID)}& are defined by (2.5)-(2.6), then Theorem
3.3.1 immediately tells us that

Ya(ID) < E[Y,, | ID] n=0,1...(2.31)

Under the assumptions (A1) and (A2), where (A2) is
(A2) The o-field ID is generated by the sequence {D,}§°.

we obtain,
E[D,|D|=D, and E[A,|ID]= E[A,] n=0,1...(2.32)
From equations (2.6) and (2.32), we now get

Yn+1(D) = max{Dn+1, Yn(ﬂ)) - E[An+1]} n=0,1... (2.33)
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But the recursion (2.33) corresponds to a D/G/oco system, with the same
disordering delays as the original system but with deterministic interarrival times
whose constant value equals the mean of the interarrival times of the original
system. The system times for each customer in this queue is smaller than his
system time in the original queue, in the convex increasing sense.

This observation can be used to derive a computable upper bound for the
D/M /oo queue with resequencing, as shown next. Exact analysis of the D/M/oo
queue with resequencing is difficult because of the complicated nature of the buffer
occupation probability formulae for the D/M/oco queue [73]. However from the
above discussion, it follows that the system times in a D/M/oco queue with rese-
quencing are bounded from above in the convex increasing sense, by the system
times in a M/M/oo queue with resequencing, a quantity which can be derived
easily. Note that (2.33) establishes the ordering only for the transient case, but
it can be carried over to the steady state case by noting that {Y,}3° converges in
distribution to some random variable Y, [72]. The convergence proof is essentially

the one given in [5]. Hence we can write
Yoo(ﬂ)) <eci Yoo (2.34)

An expression for E[Y] for the M /M /oo queue with resequencing is now derived.
Though the derivation is well known [28], [32], [23]; we nevertheless include it here
for completeness.

Consider a M/M /oo queue with arrival rate A and service rate u. The steady

state probablitity that there are n customers in the queue is given by

n

Pr(n) = %T exp~? n=0,1...(2.35)

where p = A/u. Suppose a customer arrives into the system and finds n cus-
tomers in the process of being served. Because of the resequencing constraint, the
tagged customer cannot leave the system unless all those n customers have also

exited from the system (including the resequencing box). Hence, the system time
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Yoo of the tagged customer is distributed according to the maximum of (n + 1)

exponentially distributed RV’s and routine standard computations yield

E[Ye | n] = E[Yo | tagged customer finds n customers|

=Y o (2-36)

Since the distribution of the number of customers at the arrival instants coincides
with the stationary distribution in the queue by the Poissonian nature of the

arrivals, (by removing the conditioning in (2.36) and using (2.35)), we get

E|Yo] = ) E[Ys | n]P(n)

n=0

. (2.37)
_ i exp(—p)p"™ T~ 1
o n! = w
Using (2.34) and (2.37), we can write
E|Yoo(DD)] € E[Yo] (2.38)

where E[Y| is given by (2.37) i.e. we have obtained a computable upper bound
to the system time E[Y (ID)] of a D/M /oo queue with resequencing.

We now strengthen the result of Theorem 2.3.1 for GI/G /oo systems, in order
to derive a computable upper bound for them.
Lemma 2.4.1. Consider two GI/G /oo systems with resequencing, and no snitial
load with inter-arrival times { A% }$° and disordering delays { D%} and let {Y;}$°
denote the system delay, 1 = 1,2. If

E[Al] = E[A}] n=0,1...(2.39)

and

Al > A2, D>, D2 n=0,1...(2.395)
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then
Y} >, Y2 © n=0,1...(2.40)
Proof. The proof proceeds by induction. It is plain that
Yo = D}, YZ = D? (2.41)

and (2.40) thus follows for n = 0 by (2.39b). Assume that (2.40) holds for some

n=m2>0,i.e.,

Y, > Y2 (2.42)
Since
D}l .1 > D%, (2.43)
by assumption, and
_Arln+1 2ei _A72n+1 (2.44)

by (2.39a-b) and equation (A4) in Appendix A. Finally, since the sequences {4¢, }$°
and { D% }%° are independent for ¢ = 1,2 and the function max is convex increasing,

by Property 4 of Appendix A, it follows that
1 1 1 ) 2 2 2

and (2.40) also holds for n = m + 1, thus completing the induction.
|
Note that if the sequences {Y,1}° and {¥,2}$° converge in distribution to Y .

and Y2 then (2.40) also holds in the limit, i.e.,
YL > Y2. (2.46)

We will now use Lemma 2.4.1, to derive a computable upper bound for the
GI/G/oo queue with resequencing. Consider a GI/G/oco queue with inter-arrival
intervals and disordering sequences given by {A,}5° and {D,}, having distri-

butions F and G, respectively. The sequence {Y,}3° converges in distribution to
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the RV variable Y. If the inter-arrival distribution F is NBUE (see Property 4

of i orderings in Appendix A), with mean ,\ , then
1
F <4 exp(x) , (2.47)

where exp(+) is the exponential distribution with mean +. From Lemma 2.4.1 it

is now easy to see that
Yoo <ei Y, (2.48)

where Y is the system time in equilibrium of a M/G/ oo queue with resequencing,
fed by a Poissonion arrival stream of rate . An exact solution for E[Y. ] has been

given in [23] in the form
* AT @a-F(u)d
E(Y.) = E(D) + / (1= expH T AP poy gy (2.49)
0
and the mean of Y, satisfies the bound

o0 o0
E[Yoo] < E[D] +/ (1 — expH T U=FED @) by gy (2.50)
0
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2.5 The Finite Server Case

A number of structural properties of finite server resequeéncing systems are iden-
tified in this section, which is divided info four subsections. In Subsection ."2.5.1,
ci-orderings are used to identify structural properties of K parallel G /G/1 queues
with resequencing, and in subsections 2.5-2.4, sample path comparison techniques'

are used to identify structural properties of G/G/K queues with resequencing.

2.5.1 Determinism minimises response time

Let us assume the disordering system to be a set of K parallel G/G/1 queues with
FCFS service discipline and a single input. We will use Theorem 2.3.1 to show
that deterministic inter-arrival and service sequences achieve the lower bound for
the end-to-end delay among all possible distributions for these sequences. The
discussion in this section owes much to the treatment of the fork-join queue in [7].

We now introduce some additional notation. Let (2, IF', P) be a probability
space on which several sequences of RV’s are defined. The RV’s {0} and {u,}§
are Rf-valued RV’s and {A,4+1}§° are R4 valued RV’s. Here A, is interpreted
as the interarrival time between the (n + 1)™* and the n*® customers. These

RV’s can be used to define a system of K parallel G/G/1 queues if the sequence

{uk}&, (1 < k < K) is chosen to be such that Ele u* =1, and

k_{l, forsomeké(l,...,K); n=0.1

" 10, otherwise.

In this case o,.uX can be interpreted as the effective service time of the nth

customer.

The RV’s {W}}3°,1 < k < K, and {R,}$ are now defined recursively by

We o =WE+uk ok —4,)", 1<k<K, n=0,1...(2.51)

n

withWé‘=0foralll$k§Kand

K
Rp=) uk-(Wk+ok) n=0,1...(2.52)
k=1

30




Here, if uﬁ =1, then W,’f represents the waiting time of the nt* customer in the
buffer of the k* queue whereas R, is interpreted as the system time of the nt?
customer in the set of K parallel queues.

We will make the following assumptions :

(A38) The RV’s {0k}, {uX}8°,1 < k < K and {4, }$° have finite means.

(A4) There exists a sub-sigma field ID of IF with the property that for each n =
0,1..., the RV u, is conditionally independent of the o-field I, given ID
with

I, =0{0on}Vo{om,tm,Am+1,0 <m < n} n=0,1...

Next we define the RX-valued RV’s {W,(ID)}$° componentwise by
Wk, (D) = WH(ID) + ubP - oBP — 4D, |7, n=0,1,...(2.53)

forall1 < k< K, and
K
Rn(ID) =Y (Wg, (D) + o&P) - ub? n=0,1...(2.54)
k=1

where
up? = E[u} | D]

b = Elof | D] n=0,1...(2.55)
Az = E[Any1 | D)

for all 1 < k < K and for any o field ID.

Theorem 2.5.1. Let the RV Wy be ID-measurable. Under the enforced assump-
tions (A3) and (A4), the inequalities

wWkD) < EWF | D], 1<k<K n=0,1...(2.56a)

and
R,.(DD) < E[R,, | ID] n=0,1...(2.56b)
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hold true.

Proof. The RV W, is I n-measurable for all n =0,1.... Hence by assumption
(A4), the RV uy, is conditionally independent of the RV’s {0,,W,} given the
o-field ID, and for all 1 < k < K,

Eluy - Wy | D] = ul® - wkP n=0,1...(2.57a)

and

E[uf .ok | D] = u&P kP n=0,1...(2.57b)

n

We will prove inequalities (2.56a-b) by induction. Let (2.56a) hold for n = m >0

so that
WEkD)<EWE|D] 1<k<K (2.58)

Applying Jensen’s inequality to (2.51) and using (2.57), we obtain
EWE ., | D] > [EWE | D]+ ufP .obP - 4P 1%, 1<k<K (259)
and the induction step (2.58) now yields

+
EWg | D) > Wi (D) + ubP.okP — AP ] (2:60)
= erﬁz+1(1D)

where the last step follows from (2.53). Consequently, (2.58) holds for n = m + 1
and since by assumption the initial value Wy is ID-measurable, the inequality
holds for all n =0,1....

We now provide a proof for (2.56b). By definition,

K
Bpn =) uk . (Wk+ok), (2.61)
k=1
so that
K
E[Ryn | D) =) uk® . [EWE | D]+ okP] (2.62)
k=1
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by making use of (2.57). From (2.56a), we now obtain

E(Ry | D] > ZK:uﬁiD - (W (ID) +052®)
k=1 (2.63)

= Ry (D).
|

We will now use Theorems 2.3.1 and 2.5.1 to prove that determinism in
interarrival or service times, minimises the system time of K parallel G/G/1 queues
with resequencing.

Identify the RV variable R, of Theorem 2.5.1 as the RV variable D,, in
Theorem 2.3.1. The conditions of Theorem 2.3.1 are satisfied by the system of
Theorem 2.5.1, and consequently if Y, is the end-to-end delay inclusive of rese-
quencing after a system of K parallel G/G/1 queues, then Y,(ID) < E[Y, | ID]
for all n =0,1.... Now, by making appropriate choices of ID we can obtain lower

bounds for the system.
(A) Consider the sub o-field ID; of IF given by
ID; =o0{Apt1,un,n=0,1...}
under the conditions (A4) and (A5), where
(A5) ID; is independent of the o-field o{0os,n = 0,1...}.

Conditions (A4) and (A5) will be satisfied if uy, is independent of the RV’s

{om,0 <m < n}foralln =0,1.... Under these assumptions it is clear that for
all1 <k <K,

Wb b

o1 = Eloy,) n=0,1...(2.64)

Arlz)+11 = An+1
Morever, (2.53) and (2.54) simplify to
er:+1(ﬂ)l) = [W,,:(Dl) + uf; . E[O'n] - An+1] n=0,1... (2.65)
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forall 1<k < K, and
K
Rn(ID1) =) uk - [Wk, (D)) + Elon]] n=0,1...(2.66)
k=1

It follows the RV R, (ID;) is the system time of the n** customer in a G /D/K
which has the same arrival process as the original queue but with deterministic
service times. By Theorem 2.4.1, the system with deterministic service times is a
lower bound to our original system, with regard to the total system delay in the

sense of convex increasing stochastic ordering.

(B) Consider the sub o-field ID; given by where
Dy = o{on,un,n=0,1...}

under the assumptions (A4) and (A6), where
(A6) The o-field ID; is independent of the o-field 6{An41,7n =0,1...}

Conditions (A4) and (A6) will be satisfied if the RV u,, is independent of the
RV’s {4;n41,0 <m < n} for all n = 0,1,.... From these assumptions, it follows

that forall 1 < k< K,

okDz — gk n=0,1...(2.67)

At = E[Ansi]

By an argument analagous to that given in example (A), it follows that a system
with deterministic interarrival times is a lower bound to our original system.
From this discussion, it follows that for the case K = 2, the end-to-end de-
lays of two parallel M/D/1 queues or D/M/1 queues with resequencing are upper
bounded by the end-to-end delays of two parallel M/M/1 queue with resequenc-

ing. If these end-to-end delays converge in distribution, their equilibrium values
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are ordered in the same way as their transient values. Formulae for the resequenc-
ing delay of two parallel M/M/1 with resequencing and Bernoulli loading, were
obtained by Jean-Marie [30] and constitute a computable bound. These formulae
are reproduced below.

Consider two parallel M/M/1 queues with resequencing. Let A be the rate
of the Poisson arrival process into the system, let p be the probability that the
arriving customer joins the first queue and g the probability that he joins the
second queue, and let the service rate be u for both queues. Jean-Marie showed

that for this system, the average resequencing delay is given by
E(Woo) = pAw(p — pA, o — gX, qA) + dw(p — gA, p — pA, pA) (2.68)

where
Tz

z+y)(z+y)

w(z,y,2) = o (2.69)
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2.5.2 A lower bound for multi-server queues.

In what follows we will assume that each server in a multiserver queueing system
has the same service distribution.

We now establish a result to the effect that finite server queues with rese-
quencing, specifically the GI/G/K queue or K parallel GI/G/1 queues, have
system times that are lower bounded by the system times of a GI/G /oo queue
with resequencing. This GI/G /oo queue has the same arrival process as the orig-
inal system, and each of its servers has the same service distribution as those
in the original system. The proof is based on a coupling argument, whereby we
construct two new queueing systems on a common probability space such that
the new systems individually have the same probabilistic structure as the original
systems and for each sample path, the end-to-end delay of one system lies entirely
below the end-to-end delay of the other system.

We will prove the result when the disordering system is a GI/G/K queue. A
similar proof applies when the disordering system is made of K parallel GI/G/1
queues, and we leave the details to the interested reader.

We now describe the recursion equations for the waiting times in a GI/G/K
queue. Let R be a function which reorders the elements of a K dimensional
vector in ascending order and replaces negative elements by zeros. For all n =
0,1..., let W,, = (Wy1,...,Wyrk) be the vector of ascendingly ordered times
remaining, measured from the time of the n*” arrival, until each of the various
servers would first be available to serve the n** customer. Keifer and Wolfowitz

[31] derived the recursive relationship
Wypi1 = RY (W, +oner — Any1l) (2.70)
where e; and 1 are vectors given by
e; = (1,0,...,0) and 1=(1,...,1)

The waiting time of the nth customer is given by the minimum element W,; of

the vector W,,. Due to the appearance of the minimum operator, convex ordering
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relationships of the type proved in Theorem 2.5.1 are not possible for GI/G/K
queues. The total disordering delay for the (n + 1) customer, is given by the

first element of the vector D, 1, where
Dypp1 =Wpp1 +0nial , n=0,1...(2.71)
Denote the total system delay (i.e. end-to-end delay), for the (n + 1)"** customer
as Y41, where
Yo+1 = max{Dmi1)1,Yn — Ant1} n=0,1...(2.72)

Now consider a GI/G/oo queue with inter-arrival and service times given
by the sequences {A,}5° and {D,}$°, so that the system time of the (n + 1)t

customer ?n+1 is given by
Yypi1 =max{Dns1,Yyn — Ans1} n=0,1...(2.73)
Assume that
(A7) The following relations hold
Ap =4t Ay

on =gt Dy,

We now state the main result in this subsection.
Theorem 2.5.2. The total system time of a customer in a GI/G/K queue with
resequencing ts stochastically larger than his total system time in the GI/G /oo
queue with resequencing, t.e.,

Yo >st Yn n=0,1...(2.74)
under the assumption that both systems have an identscal arrival process and ser-
vice distributions.

Proof. On a fixed probability space (2, IF', P), define random variables {A,}5°,
{4}, {0,} and {D,}$ such that

Il
|
s

An
n=0,1...(2.75)

I
S

On



This is always possible due to assumption (A7).

Since

Wn_|;1 = R+(Wn +0’n61 - An+11)
n=0,1...(2.76)
Dypyy =Wopgt + 0041l

observe from (2.75)-(2.76) that
Dpi1 =Whai + 0y > 00 =Dy, n=0,1...(2.77)
Using (2.77) and (2.72)-(2.73), we can recursively as in Theorem 2.3.2 that
V.>Y, n=0,1...(2.78)

The conclusion (2.74) now follows directly from (2.78).
|

As mentioned earlier a similar result holds for a disordering system made of
K GI/G/1 queues in parallel, and is stated below without proof.

Theorem 2.5.3. The total system time of a customer in a system of K parallel
GI/G/1 with resequencing, ts stochastically larger than his total system time in
a GI/G /oo queue with resequencing, provided both systems have identical inter-
arrival and service distributions.

|

Theorems 2.5.2-3 are useful in obtaining computable lower bounds for finite
server resequencing systems with a Poissonian arrival process, since in this case the
lower bounds are given by the M/G/oo queue with resequencing, exact formulae
for which are available in [23].

Theorems 2.5.2-3 in combination with Corollary 4.3.2 can also be used to
obtain a lower bound for the total system time of a customer in a hop-by-hop
resequencing system consisting of IV stages, each of which is a multi-server queue
in the following manner. We first replace all the multi-server queues with infinite
server queues, and then replace the hop-by-hop resequencing system by an end-to-

end resequencing system. It is clear that this will be a lower bound to the original
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system. If the arrival process into the system is Poissonian, then this lower bound

is also computable.
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2.5.3 An upper bound for the M/G/K queue with resequencing.

The next result establishes an ordering relationship between the system times of
two GI/G/K queues with resequencing which have the same arrival process, and
the service timé of one of them is stochastically larger than the service time of the
other. Let {01}$° and {AL}$° be the service and inter-arrival processes for the
first queue and denote by {02} and {AZ}$° be the corresponding quantities for

the second queue. The delays in the two queues are given by the equations

Dpy1 =Wy + 0nga
) ) ) n=0,1...(2.79)
Dyy1 = W(n+l)1 tont1

with D} = o} and D% = 0. Here the vectors W, and W2, are given by

W11+1 = R+(W7{ + orlze - Aflz+11)
, I , , n=0,1...(2.80)
W(n+1 =R (Wn +ope— An+11)

where W = W2 = 0. The total system delays, including the resequencing delays,

are then given by

Yn1+1 = max(Drlz+1’Yn1 - Arlz.+1)

, ) ., n=0,1...(2.81)
Yn+1 = ma‘X(Dn+l’Yn - An+1)

with Y = D} and Y# = D3. We now state the next Theorem.
Theorem 2.5.4. Consider the two GI/G /K queues with resequencing described
above. If

Al =4 A2 n=0,1...(2.82a)

and
ol >51 02 n=0,1...(2.82b)

then
Yo >a Y2 n=0,1...(2.83)




Proof. By the standard construction, define the following sequences of RV’s on
some fixed probability space (2, IF, IP), {A}}&,{ol} {A2}5° and {02}, such
that

Al =42 and ol>02 n=0,1...(2.84)

where (2.84) is always satisfied due to (2.82a-b). Using (2.84), it can be shown as
in [29] that
D}l > Dp? n=0,1...(2.85)

from which it follows that

Yl >v?2 n=0,1...(2.86)

and (2.83) is now a direct consequence of (2.86).
|
Theorem 2.5.4 can be used to generate upper bounds in the following way.
Assume that the disordering system is a M/G/K queue, and further assume that
the service time distribution is NBU with mean u. From Property (5) of strong
stochastic orderings in Appendix B and (3.80c), it follows that the system of this
queue is upper bounded by the system time a M/M/K queue with resequencing
whose service time also has mean y. Since the latter system has been solved in

[80], the upper bound can be computed.
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2.5.4 Variation of System Delay with Number of Servers

We now present a result that generalizes the conclusion of Theorem 2.5.2. Recall
that in Theorem 2.5.2 we proved that the system time of a GI/G/K queue with
resequencing stochastically upper bounds the system time of a GI/G/oco queue
with resequencing. We now show that the system time of a GI/G/(K + 1) queue
with resequencing stochastically lower bounds the system time of a GI/G/K queue
with resequencing. Hence interestingly enough, increasing the number of servers
even by one, causes a decrease in system time. As usual we assume that both
systems have identical input processes. For all n = 0,1... we pose the notation,

al: Time of arrival of the nt* customer into the GI/G/K system.

aZ: Time of arrival of the n'* customer into the GI/G/(K + 1) system.

: Service time of the nt* customer to enter service in the GI/G/K queue.

S

Service time of the n** customer to enter service in the GI/G/(K +1) queue.

Q

e
S 3 3N 3= 3N

Time instant of the nt* departure from the GI/G/K queue buffer.
Time instant of the n** departure from the GI/G/(K + 1) queue buffer.

: Time instant of the n** departure from the servers of the GI/G/K queue.

<

Q

: Time instant of the nt* departure from the servers of the GI /G/(K + 1)
queue.

Note that in case of GI/G/K queues, the n** customer to enter service is
also the nt? customer to enter the queue, since we assume that the queue operates
under the FCFS discipline. Also note that the nt* departure from either one of
the queues is not necessarily the same as the n*? arrival into that queue. Hence
a’, and v’ may describe different customers.

Let N! = K and N? = K + 1 in what follows. We now state the main result.
Theorem 2.5.5. Consider the GI/G/K queue and the GI/G/(K +1) queue with
resequencing. If

Ayl,, —a.t. A2

n

n=0,1...(2.87q)

and

ol =q1. 02 n=0,1...(2.87b)
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then
Y, >4 Y2 n=0,1...(2.88)

Proof. By the standard construction we can define the following sequences of
random variables on a fixed probability space (2, IF, IP), {AL}$, {o1}&°, {A2}°
and {02}, such that

Al =42  and
n=0,1...(2.89)

Where (2.89) is always satisfied due to (2.87a-b). From now on, quantities that are
common to both systems are written without a super-script. We first prove that
departure epochs from the buffer and the servers occur sooner in the GI/G /(K +1)
system than in the GI/G/K system. For both systems,

v§ = min{uj +0;)

(2.90)
= min {a; + 0o;
ogj<N-'{ i o5}
and, in general
vi = j** order statistic from {ut +ox:0< k< j+ N'} (2.91)

Since the service initiation of the nt? customer coincides with the departure epoch
of the (n — N*¥)** customer from the system (provided the nth customer arrives
before the (n — N*)** customer has departed the system), the following equation

holds

ul, = max{an,v’_y:} n=0,1...(2.92)

where v;: =0 if 7 < 0. We now show that

v
4
Sw

n=0,1...(2.93)

s -




From (2.92) it follows that ul = u2, for 0 < n < leqK, since the first K customers

in either system, do not suffer any queueing delays. However note that
vy = max{ax,vd} > ax = vk

The proof proceeds by induction with an induction step which assumes that for
some n > K,

uj >uf 0<j<n (2.94)

From (2.91), it follows that

vjy 20} 0<j<n-K-1 (2.95)

and (2.92) now yields
u}l = max{an,vl_x}
> max{an, v,ll_(K_H)} (2.96)

:un

which completes the induction step and the proof of (3.89).
We now obtain an ordering for the total time spent in the queue in the
following way. It is clear that if D¥ is the total time the nt* customer spends in

the ¢** queue, then
Di =ul —a, + oy, n=0,1...(2.97)

for every 1 =1, 2.

From (2.93) and (2.97), it is now clear that
D! > D2 n=0,1...(2.98)
From (2.98), using well known techniques, we can prove that
Yl >v? n=0,1...(2.99)

and (2.88) follows directly from (2.99).

44



Theorems 2.5.3 and 2.5.5 reveal an interesting structural feature of multiple
server resequencing systems. Theorem 2.5.5 states that the system delay decreases
if we add an additional server to the multiserver system. However note that
the resequencing delay clearly does not decrease beéa.use more customers may
go out of sequence as result of the presence of the additionall server. Hence the
crux of Theorem 2.5.5 is that the decrease in queueing delay due the presence of
the additional server, outweighs the increase in synchronization delay due to the
resequencing constraint. Hence it is all-right to increase the amount of parallelism
in the system as much as possible without worrying about resequencing delays.
Theorem 2.5.3 states that this property also holds in the limit as the number
of servers goes to infinity. An interesting open problem is to charectarize the
behaviour of the resequencing delay as the number of servers is increased. Clearly,
since it increases as more servers are added and yet does not go to infinity in an
infinite server system, its distribution must converge to stable distribution at
infinity. This situation is in direct contrast to the behaviour of a fork-join queue,
whose system time increases logarithmically with the number of servers in the

queue [7].
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CHAPTER 111
RESEQUENCING IN MULTISTAGE DISORDERING SYSTEMS

3.1 Introduction

In this chapter we identify several properties of multi-stage disordering systems
with resequencing. The short survey of the literature given in Chapter 1, revealed
a paucity of results concerning multistage resequencing systems, which is not
surprising considering their extremely complex nature. However, as shown in
this chapter, sometimes interesting properties of these systems can be deduced by
using stochastic comparison techniques.

Chapter 3 is organized as follows. In Section 3.2 we prove that hop-by-hop
resequencing stochastically upper bounds end-to-end resequencing, ir’1 a system
consisting of a general disordering queue followed by a G/G/oo queue’in tandem.
We also extend the result to an arbitrary number of G/G /oo queues in tandem.
In Section 3.3 we present a number of structural results concerning hop-by-hop
resequencing systems, in particular we show that most of the structural results
about G/G/K queues obtained in Section 2.5, also extend to system of N G/G/K
queues in tandem with hop-by-hop resequencing. In Section 3.4 we prove the
stability of the distribution of a two hop end-to-end resequencing delay, thus
extending the results in [Baccelli, Gelenbe, Plateau| where stability was proved
for a single hop resequencing system. We also a derive an integral equation for

this distribution.
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Fig 3.2.1 (a). Hop-by-Hop Resequencing System
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Disordering Disordering Resequencing
System System Box

Fig 3.2.1 (b). End-to-End Resequencing System

3.2 The Optimality of End-to-End Resequencing

Given a multi-stage disordering system, a probem of considerable interest is
the effect of various resequencing strategies on system delay. Yum and Ngai [80],
presented simulation results on the comparison of resequencing delays for the two
kinds of resequencing strategies in a two hop disordering system (Fig 3.2.1). The
disordering in both stages was carried out by M/M/K queues. In the first case,
resequencing was done after a customer had traversed both queues, while in the
second case, resequencing was implemented after each queue. We shall hereafter
refer to the first strategy as end-to-end resequencing, and to the second strategy
as hop-by-hop resequencing. The simulation results showed that the average hop-
by-hop resequencing delay was greater than the average end-to-end resequencing
delay for two stage disordering systems.

In the present section we shall compare different kinds of resequencing strate-
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gies in tandem systems, when the disordering is due to infinite server queues. Our
" results are stronger than the simulation results in [80] in two respects. The order-
ing we get is strict sample path ordering for each customer, aind secondly it holds
for any number of disordering stages. However we have been able to prove the
result only for infinite server queues.
The discussion starts with the two hop resequencing systems depicted in Figs
3.2.1 (a) and 3.2.1 (b) above. For all n =0,1..., pose
Y »: Delay of the nt* customer in the end-to-end resequencing system.
Y,: Delay of the nt* customer in the hop-by-hop resequencing system.
X,.: Delay of the n** customer in the first disordering system of the hop-by-hop
resequencing tandem system.
X ,.: Delay of the n* customer in the first disordering system of the end-to-end
resequencing tandem system.
Apt1: Inter-arrival time the (n + 1)™** and the nt* customers in the hop-by-hop
tandem resequencing system.
Ani1: Inter-arrival time between the (n + 1) and the n** customer in the end-to-
end resequencing tandem system.
Sy.: Delay of the nt® customer in the second disordering system of the hop-by-hop
resequencing tandem system.
S,: Delay of the nt® customer in the second disordering system of the end-to-end
resequencing system:.
D,.: Delay of the nt* customer in the hop-by-hop resequencing scheme, due to the
two disordering systems and the first resequencing box.
Zn: Delay of the nt® customer in the hop-by-hop resequencing system, due to the
first disordering stage and the first resequencing box.
Since our aim is to understand how the system times vary with the resquenc-
ing strategy, we assume that the two disordering systems and the inter-arrival
time statistics are identical in both cases. More precisely, if all these sequences

are defined over some common sample space ({2, IF', P), then the following equa-
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tions

Ap = A, n=0,1...(3.1a)
Xp=Xp n=0,1...(3.1b)
Sn+1 = §n+1 n = 0, 1... (310)

are assumed to hold. Note that in writing (3.1), we have made a subtle assumption
which restricts the class of disordering systems considered here. Condition S, =
S, does not hold true in general as we now show. Consider the situation where
the second disordering system is a G/G/K queue, in which case the nt* customer
to enter the system may undergo diferent queueing delays at this queue, depending
on whether the resequencing is done hop-by-hop or end-to-end. This is because
of the first resequencing box which drastically changes the nature of the arrival
process into the G/G/K queue. Hence (3.1c) is applicable only to those systems
in which the second disordering delay is not affected by the arrival process into
it. One class of disordering systems to which this is applicable, is the class of
systems having an infinite number of servers provided the delays in this system
are generated independently of the arrival process {A4,}5° as well as the delays
{X,}& in the first disordering system. In all the results presented in this section,
we shall restrict ourselves to this case.

Theorem 3.2.1. Consider a two stage disordering system with resequencing, in
which the second stage has an infinite number of servers, then the system delay for
the end-to-end resequencing system ts stochastically upper bounded by the system

delay of the hop-by-hop resequencing system, t.e.,

Y <ot Y. n=0,1...(3.2)

Proof. From the statement of the theorem we can assume that (3.1) holds on
some probability space (2, IF, P).
First consider the end-to-end resequencing system. Application of the basic

Theorem 2.1.1 from Chapter 2 gives
?n.{_l :max{Xn+1 +Sn+1,?n _An+1} n:O,].--.(3.3)
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for the end-to-end resequencing system, and
Yn+1 - max{Dn+1;Yn - An+1} n = 0,1... (34)

for the hop-by-hop resequencing system.A

We now derive a recursive expression for the sequence {D,}$°. Application
of Theorem 2.1.1 to the first disordering stage followed by resequencing in the
hop-by-hop resequencing system yields

Zypt1 = max{Xnt1,Zn — Ant1} n=0,1...(3.5)

with Zp = Xo. Since
D, =27,+ Sy, n=0,1...(3.6)

it follows from (3.5) that
Dpy1 = Spy1 + max{Xn4+1,Dn — Spn — Any1} n=0,1...(3.7)

with Do = So + Xo.

Next we use induction to prove that
Y, <Y, n=0,1...(3.8)

in which case (3.2) immediately follows.

For n = 0, under the zero initial loading assumption in both systems, it is

plain that
Yo = Do = So + Xo = Yo,

whence, (3.8) is satisfied for the 0t" customer. The induction step assumes that

(3.8) holds for the m*”* customer so that

Y <Yy, (3.9)

or equivalently,

Ym— Ami1 < Ym — Amii (3.10)



Since the inequality

Xmy1 < max{Xms1,Dm — Sm — Am+1} (3.11)
always holds, it follows that
Smt1 + Xmt1 < Sma1 + max{Xm+1,Dm — Sm — Ams1} (3.12)
by (3.7), this is equivalent to
Sma1+ Xmy1 < Dy (3.13)
By combining (3.10) and (3.13), it follows that
max{Y ;, — Am+1,9mi1 + Xm+1} < max{Yy — Am+1,Dms1} (3.14)
and we now easily obtain from (3.3)-(3.4) that
Y mt1 < Y1
i.e., (3.8) holds for » = m + 1. Since equation (3.8) holds for n = 0, it follows by

induction that it is true for all n = 0,1....

Note that the assumptions of Theorem 3.2.1 can be weakened to

An < Ay
Xn > Xn n=0,1...(3.15)
Sn > Sn

without changing the conclusion of the theorem. The reader might expect that in
order to extend the theorem to the case when the second disordering system has

a finite number of servers, it is suffucient to verify that

Sp > Sy n=0,1...(3.16)
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However there is some reason to believe that (3.16) might not hold for this case,
as intuitively argued below.

Let us consider a system in which the disordering is carried out by a GI/G/2
queue in both stages. Consider the nt* customer C, which is in the process of
receiving service from one of the servers in the first GI/G/2 queue in the hop-by-
hop resequencing system. If his service time is inordinately long, then customers
who had arrived after him into the first queue, will complete their service before
him and wait in the resequencing box for C,, to complete service. Assume that
customers Cy41 to Cpyr have gone out of sequence with respect to Cp, and
are waiting in the resequencing box for C,. After C, completes service, he will
immediately join the second queue (before Cp41 to Cp4k), since he does not suffer
any resequencing delay in the first resequencing box. On the other hand, for the
case of end-to-end resequencing, Cp4+1 to Cp+k would immediately join the buffer
of the second queue after getting served in the first queue. Consequently, after C,
finishes service in the first queue he would find a bigger queue length in the second
queue, than for the case of hop-by-hop resequencing. Thus we would expect the
delay of C,, in the end-to-end resequencing system to be greater than his delay in
the hop-by-hop resequencing system. The delays of C,,+1 to Cp4 though would
be smaller in the end-to-end resequencing system. Hence it is not unlikely that
the average delay for end-to-end resequencing is smaller than the average delay
for hop-by-hop resequencing, even though sample path ordering is not possible,

in fact false and comparison results can only be expected in a weaker sense.

Corollary 3.2.1 extends the result of Theorem 3.2.1 to any number, say N, of
infinite server queues in tandem. For all n = 0,1,..., pose

SY: Delay of the n'* customer due to the N** disordering stage in the hop-
to-hop resequencing system.

§nN: Delay of the n* customer due to the N** disordering stage in the end-
by-end resequencing system.

Y.Y: delay of the nt* customer in the hop-by-hop resequencing system con-
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sisting of N disordering stages.

=N .
Y, : delay of the n* customer in the end-to-end resequencing system con-

sisting of V disordering stages.

Corollary 3.2.1. Given N (> 2) GI/G/oo queues in tandem, the hop-by-hop
resequencing delay for a customer is stochasticdlly no smaller than the end-to-end

resequencing delay for that customer, i.e.,

7Y <aY¥ n=0,1...(3.17)

Proof. Since we are only interested in comparing system times due to the differ-

ence in resequencing strategies, we will assume that

SN =gN n,N =0,1...(3.18q)
A, = Ay n=0,1...(3.18b)

The proof proceeds by a double induction on the number of customers as well as

the number of stages. By Theorem 3.2.1, it is clear that that (4.16) is true for

N = 2. We will show that (4.16) holds for an arbitrary value of N = M.
Applying Theorem 2.2.1, we obtain the relations

Yois = max{Yoi7! + Spt1, Vf — Ania} n=0,1...(3.19)
and
M M. M
Yo = ma.x{z Spi13Y p —Any1} n=0,1...(3.20)
=1

We have to show that

Y, <YM n=0,1...(3.21)
Assume that (3.21) is true for n = m

—M

Y,, <YM (3.22)



which mppls 5.

Next byamind::~iic:

From (311}} it is ¢
that (334))holds !~

It is clear that

Hence it is immediatc -

M
Vi = Amt+1 S Yl — Ay (3.23)

o7 tle nunber of disordering stages, we demonstrate that

M-1

—t _
Y St S YT (3.29)
t=1

.1 14t(3.24) holds for M = 2. As the induction step assume

e ‘.::L, i.e.,
L-—-1
r L— L
S S < VI (s.25
=1
"-ll .= max{ m+1 L+ Srﬁ+1’Yr£ - Am+1}. (3-26)
; see that
L-1
YA+ S > Z Sm+1 + Sm+1
i=1

L .
-t
=Y St (3:27)
i=1

Hence (3.25) holds for M = L + 1 as well, completing the induction step. Hence

from (3.23-24), it follows that

M
Y1 < Yok (3.28)

thus completing the indution step and the proof.

In addition to being an useful qualitative result, Corollary 3.2.1 can be used

to generate numerical bounds as we now explain. Consider a N stage disordering
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system, where each stage corresponds to a GI/G/oo queue. The hop-by-hop
- resequencing delay in this system is analytically intractable. However by Corollary
3.2.1, it is bounded froﬁl below by .the end-to-end resequencing delay in the N-
stage system, in the sense of strong stochastic ordering. It is well known that

the strong stochastic ordering has the weak convergence property (see Appendix
B). Hence if the random variables Y,V and 7,]:, , converge in distribution to Y

N . . . . . .
and Y _, respectively (this is proved rigorously in the next section for two stage

disordering systems), then from (4.2)

E[f(To)l < E[f(Y)] (3.29)

for all non-decrea,sinslg,r functions f. All moments of Y are thus bounded from

below by the corresponding moment of 71. and in particular
N —N
E[Y3] 2 E[Y o) (3.30)

Denoting the delay due to the N disordering systems in the end-to-end disordering

—N .
system as D, we can write
—N ,
Do=)»_ 6§ (3.31)

where S* has the same distribution as that of the /** disordering system. Denoting
the distribution of DY, as F, and the distribution of S* as F;,1 < ¢ < N, (3.31)
implies
F=F «Fy*...+ Fy (3.32)
Assume now that each distribution F;,1 < ¢ < N is an exponential distribution
with parameter u, and the inter-arrival times in the first disordering system are
—N
exponentially distributed with parameter A. It follows that D, is distributed
according to an Erlang distribution of order N, with density given by
N-1
ulpe
fgv (z) = ﬁ exp(—uz), >0 (3.33)

oo
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Hence the N-stage end-to-end disordering system is equivalent to a single stage
disordering system whose disordering delay is Erlang distributed, in other words
a M/Er(N)/oco queue with resequencing. According to [23], if we denote by F
the distribution of the disordering delay in a M/G/oco queue with resequencing,

then E [7] can be written as

B = 5DV + /0 T —exp M o FENE p G (334)

In our case E [D_ivo] = N/u and F has density given by (3.33). The second expres-
sion on the right hand side of (3.34) can be evaluated, perhaps numerically, after
substituting the Erlang distribution in place of F. This gives us a computable
lower bound to the average system delay of the N-stage hop-by-hop resequencing

system.
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Disordering Resequencing G/G/K Queue Resequencing
System Box Box

Fig 3.3.1. The Resequencing System

3.3 Finite Server Queues in Tandem with Resequencing

Consider a system consisting of a GI/G/K; queue in tandem with a
GI/G/K, queue (without resequencing and with Ki,K2 > 2). If there is an
increase in the number of servers or the service rate at the first GI/G/K; queue,
then classical results due to Jacobs and Schac [29], tell us that the system time of
a customer decreases sample-pathwise in that queue. However this decrease does
not carryover to the end-to-end delay of a customer due to both the queues, in
other words a decrease in system time at the first queue does not imply a decrease
in end-to-end delay [58]. However, in this section we show that if the customers
are resequenced after each queue, then a decrease in system time at the first queue
does imply a decrease in the end-to-end delay. This property is further extended
to an arbitrary number of GI/G/K queues in tandem, with resequencing after
each stage. However it does not seem to apply to end-to-end resequencing systems.

The model is now introduced with the appropriate notations. The first disor-
dering system is allowed to be arbitrary, (Fig 3.3.1) while the second disordering
system is assumed to be a.' GI/G/K queue. Resequencing is carried out after each

disordering stage. In the next theorem we show that a decrease in the system
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time at the first disordering system, implies a samplepathwise decrease in theend-

to-end delay. In what follows we use the super-script 1 = 1, 2to refer to the two

systems. For alln =0,1..., and ¢ = 1,2 pose,

Y::

n

t .
n41°

End-to end delay of the nt* customer in the ¢** system.
Inter-arrival time between the (n + 1)™*t and the n** customer into the it*

system.

: Delay of the n*? customer in the first disordering system in the ** system.

: Delay of the nt® customer in the 7** system due to the first disordering system

and the following resequencing box.

: Arrival instant of the nt* customer in the ¢** system.

: Arrival instant into the GI/G/K queue, of the nt* customer to enter the 7t*

system.

: Departure instant from the GI/G/K queue buffer of the n** customer to

enter the ¢t* system.

: departure instant from the system of the nt* customer to enter the 7t* system.

: service time in the GI/G/K queue, of the n®* customer to enter the t”

system.

We now state the main result in this section.

Theorem 3.3.1. Constder the two double stage disordering systems, in which the

first system is allowed to be arbitrary, while the second system corresponds to a

GI/G/K queue. If on some sample space (0, IF, P), the following relations hold

1 — A2
An+1 - An+1

x> X2 n=0,1...(3.35)
ol = g2
then the tnequalities
Y, > Y2 n=0,1...(3.36)

hold true.
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Proof. It is plain from (3.35) that

-
BN

n=0,1...(3.37)

since by defenition

= an+ X, n=0,1...(3.38)

for allz =1,2.
We now focus our attention on the GI/G/K queue. The first thing to note
is that
Jl > g2 n=0,1...(3.39)

A little thought will convince the reader that (3.39) follows directly from (3.35)
and (3.87) since the order in which customers are sent into service in the GI/G/K
queue is the same as the order in which they entered it. However this statement
does not hold for K G/G/1 queues in parallel.

Our next step is to show that
dl > d? n=0,1...(3.40)

To that end, using the basic recursion of Theorem 2.2.1, it is not very difficult to

see that;

di, . = max{d;, J; + oy} n=0,1...(3.41)
for 1 = 1,2. We now prove (3.40) by induction. It is plain from (3.35) that
d} = X§ + 03 > X2 + 02 = d? (3.42)

and (3.40) is thus satisfied for n = 0. Assume that (3.40) is true for some n =
m >0, i.e.,

dl > d? (3.43)

it immediately follows

R (3.44)
and this completes the induction.
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Since

Y =d! —a} n=0,1...(3.45)

for 1 = 1,2, it directly follows that (3.36) holds. B

The next corollary follows directly from the above result and Theorems 2.3-
2.5 from Chapter 2.
Corollary 3.3.1. Consider a two stage disordering system, with hop-by-hop re-
sequencing, in which the first stage is a GI/G /K, queue and the second stage ts
GI/G/ K, queue. If any of the following changes (i)-(i1i) are made to the system,
where

(i) The number of servers in either or both disordering systems is increased
to K; + kj,k; > 0, while keeping the service distribution of the additional servers
the same as those of the original servers,

(ii) Either or both the disordering systems are replaced by an infinite server
system whose service distribution s the same as for the original systems,

(i5i) The service processes in either or both the disordering systems is changed

to {oﬁj}8°,3' = 1,2, such that
7=1,2, n=0,1...(3.46)

then
Y, > V2 n=0,1...(3.47)

Proof. Consider the case when the G/G/K, queue is altered. For ¢ = 1,2, let
X! denote the system delay in this queue of the nt? customer to enter it, before
and after alteration. It is clear from Theorems 2.5.3-2.5.5, that in each of the

cases (i)-(iii) above, the following equation
Xk >x2 n=0,1...(3.48)

is satisfied. Hence the conditions of Theorem 3.3.1 are satisfied in this case, so

that (3.47) follows directly from (3.36).
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Now consider the case when the G/G/K; queue is altered. In this case
Al = A2 and X!=Xx2 n=0,1...

For cases (i) and (ii), (3.47) follows from the fact that J! > JZ for alln =0,1...
while for case (iii), (3.47) follows from the fact that o} > 02 for all » = 0,1....
The details are left to the interested reader.
i
The next result extends Corollary 3.3.1, to any number N, of multi-server
queues in tandem.
Corollary 3.3.2. Consider a N stage disordering system, with hop-by-hop rese-
quencing, in which the i*® stage corresponds to a G/G/K; queve 1 < i < N. If
any of the following changes are made, where
(i) The number of servers in the 1tR queue s increased to K; + k; with k; >
0,< ¢ < N, while keeping the seruvice distribution of the additional servers the
same as those of the original servers,
(ii) The 1t* queue, 1 <1t < N, ts replaced by an infinite server queue whose
service distribution ts the same as for the original queue,
(11i) The service process in the it" queue, 1 <i < N, is changed to {02},
such that
o, >0}, n=0,1...(3.49)

then
Y, > Y2 n=0,1...(3.50)

Proof. A short sketch of the proof is provided, the details of which are left to
the reader.

Suppose that the 1** queue is altered. Then the delay of a customer in the
first (¢ — 1) queues is unchanged, however the departure epoch of a customer from
the 1t* queue will be earlier in the altered system. This in turn implies that the

departure epoch of that customer will be earlier in each of the downstream queues,
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and ultimately the system, for the altered case. This can be proved in exactly the

same way as Theorem 3.3.1, and implies (3.50).
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3.4 Stability of the Two stage Disordering System

Consider a two stage disordering system with end-to-end resequencing. Assume
that the disordering in both stages is carried out by GI/G /oo queues. Our goal
in this section is to prove that the end-to-end system delay Y,, converges in dis-
t.ribution to a proper random variable Y,,. This constitutes an extension of the
results in [7], where stability of a single stage resequencing system was proved.

We will use the same notation for the end-to-end resequencing queue as in
Theorem 3.2.1. The main result is contained in Theorem 3.4.1, in which we prove
a somewhat stronger result, i.e., the RV’s (D,,,Y},) jointly converge in distribution
t0 (Doo, Yoo). This will be essential in developing the integral equation for which
the joint equlibrium distribution of (Do, Yoo), which is done subsequently.

Recall that the sequences {D,}$° and {Y,}§® where recursively defined by
the equations

Dyy1 = max{Xn+1+ Snt1,Dn + Sng1 — Sn — Ansy1}
n=0,1...(3.51)

with Do = So + Xo

and
Yot1 = maX{Dn+1aYn - An+1}
n=0,1...(3.52)
with Yo = Do
We will make the following assumption (C1), where
(C1) The RV’s {S,}5°, {X»}§® and {A,}{° are mutually independent sequences

of i.i.d RV’s with finite means, i.e.,

E[S,] < o E[X,) <o  E[4p] < n=0,1...

We now state the main result in this seection.
Theorem 3.4.1. Under the assumption (C1), the sequence {Dy,Y,}$ converges
in distribution to finite RV’s (Doo,Yco).
Proof. By iterating on (3.51)-(3.52) it follows that for alln = 0,1...,
.Dn = max{Sn +Xn,Sn +Xn_1 — An,... ,Sn +XO _An T e T Al} (3.53)
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and
Yn = max{Dn,D,,_l ——An,...,Do -—An -_ ...—Al} n =0,1,...(3.54)

Substituting for Dy,,m =0,...,n from (3.53) in (3.54) we obtain

(Dn,Yn) = (max{Sn+Xn,Sn+Xn_1 _An’.-.,Sn""XO_An—..._Al},
max{Sn + Xn,Sn + Xn-1— Anys---1Sn + Xo — Ap — ... — A1,

Sn—l+Xn—1—Ana---asn—1+XO_An_---_Al,
..,So+Xo—-A,,,—...—A1})

n=0,1...(3.55)
Following Loynes [48], we imbed the sequences {Sn}§°, {X»}§* and {A,}{° into
o0

the larger stationary ergodic sequences {Sn}% o, {Xn}%% and {A4,}2,, respec-

tively. The RV’s {D.,,Y!}8° are now defined componentwise by

(D;,Y,:) = (ma.x{So + Xo0,S0 + X_1— Agy..., S0+ X_pn — Ao — A—(n—l)}y

ma.x{S’o + Xo0,80+ X1 — Ao,...,580 + X_pn — Ag—...— A—(n—l)’
S.1+X_1—A40,...,51+X n—Ao—...— A_(n_1),
...S—n + X—n - AO e e T A_(n_l)})

n=0,1,...(3.56)

Due to (C1), the RV’s (D,,Y,) and (D},,Y,) have the same distribution for all
n=20,1....

Note that the sequence {D.,Y, }8° is non-decreasing in n, and therefore

lim(D!,,Y!) exists. Denote this limiting RV by (D{,,Ys). The RV (Dg,,Y,)

is a.s. finite since by (C1), the strong law of large numbers yields,

1
lim ;(Ao +...+4,) =E[A| >0 as. (3.57)
n
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lim~=2 =0 as. (3.58)
n n
and
S_
lim n" =0 as. : (3.59)

Thus, there exists an a.s. finite integer valued RV Mj such that for all n > Mo,
S_m-I—X_n—Ao—...—A_(n_l) <0 0o<m<n (3.60)

Hence D!, and Y/, are the maximum of an a.s. finite number of proper RV’s
hence each is itself a proper random variable. Consequently the RV’s {D,,,Y,}
necassarily converge weakly to an a.s. finite RV (Doo,Yoo) Which is identical in

distribution to the non-defective RV’s (D.,,Y.,).
|

An integral equation for the joint distribution of (Do, Yo) is developed next.

From (3.52), it is plain that the sequence {Y,}§° does not form a Markov
Chain because {D,}$° is not an i.i.d sequence. However the RV’s {(Y,, Dy)}§°
do form a two dimensional Markov chain, as can easily be checked from (3.51)-
(3.52). We will use this property in deriving the integral equation.

Define for each n =0,1...,
Fy,p,(y,d) = P[Yn<y,Dpn<d] y,d>0
Also for convenience pose for each n =0,1...,
F4(a) = P[A, < d] Fx(z) = P[X, < 7]
Fs(s) = P[Sp < s
with @ > 0,z > 0 and s > 0. From (3.51)-(3.52) we can write (for y,d > 0),

FYn+l yDn+1 (y’ d)

o0 [o o]
= / / P(Yn+1 <y, Dpy1 < d| Yy =2z,Dp = 2)dFy, p,(z,2)
o Jo
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[o) 0o
=/ / P(Dn+1 Sy’z_An+1 Sy,Dn+1 S dl Y"' =:c,Dn=z) dFYMDn(z’z)
0 0

co foo
= / / P(Dn+l < min(yad)’An+1 Zr—y l Y.=2,D, = z) dFY,.,D,, (55, z)
0 0]

(3.61)
Let p = min(y,d), p’ = p—a, ¢ = £—y and r = max(q, 2—b+a—p). Conditioning

the integrand on S, and S,,, we get

P(Dn+l <p,Ant12¢ I Y,=z,D, = z)

Z//P(Dn+1 <p,Ant124¢ | Yo,=2z,D, = 22,8041 =a,Sy, :b)
ng (a) dFs (b)
= //P(Xn+1 < pIaAn+1 >r | Yo =2,Dp = 2,5,41 = a,S, = b)

dFs(a)dFs (b) (3.62)

where both the integrals are from O to infinity. Since X,4; and A,4; are inde-

pendent of Yy, Dy, Sp4+1 and Sy, we can re-write the last equation as

P(Dn+1 SpaAn—i-l Zplyn =z, Dy :z) =

/:o /C;OOP(Xn+1 < p')P(Any1 > 1) dFs(a)dFs(b) (3.63)

The integral in (3.63) can be evaluated after substituting for the distribution of
Spn+1s9n, Xn+1 and Ay 1. Denote its value by ¢(y, d, z, z), so that

b(y,d,,2) = / ” / ” Fx(#){1 - Fa(r)} dFs(a) dFs(b)

Hence we can write (3.61) as

FY,,+1,D,,+1 (y) d) = / / ¢(y, d, z, Z) dFY" D, (I, z) (3,64)
0] (o]
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From Theorem 3.4.1 the distribution Fy, p, has a weak limit Fy, p, and therefore

we have the following integral equation, satisfied by this limiting distribution.

FY,D (y’ d) = / / ¢(y, d’ z, 2) dFY,D (-'l:, 2) yad 2 0
o Jo (3.65)

=0 otherwise
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CHAPTER IV

THE TWO SERVER RESEQUENCING SYSTEM

4.1 Introduction

In this chapter we present a detailed analysis of the M/M/2/B queue with rese-
quencing. There are a number of reasons why an exact analysis of simple models
such as this one is of interest, not the least among which is that perfomance
measures of complicated systems can be bounded by those of simpler systems (as
amply illustrated elsewhere in the thesis).

The mathematical technique is from Markov chain theory rather than from
sample path analysis, in contrast with the material of the last two chapters. The
main ingredient required for a Markov chain analysis is a state space representa-
tion of the system. As pointed out earlier, the state space representation of most
resequencing systems, indeed of most systems with synchronization constraints, is
so complex that a Markov chain analysis is all but impossible. However, because
of the structure of the M/M/2/B system with resequencing, a state space repre-
sentation which is simple enough, in fact exists, and can be used to advantage.

The rest of the chapter is organized as follows. In Section 4.2 we give a
Markovian state space description of the model. In Section 4.3 we present the
corresponding equations for the steady-state probabilities. In Section 4.4 we give
an exact solution to these equations for the special case of B = 0. In Section 4.5,
by using matrix-geometric techniques, we solve them for an arbitrary yet finite
value of B. In Section 4.6 we derive formulae for the bulk departure distribution

for the cases B = 0 and B = o0.
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Fast Server

@ Resequencing Box

Slow Server

Fig 4.2.1 The Resequencing System

4.2 A Markovian State Space Description

Consider a M/M/2/B queue with arrival rate A, and service rates of mag-
nitude u; and ug for servers one and two, respectively (Fig 4.2.1). Assume that
#1 > ug so that server one (1) and server two (2) can be called the fast and slow
servers, respectively. Pose

n = number of customers in the main queue buffer.

e; = 1 (resp. 0) if the faster server is busy (resp. idle).

ez = 1 (resp. 0) if the slower server is busy (resp. idle).

m = number of customers in the resequencing buffer.

The variables (n,e1,e2,m) do not constitute a Markovian description of the
system, since there is no way to take into account the effect on m by a service
completion at either server. Due to the synchronization constraint on the output
customer stream, we need a state variable which captures this effect. A clever way
of defining this state which was first given by Luke Lien [49], is now presented. The
additional information needed to get a Markovian state space description is the
specification of which of the two customers presently in service, started receiving

service earlier (Fig 4.2.2). This is exactly what the fifth state variable, denoted
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Fast Server Fast Server
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Slow Server Siow Server
Out-of-Sequence State In-Sequence State

Fig 4.2.2 O-State and [-State

by Z, specifies with
Z = I if the fast server (1) is serving the customer which entered the system earlier.

We shall refer to this as being an sn-sequence state.

Z = O if the slow server (2) is serving the customer which entered the system earlier.

We shall refer to this as being an out-of-sequence state.

When there is a single customer in the system, we shall adopt the same
notation with the interpretation that Z = I if the customer is with the fast server
and Z = O if the customer is with the slow server.

The reader will readily check that (n, ey, e2,m, Z) provides a complete Marko-
vian state space description of the system. The state variables (n,e;,ez,m, 2)

belong to the space
E={0}UIN x {0,1} x {0,1} x IN x {I,0}

where {0} is the ‘empty’ state.
If the system is in a in-sequence state (Z = I), then a departure from server
2 leads to an increase in the number of customers in the resequencing box by one

(m — m + 1), since the customer who arrived earlier is being served by server 1.
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On the other hand, a departure from server 1 empties all the customers in the
resequencing buffer (m — 0), and changes the state to an out-of-sequence state (if -
there is a customer in service in server 2). By a similar rea.sdning, if the system
is in an out-of-sequence state (Z = O}, a departure from server 1 leads to an
increase in the number of customers in the resequencing box (m — m + 1), while

a departure from server 2 empties the resequencing box (m — 0).
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Fig 4.3.1. The State Space

4.3 The State Space Equations

In this section we proceed to write down the equations for the steady state
probabilities for the Markov Chain associated with the M/M/2/B queue with
resequencing. This Markov chain is partially illustrated in Fig 4.3.1., however in
the interests of clarity, some of the transistions have been left out of the figure.
The complete state equations are provided below.

1. The equilibrium equation at the origin.

[o o] oo
AP(0) = p1 ¥ _ P(0,1,0,5,I) + u2 ¥ P(0,0,1,5,0) (4.1)
7=0 =0
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2. The equlibrium equations for the states for which 7 = I.
(a) For0<i< B,j >0,e; = 1,65 =1.

(A + 41+ p2)P(5,1,1,5, 1) = paP(s+1,1,1,5 — 1,I) + AP(i —1,1,1,5,1) (4.2a)
(b) For : = B,j5 > 0,ey = 1,e3 = 1.
(#1 + p2)P(B,1,1,5,I) = AP(B — 1,1,1,7,1) (4.2b)
(c) Fori=0,5 >0,e; =1,e3 = 1.
(A + g1 + p2)P(0,1,1,5,1) = o P(1,1,1,5 — 1,1) + AP(0,1,0,5,1)  (4.2¢)
(d) For: =0,5 > 0,e1 = 1,e3 = 0.
(A + 11)P(0,1,0,4,I) = u2 P(0,1,1,5 — 1,1) (4.2d)

() For0<t < B,j =0,e; =1,es = 1.
oo
(A +p1 +#2)P(3,1,1,0,1) = p2 ¥ P(i+1,1,1,5,0) + AP(i—1,1,1,0,1) (4.2¢)
=0

(f) For ¢ =0,5 =0,e; = 1,e2 = 0.

(A+ g1 +mu2)P(0,1,1,0,1) = 42 ¥ _ P(1,1,1,5,0) + AP(0,1,0,0,1) (4.2f)

j=0
(g) For i =0,5 =0,e; = 1,e2 =0.
o0
(A + u1)P(0,1,0,0,I) = pz »  P(0,1,1,5,0) + AP(0,0,0.0) (4.29)
7=0

2. The equilibrium equations for the states for which Z = O
(a) For0< i< B,j >0,e; =1,e5 = 1.

(A+p1+p2)P(4,1,1,5,0) = p P(2+1,1,1,7—1,0)+ AP(:—1,1,1,7,0) (4.3a)
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(b) For i = B,j > 0,e; = 1,e2 = 1.
(11 + u2}P(B,1,1,5,0) = AP(B — 1,1,1,4,0) (4.3b)
(c) Fori=0,7 >0,e; = 1,e2 = 1.
(A + p1 + #2)P(0,1,1,5,0) = 1 P(1,1,1,5 — 1,0) + AP(0,0,1, 1, 0) | (4.3¢)
(d) Fori =0,5 > 0,e; =0,e3 = 1.
(A + p2)P(0,0,1,5,0) = u P(0,1,1,5 — 1,0) (4.3d)

(e) For0<i< B,j =0,e; =1,e5 = 1.

(A+p1+u2)P(3,1,1,0,0) = p1 ) P(i+1,1,1,5,0)+AP(i—1,1,1,0,0) (4.3¢)
Jj=0

(f) For ¢t =0,5 =0,e; = 1,e5 = 1.

oo
(A + p1 + #2)P(0,1,1,0,0) = p1 Y _ P(1,1,1,5,1) + AP(0,0,1,0,0)  (4.3f)
=0

(g) Fori =0,5 =0,e; = 0,e2 = 1.

(A + 12)P(0,0,1,0,0) = p; > _ P(0,1,1,5,1) (4.3¢)
=0
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4.4 The Case B=0

Explicit closed form expressions can be obtained for the buffer occupation prob-
abilities for the special case when B = 0. A customer who arrives when both the
servers are busy is discarded. Because of the resequencing constraint, customers
leave the system in the same order in which they started service. We assume that
the resequencing box has unlimited buffer space.

Note that all the results given below can be recovered from the more general
discussion of Section 4.5. We nevertheless go through the calculations because the
case B = 0 is of interest in its own right and the equations being much simpler
than for the general case, it serves an illustrative purpose.

The equations to be solved are now stated below. Since n = 0 everywhere, it

is omitted from the notation. The equations (4.1)-(4.3) now become,

oo o0
AP(0) = p1 > P(1,0,5,1) + p2 Y P(0,1,5,I)  j >0(4.4)
7=0 j=0

(A + p1)P(1,0,5,1) = u2 P(1,1,5 —1,I)  j>1 (4.5a)
(A + p2)P(0,1,5,0) = p1 P(1,1,5 — 1,0) j>1 (4.5b)
(F"l + ﬂZ)P(ls 1:jv I) = ’\P(laoaj’ I) j >0 (460')

(k1 + p2)P(1,1,7,0) = AP(0,1,5,0)  §>0 (4.6b)
(A + 1) P(1,0,0,1) = AP(0) + u2 ¥ P(1,1,5,0) (4.7a)
=0
(A + u2)P(0,1,0,0) = p1 »_ P(1,1,5,1) (4.7b)
7=0

We now proceed to solve these equations. From (4.5a-b) and (4.6a-b) it is

easy to see that the equations

. _ H2 7 A j S
P(1,0,75,1) (}\+M1) (M1+M2) P(1,0,0,1) Jj=20 (4.8)
. A .
P(1,1,5,1) = (—2—)i( Y *t1P(1,0,0,I) ;>0 (4.9)

At pr” Cprtope
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. M1 ; A ] .
P(0,1,4,0) = 7 7
(0,1,5,0) (A+#2) (u1+uz) P(0,1,0,0) j>0 (4.10)

A
M1+ p2

P(1,1,5,0) = ( ) ( J’*1P(0,1,0,0) >0  (4.11)

A + K2
are satisfied..

Substituting (4.11) into (4.7a), we obtain

A

i+1p(0,1,0,0) (4.12
/\+#2 u1+N2) (0,1,0,0) (4.12)

(A + 11)P(1,0,0, 1) = AP(0) + p2 E(

Pose

[0 o]
_ H1 5 A J+1
o1 ;(Mruz) (ul +uz)

_ A pe)
po(A+ p1 + p2)

with oy always finite since

ad A <1
At po py + p
Hence (4.12) can be rewritten as
(A + 1) P(1,0,0,I) = AP(0) + 01 42P(0,1,0,0) (4.13)

Substituting (4.9) into (4.7b), we also obtain

A

T y’*+1P(1,0,0,1) (4.14)

A P(0,1,0,0 ) (
(A + p2) P( ) = MIZ(/\+M1

Pose

At u" Cpn e

az:i( be_yi(2 i

A(A+ 11)
p1(A 4+ p1 + pe2)
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with o2 obviously finite since

142 A

<L
Aty py + pe
Hence (4.14) can be rewritten as
()\ +//'2).P(0, 1,0, O) = 0'2/1.1P(1,0,0,I) (4.15)

The relations (4.13) and (4.15) provide us with two equations for the unknown
values of P(0),P(1,0,0,I) and P(0,1,0,0). In order to get a third equation, we

use the fact that the sum of all the probabilities should be one, i.e.,

o0
P(0) + ) (P(1,0,5,1) + P(1,1,5,I) + P(0,1,5,0) + P(1,1,5,0)) =1 (4.16)
7=0

Substituting from (4.8)-(4.11), into (4.16) we obtain
P(0) + (02 + 03)P(1,0,0,I) + (01 + 04)P(0,1,0,0) = 1 (4.17)

where 01 and o, are as defined earlier and o3 and o4 are given by

os =3 (H2 iy

oo At aT Tt e

_ (A4 p1)(p1 + p2)
p1(A 4 p1 + pe2)

and

o= S (i

= At pe’ Cpn + pe

_ (At p2)(p1 + pa)
p2(X+ p1+ p2)

The values of P(0),P(1,0,0,I) and P(0,1,0,0) can now be obtained very

easily by solving the system of linear equations

A —(A+p1) o1lt2 P(0) 0
0 o2 —(A + p2) P(1,0,0,I) | =|0]. (4.18)
1 (oz+03) (01+04) P(0,1,0,0) 1



With

A+ 1) (X + p2) _O1p2 (02 +03)(A + p2)
oa1 A A o211

P = + 01+ 04 (4.19)

routine yet tedious calculations give

A+ u1)(A+u2) o1pa

P(o) = STk 2 (4.20)
P(1,0,0,1) = (();—;;—l’fj-)— (4.21)
P(0,1,0,0) = % (4.22)

We can use (4.8)-(4.11) to obtain the values the other steady state probabil-
ities.

1) The probability that there are j customers in the resequencing buffer and
the customer who arrived earlier is being served by the fast server.
A At pL 2 A g

i j , j>o. 4.23
/\+u1)(u1+uz)( w1+ M2 )02M11/’ )= ( )

P(JaI) _(

2) The probability that there are j customers in the resequencing buffer and
the customer who has arrived earlier is being served by the slow server.

j g ' > 0. 4.24
A+u2)(u1+uz) py+pe Y 7= (424)

P(3,0) = (

3) The probability that there are j customers in the resequencing buffer.

P() = ( A )J-/\+llfl+#&2( K2 J-)\-I-Mz +(

J-—— > 0.
p1t+p2’ prtpe A+’ opayp ) ] I

A+M2
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4.5 The General Case

. In the present section we present a technique for calculating the exact values of the
buffer occupation probabilities in the M/M/2/B queue with resequencing. Note
that equations (4.8)-(4.11) in the last section indicate a geometric structure for
the buffer occupation probabilities when B=0. We carry that insight to its logical
conclusion by showing that in the general case, the buffer occupation probabilities
have a matriz-geomeiric structure.

We proceed as follows. The states in the Markov chain are numbered ap-
propriately so that the corresponding infinitesmal generator matrix Q is seen to
have matrix-geometric structure. In fact the structure coincides with the modified
matrix associated with complex boundary behaviour which is identified in Neuts,
P. 24 [56]. Once this is done, the probability vector can be written down using
standard techniques.

As the first step we partition the state probability vector into the vectors

(P(0), 7o, 71,...), where P(0) is the probability of the zero state as before and
=; = (P(0,0,1,7,0), P(0,1,1,5,0),...,P(B,1,1,5,0), P(B,1,1,3,1),...

...,P(0,1,1,4,I),P(0,1,0,7, 1)) (4.26)

for all j > 0. Hence 7; is a (1x2(B+2)) row vector which contains the probabilities
of all states that have 7 customers in the resequencing buffer. Using this partition
of the state probability vector, we can write the infitesmal generator matrix Q in

the block partition form

DO CO 0 0 0 O
DL C1 A0 0 0 O
DI C2 Al A0 0 O ...

Q=|p1 c2 0 Al 40 O ... (4.27)
DI C2 0 0 Al A0

In (4.27), DO = —X and the other matrices are defined below, with the

convention v = (A + p1 + p2).

79




C0 = (0’0’ ...,0, A)1X2(B+2)

‘D]'T = (/’LZ,O,' . "O,MI)IXZ(B+2)

_ [ AOny 0
AO"( 0 A022>

where
0 0 0 ... 0 0 0y FxEB+
#u1 0 0 ... 0 0 O
0 wur 0 ... O 0 O
A0y = | . . . .
0 0 o ... 1751 0 0
0 00 0 w1 O
and
0 p2 O 0 0 0\ (Bt2)x(B+2)
0 0 0 0 O
AO22 = : :
0 0 0 0 w2 O
0O 0 O 0 0 s
0 0 o 0 0 0
_ [ Alnn 0
Al = ( 0 Aly )
where
—(A+mwp2) X 0 ... 0 O 0 (B+2)x(B+2)
0 -y A 0 O 0
A111 = . S
0 0 0 0 — by
0 0 0 0 0 —(p1+pe)
and
—(w14+u2) 0 0 ... 0 O 0 (B+2)x(B+2)
A -y 0 0 O 0
A122 = .
0 0 0 A -y 0
0 0 0 0 A —(A+m)



where
0O 0 O 0 0 0 (B+2)x(B+2)
0 0 0 0 0 4
0 0 0 0 us O
C2y3 = ..
0 0 u 0 0 0
0 pz O 0 0 0
and
0 0 0 0 py 0y (BrOx(B+2)
0 0 0 g1 0 0
C221 = ‘
0 p O 0 0 0
g1 0 0 0 0 0
0 0 O 0 0 0
. Cly; Clqo
C’l—(0121 Claz2
where

Clyy = Al;11,Clyg = C212,C1ly; = C221,C22 = Al

Let e be a (2(B +2) x 1) column vector with all its components equal to one.

Since Q is an infinitesmal generator matrix, its rows should sum upto zero,i.e.,

DO+ C0Oe=0
D1+ Cle+ AOe =0 (4.28)

D1+ C2e+ Ale+ AOe =0
We now proceed with the task of solving the equations

TQ =0, e =1 (4.29)
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which can be rewritten as

o0
P(0)D0O+D1) m;=0 (4.30)
t=0
o0
P(0)CO+moC1+C2) m =0 (4.31)
t=1
TiAO + i1 Al=0 >0 (4.32)
oo
PO)+ ) m=1 (4.33)
—~

Before we can solve (4.30)-(4.33) we need the following Lemma.

Lemma 4.5.1. The following statements hold true, namely

(1) The matriz Al ts nonsingular.

(2) If
R = —A0(A17Y) (4.34)

then the eigenvalue A(R) of R with largest modulus satisfies the condition,
AR) < 1. (4.35)
(8) The matriz B(R) defined by
DO co
B(R) = (4.36)

(CZoB)D1 C1+ (332, RY)C2

s an infinitesmal generator matriz.

Proof. (1) The nonsingularity of Al can be proved very easily as follows. If the

row vector u = (uy,us) is in the (left) null space of A1, then
uAl =0 (4.37)
and this implies that

(A + u2)u; =0 and (A+p1)us =0 (4.38)
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whence u; = us = 0, i.e., Al is nonsingular.

(2) Since Al is nonsingular, the matrix R is well defined. Let u be the left

eigenvector of R corresponding to A(R), i.e.,
uR = A(R)u

or equivalently,

—uwA0A1™! = A(R)w.

Therefore
—uA0 = A(R)uAl

and postmultiplying by e on both sides of (4.33) leads to

uAQe
AMR) =— .
() uAle
It is easy to see that
B+2 2B+3
uAQe = ,Ufl(z u;) + paf Z u;)
1=2 {=B+3
2B+4 2B+3
—uAle = pu( Z us) + pa Z u;)
1=2 t=1

The conclusion A(R) < 1 now follows from (4.43)-(4.44).

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(3) Since A(R) < 1, it follows that Y io, R* = (I — R)™! is well defined. To
prove that B(R) is an infinitesmal generator, first note that D0 + COe = 0 by

(4.28). Hence it suffices to verify that

o0
> RY(D1+ C2€)+ D1+ Cle=0.
1=1

(4.45)

This is easily done by direct calculations whose details are left to the interested

reader.

We can now state the main result in this section.
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Theorem 4.5.1. The solution to (4.25) s given by the vector
7w = (P(0), 7o, 71,...) where

mi=mR', >0 (4.46)
with R defined by (4.34) and (P(0), 7o) solves the egn

(P(0) wo)B(R)=0 (4.47)
subject to the normalization condition

P0)+m(I~R) le=1 (4.48)

Proof. By Lemma 4.5.1, Al in nonsingular, so that (4.46) follows directly from
(4.32). Also (4.47) follows from (4.30)-(4.31) after substituting for {m;,7 > 1} in
terms of mo via (4.46). i

The distribution of the number of customers in the resequencing buffer can
be recovered from Theorem 4.5.1. From the definition of #; given in (4.26), the
probability ¢; of finding j customers in the resequencing buffer is simply the sum

of the probabilities in 7;, therefore,

cp — J s ; .
qj:{wje moRIe if 72>1; (4.49)

1—-mR(I—R) e if j=0.

The average number of customers in the resequencing buffer is then given by

=1
o0
= Zj moR e
i=1 (4.50)
m -
= 7o Zj Rle
i=1
= moR(I — R) ™ %e



4.6 Bulk Departure Size Distribution of the M/M/2 Queue with Resequencing

We give formulae for the bulk departure size distribution for the case when B = oo
and g3 = pz = p. The assumption of equal service rate for the two servers
is made so that the bulk departure has equal probability of being trigered by
service completion at either server. In the case of unequal service rates, the bulk
departure clearly has different probabilities of being caused by a departure from
either the fast or the slow server. Since we have been unable to estimate this
probability, the assumption of equal servive rates is necessary. In the rest of the
section, a customer responsible for trigerring the bulk departure, is referred to as
a star customer.

When the number of servers is two, the calculation of the distribution of the
bulk departure process from the resequencing buffer is simplified by the fact that
the star customer clears the resequencing buffer of all customers, when he departs.
In other words the number of customers in the departing bulkcoincides with the
number of customers that the star customer finds in the resequencing buffer (plus
the star customer himself). But note that the number of customers that the star
customer finds in the resequencing buffer is equal to the number of customers that
overtook him by going through the other server while the star customer was being
served. Hence all that we have to do is to find the distribution of the number of
occurences of the point process corresponding to service completion at a server,
while a star customer is in service at the other server. There is one case when
this can be done easily, i.e. when the buffer size is infinite, since in this case the
point process of interest happens to be Poisson. In the case of finite buffer size,
the point process far less from being Poisson, is not even a renewal process [18],
thus rendering the calculation of the bulk departure distribution more difficult.

e The case B = oo

Consider a M/M/2 queue with resequencing at equilibrium. Assume that
the star customer is in service at the first server. It is easy to see that the rest
of the queue behaves like a M/M/1 queue with service rate x4 and arrival rate A.

By Burke’s Theorem, the output process from the queue is Poisson with rate A.
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Hence we have to find the number of points of a Poisson process with rate A, in an
interval whose length exponentially distributed with parameter u. Let the length
of the service interval of the star customer be T. If N(t) is the number of points
of the Poisson process in an interval of length ¢, then it follows that

At)*

Pr(N(T) =k |T =t) = exp(—,\t)(T k=0,1...(4.51)

Using the Law of Total Probabilitie, we obtain

Pr(N(T) =k) = /000 exp(—At) ()\I:!)k pexp(ut) dt

S k=0,1...(4.52)
"
(A+u)(/\+mu)k

(4.52) gives the distribution of the number of the number of customers which
overtake the star customer while he is in service in the first server. The distribution
of the number of customers which overtake the the star customer while he is in
service in the slower server is given by exactly the same expression due to the

asssumption of equal service rates.

Define bx=P(the probability that the departing bulk consists of & customers).

From the above discussion it is clear that

M Ak _
bk+1”(z\+u)(k+u) k=0,1...(4.53)
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CHAPTER V

THE MAIN RESULTS

5.1 Introduction

In this chapter we deal with a simple control problem that arises in a system
with synchronization constraints. The queueing system under consideration is
the M/M/2 queue with resequencing analysed Chapter 4 where the servers had
unequal service rates. The new feature in the system is a scheduler which assigns
customers from the main buffer to the servers so as to minimize the average end-
to-end delay of the customers which enter the system. This problem is similar to
the one that was analysed by Kumar and Lin [41] except for the fact that now
the customers are constrained to leave the system in the same order in which they
entered it.

If we regard the two servers as communication links and the customers as the
message packets, then this problem is of immediate practical importance. Similar
conditions arise in a flexible manufacturing system also.

Our main result concerns the structure of the optimal policy which assigns
customers to the two servers so as to minimize the end-to-end delay of the cus-
tomers, including the resequencing delay. It is shown that the faster server should
be kept busy whenever possible and the decision to send a customer to the slower
server is independent of the number of customers in the resequencing buffer, being
of the threshold type in the number of customers in the main queue buffer. The
policy is thus of the type identified by Kumar and Lin but the threshold will ob-
viously be different in the two cases. Though we have not been able to derive an
explicit formula for the optimal threshold, it is intuitively evident that it should
be no smaller than the threshold for the case treated by Kumar and Lin since

resequencing makes the use of the slower server more expensive. We will consider
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this.issue in greater detail later.

An attractive aspect of the optimal policy is that the scheduler does not
have to care about the number of customers in the resequencing buffer. In the
communications link example, this means that we can optimally assign messages
to the two links without keeping account of the number of messages at the receiver
which are out of sequence. Keeping this record would have entailed an additional
communications cost.

In the present chapter we give a description of the problem and state the
equations that must be satisfied in order to identify the optimal control of the two
servers, while in the next chapter we provide an inductive proof of these equations
using the standard value iteration technique of dynamic programming,.

This chapter is organized as follows. The model is introduced in Section
5.2. In Section 5.3, we give a discrete time formulation of the problem, and an
explicit description of the control actions and events is provided in section 5.4.
The dynamic programming equation is then formulated in Section 5.5 The optimal
control for the faster server is identified in Section 5.6., while the optimal control

of the slower server is identified in Section 5.7.
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5.2 The Queueing Model

The system under investigation is a M/M /2 queue with heterogenous service rates -
and resequencing (Fig 4.2.1). The input process is Poisson with rate A. The two
service time distributions are also exponential with rates p; and ug at server 1
and server 2, respectively. We assume that x; > u2 so that server 1 and server 2
can be called the fast and slow servers respectively. A state space representation
of the system is provided by the quintuple z = (zo, 1, 2,%3, Z) where

Number of customers in the buffer of the M/M/2 queue.

1 (resp. 0) if the fast server is busy (resp. idle).

1 (resp. 0) if the slow server is busy (resp. idle).

number of customers in the resequencing buffer. -

I (resp. O) if the customer being served by server 1 (resp. server 2), arrived

earlier than the one being served by server 2. (resp. server 1).

When there is a single customer being served by either one of the two servers,
we shall adopt the same notation with the interpretation that Z = I if the cus-
tomers is with server 1 and Z = O if the customer is with server 2.

Also note that the model does not support jockeying of customers between
the two servers so that once a customers commences service at some server, it

remains there for the duration of its service.
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5.3 Description of Problem

Our aim is to find the optimal policy which assigns customers to the two servers
in the dueueing model described in Section 5'.2, 80 as to.‘ minimize their average
end-to-end delay. To that end, define the cost incurred per unit time at time t,
with the system in state z(t) as ¢(t) = zo(t) + z1(t) + z2(t) + z3(t). This is seen
to be linear in the number of customers in the system.

A policy # is any rule which at ¢ > 0 decides on the basis of {z(s),s < t},
whether to send a queued message to the idle servers or not. Since we consider
only the discounted cost case in this chapter, let a > 0 be the interest rate used
for discounting the future cost, i.e., the present value of cost c(t) incurred at time
t is c(t) exp(—at) so that the cost incurred by a policy <y over the interval [0, co)

with initial state z is given by
co 3
J(z,7) = EZ/ exp™®t > zi(t)dt. (5.1)
0

1=0

A policy 7 is optimal if J(z,n) = inf, J(z,v) and it is well known that = is

Markov and stationary.
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5.4 Conversion into a Discrete Tiimme Problem.

It is useful to give a discrete time formmulation of the problem in order to facili-
tate the use of the inductive approach in the dynamic programming argument. It
is shown by Lippman [46] and Serfozoa [68], that if a controlled Markov process
M, has transition rates uniformly bounded by some some constant ¢, then an-
other controlled Markov process Ms, can be constructed which is probabilistically
equivalent to it i.e. they have the same infinitesmal generator matrix Q. Morever
M, is such that the time between all transitions are exponentially distributed
with the parameter ¢, independent of the state of the process. Hence a complete
description of M2 can be given by meams of ¢ and a discrete time Markov chain
M3, imbedded at the times of the state transitions of M2. It can be easily shown
that the transition probability matrix of Mj is given by I + —Cf- It is shown in
[46], that if a stationary policy is employed for the infinite horizon problem, then
both the discrete and continous formulations are equivalent, as are their functional
equations. Hence we can equivalently work with the discrete time formulation of
the problem without losing anything as far as the identification of the optimal
policy is concerned.

Since in our problem the transition rates of the original continous time
Markov process are bounded by (A + g1 + p2), we can apply the above men-
tioned results and transform it into a discrete time process. Note that the arrival
service rates in the discrete time problem are different than in the original con-
tinous time problem, in fact their new value depends on the parameter ¢. We
choose ¢ in such a way that

Atpur+ur=1

in the discrete time system.
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5.5 Description of Discrete Time Problem

In this section we provide a detailed description of the events and control actions
in the discrete time problem.

The system state z = (zo,z1, %2, 23, Z) belongs to the state space

E = {0} UV x {0,0,0, Z}
UIN x {1,0} x IN x {I}

(5.2)
UIN x {0,1} x IN x {O}
UIN x {1,1} x IN x {I,O}
where {0} represents the ‘empty’ state.
Define the operators 4,D;, D2 E — E as follows:
A(zo,z1,22,23,2Z) = (o + 1,21, 22,23, Z) (5.3)
D(zo,1, 22,23, ) = (0,0,22,0,0) (5.4a)
Dy(z0,0,z2,2z3,0) = (20,0, z2,z3,O) (5.4b)
Dy(zo,1, z2,23,0) = (20,0, 22,23 + 1,0) (5.4¢)
Dy(zo,z1,1,23,0) = (20,21,0,0,I) (5.5a)
Dy (z0,21,0,23,I) = (20,21,0,z3,I) (5.5b)
Do(zo,71,1,23,1) = (x0,%1,0,23 + 1,1) (5.5¢)

It is plain that A is the arrival operator and that D;,7 = 1,2 is the departure
operator from server ¢. Depending on whether Z = I or O, a departure from
server 1 either adds to the number in the resequencing buffer by one, or clears it
of all customers. The same behaviour is exhibited by a departure from server 2.
The changes in the Z component are illustrated by the following example: When
1 = 9 = 1 and Z = I, then a departure from server 1 changes I to O, since
following the departure, server 2 is left serving the customer who started service
earlier. Note that a departure of a dummy customer does not change the state of

the system.
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We now define the control operators for assigning customers from the buffer

to the servers.

e The hold operator P}, is first defined by
Ph($o,$1,$2,$3,Z) = ($0,$1,x2,x3,Z)
o The operator P; defines customer assignment to server 1 and is given by

(zo — 1,21 + 1,22, 25,0),
ifzog>1,2; =0
Z = 0;
Pl(mo,xl,xz,xs,O) = 4 (.’Eo —1,z;+1,z2,z3 I) ’
9 9 y k) ?
ifzo>1,z; =0

2 =0,z3 >0
{ 7 =1,

Q

e The operator P, defines customer assignment to server 2 and is given by

(.’Bo — 1,:c1,x2 + 1,.’133,[),
if Zo 2 1,1}1 =1
z2 =0,z3 >0
Z =1

Py(zo, 21,72, 23,1) = (zo — 1,21, %2 + 1, z3,0), ’
o > ]-aml = O;
g =0,z3 >0
zZ =1,0;

e Finally, the operator P, defines customer assignment to both the servers at

the same time and is given by,
Py(z0,z1,22,23,2) = (zo — 2,21 + 1,22 + 1,23, Z)

if 2z0>22,21=0,2=0,23>0,Z=1 or O

Let U = {u = (vo,u1,u2) : ui € {h,1,2,b}} be the set of available controls
where control action u; is to be taken on the occurrence of event A and the control

action u;,7 = 1,2 is to be taken on the occurrence of event D;. Let

U(z) = {u € U : A(z) € Dom(Py,), Di(z) € Dom(Py,),s =1,2} (5.6)
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be the set of admissble controls when the system state is z. Note that U(z) can

be expressed as the cartesian product
U(z) = Uo(z) x Uy(z) X Us(z) (5.7)
where
Uo(z) ={uo : A(z) € Dom(Py,)}
Ui(z) ={u; : Di(z) € Dom(Py;)} 1=1,2

In order to complete the specification of the Markov decision process, define

the transition probability function of the discrete time Markov chain as,

Plz(t+1) =y | z(t) = z,u(t) =u) = A, if y= Py, Az
(5.8)
= Uq, if y= Py, D;z

The model operates as follows, if the present state is z, then a control policy
(wo,u1,u2) is chosen such that if an arrival occurs, policy P,, is employed; if a

departure from server i occurs then then policy P,; is employed.
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5.6 The Dynamic Programming Formulation.

Consider the discounted cost criterion in discrete time

E[i ﬂt(:co +z1+ 29+ :Bg)] (5.9)

where zg_%y is a discount factor. This equation is an easy consequence of dis-
cretizing the continous time cost criterion of Section 5.3 by the uniformization
procedure of Section 5.4.

Define a stationary policy 7 as a function = : E — U with n(z) € U(z) for
every z € X. When a stationary policy = is used, the control v = 7 (z) is applied
whenever the system is in state x.

Define by the space F' the collection of all functions f : E — R so that the

norm ||.|| defined as

flz

|I£]| = sup (=) (5.10)
zex max(zo + 1 + z2 + z3,1)

is finite. For any stationary policy 7, define the dynamic programming operator

by
T,rf(.’l:) = $o+$1+$2+$3+,3)\f(Pu0 A.’E)+,3/£1f(Pu1 1)1.’1:)-i—ﬂptzf(Pu2 Dz.’v) (5.11)

for all z in F, where 7n(z) = (uo,u1,u2). The dynamic programming operator T

is now defined by
(Tf)(2) = min(Tx f)(z) (5.12)

Some well known results are stated next for future reference [47].
e For some n , T{™ is a contraction.
e If J? is the optimal cost function then Jf = TJ#.
e For any f € F,limp_oo T f = J#
e There always exists an optimal policy 7 which is stationary.

e A stationary policy 7 is optimal iff J8 = T, JP
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The dynamic programming equation can be written as

JP(z) = min [zo+ 1 + 22 + z3 + BATP(P,, Az)
uelU(z)

+ Bu1J?(Py, D11) (5.13)

+ BuaJ? (P, Dox)]

It is plain from (5.7) that the minimization over » in (5.13) can be performed

by doing separate minimizations over ug, u; and up. Therefore we can rewrite the

DP equation as

JP(z) = 2o+ 21 + 23 + 23+ min BATP(P,, Ax)

UQEUQ z

JP(P, D
+ulren,}f1(x Bu1J” (Py, Dy z) (5.14)

+ mm ,B,uz.] (Py, D2x)

U.oGUz .’B
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5.6 Identification of the Optimal Control of the Faster Server

In the next two sections, several equations that are satisfied by the optimal value
function are stated and an interpretation about their significance is provided.
Their proofs however, being quite tedious are given in the next chapter.

In the present section, we identify the inequalities that the value function

must satisfy in order to specify the optimal control of the faster server.

Lemma 5.6.1. The following tnequalities
f(Prz) > f(P1z), ¢f =€ Dom(Py) (5.15)

and

f(P2z) > f(P1z), ¢f =z € Dom(Py and Dom(Pz) (5.16)

are propagated under the dynamic programming operator.
[ |
An interpretation of Lemma 5.6.1 is now provided. Inequality (5.15) implies
that if server 1 is idle, then it is always optimal to assign a customer to it, if one is
available in the buffer, irrespective of whether server 2 is busy or idle. Inequality
(5.16) implies that if both servers are idle then it is optimal to assign a customer to
server 1 rather than to server 2. Collectively, they tell us that it is always optimal
to keep server 1 busy whenever possible. These conclusions are summarised in the
following theorem.
Theorem 5.6.1. Whenever server 1 ts idle, it is optimal to assign to it a customer
if one is waiting for service.
i
In order to show that the optimal value function satisfies (5.15)-(5.16), it is
sufficient to prove that these equations are propagated under the dynamic pro-
gramming operator, in other words 7' f also satisfies (5.15)-(5.16). In the process of
doing so, we found that it was necessary for the value function to satisfy additional

properties, which are stated in Lemma 5.6.2.
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Lemma 5.6.2. The following inequalities (5.17)-(5.22) are propagated under the

dynamic programming operator, where inequalities

f(xO,Oa 1,333 O) 2 f(IL'o - la 1’1a z3, O) Zo Z 1, I3 Z 0 (5170.)
f(.’Bo,0,0,0, Z) Z f(:BOs 170a0: I) Zo 2 0 (517b)
f(:cOsOa 1,0, O) Z f(.’l)o, 1,0,09 I) To Z 0 (5176)

f(fo + 1, Zi,T2,Z3, Z) > f($0,$1,$2,583, Z) Zo, T3 2 0,z1,22 € {0) :(5’180')

f(xo,zl,xz,:l:3 + I,Z) > f(xo,$1,$2,z3,Z) Zo,x3 > 0,Z1,22 € {0, (}.18b)

f(zo,1,1,23,I) > f(z0,1,0,23,1I) zo,2z3 >0 (5.18¢)
f(z0,1,1,23,0) > f(%0,0,1,23,0) z0,z3 >0, (5.184)
f(z0,1,0,23,1I) > f(20,0,0,0,I) =zo,z3>0 {(5.18¢)
f(z0,0,1,23,0) > f(20,0,0,0) =zg,23 >0 (5.18f)
f(z0,1,1,23,0) > f(20,0,1,z3+1,0) 9,23 >0 (5.19q)
f(z0,1,1,23,0) > f(zg —1,1,1,23 +1,0) zo>1,2z3>0 (5.19b)
f(20,1,1,0,0) > f(20,1,1,0,I) zo >0 (5.20)

f(zo,1,1,23,0) — f(z0,1,1,25,0) > f(yo,1,1,y3,1) — f(v0,1,1, 9%, 1)
To, T(, T3, Th,Y3,Ys > 0,23 — x5 > yz — y§ (5.21a)

f(zo0,1,1,23,0) — f(z0,1,1,75,0) > f(y0,1,0,y3,I) — f(%0,1,0,y5,1)
To, Yo, L3, Th,Ys, Y5 > 0,253 — x5 > y3 — y§ (5.21b)

f(z0,0,1,23,0) — f(20,0,1,2%5,0) > f(yo,1,0,y3,I) — f(y0,1,0,y5,0)
0, Y0, T3, T4, Y3, Y5 > 0,23 — o5 > y3 — y3 (5.21¢)

f(z0,0,1,23,0) — f(20,01,25,0) > f(yo0,1,1,ys,I) = f(¥0,1,1,y5,0)
0,0, %3, T3, Y3, Y3 > 0,23 — 23 > y3 — y3 (5.21d)
f(z0,1,0,2z3,I)— f(z0o—1,1,1,23,1I) = f(z0,1,0,23+1,1I)— f(z0o—1,1,1,23+1, 1)
Zo > 1,23 > 0 (5.22a)
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f(zo,1,1,23,1) — f(zo —1,1,1,2z3 + 1,1)
= f(zo,1,1,25 + 1,I) — f(zo — 1,1,1,z5 + 2,1) 2o > 1,23 > 0 (5.22b)
f(x0,1,0,z3,I) — f(x0 — 1,1,0,2z5 + 1, )
= f(20,1,0,23 + 1,I) — f(zo — 1,1,0,z5 +2,I) g0 > 1,z3 > 0 (5.22¢)
f(zo,1,1,z3,1) — f(z0,1,0,z3 + 1,1)
= f(zo,1,1,z3 + 1,I) — f(20,1,0,23 + 2,1) zo > 0,73 > 0 (5.22d)
f(z0,1,0,z5 + 1,I) — f(zo — 2,1,1, 23 + 2,1)

= f(%0,1,0,z3,I) — f(z0o — 2,1,1,z3 + 1, 1) zo > 2,z3 > 0 (5.22¢)

i
It is shown in the next chapter that if f satisfies (5.17)-(5.22), then T'f also

satisfies them, so that these propeties are invariant under the dynamic program-
ming operator.

An intuitive interpretation is now provided for some these propeties. First
note that (5.17a-c) are the same as (5.15)-(5.16) of Lemma 5.6.1. Inequalities
(5.18a-f) express the monotonicity properties of the optimal value function. The
value function increases if the magnitude of any one the first four states is in-
creased, the other states remaining the same. This should be intuitively clear
since the cost is linear in the first four states.

Inequalities (5.19a-b) are also interesting. Equation (5.19b) reveals the fact
if the total number of customers in the main queue buffer and the resequencing
buffer is kept constant and as the number in the queue buffer is decreased and
that in the resequencing buffer is increased, the value function decreases. Hence it
is ‘better’ to have a customer in the resequencing buffer rather than in the queue
buffer. This is also intuitively appealing since a customer in the resequencing
buffer has already finished its service, while the one in the queue buffer is yet to

receive service. Equation (5.19a) is subject to a similar interpretation.
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Equation (5.20) states that the value function is larger for an out-of -sequence
state compared to an in-sequence state. An intuitive explanation for this is that
when Z = O, then there there is a greater potential for a large number of customers
to accumulate in the resequencing buffer, compared to the case when Z7 = I.
Equations (5.21a-d) were found to be necassary to make (5.20) propagate.

Equation (5.22a) indicates that the decision to allocate a customer to the
slower server is independent of the number of customers in the resequencing buffer.
This can be shown as follows. Suppose that there are k customers in the queue
buffer and n customers in the resequencing buffer, and that it is optimal to assign

a customer to the slower server, in which case
f(z0,1,0,z3,1) — f(zo — 1,1,1,23,1) > 0
But by (5.22a) this implies that
f(z0,1,0,z3 +1,I) — f(z0o — 1,1,1,2z3 + 1,I) > 0

Hence it also optimal to assign a customer to the slower server when there are
n + 1 customers in the resequencing buffer. Equations (5.22c-e} were found to be

necessary to make (5.22a) propagate.
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5.7 Identification of the Optimal Control of the Slower Server

From (5.22a) in the last section, we already know that the decision to assign
customers to the slower server is independent of the number of customers in the
resequencing buffer. In this section we complete the specification of the optimal
control of the slower server by showing that it is of the threshold type in the
number of customers in the main queue buffer when there are no customers in
the resequencing buffer. A proof by policy iteration was attempted but did not
succeed. The proof given by Maglaris [50] was found to be applicable with a few
variations.
Before stating the main result, we need the following lemma.

Lemma 5.7.1 The following inequalities are propagated under, where the dynamic

programming operator,

f(z0,1,1,0, 0) — f(zo — 1,1,1,0) = f(:l:o,l,l,O,I) — fzo — 1,1,1,0,])
zo > 0 (5.23a)
f(:l:o,1,l,xg,Z)—f(xo—l,l,l,:lzg,Z) = f(zo,l,l,:z:3—1,1)—f(xo——1, 1,1,z3—1,1I)
Zo,z3 > 1 (5.23b)
f(20,1,0,z3,I)— f(zo—1,1,0,25,I) = f(%0,1,0,y3—1,1)— f(yo—1,1,0,y5—1,I)
To,Y0,Z3,Z5,Y3,Ys > 0,3 — Th = yz — yh (5.23¢)

f(zo0,1,1,23,1) — f(z0,1,1,23,1) — f(v0,1,0,y3,I) — f(0,1,0,y5,1)

To, Yo, T3, T3, Y3, Y5 > 0,23 — o = y3 — y§ (5.23d)

f(z0,1,1,23,0) — f(z0,1,1,23,0) = f(v0,0,1,y3,0) — f(0,0,1,v5,0)

anyO,ml’nzéay&y:’; > 0,.'133 - fvf:, = Y3 — y;’, (5.236)
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Equation (5.23a) is crucial for the success of the next result, which is adapted
from a proof in [50]. Equations (5.23b-e) were found to be necessary to (5.23a)
propagate.

Before stating the next result, we need a few more definitions.

Let f2 be the function obtained from the nth iteration of the dynamic pro-

gramming equation. For all n = 0,1... define {A,(2)}$° and {A,(2)}$° as by
An(1) = £4(0,1,0,0,I) — f,,(o,o,o,ot, Z)
An(d) = fuli = 1,1,0,0,1) — fo(i — 2,1,0,0,1)  £>2 n=0,1...
An(Z) = fn(O,l,l,O,I) - fn(0,0,l,0,0)

An(d) = fuli — 2,1,1,0,1) = fn(6 - 3,1,1,0,I)  i>2 n=0,1...

We now state the main result of this section.

Lemma 5.7.1.The tnequalities

An(d) S Ap(d)  i>2 n=0,1...(5.24a)
An(d) > Ap(i—1)>0 i>2 n=0,1...(5.24b)
An(G) > A G—-1)>0 i>2 n=0,1...(5.24c)

An(3) > Ap(i—1)  i>2 n=0,1...(5.24d)
hold true for all 1 > 2. B

In order to make (5.24a-d) propagate, it is essential that (5.23a) be satisfied.
We now discuss the significance of these relations. Inequality (5.24a) implies a

threshold policy as shown below. By (5.24a), it is plain that for all > 2,
fuli = 2,1,1,0,1) — fu(i —1,1,0,0,I) < fo(é — 3,1,1,0,1) — fu(i — 2,1,0,0,1)
whence at the nt* iteration,

fn(O,].,l,O,I) - fn(la 1,0,0,]) Z
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f2(1,1,1,0,1) — fn(2,1,0,0,I) > ...
o> (K ~2,1,1,0,1) — fo(K —1,1,0,0,1) > 0> ...
cee > 02> fo(K —1,1,1,0,I) — fo(K,1,0,0,1) >
fn(K,1,1,0,1) — fo{K +1,1,0,0,1) > ...

Hence since f,(¢ —1,1,1,0,I) — fn(%,1,0,0,I) increases monotonically in n,
it crosses zero for some value of 7, say K. This implies that the threshold is K,
for zero customers in the resequencing buffer.

Equations (5.24b) implies that A, (2) is non decreasing and convex in ¢, while
(5.24c) implies that A, (7) is non decreasing and convex in .

These conclusions are summarized in the next theorem.
Theorem 5.7.1 The optimal rule for assigning customers to the slower server is
independent of the number of customers in the resequencing buffer, and is of the
threshold type in the number of customers in the main queue buffer

i
In the next chapter the proofs of all the lemmas in the last two sections are

provided.
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CHAPTER VI
PROOFS OF THE MAIN RESULTS

6.1 Introduction
In the present chapter we provide the proofs for Lemmas 5.6.2, 5.7.1 and 5.7.2 from
Chapter 5. All the proofs proceed using value iteration and amount to showing
that the property under investigation is propagated by the dynamic programming
operator.

The rest of the chapter is organized as follows. In Section 6.1 we provide a

proof for Lemma 5.6.2, while in Section 6.2 we provide proofs for Lemmas 5.7.1

and 5.7.2.
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6.2 Optimal Control of the Faster Server

In this section, we provide a proof for Lemma 5.6.2, which as the reader will
recall, leads to the conclusion that the faster server should be kepf busy whenever
possible. The proof proceeds in three steps. We first provide a proof for the
group (5.22a-¢) in Lemma 6.2.2 which is independent of the proofs of the other
equations. We then provide a proof for the group (5.21a-d) in Lemma 6.2.3 and
utilise Lemma 6.2.2 in the course of the proof. Finally using Lemmas 6.2.1-2, we
provide a proof for (5.17a-b), (5.18a-f), (5.19a-b) and (5.20) in Lemma 6.2.3 which
concludes the discussion.

Lemma 6.2.1. Equations (5.22a-¢) of Lemma 5.6.2 propagate under the dynamic

programming operator, t.e.,
Tf(alo, 1,0,.’63,[) - Tf(xo - 1, 1, 1,213,])

= T§(20,1,0,z3 + 1,I) = Tf(z0 — 1,1,1,z3+ 1,I) 0 > 1,23 > 0 (6.1a)
Tf(zo,1,1,z3,I) — T f(zo —1,1,1,23 + 1,1)

= T f(zo0,1,1,2z3+ 1,I) = Tf(zo — 1,1,z3 + 2,1) zo > 1,z3 > 0 (6.1d)
Tf(x0,1,0,z3,I) — Tf(zo —1,1,0,23 + 1,1)

= Tf(z0,1,0,z3 +1,I) — T f(zo — 1,1,0,23 + 2, 1) zo > 1,23 > 0 (6.1¢)

Tf(zo,1,1,23,I) — T f(20,1,0,23 + 1,1)
=T f(zo,1,1,23 +1,I) — T f(20,1,0,z3 + 2, 1) zo > 0,z3 > 0 (6.1d)
Tf(z0,1,0,z3 + 1,I) — T f(xo — 2,1,1,z3 + 2,I)

= Tf(z0,1,0,z3,I) — Tf(xo — 2,1,1,z3 + 1,1 £o > 2,23 > 0 (6.1¢)

Proof. We provide proofs for (6.5a-c) with the proofs for (6.5d-e) left to the

reader.
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¢ To Prove That
T f(z0,1,0,23,I) — T f(zo — 1,1,1,z3,1)

= Tf(20,1,0,23 + 1,I) ~ Tf(z0 — 1,1,1,25 + 1, I) (6.1a)

In view of (5.14),equation (6.1a) holds if equations (6.2),(6.3) and (6.4) given

below are satisfied.

Iiliglf(Puo (zo +1,1,0,23 + 1,1)) — f(Py,(20,1,1,25 4 1,1))
= Iiliznf(Puo (zo +1,1,0,23,1)) — f(Pu, (2o,1,1, 23, 1)) (6.2)

If we apply the hold operator on both sides of (6.2), then it is true because of
(5.22a). If we apply the operator P;, then both sides of the equation reduce
to zero.

nlnl{l f(Pu1 (220,0, 0) 0, O)) — f(xO - 2,0’ 1707 O)

= I]Tlligl f(Py, (20,0,0,0,0)) — f(zo — 2,0,1,0,0)) (6.3)

Equation (6.3) is obviouisly true by inspection.

x}zli;l F(Pu;(20,1,0,z3,1)) — IEI'? f(Puy(z0 —1,1,0,25 + 1, 1))

?

= 1}111211 F(Pu, (20,1,0,z3 + 1,1)) — I}lngl f(Py,(z0 —1,1,0,z5 4+ 2,1)) (6.4)
Expanding (6.4), we obtain
min[f(a:o, 1,0,z3 + l,I),f(:Bo -1,1,1,z3 + 1,I)]

—min(f(zo — 1,1,0,z3 + 2,I), f(zo — 2,1,1, 23 + 2,1)]
= min[f($07 1,0, $3,I), f(zo - 1:71’ 1,173, I)]
—min|f(zo — 1,1,0,z3 + 1,I), f(zo — 2,1,1, 23 + 1,1)] (6.4")
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and(6.4') is « - 1rue if the following equations hold:

f0.1,0,z3 + l,I) —-f(:l:o —-1,1,0,z3 +2,I)

: .%0,1,0,z3,I) — f(xo — 1,1,0,z3 + 1, 1) (6.5)
fl= -1,1,1,23+1,I) — f(zo — 2,1,1,z3 + 2, 1)
o= 1,1,1,23,I) — f(zo — 2,1,1,z3 + 1,1) (6.6)
f(= - ,L1,z3+1,I)— f(zo —1,1,0,z3 + 2, 1)

Tla—1, 1,1,:1:3,I) — f(xo —1,1,0,x3 + l,I) (6.7)
and
f(:‘j:1,0,$3+ laI) _f(zO -2,1,1,z3 +211)
= f{xo, 1,0,233,]) — f(:Bo -2,1,1,z3 + 1, I) (6.8)

But (6.5)-(6.8) are iust equations (5.22¢ — e) which are assumed to be true.
Hence equation (6.1a) is proved.

e To Prove That

Tf(:ro,l,l,:vg,.[) — Tf(xo -1,1,1,z3 + 1,I)

= Tf(z0,1,1,z3 + 1,I) — Tf(z0 — 1,1,1,z3 + 2,I) (6.1b)

This equation is satisfied provided (6.9), (6.10) and (6.11) hold.

f($0+1’1’1’$3a1) - f(mo,la]-axfi + I,I)

=f(:1:o+1,1,1,:v3+1,I)—f(:z:o,l,l,:z:3+2,I) (6.9)

This is true because of (5.22b).

min f(Py, (20,0,1,0,0)) — min f(Py, (zo - 1,0,1,0,0))

= 121111 f(Puy, (20,0,1,0,0)) — 1211{1 f(Pu, (zo — 1,0,1,0,0)) (6.10)
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Equation (6.10) is obviously true by inspection.

Iilizn f(Pu,(z0,1,0,z3 + 1,1)) — 121211 f(Pu,(zo — 1,1,0,z35 + 2,1))
= Iﬁiznf(Pu2 (:co, 1,0,x23 + 2,I)) - I}zllél f(Pu2 (xo —-1,1,0,z3 + 3,I)) (6.11)

Equation (6.11) is true because of (5.22b-e).

e To Prove That
Tf(:l:o, 1,0,1:3,.[) - Tf(.’l)o - 1,1,0,223 + 1,I)

= T f(z0,1,0,z3 + 1,I) — T f(zo — 1,1,0,z3 + 2, Ia (6.1¢c)

This equation will hold provided the following equations (6.12), (6.13) and
(6.14) are satisfied.

o]
I}Lli;’l f(Puo (z0 +1,1,0,23,1)) — 1’211211 F(Pu, (70,1,0,23 + 1,1))
= 1211;1 J(Puyo (zo +1,1,0,z3 + 1,1)) — I;Lu;l J(Puo (20,1,0,z3 +2,1)) (6.12)
Equation (6.12) is easily seen to hold because of (5.22c).
o]
nl1ig1 f(Py, (20,0,0,0,0)) — niligl f(Py, (zo —1,0,0,0,1I))
= nllibn f(Py, (20,0,0,0,1)) — Irlligl f(Puy, (o —1,0,0,0,1)) (6.13)
Equation (6.13) is obviously true by inspection
(o]

1511'{1 f(Pu, (z0,1,0,23,I)) — 1}111;1 F(Pu, (z0 — 1,1,0,z3 + 1,1))

2 ’

= xinzn f(Pu, (20,1,0,23 + 1,1)) — 1721;1 J(Py,(z0o — 1,1,0,23 +2,1)) (6.14)

Equation (6.14) is also easily seen to be true from equations (5.22b — e).
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Equations (6.1d — €) have a very similar derivation and we leave them to the

reader.

In the next lemma we provide proofs for equations (5.21a-d).
Lemma 6.2.2. FEgquations (5.21a-d) propagate under the dynamic programming

operator, t.e.,
Tf(:l:o, 1’ 19"53, O) - Tf(xO) 11 173:;’;’ O) Z Tf(y07 11 1: Y3, I) - Tf(y07 1, 1, y:,«bI)

To, Y0, T3, T3, Y3, Y3 > 0,73 — =5 > y3 — y3 (6.154)
Tf(zo0,1,1,23,0) — T f(zo,1,1,25,0) > Tf(y0,1,0,ys,I) — T f(vo, 1,0,y%,1)

0, Y0, T3, Th, Y3, ¥4 > 0,23 — Th > ya — yh (6.15b)
Tf(z0,0,1,x3,0) — T f(20,0,1,2%,0) > T f(y0,1,0,ys,I) — T f(yo0,1,0,y5,0)

T0,Y0, T3, Z3,¥3, Y5 > 0,23 — T3 > y3 — y3 (6.15¢)
T f(z0,0,1,23,0) — T f(x0,0,1,75,0) > T f(yo,1,1,ys,I) — T f(y0,1,1,y3,0)

To, Y0, T3, 23, Y3, Y3 > 0,73 — 23 > y3 — y3 (6.15d)

Proof. We provide a proof for (6.15a), and since the proofs for (6.15¢-d) are
similar, we leave them to the interested reader.

e To Prove That
Tf(:Z:O’ 1, 1,2:3, O) - Tf(xo, 1, 1,:52’,,0)
2 Tf(yO, lv 1;3/3’-[) - Tf(yO’I’l’y:';’I)

This equation will be true provided (6.16)-(6.17) below are satisfied.

f(zo +1,1,1,23,0) — f(zo + 1,1,1,25,0)

> f(yo +1,1,1,y3,I) — f(yo +1,1,1,y3, 1) (6.16)
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Equation (6.16) follows by (5.21a).

Iililn f(z0,0,1,z3 +1,0) — I}lnln f(a:o,O, 1,75 + i, 0)

> Iili2nf(y0, l’Oa ys + 1, I) - Iiliznf(yO’]-,O’ y;,; + 170) (6-17)

Equation (6.17) holds because of (5.21a-d) and this concludes the proof of
(6.15a).

In the next lemma we provide the proofs for the rest of the equations in
Lemma 5.6.2. Since the proofs of each one of them depends upon the others, we
present all their proofs in the same lemma.

Lemma 6.2.3. The inequalities (5.17a-c), (5.18a-f), (5.19a-b) and (5.20) prop-
agate under the dynamic programming operator, t.e.,
T f(zo,0,1,23,0) > Tf(zo —1,1,1,23,0) z0>1,z3>0 (6.18q)
T f(20,0,0,0,Z) > Tf(20,1,0,0,I) zo >0 (6.18b)
T f(z0,0,1,0,0) > Tf(z0,1,0,0,I) zo >0 (6.18¢)
Tf(xo+1,z1,z2,23,2Z) > T f(z0,z1, 22,3, Z)
zo,z3 > 0,23,z € {0,1} (6.19q)
Tf(zo,z1,%2,23+1,2Z) > T f(z0,21,%2,%3,2)

zo,z3 > 0,21,z € {0,1} (6.190)

Tf(zo,1,1,23,I) > Tf(20,1,0,23,I) z0,73>0 (6.19¢)
Tf(zo0,1,1,23,0) > T f(20,0,1,23,0) =z0,z5 >0, (6.194)
Tf(zo0,1,0,z3,I) > T f(20,0,0,0,I) =zo,z3 >0 (6.19¢)
T f(z0,0,1,23,0) > T f(20,0,0,0,0) zo,z3 >0 (6.19f)
T f(zo,1,1,23,0) > T f(%0,0,1,23 +1,0) zg,z3 >0 (6.20a

)
Tf(zo0,1,1,23,0) > Tf(z0o —1,1,1,2z3+1,0) =zo > 1,z3 > {6.20b)
Tf(zo,1,1,0,0) > T f(z0,1,1,0,1) (6.21)
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Proof. We provide proofs for (6.18a-c), (6.19a) and (6.19c), (6.20a) and (6.21).
The other proofs are left to the reader. ‘
e To Prove That

T f(%0,0,1,23,0) > Tf(zo —1,1,1,23,0)  z0 > 1 (6.18a)

We will consider the case zo > 2. The following inequalities (6.22), (6.23)
and (6.24) have to be verified.

rilifx f(Puo (zo +1,0,1,23,0)) > m}én J(Puo(z0,1,1,z3,0)) (6.22)
By (5.17a) this reduces to the comparison
f(xO’ 13 1933: O) 2 f(xO, ]-s ]-’ 3, O)

which holds with equality.

rixiln f(Pu, (20,0,1,23,0) > r}‘uln f(Pu, (zo —1,0,1,z3 + 1,0) (6.23)
By (5.17a) this reduces to
f(xO - 1,1,1,$3,0) Z f(xO - 2a111az3 + 1a0)

which is true by (5.195).

{nbiI}t f(Pu, (%0,0,0,0,1)) > 112:11’{1 J(Py, (zo — 1,1,0,0,1)) (6.24)

If we take action P; on the left-hand-side and P, on the right-hand-side,
(6.24) reduces to an equality. The other cases can be treated in a similar

fashion.

e To Prove That

T f(z0,0,0,0,1) > Tf(zo —1,1,0,0,I) zo>1 (6.18b)
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The following inequalities (6.25), (6.26) and (6.27) have to be verified.

{nbh}l; J(Py (zo +1,0,0,0,1)) > rénhn J(Puy, (20,1,0,0,1)) (6.25)

Equation (6.25) is easily seen to be true because of (5.17b).
nllibn f(Pu, (%0,0,0,0,1)) > IIlligl F(Pu, (o — 1,0,0,0,1)) (6.26)

Equation (6.26) holds by (5.18a).

ﬂil}i f(Pu, (20,0,0,0,1)) > ’anzu’lL J(Pu, (o — 1,1,0,0, 1)) (6.27)

Equation (6.27) holds by (5.17b).

To Prove That
Tf(zo —1,0,1,0,0) > Tf(zo — 1,1,0,0,1) (6.18¢)

We start by verifying equations (6.28-31).

I?’[LIiIII f(Pu, (20,0,1,0,0)) > I;Lu%l Py, (20,1,0,0,1)) (6.28)

This reduces to
f(xO - 1’1’19(), O) > mln(f(ivo - l,l,lsO’I)af(:EOa 1’030aI))

If
f(xO - 1’ 1, I’O’I) Z f($0’1’0’071)

then
f(.’l:o - 1, 1, 1,0,0) > f(xo - 1,1,1,0,1)

by (5.20) from which it follows that

f(zo — 1,1,1,0,0) > f(z0,1,0,0,1I)
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I{liln F(Py, (zo — 1,0,0,0,1)) = I?lln f(Pu,(z0 —1,0,0,0,0)) (6.29)

Equation (6.29) holds with equality.

min f(Pu, (z0 — 1,1,0,0,1)) s’rgli’? F(Pu, (zo — 1,0,1,0,0)) (6.30)

Equation (6.30) can be verified in the same way as equation (6.28).

nrllibn f(Pu,(z0o — 1,0,0,0,0)) < rinhn J(Py, (0 — 1,0,1,0,0)) (6.31)

This can be easily shown to be true.

If £ = (x0,0,0,0, Z) then we can write equations (6.28) to (6.31) as

min(f(Py, APy 7)) < min(f(Pu, AP2z)) (6.28")
min(f(P,, Dy Pz)) = min(f(P,, D, P;z)) (6.29")
min(f(Pu, D2 P1z)) < min(f(Pu, D1 P27)) (6.30")
min(f(Py, D2 P;1)) < min(f(Pu, D1 P2z)) (6.31")

Hence
Tf(Piz) = zo + fAmin f(Py, AP1z) + fpy min f(Py, D1 P1x)

+B 2 min f(Py, Dy Py )

< zo + BAmin f(Py, AP2z) + Buy min f(Py, D2 P2x)

+Bu2 minf(Ptu D1P2-’B)

< zo 4 fAmin f(Py, AP2z) 4 fpy min f(Py, Dy Pex)
+Buq min f(Py, Dy Paz)
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= Tf(P5z)

This proves equation (6.22¢). Note that the fact that u; > u; was explicitly

used in this argument.
e To Prove That
Tf($0+1,$1,$2,173,1) > Tf($0,$1,$2,$3,1) Zg 20,133 >0 (6.190)

We will consider the case zo > 1. Equation (6.19a) is true provided (6.32)-
(6.34) given below are satisfied.

min f(Py, (zo + 2,21, T2, 23, 1)) > min f(Py, (z0 + 1,21, 22,23,1)) (6.32)
Uo Uo

It can easily be checked that for all possible combinations of z,z2 and the

control action P,, equation (6.32) remains true because of (5.18a).

Iililn f(Py, (zo +1,0,1,0,0)) > r}lnln JF(Pu, (20,0,1,0,0)) (6.33)

by (5.17a), the smaller one among the operators P, and P; is P;. Hence
(6.33) reduces to

f(20,1,1,0,0) > f(zo —1,1,1,0,0) (6.33")

But the inequality (6.33') is true from (5.18a).

r;:ifgxf(Puﬁ (zo +1,1,0,z5 + 1,I)) > r;luzn J(Pu;(20,1,0,23 +1,1))  (6.34)

Suppose we decide to assign customers to server 2 on both sides of the in-
equality. Then the truth of the inequality follows from (5.18a). If we decide
not to assign customers to either one of two servers then the truth of the

inequality again follows from (5.18a). If we decide to assign a customer to
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server 2 on the left hand side but not on the right hand side then (6.34)
follows from (5.185). '
e To Prove That

Tf(:l:o,l, 1,:83,[) Z Tf(xo,l,O,xa,I) To Z 0 (6.196)

We consider the case zo > 1. Inequality (6.19¢) reduces to the following
inequalities in (6.35), (6.36) and (6.37).

n}tin J(Puo (2o +1,1,1,23,1)) > 1}111211 f(Puy (20 +1,1,0,23,1)) (6.35)

If we apply the Pp operator to the left hand side, then (6.35) is true by
(5.18b). If we apply the P, operator then (6.35) is true by (5.18a).

rEiln f(Py, (20,0,1,0,0)) > hrrllinb J(Py, (20,0,0,0,0)) (6.36)

On the right hand side, the minimum of the operators P, and Py, is P; by
(6.17a). On the left hand side the minimum operator is one of the two P or

P by (5.17a), (5.17b) and (5.17¢). Using these facts (6.36) can be rewritten

as
f(zo —1,1,1,0,0) > min[f(zo — 1,1,0,0, 1), f(zo — 2,1,1,0,0)] (6.36")
By (5.20) and (5.18¢),
f(zo —1,1,1,0,0) = f(zo — 1,1,1,0,1I) > f(zo — 1,1,0,0,1)
whereas from (5.18a),
f(zo —1,1,1,0,0) > f(zo — 2,1,1,0,0)

, it follows that (6.36') is satisfied .

Iili2n JF(Py, (0,1,0,z5 + 1,1)) > 12112{1 J(Pu, (z0,1,0,z3,1)) (6.37)
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Inequality (6.37) is true by (5.18b).

This concludes the proof of (6.19c¢).
Inequalities (6.23c), (6.23d) and (6.23¢) can be verified in a similar fashion and
their proof is omitted. We now go on to (6.24a).

e To Prove That
Tf(xo,l, 1,z3, O) > Tf(.’l:o,o, 1,z3 + 1,0) (6.20)

We will consider the case zo > 2. Inequality (6.20) will hold provided the
following inequalities in (6.38), (6.39) and (6.40) are satisfied.

J(Puo (zo + 1,1,1,23,0)) > I};l’iln f(Pyy(z0 +1,0,1,23 + 1,0)) (6.38)
By (5.3a), (6.38) reduces to
f(zo +1,1,1,23,0) > f(z0,1,1,z3 + 1,0)
which is true because of (5.19b).

I};liln f(Py, (20,0,1,23,0)) > Iﬁlln f(Py, (zo — 1,0,1,z3 + 1,0)) (6.39)

Equation (6.39) reduces using (5.17a) to
f(xo - 1,1,1,333,0) Z f($0 - 2)1,1,1:3 + 1,0)

which is true by (5.19b).

nllibn f(Pu, (20,0,0,0,0)) > nlxigl J(Pu,(z0 — 1,0,0,0,0)) (6.40)

Equation (6.40) is easily seen to be true from (5.18a). Hence (6.20a) is proved.
¢ To Prove That

Tf(x0,1,1,0,0) > T f(z0,1,1,0, ) (6.21)

116



se o > 1. Equation (6.21) will be trge provided

..-12) below are satisfied.

1,1,1,0,0)) > f(Py, (zo +1,1,1,0,0)) (6.41)

- rom (5.6).

[ P 0) + ﬂﬂ2 {1}111211} f(Pug (an 150,0, I)) =
. 1,0,0) + Bu2 {1211211} f(Py,(z0,1,0,1,1)) (6.42)

. the following two equations (6.42') and (6.42").

. -1,1,1,1,0) — f(zo —1,1,1,0,0)] =

s =1,1,1,1,1) — f(zo — 1,1,1,0,)] (6.42)

We will can::ii~ i
equations §. 0 o
[o]
Equation (€.~ -,
[o]
B o
Burs
This reduces. .. - -
and
foo e

But equations (.}

(6.21) is verified.

.-1,1,1,1,0) — f(zo — 1,1,1,0,0)] =
- f(%0,1,0,1,I) — f(z0,1,0,0, )] (6.42")

and (6.42") are true by (5.21a) and (5.215). Hence
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6.3 Optimal Control of the Slower Server

In this section we provide proofs for Lemmas 5.7.1 and 5.7.2. By virtue of (5.17a-
c), we can restrict out attention to those policies which keep the faster server busy

whenever possible.
Lemma 6.3.1. The equations (5.23a-¢) in Lemma 5.7.1 propagate under the

dynamsic programming operator, i.e.,
Tf(zo,1,1,0,0) — T f(x0 — 1,1,1,0,0)

= Tf(20,1,1,0,I) — Tf(zo — 1,1,1,0, 1) zo > 0 (6.43a)
T f(zo,1,1,z3,2Z) — T f(zo — 1,1,1,73, Z)
=Tf(xo0,1,1,2z3 —1,Z) — Tf(zo — 1,1,1,23 — 1, Z) Zo, T3 > 1 (6.43b)
T f(x0,1,0,z3,1) — T f(zo — 1,1,0, x5, 1)

= Tf(yOa 1,0,1/3,1) - Tf(yo - lvlvosy:,i’l)
Zo,Yo, T3, Z3,Y3,Y5 > 0,23 — Th = y3 — y} (6.43¢)

Tf(-'vo, ]-a 1,23’1) - Tf(an 1,1,23;;,[)

= Tf(yOa 1a0ay3aI) - Tf(yO,l’Osy:,aaI)
Zo, yo,$3,$g, Y3, y:,3 Z 0, 3 — SII% = Y3 — y:’s (643d)
Tf(:l:o, 17 1,3:3’0) - Tf($0a 1, 171;?3’ O)

= Tf(yo,oa la y3,O) - Tf(yO’O’ 1: y:,;ao)

550,3/0,-’53,1'75;,93, y;’J, Z 0, T3 — xg =Yz — yé (6436)

Proof. We provide a proof for (6.43a). The proofs of (6.47b-d), being quite
similar, are left to the interested reader.

e To Prove That
Tf(:l:o, 1, 1,0, O) - Tf(.’l:o - 1, 1, 1,0, O)

= Tf(.’l:o,l,l,O,I) - Tf(.’l:o - 1,1,1,0,[)
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Equation (6.43a) - i! be satisfied provided the following equations (6.44)-
(6.46) are true..

(o]
f(mO +1, 121»0’:59 o f(an 1, 1,0, 0) = f(.'l:o +1,1, I,OaI) - f(an 1$ 1,0, I)
(6.44)
Equation (6.44) = » s by (5.23a).
o]
i 70,0,1,1,0) — I}Lnln f(zo — 1,0,1,1,0)
=1 f(%0,0,1,0,0) —min f(z0 - 1,0,1,0,0) (6.45)
Equation (6.45) £,. .s by (5.23b) and (5.23e).
o
v f(z0,1,0,0,1) — hi;l f(zo —1,1,0,0,1)
ko ’
= r. . f(%0,1,0,1,I) — Iingx f(zo — 1,1,0,1,1) (6.46)
Equation (6.46} to..-wvs by (5.23b-d).
|

We now state the proof of Lemma 5.7.2, which is basically the one given by
Maglaris [50], except for the fact that now it is necassary for (5.23a) to hold in
order that (5.24a-d) pre;:agate.

Lemma 6.3.2. Eguations (5.24a-d) are propagated under the the dynamic pro-

gramming operator, i.e.,

TA(5) < TA(5) i>2 (6.47a)
TAL() > TAR(i—1)>0 £>2 (6.47b)
TAL()>TA(i—1)>0 i>2 (6.47¢)

TAR(i) > TAp(i —1)  i>2 (6.47d)
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Proof. At step zero initialize fo(i—1,1,0,0, I)andfo(:—2,1,1,0,0, I) to arbitrary
positive values such that equations (5.24a-d) hold , and fo(: — 2,1,1,0,0, ) >
foli —1,1,0,0,1) for i < K’ and fo(i — 2,1,1,0,0) < fo(i — 1,1,0,0,1),i > K'. -

for a threshold K'. A possible choice as given in [50] is.

fo(:—1,1,0,0,I) =i <K' (6.48a)
foi —2,1,1,0,) =i +1 <K' +1 (6.48b)
fo(K',1,1,0,1) = fo(K' -~ 1,1,1,0,I) + 2= K' + 3 (6.48c)

fo(K'+m—2,1,1,0,I) = fo(K' + m —3,1,1,0,I) + m, m>2 (6.48d)
fé’(j—l,l,0,0,I)=f§'(j—2,1,1,0,0) I>K'+1 (6.48¢)

from which A(¢) = A(4),i < K',A(K'+1) =1 and A(K'+1) = 2,A(K'+m) =
A(K' +m) = m.
At the nth step we assume that (5.24a-d) hold and the sequence f,, defines a

threshold at some value K,

fn(K —1,1,0,0,1) < fpo(K —2,1,1,0,I), fo(K, 1,0,0,1) > fn(K — 1,1,1,0,I)
(6.49)
From (6.49) it follows that

An(K +1) < fo(K —1,1,1,0,1) — fu(K —1,1,0,0,I) < A(K + 1,a)  (6.50)

and using the dynamic programming operator we can write down the following

equations,
TAn(1) =1+ BAAL(2) + 2 A(1)] (6.51a)

TAn(5) = 1+ BAAL(E+ 1) + p1An(i — 1) + u2A,(5)] 2<i< K (6.51b)
TAL(K) =1+ B[A[fu(K —1,1,1,0,1) = fo(K —1,1,0,0,1)] + 1 Ap (K — 1)
+ugAn(K)] (6.51¢)
TAL(K +1) =14 BAA(K +2) + p1An(K)
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tpz[fa(K —1,1,1.0.7 -

fip i
TAaG) = 1+BPARG+1) 5 )
TAR(2) = :

TAR(1) = 14+B8[AAR(f+1) +per 2 )
TAL(K+2)=1 -
+ualfu(K —1.0.0,
TAW() = 1+ BAARG +1) + 121

We next show that equations ' @ -
First consider equations (6.51z .
be very easily shown that An+l(i‘} IR
from (6.52a-d), An41(2) is positive an =
(6.51a), we have that Apy1 > A

A,,,.H(i——l),z' S K and with identic:! <

by using similar term by term corm:paris .

From this it follows that if there ¢~ ists o 1 o

TAK')

and

TA(K'+1)>- 7

then K' will be a threshold for the next iter:-

121

. ¥ —1,1,0,0,1)]] (6.51d)

-1,1,1,0,I) — fo(K —1,1,0,0,I)]

(6.51€)

12, (7)) i>K+2 (6.51f)

s puaAn(1)] (6.52a)

L (t=1)] 2<t< K+2, (6.52b)

3)+ AR (K +1)

.. K ~-1,1,0,0,1)] (6.52c)
L An(y—1)] Jj> K+2, (6.52d)

- : satisfied by A, = TA,,.
. wuations (5.24a-d) and (6.50) it can

- and non deceasing on ¢. Similarly

:reasing. Comparing (6.52a) with

* 1 (6.52b) and (6.51b), Anyi(i) >
1(2) > A,H_l(i—l) for all i. Finally
- wonclude that A,41(7) < An_H(i).
rer K' > 1 such that

‘K'+1)

-on.



APPENDIX A

Some useful propertics of the convex increasing stochastic ordering are stated

in this appendix without ;. roof. For full proofs, the reader may consult the mono-

graphs [63] or [72].

The RV X = (X1,....- *’n) ts smaller than the RV Y = (Y1,...,Yyn) tn the

convex increasing sense (- sted by X < Y ), if
E[f(X)] < E[f(Y))]
for all integrable convex incr:asing functions f : IR"™ — IR.
(1): [Corollary 1.3.1 a., p. 1(, [72]] For non-negative RV’s X and Y with X <; Y,
BIXT| < E[YT] r=1,2...(A1)

whenever the expectaticns exist.

More generally, for RV's X and Y with E[X]| = E[Y] and X <, Y,
E[X"| < E[YT] r=2,4,...(A2)

(2): [Corollary 8.5.2, p. 271, [63]] If X and Y are non-negative RV’s such that
E[X] = E[Y], then X > Y if and only if

Er(X)] > E[h(Y)] (43)

for all convez h : IR — IR.
(3): [Corollary 8.5.3, p. 232, [63]] If X and Y are non-negative RV’s with E[X] =

E[Y], then
X<aqY iff —X<,-Y (A4)
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(4): [Proposition 8.5.4, p. 272, {627} If ' ".|...,X,) are independent and

(Y1,...,Yy) are independent, : i >y < Y;fori=1,...,n, then
g(Xi,... .. REEECPIN § YIRS 7 (A45)

for all non-decreasing convex ; . : ' IR™ - IR.

A non-negative RV X issaid to ... ... | rthan used in ezpectation (NBUE)

if
Bix-. . . EX] (46)
for all ¢ > 0.
(5): [Proposition 8.6.1, p. 273,(63. . .° . . JBUE distribution having mean y,
then
s ) (A7)
where exp(u) is the exponential .- ;. -">n with mean pu.
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APPENDIX B

Some useul properties of the strong stochastic ordering are stated in this

appendix without proof. For proofs the reader may consult [63] or [72].

A RV X is stochastically smaller ( or smaller in distribution) than a RV Y,
denoted by X <4 Y, equivalently their respective distribution functions F and G
satisfy F <4 G, if for all z € IR

F(z) > G(z) (B1)

(1): [Theorem 1.2.2, p. 5, [72]] The inequality

/0 " 0 FL(t) < /0 T HO)dE () (B2)

holds for all integrable non-decreasing functions f, if and only if F; <, Fs.
For given f, (B2) holds for all Fy,F; with F; <, F; only if f is non-
decreasing.
(2): Lehmanns Theorem [Proposition 1.2.1, p.4, [72]] F and G are distributions
such that F <, G, if and only if there exist RV’s X and Y defined on the
same probability space (2, IF, P) for which

Xw)<Y(w) forallwe (B3)

and
P({w: X(w) < z}) = F(a)

P{w:Y(w) < y}) = G(y)
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(3): [Example 8.2(a), p.256, [63]]. If (X1,...,X,) are indepéndent and Yi,...,Yy)
are independent, and X; <, Y;,1 < ¢ < n, then for any non-decreasing

integrable function f : IR™ — IR,
f(Xla“'aXn)Sf(Yla---aYn) (-B5)

(4): The weak convergence property. [Proposition 1.2.3, p. 6, [72]].
Assume that the sequences {F,}{° and {G,} 00 converge weakly to F' and

F<uG (B6)

A non-negative RV is defined to be new better than used (NBU) if
P X—-a<z|X >a|<PX 2>z (BT)

for all a > 0.
(5): [Proposition 1.6.2, p. 19, [72]]. If F is a NBU distribution having mean u,

then
F <.t exp(u) (B8)
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