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 I applied modern techniques of modal analysis to track size modes in Eastern 

oyster, Crassostrea virginica, populations longitudinally through time, from which I 

inferred age-classes to establish size-at-age relationships for individual oyster bars and 

across Maryland’s Chesapeake Bay. Average shell lengths of putative age-0 through age-

5 oysters range from 22.93 (±6.67, n=194) mm to 84.46 (±8.27, n=4) mm. Growth rates 

declined with age-class from a mean of 28.97mm/yr to –0.85mm/yr, and the maximum 

and minimum individual growth rates were 0.78 and 53.0 mm/yr, respectively. I 

estimated von Bertalanffy growth parameters across all sites as L ∞=90.85mm, k=0.55, 

and to=-0.51. Two processes likely account for the small asymptotic length: size-selective 

mortality, both natural and fishery-related, and underlying Dermo infections in the 

population. On average, I estimated oysters take 3 years to reach a marketable size within 

Chesapeake Bay. As an alternative to modal length frequency analysis, annuli in 

chondrophore sections of known-age oysters in Chesapeake were examined. It was 

determined that annuli formation was unrelated to chronological age. 
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INTRODUCTION 

 

 The Eastern oyster Crassostrea virginica (Gmelin 1791) is distributed in estuaries 

and coastal areas of the western Atlantic and the Gulf of Mexico, ranging almost 8000 

kilometers from Brazil to Canada (Newball and Carriker 1983; Andrews 1991). The 

Eastern oyster once supported a multi-million dollar industry in North America, however, 

fishery landings have declined by more than 90% over the last 40 years in most estuaries 

(Mackenzie 1996). Likewise, the Chesapeake Bay eastern oyster population declined 

dramatically during the last century. Prevailing explanations for the decline include high 

rates of fishing mortality (Rothschild et al. 1994; Jordan et al. 2002; Jordan and Coakley 

2004), habitat degradation (Mackenzie 1983), poor recruitment (Krantz and Meritt 1977), 

and two salinity-related parasitic diseases, Haplosporidium nelsoni (MSX) and Perkinsus 

marinus (Dermo) (Ford and Tripp 1996).   In the Chesapeake Bay, present estimates of 

rates of fishing mortality operating in the Chesapeake Bay fisheries, indicate that oyster 

removals in Chesapeake Bay are to be too high to be sustainable (Jordan et al. 2002; 

Jordan and Coakley 2004).  

 Oysters create a complex matrix of structured habitat, not unlike coral reefs, 

important to many fish and invertebrate species, which enhance estuarine biodiversity 

(Wells 1961; Breitburg 1992). Oyster reefs are known to play an important role in 

benthic-pelagic coupling and the movement of energy within the ecosystem (Ulanowicz 

and Tuttle 1992; Lenihan and Peterson 1998). The decline in oyster abundance has 

dramatically affected the Chesapeake Bay ecosystem causing reduced water filtration 

capacity and a shift from a benthic to a pelagic-dominated ecosystem (Baird and 
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Ulanowicz 1989). The decreased capability of the oyster population to remove suspended 

particles, such as phytoplankton, from the water column reduces its ability to mitigate 

many of the effects of nutrient enrichment (Newell 1988). Additionally, there is an 

associated reduction in the filtering capacity of the fouling invertebrate populations 

(barnacles, anemone, etc.), which make extensive use of the physical reef structure. The 

combined effects of removal of live oysters, shell material from the reefs, and the 

mechanical damage to the reef structure from fishing gear contribute to degradation of 

habitat structure. Thus, the loss of oysters and the associated structured habitat has 

cascading negative consequences on the biodiversity of the estuarine ecosystem. Declines 

in oysters also have negative effects on the economic and ecological value of the oyster 

fishery, and fisheries targeting transient mobile species that rely on the structured habitat 

to supply forage or refuge.  

 A dominant force impacting population dynamics of oysters in Chesapeake Bay 

and along the east coast, are the presence of two parasitic diseases, MSX and Dermo. 

These parasites are widespread and known to cause high levels of mortality in adult 

oysters (Jordan et al. 2002). The observed low levels of spat settlement (young-of-the-

year oysters) observed throughout the bay in recent years (Krantz and Meritt 1977), and 

the subsequent low levels of recruitment, could be linked to the parasitic disease Dermo 

which is known to cause reduced total fecundity in infected oysters (Kennedy 1995).  

The eastern oyster is a dioecious alternate hermaphrodite. In the James River, 

Virginia, 90% of the oysters less than 35mm were shown to be male (Andrews 1979). 

The proportion of females in each size class increases with total shell length. As a result, 

larger individuals tend to be predominantly female (Galstoff 1964). Eastern oysters 
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spawn externally and the larvae produced remain planktonic for up to three weeks 

(Nelson 1909). Despite the knowledge of where the larvae set in Chesapeake Bay, the 

spatial link between the origin of parental stock and the location of settling recruits 

remains unknown. 

The peak of larval oyster settlement in Chesapeake Bay occurs in July and 

August.  Howeer, patterns of larval settlement vary interannually in Chesapeake Bay, and 

both salinity and temperature are believed to influence larval settlement behavior. 

Although larval settlement occurs at temperatures as low as 16.9 oC (Loosanoff and 

Engle 1940), the most favorable temperature is thought to be 19 - 24 oC (Ryder 1995). 

Additional factors that have been suggested to affect larvae settlement behavior are food 

supply, light, substrate, and the presence of chemical cues from live oysters (Lutz et al. 

1970).  The presence of chemical cues from live oysters indicates that the substratum is 

suitable for settlement and is a mechanism that contributes to the complex reef building 

behavior observed. The integrity of this complex reef structure is believed to support 

enhanced survival and growth of young oysters.  

The role of temperature (Menzel 1955; Loosanoff 1958; Feng 1965), and salinity 

in determining the distribution and growth of the eastern oyster in Chesapeake Bay is 

well established. While Eastern oysters are found in areas where the temperature can 

range from -2 - 36 oC (Butler 1954; Galstoff 1964), rates of temperature change can 

greatly influence the actual tolerance levels within that range for adult oysters 

(Fingerman and Fairbanks 1957).  Rates of shell growth decrease with decreasing water 

temperature, until shell growth ceases at ~ 5oC (Ingle and Dawson 1952; Galstoff 1964).   
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In Chesapeake Bay, oyster stocks are thought to experience large interannual 

variations in length of growing seasons, dependent on the salinity. In Chesapeake Bay, 

oysters occur from salinity 5 – 30.  Shell growth increases with increasing salinity 

(Loosanoff 1953a, 1958, 1965; Shaw 1966).  The optimum salinity range is 

approximately 14 - 28 (Galstoff 1964). In the upper reaches of Chesapeake Bay, and its 

tributaries with salinities less than 5, oysters can establish reefs but mortality on these 

reefs due to excessive freshwater runoff is common (Galstoff 1964; Haven et al. 1976).  

The increased presence of oyster predators at higher salinities is another indirect effect of 

salinity on oyster distribution (Gunter 1955). 

 

OBJECTIVES 

 Despite the extensive research that has been conducted on the eastern oyster, 

estimates of fundamental processes that drive stock production, namely recruitment and 

growth under natural conditions, are lacking. Improving the understanding of the Eastern 

oyster stock-recruitment relationship remains a major challenge.  However, there are 

techniques available to produce estimates of individual oyster growth and hence 

production. Three approaches to estimated growth can be recognized: tracking 

individuals as they grow through time, separating modes in length-frequencies to infer 

growth, or establishing the length-age relationship based on known age markers. For 

example, several different groups of individual oysters, of various unknown ages, were 

followed in trays in Milford, Connecticut, and changes in shell length from 7.7mm - 

37.2mm were recorded over a 7-month growing season (Loosanoff and Nomejko 1949). 

Shaw (1966) and Freise (1996) also followed the growth of individuals in the Chesapeake 
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Bay. While these methods are desirable as researchers can easily identify individuals, 

experiments have shown that oysters have increased growth rates and survival if elevated 

off the bottom (Shaw 1962 a,b, 1963, 1969; Baab et al. 1973; April and Mauer 1976). 

While the average growth of single-year classes of oysters transplanted from other 

regions, as well as those produced in hatcheries have been followed (Paynter 

unpublished), they are not representative of natural bars with multi-year classes present.  

Thus, despite past studies, estimates of growth of oysters under natural conditions are not 

available. 

 Inferential techniques based on length-frequency data collected bay-wide on 

natural oyster bars provide a means to estimate growth rates at a large spatial scale. 

Extended time series of length-frequency data would also permit examination of potential 

interannual variations in growth. To capture the potential variability in shell length at age 

and growth rates, one requires data at a large spatial scale. Although an inferential length-

structured analysis of growth is typically considered less accurate than direct aging 

methods, length is with a proxy for many biological and fishery-related processes for 

oysters such as fecundity, maturity, natural mortality, predation, distribution, and 

selectivity of the fishery better than age alone. This makes shell length an important 

metric to describe processes for Chesapeake Bay oysters, and length-frequency data is 

readily available through fishery-independent surveys.   

Known-age markers called annuli (latin:rings) in scales and otoliths have long 

been used to establish a length-at-age relationship for many finfish species (Lai et al. 

1996). Similarly, annuli within the microstructure of bivalve shells have been used to 

establish the age-at-length relationship for species such as hard clam, Mercenaria 
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mercenaria, in the Chesapeake Bay (Fritz and Haven 1983), freshwater mussel, Elliptio 

complanata, in Ontario, Canada (Veinott and Cornett 1996), fan mussel Pinna nobilis in 

the Mediterranean Sea (Richardson et al. 1999), as well as the European flat oyster, 

Ostrea edulis (Richardson et al. 1993).  Importantly, the utility of shell microstructure for 

ageing eastern oyster has yet to be developed.  Structural differences in external shell 

morphology are the result of numerous environmental factors which may include salinity, 

temperature, current velocity, turbidity, calcium concentrations, density, dissolved 

oxygen concentrations, and rates of growth which may determine shell thickness 

(Kennedy et al. 1996). Archaeologists have identified and used annuli in the 

chondrophore of eastern oyster shells to examine the season of harvest, although it has 

not been used to establish the age-at-length relationship for the Eastern oyster (Kent 

1988). This is likely due to the difficulty in addressing the highly variable macro- and 

micro structure within oyster shell. Oyster morphology is highly variable and elaborate 

techniques are required to age individuals based upon the optical properties of sectioned 

shells (Kent 1988).   

 Obtaining estimates for individual oyster growth remains an important challenge 

to describing oyster population dynamics in Chesapeake Bay. In the first Chapter, I 

explore longitudinal applications of modal size decomposition analysis to length-

frequency data for the eastern oyster in Chesapeake Bay. Through use of this technique I 

describe the growth of eastern oysters by inferring length-at-age across the Maryland 

portion of Chesapeake Bay and develop regional and site-specific length-at-age 

relationships.  The validation of these length-based techniques can be achieved through 

the use of known-age oysters.  In the second Chapter, I examine the use of the annuli in 
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the microstructure of the oyster chondrophore (hinge) as a known-age marker for 

determination of the length-at-age relationship. Additionally, these data are used to 

validate the inferred length-at-age relationship as determined through the length-based 

modal analysis. These growth analyses provide one step forward towards improving the 

current understanding of demographics of eastern oyster under natural condition in 

Chesapeake Bay. The final chapter ties together the contribution of these two analyses 

towards the understanding of eastern oyster growth in Chesapeake Bay. It also provides 

recommendations for future work that builds off the knowledge base established through 

this project. 
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INTRODUCTION 

  

 The Eastern oyster Crassostrea virginica (Gmelin 1791) is distributed in estuaries 

and coastal areas in the Western Atlantic and the Gulf of Mexico, ranging almost 8000 

kilometers from Brazil to Canada (Newball and Carriker 1983; Andrews 1991). The 

Chesapeake Bay has supported substantial populations of eastern oyster, but abundances 

have declined dramatically during the last century. This decline is believed to have 

resulted from the combination of high rates of fishing mortality (Rothschild et al. 1994; 

Jordan et al. 2002; Jordan and Coakley 2004), habitat degradation (Mackenzie 1983), 

poor recruitment (Krantz and Meritt 1977), and two salinity-related parasitic diseases, 

Haplosporidium nelsoni (MSX) and Perkinsus marinus (Dermo) (Ford and Tripp 1996). 

The decline in oyster abundance has affected the Chesapeake Bay ecosystem causing 

reduced filtration capacity and a shift from a benthic to a pelagic-dominated ecosystem 

(Baird and Ulanowicz 1989). The recent low levels of abundance have focused 

management efforts on the restoration of oyster stocks to sustainable levels. Moreover, 

the Chesapeake Bay Program (CBP 2000) commitment to increase native oyster 

populations ten-fold by the year 2010 has precipitated a need to assess the status of the 

oyster stocks in Chesapeake Bay.  

 Oyster growth and recruitment remain poorly understood processes. Rothschild et 

al. (1994) combined site-specific estimates of oyster growth in the field, a von 

Bertalanffy growth model and a spawning stock biomass per recruit model (SSBR) to 

assess oyster population status in the Chesapeake Bay. However, the studies used to 

estimate maximum size and growth rates were small-scale, site-specific, and based on 
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observed growth of oyster in off-bottom culture.  The restricted geographic coverage and 

artificial culture conditions of these studies mean that the derived growth estimates may 

not reflect the true variability in growth rates for oysters in situ throughout the bay. The 

lack of reliable estimates of oyster vital rates in the field under natural conditions limits 

the application of traditional population dynamics models. Obtaining unbiased estimates 

of individual oyster growth, and understanding the associated uncertainty remains an 

important challenge to describing oyster population dynamics in Chesapeake Bay.  

Growth estimates of cultured oysters are available (Shaw 1962a,b). Several 

studies report the growth of cultured oysters raised either suspended in floats, longlines, 

rafts, or submerged mesh trays. While these methods provide easy access to the study 

oysters for researchers, experiments have shown increased growth rates and survival of 

oysters if elevated off the bottom (Shaw 1962a, b, 1963, 1969; Baab et al. 1973; April 

and Mauer 1976). Growth rates of suspended oysters are likely not representative of those 

growing in the field. Oysters produced in hatcheries and then planted in the field may 

have growth rates that differ from wild oysters due to optimal nutrition in the hatchery, 

selection for fast growth through the rearing process, or single year class plantings with 

reduced competition. Additionally, growth rates estimated for oysters in the laboratory 

may be biased as a result of the feeding regimen used.    

 In the field, growth can be estimated by either tracking individuals as they grow 

through time, or separating modes in length-frequencies to infer growth, or establishing 

length-age relationship based on known age markers. The logistical difficulty of 

following individuals on a bay-wide scale and the lack of a known age marker for oysters 

requires the use of inferential techniques based on length-frequency data collected bay-
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wide to obtain estimates of growth rates at a large spatial scale. Tracking modes from 

length-frequencies to infer growth can be based on data from a single sample (cross-

sectional) or based on multiple samples thereby allowing individual cohorts to be tracked 

through time (longitudinal).  Longitudinal approaches are preferred as they do not require 

the assumptions of (i) constant recruitment or (ii) that all cohorts observed have the same 

growth rates.  Thus longitudinal approaches allow interannual differences in cohort 

growth to be examined (Chambers and Miller 1995). 

 Early techniques for modal analysis involved visual identification of either 

distinct modes of single year classes from length frequency plots, or inflection points 

from cumulative length-class frequencies (Cerrato 1980). Application of visually-based 

identification of modes is straightforward in fast growing species with conspicuous 

modes (Rothschild et. al. 1994). However, when growth is slow, or variation in size-at-

age is high, the overlap among successive size modes increases and makes the application 

of visual techniques difficult. Moreover, size-based demarcation of age-classes becomes 

difficult as the maximum age increases because variation in size at age usually increases 

with age (Alverson and Carney 1975). Concerns over the visual identification of cohorts 

motivated the development of more rigorous, statistically-based approaches to modal 

analysis.  Initially, these statistical approaches described the size distributions of the 

cohorts represented in the population as a suite of normal distributions (Hassleblad 1966).  

More recently, techniques have been developed that relax the normality assumption.  

Modern methods of modal analysis are considerably more flexible and permit a range of 

distributions such as lognormal and gamma distributions to be fit to individual modes 

(Haddon 2001), and allow the incorporation of biological information (Schnute and 
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Fournier 1980).   Modal analysis of invertebrate length frequencies is widespread and 

examples include shrimp Pandalus borealis (Hansen and Aschan 2000) and the red sea 

urchin Strongylocentrotus franciscanus (Smith et al. 1998). In Chesapeake Bay, modal 

analysis has been applied to blue crabs comparing length-frequency histograms and 

predicted age based on lipofuscin, a biochemical age-marker, extracted from the crabs (Ju 

et al. 1999). 

 The application of modal analysis to estimate growth of eastern oyster in the field 

must account for environmental parameters that may influence observed growth. The role 

of temperature and salinity in determining the distribution and growth of the eastern 

oyster in Chesapeake Bay is well established (Menzel 1955, 1956; Loosanoff 1958; Feng 

1965).   While oysters are commonly found in areas where the temperature can range 

from -2 to 36 oC (Butler 1954; Galstoff 1964), rates of temperature change can greatly 

influence the actual tolerance levels within that range for adult oysters (Fingerman and 

Fairbanks 1957). Shell growth rates decrease with decreasing water temperature, until 

shell growth ceases at ~ 5oC (Ingle and Dawson 1952; Galstoff 1964).  In Chesapeake 

Bay, oysters occur from salinity 5 – 30.  Shell growth in oysters is almost nonexistent 

below salinity 5: growth increases with increasing salinity (Loosanoff 1953a, 1958, 1965; 

Shaw 1966).  The optimum salinity range is approximately 14 - 28 (Galstoff 1964). The 

low salinities (<5) common in the upper reaches of Chesapeake Bay, and its tributaries 

result in the establishment of reefs in the areas.  However, subsequently mortality is high 

due to excessive freshwater runoff that is characteristics of these regions (Galstoff 1964; 

Haven et al. 1976).  The increased presence of oyster predators at higher salinities is 

another indirect effect of salinity on oyster distribution (Gunter 1955).  
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 In the Chesapeake Bay, disease can be an additional important factor regulating 

oyster growth.  Several studies have been conducted to examine the effect of the parasitic 

protozoans, Dermo and MSX, on oyster growth rates. Dermo infection in oysters cultured 

in floating rafts in Chesapeake Bay was shown to retard shell growth at moderate and 

high salinities (Paynter and Burreson 1991). For oysters heavily infected with MSX, 

decreased feeding rates were observed, increasing the physiological stress on the oysters 

and causing a decrease in the condition of the tissue (Newell 1985). When oyster tissue 

condition decreases, the individual oyster is unable to allocate energy towards growth and 

reproduction (Ford and Figueras 1988; Freise 1996).  

 The factors that are known to affect oyster growth rates vary spatially. Jordan et 

al. (2002) have shown that there are important spatial differences in population structure 

of oysters within the Maryland portion of the Chesapeake Bay along a gradient of 

salinity.  Similarly, Dittman (1998) documents regional differences in the environmental 

covariates through time that may cause large differences in growth rates associated with 

differences in location of individual cohorts. Individual oyster growth is also likely 

affected by regional productivity. These effects would most likely be coupled with oyster 

density. Density of oysters may affect shell growth by limiting food and therefore impact 

individual oyster morphology (Kent 1988). Areas that are extremely dynamic such as 

shifting sand bottoms can cause oyster shells to be very rounded in shape (Kent 1988), 

which could have an impact in a length-based analysis based on a single metric. It is, 

however, unknown if differences in growth rates and shell length due to environmental 

factors can be detected at a large spatial scale in the field.     
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 Given the potential importance of spatial variation in productivity, temperature, 

salinity and disease prevalence, samples used to estimate growth must be broadly 

distributed spatially and temporally. Length-frequency data from fishery-independent 

surveys that cover a broad spatial and temporal domain are readily available for oysters in 

Chesapeake Bay.  These data may provide an opportunity to apply modal analysis to 

assign age-classes, and hence infer growth rates.  The Maryland Department of Natural 

Resources has collected length-frequency data for oysters since 1990. Although an 

inferential length-structured analysis of growth is typically considered the less accurate 

approach due to uncertainty in age determination, length describes many biological and 

fishery-related processes for oysters such as fecundity, maturity, natural mortality, 

predation, distribution, and selectivity of the fishery better than age alone.  This makes 

shell length an important metric to describe demographic processes for oysters, and the 

inferential techniques used to establish size-at-age for oysters should prove quite 

informative.  

The objectives of this study was to apply modern techniques of modal analysis 

and track size modes of presumptive year classes of eastern oyster on individual oyster 

bars in Chesapeake Bay and thereby develop reliable estimates of oyster growth under 

natural conditions.  I used maximum likelihood approaches to estimate model parameters 

for the modal fits and their associated uncertainty using nonlinear optimization 

procedures (Fournier et al. 1990). By tracking size modes longitudinally, I inferred the 

length-at-age for up to six ages for individual year classes at each site.  Subsequently, 

length-at-age estimates were analyzed to estimate growth at regional and bay-wide scales. 

 



 

19 

METHODS 

 

 In the Maryland portion of Chesapeake Bay, the Maryland Department of Natural 

Resources Fall oyster dredge survey has monitored the oyster population consistently 

since 1990.  Sampling was conducted at sixty-four sites from 1990 – 1996. Over this 

period, one-bushel samples at each site were formed by compositing 1/5 bushel 

subsamples from 5 tows.  Live oysters in the one-bushel sample were counted and the 

sizes tallied into 5 mm intervals. I compared the length frequency data in 5 mm intervals 

to 10 mm intervals, and determined the 5 mm size intervals (smallest interval available) 

provided a better description of modal structure (Figure 1). From 1997 – 2001, a subset 

of forty-three of the original sixty-four sites were sampled, and a one-bushel sample was 

composed of 1/2 bushel subsamples from 2 tows on each site. The mean number of live 

oysters per bushel sampled between the two sampling regimes were not significantly 

different based on a pooled two-sample t-test (mean1990-1996=93.46, mean1997-2001=85.97, 

t=0.71, df=10, p-value=0.4950). All assumption for the t-test were met, including 

equality of variance (F-value=4.12, p-value=0.121). I concluded that the change in 

sampling did not affect the numbers of oysters sampled.  Thus I assumed that the change 

in sampling methodology did not bias the length-frequency data. The location of the 

sampling sites and geographic coordinates are shown in figure 2 and appendix I.   

 Potential environmental covariates of growth were based on Chesapeake Bay 

Program (CBP) water quality data.  These data were used in the analysis because the 

oyster survey data provided only point estimates of temperature and salinity on the day of 

sampling.  CBP water quality monitoring stations were scattered through the bay. Data 
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selected for these analyses were from twenty-two monitoring stations that were within 8 

kilometers (straight-line) of the oyster dredge survey sites, and comprised biweekly or 

monthly records of bottom water temperature and salinity (Appendix VIII). For each 

oyster survey site, information on transplantation of natural or hatchery oysters from 

other sites (repletion) was also available.  

 

MODAL ANALYSIS 

Maximum –likelihood-based modal analysis of the oyster length-frequency data 

was conducted (Appendix II).  The length-frequency distribution of oysters at a single 

site in a single year was modeled as a multimodal distribution with m modes.  The  

probability of observing n oysters of length xi can be represented as: 
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where pm is the probability of observing xi in the mth mode (Hastings and Peacock  1975).  

Each pm can be defined by any probability density function (e.g. normal, lognormal, 

gamma, etc.).  Taking expectations of each event, and expressing the result in log form to 

overcome numerical complexity in using the factorial operator, one may write: 
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I compared normal and lognormal probability density functions to define the p’s. 

Normal probability density functions provided the best statistical fit for sample modal fits 

(Appendix III), therefore normal probability density functions were used to fit all the 

length-frequency data.  

A variable number (m) of normal distributions with additive error were fit to the 

length-frequency data using 'Solver' in Microsoft Excel.  The optimization algorithm 

varies the mean, variance and relative abundance of oysters in each modal distribution 

until the total likelihood for the entire length frequency fit is maximized.  Akaike’s 

Information Criterion (AIC) was used to test the goodness of fit of the maximum 

likelihood estimates to the length-frequency data based on differing numbers of m modes 

(Haddon 2001). The AIC statistic penalizes “goodness of fit” by the number of model 

parameters.  Thus, the modal number that produced the smallest AIC was selected as the 

most likely representation of the data.   

The modal analysis provided statistical estimates of the most likely number of 

modes present in the length frequency distribution together with the mean length, 

variance, and relative numbers of each mode for each site for each year in the entire 12-

year time series.  Any length-frequency sample that contained too few oysters (<5) or had 

hatchery or natural seed transplanted onto the site (repletion) were removed from the 

analyses.  Based on the above criteria, 14 of the 64 sites were completely removed from 

the analyses. 

I identified progressions of modal length classes across years at a single site.  

Based on these patterns, I assigned putative year classes and tracked sizes for subsequent 

age classes (age-0, age-1, age-2, age-3, age-4, and age-5) at each site.  I discarded year-
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class cohorts for which I was unable to identify an age-0 cohort, or that were 

characterized by equivocal frequency distributions, or which experienced repletion 

activities. Equivocal fits were defined as the failure of the optimization algorithm to 

identify any of the modes that could visually be identified in the length-frequency data. 

The failure of the optimization algorithm to identify an interceding mode in a 

sample (age-class) from a single year for a year class that had prior and later age classes 

identified resulted in that year-class being removed from the analyses. Because putative 

age-classes and their associated growth rates were determined from the progression of 

these modal length classes across years, once the algorithm failed to identify the modal 

length class for a specific cohort, all latter modal fits for that specific cohort were not 

used in the analysis.   

    

ANALYSIS OF LENGTH AT AGE-0 

 Analysis of length at inferred age-0 was conducted at three spatial resolutions:  

 

1) The 50 sites were grouped into 23 spatial regions, based on proximity and location 

within river systems or water bodies, to attempt to identify any regional differences in 

putative age-0 mean shell lengths (Appendix VII).  

2) Sites were grouped into larger spatial domains based on salinity regimes defined by 

Jordan et al. (2002).  Accordingly, the sites were also grouped into three salinity regions: 

low (<12), moderate (12-13.99), and high (>14), based on the mean salinity recorded 

annually during the oyster dredge survey (Appendix VII).  

3) The data from the 50 sites were pooled to provide mean shell length at age-0 

aggregated across all sites.  
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 I analyzed interannual variability in the mean length-at-age-0, across all sites 

using ANOVA (α = 0.05, Kenwood-Rogers ddfm). ANOVA was used to test for site-

specific differences in mean and variance in length at age-0, with year classes acting as 

replicates at each site. Experiment-wise error rate for all comparisons was controlled at 

0.05 using Tukey’s HSD (Tukey 1949a) method for all ANOVAs. ANOVA was also 

used to examine region-specific differences in mean length at age-0, with sites across all 

years as replicates.  Residuals of the length-at-age data for salinity-based regions 

displayed normality, however inhomogeneity of variances was corrected by the use of 

multiple variance groupings. The assumptions of normality and homogeneity of variance 

for the spatially-based region residuals were met. In addition to the analyses which 

focused on the presumptive age-0 mean shell lengths, an important landmark in oyster 

life history, effort was taken to describe the means and distributions of  shell lengths at 

latter age-classes (age-1, age2, age-3, age-4, age-5). 

 As site-specific salinity and the variance in salinity at a given site could potentially 

impact oyster length-at-age, regression analysis was used to identify relationships 

between mean shell length within age-class and the CBP site-specific mean salinity, 

maximum salinity, minimum salinity, and salinity variance (Appendix VIII). All 

assumptions were met, and subsequently the data were analyzed using regression. The 

same analyses were conducted using temperature and an additional ANOVA was used to 

examine the effect of degree-days on mean shell length within year-class. Because not all 

years and sites had water quality data collected for November and December, I removed 

those months from the analysis. For several years and months only monthly water 

temperatures were collected, therefore, I fit splines to the temperature data to allow two 
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bimonthly temperatures to be interpolated for use in the degree-day analysis. The oyster 

growing degree-days (GDD) for each year was calculated as the difference between the 

measured temperature (t) and 5oC, the temperature below which shell growth does not 

occur, summing all bi-monthly observations for the year (Loosanoff and Nomejko 1949; 

Ingle and Dawson 1952).  
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ANALYSIS OF GROWTH  

 Growth was estimated in two ways.  I calculated changes in size at putative-age 

for all sites and year classes. That allowed me to describe the distributions of growth rates 

for each year of growth (age(1-0), age(2-1), age(3-2), age(4-3), age(5-4)), and fit a 

regression model to examine if growth rates declined linearly with age, as would be 

expected. I also estimated growth by fitting a nonlinear von Bertalanffy (LVB) growth 

model with additive error structure (Galucci et. al. 1996) to the mean oyster length-at-age 

data at 29 sites. The model was only fit to those sites with at least 4 putative age-classes. 

The linear forms of LVB were not be used because of the difficulty in obtaining estimates 

of the precision of parameters, and an undefined error structure (Quinn and Deriso 1999).  

The equation for LVB is: 

 

    Lt = L∞ (1-e-kt) 
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where Lt is the length at age (t), L∞ is the asymptotic length, and k is the Brody growth 

coefficient (von Bertalanffy 1938). Parameter estimates from the von Bertalanffy growth 

model were compared across sites using ANOVA. Because of the intrinsic inverse 

relationship between L∞  and k, a more uniform means of comparing growth curves across 

sites was needed. Examining a landmark along the growth curves, such as the age-at-

entry to the fishery, provides this uniformity.  

 The age-at-entry to the fishery (76 mm shell length) was calculated for each site 

using site-specific growth curves. Differences in the age-at-entry to the fishery based on 

the spatially- and salinity-based regions were examined using ANOVA. The residuals 

met all assumptions of normality, however inhomogeneity of variances was corrected by 

the use of multiple variance groupings.  

 

VALIDATION OF MODAL ANALYSIS 

 Hatchery produced oysters have been planted at a variety of sites throughout the 

bay as part of ongoing restoration efforts. Hatchery-reared oysters that had been planted 

on Bollingbroke Sands, Chest Neck, Spaniard Point, and Weems Upper oyster bars were 

sampled during June 2003 (Appendix IX). Divers using scuba gear collected 17 - 56 

oysters from each of the four sites using 1/9 m2 quadrat samples.  Oyster shells were 

measured to the nearest mm. The length-at-age data for known-age oysters were then 

compared on a site-specific basis with the mean shell lengths for the same putative age-

class at sites closest to those sampled. 
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RESULTS 

 

 Multimodal length frequency analysis resulted in both acceptable (Fig. 3) and 

equivocal fits (Fig. 4) fits to the observed data.   One hundred and ninety-four year class 

cohorts were identified from the 50 sites sampled between 1991-2001 (1990, n=0; 1991, 

n=2; 1992, n=31; 1993, n=27; 1994, n=15; 1995, n=33; 1996, n=7; 1997, n=35; 1998, 

n=2; 1999, n=19; 2000, n=10; 2001, n=13; Appendix IV).  Of the 600 possible year-site 

combinations of length-frequency samples for the 50 remaining sites, 53% (319) of the 

samples had acceptable modal fits and were retained for further analysis. 

The modal length classes were interpreted as age classes based on longitudinal 

progression of length modes at individual sites, allowing putative ages to be assigned to 

length modes (Appendix IV; Appendix V).  From 1991 – 2001, the average length of 

putative age-0 oysters in October was 22.93 (±6.67, n=194) mm (Fig. 5). The largest 

average length of age-0 oysters of 46.22 mm was observed at Bay North Mountain Point 

(BNMP – Fig. 2) in 1992.  The smallest average length of age-0 oysters, 10.65 mm, was 

observed at Eastern Bay Parson’s Island (EBPI – Fig. 2) in 1993. The average length of 

putative age-1 oysters in during that same time period was 50.80 (±6.16, n=130) mm 

(Fig. 5). The largest average length of age-1 oysters, 68.64 mm, was observed at 

Nanticoke River Wilson Shoal (NRWS – Fig. 2) in 1993.  The smallest average length of 

age-1 oysters, 36.89 mm, was observed at Tangier Sound Great Rock (TSGR – Fig. 2) in 

1994. The average length of putative age-2 oysters was 67.58 (±7.48, n=88) mm (Fig. 5). 

The largest average length of age-2 oysters, 82.98 mm, was observed at Patuxent River 

Broomes Island (PXBI – Fig. 2) in 1997.  The smallest average length of age-2 oysters, 
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45.25 mm, was observed at Tangier Sound Piney Island (TSPI – Fig. 2) in 1995. The 

average length of putative age-3 oysters was 79.28 (±6.27, n=48) mm (Fig. 5). The 

largest average length of age-3 oysters of 101.88 mm was observed at Harris Creek Eagle 

Point (HCEP – Fig. 2) in 1995.  The smallest average length of age-3 oysters, 69.45 mm, 

was observed at Fishing Bay Clay Island (FBCI – Fig. 2) in 1994. The average length of 

putative age-4 oysters was 85.37 (±10.62, n=23) mm (Fig. 5). The largest average length 

of age-4 oysters, 110.67 mm, was observed at Harris Creek Eagle Point (HCEP – Fig. 2) 

in 1996.  The smallest average length of age-4 oysters, 69.19 mm, was observed at Little 

Choptank River Cason (LCCA – Fig. 2) in 2001. The average length of putative age-5 

oysters was 84.46 (±8.27, n=4) mm (Fig. 5). The largest average length of age-5 oysters, 

92.15 mm, was observed at Eastern Bay Hollicutt’s Noose (EBHN – Fig. 2) in 2001.  The 

smallest average length of age-5 oysters, 72.73 mm, was observed at Manokin River 

George’s Bar (MAGE – Fig. 2) in 1997.  

 Figure 5 illustrates the high variability of mean oyster shell length at age-0 

(CV=29.13%) across all sites.  Variability in length at age was substantially lower for 

older ages (age-1 CV=12.17%, age-2 CV=11.07%, age-3 CV=7.90%, age-4 CV=12.44% 

and age-5 CV=9.79% respectively). The older age-classes also had smaller sample sizes. 

While the distributions of mean cohort shell lengths for the first three putative age-classes 

were quite distinct, the latter three age-classes showed a large degree of overlap (Fig. 5).  

Moreover, the distributions of mean shell lengths for the putative age-classes were 

approximately normally distributed, with the exception of age-5 which is likely due to 

sample size (age-1, kurtosis=0.73, skewness=0.84; age-1, kurtosis=0.22 , skewness= 
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0.53; age-2, kurtosis=-0.28, skewness=0.06; age-3, kurtosis=2.07, skewness=1.11; age-4, 

kurtosis=0.26, skewness=0.83; age-5, kurtosis=2.50, skewness=-1.34; Fig. 5).  

 Interannual variability significantly contributed to the variation in mean shell 

length for the age-0 putative age-class (df=10,183, F-value=9.11, p-value=<0.0001; 

Table 1). Analysis of variance suggests significant site-specific differences for age-0 

(df=49,144, F-value=2.29, p-value=<0.0001; Table 2). However, the least-squares mean 

estimates of age-0 shell lengths at individual sites did not reveal strong, distinct 

groupings among sizes, showing rather a more continuous distribution of sizes (Table 2). 

Age-0 varied significantly at the water body level, also called spatially-based regions 

(df=17,151, F-value=2.51, p-value=0.0016; Table 3). However, least-squares mean 

estimates indicate that the difference results from one or two water bodies that had 

substantial larger estimated mean lengths at age-0 than the other sites: most sites were not 

statistically different from one another (Table 3). Salinity-based regions were significant 

determinants of age-0 shell length (df=2,17.7, F-value=5.19, p-value=0.0169; Table 4). 

Examination of least-squares mean estimates of age-0 shell lengths for salinity-based 

regions indicated the highest salinity region exhibited significantly different growth rates 

than the other two regions (Table 4). The interaction of year and site could not be tested 

due to a lack of degrees of freedom. No other interactions were significant. 

 Site-specific mean, maximum, minimum, and variance, in both salinity and 

temperature from the CBP water quality monitoring station data were not significant 

determinants of mean shell length-at-age (Table 5; Table 6). The analysis of variance 

using degree-days also did not yield significant results (F=0.22, p-value = 0.5744). 
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 Age-specific growth rates, calculated longitudinally for single year classes cohorts 

declined linearly with increasing age-class (r2=0.5730; Fig. 6). Growth rates declined 

with age class from a mean of 28.97mm/yr to –0.85mm/yr, and the minimum and 

maximum positive calculated growth rates were 0.78 and 53.0 mm/yr, respectively.  

 I examined the distribution of age-specific growth estimates based on differences 

in size-at putative age.  The distributions of growths rates were approximately normal for 

each age interval (age(1-0), kurtosis=0.80, skewness=0.74; age(2-1), kurtosis=0.35 , 

skewness= 0.47; age(3-2), kurtosis=-0.51, skewness=-0.01; age(4-3), kurtosis=-0.05, 

skewness=0.19; age(5-4), kurtosis=-1.47, skewness=0.82; Fig. 7). There was also a broad 

range in the growth rates based on differences between putative age-classes for any given 

year of growth.  

 Modal analysis of length-frequency data provided parameter estimates for site-

specific and bay-wide LVB growth models (Appendix VI). A nonlinear LVB growth 

model fit to mean length-at-age derived from tracking individual year classes provided a 

good description of growth (L ∞=90.85mm, k=0.55, to=-0.51; r2=0.9047: Fig. 8). The 

model indicated that the average oyster attains a harvestable size (76mm shell length for 

Chesapeake Bay) in about 3 years. The estimate of asymptotic length (L ∞) in this model 

reflected size selective mortality, both natural and fishery-related, acting on the older year 

classes. Because of the low sample size for sixth age-class, the model was refit to reduced 

dataset including the first three, four or five age classes.  All models produced similar 

results regardless of the number of age classes employed (L ∞=93.01mm, k=0.51, to=-

0.56; L ∞=97.54mm, k=0.46, to=-0.58; L ∞=96.92mm, k=0.47, to=-0.57; for three, four and 

five age class models respectively).  
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 Site-specific von Bertalanffy model parameters were estimated (Table 7; 

Appendix VI).  ANOVA indicated that L ∞ and k differed significantly among a few 

spatial regions, although most of the spatial regions were not significantly different from 

one another based on least squared mean differences (Table 8; Table 9). Salinity-based 

regions were significant determinants of the shell length at age to (Table 8).  

 Analysis of variance suggests salinity-based regions were significant determinants 

of age-at-entry to the fishery (df=2, 24.6, F-value=5.92, p-value=<0.0080; Table 10, 

Table 11). Spatially-based regions were not significant determinants of age-at-entry to the 

oyster fishery (df=16,12, F-value=1.33, p-value=0.3106).  

 There were no sites from the Magothy River or the Severn River in the length-

based modal analysis to be compared with known-age oysters from Chest Neck or 

Weems Upper oyster bars. However, oyster shell lengths for age-2 oysters at Chest Neck 

oyster bar in the Magothy River (n=56, mean=55.91+8.55mm) and Weems Upper in the 

Severn River (n=37, mean=62.67+10.73mm) was lower than the single observation of a 

putative age-2 oyster at a nearby Bay North Mountain Point site (n=1, length=74.33mm). 

These mean shell lengths were similar to the average putative age-2 shell lengths (n=88, 

mean=67.58+7.48mm) At Bollingbroke Sand in the Upper Choptank River the mean 

shell lengths (n=34, mean=74.91+1.98mm) were similar to those from modal analysis 

(n=11, mean=67.82+6.31mm). At Spaniard Point oyster bar in the Chester River, the 

hatchery planted age-5 oysters (n=19, mean=114.90+13.98mm) were larger than age-5 

oysters identified in the length-based modal analyses (n=4, mean=84.46+8.27mm). 

 The size distributions of age-2 oysters from the modal analysis were similar to 

those of oysters with known age-2 oysters (Figure 9). However, the size distributions of 
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age-5 oysters from the modal analysis were much smaller than the known age-5 oysters 

(Figure 10). 
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DISCUSSION 
 

 I was able to apply modal analyses to longitudinal samples of eastern oyster from 

Chesapeake Bay successfully to estimate size-at-age and growth in the field.   The 

average shell lengths of putative age-0 through age-5 oysters range from 22.93 (±6.67, 

n=194) mm to 84.46 (±8.27, n=4) mm. Growth rates declined with age-class from a mean 

of 28.97mm/yr to –0.85mm/yr, and the maximum and minimum observed growth rates 

were 0.78 and 53.0 mm/yr, respectively. The negative mean growth rate for the fifth year 

of growth is not statistically different from zero, and is an artifact of size selective 

mortality from both parasitic diseases and fishing mortality removing the older age-

classes. While some organisms may exhibit negative growth, due to the retention of the 

hard structure of the oyster shell, negative growth rates are biologically impossible.   

 The estimates of size-at-age developed herein were biologically reasonable and 

similar to those derived from other approaches.  My estimates of the size of age-2 oysters 

developed from a modal analysis overlapped the observed sizes of known age-2 oysters 

collected from not-take reserve areas within the Chesapeake Bay.  In contrast, my 

estimates of the sizes of age-5 oysters were smaller than those of known age-5 oysters 

from no-take reserve areas.  This later observation further implicates the role of fishery 

removals in the impacting the size structure of the oyster population in Chesapeake Bay. 

Further evidence in support of my estimates can be derived from field studies.  Seed 

oysters suspended in trays in the Tred Avon River a sub-estuary of the Chesapeake Bay, 

showed age-0 oysters grew from an average of 25.5mm to 55.2mm (n=102; 

29.7mm/season) from May to December (Shaw 1966). In their second year, oysters grew 

from an average size of 57.8mm to 80.1mm (n=100; 22.3mm/season) from April to 
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December (Shaw 1966). Shaw and Merill (1966) reported that oyster settling on 

navigation buoys in lower Chesapeake Bay averaged 25 to 35mm at the end of their first 

growing season (age-0), 70 to 80 mm at the end of the second year (age-1), and 80 to 95 

mm at the end of the third (age-2). In trays in the York River, another sub-estuary of the 

Chesapeake Bay, C. virginica were found to grow to 64.6mm in 18 months (Barber and 

Mann 1991). Paynter and DiMichele (1990), who followed two groups of cultchless, 

hatchery-produced spat in trays in Chesapeake Bay, reported that  oysters grew 8 - 

10mm/month from July to October (32 -40mm/first season). Outside of Chesapeake Bay, 

Loosanoff and Nomenjko (1949) reported growth for a variety of age-classes ranging 

from 7.7 - 37.2 mm over seven months in Milford Harbor, Connecticut.  As expected, 

oyster growth rates reported in studies of oysters growing in trays and on navigational 

buoys are slightly higher than those inferred from the length-based analyses of oysters 

under natural conditions.  

  The results of the modal analyses indicated significant interannual 

variability in the size of age-0 oysters. Ignoring 1991 estimates, which likely reflect low 

sample size (n=2), two statistically different groups size of age-0 oysters resulting from 

different year classes were identified. The timing of spawning is one mechanism that can 

introduce variation to the length-at-age relationship. In particular, the timing of spawning 

is related to temperature and salinity and thus varies throughout the bay among years 

(Loosanoff and Engle 1940, Lutz et al. 1970, Ryder 1995). As the timing in spawning 

varies interannually, the more easily observed timing of peak oyster larvae settlement 

events vary within a 5 month period, from late May to early October typically with single 

or double peaks in magnitude in July to early October (Beaven 1955; Shaw 1969; 
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Kennedy 1980; Kennedy et al. 1996). As salinity and temperature vary among oyster bars 

and survey sites throughout the bay at any given time, the spawning may not necessarily 

be synchronous across oyster bars. 

  Examination of least-squares mean estimates of age-0 shell length among sites 

and among spatially-based regions reveals that the statistically significant differences 

may be driven by the small sample sizes for Bay North Mountain Point (BNMP) and two 

sites in the Chester River. These three sites were characterized by substantial larger 

oysters at age-0 than the other sites.  These sites were characterized also by some of the 

lowest salinity levels.  In contrast the age-0 mean shell lengths in the highest salinity-

based region were significantly smaller than the other regions. The higher prevalence of 

the parasitic disease MSX in the highest salinity region, when compared to the moderate 

and low salinity regions, may be responsible for smaller age-0 shell lengths in the highest 

salinity region.  While MSX is known to cause high levels of mortality in adult oysters, 

spat are susceptible to infection and mortality from this parasite, particularly when 

infection pressure is high (Mhyre 1973; Andrews 1984a). Andrews (1964, 1983) 

observed that MSX disappeared from James River seed beds after freshet events when 

the salinity dropped below 10. In Delaware Bay, a similar pattern of reduced or zero 

prevalence of MSX in low salinity water was observed (Haskin and Ford 1982). The 

spatial and temporal dynamics of the disease processes, and associated mortality, have 

impacts on the length-frequency distributions that are difficult to quantify, and may be 

another source of variability.  

  The estimates of von Bertalanffy (LVB) growth parameters (L ∞=90.85mm, 

k=0.55, to=-0.51) provide important insights into the ecology and exploitation of oysters 
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in Chesapeake Bay. Two previous studies, both of which were conducted in Chesapeake 

Bay, have estimated von Bertalanffy growth parameters for eastern oysters.  Rothschild et 

al. (1994) conducted a meta analysis of previous growth studies of Eastern oyster, and 

reported von Bertalanffy model parameters of L ∞=150mm and k=0.28 /yr.  Thus, 

Rothschild et al.’s results imply oysters grow more slowly and attain a larger asymptotic 

size than my results indicate.  However, Rothschild et al.’s (op. cit.) findings also imply 

that legal size (76 mm) is attained in approximately three years, similar to my own 

findings.  This suggests that the difference between my results and those of Rothschild et 

al. (op. cit.) reflect differences in asymptotic size between the two studies rather than in 

recruitment to the fishery.   Mann et al. (2003) also fit an oscillating von Bertalanffy 

growth model to length-frequency data. 

 My estimate of asymptotic length and that of Mann et al. (2003) was smaller than 

expected.  Two processes likely account for the small asymptotic length: size-selective 

mortality, both natural and fishery-related, acting on the older year classes, and 

underlying Dermo infections in the population.  The parasitic disease Dermo is prevalent 

in the Chesapeake Bay oyster population, and individual growth is decreased in those 

heavily infected (Paynter and Burreson 1991). While there are no other extensive growth 

studies with which to compare, it is possible that there has been an actual depression in 

the average growth rates of oysters after the introduction of the parasitic disease. 

Evidence has been found in pre-colonial middens and in historical writings that suggest 

oysters grew larger and formed more extensive reefs than they do under present condition 

of habitat destruction through harvest mechanisms and disease (Kennedy 1996). Goode 

(1884) reported live oysters as large as 230mm shell length. Under present conditions of 
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widespread infection with the parasitic disease Dermo, which is know to reduce 

fecundity, it would seem even more important to Management Agencies to conserve the 

larger, more fecund oysters to maintain the reproductive capability of the population as 

well as the ecological benefits of the physical reef structure (Kennedy et al. 1995). In 

addition, the eastern oyster is a dioecious alternate hermaphrodite causing larger 

individuals to be predominantly female (Galstoff 1964). As such, conservation of 

spawning stock biomass is extremely important to maintain the reproductive capacity of 

the population. 

 There are several possible shortcomings to my analyses. Bias could have 

unknowingly been introduced through the determination of year classes. While the 

techniques used were believed to be quite conservative, it is possible that bias was 

introduced at the point of determining age-0 modes or while following length modes 

through time.  Another concern in the analyses was the binning in 5 mm length classes 

when the oyster dredge survey was conducted. All subsequent analyses are based on 

these data. It is possible the 5 mm incremental length-classes do not provide sufficient 

resolution to detect significant differences in mean age-0 shell lengths by site and 

spatially-based regions, and age-at-entry to the fishery by spatially-based region. In latter 

year classes,  

 These results should suggest that collecting measurements of oyster shell lengths 

to the nearest mm could reveal differences in growth, that were undetectable under less 

refined data collection methods. One consequence of the coarser resolution of the data 

used here is the difficulty in estimating fishing mortality rates baywide or on individual 

reefs. For the red sea urchin, Strongylocentrus franciscanus, the application of modal 
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analysis was conducted similarly with modal fitting using maximum likelihoods, but 

extended these data to the estimation of total mortality (Z) and natural mortality in 

unfished populations (Smith at al. 1998).  Eastern oyster populations are spatially 

distributed, as is fishing mortality. This requires spatial management of fishing effort to 

protect regional spawning stock biomass. Site-specific length frequency data could 

provide the means to estimate regional and site-specific fishing mortality, as natural 

mortality based on shell box counts. 

 While the length-based modal analyses provided putative length at age-class and 

growth rates, they need to be validated against know-age oysters. The differences in 

estimated and known age-5 oyster lengths is likely due to fishing mortality, which was 

absent on the hatchery plantings.  It has also been suggested that hatchery-reared oysters 

grow faster than wild oysters, however, this has not been scientifically determined. The 

similarity in length-at age for the age-2 known-age oysters and those inferred from modal 

analyses indicate growth rates may be similar, at least in the earlier age-classes. 

Inaccurate age data can distort the ability of scientists and managers to understand oyster 

population dynamics. This may lead to inappropriate fishery management, therefore, it is 

extremely important that the accuracy of these age estimates be validated. Growth is the 

fundamental process that translates newly settled oysters to the reproductive and fishable 

stock. It drives stock production, and it is hoped that through better understanding of 

these vital processes informed management decision can be made to restore the native 

eastern oyster to sustainable levels in the Chesapeake Bay.  

 The approaches utilized here to analyze growth in eastern oyster may be broadly 

applicable to other shellfish and invertebrate fisheries.  The application of these 
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techniques to invertebrate species is often necessary due to the lack of a know-age marker 

or difficulty in aging these species.  Time series of size composition data from fishery-

independent surveys are often readily available. Some examples of studies of invertebrate 

fisheries have employed modal analysis techniques. Hansen and Aschan (2000) utilized 

modal analyses of carapace length-frequency in shrimp, Pandalus borealis, from waters 

north of the Svalbard Archipeligo.  This study revealed differences in regional growth 

and age at first maturity.  Similarly, Smith et al. (1998) estimated age-at-length, growth 

and mortality of red sea urchin using maximum likelihood-based modal analyses of 

length frequencies. More recently, Martell et al. (2000) combined modal analysis of 

shrimp and an age-structured assessment model to estimate growth and mortality rates in 

shrimp, Pandalus jordani. Von Bertalanffy models have been developed for a wide range 

of other shellfish populations.  Brey (1996) analyzed size-frequency data from the cockle, 

Cardium edule, over one year in Kiel Bay.  Brey (op. cit.) estimated the von Bertalanffy 

parameters for cockle of L ∞ =90.85mm and k=0.55/yr. Estimates of growth parameters 

for the pearl oyster, Pinctada inmbricata, in the Caribbean were L ∞ =84mm and 

k=0.94/yr (Urban 2000). Abalone estimates of L ∞  and k were 160mm and 0.33/yr, 

respectively (Shepherd and Avalos-Borja 1997). Information of inferred length-at-age 

from such analyses is extremely informative with respect to fishery and biological 

processes affecting invertebrates.   

 In summary, the application of length-based modal analysis and von Bertalanffy 

models allowed the effects of both the environment and the fishery on growth in eastern 

oyster.  My results suggest size-selective mortality resulting from two parasitic diseases 

MSX and Dermo, and from fishery-related mortality act in parallel to limit maximum 
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sizes in oysters.  Spatial salinity-based differences in growth parameters were apparent. 

Geographic variability in infection intensity of Dermo (Calvo et al. 1996), density, or any 

combination of environmental factors such as temperature and dissolved oxygen could be 

responsible for variability in growth rates by region.  Age-at-entry to the fishery was 

significantly larger in the in the high and moderate salinity-based regions, than the lower 

salinity region.  These results provide a foundation from which more inclusive population 

dynamic models can be developed to aid in the assessment of population status of oyster 

in the Chesapeake Bay. 
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Table 1. Least-squares mean estimates of age-0 shell lengths for individual years 
averaged across sites ranked by size. The sample size for each year is given as N. Years 
that are followed by the same letter are not significantly different at α = 0.05.  
 
 
 
   

Year N Estimate (mm)
1990 0 0
1999c 19 16.25+1.28
1993c 27 17.65+1.08
1996bc 7 20.37+2.12
1994b 15 22.27+1.44
2001b 13 22.38+1.55
1998b 2 23.10+3.95
2000b 10 24.39+1.77
1992b 31 24.92+1.01
1997b 35 25.22+0.95
1995b 33 26.13+0.97
1991a 2 39.19+3.96

sum= 194  
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Table 2. Least-squares mean estimates of age-0 shell lengths for individual sites ranked 
by size. The sample size for each site is given as N. Years that are followed by the same 
letter are not significantly different at α = 0.05.  
 
 
 

 

Site N Estimate (mm) Site N Estimate (mm)
TSOW (a) 6 17.87+2.36 NRWS (ab) 4 21.74+2.89
TSPI (a) 6 17.94+2.36 WRES (ab) 2 22.72+4.09
TADM (ab) 2 18.43+4.09 PSMA (ab) 7 22.91+2.18
WRMV (ab) 1 19.25+5.79 WSBU (ab) 2 22.95+4.09
FBCI (a) 5 19.29+2.59 SMCC (ab) 7 23.65+2.19
TSSS (a) 6 19.41+2.36 CRRO (ab) 3 24.18+3.34
HRNO (a) 6 19.61+2.36 PXBI (ab) 2 24.23+4.09
EBPI (a) 7 19.62+2.19 CRTW (ab) 5 24.86+2.59
TSBC (ab) 7 19.62+2.19 CROS (ab) 2 26.34+4.09
FBGC (a) 4 19.69+2.89 EBBU (ab) 1 26.49+5.79
PRLC (ab) 1 20.07+5.78 CRLI (ab) 3 26.53+3.34
MAGE (a) 5 20.22+2.59 MRBI (ab) 4 26.57+2.89
LCRP (ab) 7 20.23+2.59 PRRP (ab) 2 27.18+4.09
PSGU (ab) 2 20.25+4.09 EBWG (ab) 3 27.25+3.34
PRCH (ab) 4 20.32+2.89 MESR (ab) 5 27.55+2.59
NRMG (a) 5 20.33+2.59 MRLP (ab) 2 27.88+4.09
MADP (ab) 5 20.40+2.59 MRAS (ab) 2 28.28+4.09
LCCA (ab) 5 20.49+2.59 EBHN (ab) 2 30.91+4.09
HOHO (a) 8 20.57+2.05 WSHI (ab) 3 31.40+3.34
TSGR (ab) 2 20.62+4.09 CHBR (ab) 1 31.53+5.78
BCDN (ab) 4 20.89+2.59 HCEP (ab) 4 31.62+2.89
TSTE (ab) 5 21.02+2.59 POSH (ab) 2 32.23+4.09
SMPA (a) 8 21.12+2.04 CRCP (ab) 2 34.06+4.09
MRTU (ab) 5 21.39+2.59 CRSH (ab) 2 37.27+4.09
HRWI (ab) 5 21.51+2.59 BNMP (b) 2 46.22+5.79  
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Table 3. Least-squares mean estimates of mean length of age-0 shells in different spatial 
regions ranked by size. The sample size for each spatial region is given as N. Years that 
are followed by the same letter are not significantly different at α = 0.05.  
 
 
 
 

     

Spatial Region N Estimate (mm)
Tangier Sound (a) 20 19.21+0.67
Fishing  Bay (a) 9 19.47+2.44
Manokin River (a) 10 20.32+1.76
Honga River (a) 11 20.47+1.68
Broad Creek (ab) 4 20.89+3.42
Nanticoke River (a) 9 20.95+1.63
Potomac River (ab) 7 22.24+1.63
Pocomoke Sound (ab) 2 22.32+1.97
Eastern  Bay (ab) 13 23.65+2.03
Patuxent River (ab) 2 24.23+7.26
Little Choptank River (ab) 12 24.32+1.61
Miles River (ab) 13 25.04+1.36
Middle East Shore (ab) 5 27.55+2.10
Chester River (b) 2 27.72+1.77
Choptank River (ab) 17 31.53+5.89
Harris  Creek (ab) 4 31.62+3.41
Bay North (b) 2 46.22+5.89

sum= 142  
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Table 4. Least-squares mean estimates of age-0 shell lengths for salinity-based regions 
lengths. Salinity region low (salinity<12), region moderate (salinity12-13.99), and region 
high (salinity>14) based on Jordan et al. (2002). The sample size for each salinity region 
is given as N.  
 
 
 

 

Salinity Region N Estimate (mm)
High (b) 109 21.55+0.58

Moderate(a) 77 23.98+0.69
Low (b) 8 30.54+4.18  
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Table 5. Regression results examining sources of variability, based on salinity, with 
respect to mean shell length at 22 water quality monitoring stations from 1991-2001.  
 
 
 

Source of Variation dF F P  Value
Mean Salinity

Age(0) Length 1,21 0.01 0.9266
Age(1) Length 1,19 0.91 0.3509
Age(2) Length 1,18 0 0.9829
Age(3) Length 1,14 0.44 0.5191
Age(4) Length 1,7 0.24 0.6372

Maximum Salinity
Age(1) Length 1,21 2.02 0.1703
Age(2) Length 1,19 1.59 0.2229
Age(3) Length 1,14 2.13 0.1665
Age(4) Length 1,7 0.22 0.6553

Minimum Salinity
Age(1) Length 1,21 0.86 0.3935
Age(2) Length 1,19 2.64 0.1222
Age(3) Length 1,14 0.16 0.6932
Age(4) Length 1,7 0.77 0.3387

Salinity Variance
Age(1) Length 1,21 1.65 0.2087
Age(2) Length 1,19 2.51 0.9573
Age(3) Length 1,14 0.38 0.5492
Age(4) Length 1,7 0.58 0.4287  
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Table 6 Regression results examining sources of variability, based on temperature, with 
respect to mean shell length at 22 water quality monitoring stations from 1991-2001.  
 
 
 
 

Source of Variation dF F P  Value
Mean Temperature

Age(0) Length 1,21 0.01 0.9266
Age(1) Length 1,19 1.03 0.3422
Age(2) Length 1,18 2.88 0.1408
Age(3) Length 1,14 1.65 0.2331
Age(4) Length 1,7 0.54 0.4846

Maximum Temperature
Age(0) Length 1,21 1.86 0.21
Age(1) Length 1,19 0.01 0.9221
Age(2) Length 1,18 1.85 0.195
Age(3) Length 1,14 0.76 0.3862
Age(4) Length 1,7 0.36 0.591

Minimum Temperature
Age(0) Length 1,21 0.28 0.7616
Age(1) Length 1,19 2.1 0.1843
Age(2) Length 1,18 3.81 0.0766
Age(3) Length 1,14 2.94 0.1287
Age(4) Length 1,7 0.79 0.3974

Salinity Temperature
Age(0) Length 1,21 0.59 0.3688
Age(1) Length 1,19 1.22 0.2769
Age(2) Length 1,18 0.02 0.8552
Age(3) Length 1,14 4.02 0.0621
Age(4) Length 1,7 0.77 0.4257  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

53 

Table 7. Ludwig von Bertalanffy growth model parameters from o 23 spatial regions and 
the 3 salinity-based regions similar to those used in Jordan et al. (2002). Salinity region 
low (salinity<12), region moderate (salinity12-13.99), and region high (salinity>14).  
  
 
 
      

 

Site Bar Name Spatial Region Salinity Region L∞ k to

BCDN Deep Neck Broad Creek moderate 85.52 0.573 -0.43
BNMP Mountain Point Bay North low 88.62 0.492 -1.502
CHBR Buoy Rock Chester River low 83.39 0.881 -0.526
CRLI Lighthouse Choptank River moderate 92.67 0.519 -0.642
CRRO Royston Choptank River moderate 91.43 0.52 -0.593
CRSH Sandy Hill Choptank River low 121.432 0.281 -1.343
CRTW Tilghman Wharf Choptank River moderate 87.28 0.573 -0.565
EBHN Hollicutts Noose Eastern  Bay high 106.49 0.393 -0.852
FBCI Clay Island Fishing  Bay high 80.47 0.542 -0.516
FBGC Goose Creek Fishing  Bay high 106.86 0.542 -0.312
HCEP Eagle Point Harris  Creek moderate 152.15 0.261 -0.913
HRNO Normans Honga River high 90.69 0.513 -0.473
HRWI Windmill Honga River high 88.68 0.546 -0.498
LCCA Cason Little Choptank River moderate 76.98 0.65 -0.477
LCRP Ragged Point Little Choptank River high 91.12 0.429 -0.799
MAGE Georges Bar Manokin River high 77.48 0.779 -0.378
MESR Stone Rock Middle East Shore high 98.61 0.384 -0.842
MRBI Bruffs Island Miles River moderate 83.26 0.794 -0.48
MRLP Long Point Miles River moderate 88.83 0.68 -0.552
MRTU Turtle Back Miles River moderate 90.81 0.538 -0.509
NRMG Middle Ground Nanticoke River high 100.99 0.631 -0.351
PRRP Ragged Point Potomac River moderate 148.97 0.237 -0.831
PSGU Gunby Pocomoke Sound high 98.55 0.399 -0.577
PSMA Marumsco Pocomoke Sound high 80.47 0.6 -0.559
PXBI Broomes Island Patuxent River moderate 102.99 0.539 -0.472
TSOW Old Womans Leg Tangier Sound high 116.02 0.346 -0.521
TSPI Piney Island Tangier Sound high 115.21 0.252 -0.709
TSSS Sharkfin Shoal Tangier Sound moderate 95.64 0.49 -0.466
TSTE Turtle Egg Island Tangier Sound high 140.86 0.23 -0.826

mean 99.4 0.504 -0.638
SEM 3.742 0.031 0.05  
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Table 8. One-way analysis of variance results examining von Bertalanffy growth model 
parameters, with respect to spatial and salinity-based regions. 

 

 

 

Source of Variation dF F P  Value
Spatial Region

L∞ 16,26 2.78 0.0397
k 16,26 2.68 0.0447
to 16,26 1.91 0.1297

Salinity Region
L∞ 2,26 0.01 0.99
k 2,26 0.54 0.5882
to 2,26 8.14 0.0018  
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Table 9. Results of the least-squared mean differences for the Ludwig von Bertalanffy 
growth model parameters by spatial region. Means that are followed by the same letter, 
within that column, are not significantly different at α = 0.05. Experiment-wise error rate 
was controlled at 0.05 using Tukey’s HSD. 
 

Spatial Region L∞ k to
Potomac River 148.97 a 0.237 c -0.831 a
Harris  Creek 152.15 a 0.261 c -0.913 a
Tangier Sound 116.93 b 0.329 c -0.631 a
Middle East Shore 98.61 c 0.384 c -0.842 a
Eastern  Bay 106.49 bc 0.393 c -0.852 a
Choptank River 98.20 c 0.473 c -0.786 a
Bay North 88.62 c 0.492 bc -1.502 a
Pocomoke Sound 89.51 c 0.499 b -0.568 a
Honga River 89.69 c 0.530 b -0.486 a
Patuxent River 102.99 c 0.539 b -0.472 a
Little Choptank River 84.05 c 0.540 b -0.638 a
Fishing  Bay 93.67 c 0.542 b -0.414 a
Broad Creek 85.52 c 0.573 b -0.43 a
Nanticoke River 100.99 c 0.631 b -0.351 a
Miles River 87.63 c 0.671 b -0.514 a
Manokin River 77.48 c 0.779 b -0.378 a
Chester River 83.39 c 0.881a -0.526 a  
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Table 10. Estimated age-at-entry to the oyster fishery (76mm shell length) is given in 
years 
 
 
 

 

Site Bar Name Spatial Region Salinity Region Age-at-Entry
BCDN Deep Neck Broad Creek moderate 3.4
BNMP Mountain Point Bay North low 2.46
CHBR Buoy Rock Chester River low 2.22
CRLI Lighthouse Choptank River moderate 2.66
CRRO Royston Choptank River moderate 2.83
CRSH Sandy Hill Choptank River low 2.16
CRTW Tilghman Wharf Choptank River moderate 3.01
EBHN Hollicutts Noose Eastern  Bay high 2.33
FBCI Clay Island Fishing  Bay high 4.82
FBGC Goose Creek Fishing  Bay high 1.98
HCEP Eagle Point Harris  Creek moderate 1.74
HRNO Normans Honga River high 3.08
HRWI Windmill Honga River high 3.06
LCCA Cason Little Choptank River moderate 6.24
LCRP Ragged Point Little Choptank River high 3.39
MAGE Georges Bar Manokin River high 4.7
MESR Stone Rock Middle East Shore high 2.99
MRBI Bruffs Island Miles River moderate 2.59
MRLP Long Point Miles River moderate 2.29
MRTU Turtle Back Miles River moderate 2.86
NRMG Middle Ground Nanticoke River high 1.85
PRRP Ragged Point Potomac River moderate 2.18
PSGU Gunby Pocomoke Sound high 3.12
PSMA Marumsco Pocomoke Sound high 4.26
PXBI Broomes Island Patuxent River moderate 2.01
TSOW Old Womans Leg Tangier Sound high 2.56
TSPI Piney Island Tangier Sound high 3.57
TSSS Sharkfin Shoal Tangier Sound moderate 2.76
TSTE Turtle Egg Island Tangier Sound high 2.55

mean 2.95
SEM 0.185  
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Table 11. Least-squares mean estimates of age at entry into the fishery in different 
salinity-based regions. The sample size for each salinity-based region is given as N. 
Years that are followed by the same letter are not significantly different at α = 0.05.  
 
 
 
 

 

Salinity Region N Estimate (mm)
High (a) 14 3.16+0.277

Moderate(a) 12 2.88+0.298
Low (b) 3 2.28+0.092  
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Figure 1. Comparison of length-frequency distributions from Tangier Sound Old 
Woman’s Leg (TSOW) in 2000 binned at 5mm and 10mm size intervals. 
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Figure 2. Map of the Sixty-Four Maryland Department of Natural Resources annual 
oyster dredge survey sites in Chesapeake Bay sampled from 1990-present. 
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Figure 3. Broad Creek Deep Neck (BCDN) observed length frequency data (columns) 
from 1993 to 2000 and best maximum likelihood model fit (lines) based on AIC. Modes 
with the same symbols belong to the same cohort tracked longitudinally. 
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Figure 4. Eastern Bay Wild Ground (EBWG) observed length frequency data (columns) 
and best maximum likelihood model fit (lines) based on AIC. The second mode in 1996 
is an equivocal fit and was not used in the analyses. Modes with the same symbols belong 
to the same cohort tracked longitudinally. 
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Figure 5. Distribution of cohort mean shell lengths for each age-class calculated from the 
multimodal length-frequency analysis at 50 sites in Chesapeake Bay from 1990-2001. 
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Figure 6. Linear decline in oyster growth rates, by year-of-growth calculated as the 
changes in size at putative age for each cohort followed longitudinally, across 50 sites 
from 1990-2001.  
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Figure 7. Distribution of cohort mean growth rates calculated from the multimodal length- 
frequency analysis conducted at 50 sites from 1990-2001. 
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Figure 8. Nonlinear Von Bertalanffy growth model (solid line), fit to observed oyster 
length aggregated across 50 sites from 1990-2001.   Model parameters are L ∞=90.85mm, 
k=0.55, to=-0.51. 
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Figure 9.  Comparison of size distributions of oysters from a) modal analysis (n=88) with 
b) known-age oysters (n=190) for age-2. Note a) denotes mean cohort shell length, while 
b) denotes individual shell length. 
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Figure 10.  Comparison of size distributions of oysters from a) modal analysis (n=4) with 
b) known-age oysters (n=19) for age-5. Note a) denotes mean cohort shell length, while 
b) denotes individual shell length. 
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CHAPTER  TWO: 

EVALUATING ANNULI OF CHONDROPHORE SECTIONS 

AS A BASIS FOR AGE DETERMINATION IN EASTERN 

OYSTER (CRASSOSTREA VIRGINICA) 
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INTRODUCTION 

 

 The Chesapeake Bay has supported substantial populations of eastern oyster 

Crassostrea virginica (Gmelin 1791), but abundances have declined dramatically during 

the last century as a result of high rates of fishing mortality (Rothschild et al. 1994; 

Jordan et al. 2002; Jordan and Coakley 2004), habitat degradation (Mackenzie 1983), 

poor recruitment (Krantz and Meritt 1977), and two salinity-related parasitic diseases, 

Haplosporidium nelsoni (MSX) and Perkinsus marinus (Dermo) (Ford and Tripp 1996). 

The observed low levels of abundance have focused management efforts on the 

restoration of oyster stocks to sustainable levels. The Chesapeake Bay Program (CBP 

2000) commitment to increase native oyster populations ten-fold by the year 2010 has 

precipitated a need to assess the status of the oyster stocks in Chesapeake Bay.  The lack 

of a recognized method to age oysters has precluded the application of traditional 

population dynamics models and limited the development of reliable estimates of growth 

in the field.  As a result, the most recent efforts to estimate in situ growth have employed 

modal analysis of samples from a fishery-independent survey (Chapter 2).  Were a 

validated and reliable method available to directly age oysters sampled from the field, it 

would be possible to confirm the growth rates estimated using modal analysis. 

The examination of the microstructures in the chondrophore (hinge) of the oyster 

may provide known age markers with which to establish a length-at-age relationship.    

Annuli (latin: rings) have be examined in the microstructure of otoliths and scales of 

finfish to determine the age of individuals and establish age-at-length relationships (Lai et 

al. 1996). In some bivalve species, it has been shown that annuli form at an annual rate 



 

70 

(Lutz and Rhoads 1977). Similarly, these shell microstructures have been used to 

establish the age-at-length relationship for the hard clam, Mercenaria mercenaria, in the 

Chesapeake Bay, the wedge clam, Rangia cuneata, in Delaware Bay, and the freshwater 

mussel, Elliptio complanata, in Ontario, Canada (Fritz and Haven 1983; Fritz et al. 1990; 

Veinott and Cornett 1996 respectively). Annuli have also been observed and described in 

the chondrophore surface of oyster shells (Lutz and Rhodes 1977; Kent 1988; Carriker 

1996).  Kent (op. cit.) and Herbert and Steponaitis (1998) have identified and used annuli 

in the chondrophore of eastern oyster shells to examine the season of harvest. Richardson 

et al. (1993) have interpreted annuli in European flat oysters, Ostrea edulis, to establish 

the age-at-length relationship and develop growth models. Oyster morphology is highly 

variable and elaborate techniques are required to age individuals based upon the optical 

properties of sectioned shells (Kent 1988). Because many environmental stressors can 

result in differences in shell micro and macro structure (Palmer and Carriker 1979; Seed 

1980), any methodology to age individual oysters must be validated. The most rigorous 

groundtruthing requires comparison of chondrophore- estimated and actual ages of 

known-age specimens. 

Hatchery produced oysters have been planted at a variety of sites throughout the 

bay. They are single age-classes and may not be comparable to the typically multi-year 

class oyster bars throughout the bay. Although hatchery planted oysters cannot be aged to 

the month due to the combination of spawning groups within the hatchery, a limited 

spawning window of a few weeks. 

 Here I examine the utility of chrondrophore sections as a basis of ageing eastern 

oyster in Chesapeake Bay by comparing age estimates derived using this method with the 
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actual age of known-age specimens.  If chrondrophore-based aging proves reliable, the 

method could be used to validate the results of the modal analysis presented in the 

previous chapter.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

METHODS 

   

Samples of hatchery-reared oysters that had been planted on Bollingbroke Sands, 

Chest Neck, Spaniard Point, and Weems Upper oyster bars were sampled during June 

2003 (Appendix IX). Sampling was conducted by divers using scuba gear.  Divers 

collected 17 - 56 oysters from each of the four sites using 1/9 m2 quadrat samples.  Oyster 

shells were measured to the nearest mm. Ten oysters were randomly selected from these 

samples for examination of possible annular structures within the chondrophore.   Based 

on known planting date, Bollingbroke Sands, Chest Neck, and Weems Upper oysters 

were age-2, while Spaniard Points oyster were age-5. 

In the laboratory, oysters were shucked and the shells cleaned. Two cuts were 

made into the oyster shell using a metallurgical wet saw. The first is a rough cut along the 

length of the left valve, about ½ inch below the hinge (anterior region) to remove the bulk 

of the shell. Then multiple thin cross-sections of the hinge (c. 1-3mm thick) were cut 

along the chondrophore between the bourolettes along the ventral surface of the left 

valve. Multiple cross-sections were taken because they were brittle and prone to breakage 

during processing. The “reading side” of the cross-section was sanded on multiple grades 

of fine sand paper to remove any scratches from the sintered diamond saw blade used. 

The sections were then polished to a translucent state using alumina powder and a 

polishing cloth so that annular structures could be resolved by their optical properties 

under high magnification using reflective light. Annuli are formed by deposits of 

proteinaceous sheets called conchiolin (Carriker 1996). When the water temperature 

drops or dissolved oxygen is low, anaerobic processes inhibit the deposition of calcium 



 

73 

and dark protein layers form (Lutz and Rhodes 1977). Chalky irregular patches that as 

seen in appendix XI are normal parts of some shells, but the cause of these deposits are 

unknown (Galstoff 1964; Palmer and Carriker 1979). Ignoring these chalky deposits, any 

dark lines which extended from the tip of the umbo and parallel on either side of the 

abductor muscle scar were counted as annuli. Transmitted light was tested but did not 

increase clarification the structures. To enhance the color of the organic bands, the 

sections were lightly burned under an alcohol lamp, and then mounted in plastic (Crystal 

Bond) on petrographic slides.  

 The sections were randomly assigned numbers and read under double-blind 

conditions.  The number of annuli was estimated for each mounted section on three 

separate occasions using reflected light under high magnification. Digital images of the 

chondrophore cross-sections are provided with the resulting counts of annular structures 

in Appendix XI and XII. The hinges were not interpreted using the digital pictures, but 

were instead interpreted directly from slides.     

 The known-ages of each sample were only reveled three readings were complete.  

ANOVA techniques did not detect any differences among estimated ages among sample 

locations, and thus samples from different locations were pooled based on known age.  A 

one-sample t-test was (α = 0.05) was used to examine if the residuals of known and 

predicted age were significantly different from 0 for age-2 and age-5. I also calculated the 

average percentage error for each known age class, defined as  

 

∑ −
⋅=

N

i
N age

ageage
APE

)(
100 1  
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where agei is the estimated age of the ith of N fish aged (Campana 2001). To assess 

whether chondrophore sections could be used as a basis for ageing, despite possible bias, 

estimated-age was regressed against known-age, and the regression line was tested 

against an expectation that the relationship should be 1:1 (intercept=0, slope=1; α = 

0.05).   
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RESULTS 

 

 The oysters collected from all the sites were measured (Appendix X). The 

distribution of estimated ages of oysters known to be age two was wide (0-8 years; n=30) 

and not well-defined (Fig. 1).  The distribution was approximately normal 

(skewness=0.169, kurtosis=0.329).  The mode of the distribution of estimated ages for 

these oysters was 4, and the mean was 3.67 + 1.83 (mean ± SD) (Fig.1). The 

measurements of central tendency for the distribution differed from 2, the known age.  

The difference between the true and estimated age of known age-2 oysters were 

significantly different than 0, based on a one-sample t-test (t=4.055, p-value=0.003). The 

APE for known age-2 oysters was 83.3% 

 The distribution of estimated ages for oysters of known age-5 was wide (range of 

estimated ages 1-10) and not well-defined (Fig. 2). The modes of the distribution of 

estimated ages of known age-5 oysters were 4 and 7.  The mean of the distribution was as 

5.40 + 2.76. The residuals of the known and predicted age-3 oysters were significantly 

different than 0, based on a one-sample t-test (t=2.739, p-value=0.0229). The APE for 

known age-5 oysters was 8%.   

 Estimated-age was regressed against known-age across all sites (Figure 3).  The 

resulting regression equation was  

 

estimated age = 2.51 +  0.578 * known age 
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(n=38 F-value=5.19, p-value=0.0285; R2=0.1201). Although the regression was 

significant, the slope and intercept of the regression were significantly different and one 

and zero (df=2,38, F-value=9.78, p-value=0.0004), values expected from the 1:1 line  that 

would indicate a reliable ageing structure.  

 There was no clear relationship between size and estimated age (Fig. 4).  There 

did not appear to be a relationship between annular structure and known age observed in 

the age-2 or age-5 oysters (Fig. 4a and b). The data appeared to be almost random in 

nature. There was large variation in shell macro- and microstructure even within samples 

of oysters of the age-class (Appendix XI).  
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DISCUSSION 

 

 The identification of an age-marker for oysters, from which an age-length key can 

be developed, has the potential to reveal growth pattern with important implications to 

the way in the fishery is managed for sustainability. Knowledge of oyster demographics 

could be used incorporate spatial differences in growth and survival into the mainstream 

management of fishing effort.  

 My comparison of the size distribution of known age oysters with the sizes 

estimated for these age classes from the modal analysis (Table 1; Chapter 2) suggests the 

modal analysis may be reliable.  For oysters of known age 2, the putative length-at-age 

inferred from the modal analysis corresponds well with the known length-at age from 

these four oyster bars. In contrast, the size of known age 5 oysters were larger than that 

estimated from the modal analysis.  This is as expected for two reasons.  The known age 

5 oysters were sampled from an oyster sanctuary and thus these oysters had not been 

subjected to the strong size-dependent mortality imposed by a fishery.  Based on a von 

Bertalanffy growth model (Chapter 2), oysters recruit to the fishery at age-3.  Thus the 

age-5 oysters in non sanctuary areas would have experienced two years of exploitation. 

The low size for L∞ in the von Bertalanffy model for oysters based on a fishery-

independent survey is further indication of the impact of the fishery on the sizes of older 

oysters.  An additional possible reason for the discrepancy between the size of age-5 

oysters estimated by a modal analysis (Chapter 2) and sampled from the hatchery 

planting is that it is believed that hatchery reared oysters are selected for fast growth. 

Thus, even in the absence of fishery selectivity, one might expect the size of hatchery-
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derived age-5 oysters to be greater than naturally produced age-5 oysters. However, a 

more extensive examination of oysters of known-age with respect to these modal analysis 

results is needed to further validating these methods.   

  Based on my initial examination of chondrophore sections of eastern oyster, 

annuli in chondrophore cross-sections do not appear to be promising structures for future 

ageing, as chronological and estimated age were not in agreement.  This, however, was 

not as comprehensive an examination as validation of these methods may have 

warranted. The sample sizes in this examination of a potential known-age marker were 

quite low and did not cover the spectrum of age-classes available. Larger sample sizes 

and multiple experienced readers may provide more reliable results for the aging 

analyses. While these results are not promising, they may be other potential markers 

within the oyster shell that may warrant some examination. Few studies have focused on 

developing known-age markers for oysters, despite the importance to understanding the 

demographics of the population, therefore it does warrant future effort. Despite the 

rigorous statistical techniques used in the modal analysis, inherent uncertainty will 

remain if independent verification of oyster age-at-length is not available. 

 Analysis of isotopic signatures within otolith annuli has been successfully applied 

to document seasonal growth in teleost fishes (Gao et al. 2001). Differential amounts of 

the O18 isotope are seasonally incorporated into the calcified otolith during cooler water 

temperatures during annulus formation. Veinott and Cornett (op. cit) applied these 

techniques to opaque bands in shells of the freshwater mussel, Elliptio complanata, in 

Ontario, Canada to verify annular structures. It has also been applied in the sea scallop, 



 

79 

Placopecten magellanicus (Krantz 1984). Verification of suspected annular structures 

through isotopic analysis may warrant further exploration. 

 Richardson (op. cit.) recommends the use of acetate peels of umbo growth lines to 

interpret annuli, while others suggest heavy metal deposits in the shell as potential 

known-age markers. Whichever techniques are applied to microstructural analysis in 

oysters, care must be taken to verify the structures observed are indeed produced annular. 
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Table 1. The mean shell length (mm), range in length, and age-class for oysters from four 
hatchery plantings. 
 
 
 

Site Age Class Mean length (mm) Range (mm)
Spaniard Point Age(5) 114.9 48.4
Bolingbroke Sands Age(2) 74.9 50.3
Weems Upper Age(2) 62.7 43.6
Chest Neck Age(2) 55.9 33.2  
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Figure 1. Distribution of estimated ages for known age-2 oysters from Bollingbroke 
Sands, Weems Upper, and Chest Neck oyster bars.  
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Figure 2. Distribution of estimated ages for known age-5 oysters from Spaniard Point 
oyster bar.  
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Figure 3. Linear regression of estimated-age on known age pooled across all sites. 
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Figure 4. Sizes and estimated ages of a) known age-2 oysters collected from Bollingbroke 
Sands (BBS), Chest Neck (CN), and Weems Upper (WU), and; b) known age-5 oyster 
from Spaniards Point. 
. 
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CHAPTER 4 
 

THESIS CONCLUSIONS 
 
 
 Obtaining estimates for individual oyster growth remains an important challenge 

to describing oyster population dynamics in Chesapeake Bay. I applied longitudinal 

techniques of modal size decomposition analysis to length-frequency data for the 

Crassostrea virginica in Chesapeake Bay. Growth of oysters was inferred as length-at-

age across the Maryland portion of Chesapeake Bay, and regional as well as site specific 

length-at-age relationships were established. The utility of these techniques for 

examining eastern oyster growth has been demonstrated.  

 Annuli in the microstructure of the oyster chondrophore (hinge) does not appear 

to be valid as a known-age marker for determination of the length-at-age relationship. 

However, the length of known-age oyster from hatchery plantings have been shown to be 

useful in validating the inferred length-at-age relationship as determined through the 

length-based modal analysis.  

 Because of the difficulty of obtaining estimates of vital processes such as growth 

and recruitment, oyster management has not typically been based on traditional fishery 

population dynamics models. It has also not been managed spatially to control the 

spatially distributed fishing mortality rates on aggregations of oysters, and habitat 

degradation issues that occur from the mechanical action of harvesting.  Improved 

information on the population dynamics of eastern oysters is critical to developing 

management strategies and evaluating their success. 
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Appendix I. Coordinates and location of 64 oyster bars surveyed by the Maryland 
Department of Natural Resources annual fall oyster dredge survey. The four letter 
site name is based on the oyster bar name and region of the bay or river system in 
which it is located. Latitude and longitude are in degrees and minutes. 
 
 

Site Region Bar Name Latitude Longitude
BCDN Broad Creek Deep Neck 384417 761433
BNMP Bay North Mountain Point 390509 762502
BNSP Bay North Swan Point 390827 761810
CHBR Chester River Buoy Rock 385938 761242
CHOF Chester River Old Field 390448 760952
CRCP Choptank River Cooks Point 383909 761725
CRLI Choptank River Lighthouse 383927 761122
CROS Choptank River Oyster Shell Point 383518 760001
CRRO Choptank River Royston 384115 761430
CRSH Choptank River Sandy Hill 383539 760700
CRTW Choptank River Tilghman Wharf 384247 761915
EBBU Eastern  Bay Bugby 385255 761320
EBHN Eastern  Bay Hollicutts Noose 385114 762106
EBPI Eastern  Bay Parsons Island 385420 761602

EBWG Eastern  Bay Wild Ground 385339 761900
FBCI Fishing  Bay Clay Island 381422 755902
FBGC Fishing  Bay Goose Creek 381702 760130
HCEP Harris  Creek Eagle Point 384345 761824
HOHO Holland Straits Holland Straits 380644 760430
HRNO Honga River Normans 381519 760815
HRWI Honga River Windmill 381659 760932
LCCA Little Choptank River Cason 383159 761421
LCRP Little Choptank River Ragged Point 383218 761750
MADP Manokin River Drum Point 380705 755215
MAGE Manokin River Georges Bar 380727 755124
MESR Middle East Shore Stone Rock 383920 762259
MRAS Miles River Ashcraft 384741 761241
MRBI Miles River Bruffs Island 385129 761135
MRLP Miles River Long Point 384613 761032
MRTU Miles River Turtle Back 385119 761421
NRMG Nanticoke River Middle Ground 381345 755519
NRWE Nanticoke River Wetipiquin 381959 755315
NRWS Nanticoke River Wilson Shoal 381735 755518
POSH Poplar Island Shell Hill 384523 762119
PRBS Potomac River Blue Sow 381404 764215
PRBW Potomac River Black Walnut 381454 764105
PRCH Potomac River Cornfield Harbor 380253 762001
PRDC Potomac River Dukehart Channel 381315 764451
PRLC Potomac River Lower Cedar Point 381959 765850  
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Appendix I. Continued. 
 
 

Site Region Bar Name Latitude Longitude
PRRP Potomac River Ragged Point 380922 763633
PSGU Pocomoke Sound Gunby 375706 754626
PSMA Pocomoke Sound Marumsco 375733 754409
PXBA Patuxent River Back Of Island 381914 762739
PXBI Patuxent River Broomes Island 382428 763351

SMCC St. Marys River Chickencock 380723 762613
SMPA St. Marys River Pagan 381130 762635
TADM Tred Avon River Double Mills 384347 760825
TSBC Tangier Sound Back Cove 380225 755939
TSGR Tangier Sound Great Rock 375706 755505
TSOW Tangier Sound Old Womans Leg 375747 755823
TSPI Tangier Sound Piney Island 380409 755734
TSSS Tangier Sound Sharkfin Shoal 381256 755929
TSTE Tangier Sound Turtle Egg Island 380654 755928
UBBH Upper Bay Brick House 385620 762308
UBHA Upper Bay Hacketts 385859 762500
UBTS Upper Bay Three Sisters 385138 762750
WRES Wicomico River Evans Shoal 381231 755341
WRMV Wicomico River Mt. Vernon Wharf 381515 754820
WSBU Western Shore Butler 380632 761937
WSFP Western Shore Flag Pond 382606 762609
WSHI Western Shore Hog Island 381854 762301
WSHP Western Shore Holland Point 384407 763008
WWLA Wicomico River Lancaster 381635 764945
WWMW Wicomico River Mills West 382009 765129  
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Appendix II. Length-frequency data from 64 Sites within the Maryland portion of 
the Chesapeake Bay, collected by the Maryland Department of Natural Resources 
annual fall oyster dredge survey. (NOTE: nd denotes that no data were collected) 
 
Bay North Mountain Point (BNMP): Data from 1990 and 1991 were not used in 
subsequent analyses because an Age-0 cohort was not identified.  Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
BNMP 2 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 7 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 12 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 17 0 0 0 1 0 0 0 0 nd nd nd nd
BNMP 22 0 0 5 1 0 0 0 0 nd nd nd nd
BNMP 27 0 0 3 1 0 0 0 1 nd nd nd nd
BNMP 32 0 0 20 1 0 0 0 0 nd nd nd nd
BNMP 37 0 0 70 2 0 0 0 0 nd nd nd nd
BNMP 42 0 0 135 1 0 0 0 0 nd nd nd nd
BNMP 47 0 0 156 6 1 0 0 0 nd nd nd nd
BNMP 52 0 0 103 24 3 3 0 0 nd nd nd nd
BNMP 57 0 0 54 51 6 1 1 0 nd nd nd nd
BNMP 62 0 0 17 65 25 4 6 0 nd nd nd nd
BNMP 67 0 0 7 36 31 5 10 2 nd nd nd nd
BNMP 72 4 0 1 31 64 28 19 0 nd nd nd nd
BNMP 77 8 1 2 13 45 24 15 10 nd nd nd nd
BNMP 82 16 0 3 1 33 26 13 9 nd nd nd nd
BNMP 87 15 6 1 4 21 16 9 6 nd nd nd nd
BNMP 92 8 11 1 2 11 4 8 9 nd nd nd nd
BNMP 97 8 7 4 1 1 5 6 6 nd nd nd nd
BNMP 102 2 7 2 2 1 1 6 1 nd nd nd nd
BNMP 107 1 5 5 0 0 1 1 3 nd nd nd nd
BNMP 112 1 2 4 1 0 0 0 0 nd nd nd nd
BNMP 117 1 2 1 2 0 0 1 0 nd nd nd nd
BNMP 122 0 1 2 0 0 0 0 0 nd nd nd nd
BNMP 127 0 1 1 0 0 0 0 0 nd nd nd nd
BNMP 132 0 0 1 0 0 0 0 0 nd nd nd nd
BNMP 137 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 142 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 147 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 152 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 157 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 162 0 0 0 0 0 0 0 0 nd nd nd nd
BNMP 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Broad Creek Deep Neck (BCDN). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1992 
were not used because the length-frequency distributions were difficult to interpret, 
and data from 2001 were not used because the Solver would not converge on a 
solution. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
BCDN 2 0 0 0 2 0 0 0 0 0 7 0 0
BCDN 7 0 0 1 10 0 0 0 0 0 26 0 1
BCDN 12 0 0 3 39 0 0 0 53 0 45 0 0
BCDN 17 0 0 9 24 0 9 1 175 0 66 0 0
BCDN 22 0 0 14 17 8 47 1 315 1 43 1 4
BCDN 27 0 0 10 2 6 72 2 140 1 19 3 3
BCDN 32 1 1 13 1 35 114 1 70 12 5 4 2
BCDN 37 0 10 9 2 63 53 5 37 26 1 3 3
BCDN 42 3 9 22 7 74 3 34 3 56 6 21 2
BCDN 47 3 12 16 12 41 17 41 6 49 6 16 5
BCDN 52 4 21 12 9 35 36 67 22 38 23 12 21
BCDN 57 2 8 16 13 14 57 39 31 10 55 18 8
BCDN 62 1 5 4 6 14 82 44 57 10 73 16 20
BCDN 67 2 4 5 9 11 48 32 33 6 40 27 17
BCDN 72 2 1 5 9 9 48 41 62 15 33 40 21
BCDN 77 1 0 6 3 9 13 44 40 15 12 36 18
BCDN 82 1 0 2 4 5 15 23 50 12 20 34 12
BCDN 87 3 1 0 1 7 8 17 15 12 9 6 3
BCDN 92 0 1 0 1 5 5 12 12 7 5 11 2
BCDN 97 0 0 0 0 0 0 5 1 0 2 7 2
BCDN 102 0 1 0 0 0 1 1 4 3 5 3 3
BCDN 107 0 0 0 0 0 1 1 2 0 4 4 0
BCDN 112 0 0 0 0 0 2 0 0 0 0 0 1
BCDN 117 0 0 0 0 0 1 0 0 0 0 0 1
BCDN 122 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 127 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 132 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 137 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 142 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 147 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 152 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 157 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 162 0 0 0 0 0 0 0 0 0 0 0 0
BCDN 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Bay North Swan Point (BNSP). No data were used in subsequent analyses because 
the site was repleted in 1990, 1991, 1992, 1994, 1995, 1996, 1997, and 1998. Class is 
the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
BNSP 2 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 7 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 12 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 17 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 22 0 0 2 0 0 0 0 0 0 0 0 0
BNSP 27 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 32 0 0 13 2 0 0 0 0 1 1 0 0
BNSP 37 0 0 22 3 0 0 0 0 10 0 0 0
BNSP 42 0 0 50 0 0 0 0 0 15 0 0 0
BNSP 47 0 0 72 3 0 0 0 0 23 1 0 0
BNSP 52 0 0 52 5 0 0 0 0 27 7 0 0
BNSP 57 0 0 35 14 0 0 0 0 11 15 1 0
BNSP 62 0 0 21 16 1 0 0 0 9 22 0 0
BNSP 67 2 0 8 26 6 2 0 0 4 25 1 2
BNSP 72 3 5 4 30 22 2 1 0 1 32 0 5
BNSP 77 5 5 0 10 18 4 1 0 5 22 2 4
BNSP 82 6 11 4 6 26 14 5 1 5 10 4 13
BNSP 87 7 10 4 6 20 10 4 2 6 4 3 11
BNSP 92 7 8 7 1 5 15 9 1 4 9 3 7
BNSP 97 7 3 7 1 1 9 9 3 0 9 6 12
BNSP 102 6 4 11 2 2 2 7 6 3 6 2 10
BNSP 107 5 2 9 1 2 1 3 6 1 4 2 2
BNSP 112 2 3 6 4 0 3 6 4 2 2 5 3
BNSP 117 1 1 4 5 1 3 1 0 2 3 5 0
BNSP 122 2 1 3 2 0 0 2 0 2 0 2 3
BNSP 127 1 0 0 1 0 0 0 1 0 0 1 0
BNSP 132 0 1 1 0 0 0 0 0 1 0 1 0
BNSP 137 0 0 1 0 0 0 1 0 0 0 0 0
BNSP 142 0 0 1 0 0 0 0 0 0 0 0 0
BNSP 147 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 152 0 0 0 0 0 0 0 0 2 0 0 0
BNSP 157 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 162 0 0 0 0 0 0 0 0 0 0 0 0
BNSP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Chester River Buoy Rock (CHBR). Data from 1990 to 1996 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CHBR 2 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 7 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 12 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 17 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 22 0 0 0 0 0 0 0 1 0 0 0 1
CHBR 27 0 0 0 0 0 0 0 2 0 0 0 1
CHBR 32 0 0 0 0 0 0 0 2 0 0 0 0
CHBR 37 0 1 0 0 0 0 0 3 4 0 0 0
CHBR 42 0 1 0 0 0 0 1 0 5 1 0 0
CHBR 47 0 2 0 0 0 0 1 0 16 0 1 1
CHBR 52 0 9 0 0 0 0 2 1 23 2 3 2
CHBR 57 0 15 0 0 0 0 0 1 20 3 0 2
CHBR 62 2 20 0 0 0 0 0 3 23 5 6 9
CHBR 67 3 16 0 0 0 0 0 5 21 14 12 9
CHBR 72 3 11 2 0 0 0 0 3 16 14 19 15
CHBR 77 11 8 4 0 2 2 0 6 16 22 17 12
CHBR 82 11 22 3 0 3 3 1 0 9 24 23 14
CHBR 87 13 10 6 2 0 1 0 2 6 10 25 13
CHBR 92 18 18 11 1 3 2 0 3 6 12 18 7
CHBR 97 8 13 7 5 4 0 4 1 2 13 10 2
CHBR 102 10 13 7 0 2 1 3 2 6 5 3 3
CHBR 107 10 10 10 4 8 1 0 3 0 3 3 0
CHBR 112 4 8 6 4 5 3 2 1 0 2 1 0
CHBR 117 3 5 3 4 4 1 3 2 0 3 0 1
CHBR 122 3 3 7 1 1 3 1 3 1 1 2 0
CHBR 127 3 3 2 0 6 0 1 1 1 2 0 0
CHBR 132 1 0 2 3 0 0 0 1 0 0 0 0
CHBR 137 1 0 0 0 0 0 0 1 1 0 0 0
CHBR 142 1 0 2 0 0 0 0 0 0 2 0 0
CHBR 147 0 0 1 0 0 0 0 0 0 0 0 0
CHBR 152 0 0 0 1 1 0 0 1 0 0 0 0
CHBR 157 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 162 0 0 0 0 0 0 0 0 0 0 0 0
CHBR 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Chester River Old Field (CHOF). No data were used in subsequent analyses because 
the site was repleted in 1990, 1991, 1992, 1993, 1995, 1997, 1998, and 2000. Class is 
the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CHOF 2 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 7 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 12 0 0 0 0 0 0 0 1 0 0 0 0
CHOF 17 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 22 0 0 0 0 0 0 0 1 0 0 0 0
CHOF 27 0 0 0 1 0 0 0 0 0 0 0 0
CHOF 32 0 1 0 0 0 0 0 1 0 0 1 0
CHOF 37 0 2 3 0 0 1 0 10 0 0 6 0
CHOF 42 0 5 8 0 0 2 1 24 3 1 6 0
CHOF 47 0 10 14 1 1 5 2 31 3 0 6 0
CHOF 52 5 25 12 4 4 7 5 43 6 2 8 1
CHOF 57 3 22 15 9 4 11 19 39 15 2 10 0
CHOF 62 10 20 9 11 16 17 19 29 27 19 16 3
CHOF 67 7 18 6 20 16 15 33 9 26 22 20 6
CHOF 72 9 16 8 24 26 27 36 17 27 40 32 12
CHOF 77 9 9 9 20 18 11 17 17 22 45 31 10
CHOF 82 14 13 7 28 16 19 18 20 14 37 27 14
CHOF 87 17 12 12 13 14 12 7 13 6 17 22 9
CHOF 92 15 7 7 9 11 17 9 19 6 11 11 13
CHOF 97 9 8 7 4 8 3 1 7 3 5 5 5
CHOF 102 5 3 3 3 2 5 2 4 5 9 0 5
CHOF 107 3 3 2 0 2 2 1 2 4 6 3 1
CHOF 112 1 7 8 1 0 1 1 1 2 2 0 4
CHOF 117 1 2 9 0 0 0 2 3 1 2 0 5
CHOF 122 2 1 1 0 0 0 0 0 2 0 1 2
CHOF 127 1 2 2 0 0 0 0 0 0 0 0 2
CHOF 132 1 0 2 0 0 0 0 0 0 0 1 0
CHOF 137 0 0 1 0 0 0 0 0 0 0 0 0
CHOF 142 1 0 0 0 0 0 0 0 0 0 1 0
CHOF 147 0 1 1 0 0 0 0 0 0 0 0 0
CHOF 152 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 157 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 162 0 0 0 0 0 0 0 0 0 0 0 0
CHOF 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Cooks Point (CRCP). No data were used in subsequent analyses 
because the site was repleted in 1990, there were too few oysters to clearly 
distinguish cohorts from 1990 to 1994, 1996, 1997, and a Age-0 cohort could not be 
identified in 1990 and 2000. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CRCP 2 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 7 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 12 0 0 0 0 0 0 0 0 0 1 0 0
CRCP 17 0 0 0 0 0 0 0 0 0 0 1 1
CRCP 22 0 0 0 0 0 2 0 0 0 0 1 1
CRCP 27 0 1 2 0 1 5 0 0 0 0 1 1
CRCP 32 0 0 0 0 1 3 0 0 0 0 2 3
CRCP 37 0 1 0 0 0 4 0 0 0 0 2 1
CRCP 42 1 1 1 0 0 1 0 0 0 0 2 1
CRCP 47 0 4 1 0 0 0 0 0 2 0 5 3
CRCP 52 1 6 1 0 1 0 0 0 4 1 3 1
CRCP 57 0 1 0 0 1 0 0 0 6 4 1 3
CRCP 62 1 1 1 0 1 1 0 0 6 2 3 4
CRCP 67 1 4 1 0 0 1 0 0 3 2 1 3
CRCP 72 5 1 2 0 0 1 0 0 0 7 1 1
CRCP 77 2 3 1 0 0 2 1 1 1 3 0 2
CRCP 82 3 3 1 0 0 0 0 1 6 8 0 0
CRCP 87 3 2 1 0 0 0 0 2 2 4 0 0
CRCP 92 0 5 0 0 0 0 1 0 8 5 0 0
CRCP 97 0 1 1 0 0 1 0 0 1 5 0 0
CRCP 102 0 4 0 0 0 0 1 2 2 0 0 0
CRCP 107 0 4 0 0 0 0 0 0 0 1 0 0
CRCP 112 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 117 0 0 0 0 0 0 0 0 1 2 0 0
CRCP 122 0 0 0 0 0 0 0 0 1 1 0 0
CRCP 127 0 0 0 0 0 0 0 0 0 1 0 0
CRCP 132 0 0 0 0 0 0 0 0 0 1 0 0
CRCP 137 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 142 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 147 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 152 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 157 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 162 0 0 0 0 0 0 0 0 0 0 0 0
CRCP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Lighthouse (CRLI).  Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
2000 and 2001 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CRLI 2 0 0 0 0 0 0 0 0 1 0 0 0
CRLI 7 0 0 2 0 0 0 0 0 0 0 0 0
CRLI 12 0 0 3 0 0 0 0 16 0 0 0 0
CRLI 17 0 0 6 0 0 1 0 16 2 1 0 0
CRLI 22 0 0 4 0 0 1 0 109 2 0 1 0
CRLI 27 0 0 8 0 0 1 1 62 0 0 0 0
CRLI 32 0 1 4 0 0 2 0 47 0 0 1 0
CRLI 37 0 2 8 0 0 1 0 32 0 0 0 0
CRLI 42 0 4 11 1 1 0 2 1 5 0 0 0
CRLI 47 1 9 18 5 3 1 3 0 21 1 2 1
CRLI 52 1 6 7 5 1 0 5 0 32 4 1 1
CRLI 57 0 7 5 5 4 2 4 1 28 5 2 1
CRLI 62 0 6 2 1 3 10 4 4 22 14 2 2
CRLI 67 2 4 2 4 2 8 3 4 10 20 2 3
CRLI 72 5 0 1 2 4 4 5 6 9 42 11 3
CRLI 77 6 0 0 0 5 8 5 4 4 24 8 3
CRLI 82 5 2 0 2 3 9 6 5 4 26 23 3
CRLI 87 7 2 1 0 2 6 5 1 4 5 16 8
CRLI 92 9 7 6 0 1 2 5 7 10 10 15 16
CRLI 97 9 0 2 0 1 3 5 2 5 2 13 6
CRLI 102 7 4 3 0 3 0 5 0 1 4 5 5
CRLI 107 2 5 1 0 1 3 2 1 1 2 6 7
CRLI 112 1 0 1 0 1 0 0 1 1 4 5 2
CRLI 117 1 0 0 0 0 0 0 3 5 0 6 1
CRLI 122 1 1 0 0 0 0 1 0 2 0 0 2
CRLI 127 0 0 0 0 0 0 2 0 0 0 0 0
CRLI 132 0 2 0 0 0 0 0 0 1 0 0 0
CRLI 137 1 0 0 0 0 0 0 0 0 0 0 0
CRLI 142 0 0 0 0 0 0 0 0 0 0 1 0
CRLI 147 0 0 0 0 0 0 0 0 0 0 0 0
CRLI 152 0 0 0 0 0 0 0 0 1 0 0 0
CRLI 157 0 0 0 0 0 0 0 0 0 0 0 0
CRLI 162 0 0 0 0 0 0 0 0 0 0 0 0
CRLI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Oyster Shell Point (CROS). Data from 1990 and 1991 were not 
used in subsequent analyses because an Age-0 cohort could not be identified, and 
data from 1995 to 1999 were not used because the length-frequency distributions 
were difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CROS 2 0 0 0 0 0 0 0 0 0 0 0 0
CROS 7 0 0 1 0 0 0 0 0 0 0 0 0
CROS 12 0 0 6 0 0 0 0 0 0 0 0 0
CROS 17 0 0 4 0 0 0 0 2 0 0 0 1
CROS 22 0 0 4 0 0 0 0 1 0 0 0 0
CROS 27 0 2 2 0 0 0 0 0 0 0 1 0
CROS 32 0 2 16 1 1 0 0 1 1 0 2 0
CROS 37 0 11 16 3 2 1 2 0 0 0 2 0
CROS 42 2 19 30 16 2 0 0 0 5 0 2 0
CROS 47 3 34 33 8 5 0 0 2 4 0 2 1
CROS 52 13 27 23 15 6 1 1 3 3 3 0 3
CROS 57 12 20 27 16 20 7 0 2 2 2 0 2
CROS 62 23 30 17 29 16 8 3 5 5 6 1 1
CROS 67 27 28 22 20 24 12 4 5 2 8 1 4
CROS 72 42 25 26 21 49 16 15 11 2 14 11 4
CROS 77 38 47 26 12 17 15 17 6 2 10 9 13
CROS 82 26 40 16 20 26 21 14 12 7 12 11 9
CROS 87 15 15 14 4 13 8 6 5 6 10 4 7
CROS 92 8 11 5 8 12 5 10 6 6 13 11 8
CROS 97 2 1 5 1 4 0 8 7 4 6 3 5
CROS 102 2 4 2 2 1 1 2 0 3 8 3 5
CROS 107 1 1 3 0 1 0 0 1 0 4 4 0
CROS 112 1 0 1 0 0 0 0 1 2 3 2 3
CROS 117 1 0 0 0 0 0 0 1 0 3 1 1
CROS 122 0 0 0 0 0 0 0 0 0 3 0 0
CROS 127 0 0 0 0 0 0 0 0 0 1 0 0
CROS 132 0 0 0 0 0 0 0 0 0 0 0 0
CROS 137 0 0 0 0 0 0 0 0 0 0 0 0
CROS 142 0 0 0 0 0 0 0 0 0 0 0 0
CROS 147 0 0 0 0 0 0 0 0 0 0 0 0
CROS 152 0 0 0 0 0 0 0 0 0 0 0 0
CROS 157 0 0 0 0 0 0 0 0 0 0 0 0
CROS 162 0 0 0 0 0 0 0 0 0 0 0 0
CROS 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Royston (CRRO). Data from 1990 to 1995 were not used in 
subsequent analyses because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CRRO 2 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 7 0 0 2 0 0 0 0 0 0 5 0 0
CRRO 12 0 0 1 7 0 0 0 0 0 8 0 0
CRRO 17 0 0 10 1 0 2 0 26 0 12 0 0
CRRO 22 0 0 10 2 0 2 0 39 1 8 0 0
CRRO 27 0 0 15 1 0 2 0 92 0 3 0 0
CRRO 32 1 0 32 3 0 1 0 79 2 1 0 3
CRRO 37 0 7 32 2 1 3 1 53 8 0 2 0
CRRO 42 1 18 35 9 3 0 2 0 25 0 4 0
CRRO 47 0 21 15 10 3 0 4 0 34 0 7 1
CRRO 52 3 16 15 9 10 3 8 3 47 4 9 9
CRRO 57 0 10 5 4 6 6 2 1 26 15 5 4
CRRO 62 4 7 5 9 16 8 7 4 17 22 6 7
CRRO 67 3 8 2 2 9 8 9 6 5 19 6 4
CRRO 72 14 4 4 3 14 3 5 9 13 20 18 9
CRRO 77 13 5 4 4 5 13 8 10 14 14 18 9
CRRO 82 12 10 1 2 6 10 14 12 15 10 10 10
CRRO 87 5 2 2 0 2 8 6 8 3 3 12 11
CRRO 92 13 12 2 3 2 3 8 14 4 4 6 7
CRRO 97 4 4 3 1 1 3 6 6 6 4 4 2
CRRO 102 2 4 0 0 0 0 5 10 5 8 7 1
CRRO 107 1 0 1 0 0 1 0 5 3 3 5 0
CRRO 112 1 0 0 0 0 1 1 2 3 5 2 1
CRRO 117 1 0 0 0 0 0 0 0 3 1 2 0
CRRO 122 1 0 0 0 0 0 0 0 0 1 1 0
CRRO 127 1 0 0 0 0 0 1 0 0 1 0 0
CRRO 132 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 137 0 0 0 0 0 0 0 0 0 0 1 0
CRRO 142 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 147 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 152 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 157 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 162 0 0 0 0 0 0 0 0 0 0 0 0
CRRO 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Sandy Hill (CRSH). Data from 1990 and 1991 were not used in 
subsequent analyses because the site was repleted, and data from 1996 were not 
used because the length-frequency distributions were difficult to interpret. Class is 
the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CRSH 2 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 7 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 12 0 0 0 0 0 0 0 0 0 2 0 0
CRSH 17 0 0 2 0 0 0 0 7 0 1 0 0
CRSH 22 0 0 0 0 0 1 0 12 0 1 0 0
CRSH 27 0 0 2 0 0 0 0 7 0 0 0 0
CRSH 32 0 0 10 0 0 1 0 22 0 0 0 0
CRSH 37 0 1 26 0 0 2 1 29 0 0 0 1
CRSH 42 0 1 26 2 1 0 0 0 0 0 0 0
CRSH 47 0 7 29 3 0 0 2 0 4 0 0 0
CRSH 52 6 3 11 12 1 0 1 0 8 0 1 0
CRSH 57 4 2 10 17 2 1 2 0 14 6 0 0
CRSH 62 8 1 4 23 3 1 2 0 17 17 0 1
CRSH 67 11 1 2 4 4 3 0 0 8 29 2 1
CRSH 72 13 1 2 7 11 10 4 1 19 26 6 0
CRSH 77 9 1 1 1 13 9 5 3 3 22 10 3
CRSH 82 7 2 4 2 12 14 2 2 6 20 19 2
CRSH 87 13 3 4 1 1 6 2 3 3 10 20 5
CRSH 92 11 0 1 4 6 7 7 4 2 5 18 11
CRSH 97 9 3 1 0 2 10 7 4 0 3 16 12
CRSH 102 10 6 2 1 2 6 9 4 0 2 8 5
CRSH 107 4 1 6 0 2 1 5 5 1 4 3 6
CRSH 112 3 1 1 0 1 1 7 2 0 2 5 1
CRSH 117 3 1 1 0 0 0 1 2 4 2 1 2
CRSH 122 3 0 1 0 0 0 0 1 1 2 3 0
CRSH 127 1 1 0 0 0 0 0 0 0 0 2 0
CRSH 132 0 0 0 0 0 0 0 1 0 0 1 0
CRSH 137 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 142 0 0 0 0 0 0 0 0 1 0 1 0
CRSH 147 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 152 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 157 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 162 0 0 0 0 0 0 0 0 0 0 0 0
CRSH 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Choptank River Tilghman Wharf (CRTW). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
CRTW 2 0 0 0 0 0 0 0 0 0 3 0 0
CRTW 7 0 0 0 5 0 0 0 0 0 6 0 0
CRTW 12 0 0 1 27 0 0 0 0 0 10 0 0
CRTW 17 0 0 9 15 0 2 0 87 0 15 0 0
CRTW 22 0 0 13 8 1 6 0 210 0 10 0 1
CRTW 27 0 0 26 2 1 12 0 105 0 4 0 0
CRTW 32 0 7 59 2 9 27 0 53 1 1 1 0
CRTW 37 0 20 48 10 24 17 2 17 10 0 0 0
CRTW 42 2 36 47 19 56 1 3 0 30 4 4 1
CRTW 47 6 25 30 25 34 5 7 0 56 5 7 0
CRTW 52 3 18 25 26 42 13 17 4 67 14 4 4
CRTW 57 6 10 14 12 31 21 18 2 25 29 5 4
CRTW 62 5 3 7 14 24 48 23 11 14 48 11 19
CRTW 67 8 3 3 9 24 62 30 14 7 63 28 14
CRTW 72 12 4 4 2 29 39 31 19 4 41 42 22
CRTW 77 16 10 5 2 17 22 57 16 12 26 30 13
CRTW 82 21 19 5 2 17 24 54 22 11 21 34 28
CRTW 87 9 8 4 1 8 10 39 13 20 7 16 9
CRTW 92 16 5 3 2 2 6 29 14 24 15 15 9
CRTW 97 9 3 3 0 2 3 7 6 12 3 4 7
CRTW 102 4 4 3 0 1 3 2 2 11 7 2 4
CRTW 107 2 6 0 1 0 0 2 3 9 2 1 2
CRTW 112 0 5 1 0 0 0 3 0 3 4 1 0
CRTW 117 3 2 1 1 0 0 0 0 3 2 2 0
CRTW 122 0 0 0 0 0 0 0 0 2 1 0 0
CRTW 127 0 0 0 0 0 0 0 0 1 1 0 0
CRTW 132 0 0 0 0 0 0 0 1 0 1 0 0
CRTW 137 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 142 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 147 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 152 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 157 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 162 0 0 0 0 0 0 0 0 0 0 0 0
CRTW 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Eastern Bay Bugby (EBBU). Data from 1990 to 1996 were not used in subsequent 
analyses because a Age-0 cohort could not be identified and the length-frequency 
distributions were difficult to interpret. Class is the midpoint of the 5 mm length-
class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
EBBU 2 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 7 0 0 0 1 0 0 0 0 0 1 0 0
EBBU 12 0 0 1 0 0 1 0 0 0 1 0 0
EBBU 17 0 0 0 0 0 0 0 62 0 2 0 0
EBBU 22 0 0 0 0 0 1 0 437 0 1 3 0
EBBU 27 0 0 0 1 0 2 0 312 0 1 0 1
EBBU 32 0 0 2 0 0 4 0 313 1 0 0 2
EBBU 37 1 0 3 0 0 2 0 63 3 1 2 0
EBBU 42 0 0 11 0 0 0 0 0 9 5 0 2
EBBU 47 0 2 10 3 1 0 4 0 17 2 2 2
EBBU 52 1 3 23 1 2 2 4 1 40 6 0 1
EBBU 57 1 4 22 0 1 0 2 0 31 2 2 3
EBBU 62 2 2 15 3 1 2 2 2 32 19 2 5
EBBU 67 2 0 4 5 4 2 1 1 17 17 5 2
EBBU 72 1 1 10 6 11 6 1 5 20 24 17 1
EBBU 77 5 1 0 2 7 8 0 4 7 40 29 6
EBBU 82 5 3 4 9 11 8 1 9 5 41 25 4
EBBU 87 1 0 0 3 5 7 2 3 7 21 21 7
EBBU 92 1 1 0 2 9 4 1 1 3 19 18 13
EBBU 97 7 1 4 2 2 2 0 3 0 10 12 9
EBBU 102 2 0 1 0 3 8 5 5 1 0 9 8
EBBU 107 2 0 2 0 1 2 1 7 2 0 5 3
EBBU 112 2 0 4 0 0 2 1 1 1 1 6 4
EBBU 117 0 0 0 2 0 2 1 2 0 0 0 0
EBBU 122 0 0 0 1 0 0 1 1 1 0 2 1
EBBU 127 0 0 0 0 0 0 0 0 0 1 1 0
EBBU 132 1 0 0 0 0 0 0 0 0 0 0 0
EBBU 137 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 142 1 0 0 0 0 0 0 0 0 0 0 0
EBBU 147 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 152 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 157 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 162 0 0 0 0 0 0 0 0 0 0 0 0
EBBU 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Eastern Bay Hollicutts Noose (EBHN). Data from 1990 to 1994 were not used in 
subsequent analyses because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
EBHN 2 0 0 0 0 0 0 0 0 0 1 0 0
EBHN 7 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 12 0 0 1 0 0 0 0 0 0 0 0 0
EBHN 17 0 0 0 0 0 0 0 0 0 1 0 0
EBHN 22 0 0 0 0 0 0 0 14 0 4 2 0
EBHN 27 0 0 0 0 0 2 0 9 0 0 0 1
EBHN 32 0 0 0 1 0 4 1 12 0 1 0 0
EBHN 37 0 0 0 0 0 1 0 21 0 1 0 0
EBHN 42 0 1 2 0 0 0 2 0 1 5 3 1
EBHN 47 0 1 3 0 1 0 3 0 6 10 6 2
EBHN 52 0 1 4 0 0 0 10 0 10 2 11 5
EBHN 57 0 5 5 2 1 0 3 0 8 3 4 6
EBHN 62 4 2 5 2 3 2 7 5 6 8 3 2
EBHN 67 5 6 3 2 3 3 2 8 5 10 5 4
EBHN 72 5 6 7 13 2 10 0 16 1 15 6 9
EBHN 77 11 4 6 10 7 5 6 6 7 13 2 5
EBHN 82 21 11 15 13 3 12 9 9 4 8 8 6
EBHN 87 9 8 6 12 5 5 8 4 6 0 4 6
EBHN 92 6 5 5 12 13 2 5 4 6 5 3 2
EBHN 97 8 5 4 7 9 3 6 4 1 2 2 2
EBHN 102 5 4 2 2 10 3 3 1 3 2 4 3
EBHN 107 6 4 3 1 5 2 0 3 1 1 0 2
EBHN 112 0 4 3 4 4 2 0 0 2 1 0 0
EBHN 117 4 1 0 1 1 0 1 0 0 0 2 0
EBHN 122 3 1 2 1 0 0 0 0 0 0 0 0
EBHN 127 3 0 0 0 0 0 0 0 0 0 0 0
EBHN 132 0 1 0 0 1 0 0 0 0 0 0 0
EBHN 137 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 142 2 0 1 0 0 0 0 0 0 0 0 0
EBHN 147 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 152 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 157 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 162 0 0 0 0 0 0 0 0 0 0 0 0
EBHN 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Eastern Bay Parsons Island (EBPI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
EBPI 2 0 0 0 0 0 0 0 0 0 4 0 0
EBPI 7 0 0 3 2 0 0 0 0 0 15 0 0
EBPI 12 0 0 4 1 0 0 0 0 0 25 1 0
EBPI 17 0 0 7 1 0 2 0 2 0 37 3 1
EBPI 22 0 0 4 0 0 11 0 3 0 24 0 2
EBPI 27 0 0 0 0 0 20 0 4 0 10 0 1
EBPI 32 0 0 1 0 0 10 0 9 3 3 2 1
EBPI 37 0 0 7 0 3 9 2 8 2 0 4 2
EBPI 42 1 0 9 3 1 0 7 0 23 0 8 0
EBPI 47 0 1 14 5 3 1 6 0 21 1 3 2
EBPI 52 1 1 22 6 1 1 3 1 41 1 6 2
EBPI 57 1 3 16 8 0 3 5 0 23 0 10 2
EBPI 62 0 5 6 13 4 2 1 1 43 1 15 2
EBPI 67 1 4 5 13 5 3 2 1 16 0 12 4
EBPI 72 9 5 2 9 7 2 3 1 17 1 21 7
EBPI 77 5 1 6 8 6 2 1 0 15 0 20 3
EBPI 82 6 8 2 6 9 1 10 1 11 3 23 7
EBPI 87 6 3 2 2 8 6 2 1 3 0 13 3
EBPI 92 6 10 6 2 7 6 7 0 3 1 9 5
EBPI 97 7 8 1 3 4 4 4 0 0 1 4 4
EBPI 102 10 5 3 8 2 1 1 0 1 0 2 6
EBPI 107 14 3 0 4 0 1 0 0 0 0 4 0
EBPI 112 3 2 1 2 1 0 1 0 0 1 0 3
EBPI 117 4 1 1 0 0 1 1 0 0 0 1 1
EBPI 122 2 1 0 0 2 0 0 0 0 0 0 1
EBPI 127 1 0 0 0 0 0 0 0 0 0 0 0
EBPI 132 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 137 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 142 0 0 0 0 0 1 0 0 0 0 0 0
EBPI 147 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 152 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 157 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 162 0 0 0 0 0 0 0 0 0 0 0 0
EBPI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Eastern Bay Wild Ground (EBWG). Data from 1990 and 1991 were not used in 
subsequent analyses because an Age-0 cohort could not be identified, and data from 
1994 were not used because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
EBWG 2 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 7 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 12 0 0 2 1 0 0 0 17 nd nd nd nd
EBWG 17 0 0 5 1 0 2 0 52 nd nd nd nd
EBWG 22 0 0 3 0 0 19 0 120 nd nd nd nd
EBWG 27 0 0 3 0 0 18 0 138 nd nd nd nd
EBWG 32 0 0 3 0 0 12 0 52 nd nd nd nd
EBWG 37 0 0 6 0 1 4 2 17 nd nd nd nd
EBWG 42 0 5 17 1 12 0 4 1 nd nd nd nd
EBWG 47 2 8 15 1 5 1 9 1 nd nd nd nd
EBWG 52 3 13 17 4 11 0 9 10 nd nd nd nd
EBWG 57 2 9 12 3 4 2 5 13 nd nd nd nd
EBWG 62 3 12 12 12 9 5 3 20 nd nd nd nd
EBWG 67 7 10 9 10 9 2 0 26 nd nd nd nd
EBWG 72 5 4 3 12 12 4 0 14 nd nd nd nd
EBWG 77 3 9 3 2 7 9 3 4 nd nd nd nd
EBWG 82 9 8 0 3 13 5 2 4 nd nd nd nd
EBWG 87 6 11 0 4 5 4 2 2 nd nd nd nd
EBWG 92 6 5 2 7 10 4 4 3 nd nd nd nd
EBWG 97 2 7 1 2 6 2 4 1 nd nd nd nd
EBWG 102 2 9 1 0 4 1 1 1 nd nd nd nd
EBWG 107 6 4 0 2 2 1 0 0 nd nd nd nd
EBWG 112 0 3 0 0 2 1 2 0 nd nd nd nd
EBWG 117 1 1 0 0 0 0 1 0 nd nd nd nd
EBWG 122 4 3 0 0 2 0 0 0 nd nd nd nd
EBWG 127 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 132 0 1 0 1 0 0 0 0 nd nd nd nd
EBWG 137 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 142 0 1 0 0 0 0 0 0 nd nd nd nd
EBWG 147 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 152 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 157 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 162 0 0 0 0 0 0 0 0 nd nd nd nd
EBWG 167 0 0 0 0 0 0 0 0 nd nd nd nd  

 
 
 
 
 
 
 
 
 
 
 
 
 



 

105 

Fishing Bay Clay Island (FBCI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
FBCI 2 0 0 0 1 0 0 0 0 nd nd nd nd
FBCI 7 0 0 0 5 0 2 0 0 nd nd nd nd
FBCI 12 0 0 2 19 4 0 0 5 nd nd nd nd
FBCI 17 0 0 7 18 9 2 1 6 nd nd nd nd
FBCI 22 0 0 25 10 12 6 0 5 nd nd nd nd
FBCI 27 0 0 10 5 4 1 0 4 nd nd nd nd
FBCI 32 0 0 6 5 2 0 0 0 nd nd nd nd
FBCI 37 0 1 13 7 2 4 0 0 nd nd nd nd
FBCI 42 0 0 29 30 10 8 1 0 nd nd nd nd
FBCI 47 1 2 19 33 29 7 1 1 nd nd nd nd
FBCI 52 3 3 7 33 24 9 5 2 nd nd nd nd
FBCI 57 6 8 4 16 25 10 4 1 nd nd nd nd
FBCI 62 4 8 3 14 30 8 3 3 nd nd nd nd
FBCI 67 5 6 2 13 36 15 7 4 nd nd nd nd
FBCI 72 8 7 3 7 45 16 4 3 nd nd nd nd
FBCI 77 7 5 1 1 15 17 13 5 nd nd nd nd
FBCI 82 1 8 1 1 14 34 4 5 nd nd nd nd
FBCI 87 2 10 0 0 5 10 7 6 nd nd nd nd
FBCI 92 0 4 0 0 4 14 3 7 nd nd nd nd
FBCI 97 0 5 0 0 0 8 7 3 nd nd nd nd
FBCI 102 0 1 0 0 3 5 6 2 nd nd nd nd
FBCI 107 0 1 0 0 0 1 3 1 nd nd nd nd
FBCI 112 0 0 0 0 0 1 1 0 nd nd nd nd
FBCI 117 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 122 0 0 0 0 0 1 1 0 nd nd nd nd
FBCI 127 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 132 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 137 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 142 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 147 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 152 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 157 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 162 0 0 0 0 0 0 0 0 nd nd nd nd
FBCI 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Fishing Bay Goose Creek (FBGC). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1997 
and 1998 were not used because the length-frequency distributions were difficult to 
interpret, and data from 1999 to 2001 were not used because there were too few 
oysters to clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
FBGC 2 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 7 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 12 0 0 4 8 2 0 0 1 0 0 0 0
FBGC 17 0 0 11 12 4 1 0 2 0 0 0 0
FBGC 22 0 0 12 17 7 0 0 0 0 0 0 0
FBGC 27 0 0 9 4 10 1 0 2 0 0 0 0
FBGC 32 0 0 3 5 3 0 0 0 0 0 0 0
FBGC 37 0 0 6 4 3 1 0 0 0 0 0 0
FBGC 42 0 0 5 13 8 4 0 0 0 0 0 0
FBGC 47 5 1 1 25 13 4 1 1 0 1 0 0
FBGC 52 10 3 2 10 15 10 1 0 0 0 0 0
FBGC 57 3 8 3 12 29 2 3 2 1 0 1 0
FBGC 62 9 9 2 9 27 11 4 0 4 1 0 0
FBGC 67 8 9 1 8 15 17 1 1 1 0 1 0
FBGC 72 11 18 2 3 44 24 4 2 5 0 1 0
FBGC 77 8 15 1 0 15 19 6 2 1 1 3 1
FBGC 82 8 10 5 1 9 23 8 5 4 5 2 0
FBGC 87 1 14 3 0 2 8 4 5 5 0 3 0
FBGC 92 5 6 0 0 1 9 9 6 8 2 3 0
FBGC 97 1 4 1 0 1 6 6 6 4 1 2 1
FBGC 102 1 3 3 0 0 3 3 8 12 1 3 1
FBGC 107 0 1 0 0 0 0 1 3 2 2 2 0
FBGC 112 0 0 0 0 0 2 3 1 3 3 0 0
FBGC 117 0 0 0 0 0 2 2 0 0 0 1 0
FBGC 122 0 0 0 0 0 0 0 0 1 0 2 0
FBGC 127 0 0 0 0 0 0 0 0 1 0 0 0
FBGC 132 0 0 0 0 0 0 0 0 1 1 0 1
FBGC 137 0 0 0 0 0 0 0 0 0 0 1 0
FBGC 142 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 147 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 152 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 157 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 162 0 0 0 0 0 0 0 0 0 0 0 0
FBGC 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Harris Creek Eagle Point (HCEP). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
HCEP 2 0 0 0 0 0 0 0 1 nd nd nd nd
HCEP 7 0 0 0 2 0 0 0 0 nd nd nd nd
HCEP 12 0 0 1 3 0 0 0 0 nd nd nd nd
HCEP 17 0 0 2 1 0 0 0 8 nd nd nd nd
HCEP 22 0 0 2 5 0 8 0 17 nd nd nd nd
HCEP 27 0 0 4 3 0 9 0 50 nd nd nd nd
HCEP 32 0 0 9 3 0 22 0 67 nd nd nd nd
HCEP 37 0 1 13 0 1 23 0 25 nd nd nd nd
HCEP 42 0 3 24 2 7 1 3 0 nd nd nd nd
HCEP 47 0 5 30 3 8 1 4 1 nd nd nd nd
HCEP 52 2 14 14 4 6 1 4 1 nd nd nd nd
HCEP 57 0 7 7 3 7 2 9 1 nd nd nd nd
HCEP 62 2 3 4 14 7 8 14 4 nd nd nd nd
HCEP 67 1 2 7 12 7 6 14 2 nd nd nd nd
HCEP 72 0 3 3 12 11 13 15 12 nd nd nd nd
HCEP 77 2 0 3 3 11 10 10 11 nd nd nd nd
HCEP 82 6 3 1 3 18 17 12 16 nd nd nd nd
HCEP 87 0 2 2 1 14 10 12 12 nd nd nd nd
HCEP 92 6 1 2 4 9 14 10 8 nd nd nd nd
HCEP 97 6 2 0 0 7 5 7 10 nd nd nd nd
HCEP 102 1 0 0 0 2 14 8 10 nd nd nd nd
HCEP 107 2 1 0 0 1 8 4 3 nd nd nd nd
HCEP 112 3 1 2 0 0 3 8 4 nd nd nd nd
HCEP 117 0 0 0 0 0 0 4 1 nd nd nd nd
HCEP 122 1 0 0 0 0 2 1 1 nd nd nd nd
HCEP 127 0 0 0 0 0 0 1 1 nd nd nd nd
HCEP 132 1 0 0 0 0 0 0 2 nd nd nd nd
HCEP 137 1 0 0 0 0 0 0 0 nd nd nd nd
HCEP 142 0 0 0 0 0 0 0 0 nd nd nd nd
HCEP 147 0 0 0 0 0 0 0 0 nd nd nd nd
HCEP 152 0 0 0 0 0 0 0 0 nd nd nd nd
HCEP 157 0 0 0 0 0 0 0 0 nd nd nd nd
HCEP 162 0 0 0 0 0 0 0 0 nd nd nd nd
HCEP 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Holland Straits Holland Straits (HOHO). Data from 1990 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and  data from 
1998 and 2000 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
HOHO 2 0 0 0 0 0 0 0 0 0 7 0 0
HOHO 7 0 0 1 37 0 3 1 0 0 19 0 10
HOHO 12 0 0 4 8 0 2 1 1 0 34 2 50
HOHO 17 0 0 19 12 3 6 3 1 0 49 3 59
HOHO 22 0 0 20 6 4 6 3 3 0 32 4 52
HOHO 27 0 0 8 3 3 8 2 3 0 14 4 41
HOHO 32 0 1 16 12 4 9 1 2 0 4 4 31
HOHO 37 0 6 4 26 12 3 3 1 2 0 0 30
HOHO 42 2 10 9 49 24 5 5 1 0 0 2 2
HOHO 47 5 33 4 52 25 2 5 0 2 2 3 5
HOHO 52 4 27 10 12 40 2 2 1 0 1 5 1
HOHO 57 19 13 6 17 23 12 3 1 4 1 1 2
HOHO 62 10 6 4 10 37 14 4 4 2 1 4 2
HOHO 67 18 6 4 5 27 24 2 2 4 4 1 0
HOHO 72 5 5 1 3 18 30 5 6 14 1 2 2
HOHO 77 12 5 0 3 3 24 13 9 13 1 0 1
HOHO 82 6 6 0 1 4 12 5 14 14 3 1 1
HOHO 87 1 2 0 1 0 7 5 6 14 3 1 1
HOHO 92 0 3 0 0 0 4 9 20 20 7 0 1
HOHO 97 2 2 0 1 1 0 5 12 10 4 0 1
HOHO 102 0 2 0 0 0 1 2 10 9 1 1 0
HOHO 107 0 0 0 0 0 0 1 12 5 5 2 0
HOHO 112 0 0 0 0 0 0 1 6 4 5 0 0
HOHO 117 0 0 0 0 0 0 0 0 3 0 0 0
HOHO 122 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 127 0 0 0 0 0 0 0 0 0 1 0 0
HOHO 132 0 0 0 0 0 0 0 0 1 0 0 0
HOHO 137 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 142 0 0 0 0 0 0 0 0 0 1 0 0
HOHO 147 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 152 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 157 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 162 0 0 0 0 0 0 0 0 0 0 0 0
HOHO 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Honga River Normans (HRNO). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1996 
and 1997 were not used because the length-frequency distributions were difficult to 
interpret, and data from 1998 were not used because there were too few oysters to 
clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
HRNO 2 0 0 0 0 0 0 0 0 0 1 0 0
HRNO 7 0 0 0 1 1 1 0 1 0 5 0 0
HRNO 12 0 0 7 7 1 1 0 1 0 7 0 2
HRNO 17 0 0 16 8 7 7 0 1 0 10 0 8
HRNO 22 0 0 17 11 3 3 0 3 0 6 0 8
HRNO 27 0 0 17 7 3 3 0 0 0 3 0 9
HRNO 32 2 0 20 6 5 5 0 2 0 1 0 2
HRNO 37 1 2 19 12 10 10 0 0 0 0 2 1
HRNO 42 1 2 28 12 19 19 2 0 1 0 3 1
HRNO 47 7 3 30 9 23 23 1 0 1 0 1 1
HRNO 52 10 9 19 5 24 24 2 1 0 0 7 3
HRNO 57 7 7 6 3 15 15 0 1 0 0 8 1
HRNO 62 16 5 9 3 8 8 2 0 2 0 8 1
HRNO 67 13 9 1 1 9 9 1 3 0 1 9 2
HRNO 72 11 6 2 2 11 11 2 2 1 2 2 1
HRNO 77 3 1 0 0 3 3 4 2 2 1 0 1
HRNO 82 5 4 0 0 6 6 4 6 2 0 0 0
HRNO 87 0 3 1 0 1 1 2 2 1 2 0 1
HRNO 92 0 1 2 0 0 0 5 5 3 1 2 0
HRNO 97 0 1 0 0 0 0 0 1 3 6 3 1
HRNO 102 0 0 0 0 0 0 2 1 3 5 2 0
HRNO 107 0 0 0 0 0 0 0 0 3 0 1 0
HRNO 112 0 0 0 0 0 0 0 0 0 2 2 0
HRNO 117 0 0 0 0 0 0 0 0 0 0 1 2
HRNO 122 0 0 0 0 0 0 0 1 0 0 0 0
HRNO 127 0 0 0 0 0 0 0 0 0 0 0 0
HRNO 132 0 0 0 0 0 0 0 0 0 1 0 0
HRNO 137 0 0 0 0 0 0 0 0 0 0 0 0
HRNO 142 0 0 0 0 0 0 0 0 0 0 0 1
HRNO 147 0 0 0 0 0 0 0 0 0 0 0 1
HRNO 152 0 0 0 0 0 0 0 0 0 0 0 0
HRNO 157 0 0 0 0 0 0 0 0 0 1 0 0
HRNO 162 0 0 0 0 0 0 0 0 0 0 0 0
HRNO 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Honga River Windmill (HRWI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
HRWI 2 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 7 0 0 0 0 0 2 0 0 nd nd nd nd
HRWI 12 0 0 12 1 3 0 0 0 nd nd nd nd
HRWI 17 0 0 14 4 5 1 0 2 nd nd nd nd
HRWI 22 0 0 16 6 5 6 1 2 nd nd nd nd
HRWI 27 0 0 9 7 3 2 1 0 nd nd nd nd
HRWI 32 1 0 6 7 6 3 0 1 nd nd nd nd
HRWI 37 3 5 20 7 6 4 1 0 nd nd nd nd
HRWI 42 3 7 22 10 15 6 3 1 nd nd nd nd
HRWI 47 7 16 26 7 17 11 2 1 nd nd nd nd
HRWI 52 15 24 9 5 23 14 6 1 nd nd nd nd
HRWI 57 13 19 12 4 15 20 6 3 nd nd nd nd
HRWI 62 23 11 5 4 10 27 2 5 nd nd nd nd
HRWI 67 11 7 4 1 4 15 10 5 nd nd nd nd
HRWI 72 7 6 2 0 4 22 7 9 nd nd nd nd
HRWI 77 1 4 2 2 2 12 5 5 nd nd nd nd
HRWI 82 4 1 0 1 1 3 6 10 nd nd nd nd
HRWI 87 2 2 1 0 0 1 3 2 nd nd nd nd
HRWI 92 0 2 2 0 2 3 5 2 nd nd nd nd
HRWI 97 0 0 0 0 1 0 1 1 nd nd nd nd
HRWI 102 0 1 1 0 0 0 2 4 nd nd nd nd
HRWI 107 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 112 0 0 0 0 0 0 1 0 nd nd nd nd
HRWI 117 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 122 0 0 0 0 0 1 0 0 nd nd nd nd
HRWI 127 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 132 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 137 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 142 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 147 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 152 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 157 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 162 0 0 0 0 0 0 0 0 nd nd nd nd
HRWI 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Little Choptank River Cason (LCCA). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
LCCA 2 0 0 0 0 0 0 0 0 0 2 0 0
LCCA 7 0 0 1 0 0 1 0 0 0 7 0 0
LCCA 12 0 0 16 4 0 1 0 0 0 11 1 1
LCCA 17 0 0 16 14 6 6 0 146 0 16 1 0
LCCA 22 0 0 7 17 7 3 2 108 1 11 1 0
LCCA 27 0 0 8 3 9 12 0 55 1 5 2 0
LCCA 32 0 3 15 5 9 14 3 55 3 1 3 1
LCCA 37 0 12 9 14 16 13 2 19 3 0 5 1
LCCA 42 0 28 12 12 27 8 1 0 8 0 11 2
LCCA 47 0 49 8 6 38 9 10 4 12 2 9 3
LCCA 52 2 43 5 6 43 7 8 4 13 10 8 4
LCCA 57 4 32 8 5 28 26 11 15 10 13 5 10
LCCA 62 8 12 1 4 12 38 25 11 10 22 9 11
LCCA 67 6 6 5 4 11 48 27 19 13 18 13 5
LCCA 72 2 4 3 0 12 51 34 23 8 23 18 10
LCCA 77 3 4 0 0 0 40 30 25 19 18 22 9
LCCA 82 3 3 1 0 3 17 29 24 24 14 13 2
LCCA 87 4 2 3 0 0 13 13 13 12 4 9 7
LCCA 92 2 3 0 0 1 3 10 16 16 11 12 6
LCCA 97 3 1 0 0 0 1 2 3 5 6 4 0
LCCA 102 0 0 0 0 0 0 3 4 5 4 9 3
LCCA 107 0 0 0 0 0 0 0 2 1 0 1 2
LCCA 112 0 0 0 0 0 0 0 1 1 0 0 0
LCCA 117 0 0 0 0 0 0 0 0 0 0 1 1
LCCA 122 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 127 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 132 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 137 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 142 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 147 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 152 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 157 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 162 0 0 0 0 0 0 0 0 0 0 0 0
LCCA 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Little Choptank River Ragged Point (LCRP). Data from 1990 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1997 were not used because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
LCRP 2 0 0 0 0 0 0 0 0 0 2 0 0
LCRP 7 0 0 0 0 0 0 0 0 0 5 0 0
LCRP 12 0 0 3 0 0 2 0 0 0 9 0 0
LCRP 17 0 0 8 3 0 3 0 0 0 13 1 4
LCRP 22 0 0 31 5 1 5 0 0 0 9 1 1
LCRP 27 0 0 35 3 0 8 0 0 0 4 0 0
LCRP 32 0 6 57 1 0 5 0 1 0 1 4 0
LCRP 37 1 15 52 8 6 2 1 1 4 0 6 1
LCRP 42 6 15 33 13 12 0 5 0 8 0 17 2
LCRP 47 8 5 17 9 9 6 7 0 14 2 18 0
LCRP 52 23 6 6 3 13 9 11 0 13 1 17 4
LCRP 57 31 7 2 2 10 12 8 1 10 11 6 6
LCRP 62 20 10 2 1 6 13 4 2 6 17 8 3
LCRP 67 29 13 3 0 5 26 8 2 2 26 13 8
LCRP 72 15 12 5 0 4 18 13 7 2 20 12 5
LCRP 77 7 5 3 0 0 14 6 5 11 5 10 5
LCRP 82 4 3 2 1 0 3 21 5 12 6 6 3
LCRP 87 2 1 0 0 0 3 5 1 11 5 8 3
LCRP 92 6 2 0 0 0 0 7 1 12 11 7 2
LCRP 97 4 1 0 0 0 1 0 1 12 3 2 1
LCRP 102 0 0 0 0 0 0 2 0 12 5 2 0
LCRP 107 2 0 0 0 0 0 0 0 2 3 0 0
LCRP 112 2 0 0 0 0 0 0 0 3 1 1 0
LCRP 117 0 0 0 0 0 0 0 0 1 0 0 1
LCRP 122 1 0 0 0 0 0 0 0 1 1 0 0
LCRP 127 0 0 0 0 0 0 0 0 1 0 1 0
LCRP 132 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 137 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 142 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 147 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 152 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 157 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 162 0 0 0 0 0 0 0 0 0 0 0 0
LCRP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Manokin River Drum Point (MADP). Data from 1990 were not used in subsequent 
analyses because a Age-0 cohort could not be identified, and data from 1991 and 
1995 were not used because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MADP 2 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 7 0 0 10 2 0 0 1 0 nd nd nd nd
MADP 12 0 0 32 10 1 2 0 2 nd nd nd nd
MADP 17 0 0 35 7 4 1 3 5 nd nd nd nd
MADP 22 0 0 58 15 3 1 2 4 nd nd nd nd
MADP 27 0 1 29 11 5 3 4 4 nd nd nd nd
MADP 32 0 1 17 13 1 4 0 2 nd nd nd nd
MADP 37 0 3 7 20 4 3 0 0 nd nd nd nd
MADP 42 0 5 10 39 25 3 0 0 nd nd nd nd
MADP 47 0 7 7 32 32 4 0 0 nd nd nd nd
MADP 52 0 8 10 14 44 7 0 0 nd nd nd nd
MADP 57 0 5 1 11 32 3 1 3 nd nd nd nd
MADP 62 0 3 4 4 34 9 1 2 nd nd nd nd
MADP 67 0 4 4 1 25 6 3 3 nd nd nd nd
MADP 72 4 5 0 2 27 9 2 2 nd nd nd nd
MADP 77 8 4 0 0 7 5 4 4 nd nd nd nd
MADP 82 16 1 4 0 5 0 9 7 nd nd nd nd
MADP 87 15 0 0 0 0 2 5 4 nd nd nd nd
MADP 92 8 0 0 0 0 5 2 4 nd nd nd nd
MADP 97 8 2 0 0 0 0 0 0 nd nd nd nd
MADP 102 2 0 0 0 0 0 1 4 nd nd nd nd
MADP 107 1 0 0 0 0 0 0 0 nd nd nd nd
MADP 112 1 0 0 0 0 0 0 0 nd nd nd nd
MADP 117 1 0 0 0 0 0 0 1 nd nd nd nd
MADP 122 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 127 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 132 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 137 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 142 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 147 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 152 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 157 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 162 0 0 0 0 0 0 0 0 nd nd nd nd
MADP 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Manokin River Georges Bar (MAGE). Data from 1990 were not used in subsequent 
analyses because a Age-0 cohort could not be identified, data from 2000 and 2001 
were not used because the length-frequency distributions were difficult to interpret, 
and data from 1991 were not used because there were too few oysters to clearly 
distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MAGE 2 0 0 0 0 0 0 0 0 0 2 0 0
MAGE 7 0 0 0 2 0 0 0 0 0 6 0 0
MAGE 12 0 0 2 2 0 2 0 2 1 11 1 0
MAGE 17 0 0 2 3 0 1 0 4 2 16 0 0
MAGE 22 0 0 7 6 2 2 0 1 0 10 1 1
MAGE 27 0 0 7 3 2 0 0 1 0 4 0 0
MAGE 32 0 0 17 4 3 0 1 0 2 1 4 0
MAGE 37 0 0 11 0 4 0 0 0 1 0 1 0
MAGE 42 4 2 2 4 5 2 0 1 5 0 2 0
MAGE 47 0 0 8 3 9 4 1 0 8 4 5 0
MAGE 52 3 0 3 3 11 0 0 0 13 4 1 4
MAGE 57 3 2 1 3 8 3 0 1 6 2 6 5
MAGE 62 5 1 0 2 5 3 3 3 2 5 5 3
MAGE 67 3 0 0 0 2 4 7 8 1 4 0 6
MAGE 72 4 2 0 0 3 7 7 18 4 12 1 2
MAGE 77 5 5 0 0 2 4 10 9 3 3 0 4
MAGE 82 2 2 2 0 1 6 11 5 1 4 2 1
MAGE 87 0 0 0 0 0 1 5 3 4 4 0 2
MAGE 92 1 2 0 0 1 2 7 2 6 0 1 1
MAGE 97 1 0 0 0 0 0 3 3 4 2 1 2
MAGE 102 1 0 0 0 0 0 4 1 1 2 0 0
MAGE 107 0 1 0 0 0 0 1 0 1 0 0 0
MAGE 112 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 117 0 0 0 0 0 0 1 0 2 0 0 0
MAGE 122 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 127 0 0 0 0 0 0 1 0 0 0 0 0
MAGE 132 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 137 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 142 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 147 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 152 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 157 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 162 0 0 0 0 0 0 0 0 0 0 0 0
MAGE 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Middle Eastern Shore Stone Rock (MESR). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MESR 2 0 0 0 0 0 0 0 0 0 0 0 0
MESR 7 0 0 1 0 0 0 0 0 0 0 0 0
MESR 12 0 0 3 0 0 3 0 1 0 0 0 0
MESR 17 0 0 8 0 0 5 0 2 0 1 2 0
MESR 22 0 0 18 0 1 2 0 2 0 1 7 2
MESR 27 0 0 46 0 2 4 1 3 0 1 9 0
MESR 32 0 0 66 0 1 1 3 5 1 0 12 0
MESR 37 0 2 46 4 0 4 10 5 2 1 4 5
MESR 42 3 7 32 7 3 2 30 0 3 0 0 15
MESR 47 1 5 16 25 2 9 34 1 9 2 2 25
MESR 52 6 4 15 31 9 7 27 4 12 0 0 25
MESR 57 4 4 5 8 7 4 12 7 5 1 2 7
MESR 62 27 10 2 11 16 3 5 10 2 5 3 5
MESR 67 40 28 3 7 11 9 3 16 8 8 0 1
MESR 72 52 39 3 4 24 17 6 10 12 14 3 4
MESR 77 46 55 3 1 2 7 4 0 13 18 4 5
MESR 82 42 43 0 1 5 9 3 4 12 18 1 1
MESR 87 24 22 3 0 3 5 9 2 4 11 3 0
MESR 92 14 13 2 0 2 1 4 2 6 9 2 2
MESR 97 7 6 0 0 0 1 4 2 1 7 3 0
MESR 102 2 2 0 0 0 1 2 0 0 0 2 0
MESR 107 2 0 0 0 0 0 1 0 0 2 1 0
MESR 112 0 2 0 0 0 0 0 0 0 2 0 0
MESR 117 0 0 0 0 0 0 0 0 0 0 0 0
MESR 122 0 0 0 0 0 0 0 0 0 1 0 0
MESR 127 0 0 0 0 0 0 0 0 0 0 0 0
MESR 132 0 0 0 0 0 0 0 0 0 0 0 0
MESR 137 0 0 0 0 0 0 1 0 0 0 0 0
MESR 142 0 0 0 0 0 0 0 0 0 0 0 0
MESR 147 0 0 0 0 0 0 0 0 0 0 0 0
MESR 152 0 0 0 0 0 0 0 0 0 0 0 0
MESR 157 0 0 0 0 0 0 0 0 0 0 0 0
MESR 162 0 0 0 0 0 0 0 0 0 0 0 0
MESR 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Miles River Ashcraft (MRAS). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1992 to 1994 were not used because there were too few oysters to clearly distinguish 
cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MRAS 2 0 0 0 0 0 0 0 0 nd nd nd nd
MRAS 7 0 0 0 0 0 1 0 1 nd nd nd nd
MRAS 12 0 0 0 0 0 0 0 0 nd nd nd nd
MRAS 17 0 0 0 0 0 5 1 33 nd nd nd nd
MRAS 22 0 0 0 0 0 14 0 133 nd nd nd nd
MRAS 27 0 0 0 0 0 17 0 266 nd nd nd nd
MRAS 32 0 0 0 0 0 16 0 300 nd nd nd nd
MRAS 37 0 1 0 0 0 7 1 166 nd nd nd nd
MRAS 42 0 0 1 0 0 0 1 0 nd nd nd nd
MRAS 47 0 0 1 0 0 0 7 0 nd nd nd nd
MRAS 52 0 1 2 0 0 0 10 1 nd nd nd nd
MRAS 57 1 0 1 0 0 0 2 1 nd nd nd nd
MRAS 62 2 0 5 0 0 0 8 2 nd nd nd nd
MRAS 67 2 0 0 0 0 0 4 11 nd nd nd nd
MRAS 72 11 2 2 2 1 0 2 21 nd nd nd nd
MRAS 77 8 0 1 2 0 0 1 8 nd nd nd nd
MRAS 82 9 4 3 1 4 1 1 6 nd nd nd nd
MRAS 87 8 8 1 0 1 0 0 3 nd nd nd nd
MRAS 92 12 3 4 1 6 0 0 4 nd nd nd nd
MRAS 97 9 3 2 1 5 2 0 2 nd nd nd nd
MRAS 102 9 6 0 1 8 3 1 0 nd nd nd nd
MRAS 107 10 8 4 1 3 0 0 1 nd nd nd nd
MRAS 112 1 5 2 2 1 0 1 0 nd nd nd nd
MRAS 117 4 6 1 1 3 0 0 0 nd nd nd nd
MRAS 122 3 2 2 3 2 0 0 0 nd nd nd nd
MRAS 127 2 2 2 2 2 1 1 0 nd nd nd nd
MRAS 132 0 1 0 0 0 0 0 0 nd nd nd nd
MRAS 137 1 1 0 1 0 0 0 1 nd nd nd nd
MRAS 142 0 1 0 1 1 0 0 0 nd nd nd nd
MRAS 147 0 0 1 0 0 0 0 0 nd nd nd nd
MRAS 152 0 1 0 0 0 0 0 0 nd nd nd nd
MRAS 157 0 0 0 0 0 0 0 0 nd nd nd nd
MRAS 162 0 0 0 0 0 0 0 0 nd nd nd nd
MRAS 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Miles River Bruffs Island (MRBI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and  data from 
1993 and 1994 were not used because there were too few oysters to clearly 
distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MRBI 2 0 0 0 0 0 0 0 0 0 0 0 0
MRBI 7 0 0 0 0 0 0 0 0 0 1 0 0
MRBI 12 0 0 0 0 0 0 0 0 0 1 3 0
MRBI 17 0 0 1 0 0 0 0 26 0 2 2 0
MRBI 22 0 0 1 0 0 1 0 53 0 1 3 1
MRBI 27 0 0 5 0 0 6 0 185 0 0 1 1
MRBI 32 0 0 1 0 0 5 0 265 0 0 1 3
MRBI 37 0 1 0 0 0 3 0 212 3 0 1 1
MRBI 42 0 1 0 0 0 0 0 0 8 0 7 2
MRBI 47 0 0 2 0 0 0 0 0 22 2 6 4
MRBI 52 2 1 0 1 0 0 2 0 42 8 5 4
MRBI 57 2 2 1 1 1 0 6 0 35 11 2 3
MRBI 62 1 3 1 0 0 0 2 3 28 31 13 7
MRBI 67 4 1 0 0 1 0 0 3 13 42 23 6
MRBI 72 2 1 0 1 2 0 1 4 9 54 26 6
MRBI 77 3 3 0 0 0 0 0 8 4 50 29 7
MRBI 82 4 1 0 1 0 1 0 3 3 20 27 13
MRBI 87 8 1 0 0 0 1 0 3 0 9 23 6
MRBI 92 7 0 2 4 0 0 1 1 0 10 12 7
MRBI 97 7 1 1 0 1 0 1 0 0 5 3 3
MRBI 102 8 2 0 0 0 0 0 0 2 4 2 10
MRBI 107 5 2 0 0 1 1 0 0 0 2 1 2
MRBI 112 6 3 0 2 1 0 1 0 0 4 0 3
MRBI 117 4 7 0 3 0 0 1 2 0 2 0 1
MRBI 122 7 5 1 2 0 0 1 1 0 0 0 1
MRBI 127 1 2 1 0 1 0 0 0 0 0 0 0
MRBI 132 2 3 1 1 0 0 0 0 0 0 0 0
MRBI 137 0 2 1 0 0 1 0 0 0 0 0 0
MRBI 142 0 0 0 1 0 0 1 0 0 0 0 0
MRBI 147 0 1 0 0 0 0 0 1 0 0 0 0
MRBI 152 1 1 0 0 0 0 0 0 0 0 0 0
MRBI 157 0 0 0 0 0 0 0 0 0 0 0 0
MRBI 162 0 0 0 0 0 0 0 0 0 0 0 0
MRBI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Miles River Long Point (MRLP). Data from 1990 to 1994 were not used in 
subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MRLP 2 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 7 0 0 0 1 0 0 0 0 0 0 0 0
MRLP 12 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 17 0 0 0 0 0 3 0 2 0 0 0 0
MRLP 22 0 0 0 0 0 12 0 2 0 1 0 0
MRLP 27 0 0 1 0 0 18 0 5 0 0 0 0
MRLP 32 0 0 0 0 0 12 0 2 1 1 0 0
MRLP 37 0 0 0 0 0 20 0 1 3 1 0 0
MRLP 42 0 0 0 0 0 0 1 0 8 6 0 0
MRLP 47 0 0 0 0 0 0 3 1 24 12 1 0
MRLP 52 0 0 1 1 0 0 11 0 40 32 1 1
MRLP 57 0 0 4 1 0 0 12 1 26 57 2 0
MRLP 62 0 0 4 0 0 0 8 3 41 63 4 2
MRLP 67 0 0 4 4 0 0 6 7 14 55 5 0
MRLP 72 1 0 0 4 0 0 6 18 12 55 12 2
MRLP 77 2 0 0 2 0 0 2 14 11 33 16 8
MRLP 82 4 1 0 3 2 1 2 15 21 26 19 6
MRLP 87 4 0 0 2 2 1 1 7 14 17 18 9
MRLP 92 5 1 0 2 3 3 0 8 12 8 14 14
MRLP 97 6 1 0 2 5 3 1 2 8 2 7 6
MRLP 102 9 4 2 2 4 1 1 2 4 2 7 10
MRLP 107 8 3 2 1 2 1 1 3 2 1 5 4
MRLP 112 5 4 3 1 2 3 0 0 2 0 3 2
MRLP 117 6 5 0 2 0 0 0 0 0 0 0 0
MRLP 122 2 3 0 0 1 0 4 1 3 0 0 2
MRLP 127 4 3 0 1 0 0 2 0 3 0 0 1
MRLP 132 2 0 0 1 0 0 0 0 0 0 0 2
MRLP 137 3 0 0 0 1 0 1 0 0 0 1 0
MRLP 142 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 147 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 152 1 0 0 0 0 0 0 0 0 0 0 0
MRLP 157 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 162 0 0 0 0 0 0 0 0 0 0 0 0
MRLP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Miles River Turtle Back (MRTU). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1994 were not used because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
MRTU 2 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 7 0 0 2 0 0 3 0 0 0 2 0 0
MRTU 12 0 0 4 0 0 19 0 0 0 3 1 2
MRTU 17 0 0 7 0 0 35 0 225 0 4 0 5
MRTU 22 0 0 2 0 0 63 0 449 0 3 2 8
MRTU 27 0 0 0 1 0 44 0 314 0 1 1 13
MRTU 32 0 0 0 1 0 23 2 314 0 0 1 17
MRTU 37 1 0 8 3 0 7 13 45 5 1 3 6
MRTU 42 5 0 15 8 0 0 38 0 15 0 4 6
MRTU 47 2 2 24 20 0 0 34 3 23 6 13 6
MRTU 52 6 5 16 22 2 2 17 18 46 14 9 7
MRTU 57 11 2 18 19 1 1 13 18 34 15 4 5
MRTU 62 8 3 9 40 4 3 7 29 39 30 4 2
MRTU 67 8 5 10 14 4 3 2 13 10 41 10 5
MRTU 72 4 2 6 19 4 6 2 19 16 56 13 11
MRTU 77 9 2 1 8 3 8 1 3 11 25 11 7
MRTU 82 9 7 2 5 6 2 4 2 9 37 29 18
MRTU 87 8 3 2 1 6 3 2 3 4 14 22 4
MRTU 92 2 6 2 5 1 1 7 5 4 8 14 9
MRTU 97 1 0 2 2 0 1 2 1 2 6 14 3
MRTU 102 2 4 3 1 3 2 4 0 0 3 8 1
MRTU 107 1 5 1 0 0 0 0 0 0 1 3 1
MRTU 112 0 2 1 1 0 0 1 1 1 0 2 1
MRTU 117 0 1 0 0 0 0 0 1 0 0 0 0
MRTU 122 0 0 0 1 0 0 0 0 0 0 0 0
MRTU 127 0 0 1 0 0 0 0 0 0 0 0 0
MRTU 132 1 0 1 0 0 0 0 0 0 0 0 0
MRTU 137 0 0 0 0 1 0 0 0 0 0 0 0
MRTU 142 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 147 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 152 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 157 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 162 0 0 0 0 0 0 0 0 0 0 0 0
MRTU 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Nanticoke River Middle Ground (NRMG). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
NRMG 2 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 7 0 0 0 2 0 0 0 0 nd nd nd nd
NRMG 12 0 0 6 7 3 0 0 3 nd nd nd nd
NRMG 17 0 0 21 3 5 0 1 15 nd nd nd nd
NRMG 22 0 0 21 1 5 0 3 6 nd nd nd nd
NRMG 27 0 0 9 1 11 0 1 0 nd nd nd nd
NRMG 32 0 0 21 0 2 2 1 3 nd nd nd nd
NRMG 37 0 0 12 0 2 1 0 0 nd nd nd nd
NRMG 42 0 1 6 14 9 1 1 2 nd nd nd nd
NRMG 47 0 9 3 15 8 2 0 1 nd nd nd nd
NRMG 52 3 9 7 17 15 9 2 0 nd nd nd nd
NRMG 57 3 11 4 14 15 11 0 1 nd nd nd nd
NRMG 62 0 3 8 8 20 14 7 5 nd nd nd nd
NRMG 67 2 7 3 5 17 13 4 2 nd nd nd nd
NRMG 72 1 7 4 5 14 13 5 2 nd nd nd nd
NRMG 77 4 4 5 4 13 13 5 2 nd nd nd nd
NRMG 82 1 7 2 1 17 13 11 13 nd nd nd nd
NRMG 87 0 4 0 0 8 5 6 3 nd nd nd nd
NRMG 92 1 0 2 0 6 6 4 11 nd nd nd nd
NRMG 97 0 1 0 0 2 7 0 4 nd nd nd nd
NRMG 102 0 0 1 0 1 2 2 2 nd nd nd nd
NRMG 107 0 1 0 0 1 0 6 3 nd nd nd nd
NRMG 112 0 0 0 1 2 0 0 0 nd nd nd nd
NRMG 117 0 0 0 0 0 0 0 1 nd nd nd nd
NRMG 122 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 127 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 132 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 137 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 142 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 147 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 152 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 157 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 162 0 0 0 0 0 0 0 0 nd nd nd nd
NRMG 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Nanticoke River Wetipiquin (NRWE). No data were used in subsequent analyses 
because the length-frequency distributions were difficult to interpret. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
NRWE 2 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 7 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 12 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 17 0 0 3 0 2 0 0 0 nd nd nd nd
NRWE 22 0 0 1 1 1 1 0 0 nd nd nd nd
NRWE 27 0 0 1 0 0 0 0 0 nd nd nd nd
NRWE 32 0 0 5 0 1 0 0 0 nd nd nd nd
NRWE 37 0 0 5 1 0 0 0 0 nd nd nd nd
NRWE 42 3 0 19 3 0 1 1 0 nd nd nd nd
NRWE 47 4 9 36 8 0 1 0 0 nd nd nd nd
NRWE 52 11 12 24 15 4 3 0 0 nd nd nd nd
NRWE 57 8 34 16 14 3 1 6 0 nd nd nd nd
NRWE 62 16 35 13 25 10 4 3 0 nd nd nd nd
NRWE 67 15 34 17 26 8 2 6 3 nd nd nd nd
NRWE 72 23 19 21 24 17 4 4 7 nd nd nd nd
NRWE 77 14 13 18 28 19 2 6 5 nd nd nd nd
NRWE 82 22 13 7 15 21 7 9 11 nd nd nd nd
NRWE 87 7 5 12 3 11 5 11 4 nd nd nd nd
NRWE 92 10 7 7 5 13 9 10 13 nd nd nd nd
NRWE 97 2 4 10 4 4 4 5 5 nd nd nd nd
NRWE 102 7 5 5 8 1 7 4 5 nd nd nd nd
NRWE 107 1 2 0 2 0 4 3 0 nd nd nd nd
NRWE 112 2 1 0 3 3 3 1 3 nd nd nd nd
NRWE 117 2 2 0 1 1 4 2 1 nd nd nd nd
NRWE 122 0 2 0 2 2 2 1 2 nd nd nd nd
NRWE 127 0 0 0 0 0 1 0 0 nd nd nd nd
NRWE 132 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 137 0 0 0 0 1 0 0 1 nd nd nd nd
NRWE 142 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 147 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 152 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 157 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 162 0 0 0 0 0 0 0 0 nd nd nd nd
NRWE 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Nanticoke River Wilson Shoal (NRWS). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1992, 
1996, and 1998 were not used because the site was repleted, and data from 1998 
were not used because there were too few oysters to clearly distinguish cohorts. 
Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
NRWS 2 0 0 0 0 0 0 0 0 0 1 0 0
NRWS 7 0 0 0 0 0 0 0 0 0 0 0 0
NRWS 12 0 0 0 2 0 0 0 2 0 0 0 2
NRWS 17 0 0 2 1 4 0 0 8 0 0 3 5
NRWS 22 0 0 5 1 9 1 0 7 0 0 4 8
NRWS 27 0 0 9 2 8 0 0 3 0 0 3 13
NRWS 32 1 0 10 0 8 1 0 0 0 0 0 17
NRWS 37 2 0 7 0 2 0 0 1 0 0 0 6
NRWS 42 7 1 5 0 1 3 0 0 0 0 3 6
NRWS 47 12 1 3 1 3 1 0 2 1 0 0 6
NRWS 52 19 0 0 2 4 2 0 7 2 2 3 7
NRWS 57 19 0 1 8 4 14 0 10 2 2 1 5
NRWS 62 20 6 1 14 8 11 4 15 0 3 4 2
NRWS 67 18 8 0 11 7 23 7 10 4 3 1 5
NRWS 72 25 6 3 5 7 18 7 12 1 14 4 11
NRWS 77 11 15 7 11 17 6 11 11 3 7 3 7
NRWS 82 12 10 5 5 16 21 6 7 1 12 0 18
NRWS 87 4 10 1 6 11 5 7 8 2 6 2 4
NRWS 92 3 7 2 6 10 8 5 9 2 9 4 9
NRWS 97 3 6 3 3 1 2 4 4 0 3 2 3
NRWS 102 1 3 0 1 0 3 2 3 0 7 5 1
NRWS 107 2 1 1 3 0 3 0 1 0 1 1 1
NRWS 112 0 1 0 1 1 0 2 2 0 3 0 1
NRWS 117 0 1 1 0 0 0 1 2 1 0 0 0
NRWS 122 2 2 0 0 0 0 0 2 1 1 0 0
NRWS 127 0 0 0 0 1 0 0 0 0 1 0 0
NRWS 132 0 1 0 1 0 0 0 1 0 0 0 0
NRWS 137 0 0 0 0 0 0 0 1 1 0 0 0
NRWS 142 0 1 0 0 0 0 0 0 0 0 0 0
NRWS 147 0 0 0 0 0 0 0 0 0 0 0 0
NRWS 152 0 0 0 0 0 0 0 0 0 0 0 0
NRWS 157 0 0 0 0 0 0 0 0 0 0 0 0
NRWS 162 0 0 0 0 0 0 0 0 0 0 0 0
NRWS 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Poplar Island Shell Hill (POSH). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1992 to 1994 were not used because there were too few oysters to clearly distinguish 
cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
POSH 2 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 7 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 12 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 17 0 0 0 0 0 1 0 0 nd nd nd nd
POSH 22 0 0 0 0 0 1 0 0 nd nd nd nd
POSH 27 0 0 0 0 0 2 0 6 nd nd nd nd
POSH 32 0 0 0 0 0 5 0 4 nd nd nd nd
POSH 37 0 0 3 0 0 6 0 9 nd nd nd nd
POSH 42 0 0 2 0 0 0 0 0 nd nd nd nd
POSH 47 0 0 5 1 0 0 2 0 nd nd nd nd
POSH 52 1 2 0 0 0 0 1 0 nd nd nd nd
POSH 57 0 2 0 2 2 0 4 0 nd nd nd nd
POSH 62 1 6 1 0 1 0 3 0 nd nd nd nd
POSH 67 2 2 1 0 1 0 0 0 nd nd nd nd
POSH 72 5 4 3 2 0 2 1 2 nd nd nd nd
POSH 77 7 1 0 5 0 3 2 1 nd nd nd nd
POSH 82 8 3 0 4 1 0 2 2 nd nd nd nd
POSH 87 8 3 1 2 0 5 2 2 nd nd nd nd
POSH 92 7 3 1 2 0 1 4 2 nd nd nd nd
POSH 97 6 4 1 0 0 0 0 1 nd nd nd nd
POSH 102 3 10 0 0 0 1 2 2 nd nd nd nd
POSH 107 0 4 2 0 0 0 1 2 nd nd nd nd
POSH 112 0 1 0 0 1 1 0 0 nd nd nd nd
POSH 117 2 2 0 0 0 0 1 0 nd nd nd nd
POSH 122 0 2 1 0 0 0 0 0 nd nd nd nd
POSH 127 0 0 0 1 0 0 0 0 nd nd nd nd
POSH 132 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 137 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 142 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 147 1 0 0 0 0 0 0 0 nd nd nd nd
POSH 152 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 157 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 162 0 0 0 0 0 0 0 0 nd nd nd nd
POSH 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Potomac River Blue Sow (PRBS). No data were used in subsequent analyses because 
the length-frequency distributions were difficult to interpret and the site was 
repleted. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRBS 2 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 7 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 12 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 17 0 0 0 1 0 2 0 0 nd nd nd nd
PRBS 22 0 0 0 0 0 2 0 0 nd nd nd nd
PRBS 27 0 0 0 0 0 0 0 1 nd nd nd nd
PRBS 32 0 0 1 0 0 1 0 0 nd nd nd nd
PRBS 37 0 0 4 0 0 2 0 2 nd nd nd nd
PRBS 42 0 1 8 0 0 0 1 0 nd nd nd nd
PRBS 47 0 1 13 2 0 0 2 1 nd nd nd nd
PRBS 52 0 3 16 4 1 0 1 0 nd nd nd nd
PRBS 57 0 2 10 10 3 0 0 1 nd nd nd nd
PRBS 62 2 2 4 15 4 1 2 3 nd nd nd nd
PRBS 67 5 1 4 10 6 2 1 1 nd nd nd nd
PRBS 72 6 2 2 18 11 1 0 4 nd nd nd nd
PRBS 77 5 6 1 8 24 6 2 2 nd nd nd nd
PRBS 82 9 5 4 8 22 7 8 5 nd nd nd nd
PRBS 87 5 0 5 6 7 5 8 7 nd nd nd nd
PRBS 92 6 5 5 4 10 6 11 4 nd nd nd nd
PRBS 97 3 4 2 1 4 6 7 3 nd nd nd nd
PRBS 102 3 5 0 0 6 3 6 3 nd nd nd nd
PRBS 107 1 2 0 0 0 1 0 1 nd nd nd nd
PRBS 112 1 1 0 2 0 4 1 0 nd nd nd nd
PRBS 117 0 1 0 0 0 0 0 0 nd nd nd nd
PRBS 122 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 127 1 0 0 0 0 0 0 0 nd nd nd nd
PRBS 132 0 1 0 0 0 0 0 0 nd nd nd nd
PRBS 137 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 142 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 147 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 152 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 157 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 162 0 0 0 0 0 0 0 0 nd nd nd nd
PRBS 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Potomac River Black Walnut (PRBW). No data were used in subsequent analyses 
because the length-frequency distributions were difficult to interpret and the site 
was repleted. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRBW 2 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 7 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 12 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 17 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 22 0 0 0 1 0 0 0 2 nd nd nd nd
PRBW 27 0 0 1 0 0 0 0 0 nd nd nd nd
PRBW 32 0 0 1 0 0 0 1 0 nd nd nd nd
PRBW 37 0 0 2 0 1 1 0 0 nd nd nd nd
PRBW 42 0 1 2 1 1 0 0 0 nd nd nd nd
PRBW 47 0 0 2 0 0 0 3 0 nd nd nd nd
PRBW 52 0 0 0 4 0 0 4 1 nd nd nd nd
PRBW 57 0 1 2 6 1 0 2 0 nd nd nd nd
PRBW 62 0 2 0 12 6 3 0 2 nd nd nd nd
PRBW 67 2 0 1 6 3 1 1 1 nd nd nd nd
PRBW 72 2 1 0 6 14 8 5 1 nd nd nd nd
PRBW 77 8 3 2 1 6 10 10 6 nd nd nd nd
PRBW 82 9 5 4 4 5 8 6 8 nd nd nd nd
PRBW 87 10 6 3 1 1 11 7 7 nd nd nd nd
PRBW 92 11 3 0 3 3 7 5 11 nd nd nd nd
PRBW 97 9 3 0 1 2 3 3 3 nd nd nd nd
PRBW 102 6 8 1 2 1 0 1 4 nd nd nd nd
PRBW 107 7 2 0 0 0 1 1 0 nd nd nd nd
PRBW 112 2 0 1 1 0 1 1 1 nd nd nd nd
PRBW 117 1 0 0 0 0 0 0 0 nd nd nd nd
PRBW 122 1 1 0 0 0 0 0 0 nd nd nd nd
PRBW 127 0 2 0 0 0 0 0 0 nd nd nd nd
PRBW 132 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 137 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 142 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 147 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 152 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 157 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 162 0 0 0 0 0 0 0 0 nd nd nd nd
PRBW 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Potomac River Cornfield Harbor(PRCH). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified, and  data 
from 1998 were not used because there were too few oysters to clearly distinguish 
cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRCH 2 0 0 0 0 0 0 0 0 0 1 0 0
PRCH 7 0 0 0 0 0 2 0 0 0 3 0 1
PRCH 12 0 0 0 2 0 5 0 0 0 5 0 7
PRCH 17 0 0 1 3 0 9 0 0 4 8 1 7
PRCH 22 0 0 1 9 0 17 0 0 2 5 0 11
PRCH 27 0 0 1 11 0 11 0 0 3 2 2 8
PRCH 32 1 1 3 4 0 5 0 3 1 1 1 1
PRCH 37 2 6 12 6 3 0 2 1 2 1 1 0
PRCH 42 7 5 9 12 7 0 6 1 0 1 2 0
PRCH 47 9 7 5 7 14 1 5 1 4 2 6 1
PRCH 52 9 14 6 1 12 4 10 2 3 0 2 0
PRCH 57 6 7 1 2 7 6 5 7 3 1 5 2
PRCH 62 11 6 0 3 6 9 5 18 2 1 0 3
PRCH 67 3 12 3 0 7 11 4 23 4 5 1 1
PRCH 72 9 8 4 0 7 8 8 34 5 1 2 0
PRCH 77 1 7 1 3 1 5 4 15 10 1 3 1
PRCH 82 4 5 3 0 3 6 4 9 10 1 1 1
PRCH 87 0 3 2 1 1 0 0 9 0 1 0 1
PRCH 92 0 1 2 1 0 2 1 6 4 0 1 0
PRCH 97 0 1 1 1 1 0 1 2 0 1 0 0
PRCH 102 1 1 0 1 0 0 0 2 0 0 0 0
PRCH 107 0 0 0 0 0 0 0 3 1 0 0 0
PRCH 112 0 0 0 0 0 0 0 1 0 0 0 0
PRCH 117 0 0 0 0 0 0 0 0 0 0 1 0
PRCH 122 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 127 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 132 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 137 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 142 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 147 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 152 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 157 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 162 0 0 0 0 0 0 0 0 0 0 0 0
PRCH 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Potomac River Dukehart Channel (PRDC). No data were used in subsequent 
analyses because the length-frequency distributions were difficult to interpret or 
there were too few oysters to clearly distinguish cohorts. Class is the midpoint of the 
5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRDC 2 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 7 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 12 0 0 0 1 0 0 0 0 nd nd nd nd
PRDC 17 0 0 0 0 0 1 0 0 nd nd nd nd
PRDC 22 0 0 0 1 0 0 0 0 nd nd nd nd
PRDC 27 0 0 0 1 0 0 0 0 nd nd nd nd
PRDC 32 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 37 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 42 0 0 1 0 0 0 0 0 nd nd nd nd
PRDC 47 0 0 2 0 0 0 0 0 nd nd nd nd
PRDC 52 0 0 5 2 0 0 0 0 nd nd nd nd
PRDC 57 0 0 6 0 0 0 0 0 nd nd nd nd
PRDC 62 0 1 7 2 1 0 0 0 nd nd nd nd
PRDC 67 1 0 1 3 3 1 0 0 nd nd nd nd
PRDC 72 3 1 0 1 2 2 0 3 nd nd nd nd
PRDC 77 4 1 1 0 1 4 2 0 nd nd nd nd
PRDC 82 3 1 5 0 3 10 0 0 nd nd nd nd
PRDC 87 5 1 2 2 1 4 2 1 nd nd nd nd
PRDC 92 6 1 4 4 0 5 2 0 nd nd nd nd
PRDC 97 6 6 4 1 0 6 3 3 nd nd nd nd
PRDC 102 4 5 2 1 3 1 2 4 nd nd nd nd
PRDC 107 4 2 2 1 0 1 1 2 nd nd nd nd
PRDC 112 3 3 0 1 1 1 1 3 nd nd nd nd
PRDC 117 0 1 0 1 0 0 1 0 nd nd nd nd
PRDC 122 0 0 0 1 0 0 1 1 nd nd nd nd
PRDC 127 0 0 1 0 0 0 0 0 nd nd nd nd
PRDC 132 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 137 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 142 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 147 0 1 0 0 0 0 0 0 nd nd nd nd
PRDC 152 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 157 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 162 0 0 0 0 0 0 0 0 nd nd nd nd
PRDC 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Potomac River Lower Cedar Point (PRLC). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified, and data 
from 1996 to 2001 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRLC 2 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 7 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 12 0 0 1 0 0 0 0 0 0 0 0 0
PRLC 17 0 0 2 0 0 0 0 0 0 0 0 0
PRLC 22 0 0 7 0 0 0 0 0 0 0 0 0
PRLC 27 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 32 0 0 2 1 0 0 0 0 0 0 0 0
PRLC 37 0 1 2 4 0 0 0 0 0 0 0 0
PRLC 42 0 1 5 7 0 0 0 0 0 0 0 1
PRLC 47 0 0 11 10 1 0 0 0 0 0 0 0
PRLC 52 0 3 22 8 3 0 0 0 0 0 0 0
PRLC 57 0 0 17 9 11 2 0 0 0 0 0 0
PRLC 62 4 1 19 8 10 0 1 1 0 0 0 2
PRLC 67 2 1 15 18 20 3 1 2 1 1 0 0
PRLC 72 15 6 8 18 32 9 4 5 0 0 0 0
PRLC 77 25 2 5 10 17 13 7 3 1 1 1 1
PRLC 82 19 8 8 6 17 10 4 9 4 1 1 1
PRLC 87 22 9 5 3 12 2 6 1 5 3 2 1
PRLC 92 10 9 6 2 10 5 6 7 0 6 3 4
PRLC 97 5 9 7 0 2 2 6 0 1 7 3 2
PRLC 102 1 8 6 1 0 2 5 1 6 8 5 3
PRLC 107 1 0 2 0 0 0 3 1 3 4 4 1
PRLC 112 2 4 3 0 1 0 1 0 3 3 3 3
PRLC 117 0 1 0 0 0 0 0 0 0 2 0 3
PRLC 122 0 0 0 0 0 0 0 0 1 0 2 3
PRLC 127 0 0 0 0 0 0 0 0 1 0 0 2
PRLC 132 0 0 0 0 0 0 0 0 0 0 0 1
PRLC 137 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 142 0 0 0 0 0 0 0 0 0 0 0 1
PRLC 147 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 152 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 157 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 162 0 0 0 0 0 0 0 0 0 0 0 0
PRLC 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Potomac River Ragged Point (PRRP). Data from 1990 and 1991, and 1996-2001 
were not used in subsequent analyses because there were too few oysters to clearly 
distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PRRP 2 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 7 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 12 0 0 0 0 0 0 0 5 0 0 0 0
PRRP 17 0 0 0 0 0 1 0 16 0 0 0 0
PRRP 22 0 0 0 1 0 3 0 37 0 1 0 0
PRRP 27 0 0 0 0 0 5 0 27 0 0 1 0
PRRP 32 0 0 0 1 0 3 0 16 0 0 0 0
PRRP 37 0 0 0 0 0 7 0 5 0 0 0 0
PRRP 42 0 0 2 0 0 0 0 1 0 0 0 0
PRRP 47 0 0 0 0 0 0 3 3 1 1 1 0
PRRP 52 0 0 0 0 1 0 1 2 0 1 1 0
PRRP 57 0 4 0 0 0 0 6 5 0 1 0 0
PRRP 62 0 1 0 0 1 0 2 4 1 2 0 0
PRRP 67 2 0 4 0 0 0 0 5 2 3 1 0
PRRP 72 3 5 1 3 0 0 0 19 2 2 0 0
PRRP 77 3 3 2 0 0 0 0 12 1 3 1 0
PRRP 82 2 1 4 1 3 2 0 21 2 3 2 2
PRRP 87 1 2 4 5 0 1 1 17 6 2 1 0
PRRP 92 1 0 3 4 1 0 1 18 3 3 1 0
PRRP 97 0 2 3 1 0 4 2 5 1 1 1 0
PRRP 102 0 1 2 3 6 1 0 8 0 3 1 0
PRRP 107 3 0 3 1 1 1 0 1 0 1 0 0
PRRP 112 1 1 0 3 0 0 0 0 2 2 0 0
PRRP 117 1 0 4 0 0 1 0 1 1 0 1 0
PRRP 122 1 0 0 2 0 0 0 0 0 0 0 0
PRRP 127 0 0 0 0 0 1 0 0 0 0 0 0
PRRP 132 0 0 0 1 0 0 0 0 0 0 0 0
PRRP 137 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 142 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 147 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 152 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 157 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 162 0 0 0 0 0 0 0 0 0 0 0 0
PRRP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Pocomoke Sound Gunby (PSGU). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1996 
were not used because the length-frequency distributions were difficult to interpret, 
and data from 1997 were not used because there were too few oysters to clearly 
distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PSGU 2 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 7 0 0 0 2 0 0 3 0 nd nd nd nd
PSGU 12 0 0 3 5 0 0 1 0 nd nd nd nd
PSGU 17 0 0 46 18 1 0 0 0 nd nd nd nd
PSGU 22 0 0 61 16 4 3 1 0 nd nd nd nd
PSGU 27 0 0 32 14 2 1 2 0 nd nd nd nd
PSGU 32 1 2 8 19 0 0 2 0 nd nd nd nd
PSGU 37 0 2 15 8 1 1 0 0 nd nd nd nd
PSGU 42 1 4 13 39 3 0 0 0 nd nd nd nd
PSGU 47 3 4 19 38 18 2 1 1 nd nd nd nd
PSGU 52 0 5 11 29 38 1 2 2 nd nd nd nd
PSGU 57 2 3 9 10 27 1 2 3 nd nd nd nd
PSGU 62 4 3 6 12 40 3 2 1 nd nd nd nd
PSGU 67 8 3 1 5 22 3 3 0 nd nd nd nd
PSGU 72 2 4 1 5 44 8 1 0 nd nd nd nd
PSGU 77 5 0 1 2 10 7 2 3 nd nd nd nd
PSGU 82 1 0 1 1 14 6 6 3 nd nd nd nd
PSGU 87 0 0 2 0 6 2 1 2 nd nd nd nd
PSGU 92 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 97 0 0 0 0 0 0 0 1 nd nd nd nd
PSGU 102 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 107 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 112 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 117 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 122 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 127 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 132 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 137 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 142 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 147 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 152 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 157 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 162 0 0 0 0 0 0 0 0 nd nd nd nd
PSGU 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Pocomoke Sound Marumsco (PSMA). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1997 and 2001 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PSMA 2 0 0 0 0 0 0 0 0 0 1 0 0
PSMA 7 0 0 0 0 0 0 0 0 0 2 1 0
PSMA 12 0 0 0 6 0 0 0 0 9 6 5 0
PSMA 17 0 0 8 12 0 1 0 0 21 8 4 3
PSMA 22 0 0 7 18 0 2 0 0 20 5 7 0
PSMA 27 0 0 11 21 1 1 0 0 1 2 4 0
PSMA 32 0 0 6 3 0 1 0 1 5 2 5 1
PSMA 37 0 0 6 1 6 1 0 0 1 6 5 1
PSMA 42 0 4 5 5 1 0 0 1 4 13 9 0
PSMA 47 0 5 5 8 2 0 2 1 7 11 7 5
PSMA 52 1 4 9 11 7 1 2 4 8 18 12 4
PSMA 57 4 5 9 9 13 2 1 2 3 12 6 5
PSMA 62 8 4 7 6 14 3 3 0 1 7 19 11
PSMA 67 4 4 0 8 10 5 2 2 2 4 9 5
PSMA 72 5 4 1 9 9 10 3 2 7 9 3 10
PSMA 77 6 3 0 3 4 3 4 2 1 3 10 5
PSMA 82 4 1 0 0 3 3 8 0 3 7 2 9
PSMA 87 3 4 2 0 2 3 4 0 2 2 1 1
PSMA 92 0 1 1 0 0 2 2 4 2 0 3 1
PSMA 97 0 2 0 0 1 2 0 0 2 3 2 1
PSMA 102 0 1 0 0 1 0 0 0 0 0 0 1
PSMA 107 0 0 0 0 1 0 1 0 0 0 0 0
PSMA 112 0 0 0 0 0 0 0 0 0 1 0 0
PSMA 117 0 0 0 0 0 0 0 0 0 1 0 0
PSMA 122 0 0 0 0 0 0 0 0 0 0 0 1
PSMA 127 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 132 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 137 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 142 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 147 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 152 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 157 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 162 0 0 0 0 0 0 0 0 0 0 0 0
PSMA 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Patuxent River Back of Island (PXBA). No data were used in subsequent analyses 
because the length-frequency distributions were difficult to interpret or there were 
too few oysters to clearly distinguish cohorts. Class is the midpoint of the 5 mm 
length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PXBA 2 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 7 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 12 0 0 0 0 0 1 0 0 nd nd nd nd
PXBA 17 0 0 1 0 0 1 0 0 nd nd nd nd
PXBA 22 0 0 0 0 0 3 0 0 nd nd nd nd
PXBA 27 0 0 3 0 0 4 0 1 nd nd nd nd
PXBA 32 0 0 1 0 1 4 0 1 nd nd nd nd
PXBA 37 0 1 0 0 1 4 0 1 nd nd nd nd
PXBA 42 0 0 11 0 1 0 0 0 nd nd nd nd
PXBA 47 0 4 4 1 2 0 0 0 nd nd nd nd
PXBA 52 0 6 1 2 1 1 2 0 nd nd nd nd
PXBA 57 0 1 4 2 5 3 2 0 nd nd nd nd
PXBA 62 2 4 1 4 6 4 2 0 nd nd nd nd
PXBA 67 5 6 0 3 6 2 2 0 nd nd nd nd
PXBA 72 6 10 0 1 9 2 2 2 nd nd nd nd
PXBA 77 5 6 2 0 6 6 1 5 nd nd nd nd
PXBA 82 9 7 2 0 3 3 3 9 nd nd nd nd
PXBA 87 5 6 1 0 2 1 1 6 nd nd nd nd
PXBA 92 6 5 0 0 0 5 4 12 nd nd nd nd
PXBA 97 3 1 1 0 0 1 3 6 nd nd nd nd
PXBA 102 3 2 0 0 0 1 4 2 nd nd nd nd
PXBA 107 1 1 0 0 0 0 1 3 nd nd nd nd
PXBA 112 1 0 0 0 0 0 4 0 nd nd nd nd
PXBA 117 0 0 1 0 0 0 1 0 nd nd nd nd
PXBA 122 0 0 0 0 0 0 1 0 nd nd nd nd
PXBA 127 1 0 0 0 0 0 0 0 nd nd nd nd
PXBA 132 0 1 0 0 0 0 0 0 nd nd nd nd
PXBA 137 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 142 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 147 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 152 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 157 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 162 0 0 0 0 0 0 0 0 nd nd nd nd
PXBA 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Patuxent River Bruffs Island (PXBI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1992 
to 1994, and 2001 were not used because the length-frequency distributions were 
difficult to interpret, and data from 1998 and 2000 were not used because the sites 
was repleted. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
PXBI 2 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 7 0 0 0 0 0 1 0 0 0 1 0 0
PXBI 12 0 0 0 0 0 1 0 0 0 1 0 0
PXBI 17 0 0 0 0 0 2 0 0 0 3 0 1
PXBI 22 0 0 0 0 0 4 0 0 0 1 0 0
PXBI 27 0 0 0 0 0 11 0 0 1 1 0 0
PXBI 32 0 0 0 0 0 13 0 0 0 0 1 0
PXBI 37 0 0 0 0 0 26 1 0 0 0 5 0
PXBI 42 0 0 1 0 0 1 0 0 2 0 7 0
PXBI 47 1 0 0 0 0 0 4 0 0 0 8 0
PXBI 52 0 0 0 0 0 0 5 0 0 0 8 0
PXBI 57 0 0 0 0 0 0 6 1 0 0 5 1
PXBI 62 5 0 2 2 0 1 5 0 0 0 6 3
PXBI 67 4 0 4 1 1 0 0 2 0 0 0 0
PXBI 72 16 3 2 1 1 2 1 1 1 1 3 1
PXBI 77 19 1 1 0 0 7 1 6 2 3 4 1
PXBI 82 14 7 6 2 1 7 1 9 3 1 5 2
PXBI 87 11 11 3 2 0 3 2 1 4 3 3 1
PXBI 92 5 12 5 2 2 4 5 5 3 4 7 1
PXBI 97 9 9 2 0 0 2 4 3 3 2 1 0
PXBI 102 2 6 0 0 1 4 1 2 1 3 2 1
PXBI 107 2 3 5 1 0 0 2 4 7 5 4 0
PXBI 112 2 1 2 3 0 1 1 2 2 4 3 0
PXBI 117 1 1 1 0 2 1 0 3 2 6 3 0
PXBI 122 2 0 0 0 0 0 0 2 2 2 0 0
PXBI 127 0 0 0 0 0 0 0 1 1 3 0 0
PXBI 132 1 1 0 0 0 0 0 0 0 0 1 0
PXBI 137 0 0 0 0 0 0 0 0 1 2 1 0
PXBI 142 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 147 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 152 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 157 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 162 0 0 0 0 0 0 0 0 0 0 0 0
PXBI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Saint Mary’s River Chicken Cock (SMCC). Data from 1990 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1994 and 2000 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
SMCC 2 0 0 0 0 0 0 0 0 0 5 0 0
SMCC 7 0 0 0 0 0 3 0 1 0 16 1 0
SMCC 12 0 0 0 1 0 3 0 2 0 28 0 2
SMCC 17 0 0 5 4 0 8 0 5 1 41 1 2
SMCC 22 0 0 5 18 1 30 0 11 2 27 5 1
SMCC 27 1 0 1 13 0 25 0 5 3 12 6 4
SMCC 32 1 0 9 9 3 9 2 11 3 3 9 4
SMCC 37 0 6 10 6 3 0 5 1 2 0 8 4
SMCC 42 5 5 10 5 7 3 9 0 5 0 13 3
SMCC 47 10 13 19 11 9 8 13 3 10 0 8 2
SMCC 52 8 14 11 18 11 20 13 5 13 0 1 11
SMCC 57 19 10 13 13 20 25 7 13 11 0 1 11
SMCC 62 16 7 6 13 10 30 20 26 6 1 1 10
SMCC 67 23 10 6 6 20 16 18 43 15 4 0 6
SMCC 72 22 12 7 13 15 23 31 43 19 7 3 2
SMCC 77 12 11 4 7 12 32 26 33 32 2 0 0
SMCC 82 16 11 6 12 4 18 22 27 32 5 0 1
SMCC 87 9 9 6 3 1 2 16 11 21 3 0 1
SMCC 92 7 7 1 4 4 2 8 16 10 2 0 0
SMCC 97 3 3 3 0 0 0 3 3 0 0 0 0
SMCC 102 3 0 0 2 0 1 1 3 4 0 0 0
SMCC 107 0 0 0 0 1 1 2 1 0 0 0 0
SMCC 112 0 0 0 0 0 0 0 2 0 0 0 0
SMCC 117 0 0 0 0 0 0 0 1 0 0 0 0
SMCC 122 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 127 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 132 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 137 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 142 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 147 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 152 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 157 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 162 0 0 0 0 0 0 0 0 0 0 0 0
SMCC 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Saint Mary’s River Pagan (SMPA). Data from 1990 were not used in subsequent 
analyses because a Age-0 cohort could not be identified, and data from 1995 and 
1996 were not used because the length-frequency distributions were difficult to 
interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
SMPA 2 0 0 0 0 0 0 0 0 0 4 0 0
SMPA 7 0 0 7 0 0 0 0 42 1 12 0 18
SMPA 12 0 0 12 4 3 4 0 293 0 20 5 44
SMPA 17 1 0 27 2 2 15 0 669 1 30 6 32
SMPA 22 0 2 16 5 2 16 1 460 1 19 16 18
SMPA 27 0 4 8 3 0 23 0 126 2 8 13 1
SMPA 32 0 25 18 5 6 27 4 84 12 3 10 6
SMPA 37 1 51 29 11 6 37 6 0 30 5 15 2
SMPA 42 5 44 50 22 16 73 14 0 32 15 11 6
SMPA 47 14 24 54 16 14 91 17 3 44 29 11 12
SMPA 52 21 14 54 30 15 72 10 2 26 56 26 13
SMPA 57 33 8 38 29 23 55 12 13 6 60 30 8
SMPA 62 33 6 19 29 21 55 16 38 4 102 53 7
SMPA 67 33 4 16 8 13 29 15 24 2 47 42 24
SMPA 72 32 8 4 13 16 36 26 43 5 37 40 25
SMPA 77 13 2 1 1 3 25 20 26 3 19 17 11
SMPA 82 8 3 0 1 5 10 15 34 4 15 14 9
SMPA 87 2 0 1 0 0 3 8 11 3 3 6 5
SMPA 92 0 0 0 0 0 1 3 13 0 4 2 2
SMPA 97 0 0 0 0 1 0 1 2 0 1 2 2
SMPA 102 0 0 0 0 0 0 1 5 0 1 1 0
SMPA 107 0 0 0 0 0 0 0 0 0 0 1 0
SMPA 112 0 0 0 0 0 0 0 0 0 1 0 0
SMPA 117 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 122 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 127 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 132 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 137 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 142 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 147 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 152 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 157 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 162 0 0 0 0 0 0 0 0 0 0 0 0
SMPA 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tred Avon River Double Mills (TADM). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1999 
and 2000 were not used because the length-frequency distributions were difficult to 
interpret, and data from 1996 and 2001 were not used because there were too few 
oysters to clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TADM 2 0 0 0 0 0 0 0 1 0 0 0 0
TADM 7 0 0 0 3 0 0 0 0 0 0 0 0
TADM 12 0 0 0 4 0 0 0 2 0 0 0 0
TADM 17 0 0 0 4 0 2 0 9 0 0 0 0
TADM 22 0 0 0 2 0 1 0 13 0 1 0 0
TADM 27 0 0 0 0 0 4 0 9 0 0 0 0
TADM 32 0 1 1 0 0 3 0 2 0 0 0 0
TADM 37 0 0 3 1 0 6 0 4 1 0 0 0
TADM 42 0 1 8 1 1 0 0 0 3 1 0 0
TADM 47 0 1 15 2 2 0 1 0 4 0 0 0
TADM 52 0 0 13 10 5 0 0 0 16 1 0 0
TADM 57 0 0 5 14 3 1 2 0 10 2 0 0
TADM 62 0 0 1 11 2 4 4 0 12 9 2 0
TADM 67 1 0 1 20 3 8 0 1 6 5 4 2
TADM 72 2 0 2 7 6 13 3 4 3 23 1 0
TADM 77 0 0 0 4 9 8 1 5 1 17 1 0
TADM 82 2 0 0 1 13 12 1 8 1 13 9 4
TADM 87 4 1 0 0 11 7 4 8 2 7 6 4
TADM 92 12 0 2 0 16 16 3 6 3 6 13 0
TADM 97 14 0 2 1 10 5 1 6 4 0 6 3
TADM 102 9 0 0 1 13 9 2 9 12 1 7 5
TADM 107 16 1 0 0 2 2 2 2 4 1 1 2
TADM 112 3 0 0 0 2 3 3 5 7 1 3 2
TADM 117 2 0 0 0 1 1 3 2 6 2 1 0
TADM 122 4 2 0 0 0 0 1 7 5 2 0 2
TADM 127 1 0 0 0 0 0 0 4 1 0 2 0
TADM 132 4 0 0 0 0 0 0 0 2 0 0 0
TADM 137 0 0 0 0 0 0 0 0 2 0 1 0
TADM 142 0 1 0 0 0 0 0 2 1 0 0 0
TADM 147 0 0 0 0 0 0 0 0 2 1 0 0
TADM 152 0 1 0 0 0 0 0 0 0 0 1 0
TADM 157 0 0 0 0 0 0 0 0 0 0 0 0
TADM 162 0 0 0 0 0 0 0 0 0 0 0 0
TADM 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tangier Sound Back Cove (TSBC). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1993 
were not used because the length-frequency distributions were difficult to interpret, 
and data from 1992 were not used because the Solver would not converge on a 
solution. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSBC 2 0 0 0 0 0 0 0 0 0 19 0 0
TSBC 7 0 0 0 10 0 0 1 1 0 63 2 3
TSBC 12 0 0 65 30 7 19 7 3 0 109 5 58
TSBC 17 0 0 151 22 13 32 17 4 4 158 11 53
TSBC 22 0 0 367 25 15 61 24 8 2 104 23 40
TSBC 27 2 0 238 29 3 32 14 4 2 45 3 31
TSBC 32 5 0 108 39 5 23 7 1 3 12 10 20
TSBC 37 16 7 44 31 28 1 12 5 5 2 14 6
TSBC 42 27 19 4 63 52 13 29 12 3 2 39 12
TSBC 47 24 25 4 44 53 13 32 16 6 2 46 11
TSBC 52 38 16 0 23 51 14 23 16 6 7 42 10
TSBC 57 40 12 1 4 45 10 9 13 4 4 38 13
TSBC 62 63 11 0 3 25 20 12 9 6 3 21 18
TSBC 67 38 13 0 1 16 10 11 10 2 1 10 20
TSBC 72 30 13 1 0 17 16 8 7 13 4 7 18
TSBC 77 14 9 0 0 12 6 9 5 7 2 1 6
TSBC 82 7 4 0 0 2 2 3 6 5 7 0 11
TSBC 87 2 7 1 0 0 3 3 2 8 3 0 3
TSBC 92 1 1 1 0 2 0 1 5 7 5 1 4
TSBC 97 1 0 0 0 0 0 0 2 4 0 1 3
TSBC 102 1 1 0 0 0 0 1 1 0 0 1 0
TSBC 107 0 0 0 0 0 0 0 0 0 1 0 0
TSBC 112 0 0 0 0 0 0 0 0 0 3 0 0
TSBC 117 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 122 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 127 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 132 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 137 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 142 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 147 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 152 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 157 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 162 0 0 0 0 0 0 0 0 0 0 0 0
TSBC 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tangier Sound Great Rock (TSGR). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, and data from 
1995 to 1997 were not used because the length-frequency distributions were difficult 
to interpret or there were too few oysters to clearly distinguish cohorts. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSGR 2 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 7 0 0 1 3 0 1 2 0 nd nd nd nd
TSGR 12 0 0 3 14 0 1 1 0 nd nd nd nd
TSGR 17 0 0 7 4 0 0 1 0 nd nd nd nd
TSGR 22 0 0 16 6 3 0 1 0 nd nd nd nd
TSGR 27 0 0 12 0 3 1 1 0 nd nd nd nd
TSGR 32 0 2 7 3 6 0 1 0 nd nd nd nd
TSGR 37 4 2 12 6 8 0 0 1 nd nd nd nd
TSGR 42 14 10 27 4 10 1 0 0 nd nd nd nd
TSGR 47 5 7 12 7 6 0 0 2 nd nd nd nd
TSGR 52 5 6 7 15 9 6 0 5 nd nd nd nd
TSGR 57 1 4 5 8 4 3 0 3 nd nd nd nd
TSGR 62 2 1 3 6 5 3 2 2 nd nd nd nd
TSGR 67 0 1 3 7 8 4 0 0 nd nd nd nd
TSGR 72 0 0 0 2 10 6 3 0 nd nd nd nd
TSGR 77 0 0 0 1 4 2 4 1 nd nd nd nd
TSGR 82 0 0 0 2 1 1 1 3 nd nd nd nd
TSGR 87 0 0 0 0 1 2 1 5 nd nd nd nd
TSGR 92 0 0 0 0 3 3 3 6 nd nd nd nd
TSGR 97 0 0 0 0 0 0 0 3 nd nd nd nd
TSGR 102 0 0 0 0 1 0 1 2 nd nd nd nd
TSGR 107 0 0 1 0 0 0 0 1 nd nd nd nd
TSGR 112 0 0 0 0 0 0 0 3 nd nd nd nd
TSGR 117 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 122 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 127 0 0 0 0 0 0 0 1 nd nd nd nd
TSGR 132 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 137 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 142 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 147 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 152 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 157 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 162 0 0 0 0 0 0 0 0 nd nd nd nd
TSGR 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Tangier Sound Old Womans Leg (TSOW). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified, and data 
from 1992 and 1998 were not used because there were too few oysters to clearly 
distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSOW 2 0 0 0 0 0 0 0 0 0 10 0 4
TSOW 7 0 0 0 2 0 0 0 1 0 35 1 25
TSOW 12 0 0 1 5 1 1 2 5 0 61 3 90
TSOW 17 0 0 1 5 0 0 5 3 2 89 7 105
TSOW 22 0 0 2 12 0 0 1 2 5 58 13 79
TSOW 27 2 0 2 5 2 0 2 0 0 25 6 25
TSOW 32 4 0 3 8 4 0 1 1 5 7 7 14
TSOW 37 24 2 0 19 5 0 0 0 1 0 8 6
TSOW 42 47 6 1 31 10 2 0 0 1 2 6 5
TSOW 47 32 8 0 53 10 0 0 1 0 4 14 7
TSOW 52 32 6 2 41 8 3 1 2 2 5 20 3
TSOW 57 28 4 1 11 8 5 0 1 1 6 15 6
TSOW 62 48 11 2 10 12 6 2 1 2 8 12 2
TSOW 67 34 3 0 1 7 9 3 1 4 4 3 5
TSOW 72 19 3 0 1 6 4 7 0 0 2 4 4
TSOW 77 14 5 0 3 7 1 7 1 0 2 4 1
TSOW 82 3 5 1 3 5 1 7 2 0 2 7 9
TSOW 87 4 3 1 0 0 1 6 3 2 0 5 1
TSOW 92 1 3 1 1 1 0 8 7 0 0 2 2
TSOW 97 0 1 1 0 0 0 1 6 0 0 2 1
TSOW 102 0 0 0 0 1 0 1 1 1 3 0 2
TSOW 107 0 1 0 0 0 0 1 2 0 1 0 0
TSOW 112 0 0 0 0 0 0 1 0 0 0 0 1
TSOW 117 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 122 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 127 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 132 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 137 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 142 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 147 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 152 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 157 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 162 0 0 0 0 0 0 0 0 0 0 0 0
TSOW 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tangier Sound Piney Island (TSPI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1998, 
1999, and 2000 were not used because the length-frequency distributions were 
difficult to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSPI 2 0 0 0 0 0 0 1 0 0 0 0 0
TSPI 7 0 0 10 5 0 0 1 4 1 0 1 3
TSPI 12 0 0 34 9 0 2 5 11 1 4 2 27
TSPI 17 0 0 68 2 0 8 6 7 2 2 3 79
TSPI 22 0 0 120 4 0 6 2 5 2 0 12 44
TSPI 27 1 1 59 2 1 3 4 9 1 0 4 12
TSPI 32 7 0 43 7 9 1 4 5 4 0 5 4
TSPI 37 10 7 17 20 36 3 3 4 3 3 5 5
TSPI 42 20 10 15 61 29 8 3 0 1 5 6 18
TSPI 47 30 6 13 65 34 7 3 0 1 8 2 11
TSPI 52 28 5 5 49 24 10 3 2 1 25 6 12
TSPI 57 32 8 4 12 26 6 4 1 0 27 3 7
TSPI 62 29 9 4 6 42 14 4 1 0 64 4 10
TSPI 67 13 5 1 3 16 11 2 1 1 50 1 5
TSPI 72 19 10 3 2 25 14 4 4 0 48 2 4
TSPI 77 3 6 3 0 8 9 7 3 1 41 0 6
TSPI 82 1 1 1 0 2 13 4 0 1 29 0 9
TSPI 87 1 1 1 0 0 6 4 2 1 22 1 1
TSPI 92 0 0 0 0 1 4 3 3 1 5 1 2
TSPI 97 0 0 0 0 0 2 2 2 2 2 0 0
TSPI 102 0 0 0 0 0 1 2 3 1 1 1 0
TSPI 107 0 0 0 0 0 0 1 0 1 0 0 0
TSPI 112 0 0 0 0 0 0 0 2 0 2 0 0
TSPI 117 0 0 0 0 0 0 0 1 1 1 1 0
TSPI 122 0 0 0 0 0 0 0 0 1 0 1 0
TSPI 127 0 0 0 0 0 0 0 0 1 0 0 0
TSPI 132 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 137 0 0 0 0 0 0 0 0 2 0 0 0
TSPI 142 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 147 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 152 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 157 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 162 0 0 0 0 0 0 0 0 0 0 0 0
TSPI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tangier Sound Sharkfin Shoal (TSSS). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1998 
were not used because the length-frequency distributions were difficult to interpret, 
and data from 2000 and 2001 were not used because there were too few oysters to 
clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSSS 2 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 7 0 0 1 4 0 0 0 0 0 1 0 0
TSSS 12 0 0 9 4 1 0 0 1 0 2 0 0
TSSS 17 0 0 22 8 5 2 0 3 0 3 0 0
TSSS 22 0 0 26 2 3 1 0 0 0 2 0 0
TSSS 27 0 0 23 1 1 2 0 2 0 1 0 0
TSSS 32 0 0 14 8 0 0 0 1 0 0 0 0
TSSS 37 1 2 6 14 2 1 0 0 0 0 0 0
TSSS 42 5 1 3 34 4 1 0 0 1 0 0 0
TSSS 47 5 12 2 24 12 1 1 0 0 0 0 0
TSSS 52 11 14 3 29 18 5 2 0 4 0 2 0
TSSS 57 8 21 0 25 24 2 0 1 5 0 0 2
TSSS 62 19 16 1 9 31 6 3 0 1 0 2 0
TSSS 67 16 15 1 1 27 7 4 2 2 1 1 2
TSSS 72 16 24 2 2 37 13 4 0 4 0 1 0
TSSS 77 9 15 2 0 21 9 6 3 0 0 2 2
TSSS 82 3 12 2 1 6 11 10 5 4 1 1 1
TSSS 87 2 7 1 0 4 6 8 10 2 1 2 0
TSSS 92 0 9 1 0 4 4 8 7 4 3 0 1
TSSS 97 0 2 1 0 0 3 8 8 5 3 0 0
TSSS 102 0 1 0 0 0 1 2 3 3 4 1 2
TSSS 107 0 0 0 0 0 1 4 1 1 2 0 0
TSSS 112 0 0 0 0 0 0 1 0 5 4 2 4
TSSS 117 0 0 0 0 0 0 0 0 1 1 0 1
TSSS 122 0 0 0 0 0 0 0 0 1 1 1 0
TSSS 127 0 0 0 0 0 0 0 0 1 0 1 0
TSSS 132 0 0 0 0 0 0 0 0 0 2 1 1
TSSS 137 0 0 0 0 0 0 0 0 1 0 0 1
TSSS 142 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 147 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 152 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 157 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 162 0 0 0 0 0 0 0 0 0 0 0 0
TSSS 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Tangier Sound Turtle Egg Island (TSTE). Data from 1990 and 1991 were not used 
in subsequent analyses because a Age-0 cohort could not be identified. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
TSTE 2 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 7 0 0 0 8 0 0 2 0 nd nd nd nd
TSTE 12 0 0 26 12 1 1 3 0 nd nd nd nd
TSTE 17 0 0 104 8 9 1 10 0 nd nd nd nd
TSTE 22 2 0 174 5 8 1 8 0 nd nd nd nd
TSTE 27 2 0 193 7 11 2 5 1 nd nd nd nd
TSTE 32 1 0 86 10 7 0 5 1 nd nd nd nd
TSTE 37 4 4 33 38 17 2 3 1 nd nd nd nd
TSTE 42 7 12 9 61 34 1 1 0 nd nd nd nd
TSTE 47 13 18 6 52 28 6 5 0 nd nd nd nd
TSTE 52 12 11 3 36 34 10 2 0 nd nd nd nd
TSTE 57 13 13 3 18 38 10 2 0 nd nd nd nd
TSTE 62 24 9 1 8 45 16 2 0 nd nd nd nd
TSTE 67 27 4 0 3 35 19 6 0 nd nd nd nd
TSTE 72 16 9 1 2 42 18 9 2 nd nd nd nd
TSTE 77 17 9 0 1 19 9 6 5 nd nd nd nd
TSTE 82 10 5 0 1 15 11 4 9 nd nd nd nd
TSTE 87 0 3 0 1 3 4 5 6 nd nd nd nd
TSTE 92 0 4 0 0 2 4 3 12 nd nd nd nd
TSTE 97 0 3 0 0 2 1 1 6 nd nd nd nd
TSTE 102 0 0 0 0 0 0 1 2 nd nd nd nd
TSTE 107 0 0 0 0 0 0 2 3 nd nd nd nd
TSTE 112 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 117 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 122 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 127 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 132 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 137 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 142 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 147 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 152 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 157 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 162 0 0 0 0 0 0 0 0 nd nd nd nd
TSTE 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Upper Bay Brick House (UBBH). No data were used in subsequent analyses because 
the length-frequency distributions were difficult to interpret or Age-0 cohort could 
not be identified. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
UBBH 2 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 7 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 12 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 17 0 0 0 0 0 1 0 0 nd nd nd nd
UBBH 22 0 0 0 0 0 1 0 0 nd nd nd nd
UBBH 27 0 0 0 0 0 1 0 0 nd nd nd nd
UBBH 32 0 0 0 0 0 2 0 0 nd nd nd nd
UBBH 37 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 42 0 0 0 0 1 0 1 0 nd nd nd nd
UBBH 47 3 0 0 1 0 0 3 0 nd nd nd nd
UBBH 52 3 0 0 1 1 0 1 0 nd nd nd nd
UBBH 57 0 4 0 1 1 0 4 0 nd nd nd nd
UBBH 62 5 3 1 0 1 0 2 3 nd nd nd nd
UBBH 67 1 1 0 3 0 5 3 4 nd nd nd nd
UBBH 72 1 5 4 2 1 7 4 3 nd nd nd nd
UBBH 77 5 7 3 7 1 5 4 7 nd nd nd nd
UBBH 82 1 5 3 12 2 11 7 8 nd nd nd nd
UBBH 87 4 10 1 10 5 8 9 8 nd nd nd nd
UBBH 92 2 10 5 20 2 2 4 2 nd nd nd nd
UBBH 97 3 2 0 13 0 3 5 2 nd nd nd nd
UBBH 102 12 5 2 13 5 3 2 1 nd nd nd nd
UBBH 107 7 6 1 4 0 3 2 0 nd nd nd nd
UBBH 112 3 8 2 0 0 2 1 0 nd nd nd nd
UBBH 117 2 1 1 5 2 0 0 3 nd nd nd nd
UBBH 122 3 3 1 2 0 0 0 0 nd nd nd nd
UBBH 127 1 1 0 2 2 0 0 0 nd nd nd nd
UBBH 132 4 0 2 2 0 1 0 0 nd nd nd nd
UBBH 137 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 142 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 147 0 0 0 1 0 0 0 0 nd nd nd nd
UBBH 152 0 0 1 0 0 0 0 0 nd nd nd nd
UBBH 157 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 162 0 0 0 0 0 0 0 0 nd nd nd nd
UBBH 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Upper Bay Hacketts (UBHA). No data were used in subsequent analyses because the 
length-frequency distributions were difficult to interpret or the site was repleted. 
Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
UBHA 2 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 7 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 12 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 17 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 22 0 0 0 1 0 0 0 0 0 0 0 0
UBHA 27 0 0 0 1 0 0 0 0 0 0 1 0
UBHA 32 0 0 0 1 1 0 0 0 0 0 0 0
UBHA 37 0 1 0 0 0 0 0 0 0 0 0 0
UBHA 42 0 2 0 0 0 0 1 0 0 0 0 0
UBHA 47 0 11 1 1 2 0 0 3 0 0 1 0
UBHA 52 0 24 1 0 2 0 0 2 0 0 1 2
UBHA 57 0 24 1 0 2 3 3 1 0 0 1 0
UBHA 62 2 32 8 1 2 9 4 1 1 1 8 3
UBHA 67 6 32 14 1 1 16 10 0 2 2 18 1
UBHA 72 7 12 40 14 6 24 9 2 4 2 23 4
UBHA 77 8 9 13 22 5 21 19 2 5 5 30 4
UBHA 82 7 7 9 27 9 20 10 2 3 3 22 4
UBHA 87 10 8 4 20 4 14 5 6 4 2 4 2
UBHA 92 7 5 5 11 10 8 3 2 2 6 10 3
UBHA 97 7 4 1 4 4 6 0 4 2 4 4 3
UBHA 102 2 14 2 4 4 1 0 0 1 5 3 6
UBHA 107 1 2 1 1 0 1 2 1 2 4 1 3
UBHA 112 1 2 1 1 5 2 1 1 1 3 0 3
UBHA 117 0 3 0 1 0 0 0 0 0 0 0 1
UBHA 122 1 0 1 1 0 2 0 0 0 1 0 1
UBHA 127 1 0 0 1 0 0 0 0 0 0 1 0
UBHA 132 0 0 0 0 0 0 0 0 1 0 0 0
UBHA 137 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 142 1 1 0 0 0 0 0 0 0 0 0 0
UBHA 147 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 152 0 1 0 0 0 0 0 0 0 0 0 0
UBHA 157 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 162 0 0 0 0 0 0 0 0 0 0 0 0
UBHA 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Upper Bay Three Sisters (UBTS). No data were used in subsequent analyses because 
there were too few oysters to clearly distinguish cohorts or the site was repleted. 
Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
UBTS 2 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 7 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 12 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 17 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 22 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 27 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 32 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 37 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 42 0 2 1 0 0 0 1 0 nd nd nd nd
UBTS 47 0 6 0 0 0 0 1 0 nd nd nd nd
UBTS 52 0 14 1 0 0 0 1 0 nd nd nd nd
UBTS 57 0 19 1 0 0 0 0 0 nd nd nd nd
UBTS 62 1 11 5 1 0 0 0 0 nd nd nd nd
UBTS 67 1 4 11 0 0 0 0 0 nd nd nd nd
UBTS 72 1 2 19 3 0 0 0 0 nd nd nd nd
UBTS 77 1 2 17 9 5 0 0 0 nd nd nd nd
UBTS 82 7 3 11 7 6 0 0 1 nd nd nd nd
UBTS 87 3 7 14 16 2 1 0 2 nd nd nd nd
UBTS 92 5 4 9 6 8 2 3 0 nd nd nd nd
UBTS 97 9 4 5 2 5 2 5 0 nd nd nd nd
UBTS 102 7 6 5 5 1 1 0 0 nd nd nd nd
UBTS 107 4 2 4 2 0 1 3 0 nd nd nd nd
UBTS 112 1 2 2 2 0 0 0 2 nd nd nd nd
UBTS 117 1 4 2 1 0 0 0 3 nd nd nd nd
UBTS 122 0 0 1 0 0 0 0 1 nd nd nd nd
UBTS 127 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 132 0 0 0 1 0 0 0 0 nd nd nd nd
UBTS 137 0 1 0 0 0 0 0 0 nd nd nd nd
UBTS 142 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 147 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 152 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 157 0 0 0 0 0 0 0 0 nd nd nd nd
UBTS 162 1 0 0 0 0 0 0 0 nd nd nd nd
UBTS 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Wicomico River Evans Shoal (WRES). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1992 
were not used because the site was repleted, and data from 1996 and 1997 were not 
used because there were too few oysters to clearly distinguish cohorts. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WRES 2 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 7 0 0 0 0 0 0 0 1 nd nd nd nd
WRES 12 0 0 0 1 2 0 0 0 nd nd nd nd
WRES 17 0 0 4 4 3 2 0 1 nd nd nd nd
WRES 22 0 0 9 1 6 0 0 3 nd nd nd nd
WRES 27 0 0 12 1 6 0 0 0 nd nd nd nd
WRES 32 0 0 3 0 10 1 1 0 nd nd nd nd
WRES 37 0 0 1 0 3 0 0 1 nd nd nd nd
WRES 42 0 2 3 0 2 1 1 0 nd nd nd nd
WRES 47 0 0 0 0 2 1 0 6 nd nd nd nd
WRES 52 0 1 0 4 4 5 0 5 nd nd nd nd
WRES 57 2 1 3 1 7 5 0 3 nd nd nd nd
WRES 62 3 2 2 8 12 9 0 7 nd nd nd nd
WRES 67 6 4 2 2 9 9 0 4 nd nd nd nd
WRES 72 8 3 0 5 14 14 1 4 nd nd nd nd
WRES 77 5 0 0 2 5 6 3 4 nd nd nd nd
WRES 82 4 4 1 2 9 13 2 2 nd nd nd nd
WRES 87 3 1 1 0 13 5 1 7 nd nd nd nd
WRES 92 5 3 0 1 13 6 4 5 nd nd nd nd
WRES 97 2 5 1 0 5 0 3 2 nd nd nd nd
WRES 102 2 2 1 0 1 4 1 5 nd nd nd nd
WRES 107 0 1 0 0 2 4 0 0 nd nd nd nd
WRES 112 0 1 0 0 3 0 0 3 nd nd nd nd
WRES 117 0 0 0 0 0 0 1 0 nd nd nd nd
WRES 122 0 0 0 0 0 0 0 1 nd nd nd nd
WRES 127 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 132 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 137 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 142 0 0 1 0 0 0 0 0 nd nd nd nd
WRES 147 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 152 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 157 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 162 0 0 0 0 0 0 0 0 nd nd nd nd
WRES 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Wicomico River Mt. Vernon Wharf (WRMV).  Data from 1990 to 1992 were not 
used in subsequent analyses because a Age-0 cohort could not be identified. Class is 
the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WRMV 2 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 7 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 12 0 0 0 1 0 0 0 0 nd nd nd nd
WRMV 17 0 0 0 7 0 0 0 0 nd nd nd nd
WRMV 22 0 0 0 8 0 0 0 0 nd nd nd nd
WRMV 27 0 0 0 1 1 0 0 0 nd nd nd nd
WRMV 32 1 0 0 4 1 1 0 0 nd nd nd nd
WRMV 37 1 0 0 5 4 0 0 0 nd nd nd nd
WRMV 42 0 0 0 5 5 0 0 0 nd nd nd nd
WRMV 47 0 1 0 4 0 0 2 0 nd nd nd nd
WRMV 52 4 0 0 6 1 17 1 0 nd nd nd nd
WRMV 57 17 3 0 5 2 9 0 2 nd nd nd nd
WRMV 62 17 6 5 4 1 22 3 2 nd nd nd nd
WRMV 67 28 13 0 13 4 30 9 3 nd nd nd nd
WRMV 72 58 24 15 9 3 10 16 8 nd nd nd nd
WRMV 77 26 25 25 11 3 13 21 6 nd nd nd nd
WRMV 82 8 21 15 17 9 10 27 16 nd nd nd nd
WRMV 87 5 13 30 21 7 10 16 13 nd nd nd nd
WRMV 92 5 5 45 21 14 8 12 11 nd nd nd nd
WRMV 97 1 2 20 6 8 5 8 12 nd nd nd nd
WRMV 102 1 3 15 5 6 2 9 8 nd nd nd nd
WRMV 107 1 1 5 1 6 0 4 4 nd nd nd nd
WRMV 112 1 0 0 3 0 5 1 0 nd nd nd nd
WRMV 117 1 0 0 1 0 0 1 1 nd nd nd nd
WRMV 122 0 0 0 0 2 0 1 0 nd nd nd nd
WRMV 127 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 132 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 137 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 142 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 147 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 152 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 157 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 162 0 0 0 0 0 0 0 0 nd nd nd nd
WRMV 167 0 0 0 0 0 0 0 0 nd nd nd nd  
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Western Shore Butler (WSBU). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified, data from 1992 
to 1998 were not used because the length-frequency distributions were difficult to 
interpret, and data from 2000 were not used because there were too few oysters to 
clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WSBU 2 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 7 0 0 0 0 0 0 0 0 0 1 0 0
WSBU 12 0 0 0 0 0 2 0 0 0 1 0 0
WSBU 17 0 0 0 0 0 1 0 0 0 2 0 0
WSBU 22 0 0 3 1 0 4 0 0 0 1 0 6
WSBU 27 0 0 2 0 1 0 0 0 0 1 0 4
WSBU 32 0 1 3 1 0 0 1 5 0 0 1 15
WSBU 37 0 4 9 2 0 0 0 3 0 0 1 3
WSBU 42 0 2 19 1 0 0 2 0 0 2 0 0
WSBU 47 5 7 12 5 0 0 4 1 0 3 0 0
WSBU 52 13 14 7 4 2 0 10 1 1 2 1 2
WSBU 57 61 6 4 4 3 0 13 3 2 0 0 0
WSBU 62 64 9 2 3 2 4 11 3 2 0 3 1
WSBU 67 39 13 2 9 8 1 7 9 0 0 2 1
WSBU 72 22 17 3 3 5 3 6 5 4 2 2 1
WSBU 77 9 13 2 4 4 1 8 3 3 1 3 1
WSBU 82 5 19 4 3 4 0 7 8 5 2 1 2
WSBU 87 3 12 1 1 3 0 10 3 11 1 1 3
WSBU 92 0 6 0 1 1 0 4 0 5 8 1 1
WSBU 97 0 4 0 0 2 0 7 3 5 0 1 2
WSBU 102 3 1 1 0 0 0 5 4 2 1 2 2
WSBU 107 0 1 0 0 0 1 1 1 1 0 0 0
WSBU 112 0 0 0 0 0 0 1 1 0 0 0 0
WSBU 117 0 0 0 0 0 0 0 0 1 1 0 0
WSBU 122 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 127 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 132 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 137 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 142 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 147 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 152 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 157 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 162 0 0 0 0 0 0 0 0 0 0 0 0
WSBU 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Western Shore Flag Pond (WSFP). No data were used in subsequent analyses 
because there were too few oysters to clearly distinguish cohorts. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WSFP 2 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 7 0 0 0 0 0 1 0 0 0 0 0 0
WSFP 12 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 17 0 0 0 1 0 0 0 0 0 0 2 0
WSFP 22 0 0 0 0 0 3 0 0 0 0 0 0
WSFP 27 0 0 0 5 0 2 0 1 0 0 1 0
WSFP 32 0 0 1 4 0 3 0 3 0 0 2 4
WSFP 37 1 0 0 3 0 2 0 3 0 0 0 1
WSFP 42 3 0 11 5 0 0 2 0 0 0 0 0
WSFP 47 4 3 4 1 1 1 0 0 0 0 0 1
WSFP 52 2 2 1 1 3 1 2 0 0 0 0 0
WSFP 57 6 6 4 1 2 1 2 0 0 0 0 2
WSFP 62 5 10 1 0 6 1 6 2 1 0 0 2
WSFP 67 9 10 0 0 5 1 2 3 2 1 0 0
WSFP 72 15 13 0 1 3 0 2 5 0 0 0 0
WSFP 77 10 9 2 0 2 4 2 4 0 0 0 0
WSFP 82 14 13 2 0 0 2 5 6 0 0 0 0
WSFP 87 4 8 1 0 0 2 2 2 0 0 0 0
WSFP 92 4 4 0 0 1 0 6 1 1 0 0 0
WSFP 97 2 4 1 0 0 0 1 2 0 0 0 0
WSFP 102 2 0 0 0 0 0 0 1 0 0 0 0
WSFP 107 0 2 0 0 0 0 0 1 0 0 0 0
WSFP 112 0 1 0 0 0 0 0 0 0 0 0 0
WSFP 117 0 0 1 0 0 0 0 1 0 0 0 0
WSFP 122 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 127 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 132 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 137 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 142 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 147 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 152 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 157 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 162 0 0 0 0 0 0 0 0 0 0 0 0
WSFP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Western Shore Hog Island (WSHI). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified and data from 
1992 to 1994 and 1998 to 2000 were not used because there were too few oysters to 
clearly distinguish cohorts. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WSHI 2 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 7 0 0 0 0 0 0 0 0 0 1 0 1
WSHI 12 0 0 0 0 0 0 0 0 0 1 0 1
WSHI 17 0 0 0 0 0 0 0 0 0 2 0 6
WSHI 22 0 0 0 0 0 1 0 0 3 1 0 7
WSHI 27 0 0 0 0 0 3 0 1 2 1 1 9
WSHI 32 0 1 3 0 0 2 0 0 0 0 0 5
WSHI 37 0 0 1 0 0 11 0 4 1 1 1 3
WSHI 42 0 0 7 1 0 0 0 0 0 2 1 2
WSHI 47 1 0 1 0 0 1 2 0 0 1 1 1
WSHI 52 6 0 0 0 2 0 2 0 0 1 2 1
WSHI 57 4 1 4 1 1 0 7 1 1 5 0 2
WSHI 62 24 1 1 1 2 0 4 1 1 0 23 5
WSHI 67 37 3 0 2 1 0 2 3 2 3 0 6
WSHI 72 53 4 0 3 6 1 4 10 3 1 2 2
WSHI 77 38 10 1 0 4 4 1 7 2 0 1 5
WSHI 82 12 9 1 0 0 5 0 12 1 0 2 2
WSHI 87 7 9 0 1 0 2 2 3 1 0 0 0
WSHI 92 3 5 1 0 0 1 1 3 3 2 0 1
WSHI 97 1 3 0 1 0 2 0 4 1 2 0 1
WSHI 102 0 1 0 0 0 1 2 3 0 0 0 1
WSHI 107 0 0 0 0 0 1 0 2 1 1 0 2
WSHI 112 0 0 0 0 0 0 0 2 0 0 1 1
WSHI 117 0 0 0 0 0 0 1 1 1 0 0 0
WSHI 122 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 127 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 132 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 137 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 142 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 147 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 152 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 157 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 162 0 0 0 0 0 0 0 0 0 0 0 0
WSHI 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Western Shore Holland Point (WSHP). No data were used in subsequent analyses 
because there were too few oysters to clearly distinguish cohorts. Class is the 
midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WSHP 2 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 7 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 12 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 17 0 0 0 0 0 0 0 0 0 0 0 1
WSHP 22 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 27 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 32 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 37 0 0 0 0 1 0 0 0 0 0 0 0
WSHP 42 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 47 0 1 0 0 0 0 2 0 0 0 0 0
WSHP 52 2 0 0 0 1 0 0 0 0 0 1 0
WSHP 57 2 0 0 0 1 0 2 0 0 1 0 2
WSHP 62 7 0 0 0 0 0 0 0 0 1 0 3
WSHP 67 10 0 3 1 0 0 0 1 0 2 0 1
WSHP 72 7 1 2 5 0 0 0 1 0 8 0 1
WSHP 77 1 2 0 4 0 1 0 2 0 9 0 1
WSHP 82 11 5 4 9 8 1 0 1 4 3 1 0
WSHP 87 5 4 7 7 10 2 2 2 2 1 2 0
WSHP 92 14 4 5 12 7 5 2 1 1 2 1 3
WSHP 97 12 17 9 5 3 3 0 3 1 2 3 0
WSHP 102 8 12 5 8 8 1 2 0 3 4 4 2
WSHP 107 8 10 4 8 1 7 4 3 2 3 4 1
WSHP 112 5 9 5 2 2 2 3 3 5 0 7 1
WSHP 117 4 4 6 0 2 1 1 5 2 0 2 0
WSHP 122 4 4 2 3 0 0 0 5 0 0 0 0
WSHP 127 2 4 4 0 0 1 0 2 0 1 1 0
WSHP 132 2 3 2 1 0 0 0 0 2 0 0 0
WSHP 137 0 0 0 0 1 0 0 1 1 0 1 0
WSHP 142 0 0 1 0 2 0 0 0 0 0 0 0
WSHP 147 0 0 0 0 0 0 0 0 0 0 2 0
WSHP 152 0 0 0 0 0 0 0 0 0 0 1 0
WSHP 157 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 162 0 0 0 0 0 0 0 0 0 0 0 0
WSHP 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Wicomico River Lancaster (WWLA). No data were used in subsequent analyses 
because the length-frequency distributions were difficult to interpret or the site was 
repleted. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WWLA 2 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 7 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 12 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 17 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 22 0 0 1 0 0 0 0 0 0 1 0 0
WWLA 27 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 32 0 1 0 0 0 0 0 1 0 0 0 0
WWLA 37 0 4 3 0 0 0 0 0 1 0 0 0
WWLA 42 0 13 5 3 0 0 0 0 0 0 0 0
WWLA 47 0 11 10 11 0 0 0 0 0 0 0 0
WWLA 52 0 21 19 8 2 0 0 3 6 0 0 0
WWLA 57 0 24 24 13 2 0 1 0 4 0 0 0
WWLA 62 1 10 34 31 7 0 0 0 23 9 1 0
WWLA 67 4 2 45 35 20 3 2 2 14 10 0 3
WWLA 72 6 6 48 41 24 21 10 6 12 15 6 2
WWLA 77 17 2 27 20 20 27 11 7 11 7 3 1
WWLA 82 19 1 15 12 15 20 18 8 6 29 5 3
WWLA 87 13 3 5 8 12 13 13 6 1 11 4 3
WWLA 92 9 2 4 5 5 5 12 3 2 7 5 4
WWLA 97 5 2 3 1 0 4 5 2 1 1 1 2
WWLA 102 1 4 1 0 0 1 5 4 3 3 2 3
WWLA 107 1 0 1 0 0 0 1 1 1 1 1 0
WWLA 112 1 1 1 1 0 0 0 0 1 0 0 0
WWLA 117 0 1 1 0 0 10 0 0 0 0 0 0
WWLA 122 1 1 0 0 0 0 1 1 0 0 0 0
WWLA 127 1 0 0 0 0 0 0 0 0 0 0 0
WWLA 132 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 137 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 142 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 147 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 152 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 157 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 162 0 0 0 0 0 0 0 0 0 0 0 0
WWLA 167 0 0 0 0 0 0 0 0 0 0 0 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

153 

Wicomico River Mills West (WWMW). Data from 1990 and 1991 were not used in 
subsequent analyses because a Age-0 cohort could not be identified and  data from 
1997 to 2001 were not used because the length-frequency distributions were difficult 
to interpret. Class is the midpoint of the 5 mm length-class. 

SITE CLASS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
WWMW 2 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 7 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 12 0 0 7 0 0 0 0 0 0 0 0 0
WWMW 17 0 0 30 0 0 0 0 0 0 0 0 0
WWMW 22 0 0 24 0 0 0 0 0 0 0 0 0
WWMW 27 0 0 14 0 0 0 0 0 0 0 0 0
WWMW 32 0 0 13 7 0 0 0 1 0 0 0 0
WWMW 37 0 0 35 24 0 0 0 0 0 0 0 0
WWMW 42 0 0 39 20 10 0 0 1 0 0 1 0
WWMW 47 2 0 29 50 20 2 0 1 0 0 0 0
WWMW 52 1 0 23 66 36 2 0 4 1 0 0 0
WWMW 57 2 1 7 72 39 9 0 2 0 0 0 0
WWMW 62 2 1 2 50 48 17 7 0 0 0 1 0
WWMW 67 18 0 4 19 52 23 4 2 1 1 1 1
WWMW 72 32 4 3 7 55 53 19 2 2 4 0 2
WWMW 77 40 7 5 6 31 36 31 2 6 1 3 4
WWMW 82 20 8 7 5 19 28 36 0 10 3 1 3
WWMW 87 9 9 6 7 10 16 11 0 18 4 7 2
WWMW 92 2 16 8 7 5 10 9 4 19 7 2 5
WWMW 97 2 10 0 3 2 2 1 0 3 8 4 6
WWMW 102 2 6 3 0 4 2 1 0 3 4 7 3
WWMW 107 0 6 2 1 1 0 0 0 0 3 2 3
WWMW 112 0 0 0 0 0 0 0 0 1 1 0 3
WWMW 117 0 1 1 0 0 0 0 0 0 1 0 0
WWMW 122 0 0 1 0 0 0 0 0 0 0 0 0
WWMW 127 0 1 0 0 0 0 0 0 0 0 0 0
WWMW 132 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 137 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 142 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 147 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 152 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 157 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 162 0 0 0 0 0 0 0 0 0 0 0 0
WWMW 167 0 0 0 0 0 0 0 0 0 0 0 0  
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Appendix III. Comparison of normal and lognormal maximum log-likelihoods to 
observed length-frequency data at Little Choptank River Ragged Point (LCRP) 
based on the goodness of fit statistic Akaike’s Information Criterion (AIC).  
 
 

LCRP Normal Likelihood Lognormal Likelihood
2001 264.53 289.72
2000 758.49 757.62
1999 892.58 891.17
1998 753.04 752.65
1997 123.38 182.33
1996 486.97 487.61  
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Appendix IV. The best maximum likelihood model fits (lines) to the observed 
length-frequency data (bars) based on Akaike’s Information Criterion (AIC).  
 
 
 
 
 
 
 

Bay North Mountain Point (BNMP) 
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Broad Creek Deep Neck (BCDN) 
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Chester River Buoy Rock (CHBR) 
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Choptank River Lighthouse (CRLI) 
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Choptank River Oyster Shell Point (CROS) 
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Choptank River Royston (CRRO) 
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Choptank River Sandy Hill (CRSH) 
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Choptank River Tilghman Wharf (CRTW) 
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Eastern Bay Bugby (EBBU) 
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Eastern Bay Hollicutts Noose (EBHN) 
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Eastern Bay Parsons Islands (EBPI) 
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Eastern Bay Wild Ground (EBWG) 
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Fishing Bay Clay Island (FBCI) 
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Fishing Bay Goose Creek (FBGC) 
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Harris Creek Eagle Point (HCEP) 
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Holland Straits Holland Straits (HOHO) 
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Honga River Normans (HRNO) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fr
eq

ue
nc

y

Length (mm)

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14
16
18
20

2 17 32 47 62 77 92 107 122 137 152 167

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

2 17 32 47 62 77 92 107 122 137 152 167

1992

1993

1994

1995

1999

2000

2001

Fr
eq

ue
nc

y

Length (mm)

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14
16
18
20

2 17 32 47 62 77 92 107 122 137 152 167

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

2 17 32 47 62 77 92 107 122 137 152 167

Fr
eq

ue
nc

y

Length (mm)

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14
16
18
20

2 17 32 47 62 77 92 107 122 137 152 167

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

2 17 32 47 62 77 92 107 122 137 152 167

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14
16
18
20

2 17 32 47 62 77 92 107 122 137 152 167

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

2 17 32 47 62 77 92 107 122 137 152 167

1992

1993

1994

1995

1999

2000

2001



 

172 

 
 
 

Honga River Windmill (HRWI) 
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Little Choptank Cason (LCCA) 
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Little Choptank Ragged Point (LCRP) 
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Manokin River Drum Point (MADP) 
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Manokin River Georges Bar (MAGE) 
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Middle Eastern Shore Stone Rock (MESR) 
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Miles River Ashcraft (MRAS) 
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Miles River Bruffs Island (MRBI) 
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Miles River Long Point (MRLP) 
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Miles River Turtleback (MRTU) 
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Nanticoke River Middleground (NRMG) 
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Nanticoke River Wilson Shoal (NRWS) 
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Poplar Island Shell Hill (POSH) 
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Potomac River Cornfield Harbor (PRCH) 
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Potomac River Lower Cedar Point (PRLC) 
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Potomac River Ragged Point (PRRP) 
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Pocomoke Sound Gunby (PSGU) 
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Pocomoke Sound Marumsco (PSMA) 
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Patuxent River Broomes Island (PXBI) 
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Saint Mary’s River Chickencock (SMCC) 
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Saint Mary’s River Pagan (SMPA) 
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Tred Avon River Double Mills (TADM) 
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Tangier Sound Back Cove (TSBC) 
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Tangier Sound Great Rock (TSGR) 
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Tangier Sound Old Woman’s Leg (TSOW) 
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Tangier Sound Piney Island (TSPI) 
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Tangier Sound Sharkfin Shoal (TSSS) 
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Tangier Sound Turtle Egg Island (TSTE) 
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Wicomico River Evans Shoal (WRES) 
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Wicomico River Mount Vernon Wharf (WRMV) 
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Western Shore Butlers (WSBU) 
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Western Shore Hog Island (WSHI) 
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Appendix V. Mean shell length (mm) within year-class followed though time, as 
determined through log likelihood modal fitting techniques, with “Year” indicating 
the year when the cohort was first identified and “Cohort” identifying individual 
cohorts within each site.  
 
 
 
Bar Name Site Year Cohort Year(0) Year(1) Year(2) Year(3) Year(4) Year(5)
Deep Neck BCDN 1993 1 14.646 41.895 61.826 77.793 77.225
Deep Neck BCDN 1993 2 52.119 69.02 75.895
Deep Neck BCDN 1995 3 29.735 52.871 63.436 78.009
Deep Neck BCDN 1997 4 22.779 44.781 64.094 74.262
Deep Neck BCDN 1999 5 16.423
Mountain Point BNMP 1992 1 46.222 62.492 74.335 78.356 80.263 86.89
Buoy Rock CHBR 1997 2 31.534 56.032 80.903 82.167 77.02
Cook's Point CRCP 1995 1 30.994
Cook's Point CRCP 2000 2 37.118
Lighthouse CRLI 1992 2 24.105 50.947 58.412 76.222 85.309 86.056
Lighthouse CRLI 1995 4 29.791 52.411 71.51 86.056
Lighthouse CRLI 1997 5 25.708 55.173 72.259
Oyster Shell Point CROS 1992 1 14.537 47.781 57.31
Oyster Shell Point CROS 2000 4 38.147 52.363
Royston CRRO 1995 1 27.541 53.434
Royston CRRO 1997 2 28.648 50.021 67.786 76.753 83.416
Royston CRRO 1999 3 16.368
Sandy Hill CRSH 1992 1 44.028 59.032 75.04 77.47
Sandy Hill CRSH 1997 2 30.506 62.158 72.982 87.292 96.197
Tilghman Wharf CRTW 1992 1 38.389 50.623 62.785 80.36
Tilghman Wharf CRTW 1993 2 14.587 42.947 65.343 81.628 82.408
Tilghman Wharf CRTW 1995 3 31.203 60.39 75.287
Tilghman Wharf CRTW 1997 4 23.851 49.12 67.275 75.627 74.707
Tilghman Wharf CRTW 1999 5 15.769 46.238
Bugby EBBU 1997 1 26.492 58.618 78.264 85.095 95.093
Holicutts Noose EBHN 1995 1 31.258 54.531 71.834 84.29 97.551 92.155
Holicutts Noose EBHN 1997 2 30.57 55.388 71.472 74.432
Holicutts Noose EBHN 1999 3 50.819 76.567
Parson's Island EBPI 1992 1 13.609
Parson's Island EBPI 1993 2 10.654 42.611
Parson's Island EBPI 1995 3 25.146 47.821
Parson's Island EBPI 1997 4 30.509 54.602
Parson's Island EBPI 1999 5 16.152
Parson's Island EBPI 2000 6 14.908
Parson's Island EBPI 2001 7 26.333
Wild Ground EBWG 1992 1 30.419
Wild Ground EBWG 1992 2 53.681 65.163
Wild Ground EBWG 1995 3 26.7 48.92 64.202
Wild Ground EBWG 1997 4 24.645  
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Appendix V. continued. 
 
 
 
Bar Name Site Year Cohort Year(0) Year(1) Year(2) Year(3) Year(4) Year(5)
Clay Island FBCI 1992 1 22.063 45.769
Clay Island FBCI 1992 2 42.821 57.809 69.453
Clay Island FBCI 1993 3 16.291 49.185
Clay Island FBCI 1994 4 20.244 48.28
Clay Island FBCI 1995 5 18.865
Clay Island FBCI 1997 6 18.993
Goose Creek FBGC 1992 1 20.432 51.304 69.788 87.12 106.633
Goose Creek FBGC 1993 2 19.16 57.462 73.127 85.069
Goose Creek FBGC 1994 3 22.147 52.05 58.041
Goose Creek FBGC 1995 4 17.015
Eagle Point HCEP 1992 1 43.774 66.832 81.338 101.882 110.677
Eagle Point HCEP 1993 2 21.156 50.21 78.358 90.374
Eagle Point HCEP 1995 3 32.131 67.033 80.774
Eagle Point HCEP 1997 4 29.41
Holland Straits HOHO 1991 1 48.824
Holland Straits HOHO 1992 2 22.569 42.975 62.334
Holland Straits HOHO 1992 3 49.569 61.005
Holland Straits HOHO 1993 4 10.724 47.263
Holland Straits HOHO 1994 5 19.609
Holland Straits HOHO 1995 6 26.915 43.831 60.339
Holland Straits HOHO 1996 7 19.718
Holland Straits HOHO 1997 8 26.672
Holland Straits HOHO 1999 9 16.152
Holland Straits HOHO 2001 10 22.203
Normans HRNO 1992 1 19.377 40.865 72.59 75.268
Normans HRNO 1992 2 42.362
Normans HRNO 1993 3 17.731 48.012 58.575
Normans HRNO 1994 4 18.234
Normans HRNO 1995 5 24.082
Normans HRNO 1999 6 16.072 60.14
Normans HRNO 2001 7 22.146
Windmill HRWI 1992 1 18.603 43.267 75.062
Windmill HRWI 1993 2 22.828 49.95 62.473 73.666 81.347
Windmill HRWI 1994 3 18.963
Windmill HRWI 1995 4 25.312 49.444 69.825
Windmill HRWI 1997 5 21.859
Cason LCCA 1992 1 14.373 42.342 56.752 70.572 73.146
Cason LCCA 1993 2 19.057 45.411 54.502
Cason LCCA 1995 3 29.913
Cason LCCA 1997 4 22.955 56.803 68.693 74.195 69.187
Cason LCCA 1999 5 16.195 47.853 57.049  
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Appendix V. continued. 
 
 
 
Bar Name Site Year Cohort Year(0) Year(1) Year(2) Year(3) Year(4) Year(5)
Ragged Point LCRP 1991 1 39.022
Ragged Point LCRP 1992 2 33.436 43.723 62.777
Ragged Point LCRP 1993 3 21.746 47.03 66.169 78.322
Ragged Point LCRP 1995 4 25.276 51.05
Ragged Point LCRP 1997 5 34.5 50.249 66.064 73.709 77.78
Ragged Point LCRP 1999 6 16.273 45.288 60.403
Ragged Point LCRP 2001 7 19.127
Drum Point MADP 1992 1 19.842 43.738 57.049
Drum Point MADP 1993 2 18.541
Drum Point MADP 1994 3 20.95
Drum Point MADP 1996 4 20.995
Drum Point MADP 1997 5 21.691
George's Bar MAGE 1992 1 28.618 50.624 62.421 73.136 78.091 72.729
George's Bar MAGE 1993 2 21.844 48.202
George's Bar MAGE 1995 3 16.999
George's Bar MAGE 1997 4 17.627 50.438 68.441
George's Bar MAGE 1999 5 16.049
Stone Rock MESR 1992 1 33.311 53.364 66.146 74.803
Stone Rock MESR 1994 2 26.962 47.228
Stone Rock MESR 1995 3 20.336 47.025 67.636 76.249
Stone Rock MESR 1997 4 28.815 49.459
Stone Rock MESR 2000 5 28.334 47.958
Ashcraft MRAS 1995 1 27.167 56.982
Ashcraft MRAS 1997 2 29.385
Bruff's Island MRBI 1992 1 25.667
Bruff's Island MRBI 1995 2 30.331 56.969 75.577
Bruff's Island MRBI 1997 3 30.941 55.171 70.989 77.149
Bruff's Island MRBI 2000 4 19.327 57.667
Long Point MRLP 1995 1 29.615 60.87 79.848 84.9 75.571
Long Point MRLP 1997 2 26.157 55.358 62.746 83.932 90.337
Turtleback MRTU 1992 1 14.444 58.708
Turtleback MRTU 1995 2 22.74 46.835 61.469 71.779
Turtleback MRTU 1997 3 25.164 53.64 72.378 84.919 82.697
Turtleback MRTU 1999 4 16.18 49.427 60.586
Turtleback MRTU 2001 5 28.424
Middleground NRMG 1992 1 25.094 54.427 79.438
Middleground NRMG 1993 2 12.945 60.609 80.215
Middleground NRMG 1994 3 22.492 61.695 79.701 88.007
Middleground NRMG 1996 4 23.504 50.76  
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Appendix V. continued. 
 
 
 
Bar Name Site Year Cohort Year(0) Year(1) Year(2) Year(3) Year(4) Year(5)
Middleground NRMG 1997 5 17.595
Wilson Shoal NRWS 1993 2 19.416 68.635 79.526
Wilson Shoal NRWS 1994 3 25.919 64.437
Wilson Shoal NRWS 1997 4 19.704
Wilson Shoal NRWS 2000 5 21.905
Shell Hill POSH 1995 1 31.667 55.9
Shell Hill POSH 1997 2 32.789
Cornfield Harbor PRCH 1993 1 23.237 47.506
Cornfield Harbor PRCH 1993 2 40.204 65.494
Cornfield Harbor PRCH 1995 3 21.584 48.487 69.525
Cornfield Harbor PRCH 1999 4 16.48 46.872
Cornfield Harbor PRCH 2001 5 19.987
Lower Cedar Point PRLC 1992 1 20.067 45.006 68.105 76.609
Ragged Point PRRP 1995 1 30.158 54.917 75.058 88.022
Ragged Point PRRP 1997 2 24.198 46.169
Gunby PSGU 1992 1 21.255 46.226 63.126 75.031
Gunby PSGU 1993 3 19.234
Marumsco PSMA 1992 1 23.717 52.479
Marumsco PSMA 1993 2 22.332 63.167 74.144 77.969
Marumsco PSMA 1994 3 35.738
Marumsco PSMA 1995 4 26.073 49.424
Marumsco PSMA 1998 5 18.178 48.513 69.414
Marumsco PSMA 1999 6 15.776 53.041
Marumsco PSMA 2000 8 18.583
Broome Island PXBI 1995 1 31.492 54.683 82.981 83.795
Broome Island PXBI 1999 2 16.971 48.045
Chickencock SMCC 1991 1 49.797
Chickencock SMCC 1992 2 19.372 52.389
Chickencock SMCC 1993 3 25.766
Chickencock SMCC 1995 4 23.245 45.516
Chickencock SMCC 1997 5 24.436 51.218
Chickencock SMCC 1998 6 28.02
Chickencock SMCC 1999 7 16.31
Chickencock SMCC 2001 8 28.373
Pagan SMPA 1991 1 39.366 48.389 60.77
Pagan SMPA 1992 2 16.389 47.523 64.19
Pagan SMPA 1993 3 22.845 48.807
Pagan SMPA 1994 4 15.459
Pagan SMPA 1997 5 18.749 43.802 61.251
Pagan SMPA 1999 6 15.878  
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Appendix V. continued. 
 
 
 
Bar Name Site Year Cohort Year(0) Year(1) Year(2) Year(3) Year(4) Year(5)
Pagan SMPA 2000 7 26.082
Pagan SMPA 2001 8 14.225
Double Mills TADM 1993 1 13.892 52.308
Double Mills TADM 1997 2 22.967 56.649
Back Cove TSBC 1994 1 17.964 53.253 65.055
Back Cove TSBC 1995 2 21.817 45.114 70.198
Back Cove TSBC 1996 3 21.317 48.658 61.832
Back Cove TSBC 1997 4 20.002
Back Cove TSBC 1999 5 16.253 50.661 76.524
Back Cove TSBC 2000 6 18.943 59.828
Back Cove TSBC 2001 7 21.01
Great Rock TSGR 1992 1 28.958 50.372 62.796
Great Rock TSGR 1993 2 12.281 36.889
Old Woman's Leg TSOW 1993 1 17.778 47.491 63.563 81.553 92.909
Old Woman's Leg TSOW 1996 2 19.715 56.155
Old Woman's Leg TSOW 1997 3 16.045
Old Woman's Leg TSOW 1999 4 16.217
Old Woman's Leg TSOW 2000 5 20.566
Old Woman's Leg TSOW 2001 6 16.899
Piney Island TSPI 1992 1 21.832 46.609 61.076 71.511
Piney Island TSPI 1993 2 13.224 40.598 45.255
Piney Island TSPI 1995 3 19.698
Piney Island TSPI 1996 4 14.606
Piney Island TSPI 1997 5 20.53
Piney Island TSPI 2001 6 17.803
Sharkfin Shoal TSSS 1992 1 23.388 48.136 67.387 78.41
Sharkfin Shoal TSSS 1993 2 14.019 50.435 68.276
Sharkfin Shoal TSSS 1994 3 18.976 49.746 63.719
Sharkfin Shoal TSSS 1995 4 21.832
Sharkfin Shoal TSSS 1997 5 21.273
Sharkfin Shoal TSSS 1999 6 16.981
Turtle Egg Island TSTE 1992 1 25.365 45.334 62.451 74.736 89.345
Turtle Egg Island TSTE 1993 2 12.301 41.559 61.586 71.704
Turtle Egg Island TSTE 1994 3 23.407
Turtle Egg Island TSTE 1995 4 21.332 48.096
Turtle Egg Island TSTE 1996 5 22.701
Evan's Shoal WRES 1993 1 18.419
Evan's Shoal WRES 1994 2 27.014
Evan's Shoal WRMV 1992 1 19.248 38.252 62.358 79.823 86.709
Butler WSBU 1999 1 16.221
Butler WSBU 2001 2 29.668
Hog Island WSHI 1995 1 34.499 60.436 76.175
Hog Island WSHI 1997 2 34.997
Hog Island WSHI 2001 3 24.701  
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Appendix VI.  Growth curves and Ludwig von Bertalanffy growth models (solid 
lines) fit to observed mean shell lengths (diamonds) by putative age-class. Error 
bars are the standard error of the mean. No error bar indicates a single observation.  
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Bay North Mountain Point (BNMP) 
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Chester River Buoy Rock (CHBR) 
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Choptank River Cooks Point (CRCP) 
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Choptank River Lighthouse (CRLI) 
 
 

0

20

40

60

80

100

120

age-0 age-1 age-2 age-3 age-4 age-5

Age-class

Le
ng

th
 (m

m
)

 
 
 
 
 

 
 

Choptank River Oyster Shell Point (CROS) 
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Choptank River Royston (CRRO) 
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Choptank River Sandy Hill (CRSH) 
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Choptank River Tilghman Wharf (CRTW) 
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Eastern Bay Bugby (EBBU) 
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Eastern Bay Hollicutts Noose (EBHN) 
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Eastern Bay Parsons Islands (EBPI) 
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Eastern Bay Wild Ground (EBWG) 
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Fishing Bay Clay Island (FBCI) 
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Fishing Bay Goose Creek (FBGC) 
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Harris Creek Eagle Point (HCEP) 
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Holland Straits Holland Straits (HOHO) 
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Honga River Normans (HRNO) 
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Honga River Windmill (HRWI) 
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Little Choptank Cason (LCCA) 
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Little Choptank Ragged Point (LCRP) 
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Manokin River Drum Point (MADP) 
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Manokin River Georges Bar (MAGE) 

 
 

0

20

40

60

80

100

120

age-0 age-1 age-2 age-3 age-4 age-5
Age-class

Le
ng

th
 (m

m
)

 
 
 
 
 

Middle Eastern Shore Stone Rock (MESR) 
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Miles River Ashcraft (MRAS) 
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Miles River Long Point (MRLP) 
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Miles River Turtleback (MRTU) 
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Nanticoke River Middleground (NRMG) 
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Nanticoke River Wilson Shoal (NRWS) 
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Poplar Island Shell Hill (POSH) 
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Potomac River Cornfield Harbor (PRCH) 
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Potomac River Lower Cedar Point (PRLC) 
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Potomac River Ragged Point (PRRP) 
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Pocomoke Sound Gunby (PSGU) 
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Pocomoke Sound Marumsco (PSMA) 
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Patuxent River Broomes Island (PSMA) 
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Saint Mary’s River Chicken Cock (SMCC) 
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Saint Mary’s River Pagan (SMPA) 
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Tred Avon River Double Mills (TADM) 
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Tangier Sound Back Cove (TSBC) 
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Tangier Sound Great Rock (TSGR) 
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Tangier Sound Piney Island (TSPI) 
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Tangier Sound Sharkfin Shoal (TSSS) 
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Tangier Sound Turtle Egg Island (TSTE) 
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Wicomico River Evans Shoal (WRES) 
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Wicomico River Butler (WRBU) 
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Western Shore Hog Island (WSHI) 
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Appendix VII.  The breakdown of the 50 dredge surveys sites into 23 spatial regions, 
and the 3 salinity-based regions similar to those used in Jordan et al. (2002). Salinity 
region 3 (<12ppt), region 1 (12-13.99ppt), and region 2 (>14ppt) were all based on 
the mean salinity recorded annually during the fall oyster dredge survey. 
 
 

Site Mean Salinity Spatial Salinity
BCDN 13.33 0 1
BNMP 10.71 1 3
CHBR 10.80 2 3
CRCP 13.74 3 1
CRLI 12.69 3 1
CROS 9.93 3 3
CRRO 13.20 3 1
CRSH 11.64 3 3
CRTW 13.72 3 1
EBBU 13.86 4 1
EBHN 14.17 4 2
EBPI 13.48 4 1

EBWG 12.81 4 1
FBCI 14.51 5 2
FBGC 14.88 5 2
HCEP 12.78 6 1
HOHO 16.00 7 2
HRNO 16.00 8 2
HRWI 14.75 8 2
LCCA 13.74 9 1
LCRP 14.24 9 2
MADP 14.86 10 2
MAGE 16.28 10 2
MESR 14.48 11 2
MRAS 12.58 12 1
MRBI 13.28 12 1
MRLP 12.79 12 1
MRTU 13.31 12 1
NRMG 14.20 13 2
NRWS 12.12 13 1
POSH 13.69 14 1
PRCH 14.25 15 2
PRLC 9.23 15 3
PRRP 13.67 15 1
PSGU 16.76 16 2
PSMA 16.84 16 2
PXBI 13.26 17 1

SMCC 13.36 18 1
SMPA 15.10 18 2  
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Appendix VII. Continued. 
 
 
 
 

Site Mean Salinity Spatial Salinity
TADM 12.22 19 1
TSBC 17.36 20 2
TSGR 17.25 20 2
TSOW 17.98 20 2
TSPI 17.06 20 2
TSSS 13.77 20 1
TSTE 16.00 20 2
WRES 13.16 21 1
WRMV 7.79 21 3
WSBU 15.58 22 2
WSHI 15.00 22 2  
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Appendix VIII. The pairs of 22 Chesapeake Bay water quality monitoring stations 
(1990-2001) with oyster dredge survey sites, the distance between sites in kilometers, 
and a map of the sites (Chesapeake Bay Program). 
 
 
 
 
 
 
 

WQ Station Oyster Survey Site Distance (km)
ET4.2 CHBR 0.44
EE2.1 CRCP 1.41
ET5.2 CROS 5.07
EE1.1 EBBU 2.31

CB4.1E EBHN 4.44
EE1.1 EBPI 2.92
EE3.1 FBCI 4.45
EE3.0 FBGC 0.84
EE2.2 LCRP 0.74
ET8.1 MADP 5.63
ET8.1 MAGE 3.94

CB4.2E MESR 1.98
EE1.1 MRTU 3.30
ET6.2 NRWE 0.40
LE2.3 PRCH 3.30

RET2.4 PRLC 2.96
LE2.2 PRRP 2.62
EE3.3 PSGU 1.32
LE1.1 PXBI 3.75
EE3.1 TSSS 2.30
EE3.1 TSTE 9.32
ET7.1 WRMV 1.93
CB5.2 WSBU 9.30

CB5.1W WSHI 1.55  
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Chesapeake Bay Program Water Quality Monitoring Sites 
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Appendix IX.  Hatchery reared oysters from four sites with their associated 
spawning, settlement, and planting in the field dates, as well as identification within 
groups later combined into batches prior to planting. 

 
 

Site River Planted Group Batch Spawned Settlement
Bolingbroke Sands Choptank 7/6/01 2A 6 4/25-26/01 5/16,21/01
Bolingbroke Sands Choptank 7/6/01 2A 7 4/26/01 5/16,21/01
Bolingbroke Sands Choptank 7/6/01 2A 9 5/1/01 5/19,21/01
Bolingbroke Sands Choptank 7/6/01 2A 10 5/11/01 5/19,21/01
Bolingbroke Sands Choptank 7/6/01 5A 4 4/11-12/01 4/20/01
Bolingbroke Sands Choptank 7/6/01 5A 5 4/17-18/01 4/30/01, 5/1,3,4/01
Bolingbroke Sands Choptank 7/16/01 6A 14 5/7/01 5/24/01
Bolingbroke Sands Choptank 7/16/01 6A 15 5/8/01 5/24/01
Bolingbroke Sands Choptank 7/5/01 8A 1 3/26/01 4/10/01
Bolingbroke Sands Choptank 7/5/01 9A 2 4/4-5/01 4/17/01
Bolingbroke Sands Choptank 7/5/01 9A 4 4/11-12/01 4/20/01
Bolingbroke Sands Choptank 8/15/01 4B 22 5/30/01 6/14,17/01
Bolingbroke Sands Choptank 8/15/01 4B 23 5/31/01 6/14,17/01
Bolingbroke Sands Choptank 8/15/01 4B 24 6/1/01 6/14,17/01
Bolingbroke Sands Choptank 7/16/01 7B 6 4/25-26/01 5/16,21/01
Bolingbroke Sands Choptank 7/16/01 7B 7 4/26/01 5/16,21/01
Bolingbroke Sands Choptank 7/6/01 9B 6 4/25-26/01 5/16,21/01
Bolingbroke Sands Choptank 7/6/01 9B 7 4/26/01 5/16,21/01
Bolingbroke Sands Choptank 7/16/01 10B 11 5/2/01 5/18,21/01
Bolingbroke Sands Choptank 7/16/01 10B 12 5/2/01 5/18,21/01
Bolingbroke Sands Choptank 7/16/01 10B 13 5/4/01 5/18,21/01
Chest Neck Magothy 9/8/01 4D 31 6/18/01 7/9,17/2001
Chest Neck Magothy 9/8/01 4D 32 6/18/01 7/9,17/2001
Chest Neck Magothy 9/8/01 4D 33 6/21/01 7/9,17/2001
Chest Neck Magothy 9/8/01 4D 34 6/22/01 7/9,17/2001
Chest Neck Magothy 9/8/01 6D 31 6/18/01 7/12,17/2001
Chest Neck Magothy 9/8/01 6D 32 6/18/01 7/12,17/2001
Chest Neck Magothy 9/8/01 6D 33 6/21/01 7/12,17/2001
Chest Neck Magothy 9/8/01 6D 34 6/22/01 7/12,17/2001
Spaniard Point Chester 10/14/98 OST1A 8 6/24-25/98 7/6/98
Spaniard Point Chester 10/14/98 RST1B 15 7/1/98 7/17/98
Weems Upper Severn 9/8/01 4D 31 6/18/01 7/9,17/2001
Weems Upper Severn 9/8/01 4D 32 6/18/01 7/9,17/2001
Weems Upper Severn 9/8/01 4D 33 6/21/01 7/9,17/2001
Weems Upper Severn 9/8/01 4D 34 6/22/01 7/9,17/2001
Weems Upper Severn 9/8/01 6D 31 6/18/01 7/12,17/2001
Weems Upper Severn 9/8/01 6D 32 6/18/01 7/12,17/2001
Weems Upper Severn 9/8/01 6D 33 6/21/01 7/12,17/2001
Weems Upper Severn 9/8/01 6D 34 6/22/01 7/12,17/2001
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Appendix X.  Individual oyster shell length (mm) and length-frequency distribution. 
 
 

 
Bollingbroke Sands (Known Age-2) 
Oyster Length Oyster Length

1 69.9 18 72.6
2 75.8 19 69.3
3 78.2 20 67
4 70.8 21 71.5
5 84.8 22 88.5
6 62.9 23 73.9
7 44.6 24 78
8 67.3 25 72.1
9 72 26 75
10 50.9 27 88.5
11 68 28 73.2
12 58.4 29 81.4
13 75.3 30 93.5
14 84.5 31 94.9
15 85.5 32 78.1
16 62.4 33 89.3
17 75.5 34 93.4  
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Appendix X.  Continued. 
 

 
Chest Neck (Known Age-2) 

Oyster Length Oyster Length
1 59 29 55.7
2 59.5 30 41.5
3 52 31 55.5
4 40.9 32 62.6
5 53.8 33 54.8
6 70.2 34 48.2
7 73.4 35 54.9
8 73.2 36 54.1
9 47.8 37 54.1
10 61.8 38 52.6
11 61.9 39 60.8
12 67.1 40 66.9
13 50 41 63
14 43.3 42 57.5
15 58.7 43 48.9
16 40.4 44 41.8
17 42.3 45 53.3
18 55.8 46 56.9
19 50.4 47 55.8
20 48.6 48 59.5
21 62.3 49 60
22 60.4 50 62.2
23 69.5 51 46.9
24 58.9 52 65
25 40.2 53 52
26 47.7 54 68.1
27 48.2 55 55.6
28 68.5 56 57  
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Appendix X.  Continued. 
 
 

Weems Upper (Known Age-2) 
Oyster Length Oyster Length

1 37.7 20 60
2 67.3 21 75.7
3 61.4 22 77.6
4 55 23 62.4
5 47.3 24 52.3
6 44.8 25 65.5
7 50.4 26 63.2
8 52.6 27 77.3
9 66.2 28 61.4
10 59.7 29 65
11 64.5 30 69.5
12 72.8 31 54.9
13 68 32 53.7
14 81.3 33 73
15 76.8 34 68.9
16 80.3 35 65
17 44.8 36 70
18 51.2 37 64.8
19 56.6  
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Appendix X.  Continued. 
 
 

Spaniard Point (Known Age-5) 
Oyster Length

1 92.2
2 109.1
3 128.2
4 108.5
5 121.4
6 106.3
7 108.8
8 125.4
9 124.4
10 113.1
11 123.3
12 90.8
13 100.5
14 100.4
15 129.2
16 139.2
17 122.5
18 133.1
19 106  
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Appendix XI. Digital pictures of the cross-sectioned shell chondrophore used in the 
aging analyses. 
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Bollingbroke Sands (BBS) 
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Bollingbroke Sands (BBS) 
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Bollingbroke Sands (BBS) 
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Bollingbroke Sands (BBS) 
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Chest Neck (CN) 
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Spaniard Point (SPN) 
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Weems Upper (WU) 
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Weems Upper (WU) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Known Age = 2 years, Estimated Age = 3 years 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Known Age = 2 years, Estimated Age = 4 years 
 
 
 

WU-3

WU-4

WU-3

WU-4



 

259 

 
 
 

Weems Upper (WU) 
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Appendix XII The results from 10 oysters hinge sections read from each site. The 
associated shell lengths are also given. Only the third reading was used in 
subsequent analyses.  
 
 

Site Oyster Length (mm) First read Second Read Third Read
Bollingbroke Sands 1 69.9 3 4 3
Bollingbroke Sands 2 75.8 2 4 4
Bollingbroke Sands 3 78.2 6 6 6
Bollingbroke Sands 4 70.8 0 0 0
Bollingbroke Sands 5 84.8 3 3 3
Bollingbroke Sands 6 62.9 3 4 4
Bollingbroke Sands 7 44.6 2 3 2
Bollingbroke Sands 8 67.3 2 2 4
Bollingbroke Sands 9 72 3 4 5
Bollingbroke Sands 10 50.9 6 8 8
Chest Neck 1 59 0 0 0
Chest Neck 2 59.5 1 1 2
Chest Neck 3 52 5 4 4
Chest Neck 4 40.9 3 3 3
Chest Neck 5 53.8 2 2 2
Chest Neck 6 70.2 3 2 3
Chest Neck 7 73.4 4 3 2
Chest Neck 8 73.2 4 4 5
Chest Neck 9 47.8 7 5 7
Chest Neck 10 61.8 2 3 3
Spaniard Point 1 92.2 7 8 8
Spaniard Point 2 109.1 4 4 4
Spaniard Point 3 128.2 4 5 5
Spaniard Point 4 108.5 0 0 1
Spaniard Point 5 121.4 2 2 2
Spaniard Point 6 106.3 2 2 4
Spaniard Point 7 108.8 7 9 7
Spaniard Point 8 125.4 9 10 10
Spaniard Point 9 124.4 5 7 6
Spaniard Point 10 113.1 5 7 7
Weems Upper 1 37.7 3 5 5
Weems Upper 2 67.3 6 6 5
Weems Upper 3 61.4 3 4 3
Weems Upper 4 55 4 4 4
Weems Upper 5 47.3 4 6 6
Weems Upper 6 44.8 3 4 4
Weems Upper 7 50.4 3 3 5
Weems Upper 8 52.6 1 2 2
Weems Upper 9 66.2 2 2 2
Weems Upper 10 59.7 4 5 4  

 
 
 



 

263 

 


