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In 2005, Park et al., developed a new Pseudo-Deterministic Receptor Model (PDRM) to 

apportion SO2 and ambient particulate matter (PM) constituents to local sources near 

Tampa Bay.  Ambient pollutant measurements were fit to products of emission rates and 

dispersion factors constrained with a Gaussian plume model for individual sources. In our 

study, the original samples were reanalyzed by ICPMS for 10 additional elements to 

improve the resolving power.  Chemical mass balance (CMB) terms were added to 

PDRM to allow fitting of background aerosol sources.  More accurate curvilinear plume 

trajectories were computed to predict arrival times in both surface and aloft layers. This 

allowed application of the PDRM to complicated meteorological conditions, e.g. wind 

shifts. Predicted emission rates for particle-bound elements were constrained using 

chemical compositional information obtained from published source profiles for generic 



  

source types. Constraints applied to emissions of known tracer species allowed the 

“conditioning” of dispersion factor temporal profiles to tracer species concentration 

profiles. This enabled the model to apportion pollutants to individual sources with 

intermittent emissions, the omission of which in Park et al. lead to significant residuals. 

Excellent fits were obtained for all modeled pollutants: 14 of 22 species have Normalized 

Mean Square Errors (NMSE) < 2.5%, and 21 of 22 have values < 8%.  These were 

improved for SO2 and 8 of 10 elements (by 7-35% for Al, Cu, Ni, Pb, and Zn) modeled 

by Park et al. Our predicted emission rates are in much better agreement with chemical 

compositions for generic source types. Key results include: (1) predicted SO2 

contributions to ambient levels from a small, lead battery recycling plant were reduced 

from 50-59% at its peak influence to a more reasonable 2-4%, (2) Pb/Zn ratios from that 

plant increased from 1.0 to 734 and better agree with published ratios of 67-440, (3) 

predicted Ni emission rates for one of the oil-fired power plants (OFPP) was increased by 

100-fold (larger than Park’s), and now better agrees with its published National 

Emissions Inventory (NEI) emission rate and with X/Ni ratios for generic OFPP 

emissions derived from EPA’s SPECIATE database, and (4) our predicted emission rates 

for hazardous air pollutants and toxics from power plants agree  within a factor of 5 for 

~75% of the annual emission rates reported in the  NEI and Toxic Release Inventories 

(TRI). This suggests that NEI and TRI data provide good qualitative emission estimates, 

but should not be treated as accurate in a predictive model to quantify source emissions. 

It was also observed that the TRI values for As emission rates from coal-fired power 

plants are more accurate that their NEI values. 
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1. Introduction 

Source Apportionment is the quantitative determination of the contributions of 

pollutants from their sources to ambient atmospheric concentrations (Gordon, 1988). It is 

important to identify contributing sources in order to effectively implement emissions 

control strategies which reduce ground-level exposures and associated health risks and 

degradation of air quality (Gordon, 1988). Source apportionment is generally 

accomplished with either source- or receptor-based models. Apriori knowledge of 

emission rates is necessary for source based models and their accuracy is limited by large 

uncertainties in modeling plume dispersion. For these reasons receptor models are often 

preferred. The basis for receptor models is that measurements of ambient pollutant (i) 

concentrations made at a “receptor site”, ���, can be expressed as the linear sum of 

contributions from sources, j, which for n sources is (equation 1):   

��� � � ���,	  �

�
�
                                �1� 

where CSi,j is the source contribution, i.e., the concentration of that species in air at the 

receptor site induced by an individual source or a generic source type, j, both typically in 

units of ug/m3.  

     To permit solutions to equation (1), the terms on the right side are factored into 

products of variables, at least one of which must be known either from measurements or 

at least estimated by calculation. This is:  

���,� �  � ��,�  · ��,� �  �������                  �2��

�
�
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where the ambient pollutant, i, concentrations made at the receptor site, ���,� ,for each 

observation, t, for n observations.  The definitions of  ��,�  and ��,� depend on the 

receptor model type, but in every case, the products of these factors are the predicted 

source contribution represented by ���,	 in equation (1). The residual represents the 

difference between the ∑ ���,	  ��
� and ���.  

     As observed by Park et al., (2005a), receptor models are typically of three types, those 

that make no use of information other than meteorological and concentration 

measurements (e.g. Factor Analysis, (FA), Principle Component Analysis, (PCA), 

notably Positive Matrix Factorization  (PMF) and UNMIX, those that require a single 

unique tracer for each source (i.e. multiple linear regression (MLR)) and those that 

require detailed information on the relative abundances of each source (Chemical Mass 

Balance (CMB)). 

     In the CMB, the terms in equation (2), ��,�s are the relative abundances of species, i, 

in particles emitted from source, j, and ��,�s are the mass concentrations of particles at the 

receptor site induced from each source, j, in each sampling interval, t.   An advantage of 

the CMB approach is that only one or more samples are needed, and the use of source 

compositional information effectively constrains solutions. A disadvantage to the CMB 

approach is that source profiles must be measured. Published profiles often do not 

accurately represent emissions from sources in the study area of interest owing in part to 

differences in analytical methods and the fact that the composition of emissions from a 

generic source type can be highly variable from plant to plant (Gordon, 1988). Moreover, 

temporal variability may be great owing to their dependence on such factors as fuel 

composition and changes in emission controls. Lastly, emission profiles for individual 
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sources, particularly of the same type, can be too similar to permit resolution. Thus, 

solutions are often obtained only for generic source types.  

     Collection of ambient concentration data at resolution times comparable to changes in 

wind direction has enabled apportionment of species to individual sources. Rheingrover 

and Gordon (1988) used 2-hour aerosol composition data to estimate the contributions of 

individual sources to ambient air concentrations using Instrumental Neutron Activation 

Analysis (INAA) data. More recently Kidwell and Ondov (2001, 2004) developed a 

system capable of measuring elemental concentrations at 30-minute intervals using 

Graphite Furnace Atomic Absorption Spectroscopy.  The System, now known as the 

Semi-continuous Elements in Aerosol Sampler (SEAS), enabled both greater temporal 

resolution and much faster analytical turn-around.  The SEAS was deployed in College 

Park (Kidwell and Ondov, 2004) and later in several studies (Park et al., 2005b, Ondov et 

al., 2003) including the Tampa Bay area during the Bay Regional Atmospheric Chemistry 

Experiment (BRACE), where plumes from individual sources were readily identified by 

correlating excursions in time-series concentration profiles of marker elements with wind 

directions.  This included two sources for which emissions had not been previously 

detected (Park et al., 2005a). 

     In many cases, narrow, Gaussian peak shapes were observed (e.g., Pancras et al. 

2006). This occurred when the mean wind direction rotated slowly enough such that 

plumes from stationary sources would be swept across the sampling site.  In such cases, it 

was clear that the widths of the peaks are related to the plume width.  Also, as sources 

were often >10 km from the measurement site, observation of the plumes at the surface 

sampling sites occurred only after they were well mixed in the boundary layer to the 
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extent of the mixing height.  Thus, sources could be identified by composition wind 

versus source angle, and because the “peak” widths contain dispersion information, it was 

postulated that the peak shape could be used to develop parameters required by Gaussian 

Plume Models (GPM). 

     To exploit the information contained in these data, Park et al.(2005a, b), applied a new 

version of a hybrid receptor model previously described by both Yamartino (1982) and 

Cooper (1982).  In these models, the ambient concentrations in the mass balance equation 

are defined in terms of the products of source emission rates and plume dispersion factors 

(�/Q). As implemented by Yamartino (1982) and Cooper (1982), plume dispersion 

factors were derived deterministically using GPM equations for individual sources, and 

solutions were sought for single pollutants (i.e., SO2, and total suspended particle 

concentrations (TSP), respectively. Neither attempt met with much success due to the 

fundamental inaccuracies in the Gaussian Plume Model (GPM). Park et al.,(2005a, b) 

implemented the same mass balance equation, but recognizing that the plume width 

parameter, σy (defined later), could be inferred from “peak” shape, and that plume width 

would also constrain transport distances, they used the GPM-derived dispersion factors as 

initial guesses and to set constraints to solutions rather than applying them 

deterministically. Inclusion of Gaussian dispersion factors effectively eliminates the 

contributions from sources which cannot physically influence the sampling site at a given 

time. Thus, PDRM was designed to exploit directionality based on source angles relative 

to the sampling site and observed wind direction data, changes in plume width (σy) 

accompanying dispersion over longer distances, and plume transport speeds inferred from 

source receptor distances and wind speeds.  
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     PDRM was applied in two different studies, one in Tampa and another in Pittsburgh 

(Park et al., 2005a; 2005b; the former is henceforth referred to herein as “Park”).  In the 

Tampa study, solutions were obtained for 6 sources, i.e. four power plants, a lead 

recycling plant, and a phosphate fertilizer plant. Remarkably, the predicted emission rates 

for SO2 for the four major power plants in Tampa were within ~8% of those inferred 

from CEM data and fits to ambient marker element concentrations were generally good.  

However, significant residuals were observed at various time intervals for several key 

marker species.  

     Park designed the PDRM to treat high frequency measurements in situations where 

the mean wind was constant or slowly rotating so that plumes from point sources that had 

relatively constant emission rates over the study period would sweep across the 

measurement site. The dataset from Tampa was modeled because of the availability of 

reliable ambient SO2 and elemental data, high quality meteorological and modeled 

micrometeorological data (Scire, 2000), as well as Continuous Emissions Monitor (CEM) 

data for SO2 for the four power plants. These data were available throughout the study 

period. However, a rapid shift in the mean wind direction during the study period created 

curvilinear plume trajectories.  Park chose to compensate for the wind shift by creating a 

“transport adjusted” wind direction set for use in computing estimates of the period of 

plume influences (as revealed by GPM-calculated �/Q profiles).  Also, Park used only 

ambient SO2 concentrations in the PDRM to determine the modeled dispersion factors 

and subsequently used those to apportion the elemental constituents of PM2.5. Residuals 

in Park's modeled elemental constituents suggest that the six modeled sources were not 

the only contributors of PM2.5.  
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     In this work, the original data and results for Tampa were thoroughly reanalyzed and 

an improved PDRM (herein, iPDRM) was implemented to allow its application to a 

wider range of more complicated scenarios. Specific improvements are as follows: 1) the 

application of curvilinear forward trajectories to better predict the periods of plume 

influence, especially during periods of shifting winds, 2) calculation of trajectories for up 

to three levels to account for wind rotation aloft for sources with high stacks, and the 

corresponding transport at different wind velocities, 3) inclusion of compositional 

information (i.e., CMB profiles) to better constrain solutions for sources where marker 

species exist, 4) use of concentration-versus-time profiles to condition �/Q profiles for 

sources for which key tracer species were clearly resolved as a means of providing better 

fits and allowing for intermittent emission rates, 5) inclusion of additional sources, 

including generic background soil dust, two incinerators, and a shipyard source to 

improve the apportionment of elemental constituents of PM2.5, and lastly,  6) the original 

samples collected for the Tampa study were reanalyzed for up to 14 additional elements 

in an effort to find useful marker species for additional sources.  We describe the model 

of Park as applied to Tampa and its shortcomings, in the next section. Subsequent 

sections present the ICPMS analytical method, the expanded species data set developed 

for the new modeling work, and the iPDRM approach and its results.  

 

1.1 Park’s PDRM 

     The PDRM (pPDRM) applied by Park was configured as follows in equation (3):  

#$�%� �  � $&'''' �,�  · �( )⁄ ��,�+,-�.�

�
�
�  �������               �3�  
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where #$�%�are the ambient concentration (g m-3); of each species i measured at the 

receptor site in the sampling interval, t. $&'''' �,� is the emission rate of species i from source 

j (g s-1), averaged over the modeling period, and �( )⁄ ��,�+,-�. is the PDRM-determined 

meteorological dispersion factor (s m-3) for each source j at each sampling interval, t.    

     Initial guesses for �( )⁄ ��,�,-�. values were derived using the simple GPM and denoted 

as �( )⁄ ��,�.0� (equation (4)):  

�( )⁄ ��,�.0� �  112324� exp8 9:
;<=:  exp8 >:

;<?:                   �4� 
where � is the predicted concentration (g m-3) of gas or aerosol species at ground level (z 

= 0), Q is the average mass emission rate (g s-1, i.e. $&'''' �,�), and u is the transport speed 

(m/s) of the plume over its trajectory. Plume dispersion parameters, σy and σz (m), are the 

standard deviations of the concentration distributions in the lateral (y) and vertical (z) 

directions (in units of m), and increase as the plume disperses downwind with distance 

traveled, x’, from the source. H is the effective stack height (m), i.e. the height to which 

the stack gas rises above the stack owing to velocity and buoyant forces.   

     In equation (4), the pre-exponential term (s m-3) is the inverse of the plume dilution 

rate. This term is a function of transport speed (and hence, distance) because σy and σz 

increase with distance (and vary with conditions of atmospheric stability and turbulence).  

The exponential factors account for the off-axis decay of concentrations from their 

maxima along the plume centerline in the lateral and vertical directions, as a function of 

the off-axis distance (Y and H in units of m). The first exponential term and σy (m) is a 

powerful constraint when applied to highly time-resolved data as it prevents solutions 

from being obtained for sources whose source angles do not sufficiently align with their 
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plume trajectories. The second exponential term employs a ratio of H to σz. Inherent in 

equation (4), is the assumption that all emitted species are conserved, i.e., are neither 

removed by gravitational settling, dry or wet deposition, nor by chemical reactions. 

Horizontal and vertical turbulence are assumed to be homogenous. These simplifications 

lead to substantial errors in model predictions.  

     In order to calculate σy and σz, Park used equations from Draxler (1976), Irwin (1979), 

and Binkowski (1979). Transport velocity, u, was calculated from the power law 

(Panofsky et al., 1960).  Briggs’ equations (1969, 1971, 1974) were used to calculate 

buoyancy flux and momentum flux parameters to estimate H. Details of these 

calculations are given in Park and are reproduced in Appendix A.   

     Equation (2) was solved using a nonlinear least squares solver (‘‘lsqcurvefit’’) in 

MATLAB (MathWorks, Inc, version 7.4). By minimization of the object function, FUN:   

FUN = � � �A$&'''' �,��( )⁄ ��,�,-�. B  C$�,�DE
�

�
�

F

�
�

G

�
�

;
                 �5� 

such that the following constraints in equation (5A) were satisfied:  

�( )⁄ ��,�+,-�. �  I�  �( )⁄ ��,�.0�                                              �5�� 

where I� is a scaling multiplier that is set within lower and upper bounds for which the 

solver is directed to find solutions. Upper and lower bounds of the meteorological 

dispersion factors reflect the uncertainty in the solutions of the GPM, �( )⁄ ��,�.0�, as 

calculated with meteorological data.  

     Modeled solutions, referred to as �( )⁄ ��,�+,-�., were constrained to lie within a factor 

of 0.1 to 2 of the GPM predictions. This was based on information reported in an 

intentional tracer study (Ondov et al., 1992) conducted at a coal-fired power plant 20km 
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from an arc of samplers in Maryland, a location which had terrain and land use similar to 

that in Tampa (Park et al., 2005a).  

 

1.1.1. Inputs   

     Atmospheric measurements used in this study were collected at Sydney, Florida 

(27.9653N, 82.2273W). The positions of this site and of the 6 sources used in Park’s 

model are shown in Figure 1, along with additional PM2.5 sources in the Tampa vicinity. 

The measurements consisted of SO2 and 10 elements determined in particles collected 

with SEAS by GFAAZ  between 12:00-21:00 local time (LT) on 13 May 2002, during 

which time winds swept from ~200-270o with 30-minute average surface wind speeds 

from 1-4 m/s (Figure 2). Data used in the GPM were as follows: 1) measured (1min) 

meteorological data from NOAA taken at a height of 10m and averaged to 30-min 

including wind direction (degrees), surface wind speed (m/s), solar insolation (W/m2), 

and ambient temperature (oC), 2) CALMET derived parameters (Scire et al., 2000) to 

describe the atmospheric boundary layer (ABL) including: Pasquill Stability class, 

friction velocity, u* (m/s), mixing height, zi (m) Monin-Obukhov length, L (m),  and 

convective velocity scale, w*(m/s) (described in detail in Park et al., 2005a), 3) source 

angles and distances of sources relative to Sydney and 4) stack data (physical stack 

height, stack inside diameter, exit gas velocity, and exit gas temperature).  
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Figure 1.  Map of the Tampa Bay area showing the sampling site (Sydney) and major 
sources of PM. Sources originally modeled by Park et al., 2005 are represented by red-
trimmed stars. Additional industrial sources are represented by targets.  
©2007, Google 
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     The 108 output dispersion factors, �/QMet, were input into equation 2 and the model 

was solved to obtain a set of 66 emission rates (i.e., 11 species for each of the six 

sources) and for a set of 108 dispersion factors (�/QpPDRM, 18 for each of the six sources). 

 

1.1.2.  Results  

     Results of Park’s PDRM are shown in Figure 3, where predicted and measured 

concentrations are shown for the entire study period for SO2, Al, As, Cu, Fe, Ni, Pb, Se, 

and Zn. Park achieved excellent fits between predicted concentrations of SO2 and As, and 

emission rates predicted for SO2 for the 4 power plants were within 8% of those derived 

from their CEM data. Many of the predictions for the other elements were also good: the 

normalized mean square error (i.e. relative mean square error) (%NMSE) in the ratios of 

predicted-to-observed concentrations for all time periods for Al, Cr, Fe, Mn, and Se were 

< 10%. However, %NMSE for Cu, Ni, Pb, and Zn were substantially greater, i.e. 13-

36%. Moreover, large residuals observed in specific sampling periods, suggest the 

presence of other sources, or as concluded in this work, errors in the �/Q profiles 

calculated from the GPM.  The following incidences are viewed as important:  

1. over-predictions of SO2, Al, Cu, Fe, Ni, Pb, and Zn at 12:00, under-predictions for 

the same species at 12:30,  

2. under-predictions in Al, Cu, Fe, and Pb from 13:30-14:00,  

3. over-predictions in Al and Fe from 18:00-19:00, over-predictions in Cu and Pb at 

18:00,  

4. under-predictions at 14:00 for Cu, 15:00 for Fe (peak excluded by Park) and 

14:30 in Al. 
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Figure 2. Thirty-minute averages of surface 30-minute wind speeds and wind directions 
measured at Sydney on May 13, 2002. 
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Figure 3. Predicted concentration profiles as determined by Park (adapted from Park et 
al., 2005a) show over- and under-predictions of the observed concentration profiles for 
Al, Cu, Fe, Ni, Pb, and Zn. 
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5. the correlation between predicted and observed concentrations for Zn was 

generally poor, i.e., features are predicted to occur earlier or later than they 

actually do. 

     Park reasoned that short-term fluctuations in source emissions were beyond the 

capability of their model and that over-predictions in Al and Fe were due to poor 

recoveries in analytical methods for soil particles.  However, a cause of some of these 

residuals is likely to have been the result of the substantial wind shift that occurred at 

~12:30 PM, causing errors in the periods of predicted plume influence for plume arriving 

between 12:30-16:00.  (Curvilinear wind paths are shown as back-trajectories calculated 

from 30-minute average surface wind speeds Sydney in Figures 4a. and 4b). In addition 

to the residuals, some of the ratios of predicted elemental emission rates do not agree 

with those reported for similar sources in literature source profiles found in EPA’s 

SPECIATE database (U.S. EPA, 2006; herein referred to as SPECIATE). As discussed in 

section 3.2.3, this is most evident in the X/Pb ratios for the lead recycling plant (Table 1), 

where Park predicted a Zn/Pb ratio of 1.0 as compared to the reported ratio of 0.005 and 

in X/Ni ratios for both oil-fired power plants (Table 2), where predicted X/Ni are an 

order of magnitude higher than literature ratios for Cu, Mn, Pb, and Zn, and greater than 

two orders of magnitude for Al, As, Cr, Fe, and Se.  As described below, we were able to 

explain many of these discrepancies with the improved model.  

     Park published two cases, the first (Case 1) in which all six source meteorological 

dispersion parameter solutions were constrained to within 0.1-2 of their values predicted 

by the GPM, and the second (Case 2) in which separate constraints were applied for the  
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Figures 4a. & b. Surface back trajectories computed every 30 minutes using wind data 
collected by NOAA at a height of 10 m: trajectories from 12:00-15:30(a) and 16:00-
20:30(b) are shown. The surface wind shifted from a Southerly to a Southwesterly flow at 
12:30. ©2007, Google 
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Table 1. Source abundance profiles (relative to Pb) as derived from EPA SPECIATE for 
lead recycling plants and for Gulf Coast, as predicted by Park and this work.  
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Table 2. Source abundance profiles (relative to Ni) as derived from EPA SPECIATE for 
oil-fired power plants and for Manatee and Bartow, as predicted by Park and this work. 
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Cargill and Gulf Coast plants. This was done because Case 1 solutions for SO2 ERs 

exceeded reported annual emissions (FDEP) by factors of >3 and >12 for Cargill and 

Gulf Coast, respectively. Case 2 was run on the hypothesis that effective plume heights 

(<100 m) for these plants are low compared to the utilities which ranged from 500- 1200 

m, and dispersion is expected to be more affected by surface roughness elements. Case 2 

assumes that these surface plumes were more coherent. Separate lower and upper bound 

constraints were 0.4-8.0 (Cargill) and 1.2-24 (Gulf Coast).  

 

2. Dataset and Methods 

2.1.  Reanalysis of Tampa Sources 

     The major sources likely to have affected air quality at Sydney are described below.  

This includes Park’s original six sources (four power plants, the Cargill phosphate 

fertilizer plant, and the Gulf Coast lead recycling plant) and three new sources not 

modeled by Park.  Pertinent source information, including distances and station angles 

(measured at Sydney from due North), fuel type, emissions control devices, and 

emissions data are listed in Table 3. Stack and stack gas emission parameters listed in 

Table 4 were obtained from NEI.  
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Table 4. Stack information compiled from the NEI database.  
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Oil-fired Utility Plants.  Two oil-fired power plants, Manatee and Bartow, are located 

~40 km from Sydney (41 and 38 km), at station angles of 196o and 253o, respectively. 

SO2 emission rates from Manatee and Bartow (1100 and 1150 g/s) were comparable 

during the study period.  However Manatee is equipped with only a cyclone system to 

control PM emissions while Bartow's stacks have more efficient Electrostatic 

Precipitators (ESP).  Thus, annual PM emission rates reported for Manatee (9470 metric 

tons/year) are nearly 4-fold larger than those for Bartow (2600 metric tons/year).   

Coal-fired Utility Plants.  The remaining two utility plants, Gannon (1200 MW) and Big 

Bend (~1800 MW) are coal-fired units located 20 and 25 km from Sydney at station 

angles of 222o and 251o, respectively.  Gannon is equipped with an Electrostatic 

precipitator (ESP), while Big Bend is equipped with both an ESP and a wet (forced 

oxidation lime) scrubber.  Both plants burn bituminous coal. SO2 emissions from the 

Gannon plant (2667 g/s) were the largest of the 4 utility power plants, while those from 

Big Bend were the smallest (316 g/s) during the study period.   

Industrial Sources.  Cargill (235o; 20 km) is an ammonium phosphate fertilizer plant 

that burns sulfur via a double contact process to produce sulfuric acid with SO2 as a by-

product. NH3 is also used as a reactant to generate ammonium phosphates used as 

fertilizer. Much of the PM emissions are from phosphate rock dust and calciners and have 

elemental source profiles similar to soil: Si, Ca, Al, and Fe with enriched P 

concentrations (SPECIATE). Reported emission rates for Cargill vary, depending on the 

data source: SO2 and PM emission rates obtained from the Florida Department of 

Environment were ~3,400 (108 g/s) and 288 (9 g/s) metric tons/year, respectively, but 
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only 0.006 g/s and 1.7 g/s as reported by NEI. Reported emission rates of NH3 are 2.8g/s 

(NEI) and 6.1 g/s (TRI).  

     The Gulf Coast (GCR) plant (269o; 15km) recycles lead batteries to produce Pb ingots 

mixed with Sb, Al, Sn, or other metals. This facility operates two coke-fired blast furnace 

equipped with bag-houses for collection of PM emissions before discharge through 46 m 

stacks.  The blast furnace feeds molten lead into open topped molds.  Material captured 

by the baghouses is sent to a flash agglomeration furnace to be liquefied and the molten 

material poured into open crucibles and then crushed before being transferred to the blast 

furnace feed hoppers for lead recovery.   The cooled lead “buttons” are re-melted and 

mixed with additives, which include Sb, and Al depending on desired product 

composition. Its SO2 and PM emission rates are reported to be 487 (16 g/s) and 26 metric 

tons/year, respectively.  However, this plant is located only 15 km from Sydney and it is 

expected to be a substantial source of Pb, Al, and Sb.  

     Stack heights for both Cargill and Gulf Coast are 46 m, i.e., much lower than the 

Utility Plants, and at Gulf Coast, emission of fumes from molten metal pouring 

operations occurs nearly at ground level.   

     Ship refurbishing is a major industry in Tampa and two of the largest facilities are 

Tampa (260o; 22km) and International Ship (266o; 21km). These provide maintenance 

and repair of vessels of all sizes and encompass large scale fabrication of parts and 

assemblies involving steel cutting and welding, slag abrasive blasting (for removal of 

scale, rust, and paint from ship hulls and other steel surfaces), and surface coating. Tampa 

Ship is cited as one of the busiest shipyards in the Southeast. International Ship repairs 

and modifies large and small ships, motors, and boilers and in addition to 5 dry docks, 
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they maintain a 25,000ft2 steel fabrication area which is only partially covered. Blast 

cleaning is accomplished with a high-pressure (35,000 psi) water slurry laden with ‘Black 

Beauty’ slag abrasive (Reed Minerals).  This material contains 48.8% SiO2, 21% Al2O3, 

19.0% Fe2O3, 6.0% CaO, 1.7% KO2, 0.92% TiO2, 0.9% MgO, and 0.62%Na2O. For 

shipyards and other industrial sources, emissions are likely to be episodic in nature as 

opposed to continuous. Within a km of International Ship is a steel refurbishing yard, 

Tampa Steel (267o; 20km) which machines and sandblasts steel.  

     Two incinerators, namely McKay Bay (265o; 21km) and Pinellas County Refuse 

Recovery (PCRR) (257o; 45km) were included in the iPDRM. Of the two incinerators 

considered, PCRR is reported to have the largest emissions (NEI). Source profiles 

(SPECIATE) show significant abundances of Zn (13-21%) and Pb (8-15%) in incinerator 

emissions. A third incinerator, Hillsborough County Refuse Recovery (HCRR) (264o; 

11km) was not included in  the iPDRM because we saw no evidence of its influence on 

Sydney.  

 

2.2.   Meteorological Data 

     Meteorological data measured at Sydney was described by Park:  

“Two-minute averaged surface meteorological observations were available from a 

National Oceanic and Atmospheric Administration (NOAA) vertical profiling site at 

Sydney (NOAA Environmental Technology Laboratory). Thirty-minute averages of 

the NOAA wind speed and direction measurements made during the study period on 

13 May are shown in Figure 2. In the predawn hours, light winds blew from the 

southeast under stable atmospheric conditions. As the sun rose, the winds shifted 
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clockwise and developed into a southwesterly flow off of the Tampa Bay. The 

midday high temperature and low relative humidity averaged 33oC and 37%, 

respectively, with strong convective mixing. The mixing height reached an estimated 

2400 m by mid-afternoon under slightly unstable atmospheric conditions and with 

more westerly winds at 3–4 m/s off of Tampa Bay. Westerly winds continued 

through the evening, with lower wind speeds and stable atmospheric conditions 

developing within an hour after sunset. Sunrise was at 0541 Eastern Standard Time 

(EST), and sunset was at 0711 EST. No precipitation was recorded across the Tampa 

Bay area.”   

     In addition to surface wind observations, hourly winds and temperatures for a three-

dimensional modeling domain and hourly two-dimensional outputs of mixing heights and 

surface characteristics were also available from the CALMET model output at the geo-

coordinates of the Sydney site [Scire et al., 2000].  These parameters included the:  

Pasquill stability class, mixing height, coriolis parameter, friction velocity, Monin-

Obukhov length and convective velocity scale and were used in constructing upper air 

trajectories and in the micrometeorological parameterizations used in the GPM in both 

the original PDRM and in the iPDRM. 

 

2.3. Ambient Pollutant Measurements 

     Ambient concentrations of SO2 and NH3 were those obtained by Park from the 

BRACE database.  The 30-min averages of the native one-minute SO2 and 20-min NH3 

mixing ratios (ppb, shown in Figure 5) were used in the iPDRM.  
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Figure 5. Concentration-vs.-time-of-day profiles for SO2 and NH3 measured at Sydney 
(courtesy of BRACE database). 
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     In addition to gases, ambient PMfine aerosol was collected in successive 30-min slurry 

samples for an 8.5-hour period at Sydney using the University of Maryland Semi-

Continuous Elemental Aerosol Analyzer (SEAS; Park et al., 2005, Pancras et al., 2005, 

Kidwell and Ondov, 2001, 2004). Herein, the original eighteen samples were reanalyzed 

for the 11 elements (Al, As, Cd, Cr, Cu, Cu, Fe, Mn, Ni, Pb, Se, and Zn) originally 

determined by Park using multielement Graphite Furnace Atomic Absorption 

Spectroscopy with Zeeman background correction (GFAAZ, Pancras et al., 2004); and 14 

additional elements that were potentially useful as point source or background marine and 

dust aerosol tracers using a Thermo-Systems, Inc., X-series II Inductively Coupled 

Plasma Mass Spectrometry (ICPMS). 

 

     Our Thermo-Electron X-series II ICPMS is equipped with an off-axis quadrapole 

analyzer with resolution between 0.25 and 0.35 amu, a simultaneously gated analog 

Faraday cup and dynode-electron-multiplier-pulse-counting detectors, a reaction cell, a 

tunable hexapole stage for ion Kinetic Energy Discrimination (KED), and a concentric 

nebulizer with a Peltier cooled spray chamber.  All measurements were done in 

"Collision Cell Technology” (CCT) mode, wherein a mixture of 8% H2/He gas is 

continuously injected to reduce the kinetic energy of all sampled ions with indiscriminate 

collisions. It is more probable that collisions will be between interference ions (such as 

Ar+ ions from the plasma, or polyatomic ions with a greater surface area) than between 

analyte ions, thus reducing interferences to a greater extent than analytes; in effect, 

increasing the signal to background ratio and maximizing instrument sensitivity.  The 

KED stage was routinely set to -17 volts to block products of the gas collisions from 
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entering the quadrapole.  The X-series II instrument was controlled with the 

manufacturer’s “PlasmaLab” software version 2.4 (Thermo, Waltham, MA). Specific 

experimental operating conditions are given in Table 5.  

     Optimization of ion lenses, nebulizer flow, and response tuning were performed at the 

outset of every experiment using a tuning solution containing elements at low-, mid-, and 

high-mass ranges. The sampling rate was set via peristaltic pump at 1.0 mL/min, which 

corresponding to 2.2 minutes per sample, allowing 5 replicate determinations to be made 

using a sample volume of 2.2 mL. About 1% of the droplets are injected into the 

instrument.  An internal standard mixture containing of Sc (60ppb), Rh (10ppb), and 

Lu(10ppb), was added along with the sample via a  “Y” fitting fitted with a mixing coil 

and expansion tube (Thermo-Electron Corp., Waltham, MA).  Detector cross calibration 

was performed after approximately every three weeks of use using a solution (Thermo-

Electron Corp., Waltham, MA) containing isotopes of 59 elements with mass numbers  

ranging from 7 to 238, at concentrations ranging from 5-1250 ppb.  

     Instrumental detection limits for ICPMS and detection limits found in SEAS samples 

using the GFAAZ (Pancras et al., 2005) and ICPMS are listed in Table 6. Detection 

Limits for SEAS samples achieved with the ICPMS method were much smaller than 

those for GFAAZ for all elements except Se, which was the same.  Pb was 280 times 

smaller, Al, Cr, Cu, Fe, Mn, and Zn were all smaller by factors ranging from 10-71, and 

As, Cd, and Ni by factors from 4.5-10.    

     ICPMS analysis of National Institute of Standards and Technology (NIST) Standard 

Reference Material (SRM) 1640 “Trace Elements in Natural Water” showed agreement 

within 5% of certified and reference values for all ppb-level elements (Al, As, Ba, Ca,  
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Table 5. ICPMS operating conditions. 
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Table 6. Detection limits elements in SEAS samples using ICPMS and GFAAZ 
compared with reported detection limits from US EPA Speciation Trends Network 
Protocols. 
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Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, and Zn). A total 

dissolution experiment was performed with the ICPMS for yet-to-be-released NIST  

atmospheric fine particle Standard Reference Material, for which high-quality elemental 

constituent analyses are available from NIST. Percent recoveries were within ±7% 

(Table 7) for all elements (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, 

V, and Zn).  To investigate the capability of the ICPMS in analysis of a direct slurry, in 

which complications such as losses of particles to the walls of the sample vials and 

peristaltic pump tubing, and statistical sampling issues for discrete particles can occur, 

percent recoveries of direct slurry analysis were compared with total dissolutions of two 

mock slurries. Procedures for these experiments are outlined in Appendix B. The mock 

slurries consisted of (1) the same NIST atmospheric fine particle SRM diluted to a 

concentration anticipated to exist in a real SEAS sample, and (2) a pooled slurry of real 

SEAS samples containing highly refractory aerosol particles collected near Birmingham, 

AL. Results of these experiments are shown as percent recoveries of elemental 

concentrations obtained from direct slurry analysis from elemental concentrations 

obtained from a total dissolution of the slurry in Table 8.  Percent recoveries in the NIST 

slurry were within ±11% of total dissolution values for As, Ba, Ca, Cd, Cu, K, Mg, Mn, 

Na, Pb, Se, Sr, V, and Zn. Elements which exceeded this range included Al (-45%), Cr (-

35%), Fe (-30%), Ni (+23%), and Sb (-21%). Substantial fractions of the masses of these 

elements (Al, Cr, Fe, and Ni) are often associated with larger, difficult to dissolve 

particles. Percent recoveries in the pooled slurry were within ±12% of total digestion 

values for As, Ba, Cd, Cu, K, Mg, Mn, Na, Ni, Pb, Sb, Se, V, and Zn. Elements which  
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Table 7. Experimental results for ICPMS determination of total dissolution of the yet-to-
be-released NIST atmospheric fine SRM. 
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Table 8. Yields for determinations of elements in slurry samples by ICPMS. 
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exceeded this range included Al (-45%), Ca (-43%), Cr (-30%), Fe (-26%), and Sr (-

54%). These results suggest that direct analysis of SEAS samples will generate confident 

data (±10%) for most elements while percent recoveries for Al, Cr, and Fe are likely to be 

~55-75%. 

2.4  Modeling Methods  

     As mentioned above, the improvements to Park’s PDRM included: the calculation of 

trajectories to model plume centerlines, the addition of sources, the application of 

compositional information from CMB profiles to both condition χ/Q profiles and 

constrain solutions for emission rates, and the determination of background sources by 

including CMB terms into the model. The calculation of trajectories and off-axis 

distances (Y) are described below followed by the method of determining the background 

sources with the CMB model. The configuration of the iPDRM is described in section 

2.4.3, along with the hierarchical approach in which it was run.  

2.4.1.  Trajectory Construction and Trajectory-Related Parameters  

     For each source, trajectories were calculated every half-hour, for up to three heights; 

and Y, x’, and u were determined from the trajectories as described in this section.  

     Distance vectors were created for every half hour and plotted such that the xy 

coordinate of the end point of the previous vector is the coordinate of the beginning point 

of the next vector.       For each interval, the components of distances in the x and y 

directions are as follows:  

xdist = 1800 ut cos(θwind) 

   ydist = 1800 ut sin(θwind)  
(11) 



 

 34 
 

where θwind is the wind direction and ui is the wind speed in sampling interval t. The 

factor of 1800 is applied to convert from m/30 minutes to m/s.  A separate trajectory was 

constructed for each source, every half hour beginning at the source (origin (0,0)). 

Coordinates for Sydney were likewise referenced to the origin of each source using the 

station angle and the straight-line distance between the sampling site and each source. 

Examples of the trajectories calculated from Gannon as they approach Sydney are shown 

in Figure 6.    

On each trajectory, the point of closest approach, (xCA, yCA), was identified and the off-

axis distance between that point and Sydney (xSyd, ySyd) was calculated geometrically. As 

shown in Figure 7, the off axis distance, Y, is calculated from the component distances 

xcomp and ycomp. using equation (12).  

Y = √(xcomp
2 + ycomp

2)   (12)  

Because for each trajectory, both the closest approach and Sydney coordinates are 

referenced to the trajectory’s source, the component distances are simply: 

xcomp = xCA - xSyd    (13)  

ycomp = yCA - ySyd  

The plume transport distance, x’, was calculated as the sum of the direction vector 

magnitudes up until the point of closest approach. Plume transport time, t, was calculated 

as the sum of the number of direction vectors up to the point of closest approach. 

Average transport velocity, u, along the trajectory is simply the transport distance by the 

transport time. For trajectories where the point of closest approach fell in between 

direction vectors, approximations were made to the nearest 10 minutes (1/3 of the  
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Figure 6. Forward Trajectories of the plumes originating from Gannon at three different 
times: 11:30 (turquoise), 12:00 (purple), and 12:30 (gold). The points of closest approach 
to Sydney occurred: at 14:00 (A), 14:30 (B), and 15:00 (C). The off-axis distances (Y) 
and transport distances (x) were calculated from these trajectories. 
 

 

 

 

 

 

 

 



 

 
 

 

Figure 7. A plume centerline from the source of origin toward Sydney modeled using the 
head-to-toe alignment of wind direction vectors. Equations shown are used to calculate 
the off-axis distance, Y, between the point of closest approach and Sydney. 
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A plume centerline from the source of origin toward Sydney modeled using the 
toe alignment of wind direction vectors. Equations shown are used to calculate 

, between the point of closest approach and Sydney. 

 

A plume centerline from the source of origin toward Sydney modeled using the 
toe alignment of wind direction vectors. Equations shown are used to calculate 

, between the point of closest approach and Sydney.  
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vector). In cases where the point of closest approach for successive trajectories occurred 

at the same time, the smallest off-axis distance was used.  

2.4.1.1. Trajectories at different heights 

      As predicted by the power law, wind speed increases with height.  Thus for distant 

sources, we can expect to observe different plume arrival times for portions of the plume 

transported at different levels. However, differences in wind directions aloft are also 

likely and because of this, the aloft portion of a plume does not always exhibit a faster 

time of arrival.   This was the case in Tampa, as evidenced by Figure 8, wherein we plot 

plume trajectories for Big Bend beginning at 12:00 and 13:00 at both 100 and 500 m. For 

this reason, trajectories were calculated at up to three heights. Forward trajectories were 

calculated at the height of the surface wind measurements (10 m) and at two additional 

heights 100 m, and 500 m. The trajectories at 100 m were calculated using directions at 

10 m, but correcting for the increase in speed with height using the power law (see 

Appendix A).  The trajectories at 500 m were constructed using hourly CALMET wind 

data (Scire, 2000).  Thus 60 min intervals were used instead of 30 min. Ten and 100 m 

trajectories were calculated for all sources, however, 500 m trajectories were also 

constructed for the power plants, owing to their large effective stack heights (~500-   

1200 m).  

     An Ekman angle correction, θEkman, included by Park was a uniform 3.5o rotation 

toward a westerly flow to adjust surface wind directions to reflect wind angles at stack 

heights. We abandoned this correction, because consistent differences between 10 and 

500 m trajectories could not be distinguished, and because the PDRM adjusts the �/Q to  
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Figure 8.  Illustration of plume trajectories originating at Big Bend at 12:00 and 13:00 at 
heights of 100- and 500-m.  Plumes at different heights originating at the same time are 
observed to travel along different angles indicating a wind rotation aloft.  
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fit the ambient concentrations, it is not highly sensitive to small trajectory errors in Y. 

Values for Y, x’, and u were input into the GPM as described above.   In each case, a 

single trajectory profile was input into the PDRM.   For power plants, this consisted of 

the sum of �/Qtraj values calculated for the 100- and 500-m levels for each time interval. 

For the shipyard, emissions were so close to the ground that only the 10 m trajectory was 

used.  For all other (industrial) sources, the 100 m trajectories were used.  

 

2.4.2.  Estimation of the Background Sources  

     Park identified low concentrations at the beginning and end of the study period as 

background concentrations and linearly interpolated these for the intervening periods. 

The results were subtracted from the measured concentrations and the PDRM was run 

with the background-corrected concentrations. The background concentrations for both 

Park and this work are shown in Table 9.  

     Herein, the EPA CMB model (v 8.2) was run to estimate background contributions 

throughout the study period as described below. PM2.5 mass concentration measurements 

were not available for our study period. Instead, ambient mass was (crudely) estimated 

(Figure 9) as the sum of major ionic species (ammonium, sulfate, nitrate, and chloride) 

available from the BRACE database and used in the CMB model.  Seven generic sources 

included in the model were: a coal fired power plant, an oil fired power plant, an 

incinerator, a secondary Pb smelter, a steel sandblasting profile, agricultural soil, and sea 

salt, all obtained from the SPECIATE database.  Profiles for these sources are reproduced 

in Table 10.  The phosphate fertilizer plant could not be included due to collinearity of its 

profile with the coal source and to a lesser extent the background soil source.  Elements  
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Table 9.  Background concentrations (ng/m3) as predicted by Park and the iPDRM. 
Concentration profiles for iPDRM predicted soil and sea salt varied over the course of the 
study period and are listed as average values.  
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Figure 9.  PM2.5 mass concentration estimates-vs.-time-of-day profiles. PM2.5 mass 
concentration was (crudely) estimated as the sum of major ionic species (ammonium, 
sulfate, nitrate, and chloride) measured at Sydney. 
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included in the model were Al, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se, Na, V, and Zn.  CMB 

predicted and. observed fits are shown in Figure 10. Of these, Al, Fe, and Na were  

particularly well-fit. This was fortunate because the main objective of the CMB run was 

to obtain source contribution estimates (SCE) for soil (high abundances of Al and Fe) and 

sea salt (large abundance Na) background during the modeling period. Arsenic, Cu, Cr, 

Mn, Ni, Pb, and V profiles are fit with only minor deviations. Cadmium, Se, and Zn are 

not fit well, likely because literature source profiles were used instead of profiles 

representing the actual individual sources in the Tampa area. To minimize the effect of 

uncertainties in the background concentration estimates on the PDRM, the temporal 

profiles of the SCEs were smoothed by averaging the n-1th through n+1th value for each 

sampling interval.  Both the abundances and the smoothed SCE profiles were used 

directly in the iPDRM as described in section 2.4.3.4.  This is possible because their 

products have units of species concentration (Ci,R) as do the PDRM terms.  

Temporal SCE (ng PM2.5 /m
3) profiles are shown prior to smoothing (Figure 11) and 

after smoothing (Figure 11(A)).   
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Figure 10. Observed concentration-vs.-time-of-day profiles (hybrid dataset; blue) and 
those predicted (red) using the EPA Chemical Mass Balance v8.2 model.  
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Figure 11. Source Contribution Estimate (SCE) (ng total PM2.5 mass / m3)-vs.-time-of-
day profiles predicted by the CMB model for generic source types. The SCE for the soil 
source includes the smoothed profile (A) input into the PDRM.  
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2.4.3.  The iPDRM Configuration 

     The new model was configured as follows: 

#$�%�  �   � $&'''' �,� ·  �( )⁄ ��,��,-�.
J

�
�
  �    � ��,�

��

�
�K
 #LM;.O%�,�   �  ������� �,�         �6� 

where ��,� is the abundance of area source i (g species i / g total PM2.5 from source j) and 

#LM;.O%�,� is the source contribution of area source i (g total PM2.5 from source j / m3) in 

the sampling interval, t. The indices j = 1-9 represent the point sources (6 sources 

originally modeled by Park, plus the  two incinerators and the steel sandblasting source 

described above), and indices j = 10-11 represent the soil and marine backgrounds, 

respectively.  We denote the �/Q values output by the iPDRM as �/QiPDRM to differentiate 

them from �/Qtraj.  

     As done by Park, we sought a single average emission rate for each source and each 

species $&'''' �,�s , corresponding to the periods of influence indicated by the �/Qt profiles.  

Herein, solutions were likewise, sought for both ��,� and #LM;.O%�,�s for the background 

sources.  The premise for this approach is that both ��,�s and #LM;.O%�,�s more aptly 

describe area sources while the PDRM terms explain the point sources.    

     In both PDRMs, solutions for �/Qj,t s are also sought.  However, in Park’s model, the 

relative values of the �/Q solutions (�( )⁄ ��,�+,-�.) were fixed to those obtained by the 

GPM, i.e., only the magnitude of the profile was allowed to vary but not its shape, as 

constrained by  in Equation 4a.  As shown in Figure 3 and described in section 1.1.2, this 

led to poor matches between peak shapes for marker species and the predicted times of 

plume influence.   
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     In the ideal case, peaks revealed by marker species in the ambient time-series data are 

well resolved, and �/Qs are constrained by their shapes. Such was the case for Ni and V 

for Manatee, NH3 for Cargill, and to a lesser extent, Pb for Gulf coast.  For this reason, 

we configured the iPDRM to allow solutions for the �/Qj,t, to vary with sampling interval 

t  for V, Ni, Pb, and SO2, in an iterative process described below.  The SO2 

measurements, along with CEM-derived emission rates, provide accurate magnitudes for 

the �/Qs from the 4 utility sources, while V and Ni provide accurate �/Q profile shapes 

for the two oil-fired plants.    

     The above procedure was also applied to Pb and Zn and later to NH3 to improve 

profile shapes for Gulf Coast, the two incinerators, and Cargill.  As discussed earlier in 

this section, the practice allows information inherent in the shape to condition the �/Q 

profiles. 

     To run the iPDRM, both constraints and seed values are required for all values for 

which solutions are sought.  Initial seed values and constraints used herein and by Park 

and herein are listed in Table 11.   As indicated in this table, Park seeded the model with 

initial SO2 emission rates that were rough approximations of those determined from 

CEMs (used as initial values for the iPDRM) and stack volumetric flow rate data, and 

applied loose constraints to their solutions (Table 11).   Their constraints on solutions for 

the elements were, likewise loose, i.e., ranging from 0.0001 to 50 g/s for all sources.   
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Table 11. Constraints and initial “seed” values (IV) for SO2 (g/s) used in Park’s model 
and the iPDRM for the six major SO2 sources.  
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2.4.3.1.  Emission Rate constraints   

     In iPDRM, the CEM-derived SO2 emission rate averages were input and their 

solutions constrained to vary only ±5%, i.e., our rough estimate of 1 standard deviation of 

their uncertainties, as SO2 was viewed to be the most accurate and useful tracer for these 

sources.   Note that for a well resolved source (Manatee), �/Qs may be predicted to 

within the error of the ratio of the SO2 measurements made at the sampling site and 

source; i.e., Q2R0G; � 2R0G;  . In other cases there will be a deconvolution error, as was the 

case for other sources in Tampa.  Emission rate solutions for elements were constrained 

by an iterative and hierarchical process, as follows.   

     In the first iteration, the iPDRM was run with SO2 and the three best marker elements 

(mi,j), i.e.,  Ni, V, and Pb.  The latter were the most well-resolved and definitive marker 

species: Pb representing the battery recycling plant, and Ni and V representing the oil-

fired utility plants (Manatee and Bartow).  These marker species help to deconvolute 

these sources from others that concurrently influence the sampling site. For the first run 

and all subsequent iterations, lower bounds for Ni, V, and Pb were based on plant-

specific rates obtained from the National Emission (NEI) and Toxic Release (TRI) 

Inventories.  For all other elements, emission rate lower bounds (LB) were set to 0.  

Upper bounds (UB) for all elements were set to 5 g/s, i.e., values greater than could be 

expected for these elements.  In subsequent model runs, lower- and upper-bounds were 

further constrained using the results derived from the previous run.  Specifically, UBs 

were estimated by dividing the measured concentrations in each sampling interval by 

�/Qi,j determined in the previous model run, as the former represents the logical upper 

limit for the predicted concentrations.  Emission rate LBs were generally left unchanged 
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or set to reflect the abundance ratios (��,�)s as obtained from the SPECIATE CMB 

profiles.  Abundance profiles for all sources contained V, Ni, and Pb, and therefore ER 

LBs were obtained by multiplying the emission rates for these marker elements ($&''''F�,	) 

predicted in the previous model run by the appropriate ratio (
S�,	ST�,	 ) in the abundance 

profile.  This is: 

�$&UV��,� �  ��,��F�,	  $&F�,	                             �7� 

     The resulting values were reduced by a factor of ~3 to prevent solutions from being 

too restrictive owing to the known inaccuracy of the CMB Abundance profiles. It was 

important when developing these constraints to guide the model towards a reasonable 

solution, but care was taken not to restrict any apportionment without a reasonable basis. 

 
 
2.4.3.2.  ����/Q constraints   
 
     For each of the nine point sources, initial �/Qi,j estimates were calculated using the 

GPM module as described by Park, except that Y, x, and u were determined from the 30- 

or 60-minute trajectories as described above.  In the first iteration these were constrained 

by factors of 0.1 to 2 as done by Park.  For the two background source terms, initial ��,� 

and source contributions estimates (#LM;.O%�,�) were those used in and predicted by, 

respectively, the CMB analysis (section 2.4.2.).  Lower bounds and upper bounds for 

��,�s were derived from the uncertainties for each species in the source profiles as 

reported in SPECIATE.  Specifically, 1σ, was subtracted or added to the reported value.  

These same bounds were used in all model runs.   
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2.4.3.3.  Scaling of Input Concentrations    
 
     Ambient concentrations of all species used in all PDRM runs were scaled to prevent 

preferential fitting of species with higher concentrations, for which residuals would 

otherwise dominate the minimization of � 2 (Equation 5). This differed from Park’s 

approach in that �/Qs were derived solely from the SO2 data and then used as fixed 

constants in a subsequent run in which emission rates for elements were determined.  

Essentially, we did not want to ignore the information afforded by the other species, 

especially Ni, V,  Pb and NH3, so the scaling factors were selected with resolving power 

in mind as well. The scale factors used for each element are shown along with its 

resulting maximum value in Table 12. For the first run, an SO2 scaling factor of 0.001 

was used to give a maximum scaled SO2 concentration of 107. This was adjusted for 

subsequent iterations to 0.0001 and 10.7, respectively, in order to guide the model to 

preferentially minimize residuals for tracer species. All other scaling factors remained 

consistent throughout the iterative runs.  

 

2.4.3.4.  Hierarchical Approach. 

      The species discussed above were applied in a hierarchical manner, beginning with 

the most trustworthy data and sources. For each model run, the results from the prior runs 

were tightly constrained, and additional elements and sources were included in order to 

guide the modeled solutions based on the best information available. Details from the 

stepwise “hierarchical” approach used are represented in the flow chart in Figure 12 and 

described in detail below:  
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Table 12. Scaling factors applied to species concentrations in order adjust the residual 
size for preferential fitting of species. Resultant maximum scaled concentrations are also 
listed.   
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Figure 12. Flow chart showing our hierarchical steps with input constraints and output 
solutions.   
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Step 1. In this step, �/Qtraj for the 4 power plants and Gulf Coast were constrained from 

0.1-2 times their input value as described above. Excursions in observed NH3 

concentrations closely correlate with the �/Qtraj profile calculated for Cargill (see  

Figure 16c). Therefore, solutions for �/QiPDRM values for Cargill were constrained to 

within 10% of the values predicted by �/Qtraj, to preserve its shape.  However, NH3 was 

not included in this iteration because of its high background from livestock and other 

sources in the area.  Also, as a water soluble and reactive gas, its chemistry prevents it 

from being a conservative tracer.  Whereas SO2 emission rates were tightly constrained 

for power plants, more relaxed lower and upper bounds (0.005 to 500 g/s) for solutions 

for Cargill and Gulf Coast were applied in this run owing to the availability of only 

annual emission rate estimates, instead of contemporaneous values. 

In order to prompt the model to apportion Ni and V to Manatee and Bartow, lower 

bounds for these elements (0.03 (Ni) and 0.1(V); 0.02 (Ni) and 0.003 (V) g/s, 

respectively) were set at a tenth of their NEI predicted emission rates. We expected 

significant amounts of Pb emissions from Gulf Coast, so the lower bound for Gulf 

Coast’s Pb emission rate was increased to a third of its NEI predicted emission rate, i.e., 

at 0.003 g/s.  

The output �/QiPDRM values for the power plants were considered to be accurate and were 

input into the remainder of runs. Also useful for use in subsequent iterations were the 

predicted emission rates. These were not considered highly accurate because all of the 

sources had yet to be included, but they represented refined guesses.  

Step 2. In the second step, �/Q solutions for Gulf Coast and the two incinerators were 

constrained between 0.1-2 times the input �/Qtraj values, while the �/Q solutions for the 
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power plants were constrained between 0.95-1.05 of the �/QiPDRM values predicted in the 

first iteration. The �/Q solution for Cargill was again constrained as described in the first 

iteration. Ambient concentrations of Pb, Al, and Zn were included along with SO2, Ni, V, 

and Pb to aid in the deconvolution of Gulf Coast and the incinerators. Constraints placed 

on emission rates (especially the lower bounds) for this run (Table 13) were developed to 

guide the model to apportion Zn to the incinerators and Pb to Gulf Coast and the 

incinerators. Constraints placed on emission rates of Ni, Pb, V, and Zn from the power 

plants were estimated from the output emission rates of the first run, literature source 

profile ratios, and the appearance of the fit (i.e. Manatee emissions were more tightly 

constrained because it is an isolated source). Al emission rate solutions were constrained 

widely from 0 to 5 or 10 g/s only to limit the model run time. 

Step 3. In the third step, for Cargill were constrained from 0.5-1.5 of its �/Qtraj values and 

the SCE values (discussed in the “Estimation of Background Sources” section) for the 

soil source were constrained between 0.8-1.2 of the input smoothed SCE profile. The �/Q 

solutions for the power plants were constrained as described in the second iteration. For 

Gulf Coast, McKay, and PCRR, �/Q solutions for the initial values were those obtained 

from the second iteration and the constraints applied were from 0.85-1.15. Ammonia 

(NH3) was included along with the elements included in the second iteration. Emission 

rate constraints for NH3 were as follows: power plants: 0-100g/s; Cargill: 2-1000g/s; Gulf 

Coast and the incinerators: 0-1 g/s; and the abundance of the soil source: 1-200.  

These constraints were chosen such that the lower bounds were elevated for Cargill and 

the background source to guide the model to apportion NH3 to them (Soil would not 

contain NH3, but NH3 had a large background concentration).  
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Table 13. Emission rate constraints (g/s) used for Step 2.  
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Step 4.  In the fourth step, �/Q solutions for the Shipyard source were constrained 

between 0.1-2 of its �/Qtraj values. Initial guesses for �/Q solutions for the power plants, 

Cargill, and Gulf Coast and the incinerators were those determined in the 3rd iteration and 

these were constrained to lie between 0.95-1.05 (power plants), 0.9-1.1(Cargill), and 

0.85-1.15 (Gulf Coast and the incinerators).  

The SCE values for the soil source were constrained as described above. Ambient 

concentrations modeled were SO2, NH3, Ag, Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, 

Se, V, W, and Zn. Emission rate constraints for the new elements included were loosely 

set to 0 – 5 g/s, while the constraints for Fe emission rate of the Shipyard source were set 

from 0.5-5g/s. 

Final Step. The SCE for the Sea Salt source was input and constrained (0.8-1.2) in 

addition to the �/QiPDRM values for all other sources as described in the fourth iteration. 

Ca, Mg, and Na were included to the element set used in fourth iteration. Constraints for 

these elements were initially loose for all sources (0-10g/s), with constraints for the Sea 

Salt source reflecting uncertainties in its abundance reported in literature for Ca, Mg, and 

Na (listed in Table 13) . Upper bounds for all other elements were set as 0.001 as they 

are reported to be < 0.1% of the chemical composition of sea salt.  

Once all of the sources had �/QiPDRM or SCE values determined, the output emission rates 

were evaluated and compared with literature source profile abundances and elemental 

ratio. Constraints were added to emission rates as needed to improve the agreement with 

literature source types, keeping in mind that variation between individual sources and 

literature reported generic source types is expected. Final emission rate constraints are 

listed in Table 14.  
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3. Results and Discussion  

     The results of the Analytical analyses are discussed in the following section, 3.1, 

followed by the modeled results in section 3.2.  

 

3.1.  Analytical Results 

     The results of the ICPMS analyses along with Park’s GFAAZ results are shown in 

Figure 13. For 5 elements analyzed with GFAAZ and reanalyzed with ICPMS, results 

agreed to within their uncertainties.  However, for Al, Fe, As, and Cr, and Cu, ICPMS 

results were often 1.2 to 2-fold greater than those determined by GFAAZ. These 

differences are attributed to the more rigorous sample heating procedures before analysis 

with the ICPMS, the small statistical sampling of suspended particles (which is always a 

concern for GFAAZ analysis), and the slow leaching of particles stored in the slurry over 

long periods of time.  

For these reasons, a hybrid dataset was constructed for modeling. ICPMS concentrations 

were preferably used when possible; however, weighted averages of the GFAAZ and 

ICPMS concentrations were used to replace GFAAZ data after scaling the former to 

match the latter. Uncertainties in the resulting dataset were the larger of i) the weighted 

average of the individual uncertainties in each pair of concentrations and ii) the 

difference between the two values, expressed as 1σ. We argue that the difference between 

pair amounts to 2σ and, therefore, 1σ values were estimated at one of half of the 

difference. The resulting finalized observed concentration dataset used in the model runs 

are shown later in Figure 14. 
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Figure 13.  Concentration-vs.-time-of-day profiles for elements in ambient air samples 
by Graphite Furnace Atomic Absorption Spectroscopy (GFAAZ) (blue) and Inductively 
Coupled Plasma Mass Spectrometry (ICPMS). Concentration profiles for 11 additional 
elements determined with ICPMS are shown.  
 

 



 

 61 
 

 

 

Figure 13.  continued from previous page.  
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      In addition, six discrepancies were identified and resolved as follows:  

1. Cd was not well detected by GFAAZ, and was deemed unreliable by Park. The  

ICPMS was substantially more sensitive for Cd and produced results with much smaller 

uncertainties.   Cd is not volatile or otherwise subject to losses upon storage.  The ICPMS 

dataset was used.   

2. A large excursion in Al appeared at 20:30 in the GFAAZ data set, but not in the 

ICPMS data set.  Al is typically associated with large, difficult to dissolve alumina-

silicate dust particles and generally better-measured by ICPMS coupled with our more 

aggressive sample preparation method. This excursion was ignored by Park, a decision 

which is now supported by the ICPMS data.  

3. A sharp peak in As was detected at 13:00 in the GFAAZ data set, but not in the 

ICPMS data set. This peak was predicted to coincide with the period of influence of the 

plume from the Big Bend by Park, but not by the trajectory analysis method used herein. 

It is possible that As was lost during storage and in acidic solutions and that the peak was 

due to pressure treated lumber burning as described by Pancras et al., 2005. There is no 

known source to the Southwest of the site and such a source would be difficult to model. 

Therefore, the ICPMS data were used.  

4. ICPMS results were low for all of the 14:30 samples. We attribute this to 

differences in efficiency of sample aspiration between GFAAZ and ICPMS analyses.  In 

this case GFAAZ probably sampled one or more insoluble particles not aspirated by 

ICPMS.       

     As noted above, we have observed evidence of settling of larger particles in the 

ICPMS sample vials.  This appears to have created dips most noticeably in Ag, Al, Ba, 
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Ca, Cd, K (not included in model run), Mg, Mn, Na, Pb, Sb, Sr, and W, and to a lesser 

extent in As, Cu, Ni, Se, V, and Zn. Inspection of Figure 13 suggests that these “dips” 

appear artificial.  Therefore, the ICPMS value at 14:30 was corrected to the GFAAZ 

value by interpolation of the surrounding data points at 14:00 and 15:00 in the latter and 

scaling them to the former. 

5. A very large peak in Fe appears at 15:00 along with smaller but distinct peaks in 

Mn and Cr.  Park attributed the Fe, but not Mn and Cr, to contamination and removed 

excess Fe from this peak.  However, reanalysis with the ICPMS confirmed the same 

excursion at 15:00, in Fe, Cr, and Mn. Because elevated levels of all three elements occur 

at 14:30 and 15:30 directly before and after the excursion, it was deemed not likely to be 

isolated sample contamination.  After correction of Fe, Cr, and Mn for background (based 

on the previous sampling interval), the composition was seen to correspond to low alloy 

steel.  The fingerprint of the resulting composition (Cr/Fe = 0.009, and Mn/Fe = 0.007) is 

consistent with the average composition (Cr/Fe = 0.008; Mn/Fe = 0.008) reported for an 

average of more than 1000 samples of low alloy steel (MatWeb, 2009). As described 

above, plumes from two large shipyards and a steel machining facility were predicted to 

influence the site during the 15:00 sampling period. All three sources perform 

sandblasting, welding, and machining of steel and are likely to be non-continuous 

regarding their emissions. 

6. In the 19:00 sample, large excursions appear in the ICPMS data for Zn with Cu, 

and Cr, but are not present in the GFAAZ data for these elements.   These were 

accompanied by substantial excursions in K, Ca, and Na, and to a lesser extent V, Sr, Ba, 

and possibly Sb, all elements not determined by GFAAZ.  All values have large 
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uncertainties associated with them. The corresponding sample had little remaining 

volume when it was reanalyzed, and we attribute this behavior to the aspiration of one (or 

possibly a few), large, particle(s).  

     When ICPMS concentrations (ppb (mass/slurry volume) are converted to ng/m3, they 

are multiplied by the total volume of slurry collected. Thus, erroneously high 

concentrations will result if particles settle during storage or are trapped in the meniscus 

owing to surface tension (may be likely for contaminants), resulting in large apparent 

mass/volume concentrations when subsequent analyses are performed after the total 

volume is reduced by prior analyses. Also, of the elements measured, the major 

constituent is Zn (134 ng/m3). The presence of such a large amount of Zn might normally 

be attributed to trash incinerators as these typically emit particles containing up to 20-

50% ZnCl2 by mass (Ondov and Wexler, 1998). However, Zn in this form is quite 

soluble, and wouldn’t have been missed by GFAAZ. For this reason, the GFAAZ data, 

after scaling to the adjacent ICPMS values as described above, was used.  

 

3.2. Discussion of Modeling Results 

     The χ/Q profiles are described in the section immediately below. χ/Qtraj profiles are 

compared to the modeled χ/QiPDRM profiles in Figure 14, to Park’s χ/QMet profiles in 

Figure 15, and to selected ambient species concentration profiles in Figures 16a, b, c, 

and d. The predicted species concentration profiles resolved by source are shown with 

the ambient observed concentration set determined as described in the Analytical Results 

section (3.1) in Figure 17. The fits between these data and the goodness-of-fit statistics 

(Table 15) are discussed in section 3.2.2, and the iPDRM predicted emission rates 
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(Table 17) are discussed in section 3.2.3. In section 3.2.4., the iPDRM predicted 

emission rates are compared with published NEI and TRI emission rates.  

 

3.2.1. Source χ/Q profiles and Discussion 

     Manatee. As shown in Figure 14, the �/Qtraj profile for Manatee contains a single 

excursion that has already begun at 12:00, peaks at 12:30 (1.2·10-8 s/m3), and departs at 

13:00. The �/Qtraj profile is only calculated from 500-m trajectories in which emissions 

from Manatee from 9:00-10:00 have an average transport velocity of 4.1 m/s for the 

trajectory predicted to reach the sampling site at 12:30. The 100-m �/Q profile was not 

used for the following reasons. The 100-m plume beginning at Manatee between 6:30-

7:00 is predicted to influence Sydney at 13:00. The trajectories used for these �/Q values 

encompassed early morning wind velocities < 1.0 m/s, i.e. for which the power law 

adjustment does not apply (Park, 2005). The early morning atmosphere was stable 

(Pasquill Stability class: E), thus downward mixing was limited at this time such that the 

trajectory did not carry a significant portion of the Manatee plume. By the time the 

atmosphere destabilizes at 7:30 (Pasquill stability class: C), the trajectories carry the 

plume too far to the South of Sydney to have any influence.  

Figure 15 shows that Manatee �/Qtraj profile peaks (12:30) a half hour later than Park’s 

�/QMet profile (12:00) which is in better agreement with ambient concentration profiles 

for Ni and V (Figure 16a) and explains the over-predictions at 12:00 and under-

predictions at 12:30 made by Park for SO2, Al, Cu, Fe, Ni, Pb, and Zn. The �/QiPDRM 

profile is relatively unchanged from the �/Qtraj profile (Figure 14), suggesting the GPM 
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Figure 14. Comparison of �/QiPDRM profiles (red) and the input �/Qtraj profiles (blue). 
The �/QiPDRM profiles differ from the �/Qtraj profiles due to “conditioning” of the former 
with the “shapes” of tracer species concentration profiles.  
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Figure 15. �/Q-vs.-time-of-day profiles as calculated by the Gaussian plume module by 
Park (�/QMET, black) and trajectory analysis (�/Qtraj, blue). �/Q profiles from 100- and 
500-m used to calculate the �/Qtraj profiles for the power plants are shown in grey (The 
500-m �/Q profile is the same as the �/Qtraj profile for Manatee).   
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Figure 16a, b, c, & d. Concentration profiles of selected tracer species vs. χ/Qtraj profiles. 
All datasets shown are normalized to their maximum values. 
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using trajectories was an accurate assessment. The magnitude of the �/QiPDRM at 12:30 is 

1·10-8 s/m3 is relatively unchanged from the �/Qtraj peak (1.2·10-8 s/m3). As expected, the 

magnitude of this value is smaller than those predicted for nearby sources (15-25km) and 

is consistent with the maximum �/QiPDRM values of Bartow and PCRR (0.6 ·10-8 and  

0.2 ·10-8 s/m3), both of comparable distance (~40km) to Sydney. 

      Big Bend. Big Bend’s �/Qtraj profile shows its plume arriving at 13:00, peaking at 

13:30 (3.5·10-8 s/m3), and departing at 15:00. The �/Qtraj profile input into the iPDRM is 

the sum of 100-m and 500-m �/Q profiles.  The 100-m �/Q profile predicted for Big 

Bend’s plume shows its plume arriving at Sydney at 13:00 with a maximum influence 

there at 13:30.   The estimated time of origin is from 10:00-11:00, and the average 

transport velocity was 2.5m/s. During this period, the atmosphere was unstable (Pasquill 

class: B) and the plume was expected to mix down into the 100-m layer.  The 500-m 

profile for the Big Bend plume was predicted to arrive at 13:30 with a maximum 

influence at 14:00.   The estimated time of origin and average transport velocity were 

12:00 (~11:30-12:30) and 4.1m/s, respectively.  The two profiles overlap considerably, 

such that the sum of both the 100m and 500m profiles peaks at 13:30. The contribution of 

the 500-m profile was 33% at 13:30 and 75% at 14:00.  

      The �/Qtraj profile for Big Bend also peaks (13:30) a half hour later than predicted by 

Park’s χ/QMet profile (13:00) (Figure 15). This difference in time correlates better with 

the ambient SO2 concentration profile (Figure 16b.), and addresses the under-predictions 

in Al, Cu, Fe, and Pb from 13:30-14:00 obtained with Park’s model. The magnitude of 

the �/QiPDRM (Figure 14) at 13:30 is 7·10-8 s/m3 which is increased by a factor of 2 from 

the �/Qtraj profile at this time.  
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     Gannon. The �/Qtraj profile for Gannon predicts the plume arrival at 14:00, significant 

excursions at 14:30 (2.5 ·10-8 s/m3), 16:30 (5 ·10-8 s/m3), and 18:30-19:00 (4.5 ·10-8 s/m3), 

and departure at 20:00. This profile is the sum of 100-m and 500-m �/Q profiles. The 

100-m �/Q profile predicts plume arrival at 14:00, a relative maximum at 14:30 which 

increases to another maxima at 16:30, and a main excursion between 18:30-19:00 before 

departure at 20:00. The average transport velocity is 2.7m/s and the estimated time of 

origin was from 11:00-17:30. The 500-m �/Q profile arrives at 15:30, has maximum 

influences at 16:30 and 19:00 with a relative minimum at 18:00, and departs at 20:00. 

The estimated period of origin for the 500-m plume is from 14:00-18:00 with an average 

transport velocity of 4.0m/s. At Sydney, the contribution of the 500-m trajectory �/Q 

value was 34% at 16:00; 48% at 16:30; 36% at 17:00; and 27% at  19:00.  

     The �/Qtraj profile for Gannon arrives (14:30) a half hour later than predicted by 

Park’s χ/QMet profile (14:00) along with significantly greater values (14-77%) from 

14:30-16:30 (Figure 15). These differences correlate better with the ambient SO2 

concentration profile as observed in Figure 16b. The �/QiPDRM profile (Figure 14) is 

similar in shape to the �/Qtraj profile, values from16:00-16:30 and between 18:00-19:00 

the iPDRM adjusted its values by factors from 0.8-0.95 in order to fit the SO2 profile 

better. The magnitude of the �/QiPDRM at its peak at 16:30 is 4·10-8 s/m3.  

      Bartow. The predicted �/Qtraj profile for Bartow arrives at 15:30, has a relative 

maximum from 17:00-19:00 (~2.5·10-8 s/m3) which increases to a peak at 19:30 (3.5·10-8 

s/m3) and departs at 20:30. This profile is the sum of 100-m and 500-m �/Q profiles; 

however, the magnitude of the 100-m �/Q is much greater than the 500-m �/Q profile and 

therefore has virtually the same shape as the summed �/Qtraj profile. The 100-m Bartow 
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plume influencing Sydney is estimated to have originated from 10:30-17:00 with an 

average transport velocity of 2.8m/s. The 500-m �/Q profile arrives at 15:30, has a 

maximum influence from 17:00-17:30 (0.003·10-8 s/m3), and departs at 20:00. The 

contribution of the 500-m �/Q value to the overall �/Qtraj was only 12% at 17:00 and 10% 

at 17:30, and for all other periods <7%. 

The �/Qtraj profile begins an hour and a half later than Park’s �/QMet profile predicted 

(Figure 15). Bartow (station angle: 253o) is more significantly affected by the wind shift 

than Gannon (station angle: 251o) because of its large source distance (38km). When the 

wind shift occurs at 12:30, westerly winds are sustained long enough to bring the plume 

from Gannon (20km distant) to Sydney by 14:30, however, the Bartow plume had a 

larger distance to cover and therefore a longer transport time and is not predicted to reach 

Sydney until 15:30. The �/Qtraj profile aligns much better with broad excursions in Ni and 

V from 15:30-20:00 (Figure 16a.). The �/QiPDRM (Figure 14) profile is ~0.1 times the 

magnitude of the �/Qtraj profile and its peak value of 0.3·10-8 s/m3 occurs at 17:30. It is 

feasible that more dispersion than the GPM estimated occurred during the long plume 

transport during unstable conditions.  

     Cargill. Cargill’s predicted �/Qtraj profile arrives at 13:00, peaks at 14:00 (5 ·10-8 

s/m3), and departs at 14:30. Cargill’s plume arrives again at 20:00 and has a maximum 

peak at 20:30 (39·10-8 s/m3). The profile is calculated from 100-m trajectories with 

estimated emission origins from 10:30-12:00 and 18:30-19:00, at average transport 

velocities of 2.6 and 2.9 m/s, respectively. At the end of the study period: 20:00-20:30, 

wind directions shift toward Cargill and its influence on conditions at Sydney are large, 
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possibly due in part to stabilizing atmospheric conditions and low effective plume 

heights. 

Comparison of the �/Qtraj profile with Park’s �/QMet profile (Figure 15) shows that both 

have a minor excursion from 13:30-14:00, but the �/Qtraj profile has only a large 

excursion from 20:00-20:30, and does not have the peak at 19:30 as Park’s profile does.  

The agreement between the �/Qtraj profile and the ambient NH3 concentration profile 

supports the �/Qtraj values, as Cargill is reported to be a significant NH3 source. The 

�/QiPDRM and the �/Qtraj profiles are very similar (Figure 14).  

     Gulf Coast. The �/Qtraj profile for Gulf Coast arrives at 14:00, peaks from 14:00-

15:00 (5 ·10-8 s/m3), peaks at 18:00 (3 ·10-8 s/m3), and departs at 19:00. The profile is 

calculated from 100-m trajectories with estimated emission origins from 12:00-18:00, 

and an average transport velocity of 2.8 m/s.  

     The �/Qtraj profile predicts that the Gulf Coast plume arrives a half hour earlier than 

Park’s �/QMet profile (Figure 15). As shown in Figure 16d, this earlier arrival time 

correlates better with the ambient concentration profiles for Ag, Al, Pb, and Sb, all of 

which Gulf Coast is reported to emit (see Tampa sources section). This shift, in 

conjunction with the �/Qtraj profile shifts for Big Bend and Gannon, help to address the 

under-predictions in Al, Cu, Fe, and Pb from 13:30-14:00 obtained with Park’s model. 

     The magnitude of the �/QiPDRM profile (2.4·10-8 s/m3) is ~2-3 times less than the �/Qtraj 

profile for all values (Figure 14), and the �/Qtraj profile peak at 18:00 is not present in the 

�/QiPDRM profile. We can conclude from the species concentration data that if Gulf Coast 

was responsible for Ag, Al, Pb, and Sb concentrations from 14:00-15:00, then it is not 
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influencing Sydney at 18:00 despite what is predicted in the �/Qtraj profile. This is either 

due to an error in the wind trajectory or a change in the emission rate from this source.  

     The “conditioned” changes in the �/QiPDRM profile shape take this conclusion into 

account and are primarily dependent on the shape of the ambient Pb and Zn concentration 

profiles, as Pb was apportioned to this plant and Zn was not. The ratios of these two 

elements were used to deconvolute Gulf Coast from the incinerators as described in the 

Second iteration.  

     Thus, the “conditioning” of the �/QiPDRM profiles prevented the large over-predictions 

seen in Park’s model (i.e. over-predictions at 18:00 and 19:00 for Al, Cu, Fe, and Pb).  

     McKay. The �/Qtraj profile for McKay arrives at 14:00, peaks from 14:30-15:30 

(~4·10-8 s/m3), has peaks at 16:30 (2.2·10-8 s/m3) and 18:00 (2.5·10-6 s/m3), and departs at 

19:30. The profile is calculated from 100-m trajectories with estimated emission origins 

from 12:00 to 18:00, with an average transport velocity is 2.8 m/s.  

     The �/QiPDRM profile for McKay predicts the plume to arrive at 14:00, but does not 

peak until 15:30, the maximum peak occurs at 16:30 (2·10-8 s/m3), with a secondary peak 

at 18:30 (Figure 14).  As was the case with Gulf Coast, changes made by the iPDRM to 

the input �/Qtraj profile were most dependent on the shape of the ambient Pb and Zn 

concentration profiles, as both elements are apportioned to this source. The inclusion of 

the incinerators, McKay and PCRR, improved the significant residuals in Zn observed for 

Park’s results.  

     PCRR.  The �/Qtraj profile for PCRR arrives at 16:30, peaks from 17:30-18:00 (2.4 

·10-8 s/m3), and departs at 20:30 (Figure 14). The profile is calculated from 100-m 
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trajectories with estimated emission origins from 11:00 to 16:30, with an average 

transport velocity is 2.8 m/s.  

     As observed in Bartow (also ~40 km from Sydney), the �/QiPDRM profile was ~0.1 

times the input �/Qtraj profile which is attributed to the long plume transport distance 

during unstable atmospheric conditions. The �/QiPDRM profile peaks at 17:30-18:00 

(0.25 · 10-8 s/m3).  

     Shipyard. The predicted �/Qtraj profile for the Shipyard arrives at 14:30, peaks at 

15:00 (8 ·10-8 s/m3), has relative peaks at 18:00 and 19:00, and departs at 20:00 (Figure 

14). The profile is calculated from 100-m trajectories with estimated emission origins 

from 12:00-18:00, with an average transport velocity of 2.8 m/s.  

     The shipyard is likely an intermittent source and potential plumes from this location 

are likely to influence Sydney at 15:00 when peaks in Cr, Fe, and Mn concentrations are 

observed. The magnitude of the �/QiPDRM profile is ~2-4 times less than the input �/Qtraj 

profile and the resulting peaks at 15:00 (3.2·10-8 s/m3) and 17:00 are conditioned as the 

result of ambient Fe, and to a lesser extent, Cr and Mn concentration profiles.  

     Background Soil.  The input SCE profile for soil peaks from 12:30-13:00 (3.3 · 10-8 

g/m3) then decreases throughout the study period and has a relative peak from 19:30-

20:00. The SCE profile was only allowed to vary from 0.8-1.2 times its input value in the 

iPDRM, thus the shape of the output SCE is similar, with a maximum value at 13:00 

(3.7 · 10-8 s/m3) (Figure 14). The changes that occur are dependent on the Al, Ca, and Fe 

concentration profiles as they are the most abundant species.  

      Sea Salt.  The input SCE profile for sea salt closely resembles the ambient Na 

concentration profile. Na is by far the most abundant species (excluding anions of Cl-, 
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and SO4
-2) in sea salt and sea salt is typically responsible for nearly all of the airborne Na 

in the Tampa Bay area (Poor, private communication)  The profile begins the study 

period (12:00) at ~120 · 10-8 g/m3, dips from 13:00- 16:30, peaks at 140 · 10-8 g/m3 at 

19:00, then sharply decreases, with a relative peak at 20:30, before its lowest value of 

30 · 10-8 g/m3 at the end of the study period (Figure 14). As was the case with the soil 

source, the input SCE values were only allowed to vary from 0.8-1.2 times their input 

values, thus the modeled output SCE profile only differs with a couple of minor peaks at 

12:30, 14:00, and 17:00, and a sharpened maximum peak at 19:00 (160 · 10-8 g/m3). 

     Tampa Armature Works. The observed Cu profile has excursions at 14:00 and 

15:30 of which are not consistent with any other species concentration profile. Tampa 

Armature Works is reported to operate a Cu reclamation incinerator and its �/Qtraj profile 

has peaks at 14:00-15:00, that could account for the observed excursions. However, 

outside of expecting that Cu is abundant in emissions from a Cu reclamation incinerator, 

no other information could be found on this source or generic source type and it was 

decided to exclude it from the model.  

     As a result of the changes in the shapes of the �/Qtraj profiles and conditioned 

�/QiPDRM profiles,   the iPDRM predicted a major reapportionment of SO2. The times of 

�/Qtraj profile peaks for Manatee, Big Bend, Gannon, and Cargill correlate to peaks 

observed in the observed SO2 profile. The SO2 concentration of 0.7 ppb at 12:00 

increases to 5 ppb at 12:30 (Manatee �/Q peak), then to 10.6 ppb at 13:30 (Big Bend �/Q 

peak), to a substantial increase to 30.9 ppb at 14:30 which fluctuates from 29 - 41ppb 

until 19:00 before decreasing at 19:30 to 13 ppb (Gannon �/Q peak). From 20:00-20:30, 

the SO2 concentration increases slightly from 4.0 to 4.6 ppb (Cargill �/Q peak).  
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     As shown in Table 15, Park predicted significant SO2 residuals from 13:00-14:00: 

+32%, -35%, +44%, respectively. Our predicted SO2 residuals showed substantial 

improvement for that period: +13%, -11%, and +6%. Because of the half hour delay in 

Gannon’s �/Qtraj profile, the majority of the observed SO2 is apportioned to Gannon (83-

99% from 14:30-19:30) in our model. Park had apportioned 50-59% of observed SO2 to 

Gulf Coast and 31-47% to Gannon from 14:30-15:30. Our model apportions 1-2% of SO2 

to Gulf Coast and 83-90% to Gannon at  

this time. This is a substantial reapportioning of SO2. This is a reasonable result as 

Gannon is the largest SO2 emitter in the region and has reported SO2 emission rates over 

150 times those reported for Gulf Coast.    

     Regarding the differences between the �/Qtraj profiles and the �/QiPDRM profiles, it 

appears that those for Manatee, Gannon, and Cargill are the most similar. The profile 

shape for Big Bend does not change but it is increased by a factor of 2. We expect that 

aloft sources with high effective heights (~400-1200 m) would be more likely to disperse 

in a Gaussian manner and would thus, be more accurately modeled with the GPM.  

     Sources with shorter stacks, excepting Cargill, showed significant differences between 

their �/Qtraj and the �/QiPDRM profiles. We hypothesize that because these emit closer to 

the ground (effective heights from 50-150 m) are closer to dispersive surface roughness 

elements. 

     This is likely to accelerate dispersion and larger σy and σz values have been reported 

for plumes in urban environments, i.e., with larger surface roughness elements than in 

rural settings (McElroy & Pooler, 1968; McElroy, 1969; Shum, Loveland, & Hewson, 

1975).  
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Table 15. Fraction of predicted SO2 to ambient SO2 concentrations apportioned to Big 
Bend, Gannon, and Gulf Coast (%) from 13:00-15:30. 
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The fact that sources with shorter or no stacks are also less likely to have continuous 

emissions, especially those with processes such as sandblasting or welding, is likely to 

create differences between �/Qtraj and the �/QiPDRM profiles.  The GPM calculates the 

�/Qtraj on the assumption that the source is emitting at a constant rate, and if this is not the 

case, then the �/Qtraj profile will be incorrect and not correlate with observed 

concentration profiles. In adapting the iPDRM to constrain chemical compositional 

information, we can address this scenario and we conclude that our predicted �/QiPDRM 

profiles are a more accurate estimate of actual plume influence.  

 

3.2.2. Predicted vs. Observed Fits 

     iPDRM predicted concentrations are shown with the ambient species concentration 

profiles in Figure 17.  The fits obtained with the iPDRM are visibly improved from 

Park’s fits and correct all of the significant under- and over-predictions described in 

section 1.1.2. Reasons for the improved fits are: 1) the improved determination of �/Qtraj 

profiles, 2) the conditioning of �/Qtraj profiles with chemical compositional information, 

3) and the increased number of sources (6 to 11). The emission rate constraints used in 

the iPDRM, however, were much more restrictive than those used in Park and contribute 

to the residuals observed in this work.  

     Statistical measures of the iPDRM fits and model performance are shown in Table 16 

and are compared to Park’s published results. The statistical analysis tools used are the 

same as used in Park’s study and the equations are defined in Table 17.  
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Figure 17. Observed concentration-vs.-time-of-day profiles (hybrid dataset; blue) for 
species used in iPDRM compared with iPDRM predicted concentration versus time 
profiles (red).  
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Figure 17.  continued from the previous page. 
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Table 17. Equations for the calculation of performance statistics shown in Table 16.  
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�;             YM`$ � cd1Ye ∑ �[� B  L��;\�
� f 
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Fa2 = fractions of the predictions within a factor of 2 of the observed values 

 

CC = Coefficient of Correlation (R2) 
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These include measures of fit that identify bias: Mean Bias (MB), Mean Normalized Bias 

(MNB), and Mean Fractional Bias (MFB), and tests that measure the overall fit and 

consider the absolute residual or the square of the residual including: Mean Absolute 

Gross Error (MAGE), Mean Normalized Gross Error (MNGE), Root Mean Square Error 

(RMSE), and Normalized Mean Square Error (NMSE). All “Normalized” terms are 

divided by their observed value. The fraction of predictions within a factor of 2 of the 

observed concentration value (Fa2) is reported in addition to the Correlation Coefficient 

(CC).  According to Kumar et al. [1993], model performance is deemed acceptable if 

NMSE ≤ 0.5 (50%), -0.5 ≤ MFB ≤ 0.5, and Fa2 ≥ 0.8 (80%). 

     The bias test measures whether the residuals have a preference to be negative (over-

prediction in Park’s orientation) or positive (under-prediction). Results for MFB are ≤ 

±8% for SO2, NH3, Al, As, Ba, Ca, Cr, Cu, Fe, Mg, Na, Ni, Pb, Sb, V, W, and Zn. 

Species that show significant bias include: Ag (90%), Cd (-14%), Mn (-19%), and Se (-

14%). Only Ag exceeded Kumar’s criteria for acceptability. 

     This is a considerable improvement on Park’s results in that our model outperformed 

Park’s for every element, except As and Se. These elements are subject to high 

uncertainties and Park removed several outliers from this dataset including As at 13:30 

and Se at 18:30. In particular, the predicted Se value at 19:30 contributes to large values 

for MNB and MNGE, both of which are highly sensitive to differences in small observed 

concentrations.  

     Analysis of the NMSE (measures the overall fit) values suggest very good iPDRM 

fits. These are <2.5% for SO2, NH3, Al, As, Ba, Ca, Cr, Fe, Mg, Na, Ni, Pb, V, and Zn; 

and are under 8% for all other species, except for Ag (11%).  All iPDRM NMSE values 
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except those for Mn and Se are improved from Park’s results and those are not 

significantly worse, +1.3% and +0.5%, respectively.  Values for Al, Cu, Ni, Pb, and Zn 

improved by 7-35%. Of Park’s results, only NMSEs for SO2 and As are <2.5%; Al, Cu, 

Mn, and Se are within 10% and Cu, Fe, and Pb range from 13-36%. By these criteria, our 

results are considerably improved in comparison to Park’s.  

     Average ratios of predicted to observed elements were within 10% of unity for all 

elements considered except Cd, Mn, Sb, and Se (1.25, 1.35, 1.14, and 1.66). Cadmium 

and Se suffer from a single large residual at 19:30, which if removed, improves the ratios 

of these elements (1.14, 1.12, respectively).  

     Correlation Coefficients for SO2, NH3, As, Fe, Ni, Pb, V, W, and Zn are > 0.95; for  

Ag, Al, Ba, Ca, Na, Sb, and Se > 0.90; for Cd, Mg, and Mn >0.85; only Cu (0.80) and Cr 

(0.79) are <0.85. Park’s CC are substantially smaller: SO2, As, and Se are > 0.94; Mn, Ni, 

and Al are >0.70; Fe and Pb are >0.60; and Cr, Cu, and Zn are >0.50.  

3.2.3.  Emission Rates  

     iPDRM predicted average emission rates are shown in Table 18. As described, 

emission rates were primarily constrained on the basis of elemental ratios observed in 

literature source profiles, and preliminary PDRM results. Thus, the emission rate ratios of 

species are in good agreement with the literature source profiles. Figure 18 shows the 

abundance profiles reported in the literature sources, and those derived from emission 

rates predicted with the iPDRM and with Park’s PDRM. In general, iPDRM derived 

emission rates better agree with NEI-TRI data. The effects on emission rates for 

individual sources owing to our changes to the iPDRM are analyzed below.  
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Table 18. Predicted emission rates (g/s) for SO2, NH3, and elements. 
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Figure 18.  Reported CMB Abundance profiles (g element / g Total PM2.5 mass; 
SPECIATE) categorized by source type and compared with predicted emission rate 
profiles from iPDRM and Park’s model (note: Mg was not reported in literature for the 
Oil-fired source).   
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Figure 18.  continued from the previous page. 
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Effects of Bartow ����/Q profile shape 

     The effect of the discrepancy in shape between Park’s �/QMet (and the �/QpPDRM, since 

the shape is not modified in Park’s PDRM) and the [Ni] profile was that Ni was 

apportioned to sources other than Bartow (mostly Gannon and Gulf Coast) in Park’s 

model. For example, Park’s predictions for Ni were 0.002 g/s (Case 1) and 0.011 g/s 

(Case 2) as compared to 0.23 g/s by the iPDRM. This caused Park’s X/Ni ratios for 

Bartow to greatly exceed their values reported in CMB literature source profiles 

(SPECIATE) by factors ranging from >10 (Cu, Mn, Pb, and Zn) to >100 (Al, As, Cr, Fe, 

and Se). As shown in Table 2, the ratios predicted by iPDRM for 11 elements (Al, Ba, 

Ca, Fe, Mn, Pb, Sb, and V) were within factors of 2 of their CMB reported values; within 

factors of 5 for Cu, Na, and Zn; within factors of 10 for Cr and Sr; within factors of 14- 

and 19 for Cd and As; and 75 for Se (compared with 800 for Park). The improvement in 

the agreement of the iPDRM predicted abundances for both Bartow and Manatee with 

CMB abundances is shown in Figure 18. For Manatee, agreement between the iPDRM 

and CMB X/Ni ratios are within a factor of 2 for all elements except Ba, Ca, Cu, Zn (2.6 

to 3.7), Mn (4.7), Cd (8), and Se (35). The re-apportionment of Ni to Bartow and 

Manatee clearly affected the Ni/Al and Ni/Pb ratios computed for Gannon and Gulf 

Coast.  

Effects of the addition of a shipyard source  

     As discussed above, soil and shipyard �/Q profiles overlapped with those of Bartow 

and Manatee. Consequently, the inclusion of the soil and shipyard sources likewise 

improved iPDRM emission profiles for Al and Fe for these two sources as shown in 
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Figure 18. Al and Fe were predicted to be much more abundant in Park’s emission 

profiles for these two sources.     

     Abundances reported by Park for Al and Fe were 8 and 7% for Manatee and 4 and 

11% for Bartow whereas those found with the iPDRM were 2 and 1.3% for Manatee and 

4 and 1.3% for Bartow. Literature reported abundances (from 11 profiles) for Al and Fe 

for oil-fired power plants are 3±2% and 2.6±2.1%, respectively.  

     Another result was that Al and Fe were also reapportioned from both Cargill and Gulf 

Coast to the background and shipyard sources. This improved agreement between 

Cargill’s iPDRM-derived emission profile and CMB reported (SPECIATE) profiles for a 

diammonium phosphate plant (Table 19). For Gulf Coast, Park reported an Fe/Pb ratio of 

14 as compared with the iPDRM value of 0.8 and a SPECIATE value of 0.1±0.2.  

     For the shipyard source, iPDRM predicted Al-, Cr-, and Mn-to-Fe ratios of 0.11, 

0.011, and 0.02, respectively, are in good agreement with literature ratios for sandblasting 

of steel, i.e. 0.12 (SPECIATE), 0.008 (MatWeb, 2009), and 0.009 (MatWeb, 2009).  

     For the background-soil source, the final iPDRM abundance profile is similar to the 

input source abundance (CMB) profile. As described above, abundances and SCE 

profiles for the background source was constrained by uncertainties derived from 

multiple literature CMB profiles (SPECIATE), so this agreement is expected. The 

predicted abundance ratios for Al-, Cr-, and Mn-to-Fe were: 1.7 (SPECIATE: 1.6), 0.002 

(SPECIATE: 0.005), and 0.01 (SPECIATE: 0.02).  

Effect of Adding the Incinerator Sources 

     Another key reapportionment, i.e. that of Pb and Zn concentrations with the iPDRM is 

the result of the addition of the two incinerators. Park predicted a Pb/Zn emission rate  
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Table 19. Source abundance profiles (relative to Fe) as derived from EPA SPECIATE for 
a diammonium phosphate fertilizer plant and for Cargill, as predicted by Park and the 
iPDRM. 
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ratio of 1.0 for Gulf Coast which is in significant disagreement with reported Pb/Zn ratios 

for Pb recycling plants from literature source profiles which range from 67-440 

(SPECIATE). With the addition of the incinerators, especially McKay (which 

concurrently influenced Sydney from 14:00-19:00), the Zn and a portion of the Pb were 

reapportioned to those sources. The iPDRM predicted Pb/Zn ratio for Gulf Coast was 

734, and for McKay and PCRR, 0.77 and 0.78, respectively, in good agreement with 

averaged literature values (N=5), 0.66 ± 0.07(Greenberg, 1978; SPECIATE; Han, 1992).  

     iPDRM predicted X/Pb ratios for Gulf Coast (Table 2)  show that: Ba, Ca, Cr, Cu, 

Mg, Sb, and V ratios are within a factor of 2 of literature ratios; As, Cd, Ni, and  Zn are 

within a factor of 5; Fe and Se are within a factor of 8; only Ag (22), Al (89), Mn (127), 

and Sr (95) are excessively higher than reported. This is much improved over Park’s 

X/Pb ratios, of which only As (6), Cu(62), and Se(71) are within a factor of 100 of 

literature ratios; the remaining elements, Al, Cr, Fe, Mn, Ni, and Zn all exceed a factor of 

100. However, it is expected that predicted Al emissions are much higher for Gulf Coast 

than literature emissions for a generic Pb recycling plant source, owing to the use of the 

production of Pb-Al alloy products.  

     X/Pb ratios for McKay (Table 20) show that: Al, Ba, Cr, Cu, Fe, Mg, Ni, Sb, Sr, and 

Zn are within a factor of 5 of literature ratios; Ag (0), As(20), Ca (16), Cd, (0.06), 

Mn(26), Na (0.06), Se (192), and V(94) exceed this range. X/Pb ratios for PCRR (Table 

20) show that: Al, Ba, Cr, Fe, Na, Sb, Sr, and Zn are within a factor of 2; Ca, Cd, Cu, and 

Mg are within a factor of 10; and Ag(0.01), As (23), Mn (14), Ni (0.03), Se (65), and 

V(23) exceed this range.  
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Table 20. Source abundance profiles (relative to Pb) as derived from EPA SPECIATE 
for incinerators and for McKay and PCRR, as predicted by this work. 
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     Figure 19 shows the observed and predicted Pb concentration profiles along with the 

predicted Pb concentration profiles induced by key sources for Park’s model and the 

iPDRM.  

     Park apportioned the Pb to 3 main sources, Gulf Coast, Big Bend, and Gannon. As 

discussed in section 1.1.2., Park’s results under-predict the Pb concentration from 13:30-

15:00 by 31-80% and over-predict Pb at 18:00 and 19:00 by 230 and 235%. Gulf Coast is 

predicted to contribute 63-105% of the ambient Pb concentration from 14:30-15:30, Big 

Bend contributes 128% at 13:30, and Gannon contributes 8-44% from 14:00-17:00. The 

iPDRM fits between ambient and predicted Pb concentrations are much improved; with 

residuals from 12:30-19:00 ranging from –13% to 23%. The iPDRM predicts that the 

major sources of Pb are Gulf Coast, Big Bend, McKay, and PCRR with most of the Pb 

that Park had attributed to Gannon now being apportioned to McKay and PCRR. Big 

Bend is predicted to contribute 98% of the observed Pb at 13:30 and 48% at 14:00; Gulf 

Coast contributes 40-58% of the Pb from 14:00-15:00; McKay contributes 48-86% of the 

Pb from 15:30-17:00; and PCRR is responsible for 20-34% of ambient Pb from 17:30 – 

19:00. The Pb contribution predicted from Gannon is reduced to 2-9% from 14:30-19:00, 

and reduces its Pb/Al ratio from 0.007 to 0.003 in good agreement with that reported for a 

CFPP with an ESP (0.003±0.002) (SPECIATE).  

     Figure 20 shows the observed and predicted Zn concentration profiles along with the 

predicted Zn concentration profiles induced by key sources for Park’s model and the 

iPDRM. Park apportioned the Zn to 3 main sources, Gulf Coast, Big Bend, and Gannon. 

Residuals in Park’s predicted vs. observed fits for 11 of 18 sampling intervals exceed 

±30% (12:00, 12:30, 14:30, 15:00, 16:30, 18:00, and 19:00-20:30); and 14 of 18 
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Figure 19. Ambient Pb (grey) and predicted (red) Pb concentration profiles (ng/m3). 
Total predicted Pb concentration profiles from major contributing sources are shown. 
Park’s results are shown in the graph above, iPDRM results in the graph below. 
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Figure 20. Ambient Zn (grey) and predicted (red) Zn concentration profiles (ng/m3). 
Total predicted Zn concentration profiles from major contributing sources are shown. 
Park’s results are shown in the graph above, iPDRM results in the graph below. 
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sampling intervals exceed ±20% (17:00, 17:30, and 18:30). The iPDRM reapportions the 

Zn from Gulf Coast and Gannon to the incinerators, McKay and PCRR. As discussed 

above, the agreement of the Pb/Zn ratios with literature ratios for lead recycling plants 

and incinerators suggest that the Zn apportionment predicted with the iPDRM is 

reasonable. Also, Zn residuals are ≤8% for 14 of 18 sampling intervals and ≤ 21% for 16 

of 18 sampling intervals indicating an excellent fit.  

 

3.2.4. Comparison to NEI and TRI reported emission rates 

     iPDRM predicted SO2 emission rates for the power plants are within ±5% of CEM 

reported average emission rates as they were constrained to be. The predicted SO2 

emission rates were 113 g/s and 31 g/s for Gulf Coast and Cargill, respectively. 

These compare to reported emission rates for Gulf Coast: 16.6 g/s (NEI), 21.3 g/s (NET), 

and 25 g/s (FDEP). Park predicted emission rates of 340 g/s (Case1) and 31 g/s (Case 2) 

for Gulf Coast and 130 g/s (Case 1) and 49 g/s (Case 2). These reported rates (as the case 

with all NEI, TRI, or FDEP emissions; shown in Table 3) are converted from annual 

tons/year numbers and do not translate well to the time resolution of our study period. 

The annual rates were converted assuming that the sources were continuous throughout 

the entire year, including overnight and weekends. This conversion means that the g/s 

estimates are likely lower than calculated, which is why the fractions (i.e., 1/10) of NEI 

values were only used in the iPDRM as lower bounds. Species that were reported by 

NEI/TRI include: SO2, NH3, As, Cd, Cr, Mn, Ni, Pb, Se, V, and Zn. 

     Park’s Case 2 SO2 emission rate agreed best with reported values, however, the 

iPDRM value was only ~4-7 times these and is a reasonable estimate given the method of 
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conversion used, especially when considering that the iPDRM predicted Pb emission rate 

(0.15 g/s) is 4 times that reported by NEI (0.032 g/s). Reported SO2 emission rates for 

Cargill varied greatly depending on the source: 0.006 g/s (NEI), 115g/s (NET), and 40 g/s 

(FDEP). Our value agrees well with FDEP value as does Park’s Case 2.  

     Ratios of PDRM predicted emission rates predicted both by Park and our work to 

reported NEI or TRI (herein referred to as NEI-TRI) emission rate ratios are shown in 

Table 21. In Table 22, the iPDRM to  NEI-TRI ratios are grouped by source and into 

groups as follows: within a factor of 2.5, within a factor of 5.5, and ≥ 5.5. Agreement 

between these ratios is much better for power plants, in which SO2, and Ni ratios are 

within a factor of 2.5 for each one. For 10 of 12 species, iPDRM emission rates for Big 

Bend agree within a factor of 2.5; NH3 which is not a conservative tracer is within a 

factor of 5.5, and only Cd (0.01) does not agree well. Predicted emission rates for 

Gannon are also in similarly good agreement with 9 of 12 species within a factor of 5.5, 

and Cd (0.06), Se(26), and V(7) exceed that range. For the oil-fired power plants, 7 of 10 

iPDRM predicted species emission rates are within a factor of 5.5 of NEI-TRI data 

(Mn(6), Pb(28), and Se(7) are greater than 5.5 times the NEI-TRI value), and 7 of 11 

species for Bartow agree within 5.5 times (NH3(7), As (10), Cr (21), and Se (30) are 

substantially greater). It is likely that iPDRM results are more accurate for certain 

elements such as As and Se as they are likely to form volatile compounds and have 

substantial gas-phase concentrations. The iPDRM     As emission rates for CFPPs agreed 

within a factor of 2 for TRI reported emissions, however,  NEI reported As emission rates 

were 450-700 times smaller than those reported for TRI.  iPDRM emission rates and 

NEI-TRI data do not correlate as well for non-continuous sources. This makes sense as  
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Table 21.  Ratios of iPDRM emission rate predictions to emission rates reported by NEI-
TRI.  
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Table 22.  Ratios of predicted and published emission rates (iPDRM/NEI-TRI) grouped 
within factors of 2.5, 5.5, or > 5.5.  
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the NEI-TRI values are estimated from monthly CEM-reports (at best and only for larger 

sources) along with other variables such as fuel-type, heat generated, and emissions 

controls. Non-continuous sources are only required to update emissions data once every 

three years (U.S. EPA, 2006). The iPDRM/NEI-TRI emission rate ratios do show 

agreements: For Gulf Coast ratios for 4 of 8 of the species were less than a factor of 5.5, 

and for PCRR, 5 of 8 species. Ratios indicated substantially poorer agreement for Cargill 

and McKay.  

     Our predicted emission rates support that the NEI-TRI data are reasonable to within a 

factor of 5 for power plants and should be trusted less for non-continuous sources. Thus, 

our results suggest that NEI-TRI values provide a good qualitative estimate of the toxic 

substances emitted by sources, but are not necessarily useful as seed values in a 

predictive model to quantify source emissions.  

4. Summary and Conclusions 

     An improved hybrid PDRM, combining features of a least squares mass balance 

receptor model, a deterministic Gaussian Plume Model, and a Chemical Mass Balance 

model was constructed and applied to a dataset for Tampa consisting of highly time-

resolved ambient SO2, NH3, and elemental constituents of PM2.5 measured during the Bay 

Regional Atmospheric Chemistry Experiment to apportion their contributions from local 

stationary sources. The model was designed by Park to exploit known information such 

as the number and location of known sources in relation to the receptor site, their 

respective stack and emission parameters, and meteorological conditions during 

sampling, and improved to exploit additional information such as wind trajectories and 

the chemical composition of both point and area source emissions. 
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     In this work, ICPMS analysis of 30-minute SEAS samples enabled the expansion of 

the set of elements determined (whilst reducing the analysis time and achieving superior 

analytical precision). The resulting dataset included additional marker species (i.e. Ag, 

Cd, Sb, V, and W) and improved data for Zn. These were used to improve the resolving 

power of the model and provide more information on the influence of individual sources, 

including soil and marine background aerosol, i.e. area sources not included by Park. The 

addition of V corroborated the Ni data reported by Park and allowed us to confirm the 

arrival and times of influence of the Manatee and Bartow plumes. Both elements were 

well-fit by new �/Qtraj profiles.  

     Using the Pb/Zn ratios derived from the CMB source profiles, the �/QiPDRM profile for 

Gulf Coast became similar to the concentration profiles of Ag, Cd, and W allowing these 

elements to be apportioned to Gulf Coast. The Pb/Zn constraints were thus effective in 

achieving the resolution of the Gulf Coast, McKay, and PCRR sources. Ratios of Al, Ca, 

Cr, Fe, and Mn allowed the resolution of the shipyard and soil sources, and Na allowed 

the resolution of the marine source. With the improved dataset, we were able to conclude 

that the �/Q profiles predicted by Park were incorrect and that the application of 

curvilinear forward plume trajectory method provided a more accurate prediction of �/Q 

profiles for all of the sources (as evidenced by good correlation with tracer species 

concentration profiles). The inclusion of both 500-m and surface trajectory-derived 

profiles were especially important for three of the four power plants.  Surprisingly, 

ground plumes for Big Bend and Gannon plants arrived earlier than their plumes aloft, 

owing to differences in their trajectories, despite lower transport velocities of the former. 
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     The iPDRM performed well despite the wind shift, giving confidence in its application 

to more complicated situations such as encountered in the Tampa study. The inclusion of 

bi-level trajectory analysis and additional sources eliminated the need for separate scaling 

of �/Q  bounds for sources with smaller effective heights or near-ground emissions as 

done by Park.  

     Predicted �/Q profiles were effectively constrained by hourly CEM-derived SO2 

emission rates for the power plants, as these could be determined with the accuracy of 

their measurements, degraded only by deconvolution error. For Manatee and Bartow, 

predicted �/Q profiles were further constrained by the widths of the Ni and V peaks in 

their concentration profiles. �/Q profiles were likewise constrained by NH3 (Cargill), and 

to a lesser extent Pb and Zn (Gulf Coast and the incinerators). All of these improved the 

resolution of all sources. Improvements were also made by applying constraints based on 

chemical compositions for generic source types as mentioned above. These were most 

important in the background soil and marine sources, incinerators, shipyard, and Gulf 

Coast. In particular, chemical compositional constraints allowed the iPDRM to predict 

average emission rates and ambient pollutant contributions from sources with intermittent 

emissions (as was evidenced for Gulf Coast, the two incinerators, and the shipyard). The 

�/Qtraj profile for these intermittent sources can be regarded as a prediction of their 

expected influence (if they are operating at a constant rate) whereas the �/QiPDRM profiles 

were able to account for fluctuations in emission rates of the sources.  

     In summary, the iPDRM results were greatly affected by the improved Gaussian 

Plume Model-derived �/Q profiles, the inclusion of extra sources, and the ability of the 

�/Q profiles for sources to be “conditioned” with chemical compositional constraints and 
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ambient tracer species concentration profiles. These improvements to the model allowed 

the apportionment of ambient species to sources based on more available information, 

resulting in arguably more accurate results as evidenced by improved performance 

statistics and better agreement with published source profiles and emission inventory 

estimates (NEI and TRI).  

     In conclusion, the performance of the iPDRM in a complex scenario, with a wind shift 

and many sources concurrently influencing the receptor site suggests that iPDRM, when 

used with highly time-resolved data and CEM reported SO2 emission rate data can be 

used as an effective tool that requires minimal amount of computational power to 

remotely predict and monitor emission rates of toxic and or other non-criteria pollutants. 

     A significant improvement can be made to future version of the iPDRM by accounting 

for the uncertainties in the measured ambient concentrations. Residuals for concentration 

profile data points with large uncertainties should be down-weighted to prevent the 

iPDRM from compensating for uncertain data by over- or under-predicting data points 

with smaller uncertainties. This can likely be accomplished with the addition of a 

normalizing uncertainty term into the least squares function to be minimized.  
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Appendices 

Appendix A.   

     Section reproduced from Park on the calculation of σy and σz, transport velocity, u, 

effective plume height, H,  and the off-axis distance, y.  

3.2 Gaussian Dispersion Parameters (σy and σz) 

     The values of σy and σz vary with turbulence, height above the surface, surface 

roughness, and downwind distance above the surface, surface roughness, and downwind 

distance from the source and, hence, transport wind speed and time. Herein, σy and σz 

were determined from correlations as follows:  

23 �  2gh]3                             �4� 

24 �  2ih]3                            �5� 

where 2g and 2i are the standard deviations of the wind velocity in the y and z directions, 

respectively, t is the travel time from the source to the location of interest, and Fy and Fz 

are universal functions of parameters that specify the characteristics of the atmospheric 

boundary layer. Specifically, these are friction velocity, u*; the Monin-Obukhov length, 

L; the mixed layer depth, zi; the convective velocity scale, w*; the surface roughness, zo; 

and the effective stack height, z, i.e., the height of pollutant release above the ground. 

Different formulae are used for different stability classes [Draxler, 1976; Binkowski, 

1979; Irwin, 1979].  

     Likewise, 2g and 2i are calculated from friction velocity (u*) and L, using formulae 

appropriate for different stability classes. Hourly values of the Pasquill stability class, zi 

(m), u* (m/s), L (m) and w* (m/s), were obtained from the CALMET model [Scire et al., 
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2000] output at the geocoordinates of Sydney, Florida, as described above. These were 

interpolated to produce half-hourly estimates for use in the model. A surface roughness 

length of 0.25 m was used in this analysis. 

3.3. Transport Wind Velocity u 

     The wind profile power law was used to estimate horizontal transport speed, u, at the 

effective plume height, z, given the horizontal surface wind speed, u1, at height z1(i.e., the 

10 m, meteorological tower height). The power law equation is of the form  

� � �1 X jj1
Z+                             �6� 

where p is given by equation (6) [Panofsky et al., 1960]. 

k �  Φl djme
no�p

                            �7� 

where the nondimensional wind shear, Φl�j/m�, and the nondimensional wind speed, 

no/�p , are universal functions; and o is the von Karman constant, which is equal to 0.4.   

Equation (5) is invalid for wind transport speeds less than 1.0 m/s. Therefore a minimum 

value of 1.0 m/s was used.  

     Transport speeds calculated in this manner were relatively constant during the 9-hour 

modeling period. Thus the transport speed was calculated for each 30-min interval and an 

average transport speed was used in the receptor model. Likewise, transport time was 

calculated from the average transport speed at stack height and source-to-receptor site 

distance. Transport times were assumed to be constant over the 9-hour period, despite 

shifts in the wind angle, which lead to differences in x for each source. 
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3.4. Effective Plume Height H 

     The plume height is used in the calculation of the vertical term described in equation 

(2) and in calculating the transport velocity, as described above. The effective stack 

height is taken to be the sum of the actual stack height (hs) and the plume rise (∆H).   

r � s� �  tr                       �8� 

     Herein, plume rise (∆H) is calculated by the formulas expressed by Briggs [1969, 

1971, 1974] and U.S. EPA [1995]. The detailed mathematical formulas can be found in 

Briggs’ papers, and a brief description is given below. The effective stack height (H) is 

determined for conditions at the stack exit. If the plume is dominated by buoyancy, the 

buoyancy flux parameter, Fb (m
4/s3), is given by  

]v � wx���; Xty4y�Z               �9� 

where g is gravitational acceleration (m/s2), vs is the stack gas exit velocity (m/s), ds is the 

inside stack top diameter (m), us is mean wind speed (m/s) at stack height, ∆T = Ts -Ta, Ts 

is the stack gas temperature (K), and Ta is the ambient air temperature (K).   

     The plume height (H) for unstable or neutral atmospheric conditions is determined by 

two different flux parameters: (1) For Fb < 55, 

r � s� �  21.425 ]v{/|
��             �10� 

(2) For Fb ≥ 55, 

r � s� �  38.71 ]v{/O
��                �11� 

The plume height (H) for stable atmospheric conditions is given by equation (12) 
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r � s� �  2.60 X ]v���Z�/{          �12� 

If the plume is dominated by momentum, the momentum flux parameter, Fm (m4/s3), is 

given by 

]F � x�;��; X y~4y�Z                     �13� 

The plume height (H) for an unstable or neutral atmospheric condition is given by 

r � s� �  3.0  �� x���                  �14� 

The plume height (H) for a stable atmospheric condition is given by 

r � s� �  1.5 � ]F��  √��            �15� 

where s = g(�θ/�z)/Ta) is a stability parameter indicating the potential temperature 

gradient with height. 

Emission parameters required to calculate the effective plume height (H) in the Gaussian 

plume dispersion equation (2) are listed in Table 2. 

3.5. Distance Between the Plume Centerline and the Sampling Site (y) 

     According to equation (2), the plume concentration decays exponentially with 

increasing distance, y, from the plume centerline. As illustrated in Figure A1, wherein x’ 

is the plume transport distance, y is related to the deviation, θDS, between the wind angle, 

θwind, and station angle, θstation, and the source-to-sampling site distance, x, as follows: 

� �  sin θDS· �                            (16) 

 θDS =  θstation – 180� B  θwind B  θEkman 
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where θEkman is the wind angle rotation at transport height relative to the surface wind 

direction (in degrees) due to the Ekman effect. In Figure A1, we show a station angle 

(251o) corresponding to the Gannon power plant. Both θwind and θstation are measured from 

true north. In the model, we used an average wind angle, computed from the 15-min 

surface wind data measured at the meteorological tower, i.e., averaged during the period 

of transport for each source (case 2). 
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Figure A1. The PDRM makes use of source angle and distance relationships. Plume 
transport distance (x’) and displacement (y) of the plume centerline from the sampling 
site are shown.  
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Appendix B.   

     Procedures (adapted from Pancras et al., 2005) for experiments to determine the 

capability of the ICPMS in direct analysis of SEAS samples are included in this 

Appendix.  

 

B1. Cleaning Procedures 

     In order to reduce the problem of contamination in determining ppb and sub-ppb 

concentration ranges, all materials that contact both sample and standards were acid-

washed low contaminant materials such as virgin polypropylene (PP) and teflon (PTFE). 

All sample containers, vials, and caps were soaked in ~10% (v/v) HNO3 (70% v/v, 

Reagent grade, Mallinkrodt Baker, Phillipsburg, NJ) overnight then rinsed with Milli-Q 

(18-MΩ cm2 deionized- distilled water) before soaking again for 2-4 hrs in 2.0% (v/v) 

HNO3, then sonicated for 30 min in a Ultrasonic bath (Branson, Danbury, CT) and finally 

rinsed again in Milli-Q water. Pipette tips were repeatedly rinsed prior to use with 2-5% 

(v/v) HNO3 before use. Digestion vessels were cleaned with a more rigorous procedure 

that involved heating concentrated “Acid Digestion mix” (5:0.1:0.1 (v/v) of concentrated 

baseline nitric, hydrofluoric (50% v/v, Optima grade, Leicestershire, England), and 

perchloric (70%v/v, Ultrex II grade, Mallinkrodt Baker, Phillipsburg, NJ)) at 150oC 

overnight. 

 

B2. Analysis of NIST 1640 SRM Trace Elements in Natural Water 

     NIST 1640 SRM Trace Elements in Natural Water is an aqueous solution of naturally 

occurring elements in Rainwater at a 5% (v/v) nitric acid solution. The stock solution was 
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volumetrically transferred with an acid-rinsed virgin polypropylene pipette tip and diluted 

to the mark with 0.2 % (v/v) HNO3 in a pre-cleaned polypropylene volumetric flask. 

Three mL aliquots were transferred to pre-cleaned polypropylene sample vials and 

analyzed by ICPMS. Blanks were prepared with Milli-Q water and acidified to 0.2 % 

(v/v) HNO3.  

 

B3. Total dissolution of NIST Atmospheric Fine Particle SRM 

     Eleven ~10-mg aliquots of a NIST interim urban atmospheric fine-particle SRM 

(iSRM) were weighed to five significant figures into a Teflon pressure vessel (CEM, Inc., 

Matthews, NC)  using a 4-place analytical balance (Mettler-Toledo, Inc., Toledo Ohio, 

model AX105DR).  Three mL of the Acid Digestion mix were added and the vessels 

sealed, and heated to a temperature of 150 oC for ~24 hours in a convection oven 

(Precision Economy Oven, Jouan, Winchester, VA).      

The resulting clear solutions were heated to near dryness, and reconstituted with 0.2% 

HNO3 [Pancras et al., 2005]. Separate aliquots were diluted 10- and 100-fold with 0.2% 

HNO3 to pre-cleaned polypropylene vials and analyzed by ICPMS. Blanks were prepared 

with the same procedure using no SRM.  

 

B4. Preparation of Test Slurries 

B4.1. iSRM Test slurry 

     The iSRM test slurry was prepared by sonicating 150 mg of the NIST SRM in 500 mL 

of Milli-Q water. Actual atmospheric slurry samples collected with SEAS-II contain few 

particles >2 µm.  Therefore, a nitric acid pre-rinsed 5.0 µm-pore Teflon membrane filter 
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(Sterlitech, Kent, WA) in an acid-cleaned polycarbonate filtration apparatus (Sartorius, 

Sartorius, Goettingen, Germany) was used to remove particles larger than the pore size. 

Five filters were needed for this process.  The filtrate was divided into two aliquots, and 

acidified to 0.2 and 2.0%, respectively, of high purity nitric acid.  

 

B4.2. Pooled SEAS sample slurry  

     The SEAS slurry samples used in this study were taken from a study in Birmingham, 

AL and stored frozen, in their polypropylene collection vials.  These were thawed, 

sonicated, and pooled directly to prepare the composite test slurry. Selected samples that 

were previously analyzed and shown to contain high concentrations (at minimum 5x 

method blank) of many elements were combined to produce ~150 mL of pooled slurry.  

 

B5. Total Dissolution of Test slurry 

B5.1. Blank filtrate for iSRM analysis 

      Milli-Q water was filtered as described in section B4.1. Samples were evaporated to 

near dryness in a horizontal HEPA filtered, laminar flow, clean air hood. Three mL of 

Acid Digestion mix was added to the dried sample and heated at 150 overnight in a 

Teflon pressure vessel (CEM, Inc., Matthews, NC). The digested sample was evaporated 

to near dryness and reconstituted with 12 mL of 0.2% HNO3. Blanks were transferred to 

precleaned polypropylene vials, sonicated for 30 min, and analyzed.  
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B5.2. Test Slurries 

     The procedure described in section B5.1. was performed on: (1) 12 mL (gravimetric) 

of iSRM test slurry per vessel and (2) 20mL (gravimetric) of pooled SEAS sample slurry 

per vessel.  

 

B6. Direct ICPMS Analysis of Test Slurries 

     Pre-cleaned polypropylene vials and caps were pre-weighed and filled with 3.5 mL 

aliquots of test slurries. The same was done with 3.5 mL of Milli-Q water. All samples 

were acidified with 10 µL of HNO3 to bring the concentration to 0.2% HNO3 (v/v), 

sonicated(30-min), and analyzed by ICPMS.   
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Appendix C.   
 
     Includes tables of the data used for the various plots shown in Figures.  

C1. Table of Wind angles and speeds plotted in Figure 2. 
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C2. Table of SO2 and NH3 concentrations and uncertainties in ppb plotted in Figure 5.  
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C3. Table of PM2.5 concentrations and uncertainties in ng/m3 plotted in Figure 9.  
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C5. Table of CMB predicted source contributions in ng of total PM2.5 / m
3 for the generic 

source-types used in the model plotted in Figure 11.  
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Glossary 
 

����/Q: Gaussian plume modeled dispersion factors (s/m3)   

����/QiPDRM: iPDRM solutions to Gaussian plume modeled dispersion factors (s/m3)  

����/QMET : Gaussian plume modeled dispersion factors (s/m3) with input parameters as 

calculated by Park   

����/QpPDRM: Park PDRM solutions to Gaussian plume modeled dispersion factors (s/m3)  

����/Qtraj : Gaussian plume modeled dispersion factors (s/m3) with input parameters as 

calculated by trajectory analysis   

ABL: Atmospheric Boundary Layer  

BRACE: Bay Regional Atmospheric Chemistry Experiment 

CALMET: California Meteorological Model  

CC: Correlation Coefficient  

CEM: Continuous Emissions Monitor  

CFPP: Coal-fired Power Plant 

CMB: Chemical Mass Balance  

EPA: United States Environmental Protection Agency  

ESP: Electrostatic Precipitators  

FA: Factor Analysis 

Fa2:  Statistical Analysis Tool: The fraction of predictions within a factor of 2 of the 

observed concentration value 

FDEP:  Florida Department of Environmental Protection   

GFAAZ: Graphite Furnace Atomic Absorption Spectrometer with Zeeman Correction 

GPM: Gaussian Plume Model 
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HCRR: Hillsborough County Refuse Recovery (Local Incinerator) 

ICPMS: Inductively Coupled Plasma Mass Spectrometry 

INAA: Instrumental Neutron Activation Analysis  

iPDRM: improved Pseudo-Deterministic Receptor Model 

LB: Lower bounds 

MAGE: Statistical Analysis Tool: Mean Absolute Gross Error  

MB: Statistical Analysis Tool: Mean Bias  

MFB: Statistical Analysis Tool: Mean Fractional Bias  

MLR: Multiple Linear Regression  

MNB: Statistical Analysis Tool: Mean Normalized Bias  

MNGE: Statistical Analysis Tool: Mean Normalized Gross Error  

NEI: National Emission Inventory 

NET: National Emission Trends (precursor to NEI)   

NMSE: Statistical Analysis Tool: Normalized Mean Square Error  

NOAA: National Oceanic and Atmospheric Administration 

OFPP: Oil-fired Power Plant 

PCA: Principle Component Analysis 

PCRR: Pinellas County Refuse Recovery (Local Incinerator) 

PDRM: Pseudo-Deterministic Receptor Model  

PM: Particulate matter   

PM2.5: Particulate matter with an aerodynamic diameter < 2.5 µm   

PMF: Positive Matrix Factorization 

pPDRM: Pseudo-Deterministic Receptor Model used by Park  
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RMSE: Statistical Analysis Tool: Root Mean Square Error  

SCE: Source Contribution Estimate  

SEAS: Semi-continuous Elements in Aerosol Sampler  

SPECIATE: EPA database of source profiles  

TSP: Total suspended particle concentrations  

UB: Upper bounds 

WS: Wet Scrubber 
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