
ABSTRACT

Title of dissertation: MOTION PLANNING AND CONTROLS
WITH SAFETY AND TEMPORAL
CONSTRAINTS

Yuchen Zhou, Doctor of Philosophy, 2016

Dissertation directed by: Professor John S. Baras
Department of Electrical & Computer Engineering

Motion planning, or trajectory planning, commonly refers to a process of con-

verting high-level task specifications into low-level control commands that can be

executed on the system of interest. For different applications, the system will be

different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a

humanoid robot, or an industrial robotic arm. As human machine interaction is

essential in many of these systems, safety is fundamental and crucial. Many of the

applications also involve performing a task in an optimal manner within a given time

constraint. Therefore, in this thesis, we focus on two aspects of the motion planning

problem. One is the verification and synthesis of the safe controls for autonomous

ground and air vehicles in collision avoidance scenarios. The other part focuses

on the high-level planning for the autonomous vehicles with the timed temporal

constraints.

In the first aspect of our work, we first propose a verification method to prove

the safety and robustness of a path planner and the path following controls based on

reachable sets. We demonstrate the method on quadrotor and automobile applica-

tions. Secondly, we propose a reachable set based collision avoidance algorithm for

UAVs. Instead of the traditional approaches of collision avoidance between trajec-

tories, we propose a collision avoidance scheme based on reachable sets and tubes.

We then formulate the problem as a convex optimization problem seeking control

set design for the aircraft to avoid collision. We apply our approach to collision

avoidance scenarios of quadrotors and fixed-wing aircraft.

In the second aspect of our work, we address the high level planning problems

with timed temporal logic constraints. Firstly, we present an optimization based

method for path planning of a mobile robot subject to timed temporal constraints,

in a dynamic environment. Temporal logic (TL) can address very complex task

specifications such as safety, coverage, motion sequencing etc. We use metric tem-

poral logic (MTL) to encode the task specifications with timing constraints. We

then translate the MTL formulae into mixed integer linear constraints and solve

the associated optimization problem using a mixed integer linear program solver.

We have applied our approach on several case studies in complex dynamical envi-

ronments subjected to timed temporal specifications. Secondly, we also present a

timed automaton based method for planning under the given timed temporal logic

specifications. We use metric interval temporal logic (MITL), a member of the MTL

family, to represent the task specification, and provide a constructive way to gener-

ate a timed automaton and methods to look for accepting runs on the automaton

to find an optimal motion (or path) sequence for the robot to complete the task.

MOTION PLANNING AND CONTROLS WITH
SAFETY AND TEMPORAL CONSTRAINTS

by

Yuchen Zhou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor André L Tits
Professor Gilmer L. Blankenship
Professor Nuno Martins
Professor Yiannis Aloimonos

c© Copyright by
Yuchen Zhou

2016

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor John S Baras for

giving me an invaluable opportunity to work on challenging and extremely interest-

ing projects over the past five years. He has always made himself available for help

and advice even when he is really busy. It has been a pleasure to work with and

learn from such an knowledgeable expert in so many different fields.

My colleagues at the System Engineering Integration Laboratory (SEIL) and

Autonomy Robotics and Cognition Lab (ARC) have enriched my graduate life in

many ways, and I greatly appreciate your helps and supports.

I owe my deepest thanks to my family, my mother and father who have always

stood by me and guided me through my career. I owe my great thanks to my

girlfriend, Junyi Shen, who have encouraged me and supported me in difficult time

of graduate life. I cannot express in words how much the gratitude I owe them.

I would like to acknowledge financial support from the Air Force Office of

Scientific Research (AFOSR), National Science Foundation (NSF) and National In-

stitute of Standards and Technology (NIST) for all the projects discussed herein.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Motion Planning with Safety Constraints 3
1.2 Temporal Logic . 6

2 Reachable Sets for Safety Verification 9
2.1 Overview . 9
2.2 Reachable Set Computation . 10

2.2.1 Reachable Set Computation for Linear Dynamics 12
2.2.2 Reachability Analysis for Hybrid System with Linear Dynam-

ics . 15
2.2.3 Reachability Analysis of Nonlinear Dynamics using Lineariza-

tion . 17
2.3 Reachability Analysis for Quadrotor Dynamics 19

2.3.1 Quadrotor Dynamics . 19
2.3.2 Results and Analysis . 21

2.4 Collision Avoidance Maneuver Safety Verification for Autonomous
Vehicle . 23
2.4.1 System Overview . 24
2.4.2 Reachability for Physical System 26
2.4.3 Results and Analysis . 28

2.5 Conclusion . 30

3 Control Synthesis for Collision Avoidance Using Reachable Set 31
3.1 Overview . 31
3.2 Reachable Set . 34
3.3 Collision Avoidance Between Two Agents Using Reachability Analysis 37

3.3.1 Constant Control Set Design for Collaborative Collision Avoid-
ance . 37

3.3.2 Time Varying Control Tube Design for Collision Avoidance . . 44
3.4 Simulations and Results . 49

iii

3.4.1 Quadrotor Model . 49
3.4.2 Fix-wing Dynamics Model . 51
3.4.3 Reachable Sets and Constrained Control Sets for Constant

Control Set Method . 53
3.4.3.1 Quadrotor Example 53
3.4.3.2 Fix-wing Aircraft Example 58

3.4.4 Reachable Sets and Constrained Control Sets for the Time
Varying Control Tube Method 61

3.5 Conclusion . 64

4 Optimization based Temporal Logic Planning 65
4.1 Overview . 65
4.2 Preliminaries . 68

4.2.1 Metric Temporal Logic (MTL) 69
4.3 Problem Formulation and Solution 71

4.3.1 Linearized Dynamics of the Robot 72
4.3.1.1 Car-Like Model . 72

4.3.2 Mixed Integer Linear Constraints 73
4.4 Case Study and Discussion . 76
4.5 Conclusion . 82

5 Timed Automata Based Motion Planning 85
5.1 Overview . 85
5.2 Preliminaries . 88

5.2.1 Metric Interval Temporal Logic (MITL) 88
5.2.2 MITL and timed automata based approach 90

5.3 MITL for motion planning . 92
5.3.1 MITL to Timed Automata Transformation 92
5.3.2 Path Synthesis using UPPAAL 97

5.4 Case Study and Discussion . 99
5.5 Continuous Trajectory generation . 104
5.6 Conclusion . 108

6 Conclusion 110

A 112

Bibliography 112

Bibliography 113

iv

List of Figures

2.1 Planned trajectory . 22
2.2 Reachable set computation of the two UAVs 23
2.3 Block diagram of the collision avoidance maneuver. 24
2.4 Reachable set of linear hybrid system model 27
2.5 Sensor noise influence on reachable sets 28

3.1 The initial reachable sets of both aircraft 54
3.2 The initial reachable tubes of of both aircraft 55
3.3 The initial control set and the constrained control sets for k = 1 . . . 56
3.4 The reachable tubes for aircraft A and B with k = 1 56
3.5 The initial control set and the constrained control sets for k = 0.9 . . 57
3.6 The reachable tubes for aircraft A and B with k = 0.9 57
3.7 The initial reachable tubes of both fixed-wing aircraft 59
3.8 The initial control sets of both fixed-wing aircraft 60
3.9 The reachable tubes of both fixed-wing aircraft 61
3.10 The initial reachable tubes of both aircraft using predicted intruder

tube . 62
3.11 The reachable tubes of both aircraft using time varying control tube . 63

4.1 Workspace setup of the first test case 77
4.2 Time-state-space representation of the environment and resulting tra-

jectory with temporal constraints φ1 78
4.3 Time-state-space representation of the environment and resulting tra-

jectory with temporal constraints φ2 79
4.4 Time-state-space representation of the environment and resulting tra-

jectory with temporal constraints φ1 for the car model 80
4.5 Time-state-space representation of the environment and resulting tra-

jectory for the second setup . 81
4.6 Time-state-space representation of the environment and resulting tra-

jectory for the quadrotor with temporal constraints φ3 82
4.7 Time-state-space representation of the environment and resulting tra-

jectory for the quadrotor with temporal constraints φ4 83

v

4.8 Time-state-space representation of the environment and resulting tra-
jectory for the car model with temporal constraints φ3 84

5.1 Timed Automata based on cell decomposition and robot dynamics . . 88
5.2 Logic tree representation of φ. 92
5.3 The timed automaton for pUq . 94
5.4 The timed automaton for the generator part of 3Ia 95
5.5 The timed automaton for the checker part of 3Ia 96
5.6 Result timed automaton in UPPAAL of φ1 100
5.7 Timed automata in UPPAAL corresponding to the generator of φ2 . . 101
5.8 Timed automata in UPPAAL corresponding to the checker of φ2 . . . 102
5.9 Workspace and the continuous trajectory for the specification φ1 . . . 105

vi

Chapter 1: Introduction

Motion planning, or trajectory planning, commonly refers to a process of con-

verting high-level task specifications into low-level control commands that can be

executed on the plant of interests. [1] For different applications, the plant will be

different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a

humanoid robot or a industrial robotic arm. In many applications involving hu-

man machine interactions, safety and temporal constraints in the specifications are

fundamental and crucial.

Recently, various automotive companies developed driver assistant systems us-

ing motion planning techniques. These systems commonly include either active or

passive features interacting with driver. Common functions include lane departure

warning, lane centering, lane changing, adaptive cruise controls and parking assist,

which dramatically increase the autonomy of the vehicles [2]. General Motors (GM)

developed the Super Cruise feature which allows hand-free highway driving with traf-

fic [3]. Tesla Motors deployed their Autopilot feature which allows autonomous lane

changing, lane centering and autonomous parking. [4]. Google’s fully autonomous

vehicles emphasize on urban environment navigation, such as following traffic lights

and stop signs, avoiding pedestrians and other cars on the road. Most of these

1

semi-autonomous or autonomous functions are safety critical and it is essential to

formally prove their safety properties.

Similarly in aviation, safety and temporal constraints play a key role in the

motion planning process. UAVs have been deployed for agriculture research and

management, surveillance and sensor coverage for threat detection and disaster

search and rescue operations. If in the future, autonomous UAVs are allowed to

be operated autonomously in the same airspace as the human piloted aircraft, it is

absolutely crucial to keep the UAVs a safe distance away from the human piloted

plane to avoid catastrophic accidents. Additionally, these applications require the

tasks to be finished in an optimal manner with specific timing constraints. Surveil-

lance and sensor coverage, for example, requires the areas to be visited repeatedly

and sequentially. These specifications commonly have timed duration associated,

since data collection requires time and moving obstacles in the workspace block

spaces for some amounts of time. Therefore, it is essential to have timed temporal

logic specifications which captures temporal ordering and duration constraints. To

conclude, in aviation, motion planner should be developed while considering both

safety and temporal constraints.

In this thesis, we focus on two aspects of the motion planning problem. One

is the verification and synthesis of the safe controls for the autonomous ground and

air vehicles in collision avoidance scenarios. The other part focuses on the high-level

planning for the autonomous vehicles with the timed temporal constraints. The

following sections give overviews of the scope and motivation of these two parts.

2

1.1 Motion Planning with Safety Constraints

In robotics, kinodynamic motion planning, refers to a particular type of mo-

tion planning, that requires the trajectory generated to be kinematically feasible

and satisfies the dynamic equations of the robot. Exact trajectory is commonly

computational infeasible, and costly to implement in real-time. [5] Because of dif-

ficulties of planning a exact dynamic feasible trajectory in real-time, commonly, a

piecewise polynomial function (spline) [6], or other types of piecewise smooth func-

tions [7] are used as a reference trajectory for the controller. Because switching

between reference trajectories can cause unmodeled transient behaviors, it is essen-

tial to provide safety guarantees in particular for safety critical applications, such

as collision avoidance maneuvers for automobile and UAVs. Therefore, we focus on

safety requirements which are separation requirements in space and time.

Consider the following collision avoidance scenario, where individual agents

have been assigned different goals independently, and their paths may cross if they

go directly towards their goals. Many motion planning algorithms have been pro-

posed in the robotics areas to solve this problem. An artificial potential function

based algorithm was proposed in [8–10] to produce control policies for robots to

navigate towards their goals while avoiding each others and the obstacles in the

workspace. In [11–13], the authors proposed a decentralized collision avoidance al-

gorithm based on the heading of the vehicles and collision cones constructed from

relative velocities. In [7], the authors proposed a sampling based method to gen-

erate a kinematically feasible path that is collision. However, the research works

3

mentioned above focus on designing only a single path or trajectory for an individ-

ual vehicle, so that they are separated by at least the required distance. Violations

of the separation requirements while following the trajectory can be caused by mod-

eling errors, sensor noises, discretizations, linearizations of the nonlinear models and

robustness of the trajectory following algorithms.

We propose to improve the safety of the motion plan in two different perspec-

tives. One is the verification of the safety requirement of the reference trajectories

and trajectory following controls, the other is the synthesis of the controls to fulfill

the safe margins. Both perspectives require models of deviations from the reference

trajectory due to uncertainties and disturbances in the system.

One way to capture deviations in system modeling is to use the reachable

set, which is a set of states that is reachable from the initial set given the models

of uncertainties and disturbances. The safety requirements such as a minimum

separation between individual agent becomes a requirement on the distances between

the reachable sets over time. In computational mathematical terms, the reachable

set computation can be carried out through different over-approximations or under-

approximations. The set can be captured using intervals, zonotopes, ellipsoids,

polytopes, support functions, level sets of Hamiltonian.

For general nonlinear dynamics, in [14, 15] the authors proposed to formulate

the reachability problem into a game theoretic optimization problem and represented

the reachable set as a level set computed by solving Hamilton Jacobi Issac (HJI)

equations. Due to the computational complexity of solving fixed boundary partial

differential equations, the reachable sets computed are restricted to dimension lower

4

than 3. This restricts the problem to kinematics only, where forces and accelerations

are not modeled. In most of the physical systems in motion planning problems,

because actuators can saturate due to physical limitation or dynamics, it is crucial to

consider the bounds on the control inputs. Other computational efficient algorithms

commonly rely on the convexity of the sets and linear dynamics. Reachable sets

can be over-approximated using specific convex covering sets, such as ellipsoids

[16,17], convex sets described by support function [18], and polytopes [19–22]. These

methods can handle cases of high dimensional systems resulting from quadrotor or

manipulator dynamics which have high dimension of state space. Although the

underlying computation is based on linear techniques, the system dynamics can be

nonlinear [23], or hybrid [24].

For the verification problem, we want to prove that given the reference trajec-

tory and the trajectory following controls, the system is safe and robust to modeled

disturbance in the system. The system is safe if it satisfies the separation require-

ment at all times for all possible modeled disturbances and inputs. In the UAV

collision avoidance example, we proposed a method to prove the safety of a planed

UAV trajectory and an expected human piloted trajectory using the reachable sets.

For collision avoidance maneuver for automobile, we demonstrated our method to

validate lateral separation requirement with the front vehicle. In both applications,

efficient computation for high dimensional systems is important. Furthermore, in

these cases, the system is commonly operating in linear regions or near steady state.

Therefore, we deployed methods based on linear and convex reachable set compu-

tation. We covered the details of the verification algorithms and demonstrated the

5

method for UAV and cars through simulations in Chap. 2.

From the control synthesis point of view, we proposed an update rule to restrict

the control sets of the vehicles so that the reachable sets of all the vehicles on collision

courses, are safe respect to any execution of the others. This provides guarantees for

unknown control actions, within some negotiated control constraints, of the other

vehicles, so that the host vehicle can avoid them under all possible disturbances and

controls. We examined such method for both rotorcraft and fixed-wing dynamics in

Chap. 3.

1.2 Temporal Logic

In recent years, there has been increasing interest in using temporal logic,

such as Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and regu-

lar expressions mission planning at the high level [25–30]. Temporal logics [31–33]

have provided a compact mathematical formulation for specifying complex motion

specifications, motion sequencing and timing behaviors etc. For example, high-level

mission specifications such as “Visit region R1, then R2, and then R3, infinitely

often. Never enter R5 unless coming directly from R4.” can be specified in LTL.

Previous approaches mainly focus on the usage of LTL, which can specify tasks such

as visiting goals, periodically surveying areas, staying stable and safe. Historically

LTL was originated for model checking, validation and verification in the software

community [34]. The availability of tools such as SPIN [35], NuSMV [36] made it

easier for us to check if a given LTL specifications can be met by creating a suitable

6

automaton and looking for a feasible path on that automaton. However, the con-

struction of the automaton from a given temporal logic formula is based on the fact

that there are no time constraints associated with the specification. That is also the

main drawback of the LTL formulation, which is that it cannot specify time distance

between tasks. Currently motion planning for robots is in such a stage where it is

very crucial to incorporate time constraints since these constraints can arise from

different aspects of the problem: dynamic environment, sequential processing, time

optimality etc. In surveillance examples, a simple task may be to individually mon-

itor multiple areas for at least x amount of time while satisfying the constraints of

visiting the areas at least once every y amount of time. Planning with time bounded

objectives is inherently hard due to the fact that every transition from one state to

another in the associated automaton has to be carried out, by some controller, ex-

actly in time from an initial configuration to the final configuration. Time bounded

motion planning has been done in heuristic ways [37, 38]. We proposed two very

different methods to solve the planning under these timed temporal constraints.

One is transforming the problem into a mixed integer optimization problem, the

other is generating an associated timed automaton that captured the timed tem-

poral constraints similar to how a constructed Büchi Automaton can represent the

same constraints in LTL.

In Chap. 4, we first define the temporal logic we used in this work, Metric

Temporal Logic (MTL). It allows us to define tasks with timed temporal constraints.

We then propose a method to transform the problem into a mixed integer linear

program, and solved it through commercial solvers such as CPLEX.

7

In Chap. 5, we first review previous LTL automata-based approaches and com-

mented on the difficulties for MTL. A modified version of the MTL, Metric Interval

Temporal Logic (MITL), is used. Secondly, we propose an autonomous method to

transform the MITL to a timed automaton based on a model checking method in

computer science. We then analyze the timed automaton and find shortest time

discrete plan in UPPAAL. UPPAAL is a timed automata analysis and verification

tool. Lastly, the discrete plans generated from UPPAAL is converted to continuous

trajectories through optimal controls.

8

Chapter 2: Reachable Sets for Safety Verification

2.1 Overview

As discussed in the previous chapter, reachable sets can be used to evaluate

robustness and safety properties of motion planning and control algorithms. Com-

monly in practice of robotics, a reference trajectory is generated from motion plan-

ning, and a model predictive controller (MPC) [39,40] or an adaptive controller [41]

are used to follow the resulting trajectory. Conventional MPC based methods have

robustness and stability problems, and adaptive control based methods can cause

unexpected transient behaviors before convergence of the controller. For safety crit-

ical systems, such as a collision avoidance module, it is essential to make sure that

the overall system is safe under disturbances during the maneuver. Reachable sets

can capture uncertainties and deviations from the nominal trajectory as well as

transient behavior of the trajectory following controllers.

In this chapter, we will first provide fundamentals of the reachable sets in-

cluding definition and computation using iterative methods. We then show how

the algorithm can be used to verify robustness of the reference trajectory and the

trajectory tracking algorithm in nonlinear and hybrid system settings. The methods

are then demonstrated on two dynamic systems, a quadrotor and a car dynamics,

9

in a collision avoidance scenario. A part of this work is published in [42].

2.2 Reachable Set Computation

We consider the collision avoidance problem between vehicles whose dynamics

are given by nonlinear models as (2.1).

ẋ(t) = f(t, x, u, v) (2.1)

where x(t) ∈ X , x(0) ∈ X0 ⊆ X , u(t) ∈ U(t) for all t, v(t) ∈ V for all t. X0 is the

initial state set, U(t) is the control set and V is the disturbance set.

The reachable set of (2.1) (or forward reachable set) R[ϑ] = R(ϑ,X0), is the

set of states that are reachable at time ϑ from a set of initial states X0 and all

possible controls and disturbances. Formally it is defined by the following,

Definition 2.2.1 (Reachable Set). The reachable set R[ϑ] = R(ϑ, t0, X0) of the

system of (2.1) at time ϑ from a set of initial positions X0 and time t0 is the set of

all points x for which there exists a trajectory x(s, t0, x0, u(s), v(s)), x0 ∈ X0, u(t) ∈

U(t), v(t) ∈ V for all t, that transfers the system from (t0, x0) to (ϑ, x), x = x(ϑ).

Similarly the reachable tube is the union of all reachable sets over a time

interval.

Definition 2.2.2 (Reachable Tube). The reachable tubeR(Θ, X0) = ∪ϑ∈ΘR(ϑ, t0, X0)

For large dimensional systems such as aircraft, effective reachable set computa-

tions using convex overapproximation include the convex sets described by support

functions [18,43], polytopes [22,44] and zonotopes [23,45–49]. We use the zonotopes

10

representation (Def. 2.2.3 below), because the computation of the zonotope over-

approximations can be performed efficiently for linear systems, linearized nonlinear

systems, and hybrid linear systems [23,49].

Definition 2.2.3 (Zonotope). A zonotope is a set of points in n-dimensional space

constructed from vectors vi ∈ Rn by taking the sum of aivi, where ai is a scalar be-

tween 0 and 1. Formally, the zonotope Z(v1, v2, . . . , vN) =
{
z ∈ Rn|z =

∑N
i=1 aivi

}
,

where 0 ≤ ai ≤ 1.

The tool Continuous Reachability Analyzer (CORA), which implements zonotope-

based reachability analysis, runs in the Matlab environment. It has been imple-

mented with the capability of verifying the safety of highly nonlinear autonomous

vehicles traversing a reference trajectory [45–47]. It is very appropriate for the

motivating applications. Furthermore, the zonotope has been extended further to

consider affects of time varying system [48], and introduce a better linearization

scheme to reduce error introduced [23].

Reachable set computation for a nonlinear model directly is commonly imprac-

tical in collision avoidance due to slow computation time for a dynamical system [14].

Currently, there are two ways to capture the nonlinearity through linear methods.

One method is linearizing the dynamics around a steady state and capturing the

linearization error as part of bounded disturbance. [19] The other method is that we

can convert the nonlinear dynamics to piecewise affine dynamics, which is especially

useful to model saturation. This piecewise affine dynamics can be captured in a

hybrid system with affine dynamics.

11

In the next few sections, computation of the reachable set through an iterative

method will be summarized for linear, nonlinear and hybrid systems. It is based on

algorithms proposed in [21,43].

2.2.1 Reachable Set Computation for Linear Dynamics

Consider a simple linear time system described by the following,

ẋ(t) = A(t)x(t) +B(t)u(t) + v(t), x(0) ∈ X0, u(t) ∈ U(t), v(t) ∈ V (2.2)

where X0 is the initial state set, that satisfies X0 ⊂ X ⊂ Rn. X is the state set.

U(t) ⊂ Rm is the control set at time t. V ⊂ Rn is a bounded disturbance set that

captures uncertainties in the system.

The solution of Eq. 2.2 for x(0) = x0 is

x(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, τ)B(τ)u(τ)dτ +

∫ t

0

Φ(t, τ)v(τ)dτ (2.3)

where Φ(t, s) is the state transition matrix of system (2.2). Therefore, it satisfies

∂

∂t
Φ(t, s) = A(t)Φ(t, s), Φ(s, s) = I.

The solution (2.3) is a sum of three terms. One is due to the initial condition, one is

due to the control and the last is related to the disturbances. Consider a trajectory

tracking control law which is affine in state x(t) based on MPC, i.e.

u(t) = −K(t)x(t) + h(γ(t), t)

where K(t) and h are derived based on the cost function in MPC and the reference

trajectory γ(t) : R+ 7→ X . The closed loop system will be a linear dynamics related

12

to x and w.

ẋ(t) = Ac(t)x(t) + v(t) +B(t)h(γ(t), t)︸ ︷︷ ︸
w(t)∈W(t)

, x(0) ∈ X0, v(t) ∈ V (2.4)

where Ac(t) = A(t) − B(t)K(t) is the matrix of the closed loop system. W(t) can

be considered as a disturbance set with a known offset due to h(γ(t), t).

The reachable set of the system (2.4) given the initial set X0 and the dis-

turbance set W(t), can be captured as Minkowski sum of two sets (Def. 2.2.4

below), one from the initial state set X0, one from the disturbance setW(t). Denote

V = R(δ, {0})

R(δ,X0) = Φc(δ, 0)X0 ⊕R(δ, {0}).

R(δ,X0) is the reachable set of the system (2.4) at time δ based on Def. 2.2.1.

R(δ, {0}) is the reachable set contributed due to disturbance set only, i.e. x0 = 0.

Φc(t, s) is the transition matrix for the closed-loop system.

Definition 2.2.4. The Minkowski Sum of two sets A ∈ Rn and B ∈ Rn is a set

formed by additions of vectors in the two sets, i.e.

A⊕B = {a+ b | a ∈ A, b ∈ B }

This suggests a discretized iterative computation of the reachability tube as

the union of Ωi, where Ωi is defined by the following induction,

Ωi+1 ← ΦiΩi ⊕ V.

Φi = Φc((i+1)δ, iδ), V = R(δ, {0}), and δ is the sampling rate of the discretization.

The ⊕ operator is the minkowski sum operator defined in Def. 2.2.4. Then the

13

induction is initiated by Ω0 = R([0, δ],X0), with W . To reduce computational

complexity, both V and Ω0 are overapproximations.

The objective of finding the reachable set during the interval [0, T] can then

be computed using Algorithm 1

Algorithm 1 Reachable Set for Linear System

Input: Initial set X0, horizon T , sampling step N .
Output: Reachable set R([0, T],X0)

1: δ ← T/N

2: rδ ← supw(t)∈W(t)

∫ δ
0

Φc(t, τ)w(τ)dτ
3: V ← B(rδ) . R(δ, {0}) overapproximated by V
4: sδ ← supx∈X0

(Φc(δ, 0)− I − Ac(δ))x
5: Ω0 ← CH(X0 ∪ Φ0X0)⊕ B(sδ + rδ) . R([0, δ],X0) overapproximated by Ω0

6: for i from 0 to N − 2 do
7: Ωi+1 ← ΦΩi ⊕ V . Computationally expensive
8: end for
9: return

⋃
i∈0,...,N−1 Ωi

B(r) is the ball with radius r, and CH(Y) is the convex hull of the set Y .

Explicit expressions of the approximations in line 3 and 5 using matrix norm was

proposed in [49] and [48] for time invariant and time varying system. In both cases,

the approximated reachability set converges to the real one as δ → 0.

The explicit form of line 7 is,

Ωi =

(
i∏

j=0

Φj

)
Ω0 ⊕

[
i−1⊕
j=0

(
j∏

k=0

Φk

)
V

]
(2.5)

Because the computation of Ωi has an increasing computational complexity

for every iteration in line 7, an iteratively overapproximation by (2.6) is proposed

14

in [48, 49].

Ai ← ΦiAi−1

Si ← Si−1 ⊕ Vi−1

Vi ← Φi−1Vi−1

Ωi ← Ai ⊕ Si


i = 1, 2, . . . , N (2.6)

where the induction is initialized by, A0 ← Ω0, V0 ← V,S0 ← {0}.

2.2.2 Reachability Analysis for Hybrid System with Linear Dynamics

The hybrid model of the overall system is formally defined as the following

based on [50], [43].

Definition 2.2.5 (Hybrid Automata). A hybrid automaton H is a tuple H =

(Q,X, F low, I, T rans, S0) defined by the following components:

• Q: a finite set of discrete locations qi, which are vertices of a graph (V,E)

whose edges are discrete transition defined by Trans.

• X: a finite number of continuous state variables [x1, ..., x‖X‖] ∈ R‖X‖ whose

dynamics is defined by Flow of every location qi.

• Flow: a set of predicates on the derivatives of continuous variable, more specif-

ically, Flow(q) specifies the set for allowed X× Ẋ. The particular flow condi-

tion we are used here are general nonlinear systems in the form of ẋ = f(x,w),

for w ∈ W. If the underlying dynamics at each location is linear then convex

W is assumed.

15

• I: invariant set is a set of predicates on the continuous variables X for each

location. If the underlying dynamics is linear then convex invariant constraint

is assumed.

• Trans: is defined by a set of transition E ⊆ Q × Q and its associated jump

predicate G on X and jump function µ. The transition from q to q’ is taken,

if there exists a transition from q to q’ where its predicate G is satisfied, then

next state x′ = µ(x). Denote the set of state satisfying G as G.

• S0: a set of initial state Q0 ×X0 ⊂ Q×X.

In the linear time invariant cases, where the flows of the hybrid automaton

are linear time invariant in x, additional assumptions are the invariants and guard

conditions are convex and the jump functions are affine in x and w. This section

summarizes the approach in [43] of reachability analysis for linear system and ex-

tension to hybrid system.

To extend the previous framework to hybrid systems, one needs to add invari-

ant conditions on x and guard and jump conditions on x.

To handle the invariants, i.e. the dynamics of the system in one location is,

ẋ(t) = Alx(t) + w(t) x(0) ∈ X0, w(t) ∈ W(t), x(t) ∈ I.

The reachable set should stay in the invariant I, in other words, the reachable

set Ωi should also intersect the invariant set every iteration. This results in the

modification of Eq. 2.5 to

ΩIi+1 = (ΦΩIi ⊕ V) ∩ I

16

The associated halfspace G associated with the guard condition can then make

intersection with the resulting reachable set. Let the intersection of the reachable

set with the hyperplane happen between t1 and t2, then the next step initial set can

be formally described by the following,

X ′0 = µ(R([t1, t2],X′) ∩ G),

where µ is the associated jump function defined by the hybrid system.

2.2.3 Reachability Analysis of Nonlinear Dynamics using Lineariza-

tion

The above sections summarize the work in reachability related to hybrid sys-

tems with linear dynamics and convex constraint set. Several researches have been

done to extend the reachability framework for linear systems to nonlinear systems

using linearization and hybridization techniques. Both techniques use abstraction

to a differential inclusion of simpler dynamics such as hybrid systems with linear

dynamics [51], or linearized around reference trajectories [45–47]. The latter out-

performs partition-based methods because partition-based methods are commonly

fixed. Abstraction using linearization is useful for dealing with very complex sys-

tems such as high-order car models [47], helicopters and high-order aircraft mod-

els. In general, the reachability analysis using abstraction has large advantage in

computational efficiency over Hamilton Jacobean Integration (HJI) Equation based

optimization algorithms in [14,52–54].

Consider the general nonlinear system described by the following ODE and its

17

Taylor series expansion,

ẋ(t) = f(x,w)

= f(x∗, w∗) +
∂f

∂x

∣∣∣∣
x=x∗

(x− x∗)(t) +
∂f

∂w

∣∣∣∣
w=w∗

(w − w∗)(t)

+ higher order term, x(0) ∈ X0, w(t) ∈ W(t),

x∗, w∗ can be computed based on nominal trajectory and nominal disturbance. Note

that w(t) in Eq. 2.4 also include the term h(γ(t), t) related to the reference trajec-

tory.

Furthermore, the nonlinear dynamics can be differential included by the lin-

ear dynamics, if the Lagrangian remainder terms of the Taylor series expansion is

carefully computed. A reference trajectory xd(t) is added as a control input. Let

z = [x,w]T , then the differential inclusion can be formally described as,

ż(t) ∈ f(z∗, xd) + ∇zf |z=z∗ (z − z∗)(t) +
1

2
(z − z∗)T ∇2

zf
∣∣
z=ξ

(z − z∗), (2.7)

where ξ takes value in the set {z + α(z − z∗)|α ∈ [0, 1]}.

In other words, the reachable sets of the linearized system, enlarged by the

Lagrangian remainder terms, always include the reachable set of the nonlinear dy-

namics. Therefore, one can determine if the system is safe based on the overap-

proximated reachable set of the linearized dynamic. The overapproximation is also

conservative in the sense that the overapproximation set is tight. As the discretiza-

tion δ → 0, the overapproximated reachable set will converge to the real set.

18

2.3 Reachability Analysis for Quadrotor Dynamics

One of the important usages of reachability analysis is to improve safety of

autonomous aircraft such as quadrotors in commercial airspace.

2.3.1 Quadrotor Dynamics

A common second order quadrotor model has a 12-dimensional state variable x

and control input u based on thrust and rotational momentum. [55] The components

of x are defined by the following,

x = (px, py, pz, vx, vy, vz, φ, θ, ψ, p, q, r),

where p = (px, py, pz) is a position vector in the global coordinate frame, v =

(vx, vy, vz) is a velocity vector in the global coordinate frame, (φ, θ, ψ) are roll pitch

yaw angle associated to attitude of the quadrotor, (p, q, r) is body frame rotational

velocity. The control inputs are described by a four dimensional input variable

u = (F,M1,M2,M3), where F is the total thrust along the centerline of the body

frame, and M = (M1,M2,M3) is the rotational momentum. The dynamics of the

quadrotor is commonly described by the following ODEs.

ṗ = v,

v̇ = g e3 −
F

m
R e3

Ṙ = R−1
w Ω

Ω̇ = J−1(M−Ω× JΩ)

19

where J is the moment of inertial, R is the rotational matrix described by Z-X-Y

Euler angle for description of roll pitch yaw, and Rw is the matrix transformation

from deriatives of the roll pitch yaw to the body frame rotational velocities. [55,56].

Cosine and Sine is abbreviated to “c” and “s” for short.

R =


cθcψ − sθsφsψ −cφsψ cψsθ + cθsφsψ

cψsθsφ+ cθsψ cφcψ −cθcψsφ+ sθsψ

−cφsθ sφ cθcφ



Rw =


cθ 0 cφsθ

0 1 sφ

sθ 0 cφcθ


A very nice property of this dynamics or helicopter dynamics is differential flatness.

In other words, system states and control inputs can be written as algebraic functions

of carefully selected flat outputs and their derivatives. For quadrotor dynamics in

particular, it is proved in [55], that the flat outputs can be y = (px, py, pz, ψ). It

also has been proved that a tracking controller defined by the following equations

provide asymptotic stability to the reference trajectory yd.

ep = pd − p, ev = vd − v

Fdes = Kpep +Kvev +mge3 +mad

F = Fdes · zB

eR = 1/2(−RT
dR +RTRd)

∨, ev = wd − w

M = KReR +Kwew

20

u = [F ; M] = f(x,xd) (2.8)

In Eq. 2.8, xd is a reference trajectory to the system, defined by

xd = [pd,vd, ad, φd, θd, ψd,Ωd].

This dynamical model and controller of the hardware platform can be easily adjusted

using information from existing hardware databases to model other quadrotor plat-

forms.

The overall dynamics of the quadrotor then become the same as Eq. 2.7. The

associated input set U here is not a control input set, but rather a disturbance set

which captures the model uncertainties, sensor noise, and disturbances.

2.3.2 Results and Analysis

Computation using reachable set based methods has been demonstrated for

real-time applications of autonomous vehicles with high degrees of nonlinearity

[47, 48]. The outcome of the reachability analysis includes reachable sets of po-

sition and orientation of autonomous aircraft along with piloted aircraft that are

inside the surveying workspace. When there are nearby friendly aircraft which are

autonomously controlled by the same high level control system, the reachability set

data are shared and safety is verified by checking that the reachable sets are not

colliding in any instant of the time. The UAV operator will be able to obtain the

reachable tubes of the autonomous aircraft in almost real-time and transmit location

and trajectory data to Air Traffic Control (ATC) and nearby aircraft if desired. Hu-

man piloted aircraft always have the highest priority in our system, and autonomous

21

Figure 2.1: Planned trajectory. The blue and green arrows mark the initial positions
of the UAVs. The crosses mark the waypoints for individual UAVs in a survey task.
Possible information is marked by the doted area. The corresponding curves are
reference trajectories generated by the planner.

quadrotors, can reroute. If the reachable sets collide, the trajectory planned by the

high level can be changed and the low level controller will be switched to an emer-

gency avoidance state to use maximum power to move clear of the paths of piloted

aircraft, this will be discussed in more detail in Chap. 3.

Consider the following scenario when two UAVs approach and avoid each other

by negotiating different reference trajectories in the high level as Fig. 2.1. The

safety verification in this case is to prove that the reachable set under disturbance

is not large enough to collide the two sets. The result is shown in Fig. 2.2 with

disturbance. The conclusion is that the reachable set has not enough separation

due to the transient instability of trajectory tracking controller while switching

between different reference trajectories. The computation time is 100x longer than

the tested time horizon. This is because by introducing the time varying reference

trajectory, the linearization and linearization error have to be computed at much

higher frequency. One direction of future work is to improve efficiency for quadrotor

22

Figure 2.2: Reachable set computation of the two UAVs

reachable set computation, so that the safety verification can be performed real-time

similar to the autonomous vehicle case.

2.4 Collision Avoidance Maneuver Safety Verification for Autonomous

Vehicle

In this section, we demonstrated that the reachable set computation can be

used for real-time verification of autonomous driving algorithms, such as collision

avoidance maneuvers.

23

Figure 2.3: Block diagram of the collision avoidance maneuver.

2.4.1 System Overview

The most common collision avoidance maneuver model developed for semi-

autonomous driving vehicle is composed of a path planner, a state predictor, the

vehicle lateral dynamics, and a model predictive controller. [57–61] The intercon-

nection is shown in Fig. 2.3. Based on lane camera updates of the road ahead of the

vehicle, the path planner will generate a reference path for the vehicle to avoid an

intimate collision by guiding the vehicle to left or right lane. The reference signal

produced from the path planner γ captures the relative lateral distance and relative

heading to the planned path. The state predictor estimates the future state of the

vehicle state x̂ using current sensor measurements and discretized linear model of

the dynamics. The error terms between the reference signal and the predicted state

is fed through the model predictive controller to determine the control input to be

used.

The lateral dynamics of the vehicle is a 4 dimensional model that consists of

tracking error dynamics and classical forward steering bicycle dynamics. The states

x are composed of relative lateral distance to the target path y, relative heading angle

ψ, lateral speed vy and yaw rate r. The controller input u is the front road wheel

24

angle δ. By using small angle approximation and linear tire model the following

linearized state equations can be obtained.

ẋ = Ax+Bu+ w

where

A =



0 vx 1 0

0 0 0 1

0 0 −Cf+Cr

Mvx
−vx − aCf−bCr

Mvx

0 0 −aCf−bCr

Izvx
−a2Cf+b2Cr

Izvx


, B =



0

0

Cf

M

aCf

Iz


, w =



0

−χvx

0

0


Here vx is the longitudinal speed, Cf and Cr are the cornering stiffness of the front

and rear axles, respectively, a is the distance from the center of gravity of the vehicle

to the front wheel axle, b is the distance from the center of gravity to the rear wheel

axle, M is the total mass of the vehicle, Iz is the moment of inertia of the vehicle

in the yaw direction, χ is the path curvature.

The linear bicycle model uses the linear approximation of the tire lateral force

of the following form,

Ff = Cfαf , αf = δ − vy
vx
− a

vx
r,

Fr = Crαr, αr = −vy
vx

+
b

vx
r.

The state predictor is based on the discretized version of the linear model.

ẋ = Ax+Bu+ w

x̂(k + 1) = Adx̂(k) +Bdu(k) + wd(k)

y(k) = Cx̂(k)

25

where for sampling period T ,

Ad = eAT , Bd =

∫ T

0

eAτdτB, wd(k) =

∫ T

0

eAτdτw(kT)

The model predictive controller is designed to optimize the following cost

J(x, u, k) =
N∑
i=1

(y(k + i)− γ(k + i))TQ(k + i)(y(k + i)− γ(k + i)) + u(k)TR(k)u(k)

where y(k) is the expected relative measurement to the reference path based on the

state predictor. Q(k) and R(k) are positive definite matrices to tradeoff between

minimizing error between the path and the actuation cost.

Based on the state predictor model, the cost function will be a quadratic

function of the controller u(k). The minimum is achieved when ∂J
∂u(k)

= 0. The

resulting optimal u(k) takes the form of a linear feedback u(k) = −K(k)x(k)+v(k),

where

K(k) =

∑N
i=1

(
C
∑i

j=1A
j−1
d Bd

)T
Q(k + i)CAid

R(k) +
∑N

i=1

(
C
∑i

j=1 A
j−1
d Bd

)T
Q(k + i)

(
C
∑i

j=1A
j−1
d Bd

)
v(k) =

∑N
i=1

(
C
∑i

j=1A
j−1
d Bd

)T
Q(k + i)

(
γ(k + i)− C

∑i
j=1A

j−1
d wd(k)

)
R(k) +

∑N
i=1

(
C
∑i

j=1 A
j−1
d Bd

)T
Q(k + i)

(
C
∑i

j=1A
j−1
d Bd

)

2.4.2 Reachability for Physical System

The occupancy set of the vehicle includes the reachable set of the center of

mass motion and the physical size of the vehicle. Besides the physical size of the

objects, an additional parameter such as safety radius δs is considered as well to

capture safe proximity of the objects to others. Take a rectangular-shaped object

in 2D for example, given the safety radius δs, the reachable set Rx, Ry and Rθ for

26

center of mass [x, y, θ] ∈ R2× [0, 2π), the occupancy set of the physical object is the

set

{(Rx ×Ry)⊕ B(δs)⊕ Rot(θ)([−l/2, l/2]× [−w/2, w/2]) θ ∈ Rθ}

Rot(·) denote the rotation matrix of its argument, B(·) denote the closed ball of

radius specified by its argument, and w, l are the corresponding width and length

of the object.

−5 0 5 10 15 20 25 30 35 40
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x/m

y/
m

(a) Reachable set projected to longitude
distance x and relative lateral distance y.

−5 0 5 10 15 20 25 30 35 40
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x/m

ψ
/r

ad

(b) Reachable set projected to longitude
distance x and relative heading ψ.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ψ
/r

ad

y/m

(c) Reachable set projected to relative lat-
eral distance and relative heading.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y/m

ψ
/r

ad

(d) Reachable set after adding deviation on
lateral speed and yaw rate.

Figure 2.4: Reachable set of linear hybrid system model. In all the plots, the
reachable sets are shown as blue polytopes and simulation traces are black lines.
The noise produced a large deviation on the reachable set (Fig. (c) and Fig. (d)).
Although the system is still stable, the system is not robust in rejecting noise.

27

−10 0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

6

7

x/m

y/
m

(a) Occupancy set of the vehicle for hybrid linear system model without
sensor noise.

−10 0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

6

7

x/m

y/
m

(b) Occupancy set of vehicle for hybrid linear system model with sensor
noise

Figure 2.5: Clearly the hybrid linear model is not robust in terms of rejecting
sensor noise, the occupancy set is enlarged to about 1m around the vehicle. In this
particular case, the distance required to avoid collision is reduced for about 2m due
to the sensor noise.

2.4.3 Results and Analysis

We performed reachability analysis using existing path planner that generates

a collision free path based on distance to the front vehicle and lateral separation

requirement. [61] The path planner generates two interconnected arcs as reference

signals to the controller. The switching point is when the ego vehicle passes half

of the width of the front vehicle. To model this specification, the overall system is

28

captured in the hybrid system setup. For simplicity, a linear model is used for each

segment. The reference signal for the first segment (or the first location of hybrid

system) is an arc bending towards the other lane, while for the second segment, the

arc guides the car so that it is centered in the target lane and oriented correctly.

The initial state uncertainty is specified as following based on system noise. The

uncertainty of relative lateral distance is 20cm due to the noise in lane mark de-

tection. The uncertainty of relative heading angle is 1 deg. Without any further

disturbance in the system, the reachable set of the vehicle for 1.6s is as shown in Fig.

2.4. In the figures, the reachable sets are covered by blue boxes which depict the

reachable set at continuous time intervals. Example simulation traces are the solid

black lines. If additional sensor noise is included in the model, more specifically, the

state estimates are predicted on noisy state measures such as lateral speed vy and

yaw rate r, the resulting reachable sets are larger comparing to the case without

estimation noise, and they do not shrink in size over time (Fig. 2.4d). The specific

deviation used in this simulation is 0.5km/h deviation on velocity estimate vy and

1 deg/s deviation on r. It can be seen based on the reachable sets that the overall

system is not robust to sensor noise. The reachable sets do not converge to the

ones obtained earlier in Fig. 2.4. The associated occupancy sets of the vehicle with

and without sensor noise are captures in Fig. 2.5. The gray area represents the

occupancy sets of one simulation run, while the blue boxes cover the occupancy sets

based on reachability analysis. The distance required to avoid collision is increased

by around 2m due to the sensor noise. The performance of the algorithm scales well

with the system complexity. The computation for 1.6 sec reachable set takes about

29

2 sec in Matlab.

2.5 Conclusion

In this chapter, we examined the safety and robustness of trajectory planner

and tracking controller using forward reachability analysis. We showed that the

computation is fast, efficient for linear or hybrid system with linear dynamics. We

demonstrated usage of the reachability based verification for collision avoidance

maneuvers for UAVs and semiautonomous vehicles.

30

Chapter 3: Control Synthesis for Collision Avoidance Using Reach-

able Set

3.1 Overview

Autonomous aircraft have been deployed for agriculture research and man-

agement, surveillance and sensor coverage for threat detection and disaster search

and rescue operations. In most of these scenarios, it is desirable to have multiple

aircraft to increase the efficiency and coverage of the UAVs. Since the UAVs in

these scenarios, and increasingly in more commercial applications, will be deployed

in the shared commercial airspace, they are required to have sophisticated collision

avoidance algorithms in order to fly together with other conventional aircraft. As

the number of these UAVs increases, a centralized ground control based model is

not sufficient alone. Thus an autonomous on-board collision avoidance system needs

to be implemented in a decentralized manner and in real-time. As discussed in the

previous chapter, reachable sets can be used to compute occupation sets for aircraft

in collision course. Therefore, our objective is to synthesize control sets for the

aircraft in collisions so that the reachable tubes do not collide at any time. The col-

lision avoidance problem between reachable sets has been previously studied under

31

the frame of reachability analysis of nonlinear dynamical games [14, 15]. The other

agent is considered as adversary or disturbance to the collision avoidance problem.

A controller is synthesized to allow the aircraft to avoid the reachable sets of others.

However, in most collision avoidance scenarios, the controller selection is collabo-

rative. In this chapter, we investigate cases when agents can derive collaboratively

the control constraint sets so that the resulting reachable sets are collision free. The

control constraint can be constant or time varying over the horizon, in general the

sets form a control tube. The control tube describes the robustness of the control

to disturbances and behaviors of the other aircraft. Part of the work is published

in [62].

Due to the nature of collision avoidance, it is critical to have fast and efficient

computation for reachable sets. There are several fast linear algorithms based on

convex analysis for reachability analysis. These algorithms employ linearized dy-

namics with convex initial state set and control disturbance set. They commonly

approximate reachable set using specific covering sets including ellipsoids [16, 17]

and polytopes [19–22]. In all these cases, commonly support functions are used to

analytically derive the reachable sets. However, many algorithms [19–22] compute

the approximated convex set iteratively, which makes the solutions impossible to be

represented in analytic forms. We will use the reachable set tool set from [63] based

on the ellipsoid methods in [16], because its solutions can be expressed efficiently in

analytical expressions.

The main contribution of this part of the work is that we propose and solve

a new reachability based formulation of collision avoidance. It is formulated as

32

the following two-fold optimization problem. In the first part, autonomous aircraft

collaboratively define control constraint sets, while in the second, individual aircraft

will compute an optimal control policy within the control constraints so that they

can reach their objective and avoid the others. We focus on the first part, since the

second part is a traditional optimal control problem with hard control constraints.

We provide two distinct control tube update policies. The first one is a constant

control set design [62]. We focus on collaboration between UAVs and controls such

that their reachable tubes are separated under new control set constraint. The

second method is a time varying control tube design. We focuses on cases when

one aircraft is considered as an intruder and its expected states are captured using

an estimated reachable tube based on sensors. We then derive time varying robust

control tube such that the ego vehicle can avoid the intruder. The rest of this chapter

is organized as follows. In section 3.2 we present the fundamentals of reachability

sets. Then in section 3.3 we define the reachable set collision avoidance problem and

formulate it into a convex optimization problem incorporating the reachable sets.

Both time varying and constant control tube design are discussed in detail there.

Afterwards, we demonstrate our approach in scenarios involving collision avoidance

between quadrotors and fixed-wing aircraft.

33

3.2 Reachable Set

We consider collision avoidance navigation between aircraft whose dynamics

are given by nonlinear models as (3.1).

ẋ(t) = f(t, x, u, v) (3.1)

where x(t) ∈ X , x(0) ∈ X0 ⊆ X , u(t) ∈ U(t) for all t, v(t) ∈ V for all t.

Reachable set computation for nonlinear model directly exists, but it is com-

monly impractical in collision avoidance due to slow computation time [14]. So

instead of looking at the full nonlinear model, we first exam the linearized dynamics

of nonlinear system around an fixed operating point, resulting in dynamics that are

of the following form.

ẋ(t) = A(t)x(t) +B(t)u(t) + v(t) (3.2)

To simplify the computation, the following assumptions are used by noting Lemma

3.2.1, where U(t),X0 and V are all convex and compact sets. [16]

Lemma 3.2.1. With U(t),X0 and V being convex and compact, the reachable set

R[ϑ] is also convex and compact.

The problem of defining the reachable set of the system can be reformulated

as an optimization problem. Consider the system (3.2). Since the reachable set

would be convex and compact due to the assumption on the control set and the

initial set, the reachable set can be captured using its support function. Let ρ(l|X)

be the support function of the set X, i.e. ρ(l|X) = max{〈l, x〉 |x ∈ X}, and 〈l, x〉

34

represents the inner product between vector l and x. Then the support function of

the reachable set R[ϑ] is given by the following,

ρ(l|R[ϑ]) = max{〈l, x〉 |x ∈ R[ϑ]}

= max

{∫ ϑ

t0

l′Φ(ϑ, s)B(s)u(s) + l′Φ(ϑ, s)v(s)ds

+ l′Φ(ϑ, t0)x0

∣∣∣∣u(s) ∈ U(s), x0 ∈ X0, v(s) ∈ V
}

=

∫ ϑ

t0

ρ(B′(s)Φ′(ϑ, s)l|U(s))ds∫ ϑ

t0

ρ(Φ′(ϑ, s)l|V)ds+ ρ(Φ′(ϑ, t0)l|X0) (3.3)

where Φ(t, s) is the transition matrix of the system (3.2). i.e. it satisfies ∂
∂t

Φ(t, s) =

A(t)Φ(t, s) and Φ(s, s) = I. Assume further that all the sets are represented by

ellipsoids. Let cX and MX denote the center and shape matrix of the set. The

following holds, if x ∈ X = E(cX ,MX),

〈
x− cX ,M−1

X (x− cX)
〉
≤ 1.

In terms of the support function, it can be expressed by

〈l, x〉 ≤ 〈l, cX〉+ 〈l,MX l〉1/2 .

The support function of the reachable set R[ϑ] could be expressed further in terms

of the centers and shape matrices of the initial set, control and disturbance sets

35

(equation (3.4)).

ρ(l|R[ϑ]) = 〈l,Φ(ϑ, 0)cX0〉+

〈
l,

∫ ϑ

0

Φ(ϑ, s)B(s)cU(s)ds

〉
+
〈
l,Φ(ϑ, 0)MX0Φ

T (ϑ, 0)l
〉1/2

+

〈
l,

∫ ϑ

0

Φ(ϑ, s)cV(s)ds

〉
(3.4)

+

∫ ϑ

0

〈
l,Φ(ϑ, s)B(s)MUB

T (s)ΦT (ϑ, s)l
〉1/2

ds

+

∫ ϑ

0

〈
l,Φ(ϑ, s)MVΦT (ϑ, s)l

〉1/2
ds

Since, as will be discussed later, the disturbance is a constant term to the

optimization problem, we will assume in what follows that v(t) = 0. The term

related to v(t) affects the size of the reachable set. Since it is independent of the

control set parameter, it can be treated as an additional separation required in the

collision avoidance problem.

The computation of the reachable set for the nonlinear dynamics linearized

around a trajectory is similar. Assume the nonlinear system is linearized around a

steady operating trajectory x∗(t), with steady state controller u∗(t). Denote total

state X(t) = x∗(t) + x(t). The deviation term x(t) is the linearized dynamics, with

state space representation [A(t), B(t)] derived from 3.1,

A(t) =
∂f

∂x

∣∣∣∣
x=x∗

, B(t) =
∂f

∂u

∣∣∣∣
u=u∗

The reachable set of the original nonlinear system has the same shape but with

additional center offset based on the steady state dynamics x∗(t) which evolves

according to the following.

ẋ∗(t) = f(t, x∗, u∗)

36

In the following section, we assume the system is a linear dynamics. In the simulation

section, we provide a nonlinear example. The method is very similar but with few

constraints adjusted accordingly due to the steady state dynamics.

3.3 Collision Avoidance Between Two Agents Using Reachability

Analysis

3.3.1 Constant Control Set Design for Collaborative Collision Avoid-

ance

Let us consider the following two agents reachability based collision avoidance

problem.

Problem 3.3.1 (Reachability Based Collision Avoidance). We seek a control algo-

rithm for the aircraft A and B, such that they can always avoid each other if each

of them uses a more constrained control set than their initial ones. More specifi-

cally, in the first phase, given the initial state estimation set of the aircraft B XB
0 ,

and the estimated control set UB, we seek a tighter control constraint set ŨB such

that aircraft A can find a safe reachable tube that does not intersect with the one

of aircraft B counting the separation. At the same time, we need to make sure that

under the new control constraint set ŨB, aircraft B can still perform the maneuvers

the system requires to reach its goal area. At the second phase we seek a safe reach-

able tube for aircraft A so that the reachable tube will be apart from the reachable

tube of aircraft B for at least the required separation. Afterward we seek trajectories

37

within the reachable tube, so that they can safely reach their objectives in an optimal

manner.

As assumed in the previous section, let the initial set and control set of aircraft

B be the ellipsoids XB
0 = E(cBX0

,MB
X0

), UB = E(cBU ,M
B
U), and denote by cAX(t) the

nominal trajectory of aircraft A. We further assume the two aircraft will be closest

at time τ in the future, so we can reason about the reachable set instead of the tube.

For the first phase we want to keep the reachable set of aircraft B away from the

nominal trajectory of A as far as we can, and keep the constrained control set of

aircraft B relatively large. This can be formulated into the following optimization

problem.

Problem 3.3.2 (Optimization Part I).

max
q(t),Q(t)

max
l

〈
l, cAX(τ)

〉
− ρ(l|RB

x (τ)) + k log(det(Q(t)))

subject to E(q(t), Q(t)TQ(t)) ⊂ UB ∀t ∈ [0, τ]

‖l‖ = 1〈
l, cAX(τ)

〉
− ρ(l|RB

x (τ)) ≥ 0

where ρ(l|RB
x (τ)) is the support function of the reachable set of aircraft B at

time τ :

ρ(l|RB
x (t)) =

〈
l,Φ(t, 0)cBX0

〉
+

〈
l,

∫ t

0

Φ(t, s)B(s)cBU (s)ds

〉
+
〈
l,Φ(t, 0)MB

X0
ΦT (t, 0)l

〉1/2
(3.5)

+

∫ t

0

〈
l,Φ(t, s)B(s)QT (s)Q(s)BT (s)ΦT (t, s)l

〉1/2
ds.

The parameters of the optimization are q(t) and Q(t), both related to the new

control set. More specifically ŨB = E(q(t), QT (t)Q(t)). In the objective function,

38

the first part is the distance between the nominal trajectory cAX(τ) and the reach-

able set, and the second part is the size of the control set. Scalarization is used

to determine the Pareto optimal points [64]. The inner maximization determines

distance by varying the direction vector l. The first constraint is due to the fact that

ŨB ⊂ UB, the last constraint is to keep nominal trajectory outside the reachable set

of aircraft B.

E(q(t), Q(t)TQ(t)) ⊂ UB is equivalent to the following constraints on a new

parameter λ > 0, 
1− λ 0 (q(t)− cBU)T

0 λI Q(t)

q(t)− cBU Q(t) MB
U

 � 0.

Let A, B be time invariant, we seek a time invariant control constraint set as

well, so q and Q are time invariant. Let us assume the optimal l∗ can be estimated

based on the initial center of the reachable set alone. In other words, we assume

the direction that minimizes distance between the reachable set and cAX(τ) is not

affected by changes in the control constraint. The intuition behind this assumption

is that even if the direction is altered, the outer maximization is achieved at a

similar constraint set. In real applications, the autonomous aircraft will be given

such direction to avoid either based on the approaching angle autonomously or

based on instructions from the other pilots. Then the overall problem becomes the

following.

39

Problem 3.3.3 (Simplified Problem Part I).

max
q,Q

〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ)) + k(log det(Q))

subject to λ > 0
1− λ 0 (q − cBU)T

0 λI Q

q − cBU Q MB
U

 � 0

〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ)) ≥ 0

ρ(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(3.6)

+

∫ t

0

〈
l, eA(t−s)BQTQBT (eA(t−s))T l

〉1/2
ds.

To make the overall problem a simple convex optimization problem, we note

the following two cases.

(i) Suppose Q is r ∗ (MB
U)1/2 i.e. the constrained control set is a scaled version

of the initial control set. Then we have the following.

40

Problem 3.3.4 (Scaled Initial Set Method).

max
q,r

〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ))

+k dim(MB
U) log r

subject to λ > 0
1− λ 0 (q − cBU)T

0 λI r(MB
U)1/2

q − cBU r(MB
U)1/2 MB

U

 � 0

〈
l∗, cAX(τ)

〉
− ρ(l∗|RxB(τ)) ≥ 0

ρ(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(3.7)

+ r

∫ t

0

〈
l, eA(t−s)BMB

U B
T (eA(t−s))T l

〉1/2
ds.

(ii) Assume now that the requirement for
〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ)) ≥ 0 is

removed. The last term of ρ(l∗|RB
x (τ)) can be upper bounded using the matrix

norm property. Then the objective function can be lower bounded by 〈l∗, xAc〉 −

ρ̃(l∗|RB
x (τ)), where

ρ̃(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(3.8)

+ ‖Q‖2

∫ t

0

〈
l, eA(t−s)BBT (eA(t−s))T l

〉1/2
ds.

As the result, we have the following convex optimization problem.

41

Problem 3.3.5 (Matrix Norm Method).

max
q,Q

〈
l∗, cAX(τ)

〉
− ρ̃(l∗|RB

x (τ))

+k log(det(Q))

subject to λ > 0
1− λ 0 (q − cBU)T

0 λI Q

q − cBU Q MB
U

 � 0

〈
l∗, cAX(τ)

〉
− ρ̃(l∗|RB

x (τ)) ≥ 0

Both methods can be solved easily by a convex optimization solver in particular

a semidefinite programming solver. We use CVX [65] in the demonstration discussed

in a later section. After the control set of aircraft B is determined, aircraft A can

define its control set so that the reachable set does not collide with the safe set of

B. The safe set of B is the reachable set of B enlarged by the required separation

between aircraft A and B. The difference with the previous problem is the fact that

we cannot use the center of aircraft A to maximize the distance to the reachable set

of B. Instead we add a constraint to keep the distance between the sets larger than

zero. If such a problem is feasible, standard optimization algorithms will be used to

obtain control laws for both aircraft under the modified constrained control set. If

it is not feasible, then it means the scalarization factor is too large. By iteratively

decreasing the scalarization factor, one can find a pair of good control sets that

keep the reachable set of both aircraft balanced. After they avoid each other on the

closest contact point, the original navigation will resume.

The optimization part II is addressing the problem to obtain the largest control

42

set for aircraft A. After the constrained control set of aircraft B is determined, the

external ellipsoid approximation of the reachable set of aircraft B will be computed

based on the ellipsoid toolbox [63]. The external approximation is given as an

intersection of ellipsoids with the same center. The safe set of B is defined as the

Minkowski sum of the reachable set of aircraft B and a ball, whose radius is the

required separation. It can be computed by the ellipsoid toolbox as the intersection

of overapproximated ellipsoids as well. For simplicity, we take an external ellipsoid

approximation of the intersection set as the safe set of B. Let such overapproximation

ellipsoid be E(cBX ,M
B
X). Assume that the direction for which the minimum distance

is achieved is l∗ as assumed earlier. Then the largest control set for aircraft A that

satisfies the safety requirement can be determined by the following optimization

problem.

Problem 3.3.6 (Optimization Part II).

max
q,Q

log(det(Q))

subject to E(q,QTQ) ⊂ UA

−ρ(−l∗|RA
x (τ))− ρ(l∗|E(cBX ,M

B
X)) > 0

This can be again transformed into a convex optimization problem by using

the shrinking initial set or the norm method. We will focus on the norm method for

this part. The last constraint can be reformulated into the following:

〈
l∗, eAτcAX0

〉
+

〈
l∗,

∫ τ

0

eA(τ−s)dsBq

〉
−
〈
l∗, cBX

〉
−
〈
l∗, eAτMA

X0
eAτ l∗

〉1/2 −
〈
l∗,MB

X l
∗〉1/2

− ‖Q‖2

∫ t

0

〈
l∗, eA(τ−s)BBT (eA(τ−s))T l∗

〉1/2
ds > 0.

43

3.3.2 Time Varying Control Tube Design for Collision Avoidance

In the cases of uncollaborative UAVs, the predicted path of the intruder is

commonly known apriori. Furthermore, the uncertainty of the intruder can be

predicted through online sensors or ground radar. The main problem we want to

address, is to generate an update policy for the control set, so that the reachable

tube of the ego aircraft is collision free from the predicted tube of the intruder.

The control set under the ellipsoid formulation is described by

U(t) = E(cU(t),MU(t)).

From previous section, we find out that by scaling the control set we obtain a

convex problem (Prob. 3.3.4). To simplify the parameterization and formulation

of the optimization problem, we define the control set by a scaling factor αU(t)

of the original system control constraint and the nominal control cU(t), i.e. U(t) =

E(cU(t), α(t)MŪ). Ū = E(cŪ ,MŪ) is an ellipsoid inner-approximation of the physical

control limitations. Naturally we have the following constraint on cU(t) and α(t).

E(cU(t), α(t)MŪ) ⊆ Ū ∀t

More specifically, this collision avoidance problem will be defined as the fol-

lowing problem involving reachable tubes.

Problem 3.3.7 (Reachability Based Collision Avoidance). Denote the estimated

collision time as T . The collision avoidance using reachability can be formulated as

a two steps optimization problem. In the first step, We seek a control set policy U(t)

44

over the time interval, [0, T], for the ego aircraft, such that the resulting reachable

tube Re
x([0, T]) does not intersect with the intruder aircraft reachable tube Ri

x([0, T])

counting the separation. These control sets should be chosen to maximize the flex-

ibility of later Model Predictive Control (MPC) design, therefore, the objective will

be to maximize the size of the control sets over time [0, T]. In the second step, we

seek controls within these control sets, so that the ego aircraft can safely reach their

objectives in an optimal manner.

We will focus mainly on the first step of Problem 3.3.7 in this part of the thesis.

As assumed in the previous section, let the initial state and control set of ego aircraft

be the ellipsoids Xe
0 = E(ceX0

,M e
X0

) and Ū = E(cŪ ,MŪ) respectively. Formally, the

Problem 3.3.7 can be formulated as the following optimization problem,

Problem 3.3.8 (Reachable Set Collision Avoidance).

max
q(t),α(t)

max
l(t)

∫ T
t=0

µ(t)α(t)dt

subject to ∀t ∈ [0, T] :

E(q(t), α(t)MŪ) ⊆ E(cŪ ,MŪ)

−ρ(−l(t)|Ri
x(t))− ρ(l(t)|Re

x(t)) > 0

The parameters of the optimization are q(t) and α(t), both related to the

updated control sets, Ũ(t) = E(q(t), α(t)MŪ). The objective is to maximize the

sizes of the control sets over time. µ(t) is a fixed scalar function which specifies

the importance of control sets over time. If the weight is uniform over time, the

optimal solution can have very flexible control set at the start, but very tight control

near collision, which is not desired. The inner maximization is a feasibility problem,

45

which is to find the direction for a series of separation hyperplanes l(t) induced by

the reachable set separation constraint. The first constraint is due to the fact that

Ũ(t) ⊂ Ū , the last constraint is to keep reachable sets separated at every time step.

The first constraint is equivalent to the following constraints [63] on a new

function λ(t) > 0,∀t ∈ [0, T], such that
1− λ(t) 0 (q(t)− cŪ)T

0 λ(t)I a(t)(MŪ)1/2

q(t)− cŪ a(t)(MŪ)1/2 MŪ

 � 0

a(t)2 = α(t)

Let us assume the norm of the best separation hyperplane l∗(t) can be estimated

based on the initial predicted tube of the intruder and ego aircraft. In other words,

we assume the direction that minimizes distance between the reachable sets is not

affected by changes in the control constraint. The intuition behind this assumption is

that even if the direction is altered, the outer maximization is achieved at a similar

constraint set. In real applications, the autonomous aircraft will be given such

direction to avoid either based on the approaching angle autonomously or based

on instructions from the other pilots. Let us define ellipsoids E(ciX(t),M i
X(t)) ⊇

Ri
x(t), t ∈ [0, T], which tightly over-approximate the reachable tube of the intruder.

46

The last constraints can be written as

〈
l∗(t), ciX(t)

〉
−
〈
l∗(t),M i

X(t)l∗
〉1/2 −

〈
l∗(t), eAtceX0

〉
−
〈
l∗(t),

∫ t

0

eA(t−s)Bq(s)ds

〉
︸ ︷︷ ︸

h(q,t)

−
〈
l∗(t), eAtM e

X0
eAtl∗(t)

〉1/2

−
∫ t

0

r(s,t)︷ ︸︸ ︷〈
l∗(t), eA(t−s)BMŪB

T (eA(t−s))T l∗(t)
〉1/2

a(s)ds︸ ︷︷ ︸
g(a,t)

> 0. (3.9)

Furthermore, we assume the control set is only allowed to be updated every

δt and collision happened at N steps in the future, i.e. Nδt = T . We have

U(s) = qd(k)⊕ αd(k)Ū ∀s ∈ [kδt, (k + 1)δt)

Therefore the optimization variables can be captured in terms of a ∈ RN , q ∈

Rm×N such that

ai =
(
αd(i− 1)

)1/2
= ad(i− 1)

and the ith column of q is

qi = qd(i− 1).

.

It is also desired to keep the control set varying smoothly on time. Therefore,

we also add an term in objective to minimize variation in the nominal controller

47

qd(k). Define constant matrix H as

H =



1 −1 0 0 . . . 0

0 1 −1 0 . . . 0

...
.

...

0 . . . 0 1 −1 0

0 . . . 0 0 1 −1


The variation in nominal control can be captured using

∥∥HTq
∥∥
F

Let {P (i), i = 1, 2 . . . N} to be N n×m constant matrices, such that the jth

column of P (i) is defined as

P (i)j =

∫ iδt

(i−1)δt

eA(kδt−s)bjds,

where bj is the jth column of B matrix.

Then h(q, t) and g(α, t) in the separation constraints Eqn. (3.9) evaluated at

kδt become

h(q, kδt) =

〈
l∗(kδt),

k∑
i=1

∫ iδt

(i−1)δt

eA(kδt−s)Bqids

〉

=

〈
l∗(kδt),

k∑
i=1

m∑
j=1

∫ iδt

(i−1)δt

eA(kδt−s)bjds qji

〉

=
k∑
i=1

l∗T (kδt)P (i)qi (3.10)

g(a, kδt) =
k∑
i=1

ai

∫ iδt

(i−1)δt

r(s, kδt)ds (3.11)

Let µi = µ(iδt).

Since a is positive the objective of maximizing µ(t)Tα(t), is modified to max-

imize µTa instead, then the optimization problem 3.3.8 becomes the following,

48

Problem 3.3.9 (Simplified Problem).

max
a,q

µTa−
∥∥HTq

∥∥
F

subject to ∀k ∈ 1, 2...N :

λ(k) > 0
1− λ(k) 0 (qk − cŪ)T

0 λ(k)I ak(MŪ)1/2

qk − cŪ ak(MŪ)1/2 MŪ

 � 0

ρ(−l(kδt)|Ri
x(kδt))− ρ(l(kδt)|Re

x(kδt)) > 0

The last constraint will be affine on q,a based on Equation (3.10) and (3.11).

Therefore this problem can be solved using convex optimization.

3.4 Simulations and Results

The reachable set based methods described above are demonstrated on the

linearized quadrotor models and fixed-wing models described below. The original

nonlinear model of the quadrotor dynamics can be found in Section 2.3.1

3.4.1 Quadrotor Model

To capture the dynamics of the quadrotor properly, we need two coordinate

frames. One of them is a fixed frame and will be named as the earth frame, and the

second one is the body frame which moves with the quadrotor. The transformation

matrix from the body frame to the earth frame is R(t). The quadrotor dynamics

has twelve state variables (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r), where ξ = [x, y, z]T and

49

v = [vx, vy, vz]
T represent the position and velocity of the quadrotor w.r.t the body

frame. (φ, θ, ψ) are the roll, pitch and yaw angles, and Ω = [p, q, r]T are the rates

of change of roll, pitch and yaw respectively.

The Newton-Euler formalism for the quadrotor rigid body dynamics in earth

fixed frame is given by:

ξ̇ = v

v̇ = −ge3 +
F

m
Re3 (3.12)

Ṙ = RΩ̂

Ω̇ = J−1(−Ω× JΩ + u)

where g is the acceleration due to gravity, e3 = [0, 0, 1]T , F is the total lift force and

u = [u1, u2, u3]T are the torques applied. F and u are the control inputs. J is the

moment of inertial details on the quadrotor dynamics can be found in [66], [67]. For

this work, we linearize the dynamics (3.12) about the hover with yaw constraint to

be zero, as it has been done in [68]. Since ψ is constrained to be zero, we remove

ψ and r from our system and make the system ten dimensional. Consequently, we

only need three control inputs, F, u1, and u2 for the system. The linearized model is

the same as what is done in [68], [7]. The system matrices for the linearized model

are:

50

A =



0 I 0 0

0 0


0 g

−g 0

0 0

 0

0 0 0 I

0 0 0 0



; B =



0 0
0

0

1/m

 0

0 0

0 I2×3J
−1



I2,3 =

1 0 0

0 1 0



All zero and identity matrices in A and B are of proper dimensions.

3.4.2 Fix-wing Dynamics Model

Similar to the dynamics of the quadrotor, we used the earth frame and the

body frame. Let (φ, θ, ψ) be roll pitch yaw similar as before and (p, q, r) be the

body frame rotation rates. The transformation matrix from the body frame to the

earth frame is R. The velocity state is commonly represented in the body frame as

vb = (u, v, w).

ξ̇ = Rvb

v̇b =


rv − qw

qw − ru

qu− pv

+
1

m


Fx

Fy

Fz

 (3.13)

Ṙ = RΩ̂

Ω̇ = J−1(−Ω× JΩ + T)

where (Fx, Fy, Fz) is the force in body frame. T is the torque in body frame. J is

the moment of inertial. The force and torque is further related to airspeed and actu-

51

ator. Due to the decoupling between lateral and longitude motion in conventionally

aircraft, we will focuses on longitude motion here. The control signal for longitude

motion are elevators control δe and propeller thrust δt. We can obtain the following

linearized dynamics around the leveled cruise mode x∗ and u∗. In the leveled cruise

mode, there is no turning or climbing. The longitude motion can be captured in a 6

state system (x, z, u, w, q, θ) and 2 control (δe, δt). The linearized dynamics can be

represented in the matrix form.

A =



0 0 1 0 0 0

0 0 sin θ∗ − cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗

0 0 Xu Xw Xq −g cos θ∗

0 0 Zu Zw Zq −g sin θ∗

0 0 Mu Mw Mq 0

0 0 0 0 1 0



B =



0 0

0 0

Xδe Xδt

Zδe 0

Mδe 0

0 0


All the terms of the linear dynamics are derived from aerodyanmic models

that can be found in [69].

52

3.4.3 Reachable Sets and Constrained Control Sets for Constant Con-

trol Set Method

This section summarizes results generated from constant control set method

described in Section 3.3.1.

We computed the reachable sets and performed convex optimization using a

computer with a 3.4GHz processor and 8GB memory. The software we used include

the Ellipsoid toolbox [63] and CVX [65,70] for solving convex optimization problems.

3.4.3.1 Quadrotor Example

The first scenario is the following: two quadrotors are approaching each other

from coordinates around (1.6, 0.5, 0)m and (0, 0, 0)m with initial speed (−0.2, 0, 0)m/s,

and (0.2, 0, 0)m/s respectively. The separation requirement is 1m. It is fairly easy

to estimate the collision time which is τ = 4s, and the closest direction l∗. The

initial reachable tube of both aircraft projected to the x, y and time axis is shown

in Fig. 3.2. The reachable sets at time τ are shown in Fig. 3.1. As can be seen,

the reachable sets clearly overlap with each other. There are no guarantees that

one can obtain from this initial setup. By varying k in the optimization problem

3.3.2, we get the following pairs of control sets for aircraft A and B. (Fig. 3.3, 3.5).

The control sets are obtained using the matrix norm method. The corresponding

resulting reachable tubes for agent A and B are plotted in Fig. 3.4, 3.6. Clearly,

the resulting reachable tubes avoid each other, and a closer examination shows that

53

Figure 3.1: The initial reachable sets of both aircraft projected to x y z axis at
time τ . The two reachable sets are represented by the internal and external approx-
imations. The reachable sets largely overlap each other. The light colored sets are
the external approximations of the reachable sets of aircraft A and B. The internal
approximations are the darker color ones inside.

the separation requirement is satisfied.

The computation time for the overall problem is dominated by the reachable

set computation. Since we would like to have good precision of the reachable set,

30 ellipsoids are used to obtain the external approximation for both aircraft. The

computation for all the reachable sets takes around 430s. In this case study, the

collision time is almost imminent (4s). It is only possible to implement this in real

time by using a poor estimate of the reachable set with lower precision in this setup.

The constrained control sets obtained that way are much smaller. It is also possible

to compute the reachable sets in parallel so the resulting computation time would be

almost 4s. There are other ways to present the approximation such as via zonotope

[19] or support function [20]. Preliminary testing using a zonotope based method

54

Figure 3.2: The initial reachable tubes of of both aircraft projected to x y. Again
the reachable tubes are represented by the internal and external approximations.
The light yellow tube is the external approximation of the reachable tube of aircraft
A, while the light red one is the external approximation of the reachable tube of
aircraft B. The internal approximations are the darker color ones inside. Clearly,
the reachable tubes collide.

55

Figure 3.3: This shows the initial control set (yellow ellipsoid), the constrained con-
trol set for aircraft A (red ellipsoid), and the constrained control set for aircraft B
(blue ellipsoid). This pair of constrained control sets is obtained when the scalariza-
tion factor is 1. The control set for u1, which contributes to yaw rotation, of aircraft
B is larger, i.e. this fits the case when aircraft B has higher priority, so it has more
freedom in terms of maneuvers.

Figure 3.4: The reachable tubes for aircraft A and B with k = 1. Clearly, there
is no collision between the overapproximation of the reachable tubes. As can be
seen from the reachable tube as well, the aircraft A has less freedom comparing to
aircraft B. A closer examination also reveals that there is no violation of separation
requirement over time.

56

Figure 3.5: This shows the initial control set (yellow ellipsoid), the constrained
control set for aircraft A (red ellipsoid), and the constrained control set for air-
craft B (blue ellipsoid). This pair of constrained control sets is obtained when the
scalarization factor is 0.9. The control set sizes are rather balanced.

Figure 3.6: The reachable tubes for aircraft A and B with k = 0.9. Clearly, there
is no collision between the overapproximation of the reachable tubes. A closer
examination also reveals that there is no violation of separation requirement over
time.

57

shows faster computation time, but we have not obtained a good representation of

the constrained optimization problem 3.3.2 and 3.3.6 using zonotopes. One of our

future directions is to use other representations to make the process faster.

However, if one does not require such reachable sets to be computed for real

time verification, the computation of the control sets by itself takes very little

amount of time. 4s is definitely enough to derive such control sets through con-

vex optimization.

3.4.3.2 Fix-wing Aircraft Example

The second scenario is the following: two fix-wing aircraft are approaching

each other from coordinates around (320, 10, 0)m and (0, 0, 0)m with initial speed

(−16, 0, 0)m/s, and (16, 0, 0)m/s respectively. The separation requirement is 10m.

The collision time is approximately τ = 10s, and the closest direction l∗ is in the

z axis. The initial reachable tube of both aircraft projected to the x, z and time

axis is shown in Fig. 3.7. As can be seen, the reachable sets clearly overlap with

each other. There are no guarantees that one can obtain from this initial setup.

By varying k in the optimization problem 3.3.2, we get the following pair of control

sets for aircraft A and B. (Fig. 3.8). The control sets are obtained using the matrix

norm method. The corresponding resulting reachable tubes for agent A and B are

plotted in Fig. 3.9. Clearly, the resulting reachable tubes avoid each other, and a

closer examination shows that the separation requirement is satisfied.

58

Figure 3.7: The initial reachable tubes of of both aircraft projected to x z. The
reachable tubes are represented by the internal and external approximations. The
light yellow tube is the external approximation of the reachable tube of aircraft A,
while the light green one is the external approximation of the reachable tube of
aircraft B. The internal approximations are the darker color ones inside. Clearly,
the reachable tubes collide. The steady state trajectory for aircraft A is specified
by dashed black line, and the steady state trajectory of aircraft B is specified by the
blue line.

59

Figure 3.8: This shows the initial control set (black ellipse), the constrained control
set for aircraft A (red ellipse), and the constrained control set for aircraft B (blue
ellipse). The ellipses are specified by centers and boundaries with their correspond-
ing colors. The constrained control sets are much smaller comparing to the original
one, so only center of the ellipse are very clear.

60

Figure 3.9: The reachable tubes for aircraft A and B. Clearly, there is no collision
between the overapproximation of the reachable tubes. A closer examination also
reveals that there is no violation of separation requirement over time.

3.4.4 Reachable Sets and Constrained Control Sets for the Time

Varying Control Tube Method

This section summarizes result based on the time varying control set method

described in Section 3.3.2.

The computation platform and tools are the same as in the previous section.

The scenario is the following: the ego aircraft starts at (−1, 0.5, 0)m with the initial

speed of (0.2, 0, 0)m/s. The intruder aircraft is currently at (1, 0, 0) approaching the

ego aircraft with the initial speed of (−0.2, 0, 0)m/s. The separation requirement is

1m. The collision time T = 5s. The directions of the hyperplane l∗(t) are estimated

based on nominal trajectories. The initial reachable tubes of both aircraft projected

61

Figure 3.10: The initial reachable tubes of of both aircraft projected to x y. The
reachable tubes are represented by external approximations computed by Ellipsoid
Toolbox. The light yellow tube is the external approximation of the reachable tube
of the ego aircraft, while the light red one is the external approximation of the
reachable tube of the intruder. Clearly, the reachable tubes collide.

62

Figure 3.11: The reachable tubes for two aircraft after control set design. Clearly,
there is no collision between the overapproximation of the reachable tubes. A closer
examination also reveals that there is no violation of separation requirement over
time.

to the x, y and time axis are shown in Fig. 3.10. As can be seen, the reachable

tubes clearly overlap with each other. By solving the optimization problem, we

obtained the resulting reachable tubes for intruder and ego aircraft shown in Fig.

3.11. The newly computed control set is updated every 0.25s. Clearly, the resulting

reachable tubes avoid each other, and a closer examination shows that the separation

requirement is satisfied.

The computation time for the control set design through convex optimization

is about 1.2s, which means the collision avoidance algorithm can be implemented

online real-time. The reachable set computation takes a lot more time. Since we

would like to have good precision of the reachable set, 10 ellipsoids are used to

obtain the external approximation. Given time varying control sets the reachable

63

tube computation takes around 620s.

3.5 Conclusion

In this chapter, we have proposed several reachability based approaches to

collision avoidance of UAVs so that the resulting reachable tubes are collision free.

Our approaches provide new insight to the collision avoidance problem in particular

regarding collision avoidance of set of trajectories instead of one. Furthermore,

as this approach gives limited constraints on the controller, standard optimization

based or rule based controller design can be used after our method to obtain optimal

and safe trajectories. Our approach reformulates the collision avoidance problem to

a two-fold convex optimization problem, which can be solved very efficiently.

We focused the analysis for two aircraft collision avoidance, but our method

can be extended to the multiple aircraft case fairly easily by iteratively fixing the

control set and the resulting reachable set one by one.

64

Chapter 4: Optimization based Temporal Logic Planning

4.1 Overview

Autonomous aircraft have been deployed for agriculture research and man-

agement, surveillance and sensor coverage for threat detection and disaster search

and rescue operations. All these applications require the tasks to be performed

in an optimal manner with specific timing constraints. The high level task speci-

fications for these applications generally consist of temporal ordering of subtasks,

motion sequencing and synchronization etc. Given such specifications, it is desirable

to synthesize a reference trajectory that is both optimal considering the dynamics

of the vehicle and satisfies the temporal constraints. Motion planning [71], [1], at

its early stage, considered optimal planning to reach a goal from an initial posi-

tion while avoiding obstacles [72]. New techniques such as artificial potential func-

tions [73], [74], cell decomposition and probabilistic roadmaps [1] are introduced

for efficient planning in complex environment [75], [76] and high dimensional state-

space. However, these approaches failed when task specifications have multiple goals

or specific ordering of goals, for example surveying some areas in particular sequence.

Temporal logic [32–34] provides a compact mathematical formulation for spec-

ifying such complex mission specifications. Previous approaches mainly focus on the

65

usage of linear temporal logic (LTL), which can specify tasks such as visiting goals,

periodically surveying areas, staying stable and safe. The main drawback of the LTL

formulation is that it cannot specify time distance between tasks. In surveillance

examples, a simple task may be to individually monitor multiple areas for at least

x amount of time. Additionally, the LTL formulation commonly assumes the envi-

ronment to be static. Traditional approaches commonly start with creating a finite

abstraction of the environment including the dynamics, then combine it with the

automata that is generated from the LTL specification [77]. The cell decomposition

performed in the abstraction process requires the environment to be static; but in

most situations this is not the case. For example, the use of Unmanned Aerial Ve-

hicles (UAVs) for surveillance in the commercial airspace needs to consider motion

of other aircraft. The other weakness of the automata-based approach is that it is

computationally expensive. In this work, we are interested in motion planning for

surveillance in an airspace with finite time task constraints and safety guarantees.

For this work, we only consider the other aircraft in the target area as dynamic ob-

stacles to the UAV. Further, we assume that the motions of these dynamic obstacles

can be either predicted during the planning or are known a priori.

Due to the limitations of the previous approaches, we instead present a method

based on metric temporal logic (MTL) [78], [79] and an optimization problem formu-

lation to solve the planning problem. MTL extends the LTL [34] temporal operators

so that it can express the requirements on time distance between events and event

durations. This allows us to describe the dynamic obstacle and survey durations in

our case study.

66

An optimization based method for LTL was previously proposed and extended

by [68, 80]. In [80], the authors propose to transform LTL specifications to mixed

integer constraints and solve the planning problem for finite horizon using either a

mixed integer linear program (MILP) or a mixed integer quadratic program (MIQP)

solver. In [68], the algorithm is extended to infinite horizon so that trajectories can

contain loops. However, none of the methods consider dynamic environment or

moving obstacles, time varying constraints, or duration of the tasks. MTL was used

as a temporal constraint to a routing planning problem in [81]. Their formulation

unfortunately does not allow users to incorporate dynamics of the vehicle.

In this chapter of the thesis, we consider a path planning problem for surveil-

lance under survey durations constraints for each region and overall temporal con-

straint to visit each region within given times. Our problem is considerably different

from the problems formulated in the existing literature in the sense that we not only

consider dynamic environment but also associate each subtask with a duration con-

straint. We generate a path that guarantees safety by avoiding static and moving

obstacles in the workspace and the path is optimal in the sense that it minimizes

a predefined cost function. We do not adopt the linear encoding from [68], since

moving obstacles is not periodic in nature. Similar to their approach, we adopt the

usage of mixed logic dynamic (MLD) to model vehicle dynamics, so that the overall

problem is a MILP (considering linear cost function).

Our main contribution is usage of MTL to specify time bounded tasks for the

mission planner and reformulation of the problem into a MILP. We also demonstrate

the methods on the case studies of using a quadrotor and ground vehicle to survey

67

multiple areas given the MTL specifications. The rest of this chapter is organized as

follows. In section 4.2 we present the fundamentals of MTL and define the overall

motion planning problem. We then formulate it into a mixed integer linear opti-

mization problem incorporating the temporal constraints in section 4.3. Afterward,

we demonstrate our approach on motion planning for different simulation setups.

4.2 Preliminaries

In this part we consider a surveying task in an area by a robot whose dynamics

are given by the nonlinear model (4.1).

x(t+ 1) = f(t, x(t), u(t)) (4.1)

where x(t) ∈ X , x(0) ∈ X0 ⊆ X , and u(t) ∈ U for all t = 0, 1, 2, · · · . Let us denote

the trajectory of the system (4.1) starting at t0 with initial condition x0 and input

u(t) as xx0,ut0 = {x(s) |s ≥ t0 x(t+ 1) = f(t, x(t), u(t)), x(t0) = x0}. For brevity, we

will use xt0 instead of xx0,ut0 whenever we do not need the explicit information about

u(t) and x0.

Definition 4.2.1. An atomic proposition is a statement about the system variables

(x) that is either True(>) or False(⊥) for some given values of the state variables.

[80]

Let Π = {π1, π2, · · · πn} be the set of atomic propositions which labels X as a

collection of survey areas, free space, obstacles etc. The moving obstacles make the

free space to change from time to time, and hence labeling the environment is time

68

dependent. We define a map that labels the time varying environment as follows

L : X × I → 2Π (4.2)

where I = {[a, b]| b > a ≥ 0} and 2Π is denoted as the power set of Π. In general,

I is used to denote a time interval but it can be used to denote a time instance as

well.

The trajectory of the system is a sequence of states such that each state

x(t) stays in X for all t and there exists u(t) ∈ U for all t such that x(t + 1) =

f(t, x(t), u(t)). Corresponding to each trajectory x0, the sequence of atomic propo-

sition satisfied is given by L(x0) = L(x(0), 0)L(x(1), 1)...

The high level specification of the surveying task will be expressed formally

using MTL which can incorporate timing specifications.

4.2.1 Metric Temporal Logic (MTL)

Metric temporal logic, a member of temporal logic family, deals with model

checking under timing constraints. The formulas for MTL are build on atomic

propositions by obeying some grammar.

Definition 4.2.2. The syntax of MTL formulas are defined according to the follow-

ing grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | φUIφ

where I ⊆ [0,∞] is an interval with end points in N ∪ {∞}. π ∈ Π, >

and ⊥(= ¬>) are the Boolean constants true and false respectively. ∨ denotes

69

the disjunction operator and ¬ denotes the negation operator. UI symbolizes the

timed Until operator. Sometimes we will represent U[0,∞] by U. Other Boolean and

temporal operators such as conjunction (∧), eventually within I (3I), always on

I (2I) etc. can be represented using the grammar desired in definition 5.2.2. For

example, we can express time constrained eventually operator 3Iφ ≡ >UIφ and so

on.

Definition 4.2.3. The semantics of any MTL formula φ is recursively defined over

a trajectory xt as:

xt |= π iff π ∈ L(x(t), t)

xt |= ¬π iff π /∈ L(x(t), t)

xt |= φ1 ∨ φ2 iff xt |= φ1 or xt |= φ2

xt |= φ1 ∧ φ2 iff xt |= φ1 and xt |= φ2

xt |=©φ iff xt+1 |= φ

xt |= φ1UIφ2 iff ∃s ∈ I s.t. xt+s |= φ2 and ∀ s′ ≤ s, xt+s′ |= φ1.

Thus, the expression φ1UIφ2 means that φ2 will be true within time interval

I and until φ2 becomes true φ1 must be true. Similarly, the release operator φ1Rφ2

denotes the specification that φ2 should always hold and it can be released only

when φ1 is true. The MTL operator ©φ means that the specification φ is true at

next time instance, 2Iφ means that φ is always true for the time duration I, 3Iφ

means that φ will eventually become true within the time interval I. Composition

of two or more MTL operators can express very sophisticated specifications; for

example 3I12I2φ means that within time interval I1, φ will be true and from that

70

instance it will hold true always for a duration of I2. Other Boolean operators such

as implication (⇒) and equivalence (⇔) can be expressed using the grammar rules

and semantics given in definitions 4.2.2 and 4.2.3. More details on MTL grammar

and semantics can be found in [78]. Satisfaction of a temporal specification φ by a

trajectory xt0 will be denoted as xt0 |= φ.

4.3 Problem Formulation and Solution

We consider a planning problem to periodically survey some selected areas in

a given workspace. There are specific time bounds, associated with the regions, by

which the surveillance has to be finished. Given the system dynamics (4.1), the

objective is to find a suitable control law that will steer the robot in the survey area

so that all regions are surveyed within the time bound and that control will optimize

some cost function as well. The surveying task and its associated timing constraints

and safety constraints can be expressed formally by Metric Temporal Logic (MTL).

Let φ denote the MTL formula for the surveying task, and J(x(t, u), u) be a cost

function to make the path optimal in some sense. We formally present our planning

objective as an optimization problem given in Problem (4.3.1)

Problem 4.3.1.

min
u

J(x(t, u), u(t))

subject to x(t+ 1) = f(t, x(t), u(t))

xt0 |= φ

In the following section we are going to discuss the linearization techniques

for the dynamics of the robot, and our approach to translate an MTL constraint as

71

linear constraints.

4.3.1 Linearized Dynamics of the Robot

Since we are interested in solving the planning problem as an optimization

problem with mixed integer and linear constraints, we need to represent the dynam-

ics of the robot as a linear constraint to the optimization problem (4.3.1). We will

consider surveying some given areas by ground robots as well as aerial robots. For

quadrotor dynamics please refer to section 3.4.

4.3.1.1 Car-Like Model

For a car-like dynamical system (4.3), the system has three state variables:

positions (x, y), heading angle θ.


ẋ

ẏ

θ̇

 =


cos(θ) 0

sin(θ) 0

0 1


 u1

u2

 (4.3)

where u1 and u2 are the control inputs. We linearize this nonlinear model about

several values for θ and depending on the value of θ, the closest linearization was

used to drive the linearized system. The linearization is similar to what is suggested

in [68]. The linearized system matrices at θ̂ are given by:

A =


0 0 −û1 sin(θ̂)

0 0 û1 cos(θ̂)

0 0 0

 ; B =


cos(θ̂) 0

sin(θ̂) 0

0 1


72

4.3.2 Mixed Integer Linear Constraints

In this section, we demonstrate our approach to translate a time-bounded

temporal logic formula to linear constraints on state variables and inputs. The

easiest example would be how to express the temporal constraint that x(t) lies

within a convex polygon P at time t. This simple example will serve as a building

block for other complicated temporal operators. Any convex polygon P can be

represented as an intersection of several halfspaces. A halfspace is expressed by

a set of points, Hi = {x : hTi x ≤ ki}. Thus, x(t) ∈ P is equivalent to x(t) ∈

∩ni=1Hi = ∩ni=1{x : hTi x ≤ ki}. The temporal constraint that x(t) will be inside P

for all t ∈ {t1, t1 + 1, · · · t1 + n} can be represented by the set of linear constraints

{hTi x(t) ≤ ki} for all i = {1, 2, · · · , n} and ∀t ∈ {t1, t1 + 1, · · · t1 + n}.

We adopted a method similar to the method used in [80] to translate temporal

constraint φ into mixed integer linear constraints. We extend it to incorporate

duration for task completion and loop constraints of the trajectory. Comparing

to [68], we only enforce the loop constraints at the trajectory level instead of the

temporal logic level, since the moving obstacles is not periodic in nature. The

planning process will be repeated when the vehicle returns to the initial point.

In a polygonal environment, atomic propositions (AP), p ∈ Π, can be related

to states of the system using disjunction and conjunction of halfspaces. In other

words, the relationship between measured outputs such as location of the vehicle

and the halfspaces defines the proposition used in the temporal logics. Consider

the convex polygon case and let zti ∈ {0, 1} be the binary variables associated with

73

halfspaces {x(t) : hTi x(t) ≤ ki} at time t = 0, ..., N . We enforce the following

constraint zti = 1 if and only if hTi x(t) ≤ ki by adding the linear constraints,

hTi x(t) ≤ ki +M(1− zti) (4.4)

hTi x(t) ≥ ki −Mzti + ε

where M is a large positive number and ε is a small positive number. If we denote

PPt = ∧ni=1z
t
i , then PPt = 1 if and only if x(t) ∈ P . This can be extended to the

nonconvex case by decomposing the polygon to convex ones and linking them using

disjunction operators. As discussed later in this section, the disjunction operator

can also be translated to mixed integer linear constraints.

We will use Fφ(x, z, u, t) to denote the set of all mixed integer linear con-

straints corresponding to the temporal logic formula φ. Once we have formulated

Fp(x, z, u, t) for atomic propositions p, we can find Fφ(x, z, u, t) for any MTL formula

φ. The next essential part of the semantics of MTL is the Boolean operations, such

as ¬, ∧, ∨. Similarly these operators can be translated into linear constraints. Let

t ∈ {0, 1, ..., N}, P φ
t be the continuous variables within [0,1] associated with formula

φ made up with propositions p ∈ Π at time t.

• φ = ¬p is the negation of an atomic proposition, and it can be modeled as

P φ
t = 1− P p

t . (4.5)

• The conjunction operation, φ = ∧mi=1pi, is modeled as

P φ
t ≤ P pi

t , i = 1, ...,m, (4.6)

P φ
t ≥ 1−m+

m∑
i=1

P pi
t ,

74

• The disjunction operator, φ = ∨mi=1pi, is modeled as

P φ
t ≥ P pi

t , i = 1, ...,m, (4.7)

P φ
t ≤

m∑
i=1

P pi
t ,

Similarly, the temporal operators can be modeled using linear constraints as

well. Let t ∈ {0, 1, ..., N − t2}, where [t1, t2] is the time interval used in the MTL.

• Eventually: φ = 3[t1,t2]p is equivalent to

P φ
t ≥ P p

τ , τ ∈ {t+ t1, ..., t+ t2} (4.8)

P φ
t ≤

t+t2∑
τ=t+t1

P p
τ

• Always: φ = 2[t1,t2]p is equivalent to

P φ
t ≤ P p

τ , τ ∈ {t+ t1, ..., t+ t2} (4.9)

P φ
t ≥

t+t2∑
τ=t+t1

P p
τ − (t2 − t1),

• Until: φ = pU[t1,t2]q is equivalent to

atj ≤ P j
q j ∈ {t+ t1, · · · , t+ t2},

atj ≤ P k
p k ∈ {t, · · · , j − 1}, j ∈ {t+ t1, · · · , t+ t2},

atj ≥ P j
q +

j−1∑
k=t

P k
p − (j − t) j ∈ {t+ t1, · · · , t+ t2},

P φ
t ≤

t+t2∑
j=t+t1

atj, (4.10)

P φ
t ≥ atj j ∈ {t+ t1, · · · , t+ t2}.

75

The until formulation (4.10) is obtained similarly to [80]. For MTL, it is modified

by noticing the following equality,

P φ
t =

t+t2∨
j=t+t1

(
(∧k=j−1

k=t P k
p) ∧ P j

q

)
.

Other combinations for different temporal operators are also straight forward and

we are not enumerating them for the sake of space, but one can easily derive them

by using (4.5) through (4.10).

Using this approach, we translate the given high level specification in MTL

(xt0 |= φ) to a set of mixed integer linear constraints Fφ(x, z, u, t). At the end, we

add the constraint P φ
0 = 1, i.e. the overall specification φ is satisfied. Since Boolean

variables are only introduced when halfspaces are defined, the computation cost of

MILP is at most exponential to the number of halfspaces times the discrete steps

N .

4.4 Case Study and Discussion

We apply our method for solving mission planning with finite time constraints

on two different workspaces. Both workspaces contain static and moving obsta-

cles.The experiments are run through YALMIP-CPLEX on a computer with 3.4GHz

processor and 8GB memory. We performed the simulation for both a quadrotor

model and a car model.

The first environment is the one shown in Fig. 4.1, where blue and gray areas

represent moving and static obstacles respectively, and green areas represent survey

targets.

76

Figure 4.1: Workspace setup of the first test case. Blue area represents an obsta-
cle moving from right to left. Grey areas represent static obstacles. Green areas
represent survey areas used in the temporal logic. The shaded areas around obsta-
cles represent boundary of the obstacles for discrete planning, so that the obstacles
can be avoided even for continuous dynamics. The resulting 2D trajectory of the
quadrotor for φ1 is shown as blue dots. The resulting motion is counter clockwise.

Let the temporal specification be the following

φ1 = 32[0,2]A ∧32[0,2]B ∧32[0,2]C ∧2¬O

φ2 = 32[0,2]A ∧32[0,2]B ∧32[0,2]C ∧2¬O ∧ ¬B U[0,N]A

where O represents the static and moving obstacles, N is the horizon of the planning

trajectory. Such N can be generally obtained by performing a feasibility test using

MILP solver starting from N = 2, and increasing N until finding a feasible one.

For the purpose of comparing different temporal constraints, we choose a feasible

horizon N = 50 for both MTL specifications φ1 and φ2. The specification φ1 re-

quires the vehicle to visit areas A, B and C eventually and stay there for at least

2 time units, while avoiding obstacles O. φ2 adds an additional requirement on the

ordering between A and B, so that region A has to be visited first. We consider the

77

Figure 4.2: Time-state-space representation of the environment and resulting tra-
jectory for the quadrotor with temporal constraints φ1. The vehicle starts from
(0.5,0.5) and surveys area b, c and a sequentially.

cost function, J , to be minimized is
∑N

t=0 |u(t)|. The dynamics of the vehicles are

discretized at a rate of 2Hz.

The resulting trajectory for the quadrotor with temporal specification φ1 is

plotted in time-state-space in Fig. 4.2. The projection of the trajectory on the

workspace is shown in Fig. 4.1. The motion of the quadrotor in Fig. 4.1 is counter

clockwise. The quadrotor safely avoids the moving obstacle by navigating through

the area after the obstacle passes. The survey duration in individual area also

satisfies the requirements as shown in Fig. 4.1. The quadrotor stays within each

survey area for 5 discrete time units which is equivalent to 2s duration. These plots

show a better realization of visiting individual areas comparing to [81] and [68].

In their results, trajectory visits targeted areas for only 1 discrete time unit which

is not desired for most surveillance tasks. Additional local planning is possible to

78

Figure 4.3: Time-state-space representation of the environment and resulting tra-
jectory for the quadrotor with temporal constraints φ2. Because of the additional
ordering requirement, the vehicle covers area a first before visiting area b.

generate a sweeping pattern so that the target areas can be covered by onboard

sensors in designed durations.

The resulting trajectory for the vehicle with specification φ2 is shown in time-

state-space in Fig. 4.3. As can be verified from the trajectory, the vehicle travels

first to area A before visiting B as specified. The CPLEX solver returns the so-

lution for the first trajectory in 20.8 sec while the second one takes 34.7 sec. The

additional continuous variables used in the until encoding have large influence in

the performance. One of the possible future research directions would be finding

different encoding of the until operator to improve the speed of the algorithm.

The result of specification φ1 for the car model is shown in Fig. 4.4, where the

small blue arrow associated with each blue dot indicates the instantaneous heading

of the vehicle. The computation time is 150s. The longer computation time is caused

79

Figure 4.4: Time-state-space representation of the environment and resulting tra-
jectory for the car model with temporal constraints φ1. The result for φ2 is similar
since the optimal solution for φ1 already goes through area A first.

by the additional binary variables introduced by the linearization of the dynamics

at various heading angles.

The second environment considers a fast moving obstacle that moves across

the workspace diagonally, and hence the vehicle has to adjust its motion accordingly.

The environment is shown in Fig 4.5. Similar to the previous example, it shows the

motion of the moving obstacle, static obstacles and survey areas.

The temporal logic specifications are similar to the previous one but have an

additional area to be visited. We also tested the case when certain area has to be

visited first. The result is similar to previous cases, so we only show the plots for

φ3.

φ3 = 32[0,2]A ∧32[0,2]B ∧32[0,2]C ∧32[0,2]D ∧2¬O

80

Figure 4.5: Workspace setup of the second test case. The moving obstacle moves
from the the bottom left corner to upper right corner. 2D trajectory of the vehicle
is shown as blue dots. The resulting motion is clockwise.

φ4 = 32[0,2]A ∧32[0,2]B ∧32[0,2]C ∧32[0,2]D ∧2¬O ∧ ¬C U[0,N]A

The resulting trajectory in time-state-space for the quadrotor with temporal

specification φ3 is plotted in Fig. 4.6. The projected trajectory on the workspace

of the robot is shown in Fig. 4.5. The motion of the vehicle is clockwise in Fig.

4.5. As can be seen from Fig. 4.6, the quadrotor safely avoids the moving obstacle

and the static ones nearby. The survey duration in individual area also satisfies

the requirements as shown in Fig. 4.5. The computation time is 138.8s. The

increase in computation time is because the complex environment introduces more

binary variables. Similarly the resulting trajectory for the quadrotor with temporal

specification φ4 is shown in Fig. 4.7. The vehicle travels first to area A as specified.

The result of specification φ3 for the car model is shown in Fig. 4.8, where the

blue arrows indicate the heading of the vehicle. The computation time is 500s.

81

Figure 4.6: Time-state-space representation of the environment and resulting tra-
jectory for the quadrotor with temporal constraints φ3. The planned trajectory is
very close to the dynamic obstacles.

4.5 Conclusion

In this chapter, we have presented an optimization based approach to plan the

trajectory of a robot in a dynamic environment to perform some temporal task with

finite time constraints. Our approach is simple in the sense that it translates the time

constraints and the temporal specifications as linear constraints on the state and

input variables. We have linearized the dynamics of the robot in order to formulate

the problem as a Linear Programming problem. We have considered polygonal

environments for our case studies, but if the environment is not polygonal, one can

approximate it with a polygonal environment. We have used a binary variable (z)

with each halfspace, so if the polygonal approximation of the environment contains

too many halfspaces, the problem would be complex.

82

Figure 4.7: Time-state-space representation of the environment and resulting tra-
jectory for the quadrotor with temporal constraints φ4. Because of the additional
ordering requirement, the vehicle covers area A first before visiting area C.

We have reported the case studies for quadrotor and car dynamics. The sim-

ulation results show promising performance of our approach to find an optimal

solution. We consider dynamic but deterministic environments and uncertainties in

the dynamics of the robot are also not considered. There are many possible direc-

tions such as planning in uncertain environment, stochastic dynamics of the robots

or multi-robot cooperative planning that one might consider as an extension of this

framework.

83

Figure 4.8: Time-state-space representation of the environment and resulting tra-
jectory for the car model with temporal constraints φ3. The result for φ4 is the same
since the optimal solution already goes through A first.

84

Chapter 5: Timed Automata Based Motion Planning

5.1 Overview

Motion planning and task planning have gained an enormous thrust in the

robotics community in the past decade or so. Although motion (task) planning

has attracted a great deal of research in the past few decades, recently, researchers

have come up with new metrics and methodologies to represent motion and task

specifications. Initially, motion planning for a mobile robot started with the aim

of moving a point mass from an initial position to a final position in some optimal

fashion. Through the course of time, people started to consider planning in cluttered

domains (i.e. in presence of obstacles) and also accounted for the dimensionality

and the physical constraints of the robot.

Though we have efficient approaches for general motion planning, very few

are available or scalable to plan in dynamic environments or under finite time con-

straints. Temporal logics have been used greatly to address complex motion speci-

fications, motion sequencing and timing behaviors etc. Historically temporal logic

was originated for model checking, validation and verification in the software com-

munity [34] and later on researchers found it very helpful to use Linear Temporal

logic (LTL), Computational Tree logic (CTL), Signal Temporal logic (STL) etc. for

85

representing complex motion (or task) specifications. TThe developments of tools

such as SPIN [35], NuSMV [36] made it easier to check if given specifications can

be met by creating a suitable automaton and looking for a feasible path for that

automaton. However, the construction of the automaton from a given temporal

logic formula is based on the implicit assumption that there is no time constraints

associated with the specification.

Currently motion planning for robots is in such a stage where it is very cru-

cial to incorporate time constraints since these constraints can arise from different

aspects of the problem: dynamic environment, sequential processing, time optimal-

ity etc. Planning with bounded time objectives is inherently hard due to the fact

that every transition from one state to another in the associated automaton has to

be carried out, by some controller, exactly in time from an initial configuration to

the final configuration. Bounded time motion planning has been done in heuristic

ways [37, 38] and also by using a mixed integer linear programming (MILP) frame-

work [82, 83]. In this chapter, we are interested in extending the idea of using LTL

for time-unconstrained planning to use MITL for time-constrained motion planning.

In [84], the authors proposed a method to represent time constrained planning task

as an LTL formula rather than MITL formula. This formulation reduced the com-

plexity of Exp-space-complete for MITL to Pspace-complete for LTL. However,

the number of states in the generated Büchi automata increases with the numbers

of steps.

In this work, we mainly focus on motion planning based on the construction

of an efficient timed automaton from a given MITL specification. A dedicated

86

controller to navigate the robot can be constructed for the general planning problem

once the discrete path is obtained from the automaton. The earlier results on

construction of algorithms to verify timing properties of real time systems can be

found in [85]. The complexity of satisfiability and model checking problems for MTL

formulas has been already studied in [79] and it has been shown that commonly

used real-time properties such as bounded response and invariance can be decided

in polynomial time or exponential space. More works on the decidability on MTL

can be found in [86] and the references there in. The concept of alternating timed

automata for bounded time model checking can be found in [87]. [88] describes

the construction of deterministic timed automata from MTL specifications and this

provides a unified framework to include all the future operators of MTL. The key

to the approach of [88] was in separating the continuous time monitoring from the

discrete time predictions of the future. We restrict our attention to generate timed

automata from MITL based on the work done in [89]. This is accomplished by

constructing a timed automaton to generate a sequence of states and another one

to check whether the sequence generated is actually a valid one in the sense that it

satisfies the given MITL specification.

The rest of the chapter is organized as follows, section 5.2 provides a back-

ground on MITL and the timed automata based approach for MITL. Section 5.3

illustrates how the timed automata can be used for motion synthesis and we also

provide UPPAAL [90] implementation of the same. Section 5.4 gives some examples

on different bounded time tasks and shows the implementation results. Section 5.5

provides a brief overview of how a continuous trajectory can be generated from the

87

pos0
z ≤ 1

pos1:B
z ≤ 1

pos3:A
z ≤ 1

pos2
z ≤ 1

z ≥ 1|z := 0

z ≥ 1
z := 0

z ≥ 1|z := 0

z ≥ 1
z := 0

Figure 5.1: Timed Automata based on cell decomposition and robot dynamics

discrete plan. Finally we conclude in section 5.6. This part of the work is published

in [91]

5.2 Preliminaries

In this chapter, we consider a surveying task in an area by a robot whose

motion is abstracted to a graph. In particular for our particular setup, the robot

motion is captured as a timed automaton (Fig. 5.1). Every edge is a timed transition

that represents navigation of the robot from one location to another in space and

every vertex of the graph represents a partition of the space. Our objective is to

find an optimal time path that satisfies the specifications given by timed temporal

logic.

5.2.1 Metric Interval Temporal Logic (MITL)

Metric interval temporal logic is a specification that includes timed temporal

specifications for model checking. It differs from Linear Temporal Logic in the part

that it has bounded time constraints on the temporal operators.

The formulas for LTL are build on atomic propositions by obeying the following

88

grammar.

Definition 5.2.1. The syntax of LTL formulas are defined according to the following

grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | Xφ| φUφ

π ∈ Π the set of propositions, > and ⊥(= ¬>) are the Boolean constants

true and false respectively. ∨ denotes the disjunction operator and ¬ denotes

the negation operator. U represents the Until operator. MITL extends the Until

operator to incorporate timing constraints.

Definition 5.2.2. The syntax of MITL formulas are defined according to the fol-

lowing grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | φUIφ

where I ⊆ [0,∞] is an interval with end points in N∪{∞}. UI symbolizes the

timed Until operator. Sometimes we will represent U[0,∞] by U. Other Boolean and

temporal operators such as conjunction (∧), eventually within I (3I), always on I

(2I) etc. can be represented using the grammar described in definition 5.2.2. For

example, we can express time constrained eventually operator 3Iφ ≡ >UIφ and so

on. In this chapter all the untimed temporal logic specifications are transformed into

expressions involving the Until operator and all the timed operator specifications are

transformed to eventually within I, to make it easier to generate a timed automaton.

MITL is interpreted over n-dimensional Boolean ω-sequences of the form ξ :

N→ Bn, where n is the number of propositions.

89

Definition 5.2.3. The semantics of any MTL formula φ is recursively defined over

a trajectory (ξ, t) as:

(ξ, t) |= π iff (ξ, t) satisfies π at time t

(ξ, t) |= ¬π iff (ξ, t) does not satisfy π at time t

(ξ, t) |= φ1 ∨ φ2 iff (ξ, t) |= φ1 or (ξ, t) |= φ2

(ξ, t) |= φ1 ∧ φ2 iff (ξ, t) |= φ1 and (ξ, t) |= φ2

(ξ, t) |=©φ iff (ξ, t+ 1) |= φ

(ξ, t) |= φ1UIφ2 iff ∃s ∈ I s.t. (ξ, t+ s) |= φ2 and ∀ s′ ≤ s, (ξ, t+ s′) |= φ1.

Thus, the expression φ1UIφ2 means that φ2 will be true within time interval

I and until φ2 becomes true φ1 must be true. The MITL operator ©φ means that

the specification φ is true at next time instance, 2Iφ means that φ is always true

for the time duration I, 3Iφ means that φ will eventually become true within the

time interval I. Composition of two or more MITL operators can express very

sophisticated specifications; for example 3I12I2φ means that within time interval

I1, φ will be true and from that instance it will hold true always for a duration

of I2. Other Boolean operators such as implication (⇒) and equivalence (⇔) can

be expressed using the grammar rules and semantics given in definitions 5.2.2 and

5.2.3. More details on MITL grammar and semantics can be found in [78], [85].

5.2.2 MITL and timed automata based approach

An LTL formula can be transformed into a Büchi automaton which can be

used in optimal path synthesis [92] and automata based guidance [93]. Similarly, in

90

this work, we focus on developing a timed automata based approach for MITL based

motion planning. MITL, a modification of Metric Temporal Logics (MTL), disallows

the punctuation in the temporal interval, so that the left boundary and the right

boundary have to be different. In general the complexity of model checking for MTL

related logic is higher than that of LTL. The theoretical model checking complexity

for LTL is Pspace-complete [94]. The algorithm that has been implemented is

exponential to the size of the formula. MTL by itself is undecidable. The model

checking process of MITL includes transforming it into a timed automaton [85] [89].

CoFlatMTL and BoundedMTL defined in [95] are more expressive fragments of MTL

than MITL, which can be translated to LTL-Past but with exponential increase in

size. SafetyMTL [86] and MTL, evaluated over finite and discrete timed words, can

be translated into alternative timed automata. Although theoretically, the results

suggest many fragments of MTL are usable, many algorithms developed for model

checking are based on language emptiness check, which are very different from the

control synthesis i.e. finding a feasible path. To the best of our knowledge, the

algorithm that is closer to implementation for motion planning is that of [89].

This work uses the MITL and timed automaton generation based on [89]. In

the following section, the summary of the transformation and our implementation

for control synthesis are discussed.

91

∧

U

¬

p(B)

p(A)

3[l,r]

p(B)

Figure 5.2: Logic tree representation of φ.

5.3 MITL for motion planning

5.3.1 MITL to Timed Automata Transformation

Consider the following requirements: a robot has to eventually visit an area

A and another area B in time interval [l, r], and the area A has to be visited first.

This can be captured in the following MITL expression,

φ = (¬BUA) ∧ (3[l,r]B)

This expression can be represented by a logic tree structure, where every node that

has children is a temporal logic operator and every leaf node is an atomic proposition,

as shown in Fig. 5.2. Every link represents an input output relationship.

The authors in [89] propose to change every temporal logic operator into a

timed signal transducer, which is a temporal automaton that accepts input and

generates output. Based on the definitions in [89] the Timed Transducer (TT) used

in this paper is defined in Definition 5.3.1 below, to fit the control synthesis problem,

92

Definition 5.3.1 (Timed Transducer). An timed transducer is a tuple

A = (Σ, Q,Γ, C, λ, γ, I,∆, q0, F),

where

• Σ is the input alphabet, Q is the finite set of discrete states,

• Γ is the output alphabet, C is the set of clock variables,

• I is the invariant condition defined by conjunction of inequalities of clock vari-

ables. The clock variables can be disabled and activated by setting the rate of

the clock 0 or 1 in the invariant I.

• λ : Q → Σ is the input function, which labels every state to an input, while

γ : Q→ Γ is the output function, which labels every state to an output.

• ∆ is the transition relationship between states which is defined by (p, q, r, g),

where p is the start state, q is the end state, r is the clock resets, and g is the

guard condition on the clock variables.

• q0 is the initial state of the timed automaton,

• F is the set of Büchi states that have to be visited infinitely often.

The transformation of Until operator and timed Eventually operator is sum-

marized in Figs. 5.3, 5.4 and 5.5. This is based on [89] with minor changes to match

with our definition of TT. In Fig. 5.3, the timed automaton for pUq is shown. The

inputs outputs of the states are specified in the second line within the box of each

93

sp̄
p̄/γ = 0

s̄pq̄
pq̄/γ = 0

spq̄
pq̄/γ = 1

spq
pq/γ = 1

z > 0|z := 0

z > 0|z := 0

z > 0
z := 0

z > 0|z := 0

z > 0|z := 0

z > 0
z := 0

z > 0
z := 0

z > 0
z := 0

Figure 5.3: The timed automaton for pUq. The inputs and outputs of the states
are specified in the second line of each state. pq̄ means the inputs are [1, 0] and p̄
means the inputs can be [0, 1] or [0, 0], and γ = 1 means the output is 1. Transitions
are specified in the format of guard|reset. In this case all the transitions have guard
z > 0 and reset clock z. All states in this automaton are Büchi accepting states
except spq̄. The Büchi accepting states are highlighted.

state. pq̄ means the inputs are [1, 0] and p̄ means the inputs can be [0, 1] or [0, 0],

and γ = 1 means the output is 1. Transitions are specified in the format of g|r. In

this case, all the transitions have guard z > 0 and reset clock z. All states in this

automaton are Büchi accepting states except spq̄. The Büchi accepting states are

highlighted.

The TT for timed eventually (3Ia) is decomposed into two automata, the

generator generates predictions of the future outputs of the system, while the checker

verifies that the generated outputs actually fit the inputs. Detailed derivations and

verifications of the models can be found in [89]. The composition between them

is achieved through the shared clock variables. Additional synchronization (‘ch!’)

is added in our case to determine the final satisfaction condition for the control

synthesis. A finite time trajectory satisfies the MITL, when the output signal of

the generator automaton (Fig. 5.4) includes a pair of raising edge and falling edge

94

Gen1

x′1 == 1
∗/γ = 0

Gen0

x′i == 0, y′i == 0, ∀i = 1, . . . ,m

Gen2

y′1 == 1
∗/γ = 1

Gen3

x′2 == 1
∗/γ = 0

Gen4

y′2 == 1
∗/γ = 1

.

Gen2m−1

x′m == 1
∗/γ = 0

Gen2m

y′m == 1
∗/γ = 1

∗|y1 := 0

∗|x1 := 0 ∗|y1 := 0

∗|x2 := 0

∗|y2 := 0

∗|x3 := 0
. . .

∗|ym := 0

∗|x1 := 0

Figure 5.4: The timed automaton for the generator part of 3Ia for motion planning.
2m is the number of clocks required to store the states of the timed eventually (3I)
operator. It is computed based on the interval I. Detail computation and derivation
can be found in [89]. x′i represents the rate of the clock xi. By setting the rate to be
0, we essentially deactivate the clock. The ‘∗’ symbol means that there is no value
for that particular input, output or guard for that state. There are no Büchi states
since all the time is bounded

95

Chk1

y1 ≤ b
p̄/∗

Chk00

x1 ≤ a
Chk01

y1 ≤ a

Chk2

x2 ≤ a
p/∗

Chk3

z < b− a
& x2 ≤ a
p̄/∗

Chk4

y2 ≤ b
p̄/∗

Chk5

x3 ≤ a
p/∗

Chk6

z < b− a
& x3 ≤ a
p̄/∗

.

Chk3m−2

ym ≤ b
p̄/∗

Chk3m−1

x1 ≤ a
p/∗

Chk3m

z < b− a
& x1 ≤ a
p̄/∗

y1 ≥ b|∗ ∗|z := 0

x1 ≥ a|∗
y1 ≥ a|∗ y1 ≥ a

z := 0

x2 ≥ a|∗ch!

y2 ≥ b|∗ ∗|z := 0

x3 ≥ a|∗
. . .

ym ≥ b|∗ ∗|z := 0

x1 ≥ a|∗

Figure 5.5: The timed automaton for the checker part of 3Ia for motion planning.
2m is the number of clocks required for the timed eventually (3I) operator. There
are no Büchi states since all the time is bounded

96

verified by the checker automaton. The transition from Chk2 to Chk4 (Fig. 5.5)

marks the exact time when such falling edge is verified. This guarantees that the

time trajectory before the synchronization is a finite time trajectory that satisfies

the MITL.

The composition of TT based on logic trees such as that of Fig. 5.2 is defined

similar to [89] with some modifications to handle cases when logic nodes have two

children, for example the until and conjunction operators.

Definition 5.3.2 (I/O Composition).

Let A1
1 = (Σ1

1, Q
1
1,Γ

1
1, C1

1 , λ
1
1, γ

1
1 , I

1
1 ,∆

1
1, q

1
10, F

1
1), A1

2 = (Σ1
2, Q

1
2,Γ

1
2, C1

2 , λ
1
2, γ

1
2 , I

1
2 ,∆

1
2, q

1
20, F

1
2)

be the input side of the automaton. If there is only one, then A1
1 is used. Let

A2 = (Σ2, Q2,Γ2, C2, λ2, γ2, I2,∆2, q2
0, F

2) be the output side of the automaton. Be-

cause of the input output relationship between them, they should satisfies the condi-

tion that [Γ1
1,Γ

1
2] = Σ2. The composition is an new TT such that,

A = (A1
1,A1

2)⊗ (A2) = ([Σ1
1,Σ

1
2], Q,Γ2, C, λ, γ, I,∆, q0, F)

where

Q = {(q1
1, q

1
2, q

2) ∈ Q1
1 ×Q1

2 ×Q2, s.t.(γ1
1(q1

1), γ1
2(q1

2)) = λ2(q2)}

C = (C1
1 ∪ C1

2 ∪ C2), λ(q1
1, q

1
2, q

2) = [λ1
1(q1

1), λ1
2(q1

2)], I(q11 ,q
1
2 ,q

2) = I1
(q11 ,q

1
2)
∩ I2

q2, q0 =

(q1
10, q

1
20, q

2
0) and F = F 1

1 ∩ F 1
2 ∪ F 2.

5.3.2 Path Synthesis using UPPAAL

The overall path synthesis framework is summarized as follows,

97

• First, robot and environments are abstracted to a timed automata Tmap us-

ing cell decomposition, and the time to navigate from one cell to another is

estimated based on the robot’s dynamics. For example Fig. 5.1.

• Second, MITL formula is translated to TT A using the method described in

the previous section.

• Then the product is taken of TT A with the TA Tmap using the location label.

For instance in Fig. 5.1 the product of pos1 : B will be taken with all states

in TT that do not satisfy the predicate p(a) but satisfy p(b).

• The resulting timed automata are then automatically transformed to an UP-

PAAL [90] model with an additional satisfaction condition verifier. An initial

state is chosen so that the output at that state is 1. Any finite trajectory

which initiated from that state and satisfying the following conditions will

satisfy the MITL specification. Firstly, it has to visit at least one of the Büchi

accepting states, and secondly, it has to meet the acceptance condition for

the timed eventually operator. To perform such a search in UPPAAL, a final

state is added to allow transitions from any Büchi accepting state to itself. A

verification automaton is created to check the finite acceptance conditions for

every timed eventually operator.

• An optimal timed path is then synthesized using the UPPAAL verification

tool.

98

The implementation of the first and the second step is based on parsing and sim-

plification functions of ltl2ba tool [96] with additional capabilities to generate TT.

We then use the generated TT to autogenerate a PYTHON script which constructs

the UPPAAL model automatically through PyUPPAAL, a PYTHON interface to

create and layout models for UPPAAL. The complete set of tools1 is implemented

in C to optimize the speed.

5.4 Case Study and Discussion

We demonstrate our framework for a simple environment and for some typical

temporal logic formulas. Although our tool is not limited by the complexity of the

environment, we use a simple environment to make the resulting timed automaton

easy to visualize. Let us consider the timed automaton from the abstraction in Fig.

5.1 and the LTL formula given by the following,

φ1 = (¬AUB) ∧ (3A).

This specification requires the robot to visit the area B first and eventually

visit A also. The resulting automaton based on the method in the previous section

is as shown in Fig. 5.6. Each state corresponds to a product state between a state in

Tmap and a state in TT A. The Büchi accepting states are indicated by an additional

b in their state names. We obtained the optimal path by first adding a final state

and linking every accepting state to it, and then using UPPAAL to find one of

the shortest paths that satisfies the condition “E <> final”. UPPAAL will then

1The tool is available on https://github.com/yzh89/MITL2Timed

99

https://github.com/yzh89/MITL2Timed

F
ig

u
re

5.
6:

R
es

u
lt

ti
m

ed
au

to
m

at
on

in
U

P
P

A
A

L
of
φ

1
.

T
h
e

p
u
rp

le
co

lo
re

d
te

x
t

u
n
d
er

th
e

st
at

e
n
am

e
re

p
re

se
n
ts
I
.

T
h
e

gr
ee

n
co

lo
re

d
te

x
ts

al
on

g
th

e
ed

ge
s

re
p
re

se
n
t

gu
ar

d
co

n
d
it

io
n
s,

w
h
il
e

th
e

b
lu

e
on

es
re

p
re

se
n
t

cl
o
ck

re
se

ts
.

T
h
e

B
ü
ch

i
ac

ce
p
ti

n
g

st
at

es
ar

e
re

p
re

se
n
te

d
b
y

a
su

b
sc

ri
p
t

b
in

st
at

e
n
am

es
.

T
h
e

op
ti

m
al

tr
a
je

ct
or

y
is
lo
c0
→

lo
c2
→

lo
c7
→

lo
c6
b
.

T
h
is

tr
a
je

ct
or

y
m

ea
n
s

it
tr

av
er

se
s

th
e

m
ap

in
fo

ll
ow

in
g

or
d
er

,
po
s0
→

po
s1

:
B
→

po
s0
→

po
s3

:
A

,
w

h
ic

h
sa

ti
sfi

es
φ

1

100

(a) (b)

Figure 5.7: Fig. (a) shows the other timed automata of φ2 corresponding to the
generator of timed eventually. Fig. (b) shows the verification timed automaton,
that checks if the falling edge of generator is ever detected, i.e. if a synchronization
signal (ch!) has happened. This signal marks the end of a full eventually cycle.
Similar to the LTL case, we ask UPPAAL to check for us the following property,
if there is a trajectory that leads to the final states in (a) and (b). The optimal
path in this case is (loc19, loc28) → (loc3, loc28) → (loc3, loc22b). The states are
products of states of Fig. 5.8 and Fig. (a). This path corresponds to (pos0, t ∈
[0, 1]) → (pos3 : A, t ∈ [1, 2]) → (pos0, t ∈ [2, 3]) in physical space. Repeating this
path will satisfy φ2.

101

F
ig

u
re

5.
8:

T
h
is

sh
ow

s
on

e
of

th
e

re
su

lt
in

g
ti

m
ed

au
to

m
at

a
in

U
P

P
A

A
L

of
φ

2
co

rr
es

p
on

d
in

g
to

th
e

ch
ec

ke
r

of
ti

m
ed

ev
en

tu
al

ly
op

er
at

or
an

d
u
n
ti

m
ed

al
w

ay
s.

S
om

e
of

th
e

ed
ge

s
ar

e
fu

rt
h
er

an
n
ot

at
ed

b
y

sy
n
ch

ro
n
iz

at
io

n
si

gn
al

(c
h
!)

.

102

compute one fastest path in the timed automaton that goes to final state, provided

such a path exists. If such a path exists, then it is a finite trajectory that satisfies

the specifications. In this work, we are more interested in planning a path that

satisfies some MITL constraint, so a finite time trajectory is a valid solution. The

initial states of the automaton is loc0 which is the only state at pos0 that outputs 1.

The optimal trajectory is loc0 → loc2 → loc7 → loc6b, in the product automaton.

This means that the optimal way for a robot to satisfy the LTL constraint is to

traverse the map in the following order, pos0→ pos1 : B → pos0→ pos3 : A.

In the second test case, the environment stays the same and the requirement

is captured in a MITL formula φ2

φ2 = 23[0,2]A

This requires the robot to perform periodic survey of area A every 2s. The resulting

timed automata are shown in Fig. 5.8 and Fig. 5.7. As we discussed earlier, if a

synchronization signal (ch!) is sent, the falling edge for the output of the generator

automaton is detected and verified. This marks the end of a finite trajectory that

satisfies the MITL constraints. We used the automaton in Fig. 5.7 (b) to receive

such signal. Similar to the LTL case, we use UPPAAL to find one fastest path that

leads to the final state in Fig. 5.7(a) and 5.7(b).

The optimal trajectory in this case is (loc19, loc28)→ (loc3, loc28)→ (loc3, loc22b),

which corresponds to (pos0, t ∈ [0, 1]) → (pos3 : A, t ∈ [1, 2]) → (pos0, t ∈ [2, 3]) in

physical space. Repeating this path will satisfy φ2.

All the computations are done on a computer with 3.4GHz processor and 8GB

103

Table 5.1: Computation Time for typical MITL formula

MITL Map Transformation Number of TA Synthesis
Formula Grid Time Transitions Time

φ1 2x2 < 0.001s 22 0.016s
φ2 2x2 0.004s 69 0.018s
φ3 2x2 0.40s 532 0.10s
φ4 2x2 0.46s 681 0.12s
φ1 4x4 0.004s 181 0.062s
φ1 8x8 0.015s 886 0.21s
φ2 8x8 0.015s 1795 0.32s

memory. Both of the previous examples require very small amount of time (< 0.03s).

We also tested our implementation against various other complex environments and

MITL formulas. Table 5.1 summarizes our results for complex systems and formulas.

The map we demonstrated earlier is a 2x2 map (Fig. 5.1); we also examined the

cases for 4x4 and 8x8 grid maps. The other temporal logic formulas used are listed

below. The time intervals in the formula are scaled according to the map size.

φ3 = 3[0,4]A ∧3[0,4]B

φ4 = 3[2,4]A ∧3[0,2]B

It can be seen from Table 5.1 that our algorithm performs very well with

common MITL formulas and scales satisfactorily with the dimensions of the map.

5.5 Continuous Trajectory generation

In this section, we briefly describe the generation of a continuous trajectory

from the discrete motion plan obtained from the timed automaton. Let us consider

104

Figure 5.9: Workspace and the continuous trajectory for the specification φ1. The
initial location is the top-left corner cell (I).

the nonholonomic dynamics of a unicycle car as given in (5.1).

˙
x

y

θ

 = u


cos θ

sin θ

0

+ ω


0

0

1

 (5.1)

where ω and u are the control inputs. It should be noted that the above nonholo-

nomic dynamics are controllable and we assume no constraints on the control inputs

at this point.

The above sections provide the sequence of cells to be visited in the grid like

environment (Fig. 5.9).

The outputs of the timed automaton are treated as the time-stamped way

points for the robot to move. We have to ensure that the robot moves from one way

point to the next with the given initial and final times, and at the same time, the

trajectory should remain within the associated cells.

105

Since our environment is decomposed in rectangular cells, the robot only needs

to move forward, turn right, turn left and make a U-turn. We synthesize a controller

that can make the robot to perform these elementary motion segments within the

given time.

For moving forward, the input ω is chosen to be 0 and the velocity u is tuned

so that the robot reaches the final position in time. For turning left and turning

right, ω is chosen to take positive and negative values respectively so that a circular

arc is traversed. Similarly the U-turn is also implemented so that the robot performs

the U-turn within a single cell.

Let us denote the state of the system at time t by the pair (q, t) i.e. x(t) =

q1, y(t) = q2 and θ(t) = q3 where q = [q1, q2, q3]. Then we have the following

lemma on the optimality of the control inputs.

Lemma 5.5.1. If ū(t) and ω̄(t), t ∈ [0, 1] is a pair of control inputs s.t. the

dynamics moves from state (q0, 0) to (q1, 1), then u(t0 + t) = 1
λ
ū(t

λ
) and ω(t0 + t) =

1
λ
ω̄(t

λ
) moves the system from (q0, t0) to (q1, t0 + λ) for any λ > 0.

Moreover, if ū and ω̄ move the system optimally, i.e.

J(ū, ω̄) = min
u(·),w(·)

∫ 1

0

[r1u
2(t) + r2w

2(t)]dt (5.2)

then u and ω given above are also optimal for moving the system from (q0, t0) to

(q1, t0 + λ), i.e.

J1(u, ω) = min
u1(·),w1(·)

∫ t0+λ

t0

[r1u
2
1(t) + r2w

2
1(t)]dt. (5.3)

106

Proof. Let us first denote

G(q) =


cos(θ(t)) 0

sin(θ(t)) 0

0 1


where q = [x(t), y(t), θ(t)]. Therefore, dynamics (5.1) can be written as q̇ =

G(q)

u
ω

 . Let us now consider q̄(t) = [x(t0 +λt), y(t0 +λt), θ(t0 +λt)]. Therefore,

˙̄q = λG(q̄)

u(t0 + λt)

ω(t0 + λt)

. Using the definition of u and ω in the lemma, we get ˙̄q =

G(q̄)

ū
ω̄

 By the hypothesis of the lemma, ū and ω̄ move the system from (q0, 0) to

(q1, 1) i.e. from [x(t0), y(t0), θ(t0)] = q0 to q1 = q̄(1) = [x(t0 +λ), y(t0 +λ), θ(t0 +λ)].

For optimality, let the proposed u, ω be not optimal and u∗ and ω∗ are optimal

ones i.e.

∫ t0+λ

t0

[r1u
∗2(t) + r2ω

∗(t)2]dt ≤
∫ t0+λ

t0

[r1u
2(t) + r2ω

2(t)]dt (5.4)

Now let us construct ū∗(t) = λu∗(t0 + λt) and ω̄∗(t) = λω∗(t0 + λt).

Therefore from (5.4),

∫ 1

0

[r1u
∗2(t0 + λs) + r2ω

∗2(t0 + λs)]ds ≤
∫ 1

0

[r1u
2(t0 + λs) + r2ω

2(t0 + λs)]ds

∫ 1

0

[r1ū∗
2(s) + r2ω̄∗

2(s)]ds ≤
∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds (5.5)

107

But, by the hypothesis, ū and ω̄ are optimal and hence∫ 1

0

[r1ū∗
2(s) + r2ω̄∗

2(s)]ds ≥
∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds (5.6)

Combining (5.5) and (5.6) we get,∫ 1

0

[r1ū∗
2(s) + r2ω̄∗

2(s)]ds =

∫ 1

0

[r1ū
2(s) + r2ω̄

2(s)]ds (5.7)

After changing the dummy variables inside integration again, one can obtain

∫ t0+λ

t0

[r1u
∗2(s) + r2ω

∗2(s)]ds =

∫ t0+λ

t0

[r1u
2(s) + r2ω

2(s)]ds (5.8)

Hence the proposed u and ω are optimal whenever ū and ω̄ are optimal.

Remark 5.5.2. Lemma 5.5.1 states that if the controls for elementary motion from

initial time 0 to final time 1 are synthesized, then by properly scaling and shifting

in the time and scaling the magnitude, controls for any movement from any initial

time to any final time can be synthesized without further solving any optimization

problem.

5.6 Conclusion

In this work, we have presented a timed automaton based approach to generate

a discrete plan for the robot to perform temporal tasks with finite time constraints.

We implemented the algorithm in an efficient and generic way so that it can translate

the time constraints and temporal specifications to timed automaton models in

UPPAAL and synthesize the path accordingly. We then demonstrated our algorithm

in grid type environments with different MITL formulas. We have considered grid

108

type of environment for our case studies, but the approach can be generalized to

most motion planning problems as long as the environment can be decomposed

into cells. We also provide a brief overview on generating an optimal continuous

trajectory from the discrete plan. For future works, we are considering to extend

the work to include dynamic obstacles as well as multiagent systems.

109

Chapter 6: Conclusion

To conclude, our research focuses on two aspects of motion planning and con-

trols, One is to answer the question of how to verify the safety of the trajectory

planner and controls, as well as how to synthesize an safe planner and controller.

The other is to answer how to generate a high level plan to satisfy temporal speci-

fications.

In the first aspect of our work, we proposed a verification method to prove

the safety and robustness of a path planner and the path following controls based

on reachable sets. Secondly, we proposed a reachable set based collision avoidance

algorithm for UAVs. Instead of the traditional approaches of collision avoidance

between trajectories, we proposed a collision avoidance scheme based on reachable

sets and tubes. We formulated the problem as a convex optimization problem seek-

ing control set design for the aircraft to avoid collision. We applied our approach to

collision avoidance scenarios of quadrotors and fixed-wing aircraft.

In the second aspect of our work, we addressed the high level planning prob-

lems with timed temporal logic constraints. Firstly, we presented an optimization

based method for path planning of a mobile robot subject to timed temporal con-

straints, in a dynamic environment. Temporal logic (TL) can address very complex

110

task specifications such as safety, coverage, motion sequencing etc. We used met-

ric temporal logic (MTL) to encode the task specifications with timing constraints.

We translated the MTL formulae into mixed integer linear constraints and solved

the associated optimization problem using a mixed integer linear program solver.

We applied our approach on several case studies in complex dynamical environ-

ments subjected to timed temporal specifications. Secondly, we presented a timed

automaton based method for planning under the given timed temporal logic spec-

ifications. We used metric interval temporal logic (MITL), a member of the MTL

family, to represent the task specification, and provided a constructive way to gen-

erate a timed automaton and methods to look for accepting runs on the automaton

to find an optimal motion (or path) sequence for the robot to complete the task.

111

Appendix A:

Publications

[1] Shahan Yang, Yuchen Zhou, and John Baras. Compositional analysis of dynamic
bayesian networks and applications to complex dynamic system decomposition.
Procedia Computer Science, 16:167–176, 2013.

[2] Yuchen Zhou and John S Baras. CPS modeling integration hub and design
space exploration with application to microrobotics. In Control of Cyber-Physical
Systems, pages 23–42. Springer International Publishing, 2013.

[3] Yuchen Zhou, John Baras, and Shige Wang. Hardware software co-design for au-
tomotive cps using architecture analysis and design language. In the 5th Analytic
Virtual Integration of Cyber-Physical Systems Workshop, 2014.

[4] Jacob Moschler, Yuchen Zhou, John S. Baras, and Jungwoo Joh. A systems
engineering approach to collaborative coordination of UAS in the NAS with
safety guarantees. In Integrated Communications, Navigation and Surveillance
Conference (ICNS), 2014, pages U1–1. IEEE, 2014.

[5] Yuchen Zhou, Dipankar Maity, and John S. Baras. Optimal Mission Planner
with Timed Temporal Logic Constraints. In European Control Conference 2015
(ECC’15). IEEE, 2015.

[6] Yuchen Zhou and John S. Baras. Reachable set approach to collision avoidance
for UAVs. In 2015 54th IEEE Conference on Decision and Control (CDC), pages
5947–5952, Dec 2015.

[7] Yuchen Zhou, Dipankar Maity, and John S Baras. Timed automata approach
for motion planning using metric interval temporal logic. In European Control
Conference 2016 (ECC’16), 2016.

112

Bibliography

[1] Steven Michael LaValle. Planning algorithms. Cambridge university press,
2006.

[2] B. Fleming. New Automotive Electronics Technologies [Automotive Electron-
ics]. IEEE Vehicular Technology Magazine, 7(4):4–12, December 2012.

[3] ‘Super Cruise’ Takes on Real-World Traffic Scenarios. https:

//media.gm.com/media/us/en/gm/news.detail.html/content/Pages/

news/us/en/2013/Apr/0429-cadillac-super-cruise.html, April 2013.

[4] Aaron M. Kessler. Elon Musk Says Self-Driving Tesla Cars Will Be
in the US by Summer. The New York Times. http://mobile. ny-
times. com/2015/03/20/business/elon-musk-says-selfdriving-tesla-cars-will-be-
in-the-us-by-summer. html, 2015.

[5] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic mo-
tion planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

[6] Takashi Maekawa, Tetsuya Noda, Shigefumi Tamura, Tomonori Ozaki, and
Ken-ichiro Machida. Curvature continuous path generation for autonomous
vehicle using B-spline curves. Computer-Aided Design, 42(4):350–359, 2010.

[7] David J. Webb and Jan van den Berg. Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics. In 2013 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 5054–5061.
IEEE, 2013.

[8] Naomi Ehrich Leonard and Edward Fiorelli. Virtual leaders, artificial potentials
and coordinated control of groups. In Proceedings of the 40th IEEE Conference
on Decision and Control, 2001., volume 3, pages 2968–2973. IEEE, 2001.

[9] Yoram Koren and Johann Borenstein. Potential field methods and their in-
herent limitations for mobile robot navigation. In Proceedings of 1991 IEEE
International Conference on Robotics and Automation, 1991., pages 1398–1404.
IEEE, 1991.

113

https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2013/Apr/0429-cadillac-super-cruise.html
https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2013/Apr/0429-cadillac-super-cruise.html
https://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2013/Apr/0429-cadillac-super-cruise.html

[10] Karin Sigurd and Jonathan How. UAV Trajectory Design Using Total Field
Collision Avoidance. American Institute of Aeronautics and Astronautics, Au-
gust 2003.

[11] C. Carbone, U. Ciniglio, F. Corraro, and S. Luongo. A novel 3d geomet-
ric algorithm for aircraft autonomous collision avoidance. In 2006 45th IEEE
Conference on Decision and Control,, pages 1580–1585. IEEE, 2006.

[12] Emmett Lalish, Kristi A. Morgansen, and Takashi Tsukamaki. Decentralized
reactive collision avoidance for multiple unicycle-type vehicles. In American
Control Conference, 2008, pages 5055–5061. IEEE, 2008.

[13] Su-Cheol Han and Hyochoong Bang. Proportional navigation-based optimal
collision avoidance for uavs. In 2nd International Conference on Autonomous
Robots and Agents, pages 13–15, 2004.

[14] I.M. Mitchell, A.M. Bayen, and C.J. Tomlin. A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games. IEEE
Transactions on Automatic Control, 50(7):947–957, July 2005.

[15] Michael P. Vitus and Claire J. Tomlin. Hierarchical, Hybrid Framework for
Collision Avoidance Algorithms in the National Airspace. AIAA Guidance,
Navigation and Control Conference and Exhibit, 2008.

[16] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal Techniques for Reach-
ability Analysis. In Nancy Lynch and Bruce H. Krogh, editors, Hybrid Systems:
Computation and Control, number 1790 in Lecture Notes in Computer Science,
pages 202–214. Springer Berlin Heidelberg, 2000.

[17] Oleg Botchkarev and Stavros Tripakis. Verification of hybrid systems with lin-
ear differential inclusions using ellipsoidal approximations. In Hybrid Systems:
Computation and Control, pages 73–88. Springer, 2000.

[18] Colas Le Guernic and Antoine Girard. Reachability analysis of linear systems
using support functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262,
2010.

[19] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis of
nonlinear systems with uncertain parameters using conservative linearization.
In 47th IEEE Conference on Decision and Control CDC 2008., pages 4042–
4048, 2008.

[20] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded
Maler. SpaceEx: Scalable verification of hybrid systems. In Computer Aided
Verification, pages 379–395, 2011.

114

[21] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of
reachable sets of linear time-invariant systems with inputs. In Hybrid Systems:
Computation and Control, pages 257–271. Springer, 2006.

[22] Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. Approximate
reachability analysis of piecewise-linear dynamical systems. In Hybrid Systems:
Computation and Control, pages 20–31. Springer, 2000.

[23] Matthias Althoff. Reachability analysis of nonlinear systems using conservative
polynomialization and non-convex sets. In Proceedings of the 16th international
conference on Hybrid systems: computation and control, pages 173–182. ACM,
2013.

[24] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guer-
nic, and Oded Maler. Recent progress in continuous and hybrid reachability
analysis. In 2006 IEEE Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE International
Symposium on Intelligent Control, pages 1582–1587. IEEE, 2006.

[25] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivan-
textbackslashvcić, and Aarti Gupta. Probabilistic temporal logic falsification
of cyber-physical systems. ACM Transactions on Embedded Computing Systems
(TECS), 12(2s):95, 2013.

[26] Luis I. Reyes Castro, Pratik Chaudhari, Jana Tumova, Sertac Karaman,
Emilio Frazzoli, and Daniela Rus. Incremental Sampling-based Algorithm for
Minimum-violation Motion Planning. arXiv preprint arXiv:1305.1102, 2013.

[27] Yushan Chen, Xu Chu Ding, Alin Stefanescu, and Calin Belta. A formal ap-
proach to deployment of robotic teams in an urban-like environment. In Dis-
tributed Autonomous Robotic Systems, pages 313–327. Springer, 2013.

[28] Meng Guo and Dimos V. Dimarogonas. Reconfiguration in Motion Planning of
Single- and Multi-agent Systems under Infeasible Local LTL Specifications. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo
Big Sight, Japan, 2013.

[29] Kangjin Kim and Georgios Fainekos. Minimal Specification Revision for
Weighted Transition Systems. In 2013 IEEE International Conference on
Robotics and Automation (ICRA), Karlsruhe, Germany, 2013.

[30] Matthew R. Maly, Morteza Lahijanian, Lydia E. Kavraki, Hadas Kress-Gazit,
and Moshe Y. Vardi. Iterative temporal motion planning for hybrid systems
in partially unknown environments. In Proceedings of the 16th international
conference on Hybrid systems: computation and control, pages 353–362, 2013.

[31] Jorge A. Baier, Christian Fritz, Meghyn Bienvenu, and Sheila A. McIlraith.
Beyond classical planning: Procedural control knowledge and preferences in

115

state-of-the-art planners revisited. In Proceedings of the ICAPS 2009 Work-
shop on Generalized Planning: Macros, Loops, Domain Control., Thessaloniki,
Greece, 2009.

[32] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 1999.

[33] M.M. Quottrup, T. Bak, and R.I. Zamanabadi. Multi-robot planning : a timed
automata approach. In 2004 IEEE International Conference on Robotics and
Automation (ICRA), volume 5, pages 4417–4422 Vol.5, 2004.

[34] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, Cambridge, Mass., 2008.

[35] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on software
engineering, (5):279–295, 1997.

[36] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided
Verification, pages 359–364. Springer, 2002.

[37] Kamal Kant and Steven W Zucker. Toward efficient trajectory planning: The
path-velocity decomposition. The International Journal of Robotics Research,
5(3):72–89, 1986.

[38] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Al-
gorithmica, 2(1-4):477–521, 1987.

[39] H. Jin Kim, David H. Shim, and Shankar Sastry. Nonlinear model predictive
tracking control for rotorcraft-based unmanned aerial vehicles. In Proceedings
of the 2002 American Control Conference, 2002., volume 5, pages 3576–3581.
IEEE, 2002.

[40] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho. Robust tube-based MPC
for tracking of constrained linear systems with additive disturbances. Journal
of Process Control, 20(3):248–260, 2010.

[41] DongBin Lee, C. Nataraj, Timothy C. Burg, and Darren M. Dawson. Adap-
tive tracking control of an underactuated aerial vehicle. In American Control
Conference (ACC), 2011, pages 2326–2331. IEEE, 2011.

[42] Jacob Moschler, Yuchen Zhou, John S. Baras, and Jungwoo Joh. A systems
engineering approach to collaborative coordination of UAS in the NAS with
safety guarantees. In Integrated Communications, Navigation and Surveillance
Conference (ICNS), 2014, pages U1–1. IEEE, 2014.

[43] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear Con-
tinuous Dynamics. PhD thesis, Université Joseph Fourier, 2009.

116

[44] Alongkrit Chutinan and Bruce H. Krogh. Computational techniques for hybrid
system verification. IEEE Transactions on Automatic Control, 48(1):64–75,
2003.

[45] Matthias Althoff, Daniel Althoff, Dirk Wollherr, and Martin Buss. Safety verifi-
cation of autonomous vehicles for coordinated evasive maneuvers. In Intelligent
vehicles symposium (IV), 2010 IEEE, pages 1078–1083. IEEE, 2010.

[46] M. Althoff and J.M. Dolan. Set-based computation of vehicle behaviors for the
online verification of autonomous vehicles. In 2011 14th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pages 1162–1167,
2011.

[47] Matthias Althoff and John M. Dolan. Reachability computation of low-order
models for the safety verification of high-order road vehicle models. In American
Control Conference (ACC), 2012, pages 3559–3566. IEEE, 2012.

[48] Matthias Althoff. Reachability analysis and its application to the safety assess-
ment of autonomous cars. PhD thesis, 2010.

[49] Antoine Girard. Reachability of uncertain linear systems using zonotopes. In
Hybrid systems: computation and control, pages 291–305. Springer, 2005.

[50] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: An algorithmic approach to the specification and verification
of hybrid systems. Springer, 1993.

[51] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable states for
nonlinear biological models. Theoretical Computer Science, 412(21):2095–2107,
2011.

[52] C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational techniques
for the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001,
July 2003.

[53] Meeko Oishi, Ian Mitchell, Claire Tomlin, and Patrick Saint-Pierre. Computing
viable sets and reachable sets to design feedback linearizing control laws under
saturation. In 2006 45th IEEE Conference on Decision and Control, pages
3801–3807. IEEE, 2006.

[54] Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Quadro-
tor helicopter trajectory tracking control. In AIAA Guidance, Navigation and
Control Conference and Exhibit, Honolulu, Hawaii, pages 1–14, 2008.

[55] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on Robotics and
Automation (ICRA), pages 2520–2525. IEEE, 2011.

117

[56] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation
and control for precise aggressive maneuvers with quadrotors. The International
Journal of Robotics Research, 31(5):664–674, 2012.

[57] Jin-woo Lee. Method of path planning for evasive steering maneuver. Google
Patents, January 2016.

[58] Jin-Woo Lee and Bakhtiar Litkouhi. A unified framework of the automated lane
centering/changing control for motion smoothness adaptation. In 2012 15th
International IEEE Conference on Intelligent Transportation Systems (ITSC),
pages 282–287. IEEE, 2012.

[59] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren
Kammel, J. Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, and others.
Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE
Intelligent Vehicles Symposium (IV), pages 163–168. IEEE, 2011.

[60] Wei Xi and John S. Baras. MPC based motion control of car-like vehicle swarms.
In Mediterranean Conference on Control & Automation MED’07., pages 1–6.
IEEE, 2007.

[61] Nikolai K. Moshchuk, Shih-ken Chen, and Chad T. Zagorski. COLLISION
AVOIDANCE CONTROL INTEGRATED WITH EPS CONTROLLER. June
2015.

[62] Yuchen Zhou and John S. Baras. Reachable set approach to collision avoidance
for UAVs. In 2015 54th IEEE Conference on Decision and Control (CDC),
pages 5947–5952, Dec 2015.

[63] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal Toolbox. Technical Report
UCB/EECS-2006-46, EECS Department, University of California, Berkeley,
May 2006.

[64] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[65] Michael Grant and Stephen Boyd. CVX: Matlab Software for Disciplined Con-
vex Programming, version 2.1. March 2014.

[66] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The
GRASP Multiple Micro-UAV Testbed. IEEE Robotics & Automation Magazine,
17(3):56–65, September 2010.

[67] Luis Rodolfo Garcia Carrillo, Alejandro Enrique Dzul López, Rogelio Lozano,
and Claude Pégard. Modeling the Quadrotor Mini-Rotorcraft. Quad Rotorcraft
Control, pages 23–34, 2013.

118

[68] Eric M Wolff, Ufuk Topcu, and Richard M Murray. Optimization-based Tra-
jectory Generation with Linear Temporal Logic Specifications. In Int. Conf. on
Robotics and Automation, 2014.

[69] Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory
and practice. Princeton University Press, 2012.

[70] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth con-
vex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008.

[71] J.C. Latombe. Robot motion planning. Kluwer international series in engi-
neering and computer science;124. Kluwer Academic Publishers, Boston, cop.
1991.

[72] Howie Choset. Coverage for robotics–A survey of recent results. Annals of
mathematics and artificial intelligence, 31(1-4):113–126, 2001.

[73] Howie M Choset. Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005.

[74] Wei Xi, Xiaobo Tan, and John S Baras. A hybrid scheme for distributed
control of autonomous swarms. In Proceedings of the 2005 American Control
Conference., pages 3486–3491. IEEE, 2005.

[75] Rajeev Sharma. Locally efficient path planning in an uncertain, dynamic envi-
ronment using a probabilistic model. Robotics and Automation, IEEE Trans-
actions on, 8(1):105–110, 1992.

[76] Steven M LaValle and Rajeev Sharma. On motion planning in changing, par-
tially predictable environments. The International Journal of Robotics Re-
search, 16(6):775–805, 1997.

[77] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-Logic-Based Reac-
tive Mission and Motion Planning. IEEE Transactions on Robotics, 25(6):1370–
1381, December 2009.

[78] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
time systems, 2(4):255–299, 1990.

[79] Joël Ouaknine and James Worrell. Some recent results in metric temporal logic.
In Formal Modeling and Analysis of Timed Systems, pages 1–13. Springer, 2008.

[80] Sertac Karaman, Ricardo G Sanfelice, and Emilio Frazzoli. Optimal control of
mixed logical dynamical systems with linear temporal logic specifications. In
47th IEEE Conference on Decision and Control, pages 2117–2122. IEEE, 2008.

119

[81] Sertac Karaman and Emilio Frazzoli. Vehicle routing problem with metric
temporal logic specifications. In Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, pages 3953–3958. IEEE, 2008.

[82] Arthur Richards and Jonathan P. How. Aircraft trajectory planning with col-
lision avoidance using mixed integer linear programming. In Proceedings of the
2002 American Control Conference, volume 3, pages 1936–1941. IEEE, 2002.

[83] Yuchen Zhou, Dipankar Maity, and John S. Baras. Optimal Mission Planner
with Timed Temporal Logic Constraints. In European Control Conference 2015
(ECC’15). IEEE, 2015.

[84] D. Maity and J.S. Baras. Motion planning in dynamic environments with
bounded time temporal logic specifications. In 2015 23th Mediterranean Con-
ference on Control and Automation (MED), pages 940–946, June 2015.

[85] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing
punctuality. Journal of the ACM (JACM), 43(1):116–146, 1996.

[86] Joël Ouaknine and James Worrell. On the decidability of metric temporal logic.
In Proceedings. 20th Annual IEEE Symposium on Logic in Computer Science
2005, pages 188–197. IEEE, 2005.

[87] Mark Jenkins, Joël Ouaknine, Alexander Rabinovich, and James Worrell. Al-
ternating timed automata over bounded time. In 2010 25th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 60–69. IEEE, 2010.

[88] Dejan Ničković and Nir Piterman. From MTL to deterministic timed automata.
Springer, 2010.

[89] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to Timed Au-
tomata. In Eugene Asarin and Patricia Bouyer, editors, Formal Modeling and
Analysis of Timed Systems, number 4202 in Lecture Notes in Computer Science,
pages 274–289. Springer Berlin Heidelberg, 2006.

[90] Glenn Behrmann, Alexandre David, Kim G Larsen, John Hakansson, Paul Pet-
terson, Wang Yi, and Monique Hendriks. UPPAAL 4.0. In Third International
Conference on Quantitative Evaluation of Systems, 2006. QEST 2006., pages
125–126. IEEE, 2006.

[91] Yuchen Zhou, Dipankar Maity, and John S Baras. Timed automata approach
for motion planning using metric interval temporal logic. In European Control
Conference 2016 (ECC’16), 2016.

[92] Stephen L. Smith, Jana Tumova, Calin Belta, and Daniela Rus. Optimal path
planning under temporal logic constraints. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3288–3293, 2010.

120

[93] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Automaton-Guided Con-
troller Synthesis for Nonlinear Systems with Temporal Logic. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo Big Sight,
Japan, 2013.

[94] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM (JACM), 32(3):733–749, 1985.

[95] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. On expres-
siveness and complexity in real-time model checking. In Automata, Languages
and Programming, pages 124–135. Springer, 2008.

[96] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Computer Aided
Verification, number 2102 in Lecture Notes in Computer Science, pages 53–65.
Springer Berlin Heidelberg, 2001.

121

	List of Figures
	Introduction
	Motion Planning with Safety Constraints
	Temporal Logic

	Reachable Sets for Safety Verification
	Overview
	Reachable Set Computation
	Reachable Set Computation for Linear Dynamics
	Reachability Analysis for Hybrid System with Linear Dynamics
	Reachability Analysis of Nonlinear Dynamics using Linearization

	Reachability Analysis for Quadrotor Dynamics
	Quadrotor Dynamics
	Results and Analysis

	Collision Avoidance Maneuver Safety Verification for Autonomous Vehicle
	System Overview
	Reachability for Physical System
	Results and Analysis

	Conclusion

	Control Synthesis for Collision Avoidance Using Reachable Set
	Overview
	Reachable Set
	Collision Avoidance Between Two Agents Using Reachability Analysis
	Constant Control Set Design for Collaborative Collision Avoidance
	Time Varying Control Tube Design for Collision Avoidance

	Simulations and Results
	Quadrotor Model
	Fix-wing Dynamics Model
	Reachable Sets and Constrained Control Sets for Constant Control Set Method
	Reachable Sets and Constrained Control Sets for the Time Varying Control Tube Method

	Conclusion

	Optimization based Temporal Logic Planning
	Overview
	Preliminaries
	Metric Temporal Logic (MTL)

	Problem Formulation and Solution
	Linearized Dynamics of the Robot
	Mixed Integer Linear Constraints

	Case Study and Discussion
	Conclusion

	Timed Automata Based Motion Planning
	Overview
	Preliminaries
	Metric Interval Temporal Logic (MITL)
	MITL and timed automata based approach

	MITL for motion planning
	MITL to Timed Automata Transformation
	Path Synthesis using UPPAAL

	Case Study and Discussion
	Continuous Trajectory generation
	Conclusion

	Conclusion
	
	Bibliography
	Bibliography

