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This dissertation is a study of problems that relate to a Fokker-Planck (Klein-

Kramers) equation with hypoelliptic structure. The equation describes the statistics

of motion of an ensemble of particles in a viscous �uid that follows the Stokes'

equations of �uid motion. The signi�cance in this problem is that it relates to a

variety of phenomena besides its obvious connection to the study of macromolecular

chains that are composed by particle �units� in creeping �ows. Such phenomena

range from Kramers escape probability (for a particle trapped in a potential well),

to stellar dynamics. The problem can also be seen as a simpli�ed version of the

Vlasov-Poisson-Fokker-Planck system that mainly describes electrostatic models in

plasma physics and gravitational forces between galaxies.

Well-posedeness of the equation has been studied by many authors, including

the case of irregular coe�cients (Lions-Le Bris). The study of Sobolev regularity

is interesting in its own right and can be performed with fairly elementary tools

(Hérau,Villani,. . . ). We are interested here with short time estimates and with how



smoothing proceeds in time. Di�erent types of Lyapunov functionals can be con-

structed depending on the type of initial data to show regularization. Of particular

interest is a recent technique developed by C.Villani that builds upon a system of

di�erential inequalities and is being implemented here for the slightly more involved

case of non constant friction. The question of asymptotic convergence to a station-

ary state is also discussed, with techniques that are similar to certain extend to the

ones used in regularization but which in general involve more computations.

Finally, we examine the hydrodynamic (zero mass) limit of the parametrized

version of the Fokker-Planck equation. We discuss two di�erent approaches of hy-

drodynamic convergence. The �rst uses weak compactness principles of extracting

subsequences that are shown to converge to a solution of the limit problem, and

works with initial data in weighted L2 setting. The second is based on the study of

relative entropy, gives L1 convergence to a solution of the limit problem, and uses

entropic initial data.
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Chapter 1: Introduction

This dissertation studies relationships between di�erent math models of sys-

tems in which a large number of macromolecules are sparsely immersed within a

far larger number of micromolecules. Examples of such systems include dilute solu-

tions of polymers such as arise in many industrial settings (see [3,18,19,38,40,41]).

We model the macromolecules (or more precisely the monomer parts they are com-

prised of) as idealized particles (spheres) whose interactions are solely mediated by

interactions with the micromolecules. We model the micromolecules as an incom-

pressible �uid governed by Stokes �ow. The interactions of these idealized particles

with the �uid are modeled by admissible boundary conditions, Brownian noise and a

damping term. This leads to a high-dimensional Markov process, whose probability

density function is governed by a Fokker-Planck equation in N particle phase-space.

We introduce a re-scaling that separates scales, in a way that the now fast scale

leads the system to relaxation to local Gibbs states. The main goal is to present a

rigorous derivation of the macroscopic density equation, through the study of the

hydrodynamic limit as we let the particle mass m→ 0.

The importance of the these models lies in the huge diversity of industrial

applications of polymeric solutions and materials. Such applications include the
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use of polymers to thicken and raise the viscosity of industrial products. Examples

may range from the thickening of motor oils, which is extremely important in high

temperatures (by diblock copolymers), to the reduction of turbulent �ows in water

(e.g. by polyethylene oxide) and proteins used to remove substances from food. In

general, applications involve �elds as diverse as biology, medicine, food processing,

oil industry, pharmacology and many others.

Despite the simplicity of �uid/particle models, complications arise that cannot

be ignored. The �rst and foremost is that as a model it is extremely special and

therefore it is not ideal for describing every single individual polymer architecture.

Assuming that monomers can be modeled as spherical particles (this is already a

big assumption), the speci�cs of many polymer structures (how monomers bond

together) requires in many cases a reduction to a simpler model. For instance,

many macromolecules can be modeled quite satisfactory by rigid rod models, worm-

like polymers, thread or tube models etc. Another important problem is related to

particle/�uid interactions. In order to have a physically meaningful model, we need

to be speci�c on how to couple the system of particles/�uid so that we get a well-

posed mathematical problem. As we are going to show soon, in our model, particles

and �uid interact via a set of boundary conditions (the damping force is a result of

these BCs). This will allow us to forget the speci�cs of �uid motion and focus on the

kinetic description of the particle system alone, since the equations of particle motion

form a closed system now. On the upside, there are also advantages. The particles in

the model system imitate the monomer constituents that are the building blocks of

the macromolecule. These monomers (particles in our model) form covalent bonds
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and interact with each other with various forces, e.g. bond forces, electrostatic and

van der Waals. In many cases, we can capture the nature of these interactions with

the help of a potential U(x). Regardless of all the complexities, there are still many

important cases where this basic model stands as a good approximation.

As we put together all the important parts that follow, we begin with a math-

ematical description of the particle system and how we go from a microscopic to

a kinetic (mesoscopic) level of description. We then derive a kinetic many particle

Fokker-Planck equation which will be studied in detail. This equation, re-scaled,

has the important property that it reaches local equilibration very fast, thus mak-

ing the study of the equation that corresponds to the Gibbs states more relevant

for small masses or larger time scales. This motivates us to discuss the speci�cs of

the macroscopic (hydrodynamic) limit and deduce a Smoluchowski type of equation

that describes the evolution of the particle cloud at a macroscopic level. Doing so,

we shall not ignore the importance of an independent study of the regularity of the

Fokker-Planck equation.
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1.1 From Particle Systems to a Kinetic Formulation

The starting point is a system of N identical, spherical particles of mass m

emersed in a �uid governed by Stokes �ow. The particles are assumed to be con-

�ned by an external potential �eld U(x). We shall make the assumption that the

particles are not allowed to slip in the �uid medium, and therefore consider the �uid

velocity constant on the surface of the particle and equal to the particle's velocity.

This assumption is consistent in the sense that it leads to a well-posed �uid/particle

mathematical model. Because of the linearity of the Stokes system and the condi-

tions on the boundary interface between �uid/particles, the hydrodynamic (�uid)

forces that particles experience depend linearly on the particle velocities and this de-

pendence is manifested with the use of a 3N ×3N friction tensor G(x). The friction

is a function of the con�guration of the center of particles. As mentioned already,

the equations of particle motion can be studied independently from the Stokes �ow.

The last major assumption that we make is to include a Brownian forcing term in

the equations of particle motion to account for the presence of random collisions of

small molecules in the �uid with the large particles.

To use mathematical language, the kinematic equations of particle motion are

described by the phase-space vector (x, v) ∈ R3N
x × R3N

v , where x describes the

position of the center of mass of the N spheres and v their velocities. The resulting
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system of 6N equations of motion is

dx

dt
= v,

m
dv

dt
= −G(x)v −∇U(x) +

√
2G1/2(x)

dW

dt
,

(1.1)

where W (t) is the standard Brownian vector in R3N .

Before we continue with the study of the system of equations, we shall describe

how the friction G(x) can be computed or at least approximated. Let us mention

for the time being that G(x) is the only part of the equations of motion where

information about the interaction of particles is contained. In fact the friction tensor

contains all the information for the interaction between spheres through the �uid,

making the equations of �uid motion obsolete. The case of a diagonal constant

friction G(x) = γI (for γ > 0) corresponds to particles that move freely in the

�uid without interacting with each other. It is a case of special interest because

it is a good approximation for dilute regimes of particles which will be described

in Chapter 2. The case of diagonal, non constant, friction G(x) = γ(x)I is also of

special interest, since it helps simplify calculations in the analysis.

Unfortunately, the exact computation of the friction would require solution

of the Stokes problem for every possible pro�le of particles in the �uid. We can

nonetheless approximate it by various techniques making the business of construct-

ing meaningful approximations an important topic on its own. We are going to

present the two approximations that are most prominent and the problems related

to them.

The �rst approximation encountered is the Stokeslet approximation. The

Stokeslet (Oseen tensor) is the Green's function to the Stokes problem associated
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with point particles that experience a singular force. This would actually be a good

�rst order approximation of the hydrodynamic mobility tensor (inverse of friction

tensor) if not for its failure to be nonnegative. Nonnegativity of G(x) is a property

essential for constructing meaningful energies for the particle system and thus fails

an important test.

The construction of a nonnegative tensor can be achieved via a variational

(energy) formulation, �rst developed in [65] & independently as a perturbation ex-

pansion in [73]. This approximation takes into account particle size and can be seen

as the second order (correction to Oseen tensor) term of an expansion with respect

to a parameter which is typical inter-particle distance over particle radius. A closer

study of the Rotne-Prager-Yamakawa tensor will reveal, that although the tensor is

nonnegative by construction, we cannot avoid degeneracy of G(x) for certain con-

�gurations. These con�gurations as we will examine in the case of a two particle

system happen when the particles coincide.

We now go back to the kinetic equations of motion and consider the problem

for unit mass (non-parametrized version). The evolution of the particle system

can be described statistically with the use of a probability density f(t, x, v). The

equation for f is the forward N -particle Fokker-Planck equation ∂tf+Lf = 0, where

L is the operator

Lf = v · ∇xf −∇U(x) · ∇vf −∇v · (G(x)(∇vf + vf)).

The Cauchy problem

∂tf + Lf = 0, f(0, x, v) = f0(x, v) (1.2)
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will be the object of study for a large part of this dissertation. The ideal is for initial

data f0 to lie in L
1(R3N,3N

x,v ). Unfortunately, for many results it will be required that

initial data belong to the less natural functional space L2
Meq

= MeqL
2(Meq dx dv),

where Meq(x, v) = e−U(x)e−
v2

2 /Z (with Z =
∫∫

e−U(x)e−
v2

2 dv dx) is the global sta-

tionary state solution.

Besides the motivation for the particle/�uid problem given in the beginning of

this introduction, equation (1.2) is interesting by itself as it relates to a wider class

of physical phenomena.

It is worth mentioning, for example, that it serves as a model case for the

Vlasov-Poisson-Fokker-Planck system described by the couple of equations

∂tf + v · ∇xf −∇U(t, x) · ∇vf = ∇v · (∇vf + vf),

△U(t, x) =

∫
f dv x, v ∈ Rd,

in higher dimensions d > 3. The theory of this system of equations is still in

relatively early stage, with results on well-posedness (see [5,9,13,69] . . . ), regularity

(see [5,6,13,62,70] . . . ), and hydrodynamic limit (see [24,25,61] . . . ), to name only

a few. Other mathematical problems with similar structure are the Vlasov-F-P

equation, the Vlasov-Navier-Stokes system (see e.g. [26,27]) etc.
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1.2 Macroscopic Limit

Hydrodynamic limits are extremely important in connecting between two dif-

ferent levels of description (a kinetic or in some cases microscopic and a macroscopic

one). Historically, this goes back to the work of Maxwell, Boltzmann and Hilbert

(famous sixth problem, Hilbert expansion etc) in the foundations of the kinetic the-

ory of gases. Typically, macroscopic variables and the conservation laws they obey

are far more helpful in describing observable quantities of a physical system than

the rapidly changing phase-space densities. This makes their study necessary not

just for theoretical but also experimental reasons.

Going back to the equations of particle dynamics with mass m (1.1), we want

to study the behavior of solutions of the new Cauchy problem as m → 0. We shall

�rst consider the parabolic scaling ϵ =
√
m, ϵv → v, x → x, which leads to the

parametrized FP equation

∂tfϵ + Lϵfϵ = 0, fϵ(0, x, v) = f0,ϵ(x, v), (1.3)

with

Lϵ =
1

ϵ
(v · ∇xfϵ −∇U(x) · ∇vfϵ)−

1

ϵ2
∇v · (G(x)(∇vfϵ + vfϵ)) .

De�ning the hydrodynamic density and �ux vector by

ρϵ =

∫
fϵ dv, Jϵ =

1

ϵ

∫
vfϵ dv

and taking the limit as ϵ → 0 we should at least formally obtain the system of
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equations

∂tρ+∇x · J = 0,

J = −G−1(x)(∇ρ+ ρ∇U(x)).

(1.4)

In the above system ρ, J are the limits of ρϵ and Jϵ with convergence understood

in some appropriate setting. At the same time, the formal limit for fϵ is fϵ →

ρ(t, x)M(v), where M(v) is the canonical Maxwellian M(v) = e−
v2

2 /(2π)n/2 (where

n = 3N). We give two results proving the rigorous limit based on di�erent a priori

estimates to the solutions of (1.3).

The �rst result establishes weak convergence for the hydrodynamic variable

ρϵ(t, x) based on weak compactness arguments. The proof is actually quite elemen-

tary and can be outlined here. We assume that operator Lϵ generates a continuous

semigroup and that a solution fϵ(t, x, v) to the equation (1.3), with initial data

fϵ(0, x, v), is fϵ(t, x, v) = e−tLϵfϵ(0, x, v). We shall also make the assumption of

�nite initial energy in L2
Meq

, i.e. ∥fϵ(0, x, v)∥L2
Meq

< C, ∀ϵ > 0, C > 0. Next,

we decompose fϵ(t, x, v) into a local equilibrium state M(v)ρϵ(t, x), and a deviation

M(v)g̃ϵ(t, x, v). With the help of the a priori estimate, we can extract convergent

subsequences for ρϵ(t, x), g̃ϵ(t, x, v) and
1
ϵ
G1/2(x)∇vg̃ϵ(t, x, v). By a simple applica-

tion of Arzela-Ascoli lemma, one can show that ρϵ is compact in C([0, T ],w−L2(Rn
x)),

for any T > 0. Next, we write an evolution equation for g̃ϵ (in distributional sense)

and pass to the limit in ϵ → 0. To do this, since we are dealing with a weak for-

mulation, one has to �nd the order in ϵ of each integral in the formulation and

ignore lower order terms in ϵ. The �nal step is to couple the limiting equation for g̃ϵ

with the limiting equation for ρϵ. This coupling results in the Smoluchowski limit

9



equation. The exact statement of the theorem is:

Theorem 1. Let ρϵ be the hydrodynamic density de�ned above, where fϵ is a mild-

weak solution of (1.3) with bounded initial energy ∥fϵ(0, ., .)∥L2
Meq

(Rn,n
x,v ) < ∞ (uni-

formly in ϵ). Assume that the divergence-free tensor G−1(x) is non-degenerate a.e.,

with G−1(x) ∈ L1
loc(Rn

x). In the limit ϵ→ 0,

ρϵ ⇀ ρ in C([0, T ],w− L2(dx)),

where ρ(t, x) satis�es the Smoluchowski equation

∂tρ = ∇x ·
(
G−1(x) (∇xρ+∇U(x)ρ)

)
in C([0, T ],D′(Rn

x)).

The second method was actually born after some fruitful discussions with

P-E Jabin [35], who indicated to me how relative entropy can be used to establish

hydrodynamic limits. His experience on this method is contained among other

sources in his own work, e.g. see [27].

Since the relative entropy functional H(f |g) =
∫∫

f log f
g
dv dx between two

probability densities f, g is a measure of the distance between them (see Csiszár-

Kullback-Pinsker inequality), by �nding lim
ϵ→0

H(fϵ|ρM) we can actually control the

square of the L1 distance between fϵ and ρM in the limit ϵ → 0. We can show

for our problem that the dissipation of H(fϵ|ρM) contains a non negative part and

residual terms. It will be our purpose to show rigorously that the residual terms

vanish as ϵ → 0, and this is exactly where we have to be speci�c on the regularity

required for the solutions fϵ(t, x, v) of (1.3). Once we show that in the limit the

relative entropy is strictly dissipative, it will be enough to consider initial data
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�prepared� in a way s.t. H(fϵ(0, ., .)|ρ(0, .)M) → 0 (as ϵ → 0) so that it is implied

that H(fϵ(t, ., .)|ρ(t, .)M) → 0 for t in some �nite interval [0, T ], for any T > 0.

We now give details on the requirements for the statement to be proven. The

�rst assumption is the existence of a unique stationary state Meq(x, v), and a poten-

tial U(x) that satis�es e−U(x) ∈ L1(Rn
x). The assumption on the potential alone, is in

fact enough, (as long as G(x) is non degenerate) to imply the existence of a unique

stationary state. We work with weak solutions to (1.3) in the sense given in [50],

which allows for irregular coe�cients that satisfy certain growth assumptions. The

computations involving the relative entropy are performed �rst at a formal level,

e.g. by assuming solutions that belong in Schwartz class with all derivatives vanish-

ing polynomially fast. We continue with a standard regularization argument that

approximates a solution fϵ with a molli�ed one fϵ,δ ∈ C∞. All the formal compu-

tations performed earlier will hold for fϵ,δ, with extra terms that will be shown to

vanish as δ → 0. In the limit δ → 0, H(fϵ|ρM) is non increasing. We then take

ϵ→ 0 and the result follows readily.

Under these assumptions we get theorem:

Theorem 2. Let fϵ(0, x, v) be initial data for the FP equation s.t. fϵ(0, x, v) ≥ 0

and

sup
ϵ>0

∫∫
fϵ(0, x, v)(1 + U(x) + |v|2 + log fϵ(0, x, v)) dv dx ≤ C <∞.

Let ρ(0, x) ∈ D′(Rn
x) be initial data to the limit equation that satis�es

∫
ρ(0, x) dx =

∫∫
fϵ(0, x, v) dv dx = 1.
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We �nally make the assumption for the initial data that

H(fϵ(0, x, v)|ρ(0, x)M) → 0 as ϵ→ 0.

Then, if we assume a solution ρ(t, x) ∈ C([0, T ],D′(Rn
x)) to the limit equation for

T > 0, we have

sup
0≤t≤T

H(fϵ(t, x, v)|ρ(t, x)M) → 0 as ϵ→ 0.

The two theorem presented above answer the question of relaxation of the hy-

drodynamic density ρϵ to a limiting density ρ, which follows the prescribed macro-

scopic equation. These two results are to the best of my knowledge novel and assume

weak solutions to equation (1.3).
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1.3 Regularity

In this Section, we mention some of the partial contributions which will be

presented in Chapter 4 related to the regularity of solutions, and review other known

results.

We limit ourselves to the study of two types of regularity estimates, namely

local and short time estimates. Much emphasis will be given to the second category.

A local regularity estimate can be obtained as a straightforward application

of Hörmander's hypoellipticity theory. The theory suggests an estimate of the type

∥u∥Hr ≤ C(∥Lu∥L2 + ∥u∥L2) for some r > 0,

as long as the operator L can be expressed in the form L = A∗A + B and the

operators A,B which are smooth di�erential operators generate all the directions of

di�erentiation (here x and v). Since this fact is rather established, we only review

the main ingredients of a proof presented by J.Kohn (see e.g. [29, 43]) which uses

the language of pseudo-di�erential operators.

The local regularity estimates can be extended with appropriate tools to reg-

ularity estimates that are valid on a short time interval, typically 0 ≤ t ≤ 1. The

main estimate for the Cauchy problem is

∥∇xh∥L2(µ) + ∥∇3
vh∥L2(µ) ≤

C

t3/2
∥h0∥L2(µ) 0 ≤ t ≤ 1,

for a measure µ having density the stationary state Meq(x, v), and h = f
Meq

.

A good motivation for starting the study of short time estimates is to �nd the

exact estimates for a quadratic potential. Here, we use a semi-explicit representation
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of the solution to the FP equation (given in [15]) that allows for a quadratic potential

plus a smooth perturbation of it (as long as the perturbation decays fast enough in

space). Based on estimates of this solution we present an exact short time estimate

for initial data in f0 ∈ L1(Rn,n
x,v ), i.e.

∥f∥Hk,l
x,v(Rn,n

x,v )
≤ C

tn+
3
2
k+ 1

2
l

0 < t < t0, for some t0 > 0.

Short time regularity estimates will be obtained with the help of two di�erent

approaches. The �rst approach is a method originally used by F. Hérau which is

quite elementary in nature. The method employs the use of the functional

E(t, h) :=

∫
h2 dµ+ at

∫
|∇vh|2 dµ+ 2bt2

∫
∇vh · ∇xh dµ+ ct3

∫
|∇xh|2 dµ,

that depends on three parameters a, b, c (in general aligned as 1 ≫ a ≫ b ≫ c),

which is proven to be dissipative for carefully selected values of those parameters,

when 0 ≤ t ≤ 1. It assumes a C2 potential U(x) and a smooth friction G(x) = γ(x)I

with γ(x) bounded by Λ0 > γ(x) > λ0 > 0. An important feature of this technique

is that it can be applied to the treatment of L logL(µ) initial data, and give short

time estimates for log-Sobolev type of norms. As will be explained in more detail,

the Hérau technique is quite similar to techniques used for proving hypocoercivity

of the operator L. This result is quite standard, and it will be reviewed in detail in

Sections 4.2.2 - 4.2.3.

A di�erent approach is provided by C.Villani and explained in detail in his

excellent monograph [71]. It is, generally speaking, stronger than the one presented

by Hérau but not quite as elementary. The objective of his approach is the construc-

tion of a system of di�erential inequalities that can be studied independently and
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provide the desired short time estimate. Although the Hérau method treats L2(µ)

& L logL(µ) data, the power of the Villani approach is that it can be used for the

treatment of L1 initial data in the case of constant friction γ > 0. The interesting

twist in this approach is that when we tried to implement it for a diagonal, non

constant, smooth friction γ(x) with bounds like above, we were only able to prove

the desired inequalities in L2(µ) for the quadratic potential (allowing L∞ perturba-

tions of it). An explanation of this restriction is based on the fact that a certain

type of Sobolev interpolation inequalities that are part of the di�erential system,

can only be proven �by hand� in �at and in the Gaussian measure. It is exactly for

this reason that the method itself leaves some very interesting extensions and open

problems. These results will be presented in Sections 4.2.4 - 4.2.6.

The exact Sobolev estimate for the quadratic potential with constant friction

γ > 0, appears to be new, at least as it is derived in the case with an added

perturbation. Although there is no doubt that the result for the purely quadratic

case is known for quite some time, our case is more interesting in that it rea�rms

the robustness of the estimate under a smooth enough perturbation. This result

can be found in Section 4.2.1. In the same spirit, Theorem 14, presented in Section

4.2.5 is another minor addition to theory.
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1.4 Outline

Chapter 2 gives a detailed description of the �uid/particle system. In Section

2.2 we provide an iterative technique of solving the Stokes' equations of motion which

converges under certain assumptions. A characterization of a regime of convergence

(dilute regime) is given in Section 2.2.2. Section 2.3 gives the most important

approximations of the friction/hydrodynamic tensors.

In chapter 3, we give a de�nition of a weak solution to the Cauchy problem.

We shall present a theory for L2 & L1 initial data. This theory is based on the

study of renormalized solutions by Di-Perna & Lions (see [17, 49, 50]), for solutions

of transport equations with irregular coe�cients. The existence of solution is a

straightforward consequence of the energy estimate, but some extra e�ort is required

for showing uniqueness.

Chapter 4 follows with a discussion of results on regularity. As we explained

already, two types of estimates are more common. Local estimates are given in

Section 4.1, with the presentation of Hörmander's theorem on hypoellipticity and

an exact estimate based on [32]. In Section 4.2 we list all the details of the results

mentioned in Section 1.3.

Chapter 5 follows with the study of convergence to the unique stationary state

solution. We review an elementary method (presented in detail in [71]) very close in

spirit to the Hérau regularization method, giving convergence in L2(µ) (Section 5.1).

A di�erent result following [15] is given in Section 5.2. An L1 result is presented in

Section 5.3. The chapter closes with a method that can be applied to a wider class
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of problems (not necessarily linear) following [20].

Finally, in Chapter 6, after a brief discussion of the formal derivation of the

hydrodynamic limit, we give the proof of the two results mentioned earlier.
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Chapter 2: Particle System

As a motivation of what follows, we begin with a presentation of the dynamics

of the particle system. The system at hand consists of Stokes' equations of �uid

motion for a medium and the kinematic equations of motion for a number of particles

embedded in the �uid. The �uid interacts with the particles through the boundary

conditions on the surface of the particles. Although the ensuing system cannot be

solved exactly, there is an iterative procedure that in some cases may be shown to

converge to the solution. Such an instance appears in the so called dilute regime

which we discuss brie�y.

Due to linearity of Stokes' problem, hydrodynamic forces acting on the parti-

cles depend linearly to the particle velocities. This dependence is encapsulated in the

form of the hydrodynamic frictionGij(x1, . . . , xN) tensor. The frictionGij(x1, . . . , xN)

measures the interaction (through the �uid) between two particles with centers at

points xi and xj. Naturally, we have a freedom of choice in constructing approxi-

mations of Gij or its inverse mobility tensor and we give the two most important

examples in literature. Of course, we should always keep in mind the very inter-

esting case of identity friction, which physically corresponds to particles that move

freely without interacting with each other.
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2.1 Particle Dynamics with Noise

A physical motivation for the occurrence of the Fokker-Planck equation that

is being studied here is provided in the realm of particle dynamics. The particle

system under study can be found e.g. in [36,37] etc. The inclusion of �white noise�

is one of the ways to maintain dissipative structure.

Consider N identical spherical particles, of uniform density, massm and radius

R, located in physical space R3. Let xi be the center of the i'th particle and Bi the

open ball with center xi and radius R. Si is the surface of the ball. The particles

are immersed in a slow, incompressible, Stokes �ow. All forces are assumed central

so the particles cannot rotate. The particle system (�uid + particles) obeys the

system of equations:

−η△u+∇p = 0 x ∈ R3 \
∪
i

B̄i, (2.1a)

∇ · u = 0 x ∈ R3 \
∪
i

B̄i, (2.1b)

u(x) = vi for x ∈ Si 1 ≤ i ≤ N, (2.1c)

u(x) → 0 as |x| → ∞, (2.1d)

σ(x) = −pI + η(∇u+∇uT ), (2.1e)

dxi
dt

= vi, (2.1f)

m
dvi
dt

= −
∫
Si

σ · ndS −∇xi
U(x). (2.1g)

In the above system, η is the �uid viscosity, u(x) a velocity vector in R3, and

p(x) the �uid pressure at a point x in space. We assume an external potential U(x)
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that is a function of the con�gurational vector x = (x1, x2, . . . , xN) ∈ R3N
x . Later

we will drop the boldface typeface and describe by x the con�gurational vector in

R3N
x (for now we use it to avoid confusion with the typical spatial variable in R3).

In (2.1c) & (2.1d) we consider two boundary conditions. (2.1d) is the condition

of a vanishing velocity �eld at in�nity and (2.1c) assumes that the velocity on the

surface of the i'th particle is the constant vector vi ∈ R3.

Forces that act on a surface in the �uid (hydrodynamic forces) are described

by the surface integral −
∫
Si
σ ·n dS of the viscous stress tensor σ(x). Finally, (2.1g)

is the equation of particle motion that states that the force on the particle has a

part caused by hydrodynamic interactions and one caused by the external potential

U(x).

Of central importance to our theory, is that linearity implies that the force the

i'th particle exerts on the �uid (Fi), can be written in the form

Fi =
N∑
j=1

Gijvj =

∫
Si

σ · n dS.

The tensor {Gij}Ni,j=1 is symmetric and non-negative in R3N
x ×R3N

x . The non-

negativity of the friction tensor follows from a study of the energy dissipation of the

particle system, since

N∑
i,j=1

vTi Gijvj = 2η

∫
R3\

∪
i Bi

e : e dx (2.2)

with e = 1
2
(∇u+∇uT ) (rate of strain tensor) is the energy dissipation of the particle

system.

Introducing a more compact vector/tensor notation, we set F = (F1, . . . , FN),

v = (v1, . . . , vN) for the R3N hydrodynamic force and velocity vectors. The friction
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inverse is the mobility tensor H = G(x)−1 that has been the object of study of

polymer dynamics for dilute sedimentations.

Naturally, the N particle system does not have an exact solution because of

the complexity of the boundary. The usual approach for treating hydrodynamical

interactions is to introduce an approximation for the friction or mobility tensors

that respects the following properties:

• It is valid for all con�gurations, admissible and non-admissible. By non-

admissible, we mean cases where particles overlap. Since we are dealing with a

kinetic formulation that doesn't account for collisions this is a very important prop-

erty to have. Of course, this also allows for a freedom in the choice of the friction

or mobility for non-admissible con�gurations.

• It is non-negative for all con�gurations. This property is consistent with

the non-negativity of the �exact� friction and mobility that guarantees dissipation

of energy for the system.

We are working under the assumption that the particles are located in a �ther-

mal bath�, modeled by a stochastic term. The dynamics of particles, after the

inclusion of Brownian motion, is described by the system of equations

dx

dt
= v, (2.3a)

m
dv

dt
= −Gv −∇U(x) +

√
2G1/2(x)

dW

dt
. (2.3b)

W (t) is a Brownian vector in R3N , and dW
dt

is the �white noise�. The derivative in

the Brownian vector is used only as a notational instrument, since the Brownian

measure is not di�erentiable in the classical sense. The statistics of the �white noise�
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is given by

E
(
dW (t)

dt

)
= 0, (2.4a)

E
(
dW (t)

dt

dW (t′)

dt′

)
= δ(t− t′), (2.4b)

where E here stands for the expectation w.r.t. to Brownian measure.
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2.2 Re�ections Method

Although, it is impossible to have an exact solution for the general N particle

Stokes problem for the domain D = R3\∪kBk, we can try an approximation process

using re�ections. The method is an iterative technique in which one solves the Stokes

problem in a simpler domain and makes a successive correction at each step. In our

case, we solve the problem for a single particle and correct the BCs on the surface

of particles in the next step.

2.2.1 Approximation Scheme

We introduce the formulation of the re�ections technique. Let Ui(x) be the

velocity on the surface of the i'th particle. Notice, that in general, we don't assume

a homogeneous velocity on particle surface.

The ensuing steps of the method are:

• 1-step: Solve for i = 1, . . . , N

η△u(1)i (x)−∇p(1)i (x) = 0,

∇ · u(1)i (x) = 0 in x ∈ R3 \Bi,

with B.Cs

u
(1)
i (x) = Ui(x) x ∈ Si.

We also de�ne u(1)(x) =
N∑
i=1

u
(1)
i (x) and p(1)(x) =

N∑
i=1

p
(1)
i (x).

• n-step: Solve for i = 1, . . . , N

η△u(n)i (x)−∇p(n)i (x) = 0
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∇ · u(n)i (x) = 0 in x ∈ R3 \Bi

with B.Cs

u
(n)
i (x) = −

∑
j ̸=i

u
(n−1)
j (x) x ∈ Si.

We �nally de�ne u(n)(x) = u(n−1)(x) +
N∑
i=1

u
(n)
i (x) and p(n)(x) = p(n−1)(x) +

N∑
i=1

p
(n)
i (x).

We have reserved subscript notation to denote particle number (i = 1, . . . , N),

and superscripts to denote the step number (n = 1, 2, . . .). We argue that (under

certain conditions which we will present) the limit of u(n)(x) solves the N particle

Stokes problem. The convergence of the re�ections technique depends on the relative

position of particles and holds in an appropriate space.

In order to prepare for the presentation of the convergence result, we borrow

the notation from Jabin & Otto, [36]. This formulation borrows from the language

of operators.

We describe the solution of the single-particle problem for the j'th particle

with the help of an operator Tj. Tj acts on a vector U de�ned on the surface of the

particle and maps it onto the solution of the Stokes' problem for the particle. The

operator will be called Stokes operator for the j'th particle, i.e.

Tj : L
∞
0 (Sj) → L∞(R3 \Bj)

U → TjU

,where L∞
0 is L∞ with U picked with an average normal component that is zero, i.e∫

Sj

U · n dS = 0.
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We also consider the family of operators {Aij}Ni,j=1, from L∞
0 (∪kBk) to

L∞
0 (∪kBk), with the property

AijU =


Tj(U |Sj

)|Si
i ̸= j

U i = j.

Using the language of operators, the re�ections technique is formalized by

• 1-step:

u(1)(x) =
N∑
i=1

Ti(Ui)

• n-step:

u(n)(x) = u(n−1)(x) +
N∑
i=1

u
(n)
i (x),

with

u
(n)
i (x) =

∑
j

Ti(I− A)nijUj.

The solution, if the technique converges, should be formally written as

u(x) =
∞∑
n=0

∑
i,j

Ti(I− A)nijUj,

or using formal Neumann expansion

u(x) =
∑
i,j

TiA
−1
ij Uj.

2.2.2 Dilute Regime & Convergence of Re�ections Technique

We are about to present a case where convergence of the re�ections method

holds. This case goes back to the work in [36] in which the dilute regime of particle

sedimentation is described. This regime is the one in which particles approximately

behave like free particles (with no interaction between them).
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The dilute regime is characterized by R . dmin and Λ . 1, where

dij = |xi − xj| & dmin = min
i ̸=j

dij.

The critical parameter Λ, is

Λ =
R

dmin

N
2
3

for a cloud of N identical spherical particles with radius R each.

We use the symbol ., for inequalities, instead of ≤, in order to suppress the

use and having to re-evaluate constants that do not depend on R,N & dmin. We

may now proceed to

Theorem 3. In the dilute regime the following estimates hold:

(i)

∥TjU∥Si
. R

dij
∥U∥Sj

for j ̸= i,

(ii)

∥AijU∥Si
. R

dij
∥U∥Sj

for j ̸= i,

(iii)

∥(I− A)nijU∥Si
≤


(CΛ)n−1 R

dij
∥U∥Sj

for j ̸= i

(CΛ)n−1 Λ
N
∥U∥Si

for i = j,

and some constant C > 0,

(iv)

∥A−1
ij U∥Si

. R

dij
∥U∥Sj

for j ̸= i,
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(v)

∥A−1
ii U∥Si

. ∥U∥Si

for ∥ · ∥Si
being the L∞ norm on Si .

If we also de�ne

GijU =

∫
Si

σ(TiA
−1
ij U) · n dS

for a constant vector U , then the following hold

(vi)

|Gii − 6πηRI| . η
R3N

1
3

d2min

,

(vii)

|Gij| . η
R2

dij
for j ̸= i,

where | · | is now the matrix norm induced by ∥ · ∥.

Proof. Care will be given in presenting the most important steps of the proof of the

statement. The proof is presented in many of the results in [36].

The statements (i) & (ii) are a straightforward result of the regularity of the

Stokes problem solution for a ball. As we show in appendix this is trivial for the

Stokes problem with constant B.Cs. The same regularity estimate holds for the

Stokes problem solution with inhomogeneous BCs as shown after more delicate

analysis.
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Statements (iv) & (v) are also an easy consequence of the estimate (iii). The

formal Neumann expansion for A−1 is

A−1
ij =

∞∑
n=0

(I− A)nij

So, with the help of (iii), for j ̸= i

∥A−1
ij U∥Si

.
∞∑
n=1

Λn−1 R

dij
∥U∥Si

. R

dij
∥U∥Si

.

For j = i, since

A−1
ii U = U +

∞∑
n=2

(I− A)niiU

we have the estimate

∥A−1
ii U − U∥Si

.
∞∑
n=2

Λn−1 Λ

N
∥U∥Si

. Λ2

N
∥U∥Si

which yields estimate (v).

Some extra e�ort is needed in establishing (iii). The argument is carried out

using induction. The inductions step uses the relation

(I− A)n+1
ij U =

∑
k

(I− A)ik(I− A)nkjU = −
∑
k ̸=i

Aik(I− A)nkjU.

Using (ii), the above relation yields

∥(I− A)n+1
ij U∥Si

.
∑
k ̸=i

R

dik
∥(I− A)nkjU∥Sk

.

The reason why the critical parameter Λ appears in the estimate (iii) has its

foundations in the inequalities

∑
j ̸=i

R

dij
. Λ &

∑
j ̸=i

(
R

dij

)2

. Λ2

N
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which can be proven with an application of a covering lemma (for the �rst one) and

some extra algebra for the second. The two for-mentioned inequalities are used in

the induction step. We omit the details of the induction step.

Using single particle solution for a constant vector U we have,

∫
Si

σ(TjU) · n dS = δij 6πηRU.

For non-constant vectors it can still be proved using the regularity of Stokes'

solution that ∫
Si

σ(TiU) · n dS . ηR∥U∥.

According to the de�nition of tensor Gij we also have

GiiU − 6πηRU =

∫
Si

σ(Ti(A
−1
ii − U)) · n dS.

The above yields,

∥GiiU − 6πηRU∥ . ηR∥A−1
ii U − U∥ . η

R3N1/3

d2min

∥U∥.

With similar arguments (vii) is established.
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2.3 Approximations of Friction & Mobility Tensors

2.3.1 Stokeslet Approximation & Oseen Tensor

We have asked the question of constructing a mobility or friction tensor with

the properties mentioned earlier. The �rst related construction will be based on a

simpli�ed particle model.

Assume a very viscous �ow in R3 and point particles localized at position xi

for i = 1, . . . , N . Let Fi be the hydrodynamic force acting on the i'th particle (no

other force is assumed to act on it). The �ow is once again a Stokes, incompressible,

with equation of motion adjusted to be

∇p(x)− η△u(x) = −
N∑
i=1

Fiδ(x− xi) x ∈ R3. (2.5)

The boundary condition at in�nity is the same as in the original problem, namely

u → 0 as |x| → ∞. See, for instance, [19]. The role that the Dirac delta function

plays is to localize forces, since we are dealing with point particles. For the sake of

mathematical rigor, we may view the delta function as a distribution, or might as

well consider the weak formulation of the problem.

The above problem is solvable, as one can see in [19] and with the help of the

superposition principle we �nd

u(x) =
N∑
i=1

H(x− xi)Fi, (2.6)

where the Green's function is the 3× 3 mobility tensor, given by

H(x) =
1

8πηs|x|

(
I +

x⊗ x

|x|2

)
.
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The tensor is divergence free

∇ ·H(x) = 0,

as one would expect due to the �uid incompressibility. It is positive de�nite, in the

sense that ξTHξ > 0 for ξ ∈ R3 \ {0}. This property is extremely important in the

theory for the mean �eld limit, when the number of particles N → ∞. Finally, it

exhibits asymptotic behavior

H(x) ∼ C

|x|
I for |x| ≫ 1.

The �rst mathematical di�culty appears in the fact that H is singular at

0. This prohibits us from assigning a value to the velocity of particles simply by

Vi = u(xi). Engineers go around this di�culty by assigning the value H(0) = 1
ζ
I.

Here ζ = 6πη is the friction that a single particle of radius 1 experiences in a viscous

environment.

We have solved one problem by de�ning H at 0 and we can now consider the

3N × 3N tensor {Hij}Ni,j=1 = H(xi − xj) for a given particle con�guration. It turns

out this tensor is not non-negative for all con�gurations. In fact, problems usually

arise for small distances between particles (by small here we mean compared to 1).

The name that this tensor carries is Oseen tensor. The �ow studied above is known

as Stokeslet �ow. We will see how we can get around the inconvenience of a non

positive hydrodynamic tensor.
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2.3.2 Rotne-Prager-Yamakawa Tensor

In this section, we follow the idea found in [65] for the approximation of the

friction tensor based on the variational formulation of the Stokes problem ((2.1a)-

(2.1d)). The same approximation has been reproduced in [73] with the use of a

di�erent method. The variational technique states that the energy dissipation, seen

as the integral in (2.2), is minimized for the solution of the problem.

By picking a trial velocity �eld uap, we calculate an approximation Gap
ij with

the property that Gap
ij ≥ Gij. This not only guarantees the positivity of Gap

ij , but

also that this approximation is bounded below by Gij. Brie�y, the choice of the

approximate uap will be the superposition of the solution to the Stokes problem for

each individual sphere. This might appear a crude approximation but for particles

that are well separated it is satisfactory. Thus, uap(x) =
∑N

i=1 ui(x), where

ui(x) =

(
3

4

R

|x− xi|
+

1

4

R3

|x− xi|3

)
vi

+

(
3

4

R

|x− xi|
− 3

4

R3

|x− xi|3

)
(x− xi)⊗ (x− xi)

|x− xi|2
vi

is the outer solution (|x− xi| ≥ R) of the one particle Stokes problem.

To simplify the computation of the integral that appears in (2.2), we extend

the integration from R3 \ Bi to R3. Doing this we can only add to the value of the

integral (since the integrand term is non negative), so Gap
ij ≥ Gij is reinforced. For

this we make the extra assumption that the inner solution for one particle is 0.

The actual computation will give the following expressions for the approxima-

tion of the friction tensor:
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The approximate friction has diagonal elements

Gii = 6πηRI.

The non-diagonal elements are

Gij =
9

2
πη

R2

|xij|

[(
I +

xij ⊗ xij
|xij|2

)
+

2R2

|xij|2

(
1

3
I− xij ⊗ xij

|xij|2

)]
for |xij| ≥ 2R, and

Gij = 6πηR
[(

1− 9

32

|xij|
R

)
I +

3

32

xij ⊗ xij
R|xij|

]
for |xij| ≤ 2R.

The task of �nding eigenvalues for each con�guration of the RPY friction in

the N particle system requires the solution of an algebraic equation of order 3N . It

is therefore more natural to obtain bounds for the eigenvalues. For the 2-particle

system, when the radius is R and the centers of the particles are distanced by

|d| = |x12|, the exact eigenvalues are:

For |d| ≥ 2R

λ1,2 = 6πηR± 36πηR2

|d|

(
1

4
− 1

6

R2

|d|2

)
λ3,4 = 6πηR± 36πηR2

|d|

(
1

8
+

1

12

R2

|d|2

)
,

and for |d| ≤ 2R

λ1,2 = 6πηR± 36πηR

(
1

6
− 1

32

|d|
R

)
λ3,4 = 6πηR± 36πηR

(
1

6
− 3

64

|d|
R

)
.
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Each of λ1,2 is simple, whereas λ3,4 are both double. The minimum eigenvalue

for overlapping spheres (|d| ≤ 2R) is λmin ≥ 9
8
πη|d| and for non- overlapping (|d| ≥

2R), λmin ≥ 9
4
πηR.

Introducing the friction tensor G(x) for the particle con�guration

x = (x1, x2, . . . , xN), it is evident that the RPY approximation satis�es

λmin(x)I ≤ G(x) ≤ λmaxI,

in the sense of non-negative forms. For two particles we have just shown that

λmin(x1, x2) ∼ |x1 − x2|.

Finally, we shall mention the interesting case of a particle system in the absence

of hydrodynamic interactions. In such a regime, particles move like �free particles�

in the medium and a coarse approximation can be made by assuming G(x) = 6πηRI.
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Chapter 3: Well-Posedness of the Fokker-Planck Equation

In this chapter we present the Cauchy problem ∂tf+Lf = 0, f |t=0 = f0 (FP

equation + initial data) describing the statistical evolution of the particle system

discussed in the previous section. For this and the next two chapters the focus

is directed in giving results on existence (uniqueness), regularity and large time

asymptotics for the non scaled operator L that corresponds to particles with constant

mass.

In particular, we discuss how the FP equation arises in a simple application

of Itô's formula and give formulations of the equation that are equivalent and are

appropriate for a study in di�erent functional settings. The writing of operator L as

the sum of a transport term T, and a collision term C is followed by a brief study of

the properties of these operators as well as of the semi-group
(
e−tL

)
t≥0

. The main

question answered in this section is the existence of a unique! distributional solution

under the assumption of initial data in L2 or even better in L1. The theory for this is

well established for quite irregular friction G(x), and potential U(x) (see [17,49,50])

and is given for completeness.
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3.1 Cauchy Problem

The objective from this point forward is to pass from the particle dynamics

system to a kinetic level of description. Consider the random vector X = (x, v) ∈

R3N,3N
x,v , that follows the motion described by the stochastic di�erential system (2.3a)-

(2.3b). The statistics of motion at time t is characterized by the probability density

function (p.d.f.) f(t, x, v). This function describes the probability of �nding the

random vector X̃ = (x̃, ṽ) between the states X and X + dX, for an in�nitesimal

phase space vector dX, i.e.

f(t, x, v)dx = P({ω ∈ Ω|X ≤ X̃(ω) ≤ X + dX})

in an appropriate probability space (Ω,F,P).

Consider the semigroup Pt, de�ned by

Ptψ(x) = E(ψ(Xt)|X0 = X)

and acting on bounded measurable functions ψ : R6N → R. Let L be the generator

of the semi-group (L = d
dt

∣∣∣
t=0
Pt) and L∗ its adjoint in L2. L can be found for our

system with the help of Itô's formula (or Feynmann-Kac formula for the matter),

so that we arrive to the Backward-Kolmogorov equation of �observables� ∂tPtψ =

LPtψ. Then, the density f(t, x, v) satis�es the forward Fokker-Planck (Kolmogorov)

equation ∂tf = L∗f , i.e.

∂tf +∇x · (vf)−
1

m
∇v · ((G(x)v +∇U(x))f) =

1

m2
∇v · (G(x)∇vf) .

In order to study the di�usion limit of the above, one needs to introduce

the appropriate scaling to separate conservative and dissipative terms. The scaling
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procedure is described with more detail in [14] and follows the change of variables,

m = ϵ2, v′ = ϵv, x′ = x.

The above change of variables leads to the following equation (after we re-

introduce the notation for x, v in the place of x′, v′)

∂tfϵ +
1

ϵ
T(fϵ) =

1

ϵ2
C(fϵ), (3.1)

where

T(f) = v · ∇xf −∇U(x) · ∇vf

is the sum of an advective/transport term v · ∇xf , and a con�nement F (x) · ∇vf

for F (x) = −∇xU(x). For simplicity, we call operator T the transport operator.

The term

C(f) = ∇v · (G(x) (∇vf + vf)) ,

on the other hand, is the dissipative (or collision) part of the equation.

The scaling we have chosen is the only one that provides separation of scales

for the collision and the transport terms. The limit ϵ→ 0 corresponds to small mass

limit. In the �rst part of our study (in what relates to questions of well-posedness,

regularity and asymptotics) we will focus in the non parametrized version of the

equation, with m = ϵ = 1. This equation can be presented in the form of the

Cauchy problem

∂tf + Lf = 0, f
∣∣
t=0

= f0(x, v), (3.2)

with L = T−C an operator which from now on will be called Fokker-Planck operator.
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Remark 1. As a side remark on the history on the equation (3.2), it should be

noted that Adriaan Fokker [22] and Max Planck [60], were the �rst to derive a

PDE for a stochastic equation with noise in other than spatial variables (with the

exception of Lord Rayleigh in 1891). Fokker obtained a stationary equation for

a probability density W (q, t), with q being the angular momentum of a dipole in

an environment with �uctuations. Planck derived the non-stationary equation on

his own, few years later. The �rst instance of an equation with exactly the same

structure (density f(t, x, v), di�usion only in velocities), appeared originally in [42]

in the work of Oskar Klein . Later, Hans Kramers derived the same equation in

[46]. Thus, a more accurate name for (3.2) could be Klein-Kramers (or even Klein-

Kramers-Chandrasekhar according to others). For the above information and much

more see [21]. For an earlier account see [10].

To give some perspective, the fundamental solution to the 1-d (for x, v) case

with constant friction γ > 0 and initial conditions f(0, x, v) = δ(x0, v0) for the

equation

∂tf + v∂xf = γ∂2vf (n = 1),

is known for quite some time (see e.g [44,45]) and is given by

f(t, x, v) =
2
√
3

πγ2t2
exp

(
−|v − v0|2

4γt
− 3

|x− x0 − 1
2
(v + v0)t|2

γt3

)
(see appendix for more details and other solvable cases).

We can use the fundamental solution to extract various regularity estimates,

but we would rather focus on regularity results for cases where an explicit solution

cannot be obtained. An explicit solution can in general be obtained for a quadratic
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potential U(x) = x2 with constant di�usion. The regularity question will be studied

in detail later.

The general structure of a FP equation in phase space is

∂tf + divx,v(bf) = divx,v(σσ
T∇x,vf),

with b(x, v) ∈ R6N being a vector �eld, and σ(x, v) ≥ 0 a possibly degenerate

matrix in R6N×6N . In our case, di�usion acts only upon the velocity variable and

the ellipticity condition

ξTσ(x, v)ξ ≥ λ|ξ|2 for some λ > 0, ∀ξ ∈ R6N

fails trivially even for uniformly positive G(x). More speci�cally, the failure of

ellipticity won't be a problem for the existence of a unique weak solution. A weak

solution can be constructed, for quite irregular coe�cients b and σ, in the realm of

the theory of renormalized solutions �rst presented in [17].

On the other hand the failure of ellipticity poses some technical issues in the

study of regularity and relaxation to a unique global equilibrium state. The interplay

between the transport and collision terms will in fact be responsible for regulariza-

tion in the missing x direction. This phenomenon has been studied thoroughly by

tools of hypoellipticity theory.

A similar problem will arise in the study of convergence to a global equilibrium

state. In terms of the long time (asymptotic) behavior, the collision operator acts

only in the velocity variable and tends to draw the system in the so called local

equilibria states which are Maxwellians. The transport term on the other hand is
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the reason that a solution is drawn away from each local equilibrium and driven

towards a unique, global equilibrium state Meq(x, v), where

Meq(x, v) = e−U(x) e−
|v|2
2

(2π)3N/2

for our problem. The potential U(x) is normalized so that
∫
e−U(x) dx = 1. This

problem will be solved by constructing a norm for which L becomes coercive.

A di�erent formalism for the (3.2) problem is presented by considering the

equation for h = f
Meq

. The equation for h can now be written as ∂th + Lh = 0, for

the operator

Lh = v · ∇xh−∇U(x) · ∇vh−∇v · (G(x)∇vh) + v ·G(x)∇vh,

and h is now normalized by
∫∫

h0Meq dv dx = 1.

A second commonly used conjugated formulation of the equation is by consid-

ering the equation for h = f

M
1/2
eq

. The FP operator L now becomes

Lh = v · ∇xh−∇U(x) · ∇vh+G1/2
(
−∇v +

v

2

)
·G1/2

(
∇v +

v

2

)
h,

and the normalization for h now becomes
∫∫

h0M
1/2
eq dv dx = 1.

The signi�cance of the two conjugated versions of the Cauchy problem becomes

apparent when each one is attached to an appropriate functional setting. This

setting is the �weighted� L2, i.e. L2(µ) (with µ being the stationary measure of L)

for the �rst one, and the �at L2 space for the second. L can now, in both cases,

be written as L = A∗A + B, with B being the anti-symmetric transport term T

and A∗A the self-adjoint di�usion operator C. The adjoint of an operator will be

understood in the corresponding functional space.
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3.2 Properties of the Operators C, L and the Semigroup (e−tL)t≥0

We shall review some of the important properties of operators C, L and

(e−tL)t≥0. To simplify things, especially for the reason of having an operator L

with a unique stationary measure, we assume a non degenerate matrix G(x).

For a full matrix G(x), the null space of C is

N(C) = {f(x, v)|∃ϕ(x) s.t f(x, v) = ϕ(x)M(v)},

which consists of the local equilibria states spanned by the standard Maxwellian in

velocity space M(v) = e−
|v|2
2

(2π)
3N
2
.

The null space of L is contained in the intersection of the null spaces of T, C.

The following proposition sheds light on the nature of stationary states for L.

Proposition 1. Assume a potential U(x) ∈ C1(R3N
x ), with e−U(x) ∈ L1(R3N

x ). Then,

there exists a unique stationary state for equation ∂tf + Lf = 0, characterized by

the Maxwell-Boltzmann distribution

Meq(x, v) =
e−E(x,v)

Z
,

with E(x, v) = 1
2
|v|2 + U(x) the Hamiltonian of the system. Z is the partition

function Z = (2π)3N/2
∫
e−U(x) dx.

This observation motivates for a treatment that is customized for the Hilbert

space H = L2(µ) setting, with dµ = Meq(x, v)dvdx. Operators can now be consid-

ered as acting from H to H. In this setting, the collision operator C is symmetric

with C = A∗A for A = G1/2(x)∇v. With a bit of more work it can be shown that
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C is in fact self-adjoint, see e.g. [24, 63]. The transport term T is antisymmetric

(T∗ = −T).

The domain of C is de�ned by

D(C) = {h ∈ L2(µ)|(−∇v + v) ·G(x)∇vh ∈ L2(µ)}.

At the same time, the range of C is characterized by

R(C) = {h ∈ L2(µ)|
∫
h dµ = 0}.

Operator L generates the continuous semigroup e−tL. Since L can be written in

the form A∗A+B with B being antisymmetric, the semigroup e−tL is non expansive

in H as a result. Indeed, let h = e−tLh0

1

2

d

dt
⟨h, h⟩ = ⟨Lh, h⟩ = ⟨(A∗A+B)h, h⟩

= −⟨Ah,Ah⟩ = −∥Ah∥ ≤ 0

Thus, ∥h∥ ≤ ∥h0∥ implying ∥e−tL∥L2(µ) ≤ 1. This property, for instance, allows for

short time estimates with L2(µ) data to be essentially global in time estimates.
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3.3 Well-Posedness

3.3.1 A priori Energy & Weak Formulation

In this section we give a weak formulation for the FP equation and an existence

theory that is based on the notion of renormalized solutions (for kinetic equations

with irregular coe�cients) as �rst presented in [17].

The original work was initiated for proving existence of renormalized solutions

to transport equations i.e.

∂tu+ b(x) · ∇xu = 0 (3.3)

for a vector �eld b(x) ∈ Rn. For this equation it is a trivial task to formally obtain

an energy functional in Lp (for p <∞) provided that

∇ · b(x) ∈ L1(0, T ;L∞(Rn)) for p ≥ 1.

Consider a function β ∈ C1(R) with β′ ∈ L∞ and multiply the (3.3) by β′(u).

This yields the equation

∂tβ(u) + b · ∇xβ(u) = 0

which if it admits a weak solution for every choice of β then this solution constitutes a

so called renormalized solution. This is a step forward the already classical approach

to distributional solutions because the existence of a renormalized solution in fact

implies uniqueness of a distributional solution by a simple energy argument.

To study the Lp theory all one needs to do is multiply (3.3) by β′(u) = up−1.
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After integration by parts one gets

∥u(t)∥p ≤ eCT∥u(0)∥p a.e. in (0, T ] for C > 0.

The energy inequality can be proven not just formally but also rigorously here. The

inequality is enough to give weak compactness and assert the existence of a weak

solution. Uniqueness is the di�cult part of our theory and will be given in detail

for our problem. We need a regularization type of argument to address uniqueness

and this will require some extra conditions on the coe�cients.

Going back to our example, in [49] & [50] there is an extension of the DiPerna-

Lions theory to the FP equation of the type

∂tf +∇x · (bf) +
1

2
∇x · (σσT∇xf) = 0

for a general, possibly degenerate, matrix σ(x) ∈ Rn×n and b(x) ∈ Rn. We will

prove the theorem for our equation but �rst give the details of the formulation.

There exists a variety of a priori energies we can pick for (3.1). As noted

already, we will work on the L2
Meq

framework. After multiplying the equation by

hMeq and integrating �rst in phase space and then in time we get,

1

2

∫
h2(t, x, v) dµ+

∫ t

0

∫
|G1/2(x)∇vh(s, x, v)|2 dµ ds =

1

2

∫
h2(0, x, v) dµ.

Under the additional assumption G(x) ≥ λI, λ > 0, the energy estimate is

1

2

∫
h2(t, x, v) dµ+ λ

∫ t

0

∫
|∇vh(s, x, v)|2 dµ ds ≤

1

2

∫
h2(0, x, v) dµ

which gives at least some hint of extra regularity.
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So, if f0 ∈ L2
Meq

then the solution f(t, x, v) will remain in L2
Meq

. At the same

time the maximum principle implies that bounded initial data will remain bounded.

Therefore, we seek to construct solutions for initial data f0 ∈ L2
Meq

∩ L∞(R6N
x,v).

We are ready to proceed in the weak formulation to (3.1) with initial data

h(0, x, v) in L2
Meq

∩ L∞(R6N
x,v). We characterize h as a weak solution to (3.1), if

−
∫ T

0

∫
h∂tϕ dµ dt−

∫
h(0, ·)ϕ(0, ·) dµ+

∫ T

0

∫
h∇U(x) · ∇vϕ dµ dt

−
∫ T

0

∫
hv · ∇xϕ dµ dt+

∫ T

0

∫
∇vh ·G(x)∇vϕ dµ dt = 0

for any smooth ϕ, compactly supported in [0, T )× R6N
x,v . The weak formulation for

(3.2) is similar.

The following theorem can be proven.

Theorem 4. Assume that the potential U(x) and di�usion matrix G1/2(x) satisfy

the following assumptions:

(i) G(x)v +∇U(x) ∈ (W 1,1
loc )

3N (ii) tr(G) ∈ L∞

(iii)
G(x)v +∇U(x)

1 + |x|+ |v|
∈ (L∞)3N

(iv) G1/2(x) ∈ (W 1,2
loc )

3N×3N (v)
G1/2(x)

1 + |x|
∈ (L∞)3N×3N .

Given initial data f0 ∈ L2
Meq

∩L∞ there exists a unique weak solution f to (3.1) s.t.

f ∈ L∞([0, T ], L2
Meq

∩ L∞)

satisfying the additional condition G(x)1/2∇vf ∈ (L2
Meq

([0, T ], L2
Meq

))3N .

Remark 2. tr(G) is the trace of tensor G(x). The above assumptions are pretty

general in their nature and in many cases they become obsolete, e.g. for bounded
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G(x) (ii) and (v) become trivial. Furthermore, for smooth U(x), G(x) with the

appropriate growth at in�nity conditions they are all super�cial. Assumption (ii)

is needed for a general Lp theory (including L2) but not for L2
Meq

. It is also worth

mentioning that all the conditions are actually used for the uniqueness result since

showing existence is the �easy� part and requires only bounded initial data.

For instance, let us for a moment consider the special case of constant di�usion

(G(x) = I). One may typically assume a C1 potential U(x) that grows su�ciently

fast at in�nity. The initial data will be L1, although the following result also applies

for measure initial data. It can be shown,

Theorem 5. Assume a potential U(x) ∈ C1(R3N
x ) with a uniformly bounded Hessian

|∇2U(x)| ≤ C for C > 0. Then the Cauchy problem

∂tf + Lf = 0 f(0, ·, ·) = f0 ∈ L1(R3N
x × R3N

v )

admits a unique solution f(t, x, v) ∈ C(R+,D
′(R3N

x × R3N
v )) that satis�es the addi-

tional

f ∈ L∞
loc(R+, L

1(R3N
x × R3N

v )) ∩ L2
loc(R+, H

1
v (R3N

x × R3N
v )).

Proof. The proof is very similar in philosophy to the one that will be presented

shortly for the general case.

We take a note for later that the regularity in this case is similar to the one

achieved for full rank (uniformly positive) di�usion matrices as we will show.

For now let us present the proof.
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Proof. For the sake of a complete presentation we give the steps of the proof in

the spirit of [50]. Since regularization plays a central role, we begin by de�ning a

molli�cation kernel

i.e. ρδ(x, v) =
1

δ6N
ρ
(x
δ

)
ρ
(v
δ

)
where ρ is a smooth compactly supported (ρ ∈ D(Rn)), normalized (

∫
ρ dx = 1),

nonnegative function (ρ ≥ 0).

The existence part is the easiest. One assumes existence for smooth U(x),

G(x) holds and regularizes potential and di�usion matrix by Uδ = ρδ ⋆ U, G
1/2
δ =

ρδ ⋆ G
1/2. Then, equation

∂tf + v · ∇xf −∇Uδ(x) · ∇vf = ∇v · (Gδ(x)(∇vf + vf))

has a solution fδ that depends on δ > 0. Using the energy estimate, provided that

tr(G) ∈ L∞, we can extract a subsequence of fδ and pass to the limit (since we have

convergence in L∞(0, T ;L2(R6N
x,v))) to obtain a solution in the weak sense.

The uniqueness is proven by showing short- in-time stability of the solution.

Stability implies that a zero initial condition remains zero. Thus we need to establish

an estimate of the form,

∥f∥L2 ≤ KeCt∥f0∥L2 .

There are two main technical di�culties in proving the stability estimate. The

�rst to be overcome is the need to do computations beyond the formal level. To

do this, we regularize the equation by convoluting with ρδ, so that we obtain an

equation for fδ = ρδ ⋆ f . This yields the regularized Fokker-Planck equation

∂tfδ+v ·∇xfδ−∇U(x) ·∇vfδ−∇v · (G(x)(∇vfδ + vfδ)) = Uδ+∇v · (G1/2Rδ), (3.4)
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for

Uδ = −[ρδ, v · ∇x − (∇U(x) +Gv) · ∇v](f) + [ρδ, tr(G)](f)

+ [ρδ, G
1/2∇v](G

1/2∇vf)

and Rδ = [ρδ, G
1/2∇v](f).

The commutator [ρδ, c(x) · ∇] between a molli�cation function ρδ and a derivation

is de�ned by

[ρδ, c(x) · ∇] = ρδ ⋆ (c · ∇f)− c · ∇(ρδ ⋆ f)

where c(x) is a vector �eld. It can actually be proven that in the limit δ → 0,

Uδ → 0 in L∞ + L2([0, T ], L1
loc)

Rδ → 0 in L∞([0, T ], L2
loc)

if the following conditions

Gv +∇U(x) ∈ (W 1,1
loc )

3N , tr(G) ∈ L∞, G1/2 ∈ (W 1,2
loc )

3N×3N

hold.

The second �x in the proof is based on the fact that it is much simpli�ed

in bounded regions. The trick here is to consider a cut-o� function ϕR(x, v) =

ϕ
(
x
R

)
ϕ
(
v
R

)
, where ϕ is a smooth function s.t. ϕ = 1 in the ball of radius 1 and

vanishes outside the ball of radius 2. If we multiply (3.4) by fδϕR and integrate in

R6N
x,v , we get
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d

dt

∫
f 2
δ

2
ϕR − 1

2

∫
f 2
δ tr(G)ϕR +

∫
|G1/2∇vfδ|2ϕR

=
1

2

∫
f 2
δ (v · ∇xϕR − (Gv +∇U(x)) · ∇vϕR)−

∫
fδG

1/2∇vfδ ·G1/2∇vϕR

+

∫
UδfδϕR −

∫
(G1/2∇vfδ) ·RδϕR −

∫
fδ(G

1/2∇vϕR) ·Rδ.

The idea is to bound all the terms in r.h.s and send R → ∞ uniformly in δ

and see what terms vanish. The �rst two terms are

∣∣∣ ∫ f 2
δ (v ·∇xϕR− (Gv+∇U) ·∇vϕR)

∣∣∣ ≤ C
∣∣∣∣∣∣G(x)v +∇U(x)

1 + |x|+ |v|

∣∣∣∣∣∣
L∞

∥∇ϕ∥L∞

∫
|x|,|v|≥R

f 2
δ

and

∣∣∣ ∫ fδG
1/2∇vfδ ·G1/2∇vϕR

∣∣∣ ≤ C
∣∣∣∣∣∣G(x)1/2
1 + |x|

∣∣∣∣∣∣
L∞

∥∇ϕ∥L∞

∫
|x|,|v|≥R

|fδ||G1/2∇vfδ|.

If assumptions (iii) & (v) are satis�ed, then it can be shown that when R → ∞

the two integrals above go to zero ∀δ ≤ 1 (as well as L1 in time). The other integrals

can be bounded in similar manner. So, for any η > 0, we can �nd large enough

radius R > 0 s.t. uniformly in δ > 0 the following holds∫
f 2

2
ϕR ≤ η + C

∫ t

0

∫
f 2ϕR.

Taking R → ∞ proves the stability estimate.

3.3.2 Propagation of L1 Initial Data

A more natural assumption for the choice of initial data is to be L1 (for conve-

nience we consider L1∩L∞). The study of a general Lp theory is possible. First, we
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consider a regular function β of one variable and we multiply (3.2) by β′(f). After

integration in the x, v variables we obtain:

d

dt

∫
β(f)−

∫
(fβ′(f)− β(f))tr(G) +

∫
β′′(f)|G(x)1/2∇vf |2 = 0.

Consider a sequence of convex, regular functions βn that converge to the ab-

solute value. Given the fact that G(x) is bounded it is implied that

d

dt

∫
|f | ≤ C

∫
|f | =⇒ ∥f(t)∥L1 ≤ eCT∥f0∥L1

Thus, a unique weak solution for initial data L1 ∩ L∞ exists under the same

conditions of previous theorem. The solution is now modi�ed to belong in the space

f ∈ L∞([0, T ], L1 ∩ L∞), G(x)1/2∇vf ∈ (L1([0, T ], L1))3N .
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Chapter 4: Regularity

The question of Sobolev regularity is undertaken in this section. Due to the

nice structure of the Fokker-Planck operator, one can anticipate regularization prop-

erties under certain plausible assumptions on the coe�cients of L, despite the fact

that L is a hypoelliptic operator (di�usive only in velocity). There are two types of

regularity results treated here. Local (instantaneous) results, and short time regu-

larity estimates. Estimates of the latter type are stronger and being coupled with

the non expansivity of the semigroup e−tL imply global regularization.

Starting with local results, we discuss only the basics of the language of pseudo-

di�erential operators, stating Hörmander's theorem for operators of the type
p∑

i=0

X2
i +

X0 and Kohn's method of proof for this result. We shall also present an explicit

local estimate for the problem with constant friction γ > 0.

We begin with exact estimates for the solution to the equation with a quadratic

potential, based on the representation of the solution found in [15]. Next, we in-

troduce certain entropies E(t, f) that imply immediate short time estimates, an

idea �rst presented in [31]. We can apply this method for initial data in L2(µ)

and LlogL(µ), where µ is the unique stationary measure. C Villani in [71] gives

a method of regularization which builds upon a system of di�erential inequalities.
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This method gives regularity for unbounded initial data as one expects from prob-

lems of the kind. Here we apply the method for the slightly more general case of a

di�usion G(x) = γ(x)I. Finally, we present a result of regularization from L1 data.
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4.1 Local Regularity

4.1.1 Pseudodi�erential Operators

The following is the statement of the Hörmander theorem valid for operators

of type

L =

p∑
j=1

X2
j +X0. (4.1)

This form has been traditionally called Hörmander form of a second order di�erential

operator.

Remark 3. The Hörmander theorem is also valid for operators of the type L =

p∑
j=1

X2
j and L =

p∑
j=1

X∗
jXj +X0. The latter is treated by view of the observation that

X∗
j = −Xj + cj for cj ∈ C∞, with the adjoint being understood in the Hilbert setting

H = L2(Rn).

Here, the operators X0, X1, . . . , Xp are derivations (vector �elds). Derivations

are �rst order di�erential operators with C∞ coe�cients, i.e. Xi = ai(x) · ∇ etc.

Before we present Hörmander's theorem, we shall de�ne commutators of the deriva-

tions using induction and Lie bracket notation,

Xij = [Xi, Xj] = XiXj −XjXi

. . .

Xi1i2...iα = [Xi1 , [Xi2 , . . . , [xiα−1 , Xiα ] . . . ]].

Theorem 6. For the operator L, mentioned in (4.1), we say that X0, X1, . . . , Xp

satisfy the Hörmander condition at a point x0 ∈ Ω i� there exists some r(x0) ∈ N
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s.t the vector space generated by Xi1i2...iα at x0 for |α| ≤ r(x0) − 1 spans the whole

tangent space. If the Hörmander condition is satis�ed for all points in Ω (open set),

it can be proven that

∥u∥1/r ≤ C(∥Lu∥20 + ∥u∥20),

for some r > 0 and ∥u∥s the typical Hs norm.

In [29] there is a proof of the above inequality based in an approach by J.J

Kohn [43]. The proof by Kohn does not give the optimal exponent for 1/r in

Hörmander's estimate, which is 1/3, but rather the exponent 1/4. For this proof,

one needs to introduce the basics of the language of pseudo-di�erential operators.

The starting point is the introduction of the notion of a symbol. A symbol

p(x, ξ) of order m (real), is a function p : R2n � (x, ξ) → R that can be expanded in

homogeneous terms w.r.t. the ξ variable

p(x, ξ) ∼
∑
j

pm−j(x, ξ),

with pn(x, ξ) satisfying

pn(x, λξ) = λnpn(x, ξ) for |ξ| ≥ 1.

The operator P that corresponds to the above symbol

P (p)u(x) =
1

(2π)n

∫
eix·ξp(x, ξ)û(ξ)dξ,

is called a pseudo-di�erential operator of order m.

A more convenient characterisation of the symbol class Sm for symbols of order

m is the following. A symbol p(x, ξ) ∈ Sm with m ∈ R if

|∂αx∂
β
ξ p(x, ξ)| ≤ Cα,β⟨ξ⟩m−|β| ∀α, β ∈ N ∩ {0},
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where ⟨ξ⟩ stands for the �japanese bracket� symbol ⟨ξ⟩ = (1 + |ξ|2)1/2.

Pseudo-di�erential operators are generalizations of di�erential operators. They

form an algebra in the sense that a composition of two pseudo-di�erential operators

of order m1 and m2 is a pseudo-di�erential operator of order m1 + m2. Notice

that the symbol of the composition is NOT the product of the two symbols of the

operators! More detailed, if p1 ∈ Sm1 and p2 ∈ Sm2 , then

P (p1)P (p2) = P (p1p2) + P (p3)

where p3 ∈ Sm1+m2−1. This implies that the commutation [P (p1), P (p2)] is an

operator with symbol in Sm1+m2−1. This observation lies in the heart of any proof

of Hörmander's theorem that uses pseudo-di�erential calculus.

The adjoint (in L2) of a pseudo-di�erential operator of order m, is a pseudo-

di�erential operator of the same order, i.e. if p ∈ Sm

P (p)∗ = P (p) + P (q) with q ∈ Sm−1.

Pseudo-di�erential operators of order 0 form an algebra of bounded operators

in L2(Rn), i.e.

∥P (p)∥ ≤ C if p ∈ S0.

In this family of operators of special importance are operators Λs that corre-

spond to the symbol p(x, ξ) = ⟨ξ⟩s = (1 + |ξ|2)s/2. Notice that the classical Sobolev

space Hs can now be related to Λs by

Hs(Rn) = Λ−sL2(Rn).
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Kohn proved the following as a step for showing hypoellipticity of the operator

(4.1).

Theorem 7. Consider the pseudo-di�erential operators of order 0 for which the

following inequality holds

∥Pu∥2ϵ ≤ C(∥Lu∥20 + ∥u∥20), (4.2)

for some ϵ > 0 and C > 0. The operators that satisfy the above inequality belong to

a class which we denote by P. If P ∈ P the following are satis�ed:

(i) P ∗ ∈ P

(ii) XjΛ
−1 ∈ P j = 0, . . . , p

(iii)[Xj, P ] ∈ P j = 0, . . . , p

(iv) TP, PT ∈ P for any pseudo-di�erential operator T of order 0.

In order to understand how this theorem combined with the Hörmander con-

dition leads to hypoellipticity, we should start with the following simple observation.

For proving regularity it su�ces to prove (4.2) for P = I or P being the operator

FΛ−1 for all directions of derivations F . The Hörmander condition is satis�ed if

X0, X1, . . . , Xp create all directions which in turn with the help of Kohn's theorem

proves that FΛ−1 ∈ P for all directions F . The rest is an iterative use of (4.2) that

proves u ∈ Hs for all s ≥ 0.

To provide a common framework with results that will follow, we consider the

Hilbert setting H = L2(µ), and operators of the form L = A∗A + B. We shall

also consider the �nite-dimensional Hilbert space V which will be the space of all
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variables on which an operator acts (typically we can think of it as Rn). In the

above abstract setting A is an operator A : H −→ H ⊗ V and B : H −→ H.

This form has more structure and lies in the heart of many results shown

later. To make a notational clari�cation, one can view A as an array of derivations,

namely A = (A1, . . . , An). We can now de�ne commutations involving an array of

derivations and a derivation, or two arrays of derivations in the following way:

[A,B] will be viewed as the array ([A1, B], [A2, B], . . . , [An, B]), or with the

help of tensorization as

[A,B] := AB − (B ⊗ I)A.

On the other hand, [A,A] will be the matrix of operators de�ned by [A,A]i,j =

[Ai, Aj]i,j.

We have already stated the Fokker-Planck operator can be written in form

L = A∗A+B, with

A = G1/2(x)∇v, A
∗ = −G1/2(x)(∇v − v) and B = v · ∇x −∇U(x) · ∇v.

For G(x) = I, [A,B] = ∇x, and the Hörmander condition is satis�ed. The commu-

tator algebra gets signi�cantly more complicated for non constant di�usion G(x).

At the same time, it is worth noticing that local estimates tell us nothing about

regularization in time. Therefore, the biggest part of this section will be devoted to

answering the second question.
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4.1.2 Algebraic Core

For simplicity let us consider the equation

∂tf + v · ∇xf −∇U(x) · ∇vf = γ∇v · (∇vf + vf)

with constant friction γ > 0 and initial data f |t=0 = f0. The equation allows for

a closed and more symmetric structure of the FP operator L. The potential U(x)

satis�es

e−U(x) ∈ S(Rn
x) for |∇2U(x)| ≤ C.

Remark 4. The estimates that will follow are formal and can be proven for slightly

weaker assumptions on the potential U(x). In [32] the potential assumed is the so

called �high degree� potential that behaves like U(x) = |x|2m (for m ≥ 1) at in�nity .

After conjugating f with M
1/2
eq we have the new functions h = f

M
1/2
eq

and h0 =

f0

M
1/2
eq

. Operator L now takes the form L = X0 +
∑

j b
∗
jbj where X0 is the �eld

X0 = v · ∇x −∇U(x) · ∇v described as in X0 = γ−1
∑

j(ajb
∗
j − a∗jbj) and b

∗
j , bj the

annihilation-creation pair.

The operators aj, bj are given by

aj = γ1/2(∂xj
− 1

2
∂xj

U(x)), a∗j = γ1/2(−∂xj
+

1

2
∂xj

U(x))

bj = γ1/2(∂vj +
1

2
vj), b∗j = γ1/2(−∂vj +

1

2
vj).

A more compact, vectorial notation, can be used with the introduction of

operators

a = (a1, . . . , an)
T and b = (b1, . . . , bn)

T
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with adjoints a∗ = (a∗1, . . . , a
∗
n), b

∗ = (b∗1, . . . , b
∗
n).

Operators a, b satisfy the canonical commutator relations

[b, b] = [b∗, b∗] = 0

[b, b∗] = γId (element-wise[b, b∗]i,j = [bi, b
∗
j ] e.t.c)

as well as

[a, a] = [a∗, a∗] = 0

[a, a∗] = γ∇2U(x).

Also a, b commute in the sense

[a♯, b♮] = 0

for ♯ and ♮ corresponding to either ∗ or nothing.

The Lie algebra structure is summarized by the following commutation rela-

tions between a, b and the �eld X0, i.e.

[b,X0] = a, [b∗, X0] = a∗ and

[a,X0] = −∇2U(x)b, [a∗, X0] = −b∗∇2U(x).

The natural Sobolev scaling is introduced with the help of the operator

Λ2 = 1 + a∗a+ b∗b.

This satis�es the relations,

[Λ2, X0] = −b∗(∇2U(x)− I)a− a∗(∇2U(x)− I)b
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as can be easily checked, and

[Λm, (1 + b∗b)l] = 0 for m, l ∈ R.

It is proven, e.g. see [32] that

Theorem 8. Under the assumptions that we made on U(x) there exists C > 0 s.t.

∀h ∈ S(Rn,n
x,v ), ∥Λϵh∥ ≤ Cγ,U(∥Lh∥2 + ∥h∥2) 0 ≤ ϵ ≤ 1

4
.

A proof of the above theorem can be given with the help of pseudo di�erential

calculus and key hypoelliptic estimates. Here we are only giving a brief sketch of

the proof based on the following estimate

∀h ∈ S(Rn,n
x,v ), ∥Λϵh∥2 ≤ ⟨Lh, (M +M∗)h⟩+ ⟨MLh,Mh⟩ (4.3)

+ C
(
⟨Lh, h⟩+ ∥h∥2

)
, 0 ≤ ϵ ≤ 1

4
.

where M = Λ2ϵ−2a∗b , for some C > 0 that depends on γ and U(x).

Although we are not presenting the proof of the estimate which can in fact be

found in [32], we will show how it implies the estimate in the above theorem. All

terms in the r.h.s of the hypoelliptic estimate will be bounded by ∥Lh∥2+∥h∥2. We

use the fact that Λ2ϵ−2a∗ and aΛ2ϵ−2 are bounded operators and that

∥Λ2ϵ−2a∗∥ & ∥aΛ2ϵ−2∥ ≤ 1 for 0 ≤ ϵ ≤ 1

4
.

This implies immediately that

∥Mh∥2 = ∥Λ2ϵ−2a∗bh∥2 ≤ ∥bh∥2 = ⟨Lh, h⟩.
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At the same time for the adjoint of M we have

M∗ = b∗aΛ2ϵ−2 = b∗(1 + b∗b)−1/2(1 + b∗b)1/2aΛ2ϵ−2

= b∗(1 + b∗b)−1/2a(1 + b∗b)1/2Λ2ϵ−2 = b∗(1 + b∗b)−1/2aΛ2ϵ−2(1 + b∗b)1/2.

Since both operators b∗(1 + b∗b)−1/2 and aΛ2ϵ−2 are bounded, we have that

∥M∗h∥2 ≤ ∥h∥2 + ∥bh∥2.

With these estimates at hand, we get

2⟨Lh, (M +M∗)h⟩ = 2⟨Lh,Mh⟩+ 2⟨Lh,M∗h⟩ ≤ 2∥Lh∥ ∥Mh∥

+2∥Lh∥ ∥M∗h∥ ≤ ∥Lh∥2 + ∥Mh∥2 + 2∥Lh∥ (∥bh∥2 + ∥h∥2)1/2

≤ 2(∥Lh∥2 + ∥h∥2) + ∥Lh∥ (⟨Lh, h⟩+ ∥h∥2)1/2

≤ C(∥Lh∥2 + ∥h∥2),

and

⟨MLh,Mh⟩ = ⟨Λ2ϵ−2a∗bLh,Λ2ϵ−2a∗bh⟩ = ⟨aΛ4ϵ−4a∗bLh, bh⟩

≤ ∥aΛ4ϵ−4a∗bLh∥ ∥bh∥ ≤ ∥Lh∥ ∥bh∥ ≤ 2(∥Lh∥2 + ∥h∥2).

The above two estimates and (4.3) prove the estimate in the theorem.
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4.2 Short time & Global Regularity

4.2.1 Exact Regularity Estimates for the Quadratic Potential

Before we start with the functional related techniques for obtaining short time

regularity estimates, we deviate a bit by extracting exact estimates for the solution

in the case of a quadratic potential. We assume a quadratic potential plus smooth

perturbations of it (typically ω0
|x|2
2

+ Φ(x) for Φ(x) ∈ H∞(R3N
x ), ω0 > 0), in the

spirit of [15]. The friction matrix is assumed identity G(x) = I.

As a part of a procedure of showing algebraic rates of convergence to the unique

global equilibrium state for equation ∂tf + Lf = 0 with initial data f |t=0 = f0,

the authors in [15] show that the solution propagates Sobolev regularity under the

above assumptions for the potential U(x). This was done by constructing an exact

solution taking the Fourier transform, and proving all the estimates with the help

of the transformed solution. Here, we use the same solution to derive the short time

regularity estimates. Unfortunately, the exact solution o�ers no insight on the long

time behavior of the solution.

Consider the equation

∂tf + v · ∇xf − x · ∇vf = ∇v · (∇vf + vf). (4.4)

We initially avoid using the perturbative part to simplify the computations a bit.

Also, to make things slightly more presentable we let n = 3N . The Fourier transform
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f̂(t, ξ, η) of f(t, x, v) is de�ned by

f̂(t, ξ, η) =

∫∫
f(t, x, v)e−i(x·ξ+v·η) dv dx,

with (ξ, η) being the conjugate variables of (x, v). The equation for the Fourier

transform f̂ is

∂tf̂ + η · ∇ξf̂ + (η − ξ) · ∇ηf̂ + |η|2f̂ = 0. (4.5)

The characteristic lines for the equation for f̂ satisfy dξ
dt

dη
dt

 =

 0 1

−1 1


 ξ

η

 ,

with assigned initial data ξ(0) = ξ0, η(0) = η0. The eigenvalues of the above system

are 1
2
± i

√
3
2
, with eigenvectors

 2

1

± i

 0

√
3

. Subsequently, the characteristic

system has the solution (ξ(t) η(t))T = et/2X(t)(ξ0 η0)
T , for X(t) the 2×2 matrix

X(t) =

 cos
(√

3
2
t
)
− 1√

3
sin
(√

3
2
t
)

2√
3
sin
(√

3
2
t
)

− 2√
3
sin
(√

3
2
t
)

cos
(√

3
2
t
)
+ 1√

3
sin
(√

3
2
t
)
 .

This induces the characteristic �ow χt(ξ, η) = (χ1
t (ξ, η), χ

2
t (ξ, η)) s.t.

χ1
t (ξ0, η0) = ξ(t) and χ2

t (ξ0, η0) = η(t).

The solution for f̂ is given by

f̂(t, ξ, η) = f̂(0, χ1
−t(ξ, η), χ

2
−t(ξ, η))e

−
∫ t
0 |χ2

−s(ξ,η)|2 ds.

Remark 5. If we allow a perturbation Φ(x) on the quadratic potential, then the

r.h.s of (4.5) now contains the extra term iη · ∇̂Φf , and the full solution to the
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transformed equation now reads

f̂(t, ξ, η) = f̂(0, χ1
−t(ξ, η), χ

2
−t(ξ, η))e

−
∫ t
0 |χ2

−s(ξ,η)|2 ds

+ i

∫ t

0

χ2
−s(ξ, η)∇̂Φf(t− s, χ1

−s(ξ, η), χ
2
−s(ξ, η))e

−
∫ s
0 |χ2

−σ(ξ,η)|2 dσ ds.

The following estimate proven in [15] gives control of f̂ . We present it here.

Lemma 1. There exists some K > 0, s.t. for any 0 ≤ t ≤ 1 and (ξ, η) ∈ Rn × Rn,

we have ∫ t

0

|χ2
−s(ξ, η)|2 ds ≥ K(t3|ξ|2 + t|η|2).

Proof. See paragraph 5 in [15].

Let us begin, for instance, with an estimate for ∥f∥L2 , that can be established

with the help of the lemma above. For this estimate, we want to have some con-

trol of f̂0(·, ·) = f̂(0, ·, ·) uniformly in ξ, η. This can be easily obtained, since by

conservation of mass one has

sup
t≥0

sup
ξ,η∈Rn

|f̂(t, ξ, η)| ≤ ∥f0∥L1 .

Indeed, for a quadratic potential, the L2 norm for a solution can be controlled
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explicitly by

∥f∥2L2 =

∫∫
|f |2 dv dx =

∫∫
|f̂ |2 dη dξ

=

∫∫
|f̂0|2e−2

∫ t
0 |χ2

−s(ξ,η)|2 ds dη dξ ≤ ∥f0∥2L1

∫∫
e−2K(t3|ξ|2+t|η|2) dη dξ

= ∥f0∥2L1

(∫
e−2Kt3|ξ|2 dξ

)(∫
e−2Kt|η|2 dη

)
= ∥f0∥2L1

(∫ ∞

0

∫
∂B(0,ρ)

e−2Kt3ρ2 dS dρ

)(∫ ∞

0

∫
∂B(0,ρ)

e−2Ktρ2 dS dρ

)
= ∥f0∥2L1 |∂B(0, 1)|2

(∫ ∞

0

ρn−1e−2Kt3ρ2 dρ

)(∫ ∞

0

ρn−1e−2Ktρ2 dρ

)
= ∥f0∥2L1 |∂B(0, 1)|2 1

2(2Kt3)n/2
Γ
(n
2

) 1

2(2Kt)n/2
Γ
(n
2

)
=

∥f0∥2L1 |∂B(0, 1)|2

4(2K)nt2n

(
Γ
(n
2

))2
,

where Γ(·) is the gamma function, and ∂B(0, 1) is the surface area of the n dimen-

sional unit sphere.

The following theorem gives a precise short-time estimate, for the non-weighted

Sobolev norm of the solution, for a potential of the type U(x) = x2

2
+ Φ(x).

Theorem 9. Assume a smooth solution f to the equation

∂tf + v · ∇xf − x · ∇vf −∇Φ(x) · ∇vf = ∇v · (∇vf + vf),

with initial data f0 ∈ L1(Rn×Rn), where the perturbative part Φ(x) satis�es Φ(x) ∈

Hk(Rn) for all k ≥ 0. Then, there exists t0 > 0 s.t.

∥f∥Hm,l
x,v

≤ C

tn+
3
2
m+ 1

2
l

for 0 < t ≤ t0 and C > 0.

Proof. We begin by writing the solution for f̂ in the form f̂ = A(t, ξ, η)+ iB(t, ξ, η),

where the functions A and B have already been presented in Remark 5.
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∥f∥2
Hm,l

x,v
=

∫∫
|∇m

x ∇l
vf |2 dv dx =

∫∫
|ξ|2m|η|2l|f̂ |2dξ dη

≤ 2

∫∫
|ξ|2m|η|2l(|A(t, ξ, η)|2 + |B(t, ξ, η)|2) dξ dη.

The computation of the �rst part in the above integral gives

∫∫
|ξ|2m|η|2l|A(t, ξ, η)|2 dη dξ =

∫∫
|ξ|2m|η|2l|f̂0|2e−2

∫ t
0 |χ2

−s(ξ,η)|2 ds dη dξ

≤ ∥f0∥2L1

∫∫
|ξ|2m|η|2le−2K(t3|ξ|2+t|η|2) dη dξ

= ∥f0∥2L1

(∫
|ξ|2me−2Kt3|ξ|2 dξ

)(∫
|η|2le−2Kt|η|2 dη

)
= ∥f0∥2L1

(∫ ∞

0

∫
∂B(0,ρ)

ρ2me−2Kt3ρ2 dS dρ

)(∫ ∞

0

∫
∂B(0,ρ)

ρ2le−2Ktρ2 dS dρ

)
= ∥f0∥2L1 |∂B(0, 1)|2

(∫ ∞

0

ρ2m+n−1e−2Kt3ρ2 dρ

)(∫ ∞

0

ρ2l+n−1e−2Ktρ2 dρ

)
=

∥f0∥2L1 |∂B(0, 1)|2

4(2K)n+m+l

1

t2n+3m+l
Γ
(
m+

n

2

)
Γ
(
l +

n

2

)
.

The second integral,
∫
|ξ|2m|η|2l|B(t, ξ, η)|2 dξ dη, will be shown to be bounded

by a constant for su�ciently small values of t > 0. First, we begin with some

estimates for B(t, ξ, η) already pointed out in [15] par. 5.

Indeed, with the help of mass conservation and induction, it is proven that

sup
t≥0

|∇̂Φf(t, ξ, η)| ≤ Ck

(1 + |ξ|2 + |η|2)k
for Ck > 0, ∀k ≥ 0.

The above estimate is used in

|B(t, ξ, η)| ≤
∫ t

0

|χ2
s(ξ, η)||∇̂Φf(t− s, χ1

−s(ξ, η), χ
2
−s(ξ, η))| e−

∫ s
0 |χ2

−σ(ξ,η)|dσ ds

≤
∫ t

0

(s|ξ|+ |η|) Ck

(1 + |χ1
−s(ξ, η)|2 + |χ2

−s(ξ, η)|2)k
e−K(s3|ξ|2+s|η|2) ds.
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By continuity of the characteristic lines, it follows that there exists t0 > 0 s.t.

|χ1
−s(ξ, η)|2 + |χ2

−s(ξ, η)|2 ≥
1

2
(|ξ|2 + |η|2) for s ≤ t0.

This implies

|B(t, ξ, η)| ≤ Ck

(1 + |ξ|2 + |η|2)k

∫ t

0

(s|ξ|+ |η|)e−K(s3|ξ|2+s|η|2) ds for t ≤ t0.

The last integral is bounded, so this results to

|B(t, ξ, η)| ≤ C ′
k

(1 + |ξ|2 + |η|2)k
for C ′

k > 0, ∀k ≥ 0.

The above estimate holds for all k ≥ 0. Given any choice for m and l, one can

pick k large enough so that the integral
∫
|ξ|2m|η|2l|B(t, ξ, η)|2 dξ dη is bounded for

t ≤ t0.

Combining the two estimates,

∫
|ξ|2m|η|2l|A(t, ξ, η)|2 dξ dη = O(1/t2n+3m+l) and

∫
|ξ|2m|η|2l|B(t, ξ, η)|2 dξ dη = O(1)

for t ≤ t0, �nishes the proof.
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4.2.2 Héraou Method

The technique we are going to present in this section , with a slight modi�ca-

tion, was �rst presented in [31]. It shows regularization from L2(µ) to H1(µ), where

µ is the measure with density Meq(x, v). It uses the energy functional

E(t, h) :=

∫
h2 dµ+ at

∫
|∇vh|2 dµ+2bt2

∫
∇vh ·∇xh dµ+ ct3

∫
|∇xh|2 dµ, (4.6)

which is shown to be dissipative for appropriate choice of values a, b, c > 0.

The Héraou technique has some advantages, but it also comes with a slight

expense. Among the advantages is the fact that it makes use of a single functional

that happens to be dissipative for certain values of parameters. It is also a very basic

technique, since it relies solely on estimates that are based on the Cauchy-Schwartz

and the Young inequalities. In the implementation of the method we have to assume

a potential U(x) ∈ C2(R3N
x ) that has a bounded Hessian (e.g. quadratic potential

etc). This assumption on the potential can be relaxed a bit, with a method that

uses a system of inequalities to extract regularity estimates based on an approach

by C. Villani.

Here we are about to generalize slightly on the method in [31], by assuming a

smooth, diagonal di�usion matrix G(x) = γ(x)I, with γ(x),∇xγ(x) bounded by

λ0 ≤ γ(x) ≤ Λ0 for λ0,Λ0 > 0,

and |∇xγ(x)| ≤ Λ1 for Λ1 > 0.

The norm used above is the Hilbert-Schmidt norm i.e. |∇xγ(x)| =
√∑

i

|∂xi
γ(x)|2.

With all the above assumptions, we prove the following.
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Theorem 10. Let U(x) ∈ C2(R3N
x ) with inf U(x) > −∞, having a bounded Hessian

|∇2U(x)| ≤ C.

Assume a solution to the Fokker-Planck equation, with initial data h0 ∈ L2(µ).

It can be proven that there exist parameters a, b, c > 0 (generally aligned as in

1 ≫ a≫ b≫ c) s.t.

d

dt
E(t, h) ≤ 0 for 0 ≤ t ≤ 1,

for the functional (4.6). More speci�cally, it is shown that∫
|∇vh|2 dµ = O(t−1),

∫
|∇xh|2 dµ = O(t−3) for 0 < t ≤ 1.

Proof. As stated already, we are using the energy functional (4.6) which we show

it is dissipative for carefully selected parameters a, b, c > 0. More precisely we will

show that there is a constant K > 0 s.t.

d

dt
E(t, h) ≤

−K

(∫
|∇vh|2 dµ+ at

∫
|∇2

vh|2 dµ+ bt2
∫

|∇xh|2 dµ+ ct3
∫

|∇2
vxh|2 dµ

)
.

The result then follows by the form of the energy functional.

The derivative of the energy E(t, h) is

d

dt
E(t, h) =

d

dt

∫
h2 dµ+ at

d

dt

∫
|∇vh|2 dµ

+ 2bt2
d

dt

∫
∇vh · ∇xh dµ+ ct3

d

dt

∫
|∇xh|2 dµ

+ a

∫
|∇vh|2 dµ+ 4bt

∫
∇vh · ∇xh dµ+ 3ct2

∫
|∇xh|2 dµ. (4.7)

Before we compute the estimates of the time derivatives of expression (4.7),

we simply give the bound (based on Cauchy-Schwartz and Young inequalities) for
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the last line. Indeed,

a

∫
|∇vh|2 dµ+ 4bt

∫
∇vh · ∇xh dµ+ 3ct2

∫
|∇xh|2 dµ

≤ a

∫
|∇vh|2 dµ+ 4b

∫
|∇vh|2 dµ+ bt2

∫
|∇xh|2 dµ+ 3ct2

∫
|∇xh|2 dµ

≤ (4b+ a)

∫
|∇vh|2 dµ+ (b+ 3c)t2

∫
|∇xh|2 dµ.

In general, we assume the ordering a ≫ b ≫ c for parameters a, b, c, which

somewhat simpli�es the analysis. With this assumption, the above expression is

bounded by C
(
a
∫
|∇vh|2 dµ+ bt2

∫
|∇xh|2 dµ

)
for C > 1.

The easy term in (4.7), is the time derivative of ∥h∥2L2(µ) which is controlled

by

1

2

d

dt

∫
h2 dµ = −

∫
|G1/2(x)∇vh|2 dµ ≤ −λ0

∫
|∇vh|2 dµ. (4.8)

In order to compute the time evolution of the remaining norms, we use the following

trick. Assume that we want to �nd the derivative of the norm ∥Ch∥L2(µ) for a given

derivation operator C. After we compute the action of the operator ∂t + L on the

�rst order di�erential operator C i.e. (∂t +L)Ch = [L,C]h, we multiply by Ch and

integrate in µ to get

1

2

d

dt

∫
|Ch|2 dµ+

∫
|ACh|2 dµ =

∫
Ch · [L,C]h dµ.

The last integral term,
∫
Ch · [L,C]h dµ, should be controlled with further analysis.

The above computation has been performed in the appendix for C = ∇v and

C = ∇x, resulting in equations (4.9)& (4.11). For equation (4.10), we have per-

formed the computation in a straightforward manner.
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1

2

d

dt

∫
|∇vh|2 dµ+

∫
|G1/2(x)∇2

vh|2 dµ = −
∫

∇vh · ∇xh dµ

−
∫

∇vh ·G(x)∇vh dµ, (4.9)

d

dt

∫
∇xh · ∇vh dµ =

∫
∇vh · ∇2U(x)∇vh dµ−

∫
|∇xh|2 dµ

−
∫

∇vh ·G(x)∇xh dµ− 2

∫
(G(x)∇2

vxh) : ∇2
vh dµ−

∫
∇2

vh : (∇xG(x) · ∇vh) dµ,

(4.10)

1

2

d

dt

∫
|∇xh|2 dµ+

∫
|G1/2(x)∇2

vxh|2 dµ =

∫
∇xh · ∇2U(x)∇vh dµ

−
∫

∇2
vxh : (∇xG(x) · ∇vh) dµ. (4.11)

Each of the above derivatives will be treated separately. Let us only note here that

notation-wise we have chosen the use of operators rather than present calculations

componentwise. That way we avoid a heavy notation use. To be more speci�c, I

have tried to keep the following conventions. The · symbol, as usual, stands for

the dot product between two vectors, but it is also used when a third order tensor

is multiplied by a vector to give a second order tensor. The symbol : is the usual

tensor product between second order tensors. The product of a second order tensor

and a vector and that between two second order tensors is the usual one (matrix

multiplication). Norms for a tensor of any order are the usual Hilbert-Schmidt

norms. For the reader who wants to be meticulous about the computations with

components, these have been thoroughly performed in the appendix.

The rate of change of the Hérau energy i.e (4.7) with the help of (4.8)-(4.11)

is shown to be controlled by
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d

dt
E(t, h) ≤ −2λ0

∫
|∇vh|2 dµ− 2λ0at

∫
|∇2

vh|2 dµ

− 2bt2
∫

|∇xh|2 dµ− 2λ0ct
3

∫
|∇2

vxh|2 dµ (4.12)

+ 2bt2
∫

∇vh · ∇2U(x)∇vh dµ− 2λ0at

∫
|∇vh|2 dµ (4.13)

+ 2ct3
∫

∇xh · ∇2U(x)∇vh dµ− 2at

∫
∇vh · ∇xh dµ

− 2bt2
∫
γ(x)∇vh · ∇xh dµ (4.14)

− 4bt2
∫
γ(x)∇2

vxh : ∇2
vh dµ (4.15)

− 2bt2
∫

∇xγ(x) · ∇2
vh∇vh dµ− 2ct3

∫
∇xγ(x) · ∇2

vxh∇vh dµ (4.16)

+ (4b+ a)

∫
|∇vh|2 dµ+ (b+ 3c)t2

∫
|∇xh|2 dµ. (4.17)

We have grouped the terms in d
dt
E(t, h) in a way that all the terms in �rst line

i.e (4.12) have a sign, and will be used to dominate the terms in the lines (4.13)-

(4.17) that follow. The conditions that su�ce for such a control will be unveiled in

this study. We begin for instance with (4.17). The estimate that appears in (4.17),

which is the �rst estimate of terms contained in d
dt
E(t, h) that we obtained, can be

trivially controlled by terms in (4.12) for λ0 > a (H1). Notice that since we look for

values of a, b with the ordering a≫ b, no extra condition for b is necessary. Another

remark to be made here is that since t ∈ [0, 1], we are going to use in many occasions

the fact that t3 ≤ t2 ≤ t ≤ 1 without further notice.

Next is (4.13). The second integral term in (4.13) has a sign, so rightfully we
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focus on the �rst term. This term is

≤ 2bC

∫
|∇vh|2 dµ ≤ λ0

∫
|∇vh|2 dµ,

if b ≤ λ0

2C
(H2).

For the terms in (4.14), one has

(4.14) ≤ (2cC + 2a+ 2Λ0b)t

∫
|∇vh||∇xh| dµ

≤ b

2
t2
∫

|∇xh|2 dµ+
(2cC + 2a+ 2Λ0b)

2

2b

∫
|∇vh|2 dµ,

which can be controlled by terms in (4.12) if (2cC+2a+2Λ0b)2

2b
≤ λ0 (H3). This practi-

cally implies that a2/b should be su�ciently small.

As for (4.15),

(4.15) ≤ 4bΛ0t
2

∫
|∇2

vxh||∇2
vh| dµ

≤ 2bΛ0

(
λ0c

2Λ0b
t3
∫

|∇2
vxh|2 dµ+

2Λ0b

λ0c
t

∫
|∇2

vh|2 dµ
)
,

which is dominated by (4.12) if b2

ac
≤ λ2

0

4Λ2
0
(H4).

Finally, let's treat (4.16). This line is comprised of 2 integral terms. The �rst

one is controlled by

1st integral in (4.16) ≤ bΛ1

(∫
|∇vh|2 dµ+ t

∫
|∇2

vh|2 dµ
)
,

which is trivially dominated by the terms in (4.12) if b
a
≤ λ0

Λ1
(H5).

Concluding with the second integral term in (4.16), one has

2nd integral in (4.16) ≤ 2cΛ1t
3

∫
|∇2

vxh||∇vh| dµ

≤ cΛ1

(
λ0c

2cΛ1

t3
∫

|∇2
vxh|2 dµ+

2cΛ1

λ0c
t

∫
|∇vh|2 dµ

)
,
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which is also controlled by terms in (4.12) if c ≤ λ2
0

Λ2
1
(H6).

The last step in the proof, is to put down all the assumptions (H1) − (H6)

that a, b, c need to satisfy so that E(t, h) is dissipative. All these assumptions boil

down to our ability to pick a, b, c > 0 so that the quantities a, b
a
, c

b
, b2

ac
, and a2

b
can

be made su�ciently small, for a given choice of the constants λ0,Λ0,Λ1, C > 0.

This becomes a trivial task, once we can prove that we are able to send all these

quantities to 0 at the same times. Take for instance the choice of sequences aj = 2−j,

bj = 2−
5
3
j, and cj = 2−2j. Then bj/aj = 2−

2
3
j, cj/bj = 2−

1
3
j, b2j/(ajcj) = 2−

1
3
j, and

a2j/bj = 2−
1
3
j, which �nishes the proof (pick j large enough).

Remark 6. An important point to mention is the necessity to include a mixed

derivative term
∫
∇xh · ∇vh dµ in the energy functional. The main reason behind

this choice is the fact that the dissipation of the mixed derivative contains the term∫
|∇xh|2 dµ, which isn't seen in d

dt

∫
|∇xh|2 dµ, nor in d

dt

∫
|∇vh|2 dµ. At the same

time, the mixed term can be trivially controlled by a combination of
∫
|∇xh|2 dµ

and
∫
|∇vh|2 dµ (with a simple Cauchy-Schwartz). This means that with proper

manipulations, like the ones presented here, the inclusion of this term in E(t, h)

plays a central role in proving that E(t, h) dissipates. As we are going to see, this is

a technical trick which is not just important for regularization, but also important

in convergence results. In fact, it will be shown that hypoelliptic regularization and

hypoelliptic coercivity (hypocoercivity) are phenomena very similar in nature that

can be treated with similar techniques.
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4.2.3 Regularization in the Entropic Sense

The technique that we described can lend itself to the treatment of solutions

that belong in the L logL(µ) space. Indeed, in many physically relevant cases the

initial data does not belong in the weighted L2(µ) space but has �nite entropy.

Unfortunately, the Hérau method cannot work in the entropic case, unless we assume

G(x) = I. This part will be explained in more detail later. For now, let us present

what will serve as the Lyapunov functional in this case, which is

E(t, h) =

∫
h log h dµ+ at

∫
h|∇v log h|2 dµ+ 2bt2

∫
h(∇v log h · ∇x log h) dµ

+ ct3
∫
h|∇x log h|2 dµ. (4.18)

One cannot help but notice the striking resemblance in the form of this func-

tional with the one presented for the L2(µ) theory. Indeed, the relevant Sobolev

norms have the form of integrals
∫ |Ch|2

h
dµ, for a �rst order di�erential operator C.

Of particular importance is the mixed term
∫ ∇xh·∇vh

h
dµ which plays the same role

as in the L2(µ) theory, i.e. when di�erentiated along the semi-group e−tL it provides

the important −
∫ |∇xh|2

h
dµ term for the dissipation of E(t, h).

The resemblance is even more obvious when it comes to the proof of dissipation

for E(t, h). One is occupied with the task of bounding each term that appears in

d
dt
E(t, h) with terms of the type∫

h|∇v log h|2 dµ, t

∫
h|∇2

v log h|2 dµ, t2
∫
h|∇x log h|2 dµ, and

t3
∫
h|∇2

vx log h|2 dµ.
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Next, we make sure that there exists a choice of a, b, c > 0, so that when we sum all

the terms in d
dt
E(t, h), a combination of the four terms above with a negative sign

appears making E(t, h) non increasing in 0 ≤ t ≤ 1.

The precise statement of this result is :

Theorem 11. Consider the potential U(x) ∈ C2(R3N
x ) with inf U(x) > −∞, having

a bounded Hessian

|∇2U(x)| ≤ C.

Assume also a solution h (with
∫
h0 dµ = 1) to the F-P equation

∂th+ v · ∇xh−∇U(x) · ∇vh = △vh− v · ∇vh,

having �nite initial entropy
∫
h0 log h0 dµ <∞. It can be shown, that for the energy

functional (4.18) and for a certain choice of the parameters a, b, c > 0, we have

d

dt
E(t, h) ≤ 0 for 0 ≤ t ≤ 1.

More speci�cally, it is shown that

∫
h|∇v log h|2 dµ ≤ O(t−1),

∫
h|∇x log h|2 dµ ≤ O(t−3) for 0 < t ≤ 1.

Proof. As explained already, the main goal will be to �nd a, b, c,K > 0, s.t. for

0 ≤ t ≤ 1, the following holds

d

dt
E(t, h) ≤ −K

(∫
h|∇v log h|2 dµ+ at

∫
h|∇2

v log h|2 dµ

+bt2
∫
h|∇x log h|2 dµ+ ct3

∫
h|∇2

vx log h|2 dµ
)
.
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Starting with the time derivative of E(t, h), one has

d

dt
E(t, h) =

d

dt

∫
h log h dµ+ at

d

dt

∫
h|∇v log h|2 dµ

+ 2bt2
d

dt

∫
h(∇v log h · ∇x log h) dµ+ ct3

d

dt

∫
h|∇x log h|2 dµ

+ a

∫
h|∇v log h|2 dµ+ 4bt

∫
h(∇v log h · ∇x log h) dµ+ 3ct2

∫
h|∇x log h|2 dµ.

(4.19)

In similar manner like before, the last line in the equation above is bounded

above by

(4b+ a)

∫
h|∇v log h|2 dµ+ (b+ 3c)t2

∫
h|∇x log h|2 dµ.

It remains to treat the r.h.s terms in the �rst two lines of (4.19).

We start with the easy term, which is the evolution of the entropic term

(in math literature, this entropic term is often addressed with the name Kullback

entropy functional, and its rate of change with a �−� sign as the Fisher information)

i.e.

d

dt

∫
h log h dµ = −

∫
|∇vh|2

h
dµ = −

∫
h|∇v log h|2 dµ. (4.20)

The evolution of the remaining integral terms is more complex in nature but

can be studied in an abstract setting. Here we follow the computations performed

in [71] where the di�erentiation is performed along the semi-group e−tL. In short,
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it is shown that

− d

dt

∫
h (C log h · C ′ log h) dµ =∫

h (C log h · [C ′, B] log h) dµ+

∫
h ([C,B] log h · C ′ log h) dµ

+ 2

∫
h (CA log h · C ′A log h) dµ

+

∫
h ([C,A∗]A log h · C ′ log h) dµ+

∫
h (C log h · [C ′, A∗]A log h) dµ

+

∫
h (CA log h · [A,C ′] log h) dµ+

∫
h ([A,C] log h · C ′A log h) dµ

+

∫
h ([A,C]∗(A log h⊗ C ′ log h)) dµ+

∫
h ([A,C ′]∗(A log h⊗ C log h)) dµ.

where C,C ′ are �rst order di�erential operators of the type a(x) · ∇, with a(x)

being a smooth vector �eld with derivatives that grow at most polynomially. The

convention in the notation used above is that ⊗ stands for the dyadic product, and

the action of an operator on another described by

[C,A∗]A =
∑
j

[C,A∗
j ]Aj, CAu · [A,C ′]u =

∑
i,j

CiAju[Ai, C
′
j]u,

CAu · C ′Au =
∑
i,j

CiAjuC
′
iAju and [A,C]∗(Au⊗ C ′u) =

∑
i,j

[Ai, Cj]
∗(AiuC

′
ju).

More precisely, it is shown with the help of the above, that the evolution of

the log Sobolev norms is governed by the equations
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−1

2

d

dt

∫
h|∇v log h|2 dµ =

∫
h(∇v log h · ∇x log h) dµ

+

∫
h|∇2

v log h|2 dµ+

∫
h|∇v log h|2 dµ, (4.21)

−1

2

d

dt

∫
h|∇x log h|2 dµ = −

∫
h(∇x log h · ∇2U(x)∇v log h) dµ

+

∫
h|∇2

vx log h|2 dµ, (4.22)

− d

dt

∫
h (∇x log h · ∇v log h) dµ =

∫
h|∇x log h|2 dµ

−
∫
h(∇v log h · ∇2U(x)∇v log h) dµ+ 2

∫
h(∇2

vx log h : ∇2
v log h) dµ

+

∫
h(∇v log h · ∇x log h) dµ. (4.23)

It is now evident that the idea that was implemented in the proof in the

previous section actually works in this case without any real change. Equations

(4.20)-(4.23) above, when inserted in the equation for d
dt
E(t, h), will give a number

of integrals dominated by just 4 of these integral terms which have a (negative) sign.

For instance, from (4.20) comes the contribution −
∫
h|∇v log h|2 dµ. From (4.21)

comes the contribution −
∫
h|∇2

v log h|2 dµ. From (4.22) comes the contribution

−
∫
h|∇2

vx log h|2 dµ (contained in the second line of (4.22)), and �nally from (4.23)

comes the main contribution −
∫
h|∇x log h|2 dµ. The remaining of the integral

terms in the above equations are dominated by the main contributions stated above

(if one uses the C-S and Young inequalities with appropriate choice of a, b, c > 0).

In detail,

79



d

dt
E(t, h) ≤ −

∫
h|∇v log h|2 dµ− 2at

∫
h|∇2

v log h|2 dµ

− 2bt2
∫
h|∇x log h|2 dµ− 2ct3

∫
h|∇2

vx log h|2 dµ

+ 2bt2
∫
h(∇v log h · ∇2U(x)∇v log h) dµ− 2at

∫
h|∇v log h|2 dµ

− (2at+ 2bt2)

∫
h(∇v log h · ∇x log h) dµ+ 2ct3

∫
h(∇x log h · ∇2U(x)∇v log h) dµ

− 4bt2
∫
h(∇2

vx log h : ∇2
v log h) dµ

+ (4b+ a)

∫
h|∇v log h|2 dµ+ (b+ 3c)t2

∫
h|∇x log h|2 dµ.

It turns out that the choice of parameters a, b, c > 0 that we made in the H1(µ)

regularization, i.e., choosing the values of a, b
a
, c

b
, a2

b
, and b2

ac
to be su�ciently small,

is good enough to prove dissipation for E(t, h).

Remark 7. A brief explanation of why the above method fails for a general di�usivity

G(x) is the following. The short answer is that the more complicated structure of

the commutator algebra does not allow for good log Sobolev bounds. If we assume

A,B to be �rst order derivation operators, then bounds for
∫

Ah·Bh
h

dµ are achieved

by the simple inequality∫
Ah ·Bh

h
dµ ≤

(∫
|Ah|2

h
dµ

)1/2(∫ |Bh|2

h
dµ

)1/2

.

Now, if we want to continue taking advantage of such expressions and continue e.g.

with an inequality of the type(∫
|Ah|2

h
dµ

)1/2

≤ C1

(∫
|R1h|2

h
dµ

)1/2

+ . . .+ Ck

(∫
|Rkh|2

h
dµ

)1/2

,
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for some integer k ≥ 1 and Ci > 0, then A as an operator should be bounded

pointwise by R1, . . . , Rk and not just bounded in the operator sense like

∥Ah∥L2(µ) ≤ C1∥R1h∥L2(µ) + . . .+ Ck∥Rkh∥L2(µ).

This makes it impossible, for instance, for exact estimates for an integral like∫ |v·∇xh|2
h

dµ, whereas it is true on the other hand that

∫
|v · ∇xh|2 dµ ≤ C

(∫
|∇xh|2 dµ+

∫
|∇2

vx|2 dµ
)
.

The last comment that we make here is to explain exactly what we mean when saying

that a derivation operator A is bounded pointwise by R1, . . . , Rk. In brief, by writing

A as A = a(x) · ∇ =
∑
j

aj(x)∂j, and Ri = ri(x) · ∇ =
∑
j

rij(x)∂j, we then say that

A is bounded pointwise by R1, . . . , Rk i�

aj(x) ≤
k∑

i=1

Ci|rij(x)|, for Ci > 0, ∀x ∈ Rn and ∀j.
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4.2.4 Hypoellipticity à la Villani

We now present a di�erent approach based on a method developed by C.Villani

and discussed in [71]. In this approach, instead of dealing directly with an energy

functional, one tries to construct a system of di�erential inequalities to derive the

short time (hypoelliptic) estimates. This method o�ers the advantage that it re-

laxes the assumption on the potential U(x), and most importantly that it o�ers the

optimal estimate in H3
v instead of H1

v as was the case using the Hérau technique.

As shown here, estimates of H3
v imply estimates for H1

v by a standard interpolation

argument. The assumptions for the control of γ(x) are the same as in the previous

section.

Theorem 12. Assume a potential U(x) ∈ C2(R3N
x ) with inf U(x) > −∞, satisfying

the condition

|∇2U(x)| ≤ C(1 + |∇U(x)|) for C > 0.

It can be shown that the solution h of the Fokker-Planck equation with bounded in

L2(µ) initial data satis�es the following regularity estimates when 0 ≤ t ≤ 1,

∫
|∇xh|2 dµ = O(t−3) and

∫
|∇3

vh|2 dµ = O(t−3).

Let us make a couple of observations before we start with the proof of the

theorem.

Remark 8. The �rst one is related to the fact that |∇U(x)|2 de�nes a bounded

operator from H1(µ) → L2(µ) (as long as |∇2U(x)| is dominated by |∇U(x)|), which
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implies ∫
|∇U(x)|2g2 dµ ≤ C ′

(∫
g2 dµ+

∫
|∇xg|2 dµ

)
(4.24)

and

∫
|∇2U(x)|2g2 dµ ≤ C ′

(∫
g2 dµ+

∫
|∇xg|2 dµ

)
. (4.25)

A second estimate we will use in many instances is∫
|v|2g2 dµ ≤ C ′

(∫
g2 dµ+

∫
|∇vg|2 dµ

)
for C ′ > 0. (4.26)

The constant C ′ depends on C,N only (and only on N for (4.26)).

Proof. A straightforward computation gives∫
|∇U(x)|2g2e−U(x) dx = −

∫
∇x(e

−U(x)) · ∇U(x)g2 dx

=

∫
∇x · (∇U(x)g2)e−U(x) dx =

∫
△U(x)g2e−U(x) dx+ 2

∫
g∇U(x) · ∇xg e

−U(x) dx

≤ 1

12NC2

∫
|△U(x)|2g2e−U(x) dx+

12NC2

4

∫
g2e−U(x) dx

+
1

4

∫
|∇U(x)|2g2e−U(x) dx+ 4

∫
|∇xg|2e−U(x) dx

≤ 6NC2

12NC2

∫
(1 + |∇U(x)|2)g2e−U(x) dx+ 3NC2

∫
g2e−U(x) dx

+
1

4

∫
|∇U(x)|2g2e−U(x) dx+ 4

∫
|∇xg|2e−U(x) dx

=
3

4

∫
|∇U(x)|2g2e−U(x) dx+

(
1

2
+ 3NC2

)∫
g2e−U(x) dx+ 4

∫
|∇xg|2e−U(x) dx.

This sums up to∫
|∇U(x)|2g2e−U(x) dx ≤ (2 + 12NC2)

∫
g2e−U(x) dx+ 16

∫
|∇xg|2e−U(x) dx,

which concludes the estimate after we multiply by M(v) and integrate in v.

The only point to be made about the above inequalities is that we have used

the trivial inequality

|△U(x)|2 ≤ 3N |∇2U(x)|2 ≤ 6NC2(1 + |∇U(x)|2).
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The estimate (4.25) follows from∫
|∇2U(x)|2g2e−U(x) dx ≤ 2C2

∫
(1 + |∇U(x)|2)g2e−U(x) dx.

Similarly, for (4.26)∫
|v|2g2M(v) dv = −

∫
∇v(M(v)) · vg2 dv =

∫
∇v · (vg2)M(v) dv

= 3N

∫
g2M(v) dv + 2

∫
gv · ∇vgM(v) dv

≤ 3N

∫
g2M(v) dv +

1

2

∫
|v|2g2M(v) dv + 2

∫
|∇vg|2M(v) dv,

which yields∫
|v|2g2M(v) dv ≤ 6N

∫
g2M(v) dv + 4

∫
|∇vg|2M(v) dv.

After multiplication by e−U(x) and integration in x the desired result follows.

Remark 9. (Interpolation) The second main observation has to do with justi�ca-

tion of why this result is slightly stronger than the one encountered in the last para-

graph. Here, we prove that
∫
|∇3

vh|2 dµ = O(t−3) coupled with
∫
h2 dµ < ∞ implies∫

|∇vh|2 dµ = O(t−1) and
∫
|∇2

vh|2 dµ = O(t−2). This is in fact a straightforward

interpolation result. As mentioned in [71] one can easily prove the interpolation

inequality∫
|∇j

vh|2 dµ ≤ C

(∫
h2 dµ

)1−j/3(∫
|∇3

vh|2 dµ
)j/3

for 0 ≤ j ≤ 3,

using Hermite polynomials. The n'th Hermite polynomial is de�ned by Hn(v) =

(−1)ne
v2

2
dn

dvn
e−

v2

2 with n ≥ 0. Hermite polynomials form an orthonormal basis in

L2(M(v)dv) i.e. ∫
Hn(v)Hm(v)M(v) dv = δnm.
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The polynomials satisfy, among others, the property H ′
n(v) = 2nHn−1(v). Consider

the function h(x, v) and its expansion in Hermite polynomials h(x, v) =
∑
n

cnHn(v),

with coe�cients cn that depend on x in general. It follows that

∫
|∇vh|2M(v) dv =

∫ ∣∣∣∑
n

cnH
′
n(v)

∣∣∣2M(v) dv =

∫ ∣∣∣∑
n

2ncnHn−1(v)
∣∣∣2M(v) dv

= 4

∫ ∑
n

n2c2n|Hn−1(v)|2M(v) dv = 4
∑
n

n2c2n.

In similar fashion, ∫
|∇2

vh|2M(v) dv = 16
∑
n

n4c2n.

Integrating in e−U(x)dx and applying the Hölder inequality yields the desired inter-

polation inequality.

Remark 10. (Evolution of H3
v seminorm). The evolution of the mixed derivative,

as well as the H1
x and H3

v semi-norms is used in the proof. The �rst two have

already been presented in equations (II) & (IV). The evolution of H3
v is described by

the equation

1

2

d

dt

∫
|∇3

vh|2 dµ+

∫
|G1/2(x)∇4

vh|2 dµ = −3

∫
|G1/2(x)∇3

vh|2 dµ

− 3

∫
∇3

vh
...∇3

xvvh dµ. (4.27)

We are now ready to proceed with the proof of the main result.

85



Proof. We begin with the �rst r.h.s integral of (4.11),∫
∇xh · ∇2U(x)∇vh dµ = −

∫
∇2

vxh : ∇2U(x)h dµ+

∫
∇xh · ∇2U(x)vh dµ

≤ 5

2λ0

∫
|∇2U(x)|2h2 dµ+

2λ0
20

∫
|∇2

vxh|2 dµ

+
5

2λ0

∫
|∇2U(x)|2h2 dµ+

2λ0
20

∫
|v|2|∇xh|2 dµ

≤ 5

λ0

(
(2 + 12NC2)

∫
h2 dµ+ 16

∫
|∇xh|2 dµ

)
+
λ0
10

∫
|∇2

vxh|2 dµ

+
λ0
10

(
6N

∫
|∇xh|2 dµ+ 4

∫
|∇2

vxh|2 dµ
)

≤ 5(2 + 12NC2)

λ0

∫
h2 dµ+

(
80

λ0
+

3

5
λ0N

)∫
|∇xh|2 dµ+

λ0
2

∫
|∇2

vxh|2 dµ.

It is not necessary to keep track of the optimal constants in computations like

the above. One just has to make sure that the last integral term
∫
|∇2

vxh|2 dµ is

multiplied by a constant strictly less than λ0 (here
λ0

2
).

The second integral in r.h.s of (4.11) is bounded by

−
∫

∇xγ(x) · ∇2
vxh∇vh dµ ≤ Λ1

(
Λ1

λ0

∫
|∇vh|2 dµ+

λ0
4Λ1

∫
|∇2

vxh|2 dµ
)
.

The above two estimates, together with (4.11), can be combined to give

1

2

d

dt

∫
|∇xh|2 dµ ≤ −λ0

4

∫
|∇2

vxh|2 dµ+ C

(∫
(h2 + |∇xh|2 + |∇vh|2) dµ

)
.

The integral term
∫
|∇vh|2 dµ in the estimate above is an extra term that

does not appear in the estimate obtained by Villani when he treats G(x) = I. On

the other hand, the estimates for the mixed derivative
∫
∇xh · ∇vh dµ and the H3

v

semi-norm
∫
|∇3

vh|2 dµ are the same as in the Villani theory.

Indeed, the derivative for the H3
v semi-norm satis�es

1

2

d

dt

∫
|∇3

vh|2 dµ ≤ −λ0
4

∫
|∇4

vh|2 dµ+ C

(∫
|∇2

vxh|2 dµ+

∫
|∇3

vh|2 dµ
)
.
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The estimates for H1
x and H3

v combined for su�ciently small c > 0 yield

1

2

d

dt

(∫
|∇xh|2 dµ+ c

∫
|∇3

vh|2 dµ
)

≤ −K
(∫

|∇4
vh|2 dµ+

∫
|∇2

vxh|2 dµ
)

+C

(∫
h2 dµ+

∫
|∇xh|2 dµ+

∫
|∇vh|2 dµ+

∫
|∇3

vh|2 dµ
)
.

Some of the estimates of the terms involved in d
dt

∫
∇xh · ∇vh dµ are e.g.

∫
∇vh · ∇2U(x)∇vh dµ = −

∫
h∇2U(x) : ∇2

vh dµ+

∫
h∇2U(x) : (v∇vh) dµ

≤ 1

4

∫
|∇xh|2 dµ+ C

(∫ (
h2 + |∇vh|2 + |∇2

vh|2
)
dµ

)
.

Also, we have

∫
γ(x)∇2

vxh :∇2
vh dµ = −

∫
γ(x)∇xh · ∇v△vh dµ+

∫
γ(x)∇xh · (v∇2

vh) dµ

≤ 1

4

∫
|∇xh|2 dµ+ C

(∫
|∇2

vh|2 dµ+

∫
|∇3

vh|2 dµ
)

etc. These sum up to

d

dt

∫
∇vh · ∇xh dµ ≤ −1

2

∫
|∇xh|2 dµ

+C

(∫
h2 dµ+

∫
|∇vh|2 dµ+

∫
|∇2

vh|2 dµ+

∫
|∇3

vh|2 dµ
)
.

System of inequalities:

Borrowing once again notation from [71], we sum up the estimates to a system

of inequalities. Set

X =

∫
|∇xh|2 dµ, M =

∫
∇xh · ∇vh dµ, Yj =

∫
|∇j

vh|2 dµ 1 ≤ j ≤ 4.

Also, for the sake of brevity, we consider

Z = Y4, E = X + cY3 for some c > 0.
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Then, we end up with the system of inequalities

d

dt
E ≤ −KZ + C(1 + Y1 + E),

d

dt
M ≤ −KX + C(1 + Y1 + Y2 + Y3),

|M| ≤
√
XY1,

Y1 ≤ CY
1/2
2 ≤ C ′Y

1/3
3 ≤ C ′′Y

1/4
4 (interpolation inequality ).

For the above system of inequalities, it can be proven that when 0 < t ≤ 1,

E(t) ≤ C

t3
for C > 0.

This concludes the proof of the hypoellipticity estimate.

In the preceding proof we made use of the following lemma for providing the

regularity estimate.

Lemma 2. (Villani) Assume the nonnegative continuous functions E, X, Y, Z on

[0, 1], and the continuous M on [0, 1], that satisfy the system of inequalities

K(X + Y ) ≤ E ≤ C(X + Y ), (4.28a)

|M| ≤ CE1−δ, (4.28b)

dE

dt
≤ −KZ + CE, (4.28c)

Y ≤ C(X + Z)1−θ, (4.28d)

dM

dt
≤ −KX + CY, (4.28e)

for K,C > 0 and δ, θ ∈ (0, 1). It can be proven that there exists a constant C̄ > 0
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(depending on C,K, δ, θ) s.t

E(t) ≤ C̄C,K,θ,δ

t1/k
for 0 < t < 1,

and k = min
(
δ, θ

1−θ

)
.

Remark 11. In the example of regularization implied by the system presented above

(when we proved regularity estimates for H3
v (µ) and H

1
x(µ)), the values of θ =

1
4
and

δ = 1
3
give the desired optimal exponent 1/k = 3.

One could start with the observation that the constant C̄ that appears in the

estimate is not dependent on the regularity of f0. This allows for the a priori estimate

being true for the most general initial data that ensure a unique solution (say f0 ∈

L1). At the same time, there is nothing that ensures an optimal exponent (here

1/k) for the estimate proven. Care must be taken in the choice of the interpolation

inequalities so that one gets the best possible values for θ, δ.

Although the system of inequalities looks quite speci�c in nature, it has been

correctly conjectured that it can be applied to more general cases of hypoelliptic

regularization. A brief logistic explanation could be the following. Assume the

evolution of a second order di�erential operator that is di�usive in a certain number

of variables (in the problem we consider it is the velocity variables) and the remaining

variables (which we might call missing variables) appear in derivatives of order at

most one. If the quantity E corresponds to a general Sobolev norm (or rather

seminorm) in all possible variables i.e. E =
∫
|∇k

x∇l
vf |2, X =

∫
|∇k

xf |2, and Y =∫
|∇l

vf |2 +
∫
f 2. The inequality (4.28a) can be proven trivially with the help of

Hölder's inequality in Fourier space. Inequalities (4.28c) and (4.28e) describe the
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evolution of E and the mixed derivative term M. The propagation of E is controlled

by a norm similar to −Y but of order higher by one. That of M is controlled by −X.

Finally, inequalities (ii) and (iv) are usually proven via interpolation techniques and

are necessary for the system closure.

We present a proof to the above lemma, based on a proposition that appears to

be more in the core of the proof. The idea lies in proving that a certain integro-

di�erential inequality satis�es algebraic short time estimates with exponent that can

be explicitly speci�ed.

Lemma 3. Assume the non increasing, continuous E(t), de�ned on the interval

[0, 1] which satis�es the integro-di�erential inequality

∫
I

E(s) ds ≤ C1 sup
I

E(t)α + C2

∫
I

(E′(s))β ds+ C3

∫
I

E(s)γ ds,

for any interval I in [0, 1] with the constants 0 ≤ α < 1, 0 < β, γ < 1, and

C1, C2, C3 > 0. Then, E(t) is shown to satisfy

E(t) ≤ C

t1/k
0 < t ≤ 1,

for k = min(1 − α, 1−β
β
) and a constant C that depends only on the constants

C1, C2, α, β.

Proof. We consider E > 0 (w.l.o.g. we can assume E > 1) and try to �nd the �rst

time t0 s.t E(t0) < E. We will show that t0 ≤ C′

Ek . Let In be the time interval for

which 2nE ≤ E(t) ≤ 2n+1E, for n ≥ 0. Then, the length of this interval is

|In| = m
(
t ∈ [0, 1] : 2nE ≤ E(t) ≤ 2n+1E, n ≥ 0

)
,
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where m is the Lebesgue measure on the real line. Using the fact that E(t) is non

increasing it is evident that t0 =
∑
n≥0

|In|. We will �nd a bound on |In| related to E

using the given integro-di�erential inequality and treating each term separately i.e.

sup
In

Eα ≤ 2(n+1)αEα,

∫
In

E(s)γ ds ≤ 2(n+1)γEγ|In|,

and ∫
In

(E′(s))β ds ≤
(∫

In

E′(s) ds

)β

|In|1−β ≤ 2nβEβ|In|1−β.

In the second line above, we have employed Hölder inequality.

Putting all terms together, one gets

2nE|In| ≤
∫
In

E(s) ds ≤ C12
(n+1)αEα + C22

nβEβ|In|1−β + C32
(n+1)γEγ|In|.

It is only the �rst two terms in the r.h.s that can control the l.h.s (for large enough

E). If the �rst term in r.h.s dominates, then

|In| ≤ 3C12
α 1

2n(1−α)

1

E1−α
.

In the case of the second term being the dominant

|In| ≤ 3C
1/β
2

1

2n(1−β)/β

1

E(1−β)/β
.

Summing on |In| terms gives t0 ≤ C ′/Ek, for the value of k as presented in the

lemma.

In this �nal step in the proof of Villani's lemma, we show that E(t) satis�es an

inequality similar to the one in the lemma above. To make E(t) non increasing, one

considers e−CtE(t) which should satisfy the same short time estimates. With this
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transformation, equation (4.28c) now becomes E′ ≤ −KZ. Employing inequalities

(4.28a) - (4.28e), we get

E(t) ≤ C(X(t) + Y (t))

≤ C
(
X(t) + C(X(t) + Z(t))1−θ

)
≤ CX(t) + C2(X(t) + Z(t))1−θ

≤ C

(
− 1

K
M′(t) +

C

K
Y (t)

)
+ C2(X(t) + Z(t))1−θ

≤ −C

K
M′(t) +

C2

K
Y (t) + C2X(t)1−θ + C2Z(t)1−θ

≤ −C

K
M′(t) + C2

(
C

K
+ 1

)
(X(t)1−θ + Z(t)1−θ)

≤ −C

K
M′(t) + C2

(
C

K
+ 1

)((
1

K
E(t)

)1−θ

+ Z(t)1−θ

)
.

This is short of the inequality

E(t) ≤ C1M
′(t) + C2E(t)

1−θ + C3(−E′(t))1−θ,

for constants C1, C2, C3 > 0. Integrating over a time interval I, we have

∫
I

E(s) ds ≤ 2C1 sup
I

E(t)1−δ + C2

∫
I

E(s)1−θ ds+ C3

∫
I

(−E′(s))1−θ ds.

We can now conclude with the second lemma, with the choice of exponents α = 1−δ

and β = γ = 1− θ.
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4.2.5 Higher Order Sobolev Regularity

We can use the di�erential system presented previously to obtain short time

estimates for higher Sobolev norms both in weighted and in ��at� space (with no

weights). The analysis is not really that much di�erent to the one followed in the

previous paragraph, with the exception that in this case it is the evolution of higher

Sobolev norms that is considered, and so one must also �nd appropriate expressions

for higher order mixed derivatives. We begin with a statement for identity (G(x) = I)

di�usivity, in which a stronger result for solutions with L1 initial data can be proven.

The exact statement is:

Theorem 13. (Villani) Assume the unique solution to the F-P equation

∂tf + v · ∇xf −∇U(x) · ∇vf = ∇v · (∇vf + vf),

with initial data f0 ∈ L1(Rn,n
x,v ), a smooth potential U(x) satisfying inf U(x) > −∞

and having all its derivatives uniformly bounded, i.e. for j ≥ 2

|∇jU(x)| ≤ Cj for some Cj > 0.

Under the above assumptions, it can be proven that for any positive integers m > 0,

we have ∑
3k+l≤3m

∥f∥Hk,l
x,v(Rn

x×Rn
v )

≤ C

tβ
for 0 < t ≤ 1,

where the constant C(k, l, Cj, λ0,Λj) does not depend on the regularity of the initial

data, and a constant β = β(n,m) > 0. It can be proven with a bit of further analysis

that the estimate above is true for any β > n+ 3m/2 .
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Since, in the proof of this result initial data with L1 regularity is used, one has

to be especially careful with the interpolation technique that will be required. For

this reason the following Nash type inequality is used instead of the more elementary

interpolation with Hermite polynomials used in previous paragraph.

Lemma 4. Assume a smooth function f(x, v) with (x, v) ∈ Rn
x × Rn

v . Assume also

integers λ, µ ≥ 0 and λ′, µ′ > 0. If

λ

λ′
+
µ

µ′ < 1,

there exists a constant C depending only on these integers s.t.

∫∫
|∇λ

x∇µ
vf |2 ≤ C

(∫∫
|∇λ′

x f |2 +
∫∫

|∇µ′

v f |2
)1−θ (∫∫

f

)2θ

,

where

θ =
1−

(
λ
λ′ +

µ
µ′

)
1 + n

2

(
1
λ′ +

1
µ′

) .
The proof we are about to present is a slightly modi�ed version of the one

given by Villani, in the sense that we treat the more general case of non-constant

di�usivity. This case involves slightly more elaborate treatment of the estimates for

E(h) and M(h), which turn out being essentially the same as in the proof of the

previous theorem. Unfortunately, we were unable to reproduce the result in the �at

spaceHk,l
x,v(Rn

x×Rn
v ) but rather inH

k,l
x,v(µ). The reason for this is the slightly di�erent

structure in the evolution of Sobolev norms. Moreover, the interpolation estimates

are not necessarily satis�ed for every measure µ. Here we were able to prove them

for the quadratic potential U(x) = x2

2
(+L∞ perturbations of it), using a simple

extension of the interpolation result with Hermite polynomials (where interpolation
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is now performed both in x, v variables) presented in the previous paragraph. On

the plus side, we were able to catch the optimal exponent β = 3m. Indeed, it is

proven that:

Theorem 14. Let h(t, x, v) be a solution to the F-P equation

∂th+ v · ∇xh−∇U(x) · ∇vh = γ(x)△vh− γ(x)v · ∇vh,

with h0 ∈ L2(µ). Assume a smooth U(x) ∈ C∞(Rn
x) satisfying inf U(x) > −∞ and

|∇jU(x)| ≤ Cj for Cj > 0, j ≥ 2.

Assume also, γ(x) ∈ C∞(Rn
x) satis�es the extra conditions

λ0 ≤ γ(x) ≤ Λ0 for λ0,Λ0 > 0,

and

|∇j
xγ(x)| ≤ Λj Λj > 0 j ≥ 1.

It is proven that for any integer m ≥ 0, the following estimates holds

d

dt
Em(h) ≤ −K

∫
|∇3m+1

v h|2 dµ+ CEm(h), and

d

dt
Mm(h) ≤ −K

∫
|∇m

x h|2 dµ+ C
∑

k<m, 3k+l≤3m

∫
|∇k

x∇l
vh|2 dµ for K,C > 0,

where Em(h) =
∑

3k+l≤3m

ak,l
∫
|∇k

x∇l
vh|2 dµ is the generalized Sobolev norm that cap-

tures up to m derivatives in x and up to 3m in v (with coe�cients ak,l > 0 that are

going to be determined in detail), and Mm(h) =
∫
∇m

x h ·∇m−1
x ∇vh dµ is the general-

ized mixed derivative functional. If in addition, the following interpolation inequal-

ities hold for the measure µ (like in the case of a quadratic potential U(x) = x2

2
)

Em(h) ≤ C

(∫
|∇m

x h|2dµ+

∫
|∇3m

v h|2dµ+

∫
h2dµ

)
,
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Mm(h) ≤ CEm(h)
1−δ

for some θ, δ ∈ (0, 1), then the Sobolev regularity estimate

∑
3k+l≤3m

∥h∥Hk,l
x,v(µ)

≤ C

tβ
for 0 < t ≤ 1

holds, with β > 0 and C > 0.

As mentioned already, we make use of the following interpolation estimate.

Lemma 5. (Interpolation in Gaussian measure) Let h ∈ Hm
x (µ) ∩ H3m

v (µ) for the

measure µ(dx, dv) = e−x2/2e−v2/2dxdv. Then, h ∈ Hk,l
x,v(µ) for 3k + l ≤ 3m. Speci�-

cally,

∫
|∇k

x∇l
vh|2 dµ ≤ C

(∫
|∇m

x h|2 dµ
) k

m
(∫

|∇3m
v h|2 dµ

) l
3m
(∫

h2 dµ

)1− k
m
− l

3m

for some C > 0 independent of h.

Proof. Since one deals with Gaussian measure, the proof is based as usual on in-

terpolation using Hermite polynomials. Hermite polynomials form a natural basis

because they are orthonormal in the gaussian measure. The only slight deviation

here is that interpolation is done w.r.t. both variables x, v. Indeed, if we write

h(x, v) =
∑
n,r

cn,rHn(x)Hr(v), then it follows upon di�erentiation of h, subsequent

integration using the orthonormality of Hermite functions, and �nally by a simple
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C-S inequality for series that

∫
|∇k

x∇l
vh|2 dµ =

∫ ∣∣∣∑
n,r

cn,r∇k
x∇l

vHn(x)Hr(v)
∣∣∣2 dµ

=

∫ ∣∣∣∑
n,r

cn,r
n!

(n− k)!

r!

(r − l)!
Hn−k(x)Hr−l(v)

∣∣∣2e−x2

2 e−
v2

2 dv dx

=
∑
n,r

c2n,r

(
n!

(n− k)!

r!

(r − l)!

)2

≤ C
∑
n,r

c2n,rn
2kr2l

≤ C

(∑
n,r

c2n,rn
2m

) k
m
(∑

n,r

c2n,rr
6m

) l
3m
(∑

n,r

c2n,r

)1− k
m
− l

3m

≤ C

(∫
|∇m

x h|2 dµ
) k

m
(∫

|∇3m
v h|2 dµ

) l
3m
(∫

h2 dµ

)1− k
m
− l

3m

.

Notice that the above lemma implies directly the interpolation inequality

Em(h) ≤ C
(∫

|∇m
x h|2dµ+

∫
|∇3m

v h|2dµ+
∫
h2dµ

)
for the Gauss measure µ. The

proof of the main result follows.

Proof. The proof begins with an estimate on higher order derivatives in both x, v

variables, i.e we look after an estimate for

Em(h) =
∑

3k+l≤3m

ak,l

∫
|∇k

x∇l
vh|2 dµ,

with coe�cients ak,l that will be chosen appropriately.

Here, |∇k
x∇l

vh|2 is short for the sum
∑

k1+...+kn=k

∑
l1+...+ln=l

|∂k1,...,knx1,...,xn
∂l1,...,lnv1,...,vn

h|2.

In general, the notation ∇k
x∇l

v will be used short of any operator of the type

∂k1,...,knx1,...,xn
∂l1,...,lnv1,...,vn

, where k1 + . . . + kn = k and l1 + . . . + ln = l for ki, li ≥ 0. This

compact notation is used to avoid the extremely cumbersome alternative of carrying

indices.
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We di�erentiate the equation k times in the x variables and l times in the v

variables (k, l are both non negative integers), to get

∂t∇k
x∇l

vh+ l∇k+1
x ∇l−1

v h+ v · ∇k+1
x ∇l

vh−
k∑

r=0

Cr∇r+1U(x) · ∇k−r
x ∇l+1

v h

=
k∑

r=0

Cr∇r
xγ(x)

(
∇k−r

x ∇l
v△vh− l∇k−r

x ∇l
vh− v · ∇k−r

x ∇l+1
v h

)
for speci�c constants Cr, (C0 = 1, . . .).

Then after we multiply by ∇k
x∇l

vh and integrate (in measure µ) by parts, we

have

1

2

d

dt

∫
|∇k

x∇l
vh|2 dµ− l

∫ (
∇k

x∇l−1
v △vh− v · ∇k

x∇l
vh
)
· ∇k+1

x ∇l−2
v h dµ

−
k∑

r=1

Cr

∫
∇k

x∇l
vh ·

(
∇r+1U(x) · ∇k−r

x ∇l+1
v h

)
dµ

=−
k∑

r=0

Cr

∫
∇k

x∇l+1
v h · ∇r

xγ(x)∇k−r
x ∇l+1

v h dµ

−
k∑

r=0

Crl

∫
∇k

x∇l
vh · ∇r

xγ(x)∇k−r
x ∇l

vh dµ.

This yields the following inequality

1

2

d

dt

∫
|∇k

x∇l
vh|2 dµ ≤ −λ0

∫
|∇k

x∇l+1
v h|2 dµ+ C

∫
|∇k

x∇l+1
v h||∇k+1

x ∇l−2
v h| dµ

+ C
k∑

r=1

∫
|∇k

x∇l+1
v h||∇r+1U(x)||∇k−r

x ∇l
vh| dµ

+ C

k∑
r=1

∫
|∇k

x∇l+1
v h||∇r

xγ(x)||∇k−r
x ∇l+1

v h| dµ

+ C
k∑

r=0

∫
|∇k

x∇l
vh||∇r

xγ(x)||∇k−r
x ∇l

vh| dµ,

for some C > 0. This inequality, together with the fact that |∇jU(x)|, |∇j
xγ(x)|

are bounded by assumption and the use of Young and C-S inequalities gives
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1

2

d

dt

∫
|∇k

x∇l
vh|2 dµ ≤ −λ0

2

∫
|∇k

x∇l+1
v h|2 dµ+ C

∫
|∇k+1

x ∇l−2
v h|2 dµ

+ C

k∑
r=0

∫
|∇k−r

x ∇l
vh|2 dµ+ C

k∑
r=1

∫
|∇k−r

x ∇l+1
v h|2 dµ.

Now, we �x some integer m > 0 and choose coe�cients ak,l with the only

condition to be satis�ed that Cak,3(m−k) <
λ0

2
ak+1,3(m−k−1) for 0 ≤ k ≤ m− 1. From

this choice of coe�cients ak,l, it is trivial to reduce the last inequality to

d

dt
Em(h) ≤ −K

∫
|∇3m+1

v h|2 dµ+ CEm(h),

for the new constants K,C > 0.
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In similar manner, di�erentiating Mm(h) gives

d

dt
Mm(h)

=

∫
∂t(∇m

x h) · ∇m−1
x ∇vh dµ+

∫
∇m

x h · ∂t(∇m−1
x ∇vh) dµ

=
m∑
r=1

Cr

∫ (
∇r+1U(x) · ∇m−r

x ∇vh
)
· ∇m−1

x ∇vh dµ

+
m∑
r=0

Cr

∫
∇r

xγ(x)∇m−r
x h ·

(
∇m−1

x ∇v△vh− v∇m−1
x △vh

)
dµ

−
∫

|∇m
x h|2 dµ+

m−1∑
r=0

Cr

∫ (
∇r+1U(x) · ∇m−1−r

x ∇2
vh
)
· ∇m

x h dµ

+
m−1∑
r=0

Cr

∫
∇r

xγ(x)
(
∇m−1−r

x ∇v△vh−∇m−1−r
x ∇vh− v · ∇m−1−r

x ∇2
vh
)
· ∇m

x h dµ

≤ −
∫

|∇m
x h|2 dµ+ C

m∑
r=1

∫
|∇r+1U(x)||∇m−r

x ∇vh||∇m−1
x ∇vh| dµ

+ C

m∑
r=0

∫
|∇r

xγ(x)||∇m−r
x h|

(
|∇m−1

x ∇v△vh|+ |v∇m−1
x △vh|

)
dµ

+ C
m−1∑
r=0

∫
|∇r+1U(x)||∇m−1−r

x ∇2
vh||∇m

x h| dµ

+ C

m−1∑
r=0

∫
|∇r

xγ(x)|
(
|∇m−1−r

x ∇v△vh|

+ |∇m−1−r
x ∇vh|+ |v · ∇m−1−r

x ∇2
vh|
)
|∇m

x h| dµ.

Now, using the fact that |∇jU(x)| and |∇j
xγ(x)| are bounded, and Young's inequality
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2ab ≤ ϵa2 + 1
ϵ
b2 with ϵ > 0, one gets

d

dt
Mm(h) ≤ −1

2

∫
|∇m

x h|2 dµ+ C
m∑
r=1

∫ (
|∇m−r

x ∇vh|2 + |∇m−1
x ∇vh|2

)
dµ

+ C

m∑
r=1

∫
|∇m−r

x h|2 dµ+ C

∫ (
|∇m−1

x ∇2
vh|2 + |∇m−1

x ∇3
vh|2

)
dµ

+ C
m−1∑
r=0

∫
|∇m−1−r

x ∇2
vh|2 dµ

+ C

m−1∑
r=0

∫ (
|∇m−1−r

x ∇vh|2 + |∇m−1−r
x ∇2

vh|2 + |∇m−1−r
x ∇3

vh|2
)
dµ

≤ −1

2

∫
|∇m

x h|2 dµ+ C
∑

k<m, 3k+l≤3m

∫
|∇k

x∇l
vh|2 dµ.

Now that the two major estimates for Em and Mm have been shown, consider

the choice X =
∫
|∇m

x h|2 dµ, Y =
∫
(|∇3m

v h|2 + h2) dµ, and Z =
∫
|∇3m+1

v h|2 dµ.

Coupled with the extra conditions in the assumptions of the theorem and the use

of the di�erential inequality system we have already mentioned implies the desired

Sobolev estimate.

The last step in the proof is to show that the Gaussian measure satis�es these

extra interpolation assumptions made in the statement of this theorem. It turns out

that this is the case with values of θ, δ that can be computed explicitly.

Indeed, one has the estimate the standard interpolation inequality

∫
|∇3m

v h|2 dµ ≤ C

(∫
|∇3m+1

v h|2 dµ
) 3m

3m+1
(∫

h2 dµ

) 1
3m+1

which implies that 1− θ = 3m
3m+1

and subsequently θ
1−θ

= 1
3m

.
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At the same time, the estimate for the mixed derivative is

|Mm(h)| ≤
(∫

|∇m
x h|2 dµ

) 1
2
(∫

|∇m−1
x ∇vh|2 dµ

) 1
2

≤
(∫

|∇m
x h|2 dµ

) 1
2
(∫

|∇m
x h|2 dµ

)m−1
2m
(∫

|∇3m
v h|2 dµ

) 1
6m
(∫

h2 dµ

) 1
2
−m−1

2m
− 1

6m

≤
(∫

|∇m
x h|2 dµ

)1− 1
2m
(∫

|∇3m
v h|2 dµ

) 1
6m
(∫

h2 dµ

) 1
3m

.

This implies that in our case δ = 1
2m

(for m ≥ 1). This means that for the

Gauss measure dµ = e−x2/2e−v2/2dxdv, the exponent that one gets is β = 3m which

happens to be optimal.

We shall make a couple of remarks on the connection between the estimates

for weighted and �at Sobolev spaces and the optimal exponents. The �rst one is

that given initial data in L2(µ), the weighted estimates actually hold for �at norms

with the same exponent due to the inequality∫
|∇k

x∇l
vf |2 dv dx =

∫
|∇k

x∇l
v(hMeq)|2 dv dx =

∫
|∇k

x∇l
v(he

−U(x)e−
v2

2 )|2 dv dx

≤ C

∫ ∣∣∣ k∑
α=0

l∑
β=0

∇α
x∇β

vh∇k−α
x (e−U(x))∇l−β

v (e−
v2

2 )
∣∣∣2 dv dx

≤ C sup
x,v

(1 + |v|2 + . . .+ |v|2l)(1 + |U(x)|2 + . . .+ |∇kU(x)|2)Meq

k∑
α=0

l∑
β=0

∫
|∇α

x∇β
vh|2 dµ ≤ C

k∑
α=0

l∑
β=0

∫
|∇α

x∇β
vh|2 dµ.

Of course, this estimate says nothing about the case of L1 initial data and as

we have seen so far, one can expect that the optimal exponents (at least when γ(x) is

a constant) is given in ∥∇m
x f∥L2 +∥∇3m

v f∥L2 ≤ C
tn+3m/2 with C being independent of

the regularity of f0. In fact, Villani shows that when γ(x) is constant the exponent
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that one gets by his technique is 3n + 3m/2 and that with the help of the Nash

inequality presented in the form of a lemma earlier, this exponent can decrease to

any β with β > n+ 3m/2 (but not shown in the critical case β = n+ 3m/2).
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4.2.6 Regularization from L1 Data

We have already presented a result on the regularizing properties of the semi-

group e−tL for the F-P operator Lh = v ·∇xh−∇U(x) ·∇vh− (∇v − v) ·∇vh, when

one encounters entropic initial conditions (in L logL(µ)). In fact this result can be

relaxed to L1 data as it is evident in:

Theorem 15. Consider the Cauchy problem ∂tf + Lf = 0 with initial data f0 ∈

L1(Rn
x × Rn

v ). The potential U(x) is assumed to be Lipschitz which guarantees a

unique solution. Assume also bounded second moments for f0 i.e.
∫∫

f0(|x|2+|v|2) <

∞. It is shown that the semigroup solution regularizes the relative entropy in the

sense that ∫∫
f log

f

Meq

dvdx <∞ for t > 0.

Proof. We start with an estimate on the growth of the general moment
∫∫

f(|x|2 +

|v|2)s/2 for s > 0. Computations are performed component-wise with the standard

convention of summation over repeated indices.

d

dt

∫∫
f(|x|2 + |v|2)s/2 =

∫∫
∂tf(|x|2 + |v|2)s/2

=

∫∫ (
−vj∂xj

f + ∂xj
U(x)∂vjf − ∂2vjf − ∂vj(vjf)

)
(|x|2 + |v|2)s/2

=

∫∫
vjf∂xj

(|x|2 + |v|2)s/2 +
∫∫ (

−∂xj
U(x)f + ∂vjf + vjf

)
∂vj(|x|2 + |v|2)s/2

= s

∫∫
f(|x|2 + |v|2)

s
2
−1
(
vjxj − vj∂xj

U(x) + v2j
)
− f∂vj

(
vj(|x|2 + |v|2)

s
2
−1
)

≤ C

∫∫
f(|x|2 + |v|2)s/2 − s

∫∫
fδjj(|x|2 + |v|2)

s
2
−1

− 2s
(s
2
− 1
)∫∫

fvjvj(|x|2 + |v|2)
s
2
−2,
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where we made use of the Lipschitz continuity of U(x). Taking s = 2 and using

conservation of mass, one gets

d

dt

∫∫
f(|x|2 + |v|2) ≤ C

∫∫
f(|x|2 + |v|2)

which implies
∫∫

f(|x|2+ |v|2) = O(eCt), or O(1+ t) for 0 < t < 1 (given
∫
f0(|x|2+

|v|2) <∞).

The regularization in Hk,l
x,v(Rn

x × Rn
v ) coupled with the anisotropic Nash in-

equality used by Villani implies that
∫∫

f 2 behaves like O(t−β) for some β > 0 and

0 < t < 1. One can now make use of the bounds for
∫
f 2 and

∫
f(|x|2 + |v|2) to

obtain

∫∫
f log f dv dx ≤ C3/2

∫
f 3/2 dv dx

≤ C3/2

(∫∫
f(1 + |x|2 + |v|2) dv dx

) 1
2
(∫∫

f 2

1 + |x|2 + |v|2
dv dx

) 1
2

≤ O

((
1 + t

tβ

)1/2
)
.

While, at the same time

∫∫
f log

f

Meq

≤
∫∫

f log f + C

∫∫
f(|x|2 + |v|2)

which completes the proof.

105



Chapter 5: Convergence to Equilibrium

In this chapter, we present results of long time asymptotics for a regularized

FP operator L. The results are strongly in�uenced by the theory of hypocoercivity

systematically studied by C.Villani and outlined in [71]. Hypocoercivity deals with

operators that are not coercive in a Hilbertian framework, but for which we can

create an �appropriate� norm so that L is now coercive. The theory has some nice

generalizations but results tailored for the F-P operator su�ce here.

The method employed here bears a strong resemblance to the technique by

Hérau used in the previous section. We make use of a functional E(h) that gives

a measure of distance of a solution to the unique stationary state Meq(x, v). In

general, we try to prove under certain assumptions, that −E′(h) ≥ KE(h)1+ϵ for

some K > 0, ϵ ≥ 0. If ϵ = 0, exponential decay of E(h) is implied, otherwise for

ϵ > 0 the rate of decay is algebraic.

We start with a result for L2(µ) initial data, exactly like we did when we

studied short time regularity estimates. We then proceed to a result from [15],

which gives an algebraic decay rate for the relative entropy functional. We can

strengthen this result by adding extra terms to the entropy functional (terms in-

cluding derivatives + a mixed derivative term), and show exponential convergence
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rate for L logL(µ) initial data. Finally, a di�erent approach based on a method by

Dolbeault-Mouhot-Schmeiser is presented.
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5.1 Hypocoercivity

The theorem proved in this paragraph can be generalized to any unbounded

operator of the form L = A∗A+B in some Hilbert space H, with B being antisym-

metric (B∗ = −B). It is related to the study of convergence rates of a solution of the

equation ∂tf +Lf = 0 to the unique stationary state Meq. The Hilbert space H can

be assumed being L2(µ) for the main result in this paragraph. The norm in L2(µ)

will be denoted by ∥ · ∥ and it is generated by the inner product ⟨·, ·⟩. The adjoint

of an operator will be understood in this setting. Any norm and inner product in

this paragraph that isn't speci�ed otherwise will be assumed to be related to L2(µ).

Before we begin with the main theory, we give two de�nitions to shed some light

on the di�erence between coercivity and hypocoercivity. First, let us assume that the

(unbounded) operator −L generates the continuous, contraction, semigroup (St)t≥0

on on the Hilbert spaceH (with inner product mentioned above), i.e. St = e−tL. We

will de�ne the two notions of coercivity/hypocoercivity to hold on a Hilbert space

H̃, which will in general be narrower than H. H̃ is endowed with the inner product

⟨·, ·⟩
H̃
. For simplicity, we assume both Hilbert spaces to be real Hilbert spaces. We

now give give de�nitions of coercivity and hypocoercivity in the spirit of [71], so

that the importance of functional setting becomes apparent.

De�nition 1. An operator L is called λ-coercive (for λ > 0) on H̃, if

⟨h, Lh⟩
H̃
≥ λ∥h∥2

H̃
∀h ∈ D(L) ∩ H̃,

and coercive on H̃ if the above inequality holds for some λ > 0.
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From this de�nition, it follows trivially that L is λ-coercive i�

∀h ∈ H̃, t ≥ 0, ∥e−tLh∥
H̃
≤ e−λt∥h∥

H̃
.

The usual space H̃ on which we de�ne coercivity is H̃ = H/N(L). The

following de�nition provides a property weaker than that of coercivity, which we

call hypocoercivity. It will hold on a generally di�erent Hilbert space H̃.

De�nition 2. Assume an (unbounded) operator L on H, generating a continuous

semi-group (e−tL)t≥0. We say that L is λ-hypocoercive on H̃ (for λ > 0) if there

exist some C > 0 s.t.

∥e−tLh∥
H̃
≤ Ce−λt∥h∥

H̃
∀h ∈ H̃, ∀t ≥ 0,

and hypocoercive on H̃ if the above inequality holds for some λ > 0.

The typical choice for H̃, when showing hypocoercivity, is N(L)⊥ endowed

with a Sobolev norm e.g. H̃ = H1/N(L).

A couple of remarks should be made with respect to the above de�nitions.

Remark 12. The �rst comment is that coercivity implies hypocoercivity with con-

stant C = 1, as we already saw. The inverse statement is also true. If the constant

C equals 1 in the de�nition of hypocoercivity, then for the inner product of H̃, λ-

coercivity holds. This is just a consequence of Lummer-Phillips theorem.

Remark 13. The important feature of the constant C that appears in the de�nition

of hypocoercivity is that it makes the property of hypocoercivity for a semi-group,

invariant for equivalent norms. The importance of this property will be highlighted
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later. For now one should keep in mind that proving coercivity for an operator un-

der a carefully designed norm automatically proves hypocoercivity for any equivalent

norm.

An example of how the coercivity condition can be relaxed to imply hypoco-

ercivity is found in the following theorem presented in [31].

Theorem 16. Let L be a generator of a contraction semi-group on a Hilbert space

H. Assume that there exists some a > 0 and a bounded operator M (on H) s.t. the

following condition holds,

∀h ∈ D(L) ∩H, t ≥ 0, a∥h∥2 ≤ ⟨Lh, h⟩+ ⟨Lh, (M +M∗)h⟩.

Then, it follows that L is hypocoercive on H.

In the theorem that follows the key Sobolev space in which hypocoercivity is

shown is the space H1 with norm

∥u∥H1 =
(
∥u∥2 + ∥Au∥2 + ∥Cu∥2

)1/2
.

We can now give a general theorem that proves hypocoercivity for our case:

Theorem 17. Consider the operator L = A∗A+B (with B∗ = −B) and C = [A,B].

Assume that the following hold:

(i) [A,C] = [A∗, C] = 0, [A,A] = 0,

(ii) ∥[A,A∗]h∥ ≤ α (∥h∥+ ∥Ah∥) for some α > 0,

(iii) ∥[B,C]h∥ ≤ β (∥Ah∥+ ∥A2h∥+ ∥Ch∥+ ∥ACh∥) for some β > 0,

(iv) A∗A+ C∗C is k-coercive.
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Then, there exists an inner product ((·, ·)) in H̃ (de�ning a norm equivalent to H1)

and λ > 0 s.t. L is λ-coercive in the inner product ((·, ·)), i.e.

((h, Lh)) ≥ λ((h, h)) ∀h ∈ H1/N(L),

and hypocoercive on H̃. Furthermore, ((h, h)) = ∥h∥2 + a∥Ah∥2 + 2b⟨Ah,Ch⟩ +

c∥Ch∥2.

Proof. The proof of this theorem can be found in [71].

In what follows, we give the statement of result and proof tailored to our

problem.

Theorem 18. Assume a smooth solution h(t, x, v) to the problem

∂th+ v · ∇xh−∇U(x) · ∇vh = γ(x)△vh− γ(x)v · ∇vh,

with initial data h0 ∈ L2(µ) s.t
∫
h0 dµ = 0. We further assume a potential U(x) ∈

C2(R3N
x ) and γ(x) ∈ C1(R3N

x ) that satisfy:

(i) |∇2U(x)| ≤ C ′ (this condition can be relaxed to |∇2U(x)| ≤ C ′(1+ |∇U(x)|)) for

C ′ > 0,

(ii) λ0 ≤ γ(x) ≤ Λ0 and |∇xγ(x)| ≤ Λ1 with λ0,Λ0,Λ1 > 0, and

(iii) the measure e−U(x)dx satis�es a Poincaré inequality for a constant λ > 0.

It is proven that there exists a constant C > 0, such that for the given initial

data

∥e−tLh0∥H1(µ) ≤ Ce−λt∥h0∥L2(µ).
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Proof. The proof bears a striking resemblance to the strategy employed in the Hérau

regularization. First, we consider the functional

E(h) =

∫
h2 dµ+ a

∫
|∇vh|2 dµ+ 2b

∫
∇vh · ∇xh dµ+ c

∫
|∇xh|2 dµ,

and try to show that for carefully selected a, b, c > 0 we get

d

dt
E(h) ≤ −C

(∫
|∇xh|2 dµ+

∫
|∇vh|2 dµ+

∫
|∇2

vxh|2 dµ+

∫
|∇2

vh|2 dµ
)

for some C > 0.

Indeed, with computations very similar to the ones presented when proving

regularization, one has that

d

dt
E(h) ≤

− 2λ0

∫
|∇vh|2 dµ− 2λ0a

∫
|∇2

vh|2 dµ− 2b

∫
|∇xh|2 dµ− 2λ0c

∫
|∇2

vxh|2 dµ

+ 2b

∫
∇vh · ∇2U(x)∇vh dµ− 2λ0a

∫
|∇vh|2 dµ

+ 2c

∫
∇xh · ∇2U(x)∇vh dµ− 2a

∫
∇vh · ∇xh dµ− 2b

∫
γ(x)∇vh · ∇xh dµ

− 4b

∫
γ(x)∇2

vxh : ∇2
vh dµ

− 2b

∫
∇xγ(x) · ∇2

vh∇vh dµ− 2c

∫
∇xγ(x) · ∇2

vxh∇vh dµ.
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This implies that d
dt
E(h) is bounded above by

− 2λ0

∫
|∇vh|2 dµ− 2λ0a

∫
|∇2

vh|2 dµ− 2b

∫
|∇xh|2 dµ− 2λ0c

∫
|∇2

vxh|2 dµ

+ 2bC ′
∫

|∇vh|2 dµ− 2λ0a

∫
|∇vh|2 dµ

+ 2cC ′
∫

|∇xh||∇vh| dµ+ 2a

∫
|∇vh||∇xh| dµ+ 2bΛ0

∫
|∇vh||∇xh| dµ

+ 4bΛ0

∫
|∇2

vxh||∇2
vh| dµ

+ 2bΛ1

∫
|∇2

vh||∇vh| dµ+ 2cΛ1

∫
|∇2

vxh||∇vh| dµ.

With a bit more work and putting terms together, we have

d

dt
E(h) ≤(
−2λ0 + 2bC ′ − 2λ0a+

(2cC ′ + 2a+ 2bΛ0)
2

2b
+ bΛ1 + 2c

Λ2
1

λ0

)∫
|∇vh|2 dµ

− 3b

2

∫
|∇xh|2 dµ+

(
−2λ0a+ 4

Λ2
0

λ0

b2

c
+ bΛ1

)∫
|∇2

vh|2 dµ− λ0c

2

∫
|∇2

vxh|2 dµ.

Under pretty much the same assumption on the parameters a, b, c > 0 like the

ones we had when picking the parameters in Hérau technique, i.e. a, b
a
, c
b
, a

2

b
, and b2

ac

being chosen su�ciently small, it follows that

d

dt
E(h) ≤ −C

(∫
|∇vh|2 dµ+

∫
|∇xh|2 dµ

)
.

We now make use of the assumption that e−U(x)dx satis�es a Poincaré inequal-

ity with constant λ. This implies that dµ(x, v) satis�es a Poincaré inequality with

same constant, i.e. ∫
h2 dµ ≤ λ

(∫
|∇xh|2 dµ+

∫
|∇vh|2 dµ

)
,

since e−
v2

2 dv satis�es a Poincaré inequality with constant 1. This leads to

d

dt
E(h) ≤ −C

(∫
h2 dµ+

∫
|∇xh|2 dµ+

∫
|∇vh|2 dµ

)
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for a new constant C > 0.

The inclusion of the mixed derivative term
∫
∇xh · ∇vh dµ in the functional

E(h) has the same a�ect in proving hypocoercivity as it did for the proof of reg-

ularization. The evolution of this term provides the −
∫
|∇xh|2 dµ term necessary

for closure. At the same time, it doesn't really alter the nature of the functional

E(h). Indeed, if we choose b2/ac < 1 (a condition that as we saw is necessary in the

proof), then by a trivial C-S we get

−(1− δ)

(
a

∫
|∇vh|2 dµ+ c

∫
|∇xh|2 dµ

)
≤ 2b

∫
∇xh · ∇vh dµ

≤ (1− δ)

(
a

∫
|∇vh|2 dµ+ c

∫
|∇xh|2 dµ

)

for su�ciently small δ > 0.

Hence, it is shown that

d

dt
E(h) ≤ −KE(h) for some K > 0.

The last part of the proof is to incorporate the regularity estimates we previ-

ously obtained to relax the assumptions of the initial data to h0 ∈ L2(µ), i.e.

∥h∥H1(µ) ≤ e−K(t−t0)∥h(t0)∥H1(µ) ≤ C
e−K(t−t0)

t
3/2
0

∥h0∥L2(µ) for any 0 < t0 < 1.
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5.2 Relative Entropy

Another technique to study rate of convergence to the global stationary state

Meq(x, v), is via the use of relative entropy, see [15]. The relative entropy H(f |g)

between two probability density functions f, g is given by

H(f |g) =
∫∫

f log
f

g
dv dx.

The main idea behind the study of the convergence rate for the relative entropy

H(f |Meq), is that due to the Csiszár-Kullback-Pinsker inequality for probability

measures, the relative entropy controls the square of the L1 distance between f and

Meq(x, v), i.e.

∥f −Meq∥L1(R3N
x ×R3N

v ) ≤
√

2H(f |Meq).

The entropy dissipation rate (Fisher information) is

− d

dt
H(f |Meq) =

∫∫
f
∣∣∣∇v log

f

Meq

∣∣∣2 dv dx =

∫∫
f
∣∣∣∇v log

f

M

∣∣∣2 dv dx.
The dissipation rate vanishes i� f = ρM(v), where ρ =

∫
f dv. This is exactly

the di�culty in the entropy method approach as it appears in many types of kinetic

equations with the most notable example that of the Boltzmann equation treated

in [16]. In equations where the dissipative term acts only in the velocity space,

the total entropy vanishes for states that belong in a subfamily of the Gaussian

distribution. For this type of equations the transport term is responsible for driving

the system away from these local equilibria states, thus making the entropy positive

again and giving it space to dissipate more. The interplay between the transport
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and the dissipative terms drives the equation to a global equilibrium state with the

relative entropy approaching 0 in a non monotone way.

To see the di�erence that the transport term makes consider this example of

the Ornstein-Uhlenbeck equation borrowed from [52]. In this, there is a probability

density f(v, t) : R3N
v × R+ → R+ that solves the equation

∂tf = ∇v · (∇vf + vf).

The unique global equilibrium state for this equation is the standard Gaussian in

velocity space M(v). With the help of the log-Sobolev inequality (see appendix),

one gets

− d

dt
H(f |M) ≥ CH(f |M),

which yields exponential decay of the entropy and subsequently of a solution to the

equilibrium state.

In the above spirit, the log-Sobolev inequality here implies that

− d

dt
H(f |Meq) ≥ CH(f |ρM)

which does not o�er a closed inequality. The missing bit of information is the

distance of a hydrodynamic variable ρ from e−U(x)

H(f |Meq)−H(f |ρM) = H(ρ|e−U(x)).

We assume that that if we focus in higher order time derivatives of the relative

entropy of f with respect to local equilibria states we can provide a system of

di�erential inequalities that is closed. It can be proven that

d2

dt2
H(f |ρM)

∣∣∣
local eq.

=

∫
ρ
∣∣∣∇x log

ρ

e−U(x)

∣∣∣2 dx.
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The above relation is indicative of the closure we can obtain since it connects the

second time derivative of H(f |ρM) with the Fisher information of H(ρ|e−U(x)).

Under suitable assumptions on the regularity of the solution and potential

U(x), it can be shown after detailed analysis that the following system of inequalities

holds,

− d

dt
H(f |Meq) ≥ CH(f |ρM)

d2

dt2
H(f |ρM) ≥ K (H(f |Meq)−H(f |ρM))− C(f0)H(f |ρM)1−ϵ

for any ϵ > 0, and some K > 0, C(f0) > 0 that depend on ϵ. C(f0) is a constant

that depends on initial solution pro�le f0. This system of inequalities gives algebraic

convergence rate as it is well explained in [15].

The precise statement of the theorem is:

Theorem 19. Assume a probability density f0(x, v) ∈ L1 (initial data) that is

controlled by Maxwellians, in the sense that there exists a,A > 0 s.t.

aMeq(x, v) ≤ f0(x, v) ≤ AMeq(x, v).

Assume also a globally smooth solution f(x, v, t) to the F-P equation, and a quadratic

potential U(x) with an added perturbation term, i.e.

U(x) = ω
|x|2

2
+ Φ(x), ω > 0, Φ(x) ∈ H∞(Rn

x).

Then, for every ϵ > 0, there exists a constant Cϵ(f0) s.t.

∥f −Meq∥L1(R3N
x ×R3N

v ) ≤ Cϵ(f0)t
−1/ϵ.
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5.3 Entropy & Commutators

We have already modi�ed the technique by Hérau to show hypocoercivity for

the operator Lh = v · ∇xh−∇U(x) · ∇vh− (∇v − v) · ∇vh , with L2(µ) data. We

can pretty much follow the same lines of proof, to relax the initial data to belong in

the space L logL(µ).

The Lyapunov functional used here takes the form

E(h) =

∫
h log h dµ+ a

∫
h|∇v log h|2 dµ

+ 2b

∫
h∇v log h · ∇x log h dµ+ c

∫
h|∇x log h|2 dµ.

At the same time, we have given a regularization result that allows for more general

initial data (measure initial data), under the extra assumption of bounded �rst

moments, which is used in:

Theorem 20. Assume an initial pro�le f0(x, v) ∈ L1(Rn
v×Rn

x) that has �nite second

moments, i.e. ∫∫
(|x|2 + |v|2)f0 dv dx <∞.

Assume also that the potential U(x) ∈ C2(R3N
x ) satis�es |∇2U(x)| ≤ C for all

x ∈ R3N
x , and that e−U(x) satis�es a log-Sobolev inequality. It can be proven that

∫∫
f log

f

Meq

dv dx ≤ O(e−kt) for t ≥ 1,

with k > 0, which implies exponential decay in L1.
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5.4 Hypocoercivity à la Dolbeault-Mouhot-Schmeiser

We present here another approach borrowed from [20], which strengthens

slightly the Villani theory in some sense. The main framework will once again

be the Hilbert space H = L2(M−1
eq dvdx) with inner product denoted by ⟨·, ·⟩ as in

⟨f, g⟩ =
∫∫

f

Meq

g

Meq

Meq dv dx.

The idea is similar to the general idea of constructing an entropy H(f) that allows

a Gronwall type of inequality, like in the Villani theory, but with a di�erence. The

functional entropy will satisfy − d
dt
H(f) ≥ CH(f) for some C > 0 and is shown to

be equivalent to the square of the L2(µ) norm rather than a Sobolev type of norm.

So this theory su�ces to show convergence in L2(µ) without any regularization

properties for e−tL.

We consider the general kinetic equation ∂tf + Tf = Cf with transport term

T = v · ∇x −∇U(x) · ∇v and a general collision operator C which is mass preserving

and acting only in velocity space. The operator T is anti-symmetric and we make

the extra assumption of a self-adjoint C (C∗ = C). We further assume that C is

dissipative in the sense −⟨Cf, f⟩ ≥ 0 for all f ∈ D(C), but not coercive (no C > 0

s.t. ⟨Cf, f⟩ ≥ C||f ||2).

We �nally make the assumption of considering the k.e for f −Meq, so that the

new density f corresponds to perturbations about the equilibrium zero state. The

new f will be normalized as in
∫∫

f dv dx = 0.

We now introduce the orthogonal projection P onto the null space of C (space
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of local equilibria N(C)), i.e.

Pf =

(∫
f dv

)
M(v) = ρM(v).

It is natural to assume at least one conservation law (mass) for the k.e, which would

simply imply ∫
Cf dv = 0 =⇒ PC = 0.

The entropy functional that will be used and was inspired by the work of [30]

is

H(f) =
1

2
∥f∥2 + ϵ⟨Af, f⟩ ϵ > 0,

for the operator A = (I + (TP )∗TP )−1(TP )∗.

The dissipation rate D(f) = − d
dt
H(f) is computed to be

D(f) = −⟨Cf, f⟩ − ϵ⟨A(C− T)f, f⟩ − ϵ⟨Af, (C− T)f⟩

= −⟨Cf, f⟩+ ϵ⟨ATPf, f⟩+ ϵ⟨AT(I − P )f, f⟩ − ϵ⟨TAf, f⟩ − ϵ⟨ACf, f⟩.

The last term should equal −ϵ⟨(A+A∗)Cf, f⟩ but is simpli�ed since PC = 0 implies

⟨A∗Cf, f⟩ = 0. In the attempt to bound all the terms of the dissipation rate and

obtain a rate of convergence for H(f) we make �natural� assumptions which are

easily applicable in the case of a Fokker-Planck operator C.

The �rst two are the assumptions of micro & macro coercivity which have

already been employed in the Villani treatment of relative entropy when in the

attempt to derive the system of di�erential inequalities that we presented.

The microscopic coercivity assumption states that −C is coercive on N(C)⊥,
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i.e.

−⟨Cf, f⟩ ≥ λm∥(I− P )f∥2 for some λm > 0. (5.1)

Microscopic coercivity for C = ∇v · (∇v + v·) boils down to the Poincaré inequality

for L2(M(v)dv) which holds trivially,

−⟨Cf, f⟩ =
∫

1

e−U(x)

∫
M(v)

∣∣∣∇v
(I− P )f

M(v)

∣∣∣2 dv dx
≥
∫

1

e−U(x)

∫
M(v)

∣∣∣(I− P )f

M(v)

∣∣∣2 dv dx = ∥(I− P )f∥2.

The second condition assumed is the macroscopic coercivity condition

∥TPf∥2 ≥ λM∥Pf∥2 for some λM > 0, (5.2)

which amounts to the validity of the Poincaré inequality with measure L2(e−U(x)dx)

for the macroscopic variable ρ, i.e.∫
e−U
∣∣∣∇x

( ρ

e−U

) ∣∣∣2 dx ≥ λM

∫
e−U(x)

∣∣∣ ρ
e−U

∣∣∣2 dx.
This assumption is not automatically satis�ed for the equation at hand and boils

down to �nding the measures e−U(x) for which a Poincaré inequality holds. In the

appendix we present a su�cient condition for the Poincaré inequality to hold for

the measure e−U(x).

Employing (5.1), (5.2) and the extra assumption

PTP = 0, (5.3)

it can be shown that A = PA, as well as the fact that A and TA are bounded

operators since it is easily proven that

(i) ∥Af∥ ≤ 1

2
∥(I− P )f∥ & (ii) ∥TAf∥ ≤ ∥(I− P )f∥.
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Condition (i) is the reason that the entropy functional H(f) is equivalent to

∥ · ∥2.

The last assumption that is employed to give a decay rate for entropy is

∥TA(I− P )f∥+ ∥ACf∥ ≤ CM∥(I− P )f∥ for some CM > 0. (5.4)

All the above can be combined in:

Theorem 21. Consider the kinetic equation ∂tf + Tf = Cf where operators T,C

have the properties mentioned in the �rst two paragraphs.

Assume that the following are satis�ed

(i) −⟨Cf, f⟩ ≥ λm∥(I− P )f∥2 for some λm > 0

(ii) ∥TPf∥2 ≥ λM∥f∥2 for some λM > 0

(iii) PTP = 0

(iv) ∥AT(I− P )f∥+ ∥ACf∥ ≤ Cm∥(I− P )f∥ for some Cm > 0.

Given initial data f0 ∈ L2(dµ) (f0 ≥ 0,
∫∫

f0 = 1), it can be shown that

− d

dt
H(f) ≥ λH(f) for some λ > 0,

for the entropy we have de�ned. This implies that there exists C > 0 s.t.

∥e−tLfo∥ ≤ Ce−λt∥f0∥ t ≥ 0.

Proof. See [20].

For the case of the inhomogeneous Fokker-Planck operator C = ∇v · (∇v + v·)

the assumptions mentioned in the theorem above are met in (see [20] for details)

the following theorem.
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Theorem 22. Assume that the external potential U(x) has the following properties:

(i) U(x) ∈ C2(R3N),with
∫
e−U(x)dx = 1

(ii) e−U(x) satis�es a Poincaré type of inequality

(iii) △U(x) ≤ c1 +
c2
2
|∇U(x)|2 for c1 > 0 and c2 ∈ (0, 1), and

(iv) |∇2U(x)| ≤ c3(1 + |U(x)|).

Then, the solution of ∂tf+Tf = Cf with initial data in L2(dµ) decays exponentially

fast towards the global equilibrium state.
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Chapter 6: Di�usive Limit

In this last Chapter, we examine the hydrodynamic limit of the Cauchy prob-

lem ∂tfϵ + Lϵfϵ = 0 with fϵ(0, ., .) = fϵ

∣∣∣
t=0

(., .), as ϵ → 0, for the Fokker-Planck

operator

Lϵf =
1

ϵ
(v · ∇xf −∇U(x) · ∇vf)−

1

ϵ2
∇v ·

(
G(x)Meq∇v

(
f

Meq

))
.

There is an obvious analogy in this study, with the Kramers-Smouchowski limit for

SDEs, see e.g. [23]. We begin with a formal argument based on the Hilbert expansion

of fϵ, which gives an expansion for the hydrodynamic variable ρϵ =
∫
fϵ dv as well.

After we explicitly compute the �rst terms of the expansion, i.e. f0, f1,. . . , we obtain

an equation for the limit hydrodynamic variable ρ (�rst term of the ρϵ expansion),

which is the Smoluchowski equation

∂tρ = ∇x · (G−1(x)(∇xρ+∇U(x)ρ)).

Two techniques are employed to establish the rigorous limit under di�erent a

priori energies. In the �rst, we prove weak convergence ρϵ ⇀ ρ for mild solutions,

using weak compactness principles and initial data in weighted L2 space. The second

technique relies on a relative entropy argument, uses entropic initial data and gives

convergence in L1, uniformly on any time interval [0, T ], for T > 0.
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6.1 Formal Result

6.1.1 Hilbert Expansion

The study of the hydrodynamic limit as ϵ → 0 will begin with the Hilbert

expansion, and we will see the problems that arise in this analysis. We expand fϵ

in powers of ϵ as in

fϵ = f0 + ϵf1 + ϵ2f2 + . . .

and after we substitute in the FP equation ∂tfϵ + Lϵfϵ = 0, we balance powers of

ϵ. This procedure leads to a cascade of equations which in our case can be solved

explicitly at least for the initial terms. This hierarchy of equations is

C(f0) = 0 (0'th order term)

T(f0) = C(f1) (1st order term)

∂tfj−2 + T(fj−1) = C(fj) (j'th order term for j ≥ 2).

Solving the �rst equation, one trivially gets

f0 = ρ0M,

where ρ0 is the hydrodynamical variable of highest order in the expansion of ρϵ,

de�ned by ρ0 =
∫
f0 dv. A typical feature of the expansion is that the hydrodynamic

variable ρϵ =
∫
fϵ dv is also expanded in a power series of ϵ where each term ρi is

given by ρi =
∫
fi dv, i ≥ 0.

The next two terms are,

f1 = −vTG−1Bρ0M(v) + ρ1M(v)
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and

f2 =
1

2

(
vTG−1BvTG−1Bρ0M(v)−G−1B ·G−1Bρ0M(v)

)
− vTG−1Bρ1M(v) + ρ2M(v),

for the vector �eld B = ∇x +∇xU(x).

A rigorous approach to the Hilbert expansion for fϵ and how it can be used to

study the limit as ϵ→ 0 is given by the following procedure. In general we truncate

the expansion to some order i.e.

fϵ = f0 + ϵf1 + . . .+ ϵmfm + Rϵ

and set up the equation for the remainder term Rϵ(t, x, v).

In fact the truncated expansion could help us obtain a rigorous result for the

hydrodynamic limit if

(i) Rϵ is a term of some order l ≥ 0 in ϵ, i.e. Rϵ = ϵlR′
ϵ for some function R′

ϵ which

we should rigorously be able to show is of order ϵ0 (l does not necessarily have to

be equal to m+ 1) and

(ii) we can prove that for an appropriate selected space equipped with a norm ∥ · ∥,

the functions R′
ϵ, f1, . . . fm are su�ciently regular uniformly in time (or at least for

a �nite time interval [0, T ] for T > 0), in the sense that

sup
ϵ>0,t∈I

{∥f1∥, ∥f2∥, . . . , ∥fm∥, ∥R′
ϵ∥} <∞,

where I = [0,∞), or [0, T ]. This would be enough to establish that fϵ → ρ0M in

the ∥ · ∥ norm, uniformly on the time interval I.
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In our case, it is enough to truncate after the second term as in fϵ = f0+ ϵf1+

ϵ2f2 +Rϵ and substitute in the F-P equation. The equation for the remainder term

is

∂tRϵ +
1

ϵ
T(Rϵ)−

1

ϵ2
C(Rϵ) = F(t, x, v),

where F(t, x, v) = −ϵ(T(f2) + ∂tf1)− ϵ2∂tf2.

The study of the remainder equation in terms of its stability w.r.t. F will

allow the rigorous justi�cation of the limiting procedure. In reality, one should be

able show that Rϵ is of order ϵ or less and be able to establish regularity results for

the hydrodynamical variables that appear in F. In this chapter we are going to use

two methods di�erent than the expansion we presented above based on two di�erent

types of a priori estimates. These methods either rely on compactness arguments,

or functional �entropic� inequalities and the study of a relative entropy. Before that,

we need to proceed with the formal argument and derive the limit equation of ρϵ.

6.1.2 Equation for the limit Hydrodynamic Variable ρ

In the study of the limit case ϵ → 0, we want to derive the equation for the

hydrodynamic term ρ, which at least formally should be the limit of ρϵ.

Integrating the FP equation in velocity space we obtain

∂tρϵ +∇x · Jϵ = 0, (6.1)

where Jϵ(t, x) =
1
ϵ

∫
vfϵ dv is the �ux vector.

To this end, we want to derive an expression for Jϵ and see the terms that are

involved in it. In the derivation of the equation for the �rst moment one multiplies
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the FP by v and integrates. The equation for Jϵ is

ϵ2∂tJϵ(t, x) +∇x · Pϵ(t, x) +∇U(x)ρϵ = −G(x)Jϵ(t, x), (6.2)

where Pϵ(t, x) =
∫
v ⊗ vfϵ dv is the pressure tensor.

As will be shown rigorously, the main contribution to the above equation comes

from the r.h.s as well as the second and third terms of the l.h.s. Indeed, treating

the pressure tensor Pϵ(t, x), we see that∫
vivjfϵ dv = −

∫
∂vi(M)vj

fϵ
M
dv =

∫
δijfϵ dv +

∫
M∂vi

(
fϵ
M

)
vj dv,

which leads to a second term in (6.2) that equals

∇x · Pϵ(t, x) = ∇xρϵ +∇x ·
∫

M∇v

(
fϵ
M

)
⊗ v dv.

With the above, (6.2) now becomes

Jϵ(t, x) = −G−1(x) (∇xρϵ +∇U(x)ρϵ)− ϵ2G−1(x)∂tJϵ(t, x) (6.3)

−G−1(x)∇x ·
∫

M(v)∇v

(
fϵ
M

)
⊗ v dv.

The last term in (6.3) contains the second term in the expansion of Pϵ(t, x)

which can be shown to be of order ϵ if one uses an appropriate a priori energy

estimate e.g. in L2(µ). This implies that in the limit ϵ → 0, we should be able to

establish rigorously that Pϵ(t, x) ≃ ρ(t, x)I. The previous to last term ϵ2G−1(x)∂tJϵ

should also be shown to be a term of order ϵ, as long as we give an appropriate

interpretation to a solution Jϵ(t, x) of equation (6.3). What is implied by this is

that

Jϵ(t, x) = −G(x)−1 (∇xρϵ +∇U(x)ρϵ) + lower order terms in ϵ . . . .
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Finally, as ϵ→ 0, the system of equations (6.1)-(6.2) converges to

∂tρ+∇x · J = 0

J = −G(x)−1(∇xρ+∇U(x)ρ),

with fϵ(t, x, v) ≃ ρ(t, x)M(v).

All this is enough to suggest that the equation for ρ is

∂tρ = ∇x ·
(
G−1(x)(∇xρ+∇U(x)ρ)

)
.

To understand how the formal argument can be used to establish the rigorous

limit, we need to formulate in what way a solution fϵ to (6.3) makes sense. Here

inspired by the analysis in the next section, we can consider that (6.3) is understood

in the �weak� sense.

Assume a test function ϕ ∈ C∞
c (R+,Rn

x,Rn
v ). Multiply the equation for Jϵ by

ϕ(t, x, v) and integrate in v, x, t. The goal is to provide a bound for the integral

terms

ϵ2
∫ t

0

∫∫
G−1Jϵ∂tϕ dx dv ds and

∫ t

0

∫∫
M

(
∇v

(
fϵ
M

)
⊗ v

)
G−1∇xϕ dx dv ds

which we should be able to show are of order ϵ or less. In this direction it would

be enough to elaborate on the use of an energy estimate (assuming bounded L2(µ)

initial data) which implies the bounded term

1

ϵ2

∫ t

0

∫∫ ∣∣∣G1/2∇v

(
fϵ
M

) ∣∣∣2M dx dv ds <∞ for any t > 0.

The �nite energy itself implies, (since Jϵ =
1
ϵ

∫
M∇v

(
fϵ
M

)
dv)∫ t

0

∫ ∣∣∣G1/2Jϵ

∣∣∣2 dx ds <∞ for any t > 0.

129



Of course, after using the energy estimate to �nd the order in ϵ of all terms in

the equation for Jϵ, and using compactness to get convergent subsequences, there

still remains open the question of passing to the limit in ϵ.
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6.2 Di�usive Limit via Weak Compactness and Proof of Theorem 1

6.2.1 Main Result

We are now in position to state and prove the main result about the limit of

ρϵ using compactness. Before we go into the statement of the theorem, we need to

de�ne a weak solution for (3.1).

Mild Solution

The discussion of weak formulation for (3.1) can start with a weak formulation

of the stationary problem. The evolution equation can be written down in the form

∂th+ Lh = 0, where the operator L is

L = v · ∇x −∇U(x) · ∇v −∇v ·G∇v + v ·G∇v.

The weak formulation of the stationary problem Lh = 0, gives a solution h ∈

D′(Rn,n
x,v ). In fact, we shall assume that −L generates the continuous semigroup

(e−tL)t≥0. We have also shown that solutions to the problem ∂th + Lh = 0 remain

bounded in L2
Meq

∩ L∞.

Thus, a distributional solution h(t, x, v) for the non-stationary problem will

be a solution

h ∈ C(R+;D
′(Rn,n

x,v )) ∩ L∞
loc(R+;L

2
Meq

∩ L∞).

We now proceed to the proof of theorem 1.
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6.2.2 A priori Energy & Weak Compactness

In order to study the limit ϵ → 0, we begin with the a priori estimate in

L2
Meq

(Rn,n
x,v ). That is an energy estimate for hϵ(t) in L

2(dµ) (where hϵ(t) is an abbre-

viated notation for hϵ(t, x, v)), i.e

1

2

∫
h2ϵ(t) dµ+

1

ϵ2

∫ t

0

∫ ∣∣∣G1/2(x)∇vhϵ(s)
∣∣∣2 dµ ds = 1

2

∫
h2ϵ(0) dµ.

We proceed in the decomposition of fϵ(t) in the following manner

fϵ = M(v)(ρϵ + g̃ϵ)

where the hydrodynamic variable ρϵ has already been de�ned by

ρϵ =

∫
fϵ dv

and a deviation g̃ϵ from the local equilibrium state ρϵM(v), that satis�es∫
g̃ϵM(v) dv = 0.

Integrating in velocity we obtain the hydrodynamic equation for ρϵ,

∂tρϵ +
1

ϵ
∇x ·

∫
M(v)∇vg̃ϵ dv = 0. (6.4)

To simplify the analysis we consider the basic assumption inf U(x) > −∞

which result in the following �nite intervals for �nite initial energy,∫
ρ2ϵ dx <∞,

∫∫
g̃2ϵM(v) dv dx <∞ ∀t ≥ 0.

The �rst bound is proven by a simple Jensen inequality on the L2(Meqdv dx) estimate

of hϵ. We also have the energy estimate,

1

ϵ

∫ T

0

∫∫
|G1/2∇vg̃ϵ|2M(v) dv dx ds <∞ for any T > 0.
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We can now, after picking a sequence of ϵi → 0, extract a subsequence which

w.l.o.g. we still call ϵi s.t.

ρϵi ⇀ ρ weakly in L2(dx) ∀t ≥ 0,

g̃ϵi ⇀ g̃ weakly in L2(M(v)dvdx) ∀t ≥ 0,

1

ϵi
G1/2∇vg̃ϵi ⇀ J weakly in L2(M(v)dvdxdt).

It is important to notice that we actually want something stronger than just

ρϵ being weakly compact in L2(dx) ∀t ≥ 0. We actually want a uniform in time

type of convergence so that we don't have a problem when we later pass to the

limit in integrals of time. For this, we are actually proving that ρϵ is compact in

C([0, T ],w− L2(dx)) in the lemma that follows.

Lemma 6. ρϵ is compact in C([0, T ],w− L2(dx)) i.e.

ρϵ ⇀ ρ in C([0, T ],w− L2(dx)).

Proof. Consider the functional H(t) =
∫
ϕ(x)ρϵ(x, t)dx , 0 < t < T , for a �xed

T > 0 and ϕ ∈ C∞
c (Rn

x). H(t) can be proven pointwise �nite for any 0 < t < T ,

using Cauchy-Schwartz inequality and assuming always �nite initial energy.
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Now if we consider t1, t2 > 0 s.t. 0 ≤ t1 ≤ t2 ≤ T , we get

H(t2)−H(t1) =

∫ t2

t1

∫
ϕ(x)∂tρϵ dx ds (Using (6.4))

=
1

ϵ

∫ t2

t1

∫∫
∇xϕ(x) · ∇vg̃ϵM(v) dv dx ds

≤
(∫ t2

t1

∫∫
|G− 1

2∇xϕ(x)|2M(v) dv dx ds

) 1
2

(∫ t2

t1

∫∫
|G 1

2∇vg̃ϵ|2

ϵ2
M(v) dv dx ds

) 1
2

≤ (t2 − t1)
1
2

(∫
|G− 1

2∇xϕ(x)|2dx
) 1

2

(∫ t2

t1

∫∫
|G 1

2∇vg̃ϵ|2

ϵ2
M(v) dv dx ds

) 1
2

≤ C(t2 − t1)
1
2 .

By a density argument, it is shown that the above inequality is true for ϕ ∈ L2(Rn
x).

The Arzelá-Ascoli theorem states that pointwise boundedness and equicontinuity

su�ce to show that ρϵ is compact in C([0, T ],w− L2(dx)).

6.2.3 Passage to the Limit

Now that uniform convergence for ρϵ has been established, we can proceed

into deriving an equation for the remainder term g̃ϵ, i.e.

ϵ∂tg̃ϵ −∇x ·
∫

M∇vg̃ϵ dv + v · (∇x(ρϵ + g̃ϵ) +∇U(x)(ρϵ + g̃ϵ)) (6.5)

−∇U(x) · ∇vg̃ϵ =
1

ϵ

1

M
C(Mg̃ϵ).

A weak solution of (6.5) will be in C(R+,D
′(Rn,n

x,v )). For the sake of this proof

we work with the choice of test functions φ(x, v) s.t. φ(x, v) ∈ C∞
c (Rn,n

x,v ). The weak
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formulation is then given by

ϵ

∫∫
M(v)φ (g̃ϵ(t2)− g̃ϵ(t1)) dv dx

+

∫ t2

t1

∫∫
M(v)∇xφ ·

(∫
M(v′)∇v′ g̃ϵ dv

′
)
dv dx ds

+

∫ t2

t1

∫∫
M(v)v · (−∇xφρϵ + φ∇U(x) ρϵ) dv dx ds

+

∫ t2

t1

∫∫
M(v) (−∇xφ · ∇vg̃ϵ + φ∇U(x) · ∇vg̃ϵ) dv dx ds

−
∫ t2

t1

∫∫
M(v)φ∇U(x) · ∇vg̃ϵ dv dx ds = −1

ϵ

∫ t2

t1

∫∫
M(v)∇vφ ·G∇vg̃ϵ dv dx ds.

We use the notation Ij, for 1 ≤ j ≤ 6 for the successive integrals that appear

in the weak formulation. The study of the order of magnitude for each of them

reveals that in the limit ϵ → 0 only terms I3 & I6 do not vanish. For now, we need

to show the order of magnitude of each integral term and then consider the choice

of test function that allows the coupling of (6.4) and the equation that we obtain

in the limit ϵ→ 0 in the weak formulation of (6.5).

Order of Magnitude for the Ij integral terms.

In what follows is the identi�cation of the order of magnitude in ϵ of the Ij

integrals.

Term I1: The use of the Cauchy-Schwarz inequality, the a priori estimate and

the fact that all Maxwellian moments are �nite (
∫
dv|v|kM(v) <∞) yields

I1 ≤ ϵ

∫∫
M(v)φ (g̃ϵ(t2)− g̃ϵ(t1)) dv dx

≤ ϵ

(∫∫
φ2M(v) dv dx

) 1
2
(∫∫

(|g̃ϵ(t2)|2 + |g̃ϵ(t1)|2)M(v) dv dx

) 1
2

≤ Cϵ = O(ϵ).
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Term I2:

In similar fashion,

I2 =

∫ t2

t1

∫∫∫
M(v)M(v′)∇xφ(x, v, s) · ∇v′ g̃ϵ(x, v

′, s) dv′ dv dx ds

≤ ϵ

∫ t2

t1

∫∫∫
M(v)M(v′)|G−1/2∇xφ|

|G1/2∇v′ g̃ϵ|
ϵ

dv′ dv dx ds

≤ ϵ

(∫ t2

t1

∫∫
M(v)|G−1/2∇xφ|2 dv dx ds

)1/2

×
(
1

ϵ2

∫ t2

t1

∫∫
M(v′)|G1/2∇v′ g̃ϵ|2 dv′ dx ds

)1/2

≤ Cϵ = O(ϵ).

Term I3:

Using the Cauchy-Schwartz once again ,

I3 ≤
∫ t2

t1

∫∫
M(v)v · (−∇xφρϵ + φ∇U(x) ρϵ) dv dx ds

≤
(∫ t2

t1

∫∫
M(v)|v|2(|∇xφ|2 + |φ∇U(x)|2) dv dx ds

) 1
2
(∫ t2

t1

∫
ρ2ϵ dx ds

) 1
2

≤ C

(∫∫
M(v)|v|2(|∇xφ|2 + |φ∇U(x)|2) dx

) 1
2
(∫

ρ2ϵ dx

) 1
2

= O(1).

Term I4: For this term

I4 ≤
∫ t2

t1

∫∫
M(v) (−∇xφ · ∇vg̃ϵ + φ∇U(x) · ∇vg̃ϵ) dvdxds

≤ ϵ

(∫ t2

t1

∫∫
M(v)(|G−1/2∇xφ|2 + |φG−1/2∇U(x)|2)dvdxds

) 1
2

×
(∫ t2

t1

∫∫
1

ϵ2
|G1/2∇vg̃ϵ|2M(v)dvdxds

) 1
2

≤ Cϵ = O(ϵ).
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Term I5: This term yields

I5 ≤ −
∫ t2

t1

∫∫
M(v)φ∇U(x) · ∇vg̃ϵ dv dx ds

≤ ϵ

(∫ t2

t1

∫∫
M(v)|φG−1/2∇U(x)|2 dv dx ds

) 1
2

×
(∫ t2

t1

∫∫
1

ϵ2
|G1/2∇vg̃ϵ|2M(v) dv dx ds

) 1
2

≤ Cϵ = O(ϵ).

Term I6: Finally for the I6 term,

I6 ≤
1

ϵ

∫ t2

t1

∫∫
M(v)∇vφ ·G∇vg̃ϵ dv dx ds

≤
(∫ t2

t1

∫∫
|G1/2∇vφ|2M(v) dv dx ds

) 1
2

×
(∫ t2

t1

∫∫
1

ϵ2
|G1/2∇vg̃ϵ|2M(v) dv dx ds

) 1
2

= O(1).

Now we go back and consider the weak formulation of the (6.4), which is

∫ t2

t1

∫
ϕ∂tρ dx ds =

∫ t2

t1

∫∫
M(v)∇xϕ ·G−1/2J dv dx ds for ϕ ∈ C∞

c (Rn
x).

(6.6)

At the same time as the order analysis showed above, in the limit ϵ → 0, the

(6.5) yields

∫ t2

t1

∫∫
M(v)v·(−∇xφρ+φ∇U(x) ρ) dvdxds = −

∫ t2

t1

∫∫
M(v)∇vφ·G1/2J dvdxds.

(6.7)
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These two equations are coupled for the choice of test function φ(x, v) = ∇xϕ ·G−1v

where ϕ ∈ C∞
c (Rn

x). The only problem is that this function is not smooth or

compactly supported in Rn
v so we have to modify it slightly.

We begin by considering the cut-o� function χδ1(v) = χ(δ1v), where χ(v) ∈

C∞
c (Rn

v ) is a function with values 0 ≤ χ(v) ≤ 1 s.t. χ(v) = 1 for |v| ≤ 1 and

χ(v) = 0 for |v| ≥ 1. We also consider the standard molli�cation function,

ηδ2(v) =
1

δn2
η

(
v

δ2

)
for η ∈ C∞

c (Rn
v ) s.t.

∫
η(v) dv = 1.

We now consider the function φδ1,δ2(x, v) = (χδ1(v)∇xϕ ·G−1v) ⋆ ηδ2 . A standard

result for the molli�ed function is that φδ1,δ2 converges to φ a.e. in Rn
v (as δ1, δ2 → 0).

Obviously ∇xφδ1,δ2 converges to ∇xφ a.e. in Rn
v , since the cut-o� and molli�cation

acts only in the v variable.

By substitution of φ with φδ1,δ2 in (6.7) one gets∫ t2

t1

∫∫
M(v)v · (−∇xφδ1,δ2 ρ+ φδ1,δ2∇U(x) ρ) dv dx ds =

−
∫ t2

t1

∫∫
M(v)∇vφδ1,δ2 ·G1/2J dv dx ds.

We also have,

∇vφδ1,δ2(x, v) = ∇v

(
(∇xϕ ·G−1v χδ1(v)) ⋆ ηδ2

)
= ∇v(∇xϕ ·G−1v χδ1(v)) ⋆ ηδ2

=
(
∇xϕ ·G−1χδ1(v) +∇xϕ ·G−1v∇vχδ1(v)

)
⋆ ηδ2

where we made use of the fact that ∇v(f ⋆ ηδ) = ∇vf ⋆ ηδ.

A typical estimate for ∇vχδ1(v) is |∇vχδ1(v)| ≤ Cδ1. This can be easily seen

by the de�nition of χδ1 and the fact that |∇vχ| ≤ C for some C > 0, since χ ∈
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C∞
c (Rn

v ). This estimate, together with the computation of ∇vφδ1,δ2(x, v) above and

the dominated convergence theorem imply that in the limit δ1, δ2 → 0, one actually

has that (6.7) holds with φ(x, v) = ∇xϕ(x) · G−1v. This choice of test function

allows the coupling of (6.6) and (6.7) that yields

∫ t2

t1

∫
ϕ∂tρ dx ds =

∫ t2

t1

∫ (
∇x · (G−1∇xϕ) +∇xϕ ·G−1∇U(x)

)
ρ dx ds

which completes the proof.
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6.3 Di�usive Limit via Relative Entropy and Proof of Theorem 2

In this paragraph we are employing the relative entropy method in order to

study the hydrodynamic limit. We have already used relative entropy for the study

of the long time asymptotics of the equation. The technique goes back to the work

by [74] for the Ginzburg-Landau model and S.Varadhan [68]. See for instance [27]

(for Vlassov-Navier-Stokes equations) for a more elaborate instance of the method.

The relative entropy here measures the LlogL distance between the distribu-

tion fϵ and the hydrodynamical equilibrium state ρM(v). The idea is to study its

rate of change and either establish that it has a sign in the leading order or that it

satis�es a Gronwall type of inequality. Here, we are able to show that the entropy

dissipates and that if initial data is prepared so that lim
ϵ→0

H(fϵ(0)|ρ0M) = 0 then

lim
ϵ→0

H(fϵ|ρM) = 0 for all t ∈ [0, T ] for any T > 0.

Control of the relative entropy directly implies control of the L1 norm ∥fϵ −

ρM∥, by virtue of the Csiszár-Kullback-Pinsker inequality proven in the appendix.

Hydrodynamic variables play an important role in the calculations that follow

so we re-introduce them here. The hydrodynamical density and �ux are given by

ρϵ =

∫
fϵ dv and Jϵ =

1

ϵ

∫
vfϵ dv

respectively. The evolution of ρϵ is governed by ∂tρϵ = −∇x ·Jϵ, where the equation

for the hydrodynamical �ux was calculated to be Jϵ(x, t) = −G−1(∇xρϵ+∇U(x)ρϵ)+

lower order terms in ϵ. The equation for the formal limit ρ is ∂tρ = ∇· (G−1(∇xρ+

∇U(x)ρ)).
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We can start with an easy computation on the evolution of the H(ρϵ|ρ) relative

entropy. This computation becomes partly obsolete later when we show that the

time derivative of the entropy H(fϵ|ρM) satis�es a similar estimate. In fact, it is

manifested by the following lemma that H(ρϵ|ρ) ≤ H(fϵ|ρM), since

Lemma 7. Consider the hydrodynamic variables ρ1, ρ2 associated with the density

functions f1, f2. Then, we have

H(ρ1|ρ2) ≤ H(f1|f2).

Proof. The proof is given in appendix.

Nevertheless, we present the computation here, because it is a good starting

point and it also contain parts helpful for the computation of d
dt
H(fϵ|ρM).

d

dt
H(ρϵ|ρ) =

d

dt

∫
ρϵ log

ρϵ
ρ
dx =

d

dt

∫
ρϵ log ρϵ dx−

d

dt

∫
ρϵ log ρ dx

=

∫
∂tρϵ(log ρϵ + 1) dx−

∫
∂tρϵ log ρ dx−

∫
ρϵ
ρ
∂tρ dx

=

∫
Jϵ ·

∇ρϵ
ρϵ

dx−
∫
Jϵ ·

∇ρ
ρ
dx−

∫
ρϵ
ρ
∇ ·
(
G−1(∇ρ+∇U(x)ρ)

)
dx

=

∫
Jϵ ·

(
∇ρϵ
ρϵ

− ∇ρ
ρ

)
dx+

∫
ρ∇
(
ρϵ
ρ

)
·G−1

(
∇ρ
ρ

+∇U(x)

)
dx

=

∫
Jϵ ·

(
∇ρϵ
ρϵ

− ∇ρ
ρ

)
dx+

∫ (
∇ρϵ
ρϵ

− ∇ρ
ρ

)
·G−1

(
∇ρ
ρ

+∇U(x)

)
ρϵ dx

=

∫ (
∇ρϵ
ρϵ

− ∇ρ
ρ

)
·
(
Jϵ
ρϵ

+G−1

(
∇ρ
ρ

+∇U(x)

))
ρϵ dx

= −
∫
G

(
Jϵ
ρϵ

+G−1

(
∇ρ
ρ

+∇U(x)

))
·
(
Jϵ
ρϵ

+G−1

(
∇ρ
ρ

+∇U(x)

))
ρϵ dx

+ r′ϵ = −
∫ ∣∣∣G1/2Jϵ

ρϵ
+G−1/2

(
∇ρ
ρ

+∇U(x)

) ∣∣∣2ρϵ dx+ r′ϵ.

The remainder term r′ϵ is found to be exactly equal to

−
∫ (

ϵ2∂tJϵ +∇x ·
∫

M∇v

(
fϵ
M

)
⊗ v dv

)
·
(
Jϵ
ρϵ

+G−1

(
∇ρ
ρ

+∇U(x)

))
dx.
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Notice that r′ϵ is a remainder term that should vanish as ϵ → 0. We don't bother

with showing that r′ϵ → 0 in rigorous manner, as we mainly work with the relative

entropy H(fϵ|ρM).

Yet, as we are about to remark promptly after the proof, the above computa-

tion of d
dt
H(ρϵ|ρ) alone can be used to establish the exact same result that we are

about to prove!

At this point we compute the evolution of H(fϵ|ρM) in similar manner. To

make things easier we can introduce the global equilibrium state Meq(x, v) in the

computation that follows.

H(fϵ|ρM) =

∫∫
fϵ log fϵ dv dx−

∫∫
fϵ log (ρM) dv dx

=

∫∫
fϵ log

fϵ
Meq

dv dx+

∫∫
fϵ log

Meq

ρM
dv dx

=

∫∫
fϵ log

fϵ
Meq

dv dx+

∫
ρϵ log

e−U(x)

ρ
dx

= H(fϵ|Meq)−
∫
ρϵ log ρ dx−

∫
ρϵU(x) dx.

The reason we have introduced the global equilibrium state and H(fϵ|Meq) is

that the term involving d
dt
H(fϵ|Meq) can be easily bounded by an integral involv-

ing only hydrodynamical variables. Indeed, the time derivative of the �rst term

H(fϵ|Meq) is

d

dt

∫∫
fϵ log

fϵ
Meq

dv dx = − 1

ϵ2

∫∫
fϵ

∣∣∣G1/2∇v log
fϵ
M

∣∣∣2 dv dx
= − 1

ϵ2

∫∫
fϵ

∣∣∣G1/2

(
∇vfϵ
fϵ

+ v

) ∣∣∣2 dv dx ≤ −
∫

|G1/2Jϵ|2

ρϵ
dx.
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The last inequality is in fact due to the Hölder's inequality∫
|G1/2Jϵ|2

ρϵ
dx =

1

ϵ2

∫ (∫
G1/2

(
v + ∇vfϵ

fϵ

)
fϵ dv

)2
ρϵ

dx

≤ 1

ϵ2

∫∫ ∣∣∣G1/2

(
∇vfϵ
fϵ

+ v

) ∣∣∣2fϵ dv dx.
We are now in position to compute the time evolution of the H(fϵ|ρM) entropy

by means of computing the sum of its terms. Indeed,

d

dt
H(fϵ|ρM) =

d

dt
H(fϵ|Meq)−

d

dt

∫
ρϵ log ρ dx−

d

dt

∫
ρϵU(x) dx

≤ −
∫

|G1/2Jϵ|2

ρϵ
dx− d

dt

∫
ρϵ log ρ dx−

∫
Jϵ · ∇U(x) dx.

The computation of d
dt

∫
ρϵ log ρ dx has been performed as a part of the com-

putation of d
dt
H(ρϵ|ρ) above. We thus get,

d

dt
H(fϵ|ρM) ≤ −

∫
|G1/2Jϵ|2

ρϵ
dx−

∫
Jϵ · ∇U(x) dx−

∫
Jϵ ·

∇ρ
ρ
dx

+

∫ (
∇ρϵ
ρϵ

− ∇ρ
ρ

)
·G−1

(
∇ρ
ρ

+∇U(x)

)
ρϵ dx

= −
∫
Jϵ ·

(
G
Jϵ
ρϵ

+
∇ρ
ρ

+∇U(x)

)
dx

−
∫ (

G
Jϵ
ρϵ

+
∇ρ
ρ

+∇U(x)

)
·G−1

(
∇ρ
ρ

+∇U(x)

)
ρϵ dx+ rϵ

= −
∫ (

G
Jϵ
ρϵ

+
∇ρ
ρ

+∇U(x)

)
·
(
Jϵ
ρϵ

+G−1

(
∇ρ
ρ

+∇U(x)

))
ρϵ dx+ rϵ

= −
∫ ∣∣∣G1/2Jϵ

ρϵ
+G−1/2

(
∇ρ
ρ

+∇U(x)

) ∣∣∣2ρϵ dx+ rϵ. (6.8)

Now that we have computed the dissipation of the relative entropy, we can

proceed to the proof of Theorem 2.

Proof. We have already given the formal computation for d
dt
H(fϵ|ρM). What is left

is to �nd the exact expression for the remainder term rϵ and show that it is indeed

of lower order using the a priori estimate.
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Let us begin with the observation that the quantity

dϵ = G1/2(x)(v
√
fϵ + 2∇v

√
fϵ) = 2

√
MG1/2(x)∇v

√
fϵ
M

is of order O(ϵ) in L2, as implied by the boundedness of the total energy, i.e.∫ T

0

∫∫
|dϵ|2 dv dx dt ≤ Cϵ2, T > 0.

Indeed, consider the free energy associated with the FP equation

E(fϵ) =

∫∫
fϵ

(
ln fϵ +

|v|2

2
+ U(x)

)
dv dx.

This quantity is dissipated since

d

dt
E(fϵ) = − 1

ϵ2

∫∫
|dϵ|2 dv dx,

which implies

E(fϵ(T, ·, ·)) +
1

ϵ2

∫ T

0

∫∫
|dϵ|2 dv dx ds = E(fϵ(0, ·, ·)).

We now have to compute the remainder term rϵ that appears in (6.8). By (6.3), it

is implied that

∇ρϵ
ρϵ

− ∇ρ
ρ

= −GJϵ
ρϵ

− ∇ρ
ρ

−∇U(x)− ϵ2
∂tJϵ
ρϵ

− 1

ρϵ
∇x ·

∫
M∇v

(
fϵ
M

)
⊗ v dv.

Hence, by direct substitution in (6.8) the remainder term is

rϵ = −
∫ (

ϵ2∂tJϵ +∇x ·
(∫

M∇v

(
fϵ
M

)
⊗ v dv

))
·G−1

(
∇ρ
ρ

+∇U(x)

)
dx.

This consists of two parts r1,ϵ and r2,ϵ, which integrated in time are∫ T

0

r1,ϵ dt = −ϵ
∫ T

0

∫∫
∂tfϵ v ·G−1

(
∇ρ
ρ

+∇U(x)

)
dv dx dt,
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∫ T

0

r2,ϵ dt =

∫ T

0

∫∫ (
M v ⊗∇v

(
fϵ
M

))
: ∇
(
G−1

(
∇ρ
ρ

+∇U(x)

))
dv dx dt.

It will be our task to show that both integrals vanish as ϵ → 0. An important step

towards this is showing that |v|2fϵ ∈ L∞((0, T ), L1(Rn × Rn)) for any T > 0.

• Bound for
∫∫

|v|2fϵ dv dx in L∞(0, T ).

The bound on the kinetic energy (uniform in time) is a straightforward con-

sequence of the elementary, yet general, Young's inequality

ab ≤ h(a) + h∗(b),

where h,h∗ are a Young's convex pair (h∗ is explicitly computed by the Legendre

transform of the convex function h). Here we use h(z) = z log z, and h∗(z) = ez−1,

i.e.

1

2

∫∫
|v|2fϵ dv dx ≤

∫∫
fϵ log

fϵ
Meq

dv dx+

∫∫
e−

|v|2
2

−1Meq dv dx.

This implies that∫∫
|v|2

2
fϵ(t, v, x) dv dx ≤ C for some C > 0, ∀t ∈ [0, T ],

since e−U(x) ∈ L1(Rn) and the entropy integral is bounded by the a priori estimate.

It is now time to control the residual terms. Let tensor D and vectors E,F

be shorts for D = ∇(G−1(∇ log ρ + ∇U(x))), E = G−1(∇ log ρ + ∇U(x)), and

F = G−1∇∂t log ρ. The easiest term to control is∫ T

0

r2,ϵ dt =

∫ T

0

∫∫
Mv ⊗∇v

(
fϵ
M

)
: Ddv dx dt

=

∫ T

0

∫∫ √
fϵv ⊗ γ(x)−

1
2dϵ : Ddv dx dt

≤ Cϵ

(∫ T

0

∫∫
λ0

|dϵ|2

ϵ2
dv dx dt

) 1
2
(∫ T

0

∫∫
∥D∥∞|v|2fϵ dv dx dt

) 1
2

.
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Finally, the term

∫ T

0

r1,ϵ dt =− ϵ

∫∫
(fϵ(T, v, x)− fϵ(0, v, x)) v · E dv dx

+ ϵ

∫ T

0

∫∫
fϵ v · F dv dx dt

is treated with the use of the Cauchy-Schwartz inequality which concludes the proof.

Remark 14. Let us mention here why showing L1 convergence of ρϵ(t, x) to the

limiting distribution ρ(x) is enough to imply that fϵ converges to ρM (in L1) by the

following simple argument. Indeed, we decompose fϵ − ρM as in

fϵ − ρM = fϵ − ρϵM+ (ρϵ − ρ)M.

It is trivial showing that the second term (ρϵ−ρ)M of the decomposition → 0 in L1,

by assumption. For the �rst term fϵ − ρϵM, we use the Csiszár-Kullback-Pinsker

and log-Sobolev inequalities in that order, and �nally the a priori energy bound to

get

∥fϵ − ρϵM∥L1 ≤
√
2

(∫∫
fϵ log

fϵ
ρϵM

dv dx

)1/2

≤
√
2ϵ

(∫∫
|G− 1

2dϵ|2

ϵ2
dv dx

)1/2

≤
√
2ϵC → 0 as ϵ→ 0,

which concludes the argument.
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Chapter A: Appendix

This appendix is devoted to some individual topics that are standard in various

literature. We made an e�ort to include them here for the sake of a full presentation.

We begin by reviewing the energy dissipation for the Stokes system that in-

cludes the particles and the medium. The energy or �variational� formulation is in

fact another way to present the N particle Stokes problem. The reason this for-

mulation was important in our study was because it allowed the derivation of a

non-negative hydrodynamic and friction tensor.

Next, the Stokes �ow solution for a single particle is presented both for the

homogeneous and non homogeneous Dirichlet boundary conditions. The under-

standing of the Stokes' solution operator to a single particle problem coupled with

the method of re�ections sheds light to the behavior of the N particle system in the

so called dilute regime.

As we begin with the analysis of the FP operator L, we are overwhelmed by the

amount of computations on derivations and especially those on commutators. All

these calculations are squeezed here in the paragraph with the name `Commutator

Algebra'. These calculations have not been included in the main text for economy

of space.
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Finally, there is a paragraph devoted to su�cient conditions for the Poincaré

and log-Sobolev inequalities. These conditions are important in giving decay rates

to Kramers-Smoluchowski type of equations and they are employed in many cases

when the question of convergence to a global equilibrium state for the FP Cauchy

problem is involved.
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A.1 Energetics of Particle System

In order to understand the variational formulation that gives the energy dissi-

pation used for the RPY approximation, we need to study the energy of the particle

system. The physical energy E(t) at time t is the sum

E(t) = Epar(t) + Efl(t)

of the particles' energy

Epar(t) =
N∑
i=1

1

2
m|vi|2 + U(x1, x2, . . . , xN),

and the energy of the medium

Efl(t) =
1

2

∫
R\∪iBi

|u(x)|2 dx,

when one considers a �uid with unit density (ρ = 1).

The rate of change in the above terms is

d

dt
Epar(t) =

N∑
i=1

(
mvi ·

dvi
dt

+∇xi
U(x1, x2, . . . , xN) · vi

)
.

Using the balance of forces, the last term yields

d

dt
Epar(t) =

N∑
i=1

∫
Si

vTi σ · ni dS =
N∑
i=1

∫
Si

u(x)Tσ · ni dS,

for ni being the outward normal on Si.

The rate of energy change for the �uid motion is

d

dt
Efl(t) =

∫
R3\∪iBi

u(x) · Du(x)
Dt

dx,
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as follows by the transport theorem. The notation D
Dt

stands for the material deriva-

tive involving a time derivative plus a transport term

D

Dt
=

d

dt
+ u(x) · ∇ .

Since Du
Dt

= divσ by the equation of motion, we get

d

dt
Efl(t) =

∫
R3\∪iBi

u(x)Tdivσ(x) dx

=

∫
R3\∪iBi

div(uTσ) dx−
∫
R3\∪iBi

σ : ∇u dx

= −
∫
Si

uTσ · ni dS −
∑
i,j

∫
σij

∂ui
∂xj

dx,

where indices in the second integral designate vector and tensor components.

The expression in the last integral, for an incompressible �uid, yields

∑
i,j

σij
∂ui
∂xj

=
1

2

∑
i,j

σij

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
ηs
∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

,

where we have made use of the symmetry of σ.

As a result, the rate of change for the total energy of the system is

d

dt
E(t) = −1

2
ηs
∑
i,j

∫
R3\∪kBk

(
∂ui
∂xj

+
∂uj
∂xi

)2

dx ≤ 0.

150



A.2 Stokes Flow Past a Sphere

We have presented a methodology for solving the Stokes N particle problem

in a complex domain D, by virtue of an iterative scheme. In order to proceed with

the technique, we need to solve the particle problem for a single sphere.

For now, we present the solution of Stokes' problem for a sphere of radius R,

with center located at the origin x = 0. The velocity on the surface of the sphere

is u(x) = U + Ω ∧ x (|x| = R) and vanishes at in�nity. Observe that there is a

translational U , and angular Ω component to the velocity. The choice of frame of

reference with a static sphere simpli�es the problem. The resulting solution (outer

solution) can be found in any standard textbook in �uid mechanics e.g. [48,56] etc.,

and is also presented in [36,37] i.e.

u(x) =
3

4

R

|x|

(
I +

x⊗ x

|x|2

)
U +

1

4

R3

|x|3

(
I − 3

x⊗ x

|x|2

)
U +

R3

|x|3
Ω ∧ x,

p(x) =
3

2
Rη

U · x
|x|3

for |x| ≥ R.

Computing the �uid forces on the surface of the particle, we end up with

Ff = 6πR η U,

Tf = 8πR2ηΩ.

One notices that translational and rotational components are fully decoupled.

Also, in the leading order the solution is

u(x) ≈ 3

4

R

|x|

(
I +

x⊗ x

|x|2

)
U,

which is exactly the Stokeslet approximation for R = 1.
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Although this solution does not cover the case of an inhomogeneous BC on

the surface of the sphere, it is highly indicative that the velocity �eld at a point in

the medium is inversely proportional to its distance from the sphere. For a solution

to the inhomogeneous BCs problem one can see e.g. [36, 56].
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A.3 Fundamental Solutions

In this part of the appendix we give the fundamental solution to the equation

∂tf + v · ∇xf = γ∆vf for x, v ∈ Rn, γ > 0,

and initial data f(0, x, v) = δ(x0, v0). We present here two solutions. The �rst one is

�analytic" in nature, and the second is �algebraic" in the sense that is takes advantage

of the Lie algebra structure. We should mention that many special solutions to the

Fokker-Planck equation can be found in [64].

Starting with the analytic solution, we consider the transformed equation

∂tf̂ − ξ · ∇ηf̂ + γ|η|2f̂ = 0,

for the Fourier transform f̂(t, ξ, η) =
∫∫

e−i(x·ξ+v·η)f(t, x, v) dv dx. The initial con-

dition is transformed to

f̂(0, ξ0, η0) = e−i(x0·ξ0+v0·η0).

The solution to the characteristic system of the transformed equation is ξ(t) = ξ0,

and η(t) = −ξ0t+ η0, and hence the solution of the transformed equation is

f̂(t, ξ, η) = f̂(0, ξ0, η0)e
−γ

∫ t
0 |η(t−s)|2 ds

= e−i(x0·ξ0+v0·η0)e−γ
∫ t
0 |η(t−s)|2 ds

= e−i(x0·ξ+v0·(η+ξt))e
−γ

(
ξ2

3
t3+ξ·ηt2+η2t

)
.
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Taking the inverse transform, one gets

f(t, x, v) =
1

(2π)2n

∫∫
ei(x·ξ+v·η)f̂(t, ξ, η) dη dξ

=
1

(2π)2n

∫∫
ei((x−x0−v0t)·ξ+(v−v0)·η)e

−γ

(
ξ2

3
t3+ξ·ηt2+η2t

)
dη dξ.

Last integration when performed yields

f(t, x, v) =
1

(3π2γ)n
1

t2n
exp

[
− 1

π2γ

(
3
|x− x0 − v0t|2

t3

− 3
(x− x0 − v0t) · (v − v0)

t2
+

|v − v0|2

t

)]
.

The second method was suggested to me by C.D.Levermore and makes use of

the Baker-Campbell-Hausdor� formula for elements of a Lie algebra. We write the

equation as ∂tf = Lf for L = γA−D, with A = ∆v and D = v · ∇x.

Here [A,D] = 2∇v · ∇x = 2B and [B,D] = ∆x. At the same time we have

[A,B] = [A,C] = [B,C] = [C,D] = 0. So as a result, A = ∆v, B = ∇v ·∇x, C = ∆x,

and D = v ·∇x form a Lie algebra. The idea is to write etL as ea(t)Aeb(t)Bec(t)Ced(t)D,

for the di�erentiable functions a(t), b(t), c(t), d(t), with a(0) = b(0) = c(0) = d(0) =

0. Those functions are to be computed explicitly.

We need to compute commutations of the �elds A,B,C,D with ea(t)A etc. For
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that, we �rst have to �nd [An, D], [Bn, D], . . . . We begin with,

[An, D] = AnD −DAn = AnD − (DA)An−1 = AnD − (AD − [A,D])An−1

= AnD − ADAn−1 + 2BAn−1 = AnD − A(DA)An−2 + 2BAn−1

= AnD − A(AD − [A,D])An−2 + 2BAn−1 = AnD − A2DAn−2 + 4BAn−1

= (n− 2 commutations of A,D) . . . = AnD − AnD + 2nBAn−1

= 2nBAn−1.

In the same manner, it is shown [Bn, D] = nCBn−1 with the rest similar terms

being 0 e.g. [Cn, D] = 0 etc. This implies

[ea(t)A, D] = [
∞∑
n=0

(a(t)A)n

n!
, D] =

∞∑
n=0

a(t)n

n!
[An, D] =

∞∑
n=0

a(t)n

n!
2nBAn−1

= 2a(t)B
∞∑
n=1

a(t)n−1

(n− 1)!
An−1 = 2a(t)Bea(t)A.

We also calculate [eb(t)B, D] = b(t)Ceb(t)B, and [ea(t)A, B] = [ea(t)A, C] =

[eb(t)B, C] = . . . = 0.

Di�erentiating etL in time yields

LetL = a′(t)Aea(t)Aeb(t)Bec(t)Ced(t)D + ea(t)Ab′(t)Beb(t)Bec(t)Ced(t)D

+ ea(t)Aeb(t)Bc′(t)Cec(t)Ced(t)D + ea(t)Aeb(t)Bec(t)Cd′(t)Ded(t)D

= (a′(t)A+ b′(t)B + c′(t)C)etL + d′(t)ea(t)Aeb(t)BDec(t)Ced(t)D

= (a′(t)A+ b′(t)B + c′(t)C)etL + d′(t)ea(t)A(b(t)C +D)eb(t)Bec(t)Ced(t)D

= (a′(t)A+ b′(t)B + c′(t)C + d′(t)b(t)C)etL + 2d′(t)a(t)BetL + d′(t)DetL

= (a′(t)A+ (b′(t) + 2d′(t)a(t))B + (c′(t) + d′(t)b(t))C + d′(t)D)etL.
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This implies the system of equations:

a′(t) = γ, b′(t) + 2d′(t)a(t) = 0, c′(t) + d′(t)b(t) = 0, d′(t) = −1,

with solution a(t) = γt, b(t) = γt2, c(t) = γ t3

3
, d(t) = −t.

Hence, the semi-group can be written as etL = e
γ
(
tA+t2B+ t3

3
C
)
e−tD, which gives

the exact solution f(t, x, v) that we presented with the method above.

Remark 15. The equation that we solved above is not the toughest example with a

possible exact solution that we can compute using the Lie algebra structure. In fact,

equation

∂tf + v · ∇xf = γ(∆vf + v · ∇vf + nf),

which now has a unique non-zero equilibrium state can be solved with same tricks.

We write the equation in form ∂tf = Lf for L = γ(A+E)−D, with E = v ·∇v +n

and the rest of vector �elds A,B,C,D same as before. The new commutations

introduced here are the ones with E, which are

[A,E] = 2A, [B,E] = B, [C,E] = 0, [D,E] = −D.

Like above, one computes with help of induction

[An, E] = 2nAn, [Bn, E] = nBn, [Cn, E] = 0, [Dn, E] = −nDn,

which in return yields the relations

[eaA, E] = 2aAeaA, [ebB, E] = bBebB, [ecC , E] = 0, [edD, E] = −dDedD.

With the above computations at hand and using the same idea of expanding etL

as eaAebBecCedDeeE for functions a(t), . . . , e(t) with a(0) = . . . = e(0) = 0, after
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di�erentiating in time and commuting �elds we end up with the system of equations

2a(t)e′(t) + a′(t) = γ

e′(t)(b(t)− 2a(t)d(t)) + b′(t) + 2a(t)d′(t) = 0

c′(t) + d′(t)b(t)− b(t)d(t)e′(t) = 0

d′(t)− d(t)e′(t) = −1

e′(t) = γ.

The above system has solution a(t) = 1
2
(1 − e−2γt), b(t) = 1

γ
− 2

γ
e−γt + 1

γ
e−2γt,

c(t) = − 3
2γ2 +

t
γ
− 1

2γ2 e
−2γt + 2

γ2 e
−γt, d(t) = 1

γ
(1− eγt) and e(t) = γt.
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A.4 Strong Solutions with Regular Coe�cients

The link between an SDE and its corresponding Fokker-Planck (forward Kol-

mogorov) equation has been discussed massively in literature and it can be viewed

as the evolution to the idea of the link between a transport equation and its char-

acteristic ODE. Here, we review the existence of strong solutions in its connection

to the corresponding SDE problem.

Let us consider the SDE for Xt ∈ Rn,

dXt = b(Xt) dt+
√
2σ(Xt) dWt

with initial condition X0 ∈ Rn. The drift b(x) is a vector in Rn and the dispersion

matrix σ(x) ∈ Rn×n. Also Wt is the standard Brownian vector.

The de�nition that holds for a strong solution of the SDE is

De�nition 3. A strong solution to the SDE is a solution Xt that exists for a given

probability space (Ω,F,Ft,P), the given Brownian motion Wt, and initial data X0.

Furthermore, uniqueness of a strong solution is meant to be understood in the path-

wise sense.

The following theorem is a well known result (see [39]) and has its analog in

the Lipschitz-Cauchy theory for ODEs. The theorem, as presented in [50], states

Theorem 23. Assume that the drift and dispersion satisfy the following growth

conditions,

b(x)

1 + |x|
∈ (L∞(Rn))n,

σ(x)

1 + |x|
∈ (L∞(Rn))n×n.
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Also, assume they satisfy the Lipschitz condition

∥b(x)− b(y)∥Rn + ∥σ(x)− σ(y)∥Rn×n ≤ C∥x− y∥Rn .

Then, there exists a unique strong solution to the SDE given X0 initial data.

The same assumptions are actually enough to establish a unique continuous

solution to

∂tf − b · ∇f − σσT : ∇2f = 0

for continuous initial data f0 ∈ C1(R+,Rn). The solution to the backward Kol-

mogorov equation is given by f(t, x) = E(f0(X−1
t )) as a result of the famous

Feynmann-Kac formula.

Going back to our original problem in this thesis, the SDE under study is

d

 xt

vt

 = b(xt, vt) dt+
√
2σ(xt, vt) dWt

for b(x, v) =

 v

−Gv −∇U(x)

 and σ(x, v) =

 0 0

0 G1/2(x)

.

Conditions of Theorem 15 are trivial for the above drift and dispersion. The

growth conditions are,

G(x)

1 + |x|
,

G1/2(x)

1 + |x|
∈ (L∞(R3N))3N×3N ,

∇U(x)

1 + |x|
∈ (L∞(R3N))3N

and the Lipschitz regularity condition is

∥G(x)−G(y)∥R3N×3N + ∥G1/2(x)−G1/2(y)∥R3N×3N + ∥∇U(x)−∇U(y)∥R3N

≤ C∥x− y∥R3N .
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A.5 Commutator Algebra

We present some of the computations for the commutators of the operators

we deal with in Chapter 4. In these computations assume summation over repeated

indices. The operators L, & A, B are:

Lh = v · ∇xh−∇U(x) · ∇vh−∇v ·G(x)∇vh+ v ·G(x)∇vh,

A = G1/2(x)∇v, A∗ = −G1/2(x)∇v +G1/2(x)v, and B = v · ∇x −∇U(x) · ∇v

with B∗ = −B, where the adjoint is understood in the L2(µ) sense.

First, we start with some easy ones e.g.

[∂vi ,−∂vj + vj]i,jh = ∂vi(−∂vj + vj)h− (−∂vj + vj)∂vih

= −∂2vivjh+ δijh+ vj∂vih+ ∂2vivjh− vj∂vih = δijh.

[∂vi , vk∂xk
− ∂xk

U(x)∂vk ]ih = ∂vi(vk∂xk
h

− ∂xk
U(x)∂vkh)− (vk∂xk

h− ∂xk
U(x)∂vkh)∂vih = δik∂xk

h+ vk∂
2
vkxk

h

− ∂xk
U(x)∂2vivkh− vk∂

2
vkxk

h+ ∂xk
U(x)∂2vivkh = ∂xi

h.

[∂vi , ∂xj
]i,jh = 0.

[−∂vi + vi, ∂xj
]i,jh = 0.

In other words,

[∇v,∇∗
v] = I, [∇v, B] = ∇x, [∇v,∇x] = 0, [∇∗

v,∇x] = 0.
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[Ai,A
∗
j ]i,jh = −G1/2

ik (x)∂vkG
1/2
jm (x)(∂vm − vm)h+G

1/2
jm (x)(∂vm − vm)G

1/2
ik (x)∂vkh

= −G1/2
ik (x)G

1/2
jm (x)∂vkvmh+G

1/2
ik (x)G

1/2
jm (x)δkmh+G

1/2
ik (x)G

1/2
jm (x)vm∂vkh

−G
1/2
ik (x)G

1/2
jm (x)vm∂vkh+G

1/2
jm (x)G

1/2
ik (x)∂vmvkh = Gij(x)h.

Ch = [Ai, B]ih = G
1/2
ik (x)∂vk(vm∂xm − ∂xmU(x)∂vm)h

− (vm∂xm − ∂xmU(x)∂vm)G
1/2
ik (x)∂vkh = G

1/2
ik (x)δkm∂xmh+G

1/2
ik (x)vm∂xm∂vkh

−G
1/2
ik (x)∂xmU(x)∂vmvkh−G

1/2
ik (x)vm∂xm∂vkh+G

1/2
ik (x)∂xmU(x)∂vmvkh

− vm(∂xmG
1/2
ik (x))∂vkh = G

1/2
ik (x)∂xk

h− vm(∂xmG
1/2
ik (x))∂vkh.

Now it is time to compute commutators of L in directions of certain derivatives

e.g.

(∂t + L)∂xi
h = −∂xi

Lh+ L∂xi
h = [L, ∂xi

]h.

Here,

−∂xi
Lh = −vj∂2xixj

h+ ∂2xixj
U(x)∂vjh+ ∂xj

U(x)∂2xivj
h+ (∂xi

Gjk(x))∂
2
vjvk

h

+Gjk(x)∂
3
xivjvk

h− vj(∂xi
Gjk(x))∂vkh− vjGjk(x)∂

2
xivk

h.

L∂xi
h = vj∂

2
xixj

h− ∂xj
U(x)∂2xivj

h−Gjk(x)∂
3
xivjvk

h+ vjGjk(x)∂
2
xivk

h.

Hence,

[L, ∂xi
]h = ∂2xixj

U(x)∂vjh+ (∂xi
Gjk(x))∂

2
vjvk

h− vj(∂xi
Gjk(x))∂vkh.
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In vector notation this is

(∂t + L)∇xh = ∇2U(x)∇vh+∇xG(x)∇2
vh− (∇xG(x) · v)∇vh. (A.1)

We now compute the commutator (∂t + L)∂vih = [L, ∂vi ]h.

−∂viLh = −∂xi
h− vj∂

2
xjvi

h+ ∂xj
U(x)∂2vjvih+Gjk(x)∂

3
vjvkvi

h

−Gik(x)∂vkh− vjGjk(x)∂
2
vkvi

h,

also

L∂vih = vj∂
2
xjvi

h− ∂xj
U(x)∂2vjvih−Gjk(x)∂

3
vkvivj

h+ vjGjk(x)∂
2
vkvi

h.

Hence,

[L, ∂vi ]h = −∂xi
h−Gij(x)∂vjh ,

or in vector notation

(∂t + L)∇vh = −∇xh−G(x)∇vh. (A.2)

The evolution of the mixed derivative

(∂t + L)∂xk
h · ∂vkh = −∂xk

Lh · ∂vkh− ∂xk
h · ∂vkLh+ L(∂xk

h · ∂vkh)

will require the computation of the following:

−∂xk
Lh · ∂vkh = −vj∂2xkxj

h∂vkh+ ∂2xkxj
U(x)∂vjh∂vkh+ ∂xj

U(x)∂2xkvj
h∂vkh

+ (∂xk
Gjm(x))∂

2
vjvm

h∂vkh+Gjm(x)∂
3
xkvjvm

h∂vkh

− vj(∂xk
Gjm(x))∂vmh∂vkh− vjGjm(x)∂

2
xkvm

h∂vkh,
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−∂xk
h·∂vkLh = −|∂xk

h|2 − vj∂
2
xjvk

h∂xk
h+ ∂xj

U(x)∂2vjvkh∂xk
h

+Gjm(x)∂
3
vjvmvk

h∂xk
h−Gkj(x)∂vjh∂xk

h− vjGjm(x)∂
2
vmvk

h∂xk
h,

and

L(∂xk
h · ∂vkh) = vj∂xj

(∂xk
h · ∂vkh)− ∂xj

U(x)∂vj(∂xk
h · ∂vkh)

−Gjm(x)∂
2
vjvm

(∂xk
h · ∂vkh) + vjGjm(x)∂vm(∂xk

h · ∂vkh).

The sum of the three terms above is

(∂t + L)∂xk
h · ∂vkh = ∂2xkxj

U(x)∂vjh∂vkh− |∂xk
h|2 −Gkj(x)∂vjh∂xk

h

+ (∂xk
Gjm(x))∂

2
vjvm

h∂vkh− vj(∂xk
Gjm(x))∂vmh∂vkh− 2Gjm(x)∂

2
vmxk

h∂2vjvkh.

Finally, the sum of the above in vector notation yields

(∂t + L)∇xh · ∇vh = ∇vh · ∇2U(x)∇vh− |∇xh|2 −∇vh ·G(x)∇xh (A.3)

+∇vh · (∇xG(x)∇2
vh)−∇vh · (∇xG(x) · v)∇vh− 2(G(x)∇2

vxh) : ∇2
vh.

The third order derivative in velocity, when commuted with L i.e. [L, ∂2vivjvk ],

gives (for the case of an identity di�usion matrix G(x) = I)

(∂t + L)∂3vivjvkh = −3∂3vivjvkh− ∂3xivjvk
h− ∂3vixjvk

h− ∂3vivjxk
h.

In the case of a matrix G(x), this is given by

(∂t + L)∂3vivjvkh = −Gkm(x)∂
3
vivjvm

h−Gjm(x)∂
3
vivmvk

h−Gim(x)∂
3
vmvjvk

h

− ∂3xivjvk
h− ∂3vixjvk

h− ∂3vivjxk
h.
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A.6 Csiszár-Kullback-Pinsker Inequality & other Inequalities based on

Convexity of Entropy

We have employed the Csiszár-Kullback-Pinsker inequality in Chapters 5 &

6. This inequality gives a bound on the total variation between two probability

measures µ, ν in terms of the relative entropy of µ w.r.t. measure ν. The original

derivation of the inequality can be found in [12, 47, 59]. The exact CKP inequality

(with optimal constant) for two measures µ,ν is ∥µ − ν∥TV ≤
√

1
2
H(µ|ν), where

∥µ− ν∥TV is the total variation between µ, ν and H(µ|ν) the Kullback information

of µ w.r.t. ν as will be de�ned shortly after. In the case of measures µ, ν with

corresponding densities g1, g2 (g1 = dµ
dx

etc.) the CKP inequality is ∥g1 − g2∥L1 ≤√
2H(g1|g2) (since ∥µ− ν∥TV = 1

2
∥g1 − g2∥L1).

Here we follow a proof which can be found e.g. in [4] and is attributed to

Talagrand. To �x things, we assume a Polish space X, P (X) is the set of Borel

probability measures on X, and µ,ν two measures in P (X).We de�ne the Kullback

information of µ w.r.t. ν by

H(µ|ν) =
∫
X

f log f dν, f =
dµ

dν

if µ ≪ ν, and H(µ|ν) = +∞ otherwise. Remember also that the total variation is

de�ned by ∥µ− ν∥TV = sup
A⊂X

|µ(A)− ν(A)|.

Now consider the function h(t) = (1 + t) log(1 + t)− t, for t > −1. With the

help of h, we can write

H(µ|ν) =
∫
X

h(u) dν for u := f − 1.
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Notice that h′(t) = log(1+ t) & h′′(t) = 1
1+t

, implying h(0) = h′(0) = 0. The Taylor

expansion of h about 0 with the remainder term in integral form yields

h(t) =

∫ t

0

(t− x)h′′(x) dx = t2
∫ 1

0

1− s

1 + st
ds.

We now infer from a simple CS inequality that

∫
X

|u|(x) dν
∫ 1

0

(1− s) ds ≤
(∫

X

∫ 1

0

u2(x)(1− s)

1 + su(x)
ds dν

) 1
2

×(∫
X

∫ 1

0

(1− s)(1 + su(x)) ds dν

) 1
2

.

The last inequality implies

∫
X

|1− f | dν ≤ C

(∫
X

∫ 1

0

u2(x)(1− s)

1 + su(x)
ds dν

) 1
2

,

for the constant C =
(
∫
X

∫ 1
0 (1−s)(1+su(x)) ds dν)

1
2∫ 1

0 (1−s) ds
which can be explicitly computed and

has the exact value C =
√
2. Since ∥µ− ν∥TV = 1

2

∫
X
|1− f | dν, the CKP inequality

follows.

It is now time to prove the inequality H(ρ1|ρ2) ≤ H(f1|f2) mentioned earlier

in this study, where ρ1, ρ2 are hydrodynamical variables associated to f1, f2. The

relative entropy mentioned here is the one in LlogL sense.

Proof. For the probability measures ρ1, ρ2, we have

H(ρ1|ρ2) =
∫
ρ1 log

ρ1
ρ2
dx =

∫ (
ρ1 log

ρ1
ρ2

− ρ1 + ρ2

)
dx

=

∫
ρ2

(
ρ1
ρ2

log
ρ1
ρ2

− ρ1
ρ2

+ 1

)
dx.

Once again, we consider the convex function ϕ(x) = x log x − x + 1. The above
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expression can now be written as

H(ρ1|ρ2) =
∫
ρ2 ϕ

(
ρ1
ρ2

)
dx =

∫
ρ2 ϕ

(∫
f1
f2

f2
ρ2
dv

)
dx

≤
∫∫

ρ2 ϕ

(
f1
f2

)
f2
ρ2
dv dx =

∫∫
f2

(
f1
f2

log
f1
f2

− f1
f2

+ 1

)
dv dx

= H(f1|f2).

The inequality employed here is a Jensen's inequality for the measure f2
ρ2

in L1(dv).
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A.7 Poincaré & Log-Sobolev Inequalities

We give su�cient conditions for a probability measure µ with density e−U(x)

(dµ = e−U(x)dx), in order that it satis�es Poincaré and log-Sobolev inequalities.

Since the need for such results appeared in the study for convergence rates, we will

typically introduce these inequalities in their connection with convergence rates for

∂tρ = ∇ · (D(x)(∇ρ+∇U(x)ρ)) , (A.4)

for a function ρ(x, t) on Rn × R+, with initial data ρ0(x) ≥ 0 satisfying
∫
ρ0 dx = 1

and D(x) ≥ 0 being symmetric, uniformly strictly positive n× n matrix.

There is a broad choice of functionals (entropies) for the study of convergence

rates. Assume a strictly convex function ϕ : R+ → R+ (ϕ′′(x) ≥ 0), with the

additional restrictions

ϕ(1) = ϕ′(1) = 0.

In order to construct an admissible relative entropy, one considers the extra

condition

2(ϕ′′′)2 ≤ ϕ′′ϕ(4).

We introduce the relative entropy related to ϕ, i.e

Hϕ(ρ|e−U(x)) =

∫
ϕ(h) dµ,

where h = ρ/e−U(x).

The entropy dissipation rate Dϕ(ρ|e−U(x)) = − d
dt
Hϕ(ρ|e−U(x)), after computa-

tion yields

Dϕ(ρ|e−U(x)) =

∫
ϕ′′(h)∇xh ·D(x)∇xh dµ. (A.5)
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One such choice of functions ϕ is

ϕp(x) =
xp − 1− p(x− 1)

p− 1
, p ∈ (1, 2].

These functions satisfy all the conditions mentioned, including the admissi-

bility condition. The two obvious choices for entropies are the L2(dµ) space for

ϕ2(h) = (h− 1)2, and the LlogL(dµ) for ϕ1(h) = h log h− h+1 (which corresponds

to the limiting case p ↓ 1).

The dissipation rates for these two functionals are

D2(ρ|e−U(x)) = 2

∫
∇xh ·D(x)∇xh dµ ,

D1(ρ|e−U(x)) =

∫
h
∣∣∣D(x)1/2∇x log h

∣∣∣2 dµ
= 4

∫ ∣∣∣D(x)1/2∇x

√
h
∣∣∣2 dµ.

Restricting ourselves to D(x) = I, the Poincaré inequality with constant λ > 0

for a measure e−U(x) dx in this setting, is

D2(ρ|e−U(x)) ≥ 2λH2(ρ|e−U(x)).

Integrating from initial time t = 0 to time t we can prove exponential decay

for the H2 relative entropy

H2(ρ(t)|e−U(x)) ≤ H2(ρ(0)|e−U(x))e−2λt.

In this case, we say that µ admits a spectral gap with constant λ. The following

theorem gives a su�cient condition for the measure µ to satisfy a Poincaré inequality.

Theorem 24. Let U(x) ∈ C2(Rn) s.t µ is a probability measure with density e−U(x).

If

|∇U(x)|2

2
−∆U(x) → ∞ as |x| → ∞,
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then a Poincaré inequality holds for measure µ and some constant λ > 0.

Proof. The proof can be found in [71] pg 132.

The log-Sobolev inequality with constant λ > 0 for the measure e−U(x) dx is

by de�nition

D1(ρ|e−U(x)) ≥ 2λH1(ρ|e−U(x)).

As previously, integration in time implies exponential decay for the H1 relative

entropy which by means of the Csiszar-Kullback-Pinsker inequality gives exponential

convergence to the stationary solution in the L1 norm.

In standard formulation, a log-Sobolev inequality with constant λ > 0 for a

measure µ is satis�ed for a function h on Rn i�∫
h2 log h2 dµ−

(∫
h2 dµ

)
log

(∫
h2 dµ

)
≤ 2

λ

∫
|∇xh|2 dµ.

The original version of a log-Sobolev inequality states that the inequality is

satis�ed with constant 1 i.e.∫
h2 log h2 dν −

(∫
h2 dν

)
log

(∫
h2 dν

)
≤ 2

∫
|∇xh|2 dν,

for the standard Gaussian measure dν = (2π)−n/2e−x2/2 dx for any real function.

This allows the embeddingH1(dν) ⊂ L2 logL2(dν). Proof of the original log-Sobolev

inequality for a standard Gaussian can be found in many sources e.g [8, 28] etc.

Su�cient conditions exist that guarantee the validity of a log-Sobolev inequal-

ity, when ρ solves (A.4). The Bakry-Emery condition that appeared in [2] is the

original mention of such a condition. We now present this condition, as well as two

simpli�ed versions of the condition for a diagonal and an identity matrix D(x).
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Theorem 25. Consider a probability measure µ with density e−U(x).

(i) Assume a symmetric, uniformly positive matrix D(x) and that there exists λ1 > 0

s.t.

Ric ≥ λ1D(x).

Then, for any function ρ that solves (A.4), ρ satis�es a log-Sobolev inequality with

constant λ1. Here, Ric is the Ricci curvature tensor for the manifold

M = (Rn, D(x)−1).

(ii) The condition for a scalar di�usion D(x) = d(x)I is(
1

2
− n

4

)
1

d(x)
∇d(x)⊗∇d(x) + 1

2
(∆d(x)−∇d(x) · ∇U(x))I

+ d(x)∇2U(x) +
∇U(x)⊗∇d(x) +∇d(x)⊗∇U(x)

2
−∇2d(x) ≥ λ1I.

Finally,

(iii) the condition for identity di�usion D(x) = I is

∇2U(x) ≥ λ1I.

Remark 16. The reason for the di�erent versions of the Bakry-Emery condition is

due to the following observation. Let DD
ϕ be the entropy dissipation as seen in (A.5)

for the dissipation rate associated with the F-P operator Lρ = ∇·(D(∇ρ+∇U(x)ρ)),

D(x) ≥ 0. Assume two matrices D1(x), D2(x) that satisfy

D1(x) ≤ D2(x) ∀x ∈ Rn

in the sense of positive de�nite matrices. The dissipation rates for these two matrices

satisfy

DD2
ϕ (ρ|e−U(x)) ≤ DD1

ϕ (ρ|e−U(x)).

170



An immediate consequence is the following. If for any uniformly positive D(x) there

exists a function d(x) > 0 s.t ∀x ∈ Rn

0 < d(x)I ≤ D(x),

then condition (ii) settles the exponential decay for D(x) in the H1(h) entropy. A

similar scenario holds for the condition (iii), if there exists some d > 0 s.t. ∀x ∈ Rn

0 < dI ≤ D(x).

Proof. The theorem can be proved with an �inverted� point of view. We di�erentiate

the dissipation rate and establish the inequality

− d

dt
Dϕ(ρ|e−U(x)) ≥ 2λ1Dϕ(ρ|e−U(x))

which yields exponential decay for the entropy dissipation functional. The remaining

steps are :

(a) Integrating w.r.t. time from t to +∞ to establish the log-Sobolev inequality

(b) Since the computation is done formally, a density argument should be performed

in the end.

We omit the proof of the full Bakry-Emery condition Ric ≥ λ1D(x) because it

requires the language of di�erential geometry for its full understanding. The reader

is directed to the original source [2] for the proof of (i), or even [1]. We restrict

ourselves to the interesting case (ii) of the condition, which is more general than

(iii).
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We start by computing the time derivative of the dissipation rate i.e.

d

dt
Dϕ(ρ|e−U(x)) = −

∫
ϕ′′′(h)∇ · (D∇he−U(x))∇hTD∇h dx

− 2

∫
ϕ′′(h)∇hTD∇ht dµ.

Since ∇ht = ∇(eU(x)∇ · (De−U(x)∇h)) and using the fact that D is diagonal D =

d(x)I, after a tedious algebra which can be traced in [1], the grouping of di�erent

terms will give

− d

dt
Dϕ(ρ|e−U(x)) =

∫
tr(XY ) dµ+ 2λ1

∫
ϕ′′(h)d(x)|∇h|2 dµ,

where the matrices X, Y are

X =

 2ϕ′′(h) 2ϕ′′′(h)

2ϕ′′′(h) ϕ(4)(h)

 and Y =

 a b

b c

 ,

for

a =
∑
i,j

(
d(x)∇2

xixj
h+ 1

2
∇xi

d(x)∇xj
h+ 1

2
∇xi

h∇xj
d(x)− 1

2
δij∇d(x) · ∇h

)2
,

b = d(x)2∇h · ∇2h∇h+ 1
2
d(x)|∇h|2∇h · ∇d(x) , and

c = d(x)2|∇h|4.

It can be shown that both X and Y are non negative matrices, which yields

− d

dt
Dϕ(ρ|e−U(x)) ≥ 2λ1Dϕ(ρ|e−U(x)),

and concludes the proof.
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