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This dissertation is an endeavor in the field of energy modeling for the North

American natural gas market using a mixed complementarity formulation combined

with the stochastic programming.

The genesis of the stochastic equilibrium model presented in this dissertation is

the deterministic market equilibrium model developed in [Gabriel, Kiet and Zhuang,

2005]. Based on some improvements that we made to this model including proving

new existence and uniqueness results, we present a multistage stochastic equilib-

rium model with uncertain demand for the deregulated North American natural

gas market using the recourse method of the stochastic programming. The mar-

ket participants considered by the model are pipeline operators, producers, storage

operators, peak gas operators, marketers and consumers. Pipeline operators are de-

scribed with regulated tariffs but also involve “congestion pricing” as a mechanism

to allocate scarce pipeline capacity. Marketers are modeled as Nash-Cournot players

in sales to the residential and commercial sectors but price-takers in all other as-



pects. Consumers are represented by demand functions in the marketers’ problem.

Producers, storage operators and peak gas operators are price-takers consistent with

perfect competition. Also, two types of the natural gas markets are included: the

long-term and spot markets.

Market participants make both high-level planning decisions (first-stage deci-

sions) in the long-term market and daily operational decisions (recourse decisions) in

the spot market subject to their engineering, resource and political constraints, re-

source constraints as well as market constraints on both the demand and the supply

side, so as to simultaneously maximize their expected profits given others’ deci-

sions. The model is shown to be an instance of a mixed complementarity problem

(MiCP) under minor conditions. The MiCP formulation is derived from applying

the Karush-Kuhn-Tucker optimality conditions of the optimization problems faced

by the market participants. Some theoretical results regarding the market prices in

both markets are shown.

We also illustrate the model on a representative, sample network of two pro-

duction nodes, two consumption nodes with discretely distributed end-user demand

and three seasons using four cases.
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Chapter 1

Introduction

1.1 Overview of the Industry

Natural gas is one of the cleanest, safest and most reliable source of energy and

the natural gas industry is an important segment of the U.S. economy. With more

than a million employees in North America alone, the natural gas market continues

to grow due to ever-increasing opportunities from exploration and production, to

marketing and trading, to transportation and consumption [72].

The natural gas market in the United States has undergone significant changes

recently due to a variety of factors such as the restructuring of the gas and power

industries. Since the passage of the Natural Gas Policy Act (NGPA) in 1978, the

industry has been in a transition from a regulated market to a deregulated one fos-

tering more market competition. Federal Energy Regulatory Commission (FERC)

Order 636 issued in April 1992 ordered interstate natural gas pipelines to unbundle

gas sales, transportation and storage and converted interstate gas pipelines to open

access transporters. Since that time, these agents have undertaken sole roles in the

market, competed with each other noncooperatively and acted relatively indepen-

dently. After years of attempts at market deregulation, the industry has become

much more open to choice and competition and therefore more efficient. As a re-
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sult, the popularity of natural gas use has skyrocketed and its growth is expected

to continue [10].

Although the industry has been studied and deregulated for more than two

decades and plenty of lessons have been learned, the deregulated gas market has not

evolved to its final form [78]. Deregulation of the energy market is still an area re-

quiring more research and applications to make corresponding theories and practice

more mature. The method of mathematical programming is one of the most powerful

tools available to assist either private or public sector in decision making. Mathe-

matical programming is the study and use of optimization models, which minimize

or maximize a real function of real or integer variables, subject to constraints on the

variables. Generally, optimization models not only can generate operational level

planning for individual operators, they can also help policy makers capture a big

picture of the industry. In a particular restructuring natural gas market, market

participants such as gas producers, gas shippers, etc., would like to know the other

agent’s adaptive reaction to the new market, such as production planning or invest-

ment guidance, to remain competitive with the other agents. Policy makers, rather

than using price controls, are concerned with how to guide the market in a direction

to promote the desired level of competition, how to make certain the competition is

accessible to every participant or how to achieve in energy market efficiency.

More importantly, the natural gas industry is far from static and determinis-

tic. The inherent uncertainty typically stems from natural stochastic phenomena,

the international economic condition, energy-environmental requirements and the

functioning of the domestic economic system [55]. In addition, although the North

American interstate natural gas pipeline system is generally a safe mode to trans-

port the natural gas, the reliability of the system has been challenged since terrorist

attacks in 2001. Enhanced security thus provides the motivation for how to keep the
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system running at minimal cost and greatest reliability given these uncertain events.

Consequently, the question of how to treat the uncertainties becomes meaningful and

necessary in the natural gas industry.

All of the answers to aforementioned questions can be found through specially

designed optimization models. Optimization techniques have been applied in the

industry to address many of these problems including linear programming (e.g.,

[2]), nonlinear programming (e.g., [13]), stochastic programming (e.g., [9, 39]) and

market equilibrium modeling (e.g., [7, 33, 35]). Following the work by Gabriel et

al. [35], this dissertation is a study of the deregulated natural gas market under

uncertainty using an extension to optimization models and the notion of market

equilibria.

1.2 Game Theory

When it comes to market equilibria, one will naturally consider game theory. Game

theory is a formal study of multi-person decision making. It has two high-level

branches: noncooperative game theory and cooperative game theory. A noncoopera-

tive game is a game in which each player pursues his or her own interests which are

partly conflicting with others in the absence of an ability to make binding agree-

ments. Cooperative games that we do not discuss in this dissertation are where such

agreements are enforced. Noncooperative game theory is concerned with the anal-

ysis of strategic choices while cooperative game theory focuses on the achievement

and management of a game coalition.

The fundamental unit of the analysis in game theory is the players’ strategic

interdependence. The subject has been extensively applied to many fields such as

economics, politics, finance and computer science whenever the strategic interaction
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is present. The application of game theory in the economics can be dated back to

1944 when the book Theory of Games and Economic Behavior by von Neumann

and Morgenstern [76] was published. Game theory is especially indispensable for

the analysis of oligopolistic markets where there is more than one but still not many

agents [54]. Game theory is less useful to the market analysis when the market

operators under perfect competition or monopoly with no strategic interactions.

The natural gas industry is characterized by imperfect competition. For ex-

ample, the supply side of the European natural gas market has an oligopolistic

structure [7, 17, 44]. As for the North American gas industry after decades’ efforts

of deregulation, gas producers are considered price-takers due to the great number

of producers each owning only a small share of the production. However, imperfect

competition could exist in other aspects of the market, such as the local distribu-

tion companies (LDCs). According to Energy Information Administration website

[21], as of December 2004, apart from regions of District of Columbia, New Jersey,

New Mexico, New York, Pennsylvania and West Virginia, residential consumers in

other places are under imperfect competition of various levels from LDCs. Despite

the fact that LDCs could be monopolists in the consumption regions they serve,

game-theoretic models are used to describe these imperfectly competing agents in

this dissertation.

In terms of the symmetry of the roles of the players take in the game, we

can distinguish between at least two equilibrium solutions: the Nash equilibrium

solution [58] and Stackelberg equilibrium solution [71]. Formal mathematical defi-

nitions for these two solution concepts are available in [4]. In a nutshell, in a Nash

equilibrium, one player cannot improve his/her outcome by altering his/her decision

unilaterally assuming players act simultaneously and no single player dominates the

decision process. When one considers application of the Nash equilibrium in the
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production/distribution models, two types of models are abundantly studied in the

literature: the Nash-Cournot model of quantity competition and the Nash-Bertrand

model of price competition. A Nash-Cournot production model concerns a number

of firms, each setting its production level so as to maximize its own profit given

that the production of the other firms remains constant. As opposed to choice of

production, firms competing in a Nash-Bertrand model choose the prices for their

single output based on maximizing their profit in the Nash manner. A Stackelberg

equilibrium is one that involves a hierarchy in the decision making. In such a game,

it is assumed that one player, the leader, declares his strategy first and enforces

it on the other players, referred to as followers. The OPEC oil-cartel versus the

fringe of non-member producers is a good example of such a game in the energy

industry. Likewise, Stackelberg equilibrium could also lead to the concepts of the

Stackelberg-Cournot and Stackelberg-Bertrand models. Compared with the Nash

equilibrium concept, the application of the Stackelberg-Cournot and Stackelberg-

Bertrand models are limited. Studies that report on the modeling, solution proper-

ties and algorithms include [14, 29, 69, 73].

Further, in terms of the importance of the order in which decisions are made,

a game could be static or dynamic. In spite of the fact that many criteria can be

used to distinguish static and dynamic games, what they have in common is the role

that time plays in the game. In this dissertation, a game is static if the players act

only once and independently of each other (e.g., [56]); a game is considered dynamic

when the decision making involves multiple time periods. In this sense, a Nash game

can be static (e.g., [66]) or dynamic (e.g., [44, 56]).

The central concept in dynamic games is the information structure which de-

scribes type and amount of information available to players. Usually three types

of structure may be distinguished: the closed-loop, feedback, and open-loop in-
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formation structures. In the first case, the players’ decisions are based on all the

available information about the past state and the previous moves made by the

other players; in the second case, the players use a Markovian strategy based on the

observation of the current state; in the last case, the only information available for

the players is related to the stage. The equilibrium solutions calculated by using

the three information structure are referred to as closed-loop, feedback and open-

loop solutions, respectively. The feedback and open-loop solutions are contained

within the set of closed-loop solutions. Due to the computational complexity, the

applications of the closed-loop and feedback solutions to large-scale models are not

available in the literature of mathematical programming. Unfortunately, open-loop

equilibria are generally not subgame-perfect [68]. This is often viewed as a major

drawback of this type of equilibrium. However, because of its simplicity, open-loop

strategies are often used as a benchmark for analysis of other strategic dynamic

equilibria. Applications of the open-loop solution in the energy industry include

[44, 45, 66]. Introduced by Haurie, Zaccour and Smeers [45], S-adapted open-loop

structure, where S stands for samples is a variation of open-loop structure designated

for the stochastic dynamic games. In this case, the players make decisions based

on their observation of the the stage and the random outcomes on the scenario tree

(defined in Section 4.2). It lies halfway between the completely adaptive closed-loop

and the completely nonadaptive open-loop.

The models presented in this dissertation treat market participants as game

players in a multistage thus dynamic, noncooperative game. Some players are price

takers as in a perfect competition environment; others compete in an open-loop,

Nash-Cournot fashion. All players have symmetric roles and make decisions si-

multaneously. The overall equilibrium is computed as a (S-adapted, if stochastic)

open-loop Nash equilibrium via a variational inequality formulation to be intro-

duced.
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1.3 NCP/VI and Stochastic Programming

The fields of mathematical programming and economic theory are closely interwo-

ven. One of the spotlights in the academic and professional communities is how

to compute economic and game theoretic equilibria by mathematical programming.

Three major methods contributing to the computation of economic equilibria have

emerged: fixed point theory (or homotopy-based) methods, nonlinear optimiza-

tion, and nonlinear complementary/variational inequality problem (NCP/VI) the-

ory. Neither the fixed point theory nor the nonlinear optimization provides sat-

isfactory generality or computational efficiency for solving large-scale equilibrium

problems. However, NCP/VI has been shown, both theoretically and practically, to

be a promising candidate for computing large-scale equilibrium problems [42].

As a result of almost four decades of research, the subject of NCP/VI has be-

come a well-established and fruitful discipline within mathematical programming.

NCP/VI theory is now an important mathematical method used by many researchers

who study equilibrium of economic systems. It has been verified both theoretically

and with applications that the NCP/VI format has significant advantages in com-

puting an economic equilibrium compared to general optimization methods [27, 42].

It is well known that the problem of a Nash Equilibrium can be formulated as a vari-

ational inequality. While a Stackelberg game is not known to be a compementarity

problem, but a mathematical program with equilibrium constraints (MPEC).

Stochastic programming is a framework for modeling optimization problems

that involve uncertainty. “Stochastic is opposed to deterministic and means that

some data are random, whereas programming refers to the fact that various parts

of the problem can be modeled as linear or nonlinear mathematical programs” [6].

From the perspective of mathematical programming, a decision of deterministic

considerations is different from one for an uncertain environment. Using a decision
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based on deterministic conditions in an uncertain situation will possibly lead to in-

valid results. Due to the fact that real world problems almost invariably include

some unknown parameters, stochastic programming has been widely applied in a va-

riety of areas including agriculture, energy, finance, scheduling, transportation, etc.

It has also been extensively used in energy models over the years. The regulated

electricity market is the most studied area which uses stochastic programming. In

contrast to the large volume of models relating to electricity investments and oper-

ations, the application of stochastic optimization equilibrium models to the oil and

gas markets is more limited [78].

The counterpart of a market equilibrium model in stochastic programming is

a stochastic equilibrium model. Apart from the advantages an equilibrium model

has, a stochastic equilibrium model will use probability distributions to consider

the range of possible contingencies and then provide a set of strategies dealing with

different situations for decision makers rather than a single decision for the simplified

reality.

Naturally, a new area has evolved — how to solve a stochastic equilibrium

problem by NCP/VI, which has not yet been well studied. Despite its significance,

few works have been published on it so far. Haurie et al. [44] proposed a stochastic

dynamic Nash-Cournot model of imperfect competition for studying the contracts

in the European gas market, and used variational inequalities as the computational

technique. Using the same computational technique, De Wolf and Smeers [14] con-

sidered a Stackelberg-Nash-Cournot equilibrium model with a numerical illustration

of the European gas market. However, such an application in the North American

natural gas market, which distinguishes itself from the European market both in

regulatory and operational aspects, has not appeared. Moreover, all the completed

works of stochastic NCP/VI of the natural gas market have not taken into account
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much detail of agents beyond demand and supply sides. This dissertation estab-

lishes a detailed stochastic NCP/VI model aiming at filling the blank of such an

application to the North American natural gas market. Besides its academic inno-

vation, such study would shed light on the evolution of the restructuring natural

gas market.

1.4 Energy Modeling Activities

In general, there are two foci of natural gas optimization models: optimization of gas

operations for a particular entity (gas marketer, utility, etc.) and computation of

market equilibrium prices, flows and quantities. The latter is often accomplished by

solving an appropriate optimization problem or sequence of optimization problems.

They are referred to as operation and market (equilibrium) models, respectively.

Since the model to be developed is a market equilibrium model, we concentrate

below on the market-centric gas models but mention that [2, 13, 39] are samples of

approaches for operation models.

Compared with operation models that focus on operational aspects, market

equilibrium models are of particular importance to policy makers in that such mod-

els give insights concerning the trading prices and quantities of natural gas while

generating more comprehensive and higher level information relevant to the entire

market. An equilibrium model also facilitates the forecast of the changes in the

level of social welfare that would be caused by a change in market conditions such

as an improvement in technology or a new government tax policy. Since the oil

embargo of the early 1970s, the U.S. energy community has done extensive math-

ematical modeling to analyze various energy issues and develop a national energy

policy. Among these efforts, market equilibrium models have played an important

role. Some examples of large-scale equilibrium models for the U.S. energy industry
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are the Project Independence Evaluation System (PIES) in the 1970s [47]; the In-

termediate Future Forecasting System (IFFS) around 1980 [57]; and the National

Energy Modeling System (NEMS) in the 1990s [33].

We concentrate on reviewing works for the North American and the European

natural gas market, both of which have received considerable attention over the

years. There have been a variety of modeling efforts for the European natural gas

market since 1970s. One of the early market models was the peak-load pricing

and investment model for the domestic gas market in Great Britain [74]. It was

based on maximizing the social welfare function. Later, Haurie et al. [44] built

a stochastic dynamic Nash-Cournot model for considering long-term gas contracts

and applied their model to the European gas market. The model only considered

oligopolistic producers and end-users represented by inverse demand functions. The

market equilibrium was achieved by simultaneous choice of production by producers

so as to maximize their expected profits. They showed that their problem was

an instance of an NCP/VI. De Wolf and Smeers [14] considered a similar Nash-

Cournot problem for the European gas market from the stochastic and Stackelberg

aspect. Stackelberg problems can be described as special cases of mathematical

programs with equilibrium constraints (MPEC) [26], which generalizes NCP/VIs.

Lastly, GASTALE [7, 17] is a recent work modeling the European gas market given

a successive oligopoly setting of two layers of imperfectly competitive suppliers.

Producers, consumers, storage operators and a transmission system operator are

considered in an equilibrium context described by a complementarity problem.

In North America, O’Neill et al. in [61] presented a network optimization

model depicting the interstate pipeline system using a linearization scheme to handle

the nonlinear relationships between gas flows and pressure in pipelines, compressors,

or valves. GRIDNET [8] is an example of a generalized network optimization model
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for gas that contains very detailed data on pipelines and gas transactions from the

gas marketing company’s perspective. The Natural Gas Transmission and Distribu-

tion Module (NGTDM) and Oil and Gas Supply Module (OGSM) are two modules

related to the natural gas market in NEMS [18, 19]. NGTDM derives natural gas

production and end-user prices and flow patterns for movements of the natural gas

through the regional interstate network. OGSM produces forecast of drilling in-

vestments for exploration and production for domestic crude oil and natural gas

using the wellhead natural gas prices supplied by NGTDM and petroleum product

prices developed by the Petroleum Market Model (PMN), a component of NEMS.

NGTDM and OGSM jointly project the regional production and wellhead prices for

the natural gas market [18, 19]. Note that OGSM or NGTDM alone is not a natural

gas market model per se.

The Gas Systems Analysis Model (GSAM) is a large-scale modular model of

the North American natural gas market developed at ICF consulting. The model is

based on the notion of maximizing the social welfare function resulting in a large-

scale nonlinear program. A successive linear programming strategy is employed to

solve the overall nonlinear problem. GSAM has been used in a variety of industry

and regulatory studies. Perhaps the most unique feature of GSAM as compared to

other market equilibrium models is its database of over 17,000 natural gas production

reservoirs each with approximately 200 variables. This makes the model free from

assumptions regarding the functional forms for the supply curves. GSAM’s time

horizon spans 23 years (1998-2020) with each year segmented into four gas seasons

and four demand sectors. The supply and demand sides are tied together by a

gas network composed of 46 nodes and 79 transportation links. A storage reservoir

database of over 500 storage sites as well as regional peak-shaving options (LNG,

propane/air) complements the network [34].
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Gabriel et al. [35] presented and analyzed a market equilibrium model that

can be applied to a natural gas marketplace resulted from the restructuring of the

industry and showed that the equilibrium model is an instance of a mixed nonlin-

ear complementarity problem (NCP). As far as is known,it is the first time in the

literature that NCP/VI formulations were used to model a natural gas market with

such a market structure. Compared with GSAM, this model considered oligopolistic

marketers competing in the Nash-Cournot manner, which is not usually seen in the

models developed for the North American natural gas market. Based on the U.S.

national pipeline grids, this model was used in [36, 37] to measure the market power

under different economic scenarios in terms of the changes in the equilibrium prices

and quantities. A detailed description for this model is presented in Chapter 3.

None of the preceding models for the North American natural gas market

accounted for the uncertain factors when they were initially developed although

they could be used for the analysis of issues involving uncertainty using techniques

such as sensitivity analysis. However, Wallace showed in [77] that sensitivity analysis

does not deliver good candidate solutions for an optimization problem with uncertain

parameters. In order to capture the uncertainty in the real market, this dissertation

provides a stochastic market model based on the market framework proposed by [35].

Unlike previous models, we distinguish two types of natural gas markets in this new

model: the long-term market and the spot market, which is not generally considered

as part of a natural gas market model. Market participants make deterministic

long-term planning decision in the long-term market and respond to the market

uncertainty in the spot market. The new model will be presented in Chapter 4.

As another direction of [35], Kiet proposed a market equilibrium model using

micro-level data to develop the demand functions, supply functions or other elements

in the gas market that do not have a closed form [50].
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1.5 Contributions and Organization of Dissertation

The main contributions of this dissertation include:

• To our knowledge, it is the first detailed stochastic equilibrium model appli-

cable to the deregulated natural gas market in North America formulated as

an NCP/VI;

• It mathematically establishes new and improved existence and uniqueness re-

sults of the model presented in [35], which is the genesis of this dissertation;

• It explores the theoretical and computational aspects of the stochastic NCP/VI,

which have been relatively unstudied to date;

• It investigates specific approaches for performing stochastic equilibrium pro-

gramming [45] in the natural gas industry.

It is important to note that this dissertation does not directly model the non-

convexities1 in the natural gas market. This is done on purpose since the convexity

assumptions facilitate to establish useful properties for the model and alleviate the

computational burdens. Such modeling assumptions have also been used by many

others described in this section, although it is known that simplification of the non-

convexities will result in a situation of market imbalance [62]. Moreover, a NCP/VI

model combined with integer variables represents a rather unstudied and challeng-

ing area and have not appeared extensively in the literature. However, there has

been some work in integer-constrained LCPs (linear complementarity problems), for

example, [12, 38, 64].

1Typical examples of nonconvexities include the nonlinear relationship between flows through

an arc and the pressures at the terminal nodes of the arc [61], the discrete decisions on whether

to invest in a new project or not and the fixed cost in the cost functions.
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The rest of this dissertation is organized as follows. Chapter 2 introduces

the industry background emphasizing the outcomes of the industry deregulation. A

simplified market network is proposed for the models presented in the later chapters.

This model framework gives very comprehensive considerations to the components

of the gas supply chain. Traditionally, the focus of the market equilibrium models

is restricted to the interaction between producers and consumers located at the

two ends of the supply chain. However, this dissertation incorporates intermediate

agents located in the middle of the supply chain, i.e., regulated pipeline operators,

storage operators and peak gas operators as independent players maximizing their

expected profits, respectively.

Chapter 3 describes a deterministic equilibrium model denoted D-NGEM,

which appeared in [35], and establishes new existence and uniqueness results for the

model. Based on the mixed complementarity formulation derived from the KKT

and market-clearing conditions, we present new conditions regarding existence and

uniqueness results for the model. These conditions are more easily verified com-

pared with those presented in [35] in that the new conditions are requirements on

the inputs (i.e., the (marginal) cost functions and the (marginal) revenue functions

for the marketers) of the model rather than the outputs as previously.

Chapter 4 presents a stochastic equilibrium model denoted S-NGEM, which

is an extension of the deterministic model discussed in the previous chapter. This

stochastic equilibrium model takes advantage of the recourse method provided by

stochastic programming and sets up two types of decision variables faced by all

players, i.e., the long-term market and spot market decisions, corresponding to the

first-stage and recourse variables in the recourse method, respectively. The long-

term market decisions are concerned with high level long-term planning. The spot

market decisions are the responses to the market uncertainty in order to compensate
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for any adverse effects from the first-stage decisions. The overall objective is to

maximize the expected profits earned based on both types of decisions. This model

is shown to be an instance of an NCP/VI under minor assumptions. It is interesting

to note that we establish a relationship between the prices for the long-term and spot

markets. That is, it is generally true (except the storage gas market) that when the

production activities (i.e., pipeline flows, wellhead production rates and peak gas

production rates) are positive for the long-term market and for all possible random

outcomes in the spot market, the corresponding price (the pipeline congestion fee,

the wellhead price and the peak gas price) for the long-term market is equal to the

expected spot market price.

Using GAMS/PATH [28], we provide the numerical results for a sample net-

work with three seasons, eleven players and 64 demand scenarios in Chapter 5.

Lastly, we conclude this dissertation in Chapter 6 with a summary and some rec-

ommendations for the future work.
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Chapter 2

A Simplified Market Structure

In this chapter, we discuss a simplified market structure which is adopted by two

equilibrium models for the North American natural gas market, that is, models

D-NGEM and S-NGEM presented in Chapter 3 and Chapter 4, respectively. This

framework takes into account several important market characteristics including

demand seasonality, the emergence of new market participants and a variety of

market contracts as a result of the market deregulation.

2.1 Demand Seasonality

Natural gas demand is highly seasonal with higher demand during the winter par-

tially due to the fact it is used for heat in residential and commercial settings. We

examine this inherent property of the market using data published by the U.S. En-

ergy Information Administration (EIA). Figure 2.1 compares the U.S. monthly gas

consumption in 2003 by sector. As shown in the figure, the consumption in the resi-

dential and commercial sectors is significantly higher in the winter than the summer.

The industrial consumption is relatively constant throughout the year. On the con-

trary, electric power sector exhibits the strongest demand in the summer. Summing

over four sectors, the seasonality of the consumption for the natural gas is apparent.
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Such a trend can be easily found in other years as well.

Source: EIA

Figure 2.1: U.S. 2003 Monthly Natural Gas Consumption by Sector

Given the demand seasonality, we specify three seasons for a year, indexed by

s to approximate this variability; dayss is the number of days in season s. The year

is divided as follows:

• s=1, low demand season, April-October, days1 = 214;

• s=2, high demand season, November - March excluding January, days2 = 120;

• s=3, peak demand season, January, days3 = 31.

Using the seasons defined above, we average the monthly consumption within

the three seasons in Figure 2.1. For example, the average monthly consumption in

season 1 is the sum of monthly consumption from April to October divided by 7,

the number of months in season 1. The result of the averaging is shown in Figure
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2.2, which reduces the demand levels to three thus alleviating the modeling and

computational complexity.

Figure 2.2: Seasonally Averaged U.S. 2003 Monthly Consumption by Sector

2.2 Market Participants

The structure of the natural gas industry has changed dramatically over the past two

and a half decades since the Natural Gas Policy Act (NGPA) passed by Congress

in 1978. This act ended federal control of the wellhead price of gas as of Jan-

uary 1, 1985. Later in the mid 1980’s, the Federal Energy Regulatory Commission

(FERC) Orders 436 and 500 - the latter often referred to as the Open Access Order

- encouraged pipelines to open access, non-discriminatory transportation services so

end-users could contract directly with producers for gas supply. The Natural Gas

Wellhead Decontrol Act (NGWDA) in 1989 fully lifted all controls on the wellhead

prices. FERC Order 636 in 1992 required interstate pipelines to unbundle gas sales,
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transportation and storage to ensure that transportation was equally available to

all [10].

In the restructurd market, producers, processing companies, pipeline compa-

nies, storage operators, marketers, local distribution companies (LDC) and liquified

natural gas (LNG) suppliers make up the main parts of the natural gas industry.

The existence of natural gas marketers who can serve as a middle-man between the

buyer and the seller of gas to facilitate the movement of gas, is one of the major

differences in the current structure of the market as compared to previously.

For the modeling purpose, following Gabriel et al. [35], the natural gas market

in North America is simplified to the following agents:

• Consumers — indexed by k ∈ K, that exhibit demand for the natural

gas. There is the demand by sector: residential, commercial, industrial, and

electrical power, indexed by k = 1, 2, 3 and 4, respectively. There are no

optimization problems for the consumers. In the model D-NGEM, they are

instead represented by demand functions. However, in the model S-NGEM,

only residential and commercial sectors are represented by demand functions.

Industrial and electric power sectors have predetermined demand in different

time periods.

• Pipeline operators — indexed by a ∈ A, that own the physical pipelines

designed to move the gas from the wellhead in the production area to the

city-gate in the consumption area via both long and short haul. The trans-

portation rates of the pipeline use are regulated by FERC in America. There-

fore, pipeline operators are assumed to be price-takers in the transportation

market.

• Production operators — indexed by p ∈ P , also referred to as producers, that
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own the gas that is produced at a well and concern themselves with exploration

and production activities. There are over 8,000 producers of natural gas in

the United States [59]. Therefore, producers in our models are assumed price-

takers given the small percentage of reserves that typically each producer holds

in North America.

• Storage operators — indexed by r ∈ R, that inject natural gas into storage

sites (depleted reservoirs, salt caverns, etc.) in the off-season (season 1) and

extract gas to consumption market when the demand is high (seasons 2 and

3), typically the winter months. As of August 2004, there are about 120

natural gas storage operators in the United States, with control over 400 active

underground storage facilities [25]. The storage facilities are regulated by the

FERC or the state depending on its service scope. For this reason, storage

operators are price-takers in the two models.

• Peak gas operators — indexed by p ∈ P , that sell peak gas (LNG or propane-

air mixtures, collectively refereed to as “peak gas”) to marketers during the

peak season (season 3) when the peak demands are not adequately supplied

by the pipeline or storage gas. Despite the forecast of the rapid growth of the

LNG imports in the next few years in Annual Energy Outlook 2004 by EIA

[20], the peak gas only serves a small amount of demand in the current North

American market. According to the data available on EIA website, the LNG

withdrawal in 2003 was 67,543 million cubit feet (MMcf). Compared with the

total consumption for the natural gas of 22 trillion cubic feet (Tcf), the LNG

supply was rather insignificant. Thus the peak gas operators are modeled as

price-takers in our models.

• Marketers/shippers — indexed by m ∈ M , re-sellers of the gas that contract

with pipeline companies, production operators, storage operators, and peak
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gas operators to procure the natural gas and sell it to end users in the residen-

tial, commercial, industrial, and electrical sectors. As modeled, the marketers

are the only access of gas to end-users and thus are more likely to possess

market power. Therefore, we consider oligopolistic marketers in the models.

In the model D-NGEM, marketers are Nash-Cournot players for all the four

demand sectors. While in the model S-NGEM, marketer are Nash-Cournot

players in the residential and commercial sectors but price-takers in the in-

dustrial and electric power sectors. This change is under the consideration

that large buyers in the industrial and electric power sectors are able to get

discounts on large orders from marketers1. Large buyers could even have the

market power to set the prices. Such a market is referred to as an oligopsony.

We note that in our nomenclature, we do not distinguish between marketers

and shippers. In fact, marketers procure the natural gas from some source (produc-

ers, storage operators, etc.) and supply it to the end users in the four consumption

sectors. Shippers can have a similar role to marketers except that they themselves

may also be end users such as a local distribution company supplying natural gas

to residential end users. Structurally, they have similar optimization problems;

hereafter “marketer” will refer to either a marketer or a shipper unless specified

otherwise.

Storage gas and peak gas will be used to handle peak demands not adequately

supplied by the pipeline gas during the peak season. In general, peak gas or storage

gas is expensive.

1Based on the data available at EIA, the average consumption per consumer in the residential

sector was 394, 369, 377 and 362 thousand cubic fee (Mcf) for years 2000 - 2003, respectively.

In the commercial sector, the average consumption per custom was 635, 605, 621 and 624 Mcf,

respectively. The average consumption per industrial consumer was 36,968, 33,840, 36,458 and

34,747 Mcf, respectively.
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For modeling purposes, the whole market is divided into several submarkets:

pipeline, production, storage, peak gas and marketer submarkets. Each agent de-

scribed above operates in the submarket to which it belongs. It is reasonable to

assume that agents in the same submarket have the same competition pattern. For

example, if the marketer submarket is oligopolistic, all the marketers belonging to it

compete with each other in a Cournot-Nash or Bertrand manner. A noncooperative

game theory model may be appropriate for this case.

2.3 Natural Gas Network

In terms of the natural gas network structure, there are a set of regions for pro-

duction or consumption denoted as N . We also denote the sets for production

and consumption regions as PN and CN , respectively, satisfying two conditions

PN ∪ CN = N and PN ∩ CN = ∅. In the case that a region physically exhibits

both production and consumption behaviors, we can conceptually divide it into two

regions, production and consumption, in the network. One possible benchmark for

region division is the census regions. Examples include Oil and Gas Supply Module

(OGSM) [18] and Natural Gas Transmission and Distribution Model (NGTDM) [19],

both of which are components of the National Energy Modeling System (NEMS).

The work by Gabriel et al in [37] adapts the same region map as NGTDM.

• Production Regions

Multiple producers are allowed per production region where one producer has

a unique production location. The set of producers located at a production

region n ∈ PN is denoted by Cn. Therefore, {· · · , Cn, · · · } forms a partition

of the set C. The mathematical operator nc(c) calculates the location of

producer c. In terms of the network structure, each production region is
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linked to the consumption regions (either to marketers or to storage operators)

corresponding to physical interstate pipelines or pipeline aggregates either of

which can accrue losses.

• Consumption Regions

The consumption regions encompass the groups of consumers, storage opera-

tors, peak gas operators and marketers. Multiple participants are allowed for

each group while every participant has one unique location. The sets Rn, P n

and Mn are groups of storage operators, peak gas operators and marketers,

respectively, located at consumption region n ∈ CN . Thus, {· · · , Rn, · · · },
{· · · , P n, · · · } and {· · · ,Mn, · · · } are partitions of sets R, P and M , respec-

tively.

Connecting each of these production and consumption regions is a set of di-

rected pipeline arcs A. A specific arc a ∈ A represents an abstraction of a pipeline,

pipeline segment, or pipelines measuring the flow between these production and

consumption regions. A(n) is the set of arcs connected to the node n ∈ N . If n is

a consumption region, then A(n) is also the set of arcs available to marketers and

storage operators located at node n. Such a simplification of the network represents

a transportation network per se. A more straightforward alternative is a tranship-

ment network. Section 3.1.1 explains why a transportation network is chosen for

the pipeline network.

Figure 2.3 is an illustration for a simplified network with interaction between

market participants during three seasons. Geographically, there are four regions in

the sample network, N = {P1, P2, C1, C2} as shown in Figure 2.3 (a). The two

shaded ones on the top represent two production nodes PN = {P1, P2}, each of

which can have one or more producers as shown in Figure 2.3 (b). On the bottom,

23



there are two consumption regions CN = {C1, C2}, where marketers, storage op-

erators, peak gas operators and consumers are co-located, as shown in Figure 2.3

(b). The production and consumption regions are connected by a set of directed

arcs A = {a1, a2, a3, a4} as shown in Figure 2.3 (a). The sets of arcs available to

regions P1, P2, C1 and C2 are, respectively, A(P1) = {a1, a2}, A(P2) = {a3, a4},
A(C1) = {a1, a3} and A(C1) = {a2, a4}.

The nodes in Figure 2.3 (b) symbolize a group of operators; the number of

operators located on each node could be one or more than one. The set of producers

located at regions P1 and P2 are denoted by CP1 and CP2, respectively. Marketers

and storage operators located at the same consumption regions share the same set of

arcs, e.g., for consumption region C1, the set of available arcs is A(C1) = {a1, a3}.
Marketers (m ∈ MC1 or m ∈ MC2) procure the gas from producers in all three

seasons. Storage operators (r ∈ RC1 or r ∈ RC2) obtain the gas from producers in

season 1 and inject it into the storage for later use. Within the consumption regions,

local marketers are the only access to gas for consumers; storage operators supply

the gas to the local marketers in seasons 2 and 3; peak gas operators (p ∈ PC1 or

p ∈ PC1) supply gas to marketers in the peak demand season, season 3. Note that

these assumptions are for modeling purposes but are reasonable approximations of

reality.

2.4 Contracts and Market

In this section, we discuss how the models in this dissertation considers the uncer-

tainty inherent in the gas market and the means of contracting designed to protect

market participants against risk.
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It is well known that the natural gas industry is far from static and determin-

istic in that the fluctuation of the demand and prices over time are hard to predict.

The factors that influence the demand for natural gas include weather changes, stor-

age levels, market information as well as the economy, in general all of which are

hard to predict. Figure 2.4 from EIA [23] shows this market uncertainty in terms of

an index “price volatility”, measured by the day-to-day percentage difference in the

price of the gas. The figure examines daily spot market prices and the corresponding

price volatility index at the Henry Hub market center in Louisiana from January

1995 through October 2003. It is noticeable that the spot market prices are subject

to seasonal changes. The peak demand in the winter season is usually accompanied

by high and often volatile prices because the natural gas supply has less flexibility

to respond to the surging demand caused by the cold winter months.

Figure 2.4: Natural Gas Spot Market Prices and Volatility (1995-2003)

Consequently, finding an appropriate trade-off between gas price and supply

assurance becomes a crucial question to the industry participants since gas suppliers

do not want to commit to a low price over a long period of time while buyers do not
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want to commit to a high price over an extended period of time. Because of this

relationship there are two types of gas markets that we concentrate on:

• Spot Market

As a result of deregulation, the spot market is “a market in which natural

gas is bought and sold for immediate or very near-term delivery, usually for

a period of 30 days or less” [24]. The spot market contracts are used to

take advantage of market imbalance conditions and maintain market flexibil-

ity. Price competition is a dominant characteristic of the spot market. Spot

market prices reveal the short-term supply and demand characteristics of the

market. The Henry Hub in southern Louisiana, where more than 180 cus-

tomers regularly conduct business through 14 interconnecting pipeline system

and high-deliverability salt storage cavern facility according to EIA [22], is the

most active and publicized spot market in North America.

• Long-Term Market

The long-term market consists of buying and selling natural gas under contract

for at least one month in advance. Prices of the long-term market are negoti-

ated between the buyer and seller and often an index is used as a benchmark.

Because the long term market is less volatile than the spot market, assurance

of supply is the major advantage of this market. The long-term contracts are

the traditional ones in the natural gas market. Nevertheless, the importance

of these contracts has been lessened as a result of deregulation of the industry.

In addition, based on a consumer’s demand profile, there are three main types

of physical trading contracts: swing contracts, baseload contracts and firm contracts.

Swing (or “Interruptible”) contracts are usually short-term contracts. Under

this contract, both the buyer and seller agree that neither party is obligated to deliver
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or receive the exact volume specified. Either party can terminate the contract with

short or no notice. The buyer will generally pay only commodity charges (a unit

charge of gas delivered to the buyers) when the gas is delivered. A swing contract

has the lowest priority of all contracts.

Best-efforts contracts are similar to swing contracts. Neither the buyer nor

seller is obligated to deliver or receive the exact volume specified. Interruption of

service is allowable on short or no notice. However, it is agreed that both parties

will attempt to fulfill the contract on a “best-efforts” basis.

Firm contracts provide service on a guaranteed basis. Unlike swing and best-

effots contracts, there is legal recourse available to either party if the other party

fails to fulfill its obligation under the agreement. The buyer will generally pay

a reservation charge2 and a commodity charge. A firm contract has the highest

priority among all other contracts.

Based on the above analysis, the market structure depicted in Figure 2.3(b)

can be understood as an abstract of the long-term market with firm contracts. In

this dissertation, we assume a similar structure for the spot market: marketers buy

gas from producers in all three seasons; storage operators inject the gas in the first

season and then extract the gas to marketers in seasons 2 and 3; peak gas operators

supply gas to marketers in the peak demand season. An important aspect of the

spot market modeled in the dissertation is that all activities taken place in the spot

market are merely committed to a season. Participants have the flexibility to make

adjustment to their activity levels every season.

This dissertation develops an equilibrium model for an abstraction of the nat-

ural gas market which captures the market structure and contracts features involved

2In this dissertation, reservation charge is modeled as a charge per unit of capacity reserved on

a pipeline by firm contracts.
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in both the spot market and long-term markets. Thus, the results generated by the

model can serve as references for policy makers or other market participants.

Chapter 3 of the dissertation incorporates a deterministic market equilibrium

model, denoted D-NGEM, designed to simulate the long-term natural gas mar-

ket. The span of the time period considered as “long-term” in this context is a

medium-term horizon (one to three years) since capacity expansion decisions are

not considered. The contract forms considered by this model can be understood

as “firm contracts” in practice since market volatility is not a consideration of the

model. Market participants can use this model to do long-term planing for their

sales or purchases for the three seasons of every year at the beginning of the time.

Based on the deterministic model framework, a new stochastic equilibrium

model, denoted S-NGEM is developed in Chapter 4. This stochastic model aids mar-

ket participants in planning the sales or purchases under uncertain circumstances

by using techniques of stochastic programming. It reflects the contractual features

of not only the long-term market but also the spot market, where consumer de-

mand over the time horizon is subject to one or multiple probabilistic distributions.

The long-term and spot markets in the model are abstract generalizations of reality.

First, the long-term market provides planning level contracts which must be made

at the beginning of the time horizon and the spot market contracts are available

for delivery at the beginning of each season. We believe that these are reasonable

approximations due to the complexity of the problem and the limits on the computa-

tional capability. The model could be re-formulated to better approximate reality,

where the long-term and spot market contracts are available at any time. In an

extreme case when the number of long-term trading periods tends to infinity, the

market equilibrium tends to the perfect competition solution [1]. Secondly, since

there is no legal recourse and reservation charges associated with them, the best-
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efforts and swing contracts are considered as spot market contracts in the model;

the firm contracts belong to the long-term market where a reservation charge is

required.

Figure 2.5 demonstrates the relationship between these two models using a one-

year time period. The horizontal axis represents the annual seasons and the vertical

axis represents consumption rates. For each season, there is a white and a shaded

block corresponding to the consumption in the long-term and the spot markets,

respectively. The height of these blocks represents the level of the consumption rates.

Consumption rates in the spot market are subject to probability distributions, e.g.,

an exponential distribution in season 1 and a discrete distribution of two realizations

in season 2 as shown in the figure.

In the deterministic model in Chapter 3, all consumption from the four sectors

are assumed to be deterministic and is met by long-term market supplies. By

contrast, the stochastic model in Chapter 4 determines the consumption rate served

both by the long-term and spot markets. The part of consumption rates met by

long-term market contracts is determined at the beginning of the time horizon while

those served by the spot market depends on the realizations of the possible outcomes

of the market uncertainty. For example, in Figure 2.5, two realizations A and B in

season 2 give rise to two levels of rates, a and b.
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Figure 2.5: Deterministic and Stochastic Models

2.5 Conclusions

In this chapter, we discussed how the market characteristics emerging after deregu-

lations, especially the existence of storage operators, marketers and the spot market,

are captured by the models D-NGEM and S-NGEM presented in the following chap-

ters.
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Chapter 3

A Deterministic Model D-NGEM

In this chapter, we first present a deterministic equilibrium model initially developed

in [35], based on the market structure depicted in Section 2.3. This market model

was denoted NGMEP in [35]. Next, we reformulate the model NGMEP as a mixed

complementarity problem (MiCP) which is different from the one shown in [35] in

that the market prices (wellhead prices, storage gas prices and peak gas prices) are

defined to be nonnegative instead of free, so that new existence and uniqueness

results are able to be developed by making mild assumptions on the marginal cost

and revenue functions thus releasing the restrictions on price variables as imposed

in [35].

For the purpose of this dissertation, we rename the model NGMEP as D-

NGEM, where D stands for deterministic, as opposed to the S standing for stochas-

tic in Chapter 4. This chapter is organized as follows: Section 3.1 discusses the

components of the model D-NGEM and the conditions when these components are

equivalent to MiCPs or NCPs. Sections 3.2 and 3.3, respectively, show the existence

and uniqueness conditions for model D-NGEM based on the MiCP formulation de-

veloped in Section 3.1. Numerical demonstrations of the model D-NGEM can be

found in [36] and [37], in which the model was run to predict gas consumption and

prices in 2008 under different economic scenarios for the North American natural
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gas industry including the continental U.S. and Canada connected by 132 major

interstate pipelines.

For the sake of establishing existence of an equilibrium solution, assumptions

made in this chapter include:

• The cost functions of producers, storage operators and peak gas operators are

convex, continuously differentiable and strictly increasing;

• For each l ≥ 0, the end-user inverse demand functions θ(l) are nonnegative,

continuously differentiable and non-increasing and satisfy the following in-

equality: θ′(l) + lθ′′(l) ≤ 0;

• Assumption 3.2.1: The pipeline congestion price is bounded below when the

corresponding pipeline flow is zero.

All assumptions but the last item are common practice in developing existence

results for an equilibrium solution. See [30, 41, 56, 60, 69], to name but a few. As-

sumption 3.2.1 is in place due to the lack of a cost function in the pipeline operators’

objective function. Beside these preceding assumptions, if the marginal cost func-

tions are accordingly strictly increasing or strictly monotone, the uniqueness of an

equilibrium solution follows.

3.1 Model D-NGEM

Before getting into details of model D-NGEM, we introduce two important concepts

used extensively in this dissertation.

Definition 3.1.1. Let X be a nonempty subset of Rn and F be a mapping from

Rn → Rn. The variational inequality problem, denoted VI(X,F ) is to find a vector
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x∗ ∈ X such that

F (x∗)T (y − x∗) ≥ 0 for all y ∈ X (3.1.1)

It is well known that an important special case of VI(X,F ) is the nonlinear

complementarity problem NCP(F ) [26]:

Definition 3.1.2. Let F be a mapping from Rn into itself. The nonlinear comple-

mentarity problem, denoted by NCP(F ) is to find a vector x ∈ Rn such that

0 ≤ x ⊥ F (x) ≥ 0 (3.1.2)

The notation “⊥” is used extensively in the dissertation to indicate a comple-

mentarity relation. It implies in the above equation that in addition to the stated

inequalities, i.e., x ≥ 0 and F (x∗) ≥ 0, the equation xT F (x) = 0 also holds. When

F (x) is an affine function of x, the problem NCP(F ) reduces to a linear comple-

mentarity problem, abbreviated by LCP. A generalization of the NCP is the mixed

complementarity problem, abbreviated as MiCP.

Definition 3.1.3. Let G and H be two mappings from Rn1×Rn2
+ into Rn1 and Rn2

+ ,

respectively. The mixed nonlinear complementarity problem, denoted by MiCP(G,H)

is to find a pair of vectors (u, v) belonging to Rn1 × Rn2
+ such that

G(u, v) = 0, u free

0 ≤ v ⊥ H(u, v) ≥ 0.

In Definition 3.1.2, 3.1.3 and throughout the dissertation, Rn
+ denotes the

nonnegative orthant of Rn. Both the (mixed) nonlinear complementarity problems

and the variational inequality problems are related to each other. Theorem 3.1.1

and Theorem 3.1.2 establish the relations. See the work by Harker and Pang [42]

for more details on the relations between the NCP, MiCP and VI problem.
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Theorem 3.1.1. [26] Let F be a mapping from Rn into itself. A vector x solves the

VI(Rn
+, F ) if and only if x solves the NCP(F ).

Theorem 3.1.2. [26] Let G and H be two mappings from Rn1 × Rn2
+ into Rn1 and

Rn2
+ , respectively. A vector x solves the VI(Rn1 × Rn2

+ , F ), where F T = (GT , HT ) if

and only if x solves the MiCP(G,H).

In general, theorems designed for VI are applicable to NCP and MiCP. For the

purposes of the dissertation, we refer VI, NCP and MiCP to as NCP/VI collectively.

In what follows, we discuss the model D-NGEM, which consists of optimization

problems for market participants: pipeline operators, producers, storage operators,

peak gas operators and marketers, and corresponding market-clearing conditions

for sub-markets, in particular, transportation, production, storage gas and peak gas

markets described in Section 2.2. The collection of optimization problems of each

type of players are denoted as (PL), (PR), (ST ), (PG) and (MK) for pipeline oper-

ators, producers, storage operators, peak gas operators and marketers, respectively.

In the model D-NGEM, pipeline operators, producers, storage operators and peak

gas operators are price-takers while marketers are Nash-Cournot players in the mar-

keters’ market, i.e., selling gas to the four end-user sectors. Therefore, (PL), (PR),

(ST ) and (PG) can also be formulated as optimization problems. Mathematically,

a combined optimization formulation for these non-strategic players is equivalent to

the separate optimization problems for each of them. However, a combined formula-

tion would cause a lot of cancellation of terms since one player’s expense is another’s

revenue. For this reason, separate optimization problems for the non-strategic play-

ers are adapted by this work so that the insights into the interactions between the

players can be easily obtained from the problem solutions. On the other hand, in

general, there is no corresponding optimization problem immediately available for
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problem (MK)1. Thus, it is shown to be an instance of an MiCP. Lastly, we show

that model D-NGEM is an MiCP in Section 3.1.6.

Note that discounted revenues and costs are not considered for clarity of pre-

sentation as well as given the short timeframe involved. The units for the gas volume,

rate and price are million cubic feet (MMcf), million cubic feet per day (MMcf/d)

and $/Mcf. The objective functions for the players are in thousand dollars.

All variables and data used in model D-NGEM are organized in Table 3.1

by market agent. Endogenous variables are decision variables and multipliers to

the optimization problems for individual players. Exogenous variables are market

prices determined by market-clearing conditions. Data are independent inputs for

the model.

Table 3.1: Variables and Data for Model D-NGEM

Endogenous Variables
Problems

Decision Variables Multipliers
Exogenous Variables Data

(PL) fasy ρasy τasy fa

(PR) qcsy λcsy, µc πnsy qc, prodc,

cPR
c (·)

(ST ) gary, xrsy δry, ωrsy, γnsy xr, gr, kr,

ξry, ζry τ reg
asy , cST

r (·)
(PG) wpy σpy βny wp, cPG

p (·)
(MK) lkmsy, hamsy, umsy, φmsy τasy, πnsy, γnsy, βny τ reg

asy

vmy

1Hashimoto [31] points out that in special cases, such as affine demand and supply functions, a

Cournot equilibrium on a transportation network can be calculated by solving a single optimization

problem. Applications of Hashimoto’s contribution include [7, 46].
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3.1.1 Pipeline Operator

In practice, an interstate pipeline gathers natural gas from production regions then

transports the gas to consumption areas. It is common that one pipeline can serve

more than one production area or consumption area. Similar network applications

can be found in traffic assignment problems or spatial price equilibrium models [67].

A straightforward representation for such a network is an arc-path incidence matrix

along with path variables [41, 42], which identifies whether a path flow traverses

a physical arc or not in the network. An example can be found in [41] by Harker.

However, this method is not computationally efficient for large-scale networks due to

the need for a great number of path variables between production and consumption

nodes. Alternatively, and without loss of generality, we assume there is only one

consumption node denoted n1(a) and one production node n2(a) at either end of

an arc a, which is an abstraction of pipelines actually connecting n2(a) and n1(a).

The process of generating such an “arc” involves the breakdown of pipelines by

consumption and production areas and then the aggregation of pipeline segments

without violating actual pipeline capacities. The reference [37] contains a concrete

example explaining the process. In fact, such abstraction requires a great amount

of effort for data analysis before actually solving the model so as to lessen the

computational burdens. We also assume that just one arc is considered for each

pipeline operator. More generally, we would solve a corresponding problem which

sums the objective function terms for each operator and includes the corresponding

constraints for all the arcs in the network as was done in [37].

The pipeline operator in charge of arc a faces a linear programming problem

(P̃L) as shown below. The rates τasy are exogenous but are variables in the overall

equilibrium problem D-NGEM. They are determined by the market-clearing condi-

tions (3.1.12) and (3.1.13). Equation (3.1.3) describes the objective function which
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sums terms over all seasons s and years y (as is done for the other optimization

problems to be presented). Constraints (3.1.4) are the upper bounds on the arc

flows with the lower bounds being zeros.

The optimization problem (P̃L) is used to simulate the actions of a regulated

pipeline operation which must provide pipeline services to anyone that demands it at

the regulated rate of τ reg
asy , instead of the marginal cost, within the physical capacity.

The regulated rate, which is usually determined by governmental administration

(e.g., Federal Energy Regulatory Commission (FERC) in the U.S.), should recover

the transmission costs incurred by the pipeline operator. When the actual demand

for the pipeline service exceeds the pipeline capacity, the pipeline operator would

need an endogenous decision-making process to decide how to ration the capacity.

Problem (P̃L) simulates the charging of a flow premium τasy to purchasers of the

pipeline services. This premium is determined by the market-clearing conditions

(3.1.12) and (3.1.13). When the flow is positive, the term τasy corresponds to the

shadow price of the capacity constraint (3.1.4) divided by the number of days in

the season (i.e., dayss). Alternative formulations for different purposes are possible.

Reference [35] provides comparisons for some of them.

(P̃L) max
∑
y∈Y

∑
s∈S

dayssτasyfasy (3.1.3)

s.t. fasy ≤ fa (ρasy ≥ 0) ∀s, y (3.1.4)

0 ≤ fasy ∀s, y

Note that dual variables are presented besides the associated constraints, e.g.,

ρasy ≥ 0 for constraints (3.1.4). Given that pipeline operators have independent

decision variables and separate constraints, summing up (P̃L) for all a ∈ A gives

rise to a problem denoted (PL), which represents the optimization problem for the
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pipeline market. It is known that the problem (PL) is equivalent to problems (P̃L)

for all a ∈ A.

(PL) max
∑
a∈A

∑
y∈Y

∑
s∈S

dayssτasyfasy (3.1.5)

s.t. fasy ≤ fa (ρasy ≥ 0) ∀a, s, y (3.1.6)

0 ≤ fasy ∀a, s, y

Since this is a linear program, the KKT conditions are both necessary and

sufficient for optimality [5] and are shown in (3.1.7) and (3.1.8). The notation

“⊥” in the KKT conditions signify the complementarity between constraints and

associated dual variables. The KKT conditions to problem (PL) are:

0 ≤ −dayssτasy + ρasy ⊥ fasy ≥ 0 ∀a, s, y (3.1.7)

0 ≤ fa − fasy ⊥ ρasy ≥ 0 ∀a, s, y (3.1.8)

Clearly, (3.1.7) and (3.1.8) have a mathematical structure of an LCP. Let us

define

vPL ≡




fasy (∀a, s, y)

ρasy (∀a, s, y)


 and (3.1.9)

HPL(vPL) ≡



− dayssτasy + ρasy (∀a, s, y)

fa − fasy (∀a, s, y)


 (3.1.10)

Definitions (3.1.9) and (3.1.10) allow the KKT conditions (3.1.7) and (3.1.8)

to be expressed equivalently as

0 ≤ vPL ⊥ HPL(vPL) ≥ 0 (3.1.11)
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Market-clearing conditions, shown below as (3.1.12) and (3.1.13), are used

to enforce an equilibrium. They require that, at the equilibrium prices, the ag-

gregate supply of pipeline service (days1fa1y) equal the aggregate demand for it

(
∑

r∈R(n1(a)) days1gary in season 1 and
∑

m∈M(n1(a)) days1ham1y). If excessive sup-

ply or demand existed at the going prices, the market could not be at a point of

equilibrium. Equation (3.1.12) and (3.1.13) represent“derived demand” equations

[30] as opposed to explicit demand functions. Variables τasy, the market equilib-

rium prices, are enforced to be dual variables to these market-clearing conditions.

In order to have an NCP/VI formulation, τasy are set to be free such that a mixed

complementarity problem can be derived.

Market-clearing conditions for the pipeline or transportation market are:

days1fa1y −
∑

r∈R(n1(a))

days1gary −
∑

m∈M(n1(a))

days1ham1y = 0

(τa1y free) ∀a, y (3.1.12)

dayssfasy −
∑

m∈M(n1(a))

daysshamsy = 0 (τasy free) ∀a, s = 2, 3, y (3.1.13)

In general, τasy is a positive penalty incurred by downstream operators when

a particular pipeline a is full. If τasy is negative, we can explain such a value as a

rebate for these downstream operators. Interestingly, as shown in Theorem 3.1.3, a

negative τasy does not occur unless fasy is zero. In other words, no one in the market

actually gets any rebates.

Theorem 3.1.3. For a particular pipeline arc a ∈ A in season s year y,

(1) if fasy = 0 then τasy ≤ 0;

(2) if fasy > 0 then τasy ≥ 0;
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(3) if τasy < 0 then fasy = 0.

Proof. (1) When fasy = 0, we must have τasy ≤ ρasy/dayss by (3.1.7) and ρasy = 0

by (3.1.8). Hence τasy ≤ 0 implied by ρasy = 0.

(2) When fasy > 0, by complementarity, we deduce from (3.1.7) that τasy =

ρasy/dayss. By definition, ρasy ≥ 0. Therefore, τasy ≥ 0.

(3) The result is contrapositively true from (2) and the fact that fasy ≥ 0.

3.1.2 Producer

The producers are modeled as price-takers in a perfect competition environment

given the small percentage of reserves that typically each producer holds in North

America. We denote (P̃R) for the optimization problems faced by producer c. Each

production company c ∈ C located at production node n ∈ PN is modeled to choose

gas production rates qcsy so as to maximize its net profit, which is the difference

between seasonal revenue (dayssπnc(c)syqcsy) and seasonal costs (dayssc
PR
c (qcsy)),

summed over the time horizon.

The terms πnc(c)sy in the objective function of (P̃R), derived from market-

clearing conditions at production node n ∈ PN , are production or wellhead prices

for the node where producer c is located, and are exogenous to (P̃R) but a variable

for D-NGEM. Wellhead price πnc(c)sy is confined to be a nonnegative price, which

differs from model NGMEP in [35] where πnc(c)sy was defined free. Similar changes

are made to the storage gas price γnsy and peak gas price βny to be presented since

the nonnegative price gives a better approximation to reality. The mathematical

operator nc(c) specifies the location of producer c, s and y are for season and year,

respectively. Furthermore, we suppose that the cost functions cPG
c (·) are convex
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and continuously differentiable in order to derive sufficient KKT conditions from

problem (P̃R). Similar assumptions are made on cost functions of storage operators

in Section 3.1.3 and peak gas operators in Section 3.1.4. In addition, cost functions

are assumed not to vary with seasons and years in the time horizon considered by

the model. Constraint (3.1.15) stipulates that the production capacity is fixed and

cannot be easily expanded within the medium-term (one to three years). Constraint

(3.1.16) states that the total volume of gas produced in the time horizon must

not exceed the production forecast of prodc. It is an approximation to the very

complicated spatial and temporal dependencies that can exist, examples of which

can be found in [11, 32, 34]. Note that constraint (3.1.16) links decisions from

different seasons and years, making the equilibrium model D-NGEM nonseparable.

(P̃R) max
∑
y∈Y

∑
s∈S

dayss

(
πnc(c)syqcsy − cPR

c (qcsy)
)

(3.1.14)

s.t. qcsy ≤ qc (λcsy ≥ 0) ∀s, y (3.1.15)

∑
y∈Y

∑
s∈S

dayssqcsy ≤ prodc (µc ≥ 0) (3.1.16)

0 ≤ qcsy ∀s, y

Given that producers are price-takers and hence there is no interaction between

decisions made by different individuals, the problems (P̃R) for all producers c ∈ C

can be equivalently simplified into one larger optimization problem (PR) as shown

below.
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(PR) max
∑
c∈C

∑
y∈Y

∑
s∈S

dayss

(
πnc(c)syqcsy − cPR

c (qcsy)
)

(3.1.17)

s.t. qcsy ≤ qc (λcsy ≥ 0) ∀c, s, y (3.1.18)

∑
y∈Y

∑
s∈S

dayssqcsy ≤ prodc (µc ≥ 0) (3.1.19)

0 ≤ qcsy ∀c, s, y

Given that the cost functions are convex and the constraints are affine, the

KKT conditions (3.1.20) - (3.1.22) are equivalent to solving (PR) [5]. The KKT

conditions to (PR) are:

0 ≤ dayss

(− πnc(c)sy +
d
(
cPR
c (qcsy)

)

d(qcsy)
+ µc

)
+ λcsy ⊥ qcsy ≥ 0 ∀c, s, y (3.1.20)

0 ≤ qc − qcsy ⊥ λcsy ≥ 0 ∀c, s, y (3.1.21)

0 ≤ prodc −
∑
y∈Y

∑
s∈S

dayssqcsy ⊥ µc ≥ 0 ∀c (3.1.22)

For ease of presentation, hereafter we use MCPR
csy to denote the marginal cost

functions, that is,

MCPR
csy ≡

d
(
cPR
c (qcsy)

)

d(qcsy)
, ∀c, s, y (3.1.23)

In light of the mathematical structure of these KKT conditions, we define

vPR ≡




qcsy (∀c, s, y)

λcsy (∀c, s, y)

µc (∀c)




and (3.1.24)
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HPR(vPR) ≡




dayss

(− πnc(c)sy + MCPR
csy + λcsy (∀c, s, y)

qc − qcsy (∀c, s, y)

prodc −
∑
y∈Y

∑
s∈S

dayssqcsy (∀c)




(3.1.25)

Definitions of (3.1.24) and (3.1.25) allow the KKT conditions (3.1.20)-(3.1.22)

to be expressed equivalently as an NCP:

0 ≤ vPR ⊥ HPR(vPR) ≥ 0 (3.1.26)

The following theorem, which shows that with positive cost functions, a nonzero

production rate leads to a nonzero market price, is developed for the needs of the

existence and uniqueness results shown in Section 3.1.6. Prior to the theorem, an

important assumption requiring that the marginal cost, the cost of producing one

more unit of a good, be positive when the production rate is positive, is presented.

Assumption 3.1.1. Given s and y, the marginal cost of producer c ∈ C satisfies

the following:

MCPR
csy > 0, if qcsy > 0. (3.1.27)

Theorem 3.1.4. Assume Assumption 3.1.1 holds for all producers located at a

production node n, i.e., ∀c ∈ Cn. If there exists a producer c ∈ Cn who has a

positive production rate, i.e., qcsy > 0, then the production price at production node

n is positive too, that is, πnc(c)sy > 0.

Proof. From (3.1.20), with positive qcsy, we must have
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πnc(c)sy = MCPR
csy + µc + λcsy/dayss.

By definition, λcsy and µc are nonnegative. The term MCPR
csy is positive by

Assumption 3.1.1. Thus, πnc(c)sy must be positive.

A general example of a cost function satisfying the above assumption is when

cPR
c (·) is increasing with qcsy. In particular, examples of cost functions which satisfy

this assumption are when (1) cPR
c (·) is a affine function with positive slope; and (2)

cPR
c (·) is quadratic with positive coefficients. Such an assumption is quite plausible

for most of the production industry and a reasonable approximation to the produc-

tion activities in that producing at a higher rate would require more resources.

The market-clearing conditions (3.1.28) and (3.1.29) for production market

state that the aggregate supply of gas production at a node equals the aggregate

amount sent out to either storage operators and marketers in season 1 or just mar-

keters in seasons 2 and 3. The market-clearing conditions for the producer’s market

are as follows:

∑
c∈Cn

days1qc1y =
∑

a∈A(n)

( ∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y

)

∀n ∈ PN, y (3.1.28)

∑
c∈Cn

dayssqcsy =
∑

a∈A(n)

∑

m∈M(n1(a))

daysshamsy ∀n ∈ PN, s = 2, 3, y (3.1.29)

Note that the conditions of the nonnegative market prices, that is, πnsy ≥
0,∀n, s, y are not incorporated in the model yet. In order to do so, we construct

equations (3.1.30) and (3.1.31) where production prices πnsy are dual variables to

the modified market-clearing conditions for the production market implying that
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when the supply exceeds the demand, the market price must be zero. Theorem

3.1.5 shows the validation for such association.

0 ≤
∑
c∈Cn

days1qc1y −
∑

a∈A(n)

( ∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y

)

⊥ πn1y ≥ 0 ∀n ∈ PN, y (3.1.30)

0 ≤
∑
c∈Cn

dayssqcsy −
∑

a∈A(n)

∑

m∈M(n1(a))

daysshamsy ⊥ πnsy ≥ 0

∀n ∈ PN, s = 2, 3, y (3.1.31)

Theorem 3.1.5. If Assumption 3.1.1 holds for all c ∈ C, then system PR-MCC is

equivalent to system PR-MCC-NCP, where

PR-MCC ≡





NCP (3.1.26)

(3.1.28)− (3.1.29)

πnsy ≥ 0 ∀n ∈ PN, s, y

(3.1.32)

PR-MCC-NCP ≡





NCP (3.1.26)

(3.1.30)− (3.1.31)

(3.1.33)

Proof. By construction, any solution satisfying PR-MCC also satisfies PR-MCC-

NCP. Therefore, we must show that every solution to PR-MCC-NCP will be a

solution to PR-MCC. Suppose the contrary that there exists a solution satisfying

PR-MCC-NCP such that when s = 1, for some n ∈ PN, y:

0 <
∑
c∈Cn

days1qc1y −
∑

a∈A(n)

( ∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y

)

and πn1y = 0 (3.1.34)
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or when s = 2 or 3, for some n ∈ PN, y

0 <
∑
c∈Cn

dayssqcsy −
∑

a∈A(n)

∑

m∈M(n1(a))

days1hamsy and πnsy = 0 (3.1.35)

From (3.1.34)-(3.1.35), it must follow that for some n ∈ PN, s, y

0 < qcsy, ∃c ∈ Cn and πnsy = 0 (3.1.36)

However, 0 < qcsy for some c ∈ Cn in (3.1.36), by Theorem 3.1.4 implies that

πnsy > 0 for the location of producer c is node n. However, this contradicts πnsy = 0

in (3.1.36). Consequently, every solution of PR-MCC-NCP is also a solution to

PR-MCC. This completes the proof.

Alternatively, we could let free prices πnsy associate with (3.1.28) and (3.1.29)

to construct a mixed complementarity formulation as was done for the transporta-

tion market in Section 3.1.1 as well as in [35]. Assumption 3.1.1 ensures that πasy > 0

when qcsy > 0 for some c ∈ Cn. Without further assumptions, πnsy could be less

than zero only when qcsy = 0 for all c ∈ Cn, which, however, means that this pro-

duction node does not play a role in the market equilibrium in question and hence

can be left out. However, an NCP formulation of market-clearing conditions for the

transportation market is impossible since there are no such cost functions in the

objective function for the pipeline operators to make restrictions on.

3.1.3 Storage Operator

The storage market is modeled as perfectly competitive where the individual storage

operators each pursues maximum net profits. As such, for the sake of simplifica-

tion, a collective optimization problem (ST ) is used to present all operators in the
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storage market which sums objective functions for individual operators and includes

the corresponding constraint sets. For a storage operator r ∈ R located at n ∈ CN ,

he/she decides on the amount injected into the reservoir from arc a available to

him/her in season 1, denoted gary, and the amount extracted in season 2 and 3,

denoted xrsy. The revenues are the sales income of extraction over the time horizon,

that is the term (dayssγnc(c)syxrsy) summed over high demand seasons, (i.e., seasons

2 and 3) and years, where γnr(r)sy is the nonnegative market prices for storage gas.

The costs are assumed to be incurred just in season 1 and consist of commodity

costs, transportation charges and injection costs for the amount delivered. Com-

modity costs, shown as (
∑

a∈A(n) days1πn2(a)1ygary) in (3.1.37) are the expenses of

purchasing the gas from producers, which in contrast are part of revenues for produc-

ers. Transportation charges for using the pipeline services include regulated charges

(
∑

a∈A(nr(r)) days1τ
reg
a1ygary) and congestion charges (

∑
a∈A(nr(r)) days1τa1ygary) (see

Section 3.1.1). As in the case of cPR
c (·) in Section 3.1.2, the injection cost function

(cST
r (

∑
a∈A(nr(r)) gary)) is assumed convex and continuously differentiable and not to

vary with seasons and years.

In constraint (3.1.38), there are two loss factors, lossr for storage injection and

lossa for pipeline transmission. The term lossr ∈ (0, 1) for storage operator r ∈ R

accounts for fueling the compressors so that (1 − lossr) is the effective injection

amount. In a similar vein, lossa ∈ (0, 1) for pipeline arc a takes into account

the compression fuel by the pipeline company as well as any gas lost to pipeline

cracks. Constraint (3.1.38) stipulates that the aggregate extraction for the year

equals the total injection after losses. Such balancing of the working gas is just

one way to model these activities. In [39], alternative approaches were considered.

We could also allow the injected gas remained in the storage for the future use

in the following years. This can be done by adding a type of new variables for

the leftover gas at the end of each year and making appropriate modification to the
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constraint (3.1.38). However, Assumption 3.1.2, the positive marginal cost functions

assumption, ensures that all injected gas will be cleared at the end of each year by

Theorem 3.1.7. Therefore, constraint (3.1.38) suffices for our purposes.

Constraints (3.1.39) and (3.1.40) provide upper bounds on the extraction and

injection rates, respectively. Constraint (3.1.41) states the upper bound on the

working gas volume.

Assuming that cST
r (·) is convex and continuously differentiable, the KKT con-

ditions presented from (3.1.42) to (3.1.47) are necessary and sufficient for optimality

of (ST ) since the objective function is concave and the feasible region is polyhedral

[5].

(ST ) max
∑
r∈R

∑
y∈Y

{ ∑
s=2,3

dayssγnr(r)syxrsy − days1

[
cST
r

( ∑

a∈A(nr(r))

gary

)

+
∑

a∈A(nr(r))

(
τa1y + τ reg

a1y + πn2(a)1y

)
gary

]}
(3.1.37)

s.t. days1

∑

a∈A(nr(r))

gary(1− lossa)(1− lossr)−
∑
s=2,3

dayssxrsy = 0

(δry free) ∀r, y (3.1.38)

xrsy ≤ xr (ωrsy ≥ 0) ∀r, s = 2, 3, y (3.1.39)

∑

a∈A(nr(r))

gary ≤ gr (ξry ≥ 0) ∀r, y (3.1.40)

∑
s=2,3

dayssxrsy ≤ kr (ζry ≥ 0) ∀r, y (3.1.41)

0 ≤ gary,∀a ∈ A(nr(r)), xr2y, xr3y ∀r, y

The KKT conditions to (ST ) are:

0 ≤ dayss

(− γnr(r)sy + δry + ζry

)
+ ωrsy ⊥ xrsy ≥ 0 ∀r, s = 2, 3, y (3.1.42)
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0 ≤ days1

(
τa1y+τ reg

a1y+πn2(a)1y+

∂cST
r

( ∑
a∈A(nr(r))

gary

)

∂gary

−δry(1−lossa)(1−lossr)
)

+ ξry ⊥ gary ≥ 0 ∀a ∈ A(nr(r)), r, y (3.1.43)

0 = days1

∑

a∈A(nr(r))

gary(1− lossa)(1− lossr)−
∑
s=2,3

dayssxrsy (δry free) ∀r, y

(3.1.44)

0 ≤ xr − xrsy ⊥ ωrsy ≥ 0 ∀r, s = 2, 3, y (3.1.45)

0 ≤ gr −
∑

a∈A(nr(r))

gary ⊥ ξry ≥ 0 ∀r, y (3.1.46)

0 ≤ kr −
∑
s=2,3

dayssxrsy ⊥ ζry ≥ 0 ∀r, y (3.1.47)

An important property as shown below regarding the cost functions of the

storage operators is needed for the further analysis. We first use MCST
ary to denote

the marginal cost functions for storage operators.

MCST
ary ≡

∂cST
r

( ∑
a∈A(nr(r))

gary

)

∂gary

∀a ∈ A(nr(r)), r, y (3.1.48)

Assumption 3.1.2. Given a ∈ A(nr(r)), s and y, the marginal cost function of

storage operator r ∈ R satisfies the following condition:

MCST
ary > 0, if gary > 0. (3.1.49)

Theorem 3.1.6 shows that under Assumption 3.1.2 the storage prices are pos-

itive provided that there exists a positive extraction rate at the same location .
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Theorem 3.1.6. Suppose that Assumption 3.1.2 holds for all storage operators

located at consumption node n. If there exists a storage operator r ∈ Rn who has

a positive extraction rate in season s, i.e., xrsy > 0, then the storage gas price for

that season at node n is positive too, that is, γnr(r)sy > 0.

Proof. By (3.1.44), a positive extraction rate implies a positive injection rate in

season 1. Consequently, by (3.1.43), it follows that for some a ∈ A(nr(r)),

δry(1− lossa)(1− lossr) = τa1y + τ reg
a1y + πn2(a)1y + MCST

ary +
ξry

days1

Among terms in the above equation, MCST
ary > 0 because of Assumption 3.1.2;

fa1y > 0 by market-clearing condition (3.1.12) showing by Theorem 3.1.3 τa1y ≥ 0;

πn2(a)1y ≥ 0 by definition; τ reg
a1y is a predetermined positive parameter. Hence, δry

must be positive. By complementarity, we also have γnr(r)sy = δry + ζry +ωrsy/dayss

from (3.1.42). Both ζry and ωrsy are nonnegative by their definitions. Thus γnr(r)sy >

0.

We note that KKT conditions to (ST ) could be expressed as an instance of a

pure NCP if (3.1.44) could be substituted for the following:

0 ≤ days1

∑

a∈A(nr(r))

gary(1−lossa)(1−lossr)−
∑
s=2,3

dayssxrsy ⊥ δry ≥ 0 ∀r, y

(3.1.50)

Theorem 3.1.7 shows the validation for such substitution when the exogenous

storage price γnr(r)sy ≥ 0. In the overall NCP to be described, this nonnegativity is

enforced. For ease of presentation, we define ST-NCP the new system consisting of

(3.1.42)-(3.1.43), (3.1.45)-(3.1.47) and (3.1.50). That is,
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ST-NCP ≡





(3.1.42)− (3.1.43), (3.1.45)− (3.1.47)

(3.1.50)

(3.1.51)

Theorem 3.1.7. Suppose Assumption 3.1.2 is in force for all r ∈ R. Considering

model D-NGEM in its entirety, the KKT conditions to (ST ), (3.1.42)-(3.1.47), are

equivalent to system ST-NCP.

Proof. First, we show that any solution of (3.1.42)-(3.1.47) is a solution of ST-NCP.

It suffices to show that δry ≥ 0 is always true for all r, y in (3.1.42)-(3.1.47). We

have two cases for discussion:

Case 1: For a storage operator r, if
∑

a∈A(nr(r)) gary(1 − lossa)(1 − lossr) =

∑
s=2,3 dayssxrsy = 0, which, by (3.1.45) and (3.1.47), implies respectively, that

ωrsy = 0 and ζry = 0, then it must follow that δry ≥ 0 by (3.1.42) and the premise

of the nonnegativity of γnr(r)sy.

Case 2: For a storage operator r, if
∑

a∈A(nr(r)) gary(1 − lossa)(1 − lossr) =

∑
s=2,3 dayssxrsy > 0, then there must exist some a ∈ A(nr(r)) such that gary > 0

so that following the proof for Theorem 3.1.6, we know that δry must be positive.

This completes the first part of the proof.

Now we show that any solution of ST-NCP is a solution of (3.1.42)-(3.1.47).

Assume the contrary. This can only be the case if a solution of ST-NCP exists

with days1

∑
a∈A(nr(r)) gary(1− lossa)(1− lossr)−

∑
s=2,3 dayssxrsy > 0 for some r, y,

which, by (3.1.50), implies that δry = 0. Further, we have days1

∑
a∈A(nr(r)) gary(1−

lossa)(1 − lossr) > 0, by the nonnegativity of xrsy. It follows that gary > 0 for

some a ∈ A(nr(r)), r and y ∈ Y . Hence, by (3.1.43), days1

(
τa1y + τ reg

a1y + πn2(a)1y +

MCST
ary − δry(1 − lossa)(1 − lossr)

)
+ ξry = 0 for that a, r and y, which cannot

hold unless MCST
ary = 0. However, this contradicts Assumption 3.1.2. Therefore, the

KKT conditions to problem (ST ) are equivalent to system ST-NCP.
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Theorem 3.1.7 states that, in order to get maximum profits, storage operators

will not leave any injected gas that has cost them a positive amount unsold at the

end of the year. As a result, ST-NCP is equivalent to an NCP as follows:

0 ≤ vST ⊥ HST (vST ) ≥ 0 (3.1.52)

where

vST ≡




xrsy (∀r, s = 2, 3, y)

gary (∀a ∈ A(nr(r)), r, y)

δry (∀r, y)

ωrsy (∀r, s = 2, 3, y)

ξry (∀r, y)

ζry (∀r, y)




and (3.1.53)

HST (vST ) ≡




dayss

(− γnr(r)sy + δry + ζry

)
+ ωrsy (∀r, s = 2, 3, y)

days1

(
τa1y + τ reg

a1y + πn2(a)1y + MCST
ary

− δry(1− lossa)(1− lossr)
)

+ ξry

(∀a ∈ A(nr(r)), r, y)

days1

∑

a∈A(nr(r))

gary(1− lossa)(1− lossr)−
∑
s=2,3

dayssxrsy

(∀r, y)

xr − xrsy (∀r, s = 2, 3, y)

gr −
∑

a∈A(nr(r))

gary (∀r, y)

kr −
∑
s=2,3

dayssxrsy (∀r, y)




(3.1.54)

The market-clearing conditions (3.1.55) for the storage gas market states

that the aggregate supply of storage gas at a consumption node (
∑

r∈Rn dayssxrsy)
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equals the aggregate amount demanded by marketers located at the same node

(
∑

m∈Mn dayssumsy). The market-clearing conditions for the storage market are:

∑
r∈Rn

dayssxrsy =
∑

m∈Mn

dayssumsy ∀n ∈ CN, s = 2, 3, y (3.1.55)

The condition for the nonnegativity of storage gas prices γnsy has not been

stated as part of the model. In order to do so, we make γnsy the dual variables

to the revised market-clearing conditions (3.1.55) as was done for the production

market.

0 ≤
∑
r∈Rn

dayssxrsy −
∑

m∈Mn

dayssumsy ⊥ γnsy ≥ 0 ∀n ∈ CN, s = 2, 3, y

(3.1.56)

The following theorem shows that (3.1.56) is equivalent to a system of (3.1.55)

and γnsy ≥ 0, ∀n ∈ CN, s = 2, 3, y when considered in the context of ST-NCP.

Theorem 3.1.8. If Assumption 3.1.2 holds for all r ∈ R, then system ST-MCC is

equivalent to system ST-MCC-NCP, where

ST-MCC ≡





NCP (3.1.52)

(3.1.55)

γnsy ≥ 0, ∀n ∈ CN, s = 2, 3, y

(3.1.57)

ST-MCC-NCP ≡





NCP (3.1.52)

(3.1.56)

(3.1.58)
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Proof. By construction, any solution satisfying ST-MCC also satisfies ST-MCC-

NCP. Therefore, we must show that every solution to ST-MCC-NCP will be a

solution to ST-MCC. Suppose the contrary that there exists a solution satisfying

ST-MCC-NCP such that for some n ∈ CN, s = 2, 3, y:

0 <
∑
r∈Rn

dayssxrsy −
∑

m∈Mn

dayssumsy and γnsy = 0 (3.1.59)

From (3.1.59), it must follow that for some n ∈ CN, s = 2, 3, y ∈ Y :

0 < xrsy, ∃r ∈ Rn and γnsy = 0 (3.1.60)

However, 0 < xrsy for some r ∈ Rn in (3.1.60), by Theorem 3.1.6 implies that

γnsy > 0 for the location of storage operator r is node n. However, this contradicts

γnsy = 0 in (3.1.60). Consequently, every solution of ST-MCC-NCP is also a solution

to ST-MCC. This completes the proof.

3.1.4 Peak Gas Operator

The peak gas operator p ∈ P at consumption node n supplies to marketers “peak

gas”, either LNG or propane/air mixtures, to service peak demand in the highest

demand time of season 3. The peak gas market is assumed to be under perfect com-

petition. Therefore, we label (PG) for the optimization problem for all perfectly

competing peak gas operators p ∈ P without spelling out individual problems for

them for the reason stated in earlier sections. Peak gas operators are modeled as

choosing the production rates wpy taking the prices of peak gas, βnp(p)y as given,

so as to maximize the net profits, which is the difference between yearly sales in-

come (days3βnp(p)ywpy) and production costs (days3c
PG
p (wpy)) summed over years as
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shown in (3.1.61). We assume that the cost function cPG
p (·) convex and continuously

differentiable in order to have a convex program. Constraint (3.1.62) sets an upper

bound on the decision variables wpy. Since this is a convex program, the KKT con-

ditions shown in (3.1.63) and (3.1.64) are equivalent to solving the problem (PG).

(PG) max
∑
p∈P

∑
y∈Y

days3

(
βnp(p)ywpy − cPG

p (wpy)
)

(3.1.61)

s.t. wpy ≤ wp (σpy) ∀p, y (3.1.62)

0 ≤ wpy ∀p, y

The KKT conditions to (PG) are:

0 ≤ days3

(
− βnp(p)y +

d
(
cPG
p (wpy)

)

d(wpy)

)
+ σpy ⊥ wpy ≥ 0 ∀p, y (3.1.63)

0 ≤ wp − wpy ⊥ σpy ≥ 0 ∀p, y (3.1.64)

Hereafter, for brevity, the marginal cost functions of peak gas operators are

denoted as MCPG
py . That is,

MCPG
py ≡ d

(
cPG
p (wpy)

)

d(wpy)
, ∀p, y (3.1.65)

Similar to the previous analysis, the KKT conditions for all peak gas operators

p ∈ P can be expressed equivalently as an NCP:

0 ≤ vPG ⊥ HPG(vPG) ≥ 0 (3.1.66)

where

vPG ≡




wpy (∀p, y)

σpy (∀p, y)


 and (3.1.67)
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HPG(vPG) ≡




days3

(
− βnp(p)y + MCPG

py

)
+ σpy (∀p, y)

wp − wpy (∀p, y)


 (3.1.68)

Assuming positive cost function in Assumption 3.1.3, Theorem 3.1.9 estab-

lishes a relationship between production rates wpy and market prices βnp(p)y.

Assumption 3.1.3. Given y, the cost function of peak gas operator p ∈ P satisfies

the following condition:

MCPG
py > 0, if wpy > 0,∀y. (3.1.69)

Theorem 3.1.9. Suppose that all the peak gas operators located at a consumption

node n satisfy Assumption 3.1.3. If there exists a peak gas operator p ∈ P n who has

a positive production rate, i.e., wpy > 0 , then the peak gas price for the same time

period at node n is positive too, that is, βnp(p)y > 0.

Proof. From (3.1.63), with positive wpy, we have βnp(p)y = MCPG
py + σpy/days3,

which, by Assumption 3.1.3 implies the conclusion.

The market-clearing conditions for the peak gas market stipulate that the

total supply of the peak gas at a consumption node (
∑

p∈P n days3wpy) equals the

total demand of peak gas from marketers located at the same consumption node

(
∑

m∈Mn days3vmy). The market-clearing conditions for the peak gas market are:

∑
p∈P n

days3wpy =
∑

m∈Mn

days3vmy ∀n ∈ CN, y (3.1.70)
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Similar to the previous discussion, we incorporate the nonnegative peak gas

prices βny into the equilibrium model D-NGEM by the following NCP formulation:

0 ≤
∑
p∈P n

days3wpy −
∑

m∈Mn

days3vmy ⊥ βny ≥ 0 ∀n ∈ CN, y (3.1.71)

Equation (3.1.71) is shown to be equivalent to the original formulation in

Theorem 3.1.10 under Assumption 3.1.3.

Theorem 3.1.10. If Assumption 3.1.3 holds for all p ∈ P , then system PG-MCC,

is equivalent to system PG-MCC-NCP, where

PG-MCC ≡





NCP (3.1.66)

(3.1.70)

βny ≥ 0,∀n ∈ CN, y

(3.1.72)

PG-MCC-NCP ≡





NCP (3.1.66)

(3.1.71)

(3.1.73)

Proof. By construction, any solution satisfying PG-MCC also satisfies PG-MCC-

NCP. Therefore, we must show that every solution to PG-MCC-NCP will be a

solution to PG-MCC. Suppose the contrary that there exists a solution satisfying

PG-MCC-NCP such that for some n ∈ CN, y:

0 <
∑
p∈P n

days3wpy −
∑

m∈Mn

days3vmy and βny = 0 (3.1.74)

From (3.1.74), it must follow that for some n ∈ CN, y:

0 < wpy, ∃p ∈ P n and βny = 0 (3.1.75)
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However, 0 < wpy for some p ∈ P n in (3.1.75), by Theorem 3.1.9 implies that

βny > 0 for the location of peak gas operator r is node n. However, this contradicts

βny = 0 in (3.1.75). Consequently, every solution of PG-MCC-NCP is a solution to

PG-MCC. This completes the proof.

3.1.5 Marketer

Unlike participants described above, marketers are modeled as Nash-Cournot play-

ers in the “marketer” market while price-takers in other markets. The correspond-

ing optimization problem for a marketer m ∈ M is denoted (M̃K) as shown be-

low. Marketer m ∈ Mn located at consumption node n ∈ CN , competes against

other marketers at the same location (denoted −m(n) ∈ Mn) by determining the

daily amount purchased from producers, storage operators and peak gas operators,

denoted hamsy, umsy and vmy, respectively, and the amount sold to four end-user

sectors k ∈ K, denoted by lkmsy. All marketers at node n ∈ CN face the same

inverse demand functions θknm(m)sy(·) corresponding to sector k, season s, year y

at node nm(m), as shown in (3.1.76). As opposed to price-takers accepting mar-

ket prices determined by “derived demand” equations, marketers can influence the

market prices by varying their share of supply through the explicit inverse demand

functions θ(lkmsy + l∗k(−m(n))sy), where the notation “∗” in l∗k(−m(n))sy indicates the

“optimal” solutions from the other marketers, appearing in their objective functions

so as to maximize net profits. The inverse demand functions θ(·) are assumed to

be nonnegative since if the natural gas prices for consumers were below zeros, no

operator would make profits by providing the natural gas. Other marketers’ supply

shares l∗k(−m(n))sy are exogenous to marketer m, but variables in the large, overall

model D-NGEM. The seasonal revenue is (dayssθknm(m)sy(·)lkmsy) earned from sec-

tor k by marketer m ∈ M at node n ∈ CN . The costs include commodity costs
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(i.e., dayssπn2(a)syhamsy, dayssγnm(m)syumsy or dayssβnm(m)yvmy depending on the gas

sources) and transportation charges which are the same as storage operators. The

rates for commodity and transportation costs are fixed in (M̃K) since marketers are

price-takers in the transportation, production, storage, peak gas markets.

Constraints (3.1.77), (3.1.78) and (3.1.79) (for seasons 1,2 and 3, respectively)

state that the amount available to end-users and the amount procured from up-

stream sides by the marketers must be consistent during all seasons.

Provided that the only nonlinear terms θknm(m)sy(lkmsy + l∗k(−m(n))sy)lkmsy in

(M̃K) are concave, the KKT conditions shown in (3.1.80)-(3.1.86) are both nec-

essary and sufficient for solving (M̃K). To this end, typical assumptions are that

θknsy(·) is a continuously differentiable and nonincreasing function and satisfies the

inequality: θ′knm(m)sy(lkmsy)+ lkmsyθ
′′
knm(m)sy(lkmsy) ≤ 0, for all lkmsy ≥ 0. This condi-

tion was also used in [60] and [69] for the oligopolistic market. Murphy et al. in [56]

improve this condition by showing an easily verified condition of nonincreasing of

θknm(m)sy(lkmsy) and concavity of lkmsyθknm(m)sy(lkmsy). Examples of inverse demand

functions which satisfy this condition are when: (1) θ(·) is affine and non-increasing;

and (2) θ(·) is concave and non-increasing.

(M̃K) max
∑
y∈Y

[∑

k∈K

∑
s∈S

dayssθknm(m)sy

(
lkmsy + l∗k(−m(n))sy

)
lkmsy

−
∑
s∈S

∑

a∈Am(m)

dayss

(
τasy + τ reg

asy + πn2(a)sy)hamsy

−
∑
s=2,3

dayssγnm(m)syumsy − days3βnm(m)yvmy

]
(3.1.76)

s.t. days1

( ∑

a∈A(nm(m))

(1− lossa)ham1y −
∑

k∈K

lkm1y

)
= 0

(φm1y) ∀y (3.1.77)
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days2

( ∑

a∈A(nm(m))

(1− lossa)ham2y + um2y −
∑

k∈K

lkm2y

)
= 0

(φm2y) ∀y (3.1.78)

days3

( ∑

a∈A(nm(m))

(1− lossa)ham3y + um3y + vmy −
∑

k∈K

lkm3y

)
= 0

(φm3y) ∀y (3.1.79)

0 ≤ lkmsy ∀k, s, y

0 ≤ hamsy ∀a ∈ A(nm(m)), s, y

0 ≤ umsy ∀s = 2, 3, y

0 ≤ vmy ∀y

The KKT conditions to (M̃K) are:

0 ≤ −dayss

[∂θknm(m)sy(lkmsy + l∗k(−m(n))sy)

∂lkmsy

lkmsy − θknm(m)sy(lkmsy + l∗k(−m(n))sy)
]

+ dayssφmsy ⊥ lkmsy ≥ 0 ∀k, s, y (3.1.80)

0 ≤ dayss

[
τasy + τ reg

asy + πn2(a)sy − (1− lossa)φmsy

] ⊥ hamsy ≥ 0

∀a ∈ A(nm(m)), s, y (3.1.81)

0 ≤ dayss

(
γnm(m)sy − φmsy

) ⊥ umsy ≥ 0 s = 2, 3,∀y (3.1.82)

0 ≤ days3

(
βnm(m)y − φm3y

) ⊥ vmy ≥ 0 ∀y (3.1.83)
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0 = days1

[ ∑

a∈A(nm(m))

(1− lossa)ham1y −
∑

k∈K

lkm1y

]

(φm1y free) ∀y (3.1.84)

0 = days2

[ ∑

a∈A(nm(m))

(1− lossa)ham2y + um2y −
∑

k∈K

lkm2y

]

(φm2y free) ∀y (3.1.85)

0 = days3

[ ∑

a∈A(nm(m))

(1− lossa)ham3y + um3y + vmy −
∑

k∈K

lkm3y

]

(φm3y free) ∀y (3.1.86)

For brevity, hereafter we use MRkmsy to denote the marginal revenue functions

for marketers. That is,

MRkmsy ≡
∂θknm(m)sy(lkmsy + l∗k(−m)sy)

∂lkmsy

lkmsy + θknm(m)sy(lkmsy + l∗k(−m)sy)

∀k, m, s, y (3.1.87)

Note that there is not an optimization problem that can simply represent the

problems (M̃K) for all m ∈ M as is done for pipeline operators, producers, storage

operator and peak gas operators due to marketers’ oligopolistic behavior aspects.

Still, it is well known that the Nash equilibrium problem can be formulated as an

NCP/VI dating back to the early paper by Lions and Stampacchia [43]. Therefore,

in this dissertation, we adopt the NCP/VI approach for the whole marketers’ mar-

ket problem (MK). In light of their mathematical structure, including the KKT

conditions for all marketers m ∈ M results in an MiCP as follows:

GMK(uMK , vMK) = 0, uMK free

0 ≤ vMK ⊥ HMK(uMK , vMK) ≥ 0

(3.1.88)

where
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uMK ≡ (
φmsy (∀m, s, y)

)
(3.1.89)

vMK ≡




lkmsy (∀k, m, s, y)

hamsy (∀a ∈ A(nm(m)),m, s, y)

umsy (s = 2, 3,∀m, y)

vmy (∀m, y)




(3.1.90)

GMK(uMK , vMK) ≡




days1

[ ∑

a∈A(nm(m))

(1− lossa)ham1y −
∑

k∈K

lkm1y

]

(∀m, y)

days2

[ ∑

a∈A(nm(m))

(1− lossa)ham2y + um2y

−
∑

k∈K

lkm2y

]
(∀m, y)

days3

[ ∑

a∈A(nm(m))

(1− lossa)ham3y + um3y + vmy

−
∑

k∈K

lkm3y

]
(∀m, y)




(3.1.91)

HMK(uMK , vMK) ≡




− dayssMRkmsy + dayssφmsy (∀k, m, s, y)

dayss

[
τasy + τ reg

asy + πn2(a)sy − (1− lossa)φmsy

]

(∀a ∈ A(nm(m)),m, s, y
)

dayss

(
γnm(m)sy − φmsy

)
(s = 2, 3,∀m, y)

days3

(
βnm(m)y − φm3y

)
(∀m, y)




(3.1.92)
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3.1.6 NCP/VI Formulation of Model D-NGEM

From Sector 3.1.1 to Section 3.1.5, we presented all components of the model D-

NGEM. In this section, we show that how model D-NGEM is equivalent to an MiCP.

We first define the model D-NGEM mathematically as follows.

Definition 3.1.4. The model D-NGEM is a system composed of optimization prob-

lems (PL), (PR), (ST ), (PG) and (M̃K),∀m ∈ M , market-clearing conditions

(3.1.12) - (3.1.13), (3.1.28) - (3.1.29), (3.1.55) and (4.3.114) as well as nonnegative

market price conditions, i.e., πnsy ≥ 0,∀n ∈ PN, s, y; γnsy ≥ 0,∀n ∈ CN, s = 2, 3, y;

βny ≥ 0,∀n ∈ CN, y. That is,

D-NGEM ≡





(PL); (PR); (ST ); (PG); (M̃K),∀m ∈ M,

(3.1.12)− (3.1.13); (3.1.28)− (3.1.29); (3.1.55); (3.1.70)

πnsy ≥ 0,∀n ∈ PN, s, y

γnsy ≥ 0,∀n ∈ CN, s = 2, 3, y

βny ≥ 0,∀n ∈ CN, y

(3.1.93)

The KKT conditions to these optimization problems have been converted to

NCPs, that is (3.1.11), (3.1.26), (3.1.52), (3.1.66) and (??), assuming cost functions

are convex and continuously differentiable and the marginal costs and revenues

are positive in the positive orthant. Under the same assumptions, market-clearing

conditions were shown to in a format of an NCP with the exception of market-

clearing conditions for the transportation market, which are shown to be a MiCP.

Given that its components are either NCP or MiCP, Theorem 3.1.11 shows that the

model D-NGEM is an MiCP per se. First, define some new terms for the market-

clearing conditions.

(uMCC) ≡ (
τasy (∀a, s, y)

)
, (3.1.94)
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(vMCC) ≡




πnsy (∀n ∈ PN, s, y)

γnsy (∀n ∈ CN, s = 2, 3, y)

βny (∀n ∈ CN, y)




, (3.1.95)

GMCC ≡




days1fa1y −
∑

r∈R(n1(a))

days1gary −
∑

m∈M(n1(a))

days1ham1y (∀a, y)

dayssfasy −
∑

m∈M(n1(a))

daysshamsy (∀a, s = 2, 3, y)




and

(3.1.96)

HMCC ≡




∑

c∈Cn

days1qc1y

−
∑

a∈A(n)

( ∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y

)

(∀n ∈ PN, y)
∑

c∈Cn

dayssqcsy −
∑

a∈A(n)

∑

m∈M(n1(a))

days1hamsy

(∀n ∈ PN, s = 2, 3, y)
∑

r∈Rn

dayssxrsy −
∑

m∈Mn

dayssumsy (∀n ∈ CN, s = 2, 3, y)

∑

p∈P n

days3wpy −
∑

m∈Mn

days3vmy (∀n ∈ CN, y)




(3.1.97)

Theorem 3.1.11. Let

uT ≡ [
(uMK)T (uMCC)T ];

vT ≡ [
(vPL)T (vPR)T (vST )T (vPG)T (vMK)T (vMCC)T

]
;

GT (u, v) ≡ [
(GMK)T (GMCC)T

]
;

HT (u, v) ≡ [
(HPL)T (HPR)T (HST )T (HPG)T (HMK)T (HMCC)T

]
.
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Suppose that Assumptions 3.1.1, 3.1.2 and 3.1.3 hold for all c ∈ C, r ∈ R and

p ∈ P , respectively. Model D-NGEM is equivalent to an MiCP, denoted D-NGEM-

MiCP(G,H) where

G(u, v) = 0 u free

0 ≤ v ⊥ H(u, v) ≥ 0

(3.1.98)

Proof. Following the definition for MiCP, by Theorems 3.1.5, 3.1.7, 3.1.8 and 3.1.10,

it is trivial to show the results.

3.2 Existence Results

In what follows, we provide existence results for the model D-NGEM. In light of

the relationship between the MiCP and VI demonstrated in Theorem 3.1.1, the D-

NGEM-MiCP(G,H) can also be written as a VI denoted D-NGEM-VI(Rn1×Rn2
+ , F ),

where F T = (GT , HT ) and the values of n1 and n2 depend on the actual size of

the problem. Theorem 3.2.1 shown below is a well-known existence result for VI

problems. The existence results will be established in this sector are bases on this

Theorem as well.

Theorem 3.2.1. [16, 43] Let X be a nonempty, compact and convex subset of Rn

and let F be a continuous mapping from X into Rn. Then, there exists a solution

to the problem VI(X,F ).

Clearly, the functions G and H in MiCP (3.1.98) are continuous given the

functional form and the earlier assumptions that the cost functions were continuously

differentiable. The corresponding set X for MiCP (3.1.98) is certainly nonempty,

convex and closed, since all variables are constrained to be nonnegative or free.
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Thus, to invoke Theorem 3.2.1, it suffices to show that the ground set X is bounded.

Lemma 3.2.1 and Lemma 3.2.2 as follows show that under suitable assumptions, all

variables for D-NGEM-MiCP(G,H) are bounded.

Assumption 3.2.1. All the pipeline congestion fees τasy are bounded below when

fasy = 0.

Assumption 3.2.1 relaxes Assumption 1 in [35]. In particular, prices πcst, γnsy

and βny were shown to be bounded below in Section 3.1 using assumptions relative to

cost functions instead of direct assumptions made in [35]. However, such relaxation

cannot be done to pipeline price τasy due to the fact that there is not a cost function

in the problem (PL). These prices including τasy will be shown to be bounded above

in Lemma 3.2.1. In fact, Assumption 3.2.1 along with Lemma 3.2.1 plays the same

role as Assumption 1 in [35].

Lemma 3.2.1. If Assumption 3.2.1 holds, all the prices in D-NGEM-MiCP(G,H)

are bounded. That is, there exists a positive scalar ∆ such that

a. τasy ∈ [−∆, ∆],∀a, s, y

b. πnsy ∈ [0, ∆],∀n ∈ PN, s, y

c. γnsy ∈ [0, ∆], s = 2, 3,∀n ∈ CN, y

d. βny ∈ [0, ∆],∀n ∈ CN, y

Proof. Because the cost functions cPR
c (·), cST

r (·) and cPG
p (·) and the revenue function

θ(·)l were assumed continuously differentiable in Section 3.1, the marginal costs, that

is, MCPR
csy , MCST

ary and MCPG
py and marginal revenues MRkmsy are continuous. Also,

it is well known that if a function f is continuous on a bounded and closed (i.e.,
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compact) set S, f is bounded on S as a result of Weirstrass’s Theorem [5]. The

following statements are true:

a. MCPR
csy is bounded over qcsy ∈ [0, qc],∀c, s, y, (3.2.1)

b. MCST
rsy is bounded over gary ∈ [0, gr],∀a ∈ A(nr(r)), r, y, (3.2.2)

c. MCPG
py is bounded over wpy ∈ [0, wp],∀p, y, and (3.2.3)

d. MRkmsy is bounded over lkmsy ∈ [0, L],∀k, m, s, y, where L is some

nonnegative scalar. (3.2.4)

Clearly, the prices πnsy, γnsy and βny are bounded below by zero by definition

and prices τasy are bounded below when fasy = 0 and fasy > 0 by Assumption 3.2.1

and Theorem 3.1.3, respectively. It suffices to show that these price variables are

bounded above.

First consider the production prices πnsy at production node n. Suppose all

producers located at node n, that is, c ∈ Cn have qcsy = 0 for all s, y. By (3.1.21)

and (3.1.22), we obtain that λcsy = 0 and µc = 0. Further, we have πnc(c)sy ≤ MCPR
csy

from (3.1.20), which implies πnsy is bounded above because of the statement (3.2.1).

Second, given s, y, if some producer c ∈ Cn has qcsy > 0, we consider two cases

implied by the market-clearing conditions (3.1.28) and (3.1.29): 1) hamsy > 0 for

some marketer m located at consumption node n1(a), where a ∈ A(n); and thus

implied by (3.1.77)-(3.1.79), lkmsy > 0 for some k of that marketer m; 2) when

s = 1, gary > 0 for some storage operator located at consumption node n1(a), where

a ∈ A(n); and thus xrsy > 0 for that r, where s = 2 or 3. In the first case, by

(3.1.80) and lkmsy > 0, it must follow that for some a, k, s, y
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MRkmsy = φmsy (3.2.5)

where φmsy is bounded above because MRkmsy is bounded via (3.2.4). Meanwhile,

by (3.1.81) and hamsy > 0, we see that τasy + τ reg
asy +πn2(a)sy = φmsy(1− lossa), which

implies that the production prices πn2(a)sy, where n2(a) refers to where producer c is

located, and τasy are bounded above because φmsy is bounded. Therefore, πnsy for

the node where producer c is located must be bounded above.

In the second case for proving πnsy is bounded above we see that xrsy > 0 when

s = 2 or 3 implies that umsy > 0 for some marketer m located at the same node

where storage operator r is, by market-clearing condition (3.1.55). By (3.1.78) or

(3.1.79) depending on the actual season in question, umsy > 0 implies that lkmsy > 0

for some k, which indicates φmsy is bounded via Assumption (3.2.4). From (3.1.82)

and umsy > 0, we know that γnm(m)sy = φmsy, which means that γnm(m)sy for the

node where storage operator r and marketer m are co-located is bounded. Also,

by (3.1.42) and xrsy > 0, it follows that δry for that storage operator r is bounded

above since γnr(r)sy is bounded and ωrsy and ζry are nonnegative. Further by (3.1.43)

and gary > 0, we see that

δry(1− lossa)(1− lossr) = τa1y + τ reg
a1y + πn2(a)1y + MCST

ary +
ξry

days1

(3.2.6)

In the above equation, because δry is bounded above and ξry is bounded below,

MCST
ary is bounded and γnr(r)sy is bounded, then πn2(a)1y and τa1y must be bounded

above. In other words, the production price for node n2(a) or the production node

in question n is bounded above. Therefore, the production prices πnsy are bounded

above for all n ∈ PN, s, y.

Second, we consider the pipeline prices τasy for arc a in season s and year y.

We already showed τasy bounded below, now we show bounded above. Consider the
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case when fasy = 0. In this case, by complementarity, (3.1.8) requires ρasy = 0. We

see by (3.1.7) that dayssτasy ≤ ρasy. Thus, τasy is bounded above. When fasy > 0,

by market-clearing conditions (3.1.12) and (3.1.13), we consider two cases 1) when

s = 1, gary > 0 for some storage operator r located at node n1(a) or 2) hamsy > 0

for some marketers located at node n1(a). Following the two cases discussed above

when πnsy > 0, it is not difficult to deduce that τasy is bounded above. Therefore,

τasy is bounded above for all a, s, y.

As for storage gas prices, γnsy was shown to be bounded above when some

gary > 0 in the discussion of the boundness of the production price πnsy. We

now show the boundness results when gary = 0 for all a ∈ A(n), y and all storage

operators r ∈ Rn. Consider a consumption node n ∈ CN . By (3.1.43), we have

δry(1− lossa)(1− lossr) ≤ τa1y + τ reg
a1y + πn2(a)1y + MCST

ary +
ξry

dayss

∀a ∈ A(n), r ∈ Rn, y (3.2.7)

which implies δry is bounded above because: 1) τa1y has shown to be bounded; 2)

τ reg
a1y is a positive input; 3) πn1(a)1y has shown to be bounded; 4) MCST

ary is bounded

via (3.2.2); 5) by (3.1.44), (3.1.45), (3.1.46) and (3.1.47), we obtain that xrsy = 0,

ωrsy = 0 showing that ξry = 0 and ζry = 0, respectively. Further, by (3.1.42),

γnr(r)sy ≤ δry, which implies that γnr(r)sy is bounded above by δry. Thus γnsy is

bounded above when gary = 0 for all storage operators r ∈ Rn and all arcs a ∈ A(n)

in all year y. Next, suppose gary > 0 for some storage operators r ∈ Rn and some

arc a ∈ A(n). Therefore, γnsy is bounded above for all n, s = 2, 3, y.

In terms of the peak gas prices βny for a consumption node n ∈ CN , if all peak

gas operators located at node n have wpy = 0, the corresponding σpy = 0 by (3.1.64).

Therefore by (3.1.63), βnp(p)y ≤ MCPG
py thus βpy is bounded by statement (3.2.3).

If wpy > 0 for some peak gas operator p ∈ P n, then by (3.1.70) and (3.1.79), there
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exists at least one marketer m ∈ Mn who has vmy > 0 and thus the corresponding

lkm3y > 0 for some k. lkm3y > 0 implies that φm3y is bounded above by statement

(3.2.4) as shown in (3.2.5). Also, vmy > 0 implies βny = φm3y by (3.1.83). Thus βny

are bounded above by φm3y when wpy > 0. Therefore, βny is bounded above for all

n, y.

Lemma 3.2.2. [35] If all prices (τasy, πnsy, γnsy, βny) are bounded, all the variables

in D-NGEM-MiCP(G,H) are bounded.

Proof. In [35], it was showed that all variables for optimization problems (PL),

(PR), (ST ) and (PG) were bounded.

As for the problem (MK), hasmy, umsy and vmy were shown to be bounded

in [35]. We see via (3.1.84), (3.1.85), (3.1.86) and the fact that the hamsy, umsy

and vmy have each shown to be bounded, that the variables lkmsy are bounded.

Multiplier variables φmsy are bounded below by MRkmsy via (3.1.80) as well as

(3.2.4). Equation (3.1.80), (3.1.81) or (3.1.82) shows that φmsy is bounded above by

appropriate prices shown or assumed (for τasy) bounded. This completes the proof

showing that all the variables are bounded.

Using Theorem 3.2.1, Lemmas 3.2.1 and 3.2.2, we obtain the following exis-

tence result.

Theorem 3.2.2. If Assumptions (3.2.1) holds, then there exists a solution to D-

NGEM-MiCP(G,H).

The conclusion of Theorem 3.2.2 is straightforward based on the previous

analysis. Moreover, if Theorem 3.1.11 holds, Theorem 3.2.2 shows that a solution
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to the model D-NGEM exists. Specifically, if Assumptions 3.1.1, 3.1.2, 3.1.3 and

3.2.1 are in force, a solution to the model D-NGEM always exists.

3.3 Uniqueness Results

In this section, we consider the uniqueness of solutions to D-NGEM. Two definitions

regarding monotonicity are introduced first.

Definition 3.3.1. [26] The mapping F : Rn → Rn is said to be

a. monotone over X , if

[F (x)− F (y)]T (x− y) ≥ 0 ∀x, y ∈ X; (3.3.1)

b. strictly monotone over X, if

[F (x)− F (y)]T (x− y) > 0 ∀x, y ∈ X, x 6= y. (3.3.2)

Among these properties, it is clear that every strictly monotone function must

be a monotone function but not necessary the reverse. More generally, if F is con-

tinuously differentiable, then the various monotonicity properties of F are related to

the positive semi-definiteness or positive definiteness of the Jacobian matrix ∇F (x)

[63].

In general, VI(X,F ) can have more than one solution. However, if F is strictly

monotone, then VI(X,F ) can have at most one solution as shown in the following

result.

Theorem 3.3.1. [26] If F is strictly monotone on X, then the problem VI(X,F )

has at most one solution.
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Theorem 3.3.1 does not guarantee the existence of a solution to problem

VI(X,F ). However, it can be used for uniqueness result given existence results

such as Theorem 3.2.2. The following theorem shows the uniqueness conditions to

the model D-NGEM-MiCP(G,H).

Theorem 3.3.2. If Theorem 3.2.2 holds, and

a. MCPR
csy (·) are strictly increasing functions over the nonnegative orthant for all

c ∈ C, s ∈ S and y ∈ Y ,

b. MCPG
py (·) are strictly increasing functions over the nonnegative orthant line

for all p ∈ P and y ∈ Y ,

c. MCST
ry (·) ≡ [ · · · ,MCST

ary(·), · · ·
]T

,where a ∈ A(nr(r)), are strictly monotone

functions over nonnegative orthant for all r ∈ R and y ∈ Y ,

d. −MRknsy(·) ≡
[ · · · ,−MRkmsy(·), · · ·

]T
,where m ∈ Mn, are strictly mono-

tone functions over nonnegative orthant for all k ∈ K, n ∈ CN , s ∈ S and

y ∈ Y ,

then D-NGEM-MiCP(G,H) has a unique solution.

Proof. Theorem 3.2.2 ensures a solution to D-NGEM-MiCP(G,H). For the unique-

ness of the solution, it is known that F T = (GT HT ) being a strictly mono-

tone function will suffice by Theorem 3.3.1. Our immediate goal is to show that

[F (x) − F (y)]T (x − y) > 0 for x 6= y. For brevity, we use “∆” to denote the

differences between x and y so that we have the following:
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x− y ≡




∆uMCC

∆vPL

∆vPR

∆vST

∆vMK

∆uMK

∆vMCC




≡




∆τasy (∀a, s, y)

}
(∆uMCC)

∆fasy (∀a, s, y)

∆ρasy (∀a, s, y)





(∆vPL)

∆qcsy (∀c, s, y)

∆λcsy (∀c, s, y)

∆µc (∀c)





(∆vPR)

∆xrsy (∀r, s, y)

∆gary (∀a ∈ A(nr(r)), r, y)

∆δry (∀r, y)

∆ωrsy (s = 2, 3,∀r, y)

∆ξry (∀r, y)

∆ζry (∀r, y)





(∆vST )

∆wpy (∀p, y)

∆σpy (∀p, y)

∆lkmsy (∀k, m, s, y)

∆hamsy (∀a ∈ A(nm(m)),m, s, y)

∆umsy (s = 2, 3,∀m, y)

∆vmy (∀m, y)





(∆vMK)

∆φmsy (∀m, s, y)

}
(∆uMK)

∆πnsy (∀n ∈ PN, s, y)

∆γnsy (∀n ∈ CN, s, y)

∆βny (∀n ∈ CN, y)





(∆vMCC)



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Spelling out all terms for [F (x)−F (y)]T (x− y), what we obtain is as follows:

[F (x)− F (y)]T (x− y) =
[
GMCC(x)−GMCC(y)

]T
∆uMCC

+
[
HPL(x)−HPL(y)

]T
∆vPL

+
[
HPR(x)−HPR(y)

]T
∆vPR

+
[
HST (x)−HST (y)

]T
∆vST

+
[
HPG(x)−HPG(y)

]T
∆vPG

+
[
HMK(x)−HMK(y)

]T
∆vMK

+
[
GMK(x)−GMK(y)

]T
∆uMK

+
[
HMCC(x)−HMCC(y)

]T
∆vMCC

Based on the definitions in Section 3.1, individual terms in the above equality

are laid out in the following detail:

[
HPL(x)−HPL(y)

]T
∆vPL

=
∑
a,s,y

(−dayss∆τasy + ∆ρasy)∆fasy −
∑
a,s,y

∆fasy∆ρasy

=
∑
a,s,y

−dayss∆τasy∆fasy

(3.3.3)

[
HPR(x)−HPR(y)

]T
∆vPR

=
∑
c,s,y

(
dayss

(−∆πnc(c)sy + ∆MCPR
csy + ∆µc

)
+ ∆λcsy

)
∆qcsy

−
∑
c,s,y

∆qcsy∆λcsy −
∑
c,s,y

dayss∆qcsy∆µc

=
∑
c,s,y

dayss

(−∆πnc(c)sy + ∆MCPR
csy

)
∆qcsy

(3.3.4)
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[
HST (x)−HST (y)

]T
∆vST

=
∑

r,s=2,3,y

(
dayss

(−∆γnr(r)sy + ∆δry + ∆ζry

)
+ ∆ωrsy

)
∆xrsy

+
∑

a∈A(nr(r)),r,y

(
days1

(
∆τa1y + ∆πn2(a)1y + ∆MCST

ary

−∆δry(1− lossa)(1− lossr)
)

+ ∆ξry

)
∆gary

+
∑
r,y

(
days1

∑

a∈A(nr(r))

∆gary(1− lossa)(1− lossr)−
∑
s=2,3

dayss∆xrsy

)
∆δry

−
∑

r,s=2,3,y

∆xrsy∆ωrsy −
∑

a∈A(nr(r)),r,y

∆gary∆ξry −
∑

r,s=2,3,y

dayss∆xrsy∆ζry

= −
∑

r,s=2,3,y

dayss∆γnr(r)sy∆xrsy

+
∑

a∈A(nr(r)),r,y

days1

(
∆τa1y + ∆πn2(a)1y + ∆MCST

ary

)
∆gary

(3.3.5)

[
HPG(x)−HPG(y)

]T
∆vPG

=
∑
p,y

(− days3(∆βnp(p)y + ∆MCPG
py ) + ∆σpy

)
∆wpy

−
∑
p,y

∆wpy∆σpy

=
∑
p,y

days3

(−∆βnp(p)y + ∆MCPG
py

)
∆wpy

(3.3.6)
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[
HMK(x)−HMK(y)

]T
∆vMK +

[
GMK(x)−GMK(y)

]T
∆uMK

=
∑

k,m,s,y

dayss

(−∆MRkmsy + ∆φmsy

)
∆lkmsy

+
∑

a∈A(nm(m)),m,s,y

dayss

(
∆τasy + ∆πn2(a)sy − (1− lossa)∆φmsy

)
∆hamsy

+
∑

s=2,3,m,y

dayss

(
∆γnm(m)sy −∆φmsy

)
∆umsy

+
∑
m,y

days3

(
∆βnm(m)y −∆φm3y

)
∆vmy

+
∑

a∈A(nm(m)),m,s,y

dayss(1− lossa)∆hamsy∆φmsy

+
∑

m,s=2,3,y

dayss∆umsy∆φmsy

+
∑
m,y

dayss∆vmy∆φmy −
∑

k,m,s,y

dayss∆lkmsy∆φmsy

=
∑

k,m,s,y

−dayss∆MRkmsy∆lkmsy

+
∑

a∈A(nm(m)),m,s,y

dayss

(
∆τasy + ∆πn2(a)sy

)
∆hamsy

+
∑

s=2,3,m,y

dayss∆γnm(m)sy∆umsy +
∑
m,y

days3∆βnm(m)y∆vmy

(3.3.7)
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[
GMCC(x)−GMCC(y)

]T
∆uMCC +

[
HMCC(x)−HMCC(y)

]T
∆vMCC

=
∑
a,s,y

dayss

(
∆fasy −∆hamsy

)
∆τasy −

∑

a,r∈R(n1(a)),y

days1∆gary∆τa1y

+
∑

n∈PN,s,y

dayss

( ∑
c∈Cn

∆qcsy −
∑

a∈A(n),m∈M(n1(a))

∆hamsy

)
∆πnsy

−
∑

n∈PN,y

days1

( ∑

a∈A(n),r∈R(n1(a),

∆gary

)
∆πnsy

+
∑

n∈CN,s=2,3,y

dayss

( ∑
r∈Rn

∆xrsy −
∑

m∈Mn

∆umsy

)
∆γnsy

+
∑

n∈CN,y

days3

( ∑
p∈P n

∆wpy −
∑

m∈Mn

∆vmy

)
∆βny

(3.3.8)

Among those terms in the above equality, we can permute them and have:

−
∑
a,s,y

dayss

(
∆hamsy

)
∆τasy

= −
∑

a∈A(nm(m)),m,s,y

days1∆hamsy∆τasy

(
∵

∑
a

=
∑

a∈A(nm(m)),m

)

−
∑

a,r∈R(n1(a)),y

days1∆gary∆τa1y

= −
∑

a∈A(nr(r)),r,y

days1∆gary∆τa1y

(
∵

∑

a,r∈R(n1(a)))

=
∑

a∈A(nr(r)),r

)

∑
n∈PN,s,y

dayss

( ∑
c∈Cn

∆qcsy

)
∆πnsy

=
∑

n∈PN,s,y

dayss

( ∑
c∈Cn

∆qcsy∆πnc(c)sy

) (
∵ ∆πnsy = ∆πnc(c)sy,∀c ∈ Cn

)

=
∑
c,s,y

dayss

(
∆qcsy∆πnc(c)sy

) (
∵

∑
n∈PN

∑

c∈c(n)

=
∑
c∈C

)
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−
∑

n∈PN,s,y

dayss

( ∑

a∈A(n),m∈M(n1(a))

∆hamsy

)
∆πnsy

= −
∑

n∈PN,s,y

dayss

( ∑

a∈A(n),m∈M(n1(a))

∆hamsy∆πn2(a)sy

)

(
∵ ∆πnsy = ∆πn2(a)sy,∀a ∈ A(n), n ∈ PN

)

= −
∑
s,y

dayss

( ∑

n∈PN,a∈A(n),m∈M(n1(a))

∆hamsy∆πn2(a)sy

)

= −
∑
s,y

dayss

( ∑

a∈A,m∈M(n1(a))

∆hamsy∆πn2(a)sy

) (
∵

∑
n∈PN

∑

a∈A(n)

=
∑
a∈A

)

= −
∑
s,y

dayss

( ∑

m∈M,a∈A(nm(m))

∆hamsy∆πn2(a)sy

)

= −
∑

a∈A(nm(m)),m,s,y

dayss

(
∆hamsy∆πn2(a)sy

)

−
∑

n∈PN,y

days1

( ∑

a∈A(n),r∈R(n1(a))

∆gary

)
∆πnsy

= −
∑

n∈PN,y

days1

( ∑

a∈A(n),r∈R(n1(a))

∆gary∆πn2(a)sy

)

(
∵ ∆πnsy = ∆πn2(a)sy,∀a ∈ A(n), n ∈ PN

)

= −
∑

y

days1

( ∑

a∈A(n),n∈PN,r∈R(n1(a))

∆gary∆πn2(a)sy

)

= −
∑

y

days1

( ∑

a,r∈R(n1(a))

∆gary∆πn2(a)sy

) (
∵

∑
n∈PN

∑

a∈A(n)

=
∑
a∈A

)

= −
∑

y

days1

( ∑

a∈A(nr(r)),r

∆gary∆πn2(a)sy

) (
∵

∑

a,r∈R(n1(a)))

=
∑

a∈A(nr(r)),r

)

= −
∑

a∈A(nr(r)),r,y

days1

(
∆gary∆πn2(a)sy

)
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∑
n∈CN,s=2,3,y

dayss

( ∑
r∈Rn

∆xrsy −
∑

m∈Mn

∆umsy

)
∆γnsy

=
∑

n∈CN,s=2,3,y

dayss

( ∑
r∈Rn

∆xrsy∆γnr(r)sy −
∑

m∈Mn

∆umsy∆γnm(m)sy

)

(
∵ ∆γnsy = ∆γnr(r)sy,∀r ∈ Rn; ∆γnsy = ∆γnm(m)sy,∀m ∈ Mn

)

=
∑

s=2,3,y

dayss

∑
n∈CN

( ∑
r∈Rn

∆xrsy∆γnr(r)sy −
∑

m∈Mn

∆umsy∆γnm(m)sy

)

=
∑

s=2,3,y

dayss

( ∑
r

∆xrsy∆γnr(r)sy −
∑
m

∆umsy∆γnm(m)sy

)

(
∵

∑
n∈CN

∑
r∈Rn

=
∑
r∈R

;
∑

n∈CN

∑
m∈Mn

=
∑
m∈M

)

=
∑

s=2,3,r,y

dayss∆xrsy∆γnr(r)sy −
∑

s=2,3,m,y

dayss∆umsy∆γnm(m)sy

∑
n∈CN,y

days3

( ∑
p∈P n

∆wpy −
∑

m∈Mn

∆vmy

)
∆βny

=
∑
p,y

dayss∆wpy∆βnp(p)y −
∑
m,y

dayss∆vmy∆βnp(p)y

(
∵

∑
n∈CN

∑
p∈P n

=
∑
p∈P

;
∑

n∈CN

∑
m∈Mn

=
∑
m∈M

)

In summary, we have the following:
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[
GMCC(x)−GMCC(y)

]T
∆uMCC +

[
HMCC(x)−HMCC(y)

]T

∆vMCC

=
∑
a,s,y

dayss∆fasy∆τasy −
∑

a∈A(nm(m)),m,s,y

days1∆hamsy∆τasy

−
∑

a∈A(nr(r)),r,y

days1∆gary∆τa1y +
∑
c,s,y

dayss

(
∆qcsy∆πnc(c)sy

)

−
∑

a∈A(nm(m)),m,s,y

dayss

(
∆hamsy∆πn2(a)sy

)

−
∑

a∈A(nr(r)),r,y

days1

(
∆gary∆πn2(a)sy

)

+
∑

s=2,3,r,y

dayss∆xrsy∆γnr(r)sy −
∑

s=2,3,m,y

dayss∆umsy∆γnm(m)sy

+
∑
p,y

dayss∆wpy∆βnp(p)y −
∑
m,y

dayss∆vmy∆βnp(p)y

(3.3.9)

Summing up (3.3.3)-(3.3.9), we have

[F (x)− F (y)]T (x− y)

=
∑
c,s,y

dayss

(
∆MCPR

csy

)
∆qcsy +

∑

a∈A(nr(r)),r,y

days1

(
∆MCST

ary

)
∆gary

+
∑
p,y

days3

(
∆MCPG

py

)
∆wpy −

∑

k,m,s,y

dayss

(
∆MRkmsy

)
∆lkmsy
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By assumptions (a) and (b), we must, respectively, have

(
∆MCPR

csy

)
∆qcsy > 0,∀c, s, y =⇒

∑
c,s,y

dayss

(
∆MCPR

csy

)
∆qcsy > 0

(
∆MCPG

py

)
∆wpy > 0,∀p, y =⇒

∑
p,y

days3

(
∆MCPG

py

)
∆wpy > 0

By the strict monotonicity assumption (c), the following must be true:

∑

a∈A(nr(r))

(
∆MCST

ary

)
∆gary > 0,∀r, y =⇒

∑

a∈A(nr(r))

days1

(
∆MCST

ary

)
∆gary > 0,∀r, y

=⇒
∑

a∈A(nr(r)),r,y

days1

(
∆MCST

ary

)
∆gary > 0

By the strict monotonicity assumption (d), the following must hold:

−
∑

m∈Mn

(
∆MRkmsy

)
∆lkmsy > 0,∀k, n ∈ CN, s, y

=⇒ −
∑

k,m∈Mn,n∈CN,s,y

dayss

(
∆MRkmsy

)
∆lkmsy > 0

=⇒ −
∑

k,m,s,y

dayss

(
∆MRkmsy

)
∆lkmsy > 0

Hence, [F (x)−F (y)]T (x−y) > 0, which implies that F is a strictly monotone

function, and thus MiCP(G,H) has a unique solution.

82



3.4 Conclusions

We discussed a deterministic equilibrium model for the natural gas market D-

NGEM, which includes optimization problems for market participants, some strate-

gic, some not, as well as market-clearing conditions for different markets where these

participants are located. with reasonable assumptions on the marginal cost/revenue

functions, an MiCP formulation, denoted D-NGEM-MiCP, are derived from the

model D-NGEM. This MiCP formulation is different from the one in [35] in that

market-clearing conditions for production, storage and peak gas markets are pre-

sented in a format of an NCP instead of an MiCP in [35]. Furthermore, we relaxed

the assumption of bounded prices in [35] using the fact that marginal costs and

revenues are bounded assuming that cost and revenue functions are continuously

differentiable, respectively. Lastly, based on these enhancements, we provided the-

oretical analysis regarding the existence and uniqueness of model D-NGEM.
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Chapter 4

A Stochastic Model S-NGEM with

Recourse Method

In this chapter, we present a stochastic extension to model D-NGEM discussed in

Chapter 3 using the recourse method of stochastic programming. The new model,

denoted S-NGEM, where S stands for stochastic, is a multistage stochastic equilib-

rium model of a finite number of scenarios with random demand. It captures several

important market characteristics not considered by Model D-NGEM, in particular,

the important roles of the spot market which emerges with deregulation to handle

market imbalances caused by random factors.

This Chapter is organized as follows. Two commonly used methods of stochas-

tic programming are introduced in Section 4.1. Section 4.2 discusses the concept

of a scenario tree and associated notation relative to the modeling of the recourse

decisions for the spot market. In Section 4.3, we present the formulation for model

S-NGEM in terms of optimization problems faced by each type of participants and

a series of market-clearing conditions and develop some mathematical properties

in order to derive its NCP/VI formulation from applying KKT conditions to these

optimization problems.
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4.1 Stochastic Programming

Stochastic programming is a generalization of nonlinear programming, whose goal is

to find some policy that is feasible for all (or almost all) the possible data instances.

For example, one possible use of stochastic programming is to maximize or mini-

mize the expectation of some function of the decisions and the random variables,

taking advantage of the fact that probability distributions governing the data are

known or can be estimated, i.e., the recourse method. The general method for solv-

ing stochastic problems is to formulate deterministic equivalents to the constraints

and the objective functions, and to solve the resulting mathematical program with

appropriate algorithms.

4.1.1 Recourse Method

A widely applied and studied stochastic programming model is a two-stage recourse

program. In the first stage, the decision maker takes some action, after which a

random event occurs affecting the outcome of the first-stage decision; in the second

stage, a recourse decision can then be made to compensate for any bad effects that

might have been experienced as a result of the first-stage decision. In particular,

two-stage recourse programs seek to minimize the cost of the first-stage decision plus

the expected cost of the second-stage recourse decision. The following is a general

example of two-stage stochastic linear program with recourse [6].

min cT x + EωQ(x, ω)

s.t. Ax = b (4.1.1)

x ≥ 0
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where





Q(x, ω) = min q(ω)T y(ω)

s.t. T (ω)x + W (ω)y(ω) = h(ω)

(4.1.2)

The first linear program (4.1.1) minimizes the first-stage direct costs, cT x

plus the expected recourse cost, Q(x, ω), over all of the possible scenarios while

meeting the first-stage constraints, Ax = b. The recourse cost depends both on x,

the first-stage decision, and on the random event, indexed by ω. The second linear

programming (4.1.2) describes how to choose y(ω) (a second-stage/recourse variable,

a different decision for each random ω). It minimizes the cost qT y subject to some

second-stage/recourse constraints, T (ω)x + W (ω)y(ω) = h(ω). These constraints

can be thought of as requiring some action to correct the system after the random

event occurs.

When ω represents an index for a discrete random variable, (4.1.1) and (4.1.2)

are equivalent to a deterministic linear program as follows:

min cT x +
N∑

i=1

pid
T
i yi

s.t. Ax = b

Tix + Wiyi = hi i = 1, · · · , N (4.1.3)

x > 0

yi ≥ 0,∀i

where N is the number of scenarios associated with random event ω and pi is the

probability associated with the occurrence of scenario i.

For cases where ω represents continuous random variable(s), such deterministic

equivalents are also available, though the form of the deterministic equivalent usually

depends on the problem itself as well as the probability distributions involved and it
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is not always easy to find a general form. In this dissertation, the random variables

considered by model S-NGEM are assumed discrete. However, it is common practice

to approximate continuous distribution with a discrete distribution in decision and

risk analysis. The bracket median approaches, extended Pearson-Tukey method

and extended Swanson-Megill method are examples of well-known approximation

methods. Studies on the relative performance of difference discrete-distribution

approximations include [49, 48, 70].

Rather than a one-shot decision from a deterministic model, the optimal policy

from such a model is a single first-stage policy and a collection of recourse decisions

defining which second-stage action should be taken in response to each random

outcome. Figure 2.5 in Chapter 2 has illustrated the difference between models

D-NGEM and S-NGEM in this sense.

But most practical decision problems, including what is covered in the dis-

sertation, involve a sequence of decisions that react to outcomes that evolve over

time. A multi-stage stochastic programming approach, an extension to two-stage

stochastic programming in terms of the number of decision time periods involved,

is developed to deal with these situations. In general, the decision variables and

constraints for multistage stochastic programs can still be broken down into the

first-stage decisions and constraints that have nothing to do with the random event,

ω and the recourse decisions and constraints that depend on each random outcome

ω.

4.1.2 Chance-Constraint Method

An alternative stochastic modeling approach is based on the notion of chance-

constraints, which does not require that decisions are feasible for every outcome

of the random parameters, but instead requires feasibility with at least some given
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probability [75]. Consider the following linear programming:

min cT x

s.t.
n∑

j=1

aijxj ≥ bi, i = 1, · · · ,m (4.1.4)

x ≥ 0

where b ∈ Rm, c ∈ Rn, x ∈ Rn. Suppose that either aij or bi is random, then the

associated probabilistic form is:

min cT x

s.t. P
( n∑

j=1

aijxj ≥ bi

) ≥ αi, i = 1, · · · ,m (4.1.5)

x ≥ 0

where αi is a “satisfaction” or “reliability” level with αi ∈ [0, 1]; and the symbol

P (·) means the probability of (·).

The main task of solving this chance-constraints problem is to find a deter-

ministic equivalent to (4.1.5). The deterministic equivalent will, in general, be a

nonlinear program depending on what is random (aij, bi or c) as well as the partic-

ular probability distribution and independence assumptions.

As an example to (4.1.5), suppose bi is random and its cumulative distribution

function (CDF) is given by Fbi
(x). With the assumption that F−1

bi
(x) exists, a

chance constraint to (4.1.5) for some i is equivalent to

P (bi ≤
n∑

j=1

aijxj) ≥ αi ⇐⇒ Fbi
(

n∑
j=1

aijxj) ≥ αi

⇐⇒
n∑

j=1

aijxj ≥ Bα = F−1
bi

(αi)

where Bα is the smallest value such that Fbi
(Bα) = αi [75].
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4.1.3 The Value of Information and Stochastic Solution

There are two key numbers in stochastic programming measuring its performance,

the Expected Value of Perfect Information (EV PI) and the Value of the Stochastic

Solution (V SS) .

Following [6], we introduce several solution values related to these two con-

cepts. To be consistent with the profit-maximizing problems presented in this dis-

sertation, we use maximizing-programs for illustrative purposes. Suppose there is a

stochastic program as follows,

RP ≡ max
x∈S

Eξz(x, ξ) (4.1.6)

where the set S is the feasible region of the decision variable x; symbol E is the

expectation sign; ξ is the (vector of) random variable whose realizations correspond

to the various scenarios ξ. Assuming there exists at least one feasible solution to

it, a solution of (4.1.6) is denoted x∗. The optimal value of (4.1.6) is known in the

literature as the here-and-now solution, denoted RP .

Assuming that we somehow have perfect information about the future knowing

each realization of ξ in advance, then we are able to find the corresponding optimal

solutions for each scenario ξ. The expected value of these optimal values is known

as the wait-and-see solution, denoted WS.

WS ≡ Eξ

[
max
x∈S

z(x, ξ)
]

(4.1.7)

We define the EV PI equal to the WS less the RP as shown in (4.1.8). The

EV PI measures the maximum amount a decision maker would pay in return for

the complete information about the future.
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EV PI ≡ WS −RP (4.1.8)

Due to computational difficulties to solve (4.1.6), a natural alternative is to

solve (4.1.6) by replacing all random variables by their expected values, which is

EV ≡ max
x∈S

z(x, ξ) (4.1.9)

where ξ = E(ξ) is the expectation of the random variable ξ. The optimal solution

to (4.1.9) is denoted as x(ξ). Using this solution to the original stochastic problem

(4.1.6), we have the expected value of using the EV solution (EEV ) as follows.

EEV ≡ Eξ

(
z(x(ξ), ξ)

)
(4.1.10)

The difference between RP and EEV is defined the value of stochastic so-

lution, denoted V SS. The VSS measures the cost of using the expectation of the

uncertainty thus ignoring the stochastic elements in the decision making process.

V SS ≡ RP − EEV (4.1.11)

The following relationship between WS, RP and EEV has been established

for both linear and nonlinear stochastic programming [52, 53]. According to (4.1.12),

the EV PI and V SS must be nonnegative values.

EEV ≤ RP ≤ WS (4.1.12)

Using the concepts presented above, we calculate the WS, RP , and EEV

in the context of an equilibrium model in Chapter 5 of the numerical analysis for

the stochastic equilibrium model to be presented in this chapter. It turns out that

the relationship presented in (4.1.12) does not hold in terms of the expected profits

evaluated by the equilibrium prices and quantities for most of the individual players.
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4.2 A Scenario Tree

In model S-NGEM, market participants face two types of decisions: long-term mar-

ket decisions and spot market decisions. Long-term market decisions have to be

made before random outcomes can be observed. The span for the so-called “long-

term” is the time horizon of the model, which is usually one to three years. Market

participants plan on how much to produce or purchase for each season over the

entire time horizon at the beginning of the time considered, referred to as time

“0”. When the outcome of the random elements is observed, market participants

make decisions for the spot market, which can be adjusted every season depending

on the actual outcome of the randomness. We assume in the model S-NGEM the

possible outcomes for each season cannot be observed until that season begins. In

other words, we cannot anticipate what would happen in the future. The goal of the

participants is to maximize the profits earned from the long-term market plus the

expected profits earned from the spot market. The long-term market decisions can

be thought of as the “first-stage decisions” in the recourse method. While the spot

market is a multi-stage “recourse” to compensate for any bad effects that might

have been caused by all previous decisions. All the decisions for the spot market

are “recourse decisions”, which actually involve more than one time period. In this

section, we introduce new notation regarding the discrete random events related to

the first-stage and recourse decision making for model S-NGEM.

A sample scenario tree for the demand is presented in Figure 4.1. The time

horizon involved in the event tree is one year with three seasons. We assume the

demand for each season has two possible levels, high (Ds,y = 2) or low (Ds,y = 1).

Hence, there are 8 scenarios, each of which can be identified as a branch in the

event tree, e.g., scenario 5 is the branch composed of nodes 2, 5 and 11. The total

number of the possible realizations of the randomness of this example is 14, shown
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respectively as nodes 1 to 14 in Figure 4.1. These events are hereafter referred to as

N1 to N14, respectively. A special node, node 0 is the root of the event tree. This

is the time point when the long-term decisions (or first-stage decisions) are made

therefore it is not a part of the scenario set I. Spot market decisions (or recourse

decisions) are made in response to each random event represented by nodes 1 to 14.

The bold number assigned under each node is the probability of occurrence of the

random event represented by that node.

First, we define sets for random elements. Let I denote the set of possible real-

izations of the random events in the scenario tree, indexed by i. Also, let Is,y denote

the set of possible realizations of the random events related to the season s in year y,

indexed by is,y. Naturally, {I1,1, · · · , Is,y, · · · } forms a partition of I. In the exam-

ple, we have I = {N1, · · · , N14} and three subsets of I, that is, I1,1 = {N1, N2},
I2,1 = {N3, N4, N5, N6} and I3,1 = {N7, N8, N9, N10, N11, N12, N13, N14} for

seasons 1, 2 and 3, respectively.

Next, let η(is,y) denote the probability of occurrence of the random event

is,y ∈ Is,y, with
∑

is,y∈Is,y η(is,y) = 1, where η(is,y) > 0 for all is,y ∈ I assumed. For

example, the probabilities of the possible realizations in season 2 are respectively, 0.2

for nodes 3 and 4; 0.18 for node 5 and 0.42 for node 6. The sum of the probabilities

of these four occurrences is 1.

Let ψ(is,y) denote the unique immediate predecessor of is,y ∈ Is,y in the event

tree; let Ψ(is,y) denote the unique immediate predecessor of ψ(is,y) in the event

tree. By an abuse of language, sometimes ψ(is,y) and Ψ(is,y) are referred to as

their singleton elements. Let PD(is,y) denote the set consisting of all the prede-

cessors of is,y ∈ Is,y inclusive of is,y in the event tree. For instance, nodes 7 and

8 have the same predecessor, node 3, that is, ψ(N7) = ψ(N8) = {N3}. Similarly,

nodes 9 and 10 share a predecessor, node 4, that is, ψ(N9) = ψ(N10) = {N4}.
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Furthermore, the predecessor of the predecessors for nodes 7-10 is node 1, i.e.,

Ψ(N7) = Ψ(N8) = Ψ(N9) = Ψ(N10) = {N1}. The predecessor set of node 7 is

PD(N7) = {N1, N3, N7}.

In addition, let SC(is,y) denote the set consisting of the all the successors

of is,y ∈ Is,y inclusive of is,y in the event tree; let ISC(is,y) denote the set of the

immediate successors of is,y ∈ Is,y in the event tree; and let IISC(is,y) denote the

set of the immediate successors for ∀̃is,y ∈ ISC(is,y), where ĩs,y, is,y ∈ Is,y in the

event tree. Considering node 1 in Figure 4.1, we have three sets related to suc-

cessors, ISC(N1) = {N3, N4}, IISC(N1) = {N7, N8, N9, N10} and SC(N1) =

{N1, N3, N4, N7, N8, N9, N10}.

In this example, the long-term market decisions are made at node 0. Players

decide on the actions taken for the following seasons, seasons 1, 2 and 3, respectively.

From season 1 on, players make spot market decisions in response to each random

event. Players are aware of the time stages and the random events they stick to.

But the decisions taken by the others at any time stages are beyond the players’

knowledge.

The description of the scenario tree relative to the predecessors and successors

aims to link separate scenarios of the same history together. However, a formulation

based on the enumeration of all random outcomes can become quite cumbersome

as the time horizon increases. In order to alleviate the computational complex-

ity involved in this type of problems, [6] presented a simpler formulation which

decomposes the problem into separate problems for each scenarios and then add

nonanticipativity constraints to link the separate scenarios. Other methods include

an approach proposed in [15] regarding how to eliminate irrelevant scenarios involved

to lessen the computation burden.

93



s = 1


y = 1


s = 2


y = 1


s = 3


y = 1


0.4


0.6


s = 0


y = 0


0


1


6


5


4


3


Scenario


1


8


7


6


5


4


3


2


0.42


0.18


0.2


0.2


7


8


9


10


11


12


13


14


0.21


0.21


0.135


0.045


0.16


0.04


0.09


0.11


D

 
1
,
1 
= 2


D
 
2
,
1 
= 2


D

 
2
,
1 
= 1


D

 
3
,
1 
= 2


D

 
2
,
1 
= 2


D

 
2
,
1 
= 1


D

 
3
,
1 
= 1


D

 
3
,
1 
= 2


D

 
3
,
1 
= 2


D

 
3
,
1 
= 2


D

 
3
,
1 
= 1


D

 
3
,
1 
= 1


D

 
3
,
1 
= 1


D

 
1
,
1 
= 1


2


Spot market
Long-term Market


Figure 4.1: Scenario Tree of Three Time Periods
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4.3 Model S-NGEM

Model S-NGEM is a multistage stochastic equilibrium model of a finite number of

scenarios developed based on the market structure considered for model D-NGEM.

Both models have the same cost functions, that is, cPR
c (·) for producers, cST

r (·)
for storage operators and cPG

p (·) for peak gas operators. All the cost functions

are assumed convex and continuously differentiable so that KKT conditions are

equivalent to the original optimization problems. In addition, all the input data for

model D-NGEM, such as pipeline capacity (fa) and production capacity (qc), are

still relevant to model S-NGEM (refer to Table 4.2).

The types of market participants modeled in model S-NGEM are the same

as those incorporated in model D-NGEM, in particular, pipeline operators, produc-

ers, storage operators, peak gas operators and marketers. The objectives for all

these participants are to maximize the sum of net profits of long-term decisions and

expected net profits of spot market decisions subject to capacity and technical re-

strictions for all scenarios. The optimization problems composed of model S-NGEM

are expressed in an extensive form of a stochastic program which explicitly describes

the recourse decision variables for all scenarios. As an alternative, Birge and Lou-

veaux propose in [6] a formulation with nonanticipativity constraints for multi-stage

stochastic problems in order to alleviate the exponential growth of the size of the

formulation as the time horizon increases.

As is done in model D-NGEM, all market participants but marketers are as-

sumed as price-takers in a perfect competition environment. Generally, solving the

individual problem for each price-takers is equivalent to solving a collective problem

which sums the objective functions for all and include the corresponding constraints.

Therefore, for brevity, only the collective problems for each type of price-taking par-

ticipants, denoted (PLS), (PRS), (ST S) and (PGS), are presented in the following

95



sections. The superscribes of “S” in the notations stand for stochastic, distinguish-

ing the notations in this chapter from their deterministic counterparts in Chapter

3.

In model S-NGEM, marketers are modeled as Nash-Cournot players for resi-

dential and commercial sectors while price-takers for industrial and electric power

demand sectors. The optimization problem for the individual marketer is denoted

M̃K
S
. Because of the imperfect competition between marketers, a single aggregate

optimization problem for all marketers is not available. A commonly considered

approach for solving Nash equilibrium problems is via NCP/VIs.

The industrial and electric power demand sectors are not modeled to be un-

der the market power of the marketers in model S-NGEM. These two sectors are

able to specify the amount of consumption desired throughout the time horizon in

the model. In contrary, residential and commercial consumption is still controlled

by marketers via inverse demand functions, denoted θ1
knsy,is,y , which vary with the

random event i, as opposed to just θknsy in model D-NGEM.

The market-clearing conditions for both the long-term and spot markets inte-

grates all optimization problems together and forms the equilibrium model S-NGEM,

which is shown to be an MiCP under assumptions of positive marginal costs with

positive production.

We organize the assumptions and theorems presented in this chapter in Table

4.1 in terms of market participants and theorem types. Theorems-Type 1, without

additional assumptions, are those that establish the price relationship for the long-

term and spot markets. They are relatively isolated from the other theorems. Gen-

erally speaking, these theorems show that if there is positive activity (e.g., pipeline

flow, production), then the equilibrium long-term market price equals the expected

spot market price. The assumptions made in this chapter are relative to the marginal

96



cost functions for producers, storage operators and peak gas operators. They are

very similar to those in Chapter 3. These assumptions can be described briefly as

positive marginal costs with positive production, where the “production” could be

production rates for producers, extraction rates for storage operators or production

rates for the peak gas operators depending on the context. Theorems-Type 2 state

that with positive production, the market prices are always positive, followed by

Theorems-Type 3, which directly lead to Theorem 4.3.14, show how to convert the

market-clearing conditions to instances of MiCPs or NCPs. Theorem 4.3.14 shows

that the model S-NGEM as a whole is an instance of an MiCP.

Table 4.1: Theorems in Chapter 4

Theorems Theorems TheoremsParticipants
Type 1

Assumptions
Type 2 Type 3

Theorems

PL 4.3.1 4.3.2

PR 4.3.3 4.3.1 =⇒ 4.3.4 =⇒ 4.3.5

ST 4.3.6 4.3.2 =⇒ 4.3.7 =⇒ 4.3.8

PG 4.3.9 4.3.3 =⇒ 4.3.10 =⇒ 4.3.11

Industrial and 4.3.1
=⇒ 4.3.14

Electric Power 4.3.2 =⇒ 4.3.12 =⇒ 4.3.13

Sectors 4.3.3

Based on the nomenclature for variables in model D-NGEM, we distinguish

the first-stage and recourse variables in model S-NGEM by superscripts “0” and “1”,

respectively. For example, the production rate for producer c in season s of year y is

denoted qcsy in model D-NGEM. Thus, we use q0
csy and q1

csy,is,y in model S-NGEM to

denote the production rates for the first-stage and recourse decisions, respectively.

Note that the recourse variable q1
csy,is,y has one more dimension, is,y which belongs

to the random event set Is,y for season s in year y, than the corresponding first-

stage variable q0
csy because the value of q1

csy,is,y depends on the actual realization
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of the random events. The season s and year y associated with the random event

is,y should synchronize with the season and year indices of the variable in question.

In general, the indices s and y determine the random event is,y. In the case that

the time point (s and y) associated with the random event i is unclear, we use two

operators s(i) and y(i) to calculate the season and year relative to i. For example, in

equation (4.3.20), the variables q1
csy,is,y are summed over a time period of more than

one season so that to be more accurate, they are re-written as q1
cs(i)y(i),i, summed

over i subject to a certain condition.

Similar to Table 3.1, Table 4.2 organizes the variables and data used in model

S-NGEM by market agent. Endogenous variables include decision variables and

multipliers for constraints. Exogenous variables in our case are market prices de-

termined by market-clearing conditions. The table also distinguishes the long-term

and spot market variables in a pair of rows. All the variables including multipliers

related to the long-term market are superscripted by “0”, while those for the spot

market are superscripted by “1”.

Note that discounted revenues and costs are not considered for clarity of pre-

sentation as well as given the short timeframe involved. The units for the gas volume,

rate and price are million cubic feet (MMcf), million cubic feet per day (MMcf/d)

and $/Mcf. The objective functions for the players are in thousands of dollars.

All input data for model D-NGEM are also used by model S-NGEM. However,

the reservation charges RC0
asy are specific to the model S-NGEM. Besides, a new type

of data in model S-NGEM is the description of the randomness, i.e, the information

conveyed by the scenario tree introduced in Section 4.2. This includes ηis,y explicitly

shown in the table, and scenario sets and predecessor and successor sets that are

not present in the table.
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Table 4.2: Variables and Data for Model S-NGEM

Endogenous Variables Exogenous
Problems

Decision Variables Multipliers Variables
Data

L* f0
asy τ0

asy η(is,y), fa

(PLS)
S** f1

asy,is,y ρ1
asy,is,y τ1

asy,is,y

L q0
csy π0

nsy η(is,y), qc,
(PRS)

S q1
csy,is,y λ1

csy,is,y ,

µ1
c,i3,|Y |

π1
nsy,is,y prodc,

cPR
c (·)

L g0
ary, x0

rsy δ0
ry γ0

nsy η(is,y), xr,
(STS)

S g1
ary,i1,y , x1

rsy,is,y δ1
ry,i3,y ,

ω1
rsy,is,y ,

ξ1
ry,i1,y , ζ1

ry,i3,y

γ1
nsy,is,y gr, kr,

cST
r (·),

τ reg
asy , RC0

asy

L w0
py β0

ny η(is,y), wp

(PGS)
S w1

py,i3,y σ1
py,i3,y β1

ny,i3,y cPG
p (·)

L l0kmsy, h0
amsy, u0

msy, v0
my φ0

msy τ0
asy, π0

nsy, γ0
nsy,

β0
ny

η(is,y),

τ reg
asy ,

(MKS)
S l1kmsy,is,y , h1

amsy,is,y ,

u1
msy,is,y , v1

my,i3,y

φ1
msy,is,y τ1

asy,is,y ,

π1
nsy,is,y ,

γ1
nsy,is,y , β1

ny,i3,y

RC0
asy

*: Long-term decision variables; **: Spot market decision variables.

4.3.1 Pipeline Operator

The problem for the pipeline market is denoted (PLS) as shown below. There are

two types of decision variables for pipeline operators, f 0
asy, the arc flow in the long-

term market, and f 1
asy,is,y , the arc flow for the spot market under different random

outcomes. The objective function as shown in (4.3.1) is a summation of two parts:

the congestion fee income of the long-term market, which is similar to the objective

function (3.1.5) of (PL) in D-NGEM, and the expected congestion fee income of
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the spot market. As τasy in D-NGEM, the terms τ 0
asy and τ 1

asy,is,y , exogenous to

(PLS) but a variable in S-NGEM, are derived from the market-clearing conditions

(4.3.16) and (4.3.17). They represent the congestion fee for the pipeline in the long-

term and spot markets, respectively. The term η(is,y) is the probability associated

with the occurrence of realization is,y. The expected profits for pipeline a from the

spot market are dayssη(is,y)τ 1
asy,is,yf 1

asy,is,y summed over all possible outcomes of the

random perturbation in the time horizon. Constraints (4.3.2) are the upper bound

on the arc flows for all realizations with the lower bounds being zero.

(PLS) max
∑
a∈A

∑
y∈Y

∑
s∈S

dayss

[
τ 0
asyf

0
asy +

∑
is,y∈Is,y

η(is,y)τ 1
asy,is,yf 1

asy,is,y

]
(4.3.1)

s.t. f 0
asy + f 1

asy,is,y ≤ fa (ρ1
asy,is,y ≥ 0) ∀a, s, is,y, y (4.3.2)

0 ≤ f 1
asy,is,y ,∀is,y, f 0

asy ∀a, s, y (4.3.3)

The KKT conditions are both necessary and sufficient for the optimality of

the problem because (PLS) is a linear programming. The KKT conditions to (PLS)

are:

0 ≤ −dayssτ
0
asy +

∑
is,y∈Is,y

ρ1
asy,is,y ⊥ f 0

asy ≥ 0 ∀a, s, y (4.3.4)

0 ≤ −η(is,y)dayssτ
1
asy,is,y + ρ1

asy,is,y ⊥ f 1
asy,is,y ≥ 0 ∀a, is,y, s, y (4.3.5)

0 ≤ fa − f 0
asy − f 1

asy,is,y ⊥ ρ1
asy,is,y ≥ 0 ∀a, is,y, s, y (4.3.6)

Naturally, (4.3.4) - (4.3.6) have a mathematical structure of an NCP. Let us

define

vPLS ≡




f 0
asy (∀a, s, y)

f 1
asy,is,y (∀a, is,y, s, y)

ρ1
asy,is,y (∀a, is,y, s, y)




and (4.3.7)
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HPLS

(vPLS

) ≡




− dayssτ
0
asy +

∑
is,y∈Is,y

ρ1
asy,is,y (∀a, s, y)

− η(is,y)dayssτ
1
asy,is,y + ρ1

asy,is,y (∀a, is,y, s, y)

fa − f 0
asy − f 1

asy,is,y (∀a, is,y, s, y)




(4.3.8)

Definitions (4.3.7) and (4.3.8) allow the KKT conditions (4.3.4) - (4.3.6) to be

expressed equivalently as

0 ≤ vPLS ⊥ HPLS

(vPLS

) ≥ 0 (4.3.9)

We establish a relationship between the congestion fees for the long-term mar-

ket and the spot market in Theorem 4.3.1. This theorem states that for any pipeline

arc with a positive flow in a given season and year for the long-term market, the cor-

responding long-term congestion fee for that pipeline (τ 0
asy) is greater or equal to the

expected congestion fees for the spot market in that season (
∑

is,y∈Is,y η(is,y)τ 1
asy,is,y).

In contrast, when some pipeline has positive arc flows under all random outcomes

in some season, the congestion fee for the long-term market in that season has to

be less or equal to the expected congestion fee in the same season. Similar relations

are also established for producers, storage operator and peak gas operators to be

presented in the following sections.

Theorem 4.3.1. For any pipeline arc a ∈ A in seasons s of years y,

a) if the long-term pipeline flow f 0
asy > 0, then the long-term market congestion

fee is greater than or equal to the expected spot market congestion fee, that is,

τ 0
asy ≥

∑
is,y∈Is,y η(is,y)τ 1

asy,is,y ;

101



b) if the spot market pipeline flow f 1
asy,is,y > 0,∀is,y, then the long-term market

congestion fee is less than or equal to the expected spot market congestion fee,

that is, τ 0
asy ≤

∑
is,y∈Is,y η(is,y)τ 1

asy,is,y ;

c) if the long-term pipeline flow f 0
asy > 0 and spot market pipeline flow f 1

asy,is,y >

0,∀is,y, then the long-term market congestion fee is equal to the expected spot

market congestion fee, that is, τ 0
asy =

∑
is,y∈Is,y η(is,y)τ 1

asy,is,y .

Proof. a) By (4.3.4), if f 0
asy > 0, we see that

dayssτ
0
asy =

∑
is,y∈Is,y

ρ1
asy,is,y (4.3.10)

By (4.3.5), it follows that

η(is,y)dayssτ
1
asy,is,y ≤ ρ1

asy,is,y ,∀is,y (4.3.11)

Summing this inequality for all is,y ∈ Is,y, we have

dayss

∑
is,y∈Is,y

η(is,y)τ 1
asy,is,y ≤

∑
is,y∈Is,y

ρ1
asy,is,y

= dayssτ
0
asy by (4.3.10)

Therefore, τ 0
asy ≥

∑
is,y∈Is,y η(is,y)τ 1

asy,is,y when f 0
asy > 0.

b) By equation (4.3.5), if f 1
asy,is,y > 0,∀is,y, it follows that

η(is,y)dayssτ
1
asy,is,y = ρ1

asy,is,y ,∀is,y (4.3.12)

The summation of the above equation over is,y ∈ Is,y gives
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dayss

∑
is,y∈Is,y

η(is,y)τ 1
asy,is,y =

∑
is,y∈Is,y

ρ1
asy,is,y (4.3.13)

Also by (4.3.4), we see that

dayssτ
0
asy ≤

∑
is,y∈Is,y

ρ1
asy,is,y

= dayss

∑
is,y∈Is,y

η(is,y)τ 1
asy,is,y by (4.3.12)

Clearly, the conclusion follows.

c) The conclusion is evident from parts (a) and (b).

An equilibrium is enforced by market-clearing conditions (4.3.14) – (4.3.17),

which state that the supply of pipeline gas is equal to the demand for all circum-

stances. Equations (4.3.14) and (4.3.15), which are similar to conditions (3.1.12)

and (3.1.13) in model D-NGEM, are market-clearing conditions for the equilibrium

in the long-term market. Besides, Equations (4.3.16), for season 1 when the storage

injection denoted by variable g1
ary,i1,y is present, and (4.3.17), for seasons 2 and 3,

are market-clearing conditions for the spot market under different random outcomes,

whose dual variables τ 1
asy,is,y are used to measure the congestion fees for each is,y ∈ I

accordingly.

days1f
0
a1y =

∑

r∈R(n1(a))

days1g
0
ary +

∑

m∈M(n1(a))

days1h
0
am1y

(
τ 0
a1y free

) ∀a, y (4.3.14)

dayssf
0
asy =

∑

m∈M(n1(a))

dayssh
0
amsy

(
τ 0
asy free

) ∀a, s = 2, 3, y (4.3.15)
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days1f
1
a1y,i1,y =

∑

r∈R(n1(a))

days1g
1
ary,i1,y +

∑

m∈M(n1(a))

days1h
1
am1y,i1,y

(
τ 1
a1y,i1,y free

) ∀a, i1,y, y (4.3.16)

dayssf
1
asy,is,y =

∑

m∈M(n1(a))

dayssh
1
amsy,is,y

(
τ 1
asy,is,y free

) ∀a, is,y, s = 2, 3, y (4.3.17)

Note that the congestion fees, τ 0
asy and τ 1

asy,is,y associated with market-clearing

conditions (4.3.14) - (4.3.17), are all free. A negative congestion fee can be inter-

preted as an incentives for pipeline users. However, as shown in Theorem 4.3.2,

the congestion fees would not take negative values unless the arc flows are zeros for

both the long-term and spot markets. Also, whenever the arc flow is positive, the

corresponding congestion fee is nonnegative. This means that the total congestion

cost, a product of the pipeline flow and the congestion fees, is always zero when a

negative congestion fee is present. Being a portion of the costs for storage operators

and marketers, a zero congestion cost certainly has no influence on the equilibrium

solution.

Theorem 4.3.2. For a pipeline a ∈ A in season s of year y, the following statements

are true:

(a) if the long-term pipeline flow f 0
asy = 0 and the spot market pipeline flow

f 1
asy,is,y = 0 for a random outcome is,y ∈ Is,y, then the long-term market

congestion fee τ 0
asy ≤ 0 and the spot market congestion fee τ 1

asy,is,y ≤ 0 for that

random outcome is,y;

(b) if the long-term pipeline flow f 0
asy > 0 then the long-term market congestion

fee τ 0
asy ≥ 0;
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(c) if the spot market pipeline flow f 1
asy,is,y > 0 for a random event is,y ∈ Is,y, then

the spot market congestion fee τ 1
asy,is,y ≥ 0 for that is,y;

(d) if the long-term market pipeline flow τ 0
asy < 0 then the long-term market con-

gestion fee f 0
asy = 0.

(e) if the spot market pipeline flow τ 1
asy,is,y < 0 for a random event is,y ∈ Is,y, then

the spot market congestion fee f 1
asy,is,y = 0 for that is,y.

Proof. (a) When f 0
asy = 0 and f 1

asy,is,y = 0 for an is,y, we must have ρ1
asy,is,y = 0 for

that is,y by (4.3.6). Also, (4.3.4) and (4.3.5) imply that τ 0
asy ≤

∑
is,y∈Is,y ρ1

asy,is,y/dayss

and τ 1
asy,is,y ≤ ρ1

asy,is,y/[dayssη(is,y)]. This shows that τ 0
asy ≤ 0 and τ 1

asy,is,y ≤ 0 for

that random outcome is,y because ρ1
asy,is,y = 0.

(b) When f 0
asy > 0, by complementarity, we deduce from (4.3.4) that τ 0

asy =

∑
is,y∈Is,y ρ1

asy,is,y/dayss, which by definition is nonnegative. Therefore, τ 0
asy ≥ 0.

(c) When f 1
asy,is,y > 0, by complementarity, we deduce from (4.3.5) that

η(is,y)τ 1
asy,is,y = ρ1

asy,is,y/dayss where ρ1
asyis,y ≥ 0 and η(is,y) > 0 by definition. There-

fore, τ 1
asy,is,y ≥ 0.

(d), (e) are contrapositives of statements (b) and (c), respectively. Therefore

the conclusions follow.

4.3.2 Producer

The production market’s problem is denoted by (PRS) It aggregates all producers

c ∈ C given the assumption of perfect competition in the marketplace for producers.

Producers make decisions on how much to produce in the long-term market, denoted
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q0
csy i.e., the first-stage decision, and the spot market, denoted q1

csy,is,y i.e., the re-

course decision. The nodal production prices faced by producers are denoted π0
nc(c)sy

and π1
nc(c)sy,is,y for the long-term market and spot market, respectively. Both π0

nc(c)sy

and π1
nc(c)sy,is,y , exogenous for (PRS) but overall variables in model S-NGEM, are

derived from the market-clearing conditions (4.3.36) - (4.3.39) for the production

market, by Theorem 4.3.5. Therefore, in the objective function (4.3.18) of (PRS),

the first term dayssπ
0
nc(c)syq

0
csy is the long-term seasonal gross income; the second

term η(is,y)dayssπ
1
nc(c)sy,is,yq1

csy,is,y summed over all the possible outcomes is,y ∈ Is,y

in season s and year y is the expected seasonal gross income in the spot market. The

last term in the objective function cPR
c (q0

csy + q1
csy,is,y) approximates the aggregate

production costs incurred in the two markets, where (q0
csy + q1

csy,is,y) is the total pro-

duction rate for random outcome is,y in season s and year y. By (q0
csy + q1

csy,is,y), we

assume that the long-term and spot market production rates are non-discriminative

and additive, which is reasonable because the natural gas is generally considered as

a homogeneous product. Similar assumptions can be found in the storage operator’s

problem (ST S) and the peak gas operator’s problem (PGS). Alternatively, but more

restrictively, we could separately write the costs as cPR
c (q0

csy) + cPR
c (q1

csy,is,y), which

assumes the production costs for the long-term and spot markets are additive.

Constraints (4.3.19) stipulate upper bounds on the production capacity with

the lower bounds being zero. Constraints (4.3.20) state that, for each scenario,

the total gas produced to both markets in the time horizon cannot exceed the

production forecast prodc. The term
∑

y∈Y

∑
s∈S dayssq

0
csy in constraints (4.3.20)

is the total gas produced over time according to the long-term contracts. The

total gas produced over the time horizon under each scenario is summed in the

term
∑

ĩ∈PD(i3,|Y |) dayssq
1
cs(̃i)y(̃i),̃i

, where the set PD(i3,|Y |) keeps track of all random

outcomes belonging to the same scenarios; the operators s(i) and y(i) point to the

season and year associated with the realization i, respectively.
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As in the model D-NGEM, the cost function cPR
C (·) is assumed convex and

continuously differentiable. Therefore, given that the constraints are affine, the

KKT conditions are both necessary and sufficient to solving (PRS) [5].

(PRS) max
∑
c∈C

∑
y∈Y

∑
s∈S

dayss

{
π0

nc(c)syq
0
csy

+
∑

is,y∈Is,y

η(is,y)
[
π1

nc(c)sy,is,y − cPR
c (q0

csy + q1
csy,is,y)

]}
(4.3.18)

s.t. q0
csy + q1

csy,is,y ≤ qc (λ1
csy,is,y ≥ 0) ∀c, is,y, s, y (4.3.19)

∑
y∈Y

∑
s∈S

dayssq
0
csy +

∑

ĩ∈PD(i3,|Y |)

dayssq
1
cs(̃i)y(̃i),̃i

≤ prodc

(µ1
c,i3,|Y | ≥ 0) ∀c, i3,|Y | (4.3.20)

0 ≤ q1
csy,is,y ,∀is,y, q0

csy ∀c, s, y

The KKT conditions to (PRS) are:

0 ≤ dayss

[
− π0

nc(c)sy +
∑

is,y∈Is,y

η(is,y)
∂
(
cPR
c (q0

csy + q1
csy,is,y)

)

∂(q0
csy)

]
+

∑
is,y∈Is,y

λ1
csy,is,y

+ dayss

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | ⊥ q0

csy ≥ 0 ∀c, s, y (4.3.21)

0 ≤ dayss

[
− η(is,y)π1

nc(c)sy,is,y + η(is,y)
∂
(
cPR
c (q0

csy + q1
csy,is,y)

)

∂(q1
csy,is,y)

]
+ λ1

csy,is,y

+ dayss

∑

ĩ∈SC(is,y)
⋂

I3,|Y |

µ1
c,̃i
⊥ q1

csy,is,y ≥ 0 ∀c, is,y, s, y (4.3.22)

0 ≤ qc − q0
csy − q1

csy,is,y ⊥ λ1
csy,is,y ≥ 0 ∀c, is,y, s, y (4.3.23)

0 ≤ prodc −
( ∑

y∈Y

∑
s∈S

dayssq
0
csy +

∑

ĩ∈PD(i3,|Y |)

dayssq
1
cs(̃i)y(̃i),̃i

)
⊥ µ1

c,i3,|Y | ≥ 0

∀c, i3,|Y | (4.3.24)

For ease of presentation, hereafter we use MCPRS ,0
csy,is,y and MCPRS ,1

csy,is,y to denote

the marginal cost functions in the long-term and spot markets, respectively. In
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particular,

MCPRS ,0
csy,is,y ≡ ∂

(
cPR
c (q0

csy + q1
csy,is,y)

)

∂(q0
csy)

,∀c, is,y, s, y (4.3.25)

MCPRS ,1
csy,is,y ≡ ∂

(
cPR
c (q0

csy + q1
csy,is,y)

)

∂(q1
csy,is,y)

,∀c, is,y, s, y (4.3.26)

Algebraically, given q0
csy and q1

csy,is,y , MCPRS ,0
csy and MCPRS ,1

csy,is,y have the same

values, that is

MCPRS ,0
csy,is,y = MCPRS ,1

csy,is,y (4.3.27)

In light of the mathematical structure of the KKT conditions (4.3.21) - (4.3.24),

we define

vPRS ≡




q0
csy (∀c, s, y)

q1
csy,is,y (∀c, is,y, s, y)

λ1
csy,is,y (∀c, is,y, s, y)

µ1
c,i3,|Y | (∀c, i3,|Y |)




and (4.3.28)

HPRS

(vPRS

) ≡




dayss

(
− π0

nc(c)sy + MCPGS ,0
csy,is,y

)
+

∑
is,y∈Is,y

λ1
csy,is,y

+ dayss

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | (∀c, s, y)

dayss

[
− η(is,y)π1

nc(c)sy,is,y + η(is,y)MCPGS ,1
csy,is,y

]
+ λ1

csy,is,y

+ dayss

∑

ĩ∈SC(is,y)
⋂

I3,|Y |

µ1
c,̃i

(∀c, is,y, s, y)

qc − q0
csy − q1

csy,is,y (∀c, is,y, s, y)

prodc −
( ∑

y∈Y

∑
s∈S

dayssq
0
csy +

∑

ĩ∈PD(i3,|Y |)

dayssq
1
cs(̃i)y(̃i),̃i

)

(∀c, i3,|Y |)



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(4.3.29)

Definitions of (4.3.28) and (4.3.29) allow the KKT conditions (4.3.21)-(4.3.24)

for all producers c ∈ C to be expressed equivalently as an NCP:

0 ≤ vPRS ⊥ HPRS

(vPRS

) ≥ 0 (4.3.30)

Theorem 4.3.3 shows the relationship between the long-term market prices

(π0
nsy) and the expected spot market prices (

∑
is,y∈Is,y η(is,y)π1

nsy,is,y) for the produc-

tion market, similar to those established in Theorem 4.3.1 for the transportation

market.

Theorem 4.3.3. For a production node n ∈ PN , given q0
csy and q1

csy,is,y , if there

exists some producer c ∈ Cn such that

(a) if the long-term production rate q0
csy > 0, then the long-term production price

is greater than or equal to the expected spot market price, that is, π0
nc(c)sy ≥

∑
is,y∈Is,y η(is,y)π1

nc(c)sy,is,y ; and likewise if

(b) if the spot market production rate q1
csy,is,y > 0,∀is,y ∈ Is,y, then the long-term

production price is less than or equal to the expected spot market price, that

is, π0
nc(c)sy ≤

∑
is,y∈Is,y η(is,y)π1

nc(c)sy,is,y ;

(c) if the long-term production rate q0
csy > 0 and the spot market production rate

q1
csy,is,y > 0,∀is,y ∈ Is,y, then the long-term production price is equal to the

expected spot market price, that is, π0
nc(c)sy =

∑
is,y∈Is,y η(is,y)π1

nc(c)sy,is,y .

Proof. (a) By (4.3.21), if q0
csy > 0, we see that
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π0
nc(c)sy =

∑
is,y∈Is,y

η(is,y)MCPRS ,0
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | +

∑
is,y∈Is,y λ1

csy,is,y

dayss

(4.3.31)

Meanwhile, it follows by (4.3.22) that

η(is,y)π1
nc(c)sy,is,y ≤ η(is,y)MCPRS ,1

csy,is,y +
∑

ĩ∈SC(is,y)
⋂

I3,|Y |

µ1
c,̃i

+
λ1

csy,is,y

dayss

, ∀is,y

(4.3.32)

Summing the above inequality for all is,y ∈ Is,y, we have

∑
is,y∈Is,y

η(is,y)π1
nc(c)sy,is,y ≤

∑
is,y∈Is,y

η(is,y)MCPRS ,1
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,̃i

+

∑
is,y∈Is,y λ1

csy,is,y

dayss

=
∑

is,y∈Is,y

η(is,y)MCPRS ,0
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,̃i

+

∑
is,y∈Is,y λ1

csy,is,y

dayss

by (4.3.27)

= π0
nc(c)sy by (4.3.31)

Therefore, when q0
csy > 0, π0

nc(c)sy ≥
∑

is,y∈Is,y η(is,y)π1
csy,is,y .

(b) By (4.3.22), if q1
csy,is,y > 0,∀is,y, it follows that

η(is,y)π1
nc(c)sy,is,y = η(is,y)MCPRS ,1

csy,is,y +
∑

ĩ∈SC(is,y)
⋂

I3,|Y |

µ1
c,̃i

+
λ1

csy,is,y

dayss

, ∀is,y

(4.3.33)

Summing the above equations over is,y ∈ Is,y results in the following:
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∑
is,y∈Is,y

η(is,y)π1
nc(c)sy,is,y =

∑
is,y∈Is,y

η(is,y)MCPRS ,1
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,̃i

+

∑
is,y∈Is,y λ1

csy,is,y

dayss

(4.3.34)

Also by (4.3.21), we see that

π0
nc(c)sy ≤

∑
is,y∈Is,y

η(is,y)MCPRS ,1
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | +

∑
is,y∈Is,y λ1

csy,is,y

dayss

=
∑

is,y∈Is,y

η(is,y)MCPRS ,0
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | +

∑
is,y∈Is,y λ1

csy,is,y

dayss

by (4.3.27)

=
∑

is,y∈Is,y

η(is,y)π1
nc(c)sy,is,y by (4.3.34)

Clearly, when q1
csy,is,y > 0,∀is,y, π0

nc(c)sy ≤
∑

is,y∈Is,y η(is,y)π1
nc(c)sy,is,y holds.

(c) The conclusion follows immediately from (a) and (b).

A key in the proof of Theorem 4.3.6 is that the long-term production rate q0
csy

and the spot market production rate q1
csy,is,y are assumed additive. For example,

the cost function cPR
c (q0

csy + q1
csy,is,y) based on this assumption leads to the fact that

MCPRS ,0
csy,is,y = MCPRS ,1

csy,is,y as stated in equation (4.3.27). Also, this assumption ensures

that both q0
csy and q1

csy,is,y are interchangeable in the capacity constraints (4.3.19)

and (4.3.20). Without this assumption, the price relationship shown in Theorem

4.3.3 is not necessarily valid.

In order to derive an NCP/VI formulation, as is done in Chapter 3, assump-

tions of positive marginal costs with positive production are assumed for the model

S-NGEM as well, e.g., Assumption 4.3.1 as shown below is the one for the producers.
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Assumption 4.3.1. Given q0
csy and q1

csy,is,y , the following statement holds producer

c ∈ C in season s, year y:

MCPRS ,0
csy,is,y = MCPRS ,1

csy,is,y > 0, when q0
csy + q1

csy,is,y > 0, ∀is,y (4.3.35)

Theorem 4.3.4 states that with Assumption 4.3.1 in force, the long-term market

price is greater than zero when the production rate is positive. Similar theorems are

also shown for the storage operators and peak gas operators. These sorts of theorems

play a key role in the formation of the NCP/VI formulation with market-clearing

conditions that has complementary nonnegative market prices.

Theorem 4.3.4. Suppose that Assumption 4.3.1 holds for all producers located at

a production node n. If there exists a producer c ∈ Cn such that

(a) their production rate in the long-term market is positive, that is, q0
csy > 0, then

so is the long-term production price at node n, that is, π0
nc(c)sy > 0;

(b) their production rate in the spot market is positive, that is, q1
csy,is,y > 0, then

so is the spot market production price at node n, that is, π1
nc(c)sy,is,y > 0.

Proof. (a) From (4.3.21), with positive q0
csy, we must have

π0
nc(c)sy =

∑
is,y∈Is,y

η(is,y)MCPRS ,0
csy,is,y +

∑

i3,|Y |∈I3,|Y |

µ1
c,i3,|Y | +

∑
is,y∈Is,y λ1

csy,is,y

dayss

By definition, in the above equation, λ1
csy,is,y and µ1

c,i3,|Y | are nonnegative and

η(is,y) is positive. The term MCPRS ,0
csy,is,y is positive by Assumption 4.3.1. Thus, π0

nc(c)sy

must be positive.

(b) From (4.3.22), with positive q1
csy,is,y , we must have
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π1
nc(c)sy,is,y = MCPRS ,1

csy,is,y +

∑
ĩ∈SC(is,y)

⋂
I3,|Y | µ1

c,̃i

η(is,y)
+

λ1
csy,is,y

η(is,y)dayss

For the same reasons in part (a), π1
nc(c)sy,is,y must be positive.

The market equilibrium is enforced by the market-clearing conditions. Equa-

tions (4.3.36), for season 1, and (4.3.37) for seasons 2 and 3, are market-clearing

conditions for the long-term production market. Analogously, equations (4.3.38) for

season 1 and (4.3.39) for seasons 2 and 3 are market-clearing conditions for the spot

market. The market-clearing conditions to the production market are as follows:

∑
c∈Cn

days1q
0
c1y =

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
0
ary +

∑

m∈M(n1(a))

days1h
0
am1y

)

∀n ∈ PN, y (4.3.36)

∑
c∈Cn

dayssq
0
csy =

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
0
amsy ∀n ∈ PN, s = 2, 3, y (4.3.37)

∑
c∈Cn

days1q
1
c1y,i1,y =

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
1
ary,i1,y +

∑

m∈M(n1(a))

days1h
1
am1y,i1,y

)

∀n ∈ PN, i1,y, y (4.3.38)

∑
c∈Cn

dayssq
1
csy,is,y =

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
1
amsy,is,y

∀n ∈ PN, is,y, s = 2, 3, y (4.3.39)

Equations (4.3.40) - (4.3.41) amend the marketing-clearing conditions pre-

sented in (4.3.36) - (4.3.39) by relaxing the equalities to inequalities which imply

that the total supply is greater than or equal to the total demand. The nonneg-

ative market prices π0
nsy and π1

nsy,is,y are the dual variables to the corresponding
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market-clearing conditions, for instance, π1
n1y,i1,y is the dual price to the (4.3.42),

the market-clearing condition for season 1 in the spot market.

0 ≤
∑
c∈Cn

days1q
0
c1y −

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
0
ary +

∑

m∈M(n1(a))

days1h
0
am1y

)

⊥ π0
n1y ≥ 0 ∀n ∈ PN, y (4.3.40)

0 ≤
∑
c∈Cn

dayssq
0
csy −

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
0
amsy ⊥ π0

nsy ≥ 0

∀n ∈ PN, s = 2, 3, y (4.3.41)

0 ≤
∑
c∈Cn

days1q
1
c1y,i1,y −

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
1
ary,i1,y +

∑

m∈M(n1(a))

days1h
1
am1y,i1,y

)

⊥ π1
n1y,i1,y ≥ 0 ∀n ∈ PN, i1,y, y

(4.3.42)

0 ≤
∑
c∈Cn

dayssq
1
csy,is,y −

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
1
amsy,is,y ⊥ π1

nsy,is,y ≥ 0

∀n ∈ PN, is,y, s = 2, 3, y (4.3.43)

Theorem 4.3.5 validates that, in the entirety of the model S-NGEM, (4.3.36) -

(4.3.39) along with nonnegative π0
nsy and π1

nsy,is,y are equivalent to (4.3.40) - (4.3.43).

With this result, the market-clearing conditions properly coupled with nonnegative

prices are an NCP/VI per se.

Theorem 4.3.5. If Assumption 4.3.1 holds for all c ∈ C , then the system S-PR-

MCC is equivalent to the system S-PR-MCC-NCP, where

S-PR-MCC ≡





NCP (4.3.30)

(4.3.36)− (4.3.39)

π0
nsy ≥ 0, ∀n ∈ PN, s, y

π1
nsy,is,y ≥ 0,∀is,y, n ∈ PN, s, y

(4.3.44)
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S-PR-MCC-NCP ≡





NCP (4.3.30)

(4.3.40)− (4.3.43)

(4.3.45)

Proof. By construction, any solution satisfying S-PR-MCC also satisfies S-PR-MCC-

NCP. Therefore, we must show that every solution to S-PR-MCC-NCP will be a

solution to S-PR-MCC as well. Suppose the contrary, that there exists a solution

satisfying S-PR-MCC-NCP such that when s = 1 for some n ∈ PN, y:

0 <
∑
c∈Cn

days1q
0
c1y −

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
0
ary +

∑

m∈M(n1(a))

days1h
0
am1y

)

and π0
n1y = 0 (4.3.46)

or when s = 2 or 3, for some n ∈ PN, y:

0 <
∑
c∈Cn

dayssq
0
csy −

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
0
amsy and π0

nsy = 0 (4.3.47)

or when s = 1, for some is,y, n ∈ PN, y:

0 <
∑
c∈Cn

days1q
1
c1y,i1,y−

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
1
ary,i1,y+

∑

m∈M(n1(a))

days1h
1
am1y,i1,y

)

and π1
n1y,i1,y = 0 (4.3.48)

or when s = 2 or 3, for some is,y, n ∈ PN, y:

0 <
∑
c∈Cn

dayssq
1
csy,is,y −

∑

a∈A(n)

∑

m∈M(n1(a))

dayssh
1
amsy,is,y and π1

nsy,is,y = 0 (4.3.49)

It must respectively follow from (4.3.46)-(4.3.47) and (4.3.48)-(4.3.49) that for

some n ∈ PN, y,
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0 < q0
csy ∃c ∈ Cn and π0

nsy = 0 (4.3.50)

or for some is,y, n ∈ PN, y,

0 < q1
csy,is,y ∃c ∈ Cn and π1

nsy,is,y = 0 (4.3.51)

However, by Theorem 4.3.4, it follows from 0 < q0
csy,∃c ∈ Cn and 0 <

q1
csy,is,y ,∃c ∈ Cn that π0

nsy > 0 and π1
nsy,is,y > 0, respectively, for producer c is

located at node n. This contradicts (4.3.50) and (4.3.51), respectively. In other

words, none of the cases presented in (4.3.46) - (4.3.49) are possible. Consequently,

every solution of S-PR-MCC-NCP is also a solution to S-PR-MCC. This completes

the proof.

4.3.3 Storage Operator

The storage market is modeled as a perfectly competitive market. ST S as shown

below is the optimization problem for the storage operators. The objective of prob-

lem (ST S) is to maximize the profits gained in the long-term market plus expected

net profits, expected income minus expected costs, gained both in the spot market.

The incomes for storage operators come from the sales of the gas to marketers.

Since it is a perfectly competitive market, the storage operators have no power to

influence the prices for the storage gas, that is, γ0
nr(r)sy and γ1

nr(r)sy,is,y are exogenous

to problem (ST S). But the storage operators decide on the gas rates (x0
rsy and

x1
rsy,is,y) sold to the marketers in seasons 2 and 3.

The costs for the storage operators fall into three parts: commodity charges,

transportation costs and production costs. The commodity charge rates, π0
n2(a)1y
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and π1
n2(a)1y,is,y , are fixed for problem (ST S). Storage operators pay the pipeline

charges, including regulated charges (τ reg
a1y), congestion charges (τ 0

a1y and τ 1
a1y,i1,y) and

reservation charges (RC0
asy) for firm service. Unlike a fixed charge, the reservation

charge, RC0
asy is a charge for per unit shipped by firm contracts. The production cost

is approximated by a cost function cST
r (·) which is a function of the total extraction

rates in the long-term and spot markets, i.e., x0
rsy +x1

rsy,i1,y . This setting of the cost

functions differs from the problem (ST ) in model D-NGEM in Chapter 3, where

the storage cost functions take the injection rates as arguments. These two settings

of the cost functions are in essence the same because injection and extraction rates

are related to one another by mass balance constraints. Nevertheless, in model D-

NGEM, all costs are incurred in season 1 and thus there is no explicit cost relevant

to the gas extraction sent to the marketers; while the new cost functions aim to

build a direct cost connection between storage operators and marketers.

One type of constraints needed for the problem (ST S) is the mass balance

constraint, whose counterpart in model D-NGEM is constraint (3.1.38), which stip-

ulates that the total extraction should be equal to the total injection after taking into

account appropriate losses. However, in order to establish further theoretical results

for model S-NGEM, the mass balance constraint is relaxed as shown in constraints

(4.3.53) and (4.3.54), which require that the total exaction be less or equal to the

total injection after pipeline and storage losses for each storage operator r ∈ R in

a year. As a result, under some circumstance, storage operators could have gas left

unsold at the end of the year. Although, in practice, unsold gas is passed on to the

next year’s inventory, the model S-NGEM currently leaves the leftover gas at the

end of each year out of the system. However, this is more of an abstract question

since all the numerical results presented in Chapter 5 show that storage operators

cleared their gas reservoirs in all instances. One possibility is that model S-NGEM

has some mechanism to clear the storage gas, which are unknown to us so far.
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Constraints (4.3.55) and (4.3.56) stipulate upper bounds on the injection and

exaction rate, which are nonnegative variables. Constraints (4.3.57) impose the

maximum volume of the working gas for the storage facilities owned by each storage

operator.

(ST S) max
∑
r∈R

∑
y∈Y

{ ∑
s=2,3

dayss

(
γ0

nr(r)syx
0
rsy +

∑
is,y∈Is,y

η(is,y)γ1
nr(r)sy,is,yx1

rsy,is,y

)

− days1

[ ∑

a∈A(nr(r))

(
τ 0
a1y + τ reg

a1y + π0
n2(a)1y + RC0

asy

)
g0

ary

+
∑

i1,y∈I1,y

η(i1,y)
∑

a∈A(nr(r))

(τ 1
a1y,i1,y + τ reg

a1y + π1
n2(a)1y,is,y)g1

ary,i1,y

]

−
∑

is,y∈Is,y

η(is,y)cST
r

(
x0

rsy + x1
rsy,is,y

)}
(4.3.52)

s.t. days1

∑

a∈A(nr(r))

g0
ary(1− lossa)(1− lossr)−

∑
s=2,3

dayssx
0
rsy ≥ 0

(δ0
ry ≥ 0) ∀r, y (4.3.53)

days1

∑

a∈A(nr(r))

g1
ary,Ψ(i3,y)(1− lossa)(1− lossr)− days2x

1
r2y,ψ(i3,y)

− days3x
1
r3y,i3,y ≥ 0 (δ1

ry,i3,y ≥ 0) ∀i3,y, r, y (4.3.54)

x0
rsy + x1

rsy,is,y ≤ xr (ω1
rsy,is,y ≥ 0) ∀is,y, r, s = 2, 3, y (4.3.55)

∑

a∈A(nr(r))

(g0
ary + g1

ary,i1,y) ≤ gr (ξ1
ry,i1,y ≥ 0) ∀i1,y, r, y (4.3.56)

∑
s=2,3

dayssx
0
rsy + days2x

1
r2y,ψ(i3,y) + days3x

1
r3y,i3,y ≤ kr

(ζ1
ry,i3,y ≥ 0) ∀i3,y, r, y (4.3.57)

0 ≤ g0
ary,∀a ∈ A(nr(r)), x0

r2y, x
0
r3y ∀r, y

0 ≤ g1
ary,i1,y ,∀a ∈ A(nr(r)), x1

r2y,i2,y , x1
r3y,i3,y ∀i, r, y
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Assuming that the cost functions cST
r (·) are convex and continuously differen-

tiable, the KKT conditions are both necessary and sufficient for solving the problem

ST S since it has a concave objective funtion being maximized and the constraint

set is polyhedral [5]. The KKT conditions to (ST S) are:

0 ≤ dayss

[
− γ0

nr(r)sy +
∑

is,y∈Is,y

η(is,y)
∂cST

r

(
x0

rsy + x1
rsy,is,y

)

∂x0
rsy

+ δ0
ry +

∑

i3,y∈I3,y

ζ1
ry,i3,y

]

+
∑

is,y∈Is,y

ω1
rsy,is,y ⊥ x0

rsy ≥ 0 ∀r, s = 2, 3, y (4.3.58)

0 ≤ days2

[
− η(i2,y)γ1

nr(r)2y,i2,y + η(i2,y)
∂cST

r

(
x0

r2y + x1
r2y,i2,y

)

∂x1
r2y,i2,y

+
∑

ĩ∈ISC(i2,y)

δ1
ry,̃i

+
∑

ĩ∈ISC(i2,y)

ζ1
ry,̃i

]
+ ω1

r2y,i2,y ⊥ x1
r2y,i2,y ≥ 0 ∀i2,y, r, y (4.3.59)

0 ≤ days3

[
− η(i3,y)γ1

nr(r)3y,i3,y + η(i3,y)
∂cST

r

(
x0

r3y + x1
r3y,i3,y

)

∂x1
r3y,i3,y

+ δ1
ry,i3,y + ζ1

ry,i3,y

]

+ ω1
r3y,i3,y ⊥ x1

r3y,i3,y ≥ 0 ∀i3,y, r, y (4.3.60)

0 ≤ days1

[
τ 0
a1y + τ reg

a1y + π0
n2(a)1y + RC0

a1y − δ0
ry(1− lossa)(1− lossr)

]

+
∑

i1,y∈I1,y

ξ1
ry,i1,y ⊥ g0

ary ≥ 0 ∀a ∈ A(nr(r)), r, y (4.3.61)

0 ≤ days1

[
η(i1,y)

(
τ 1
a1y,i1,y + τ reg

a1y + π1
n2(a)1y,i1,y

)

−
∑

ĩ∈IISC(i1,y)

δ1
ry,̃i

(1− lossa)(1− lossr)
]

+ ξ1
ry,i1,y ⊥ g1

ary,i1,y ≥ 0

∀a ∈ A(nr(r)), i1,y, r, y (4.3.62)

0 ≤ days1

∑

a∈A(nr(r))

g0
ary(1− lossa)(1− lossr)−

∑
s=2,3

dayssx
0
rsy ⊥ δ0

ry ≥ 0

∀r, y (4.3.63)

0 ≤ days1

∑

a∈A(nr(r))

g1
ary,Ψ(i3,y)(1− lossa)(1− lossr)− days2x

1
r2y,ψ(i3,y)

−days3x
1
r3y,i3,y ⊥ δ1

ry,i3,y ≥ 0 ∀i3,y, r, y (4.3.64)
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0 ≤ xr − x0
rsy − x1

rsy,is,y ⊥ ω1
rsy,is,y ≥ 0 ∀is,y, r, s = 2, 3, y (4.3.65)

0 ≤ gr −
∑

a∈A(nr(r))

(g0
ary + g1

ary,i1,y) ⊥ ξ1
ry,i1,y ≥ 0 ∀i1,y, r, y (4.3.66)

0 ≤ kr −
∑
s=2,3

dayssx
0
rsy − days2x

1
r2y,ψ(i3,y) − days3x

1
r3y,i3,y ⊥ ζ1

ry,i3,y ≥ 0

∀i3,y, r, y (4.3.67)

For brevity, hereafter, we use two simplified terms MCST S ,0
rsy,is,y and MCST S ,1

rsy,i1,y to

denote the marginal cost functions in the long-term and spot markets, respectively.

That is,

MCST S ,0
rsy,is,y ≡ ∂cST

r

(
x0

rsy + x1
rsy,is,y

)

∂x0
rsy

(4.3.68)

MCST S ,1
rsy,is,y ≡ ∂cST

r

(
x0

rsy + x1
rsy,is,y

)

∂x1
rsy,is,y

(4.3.69)

As is done in Section 4.3.2, given x0
rsy and x1

rsy,is,y , it is true that the marginal

cost functions for the two markets are the same, i.e.,

MCST S ,0
rsy,is,y = MCST S ,1

rsy,is,y (4.3.70)

Naturally, the KKT conditions to problem (ST S) are equivalent to an NCP

as follows:

0 ≤ vST S ⊥ HST S

(vST S

) ≥ 0 (4.3.71)

where
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vST S ≡




x0
rsy (∀r, s = 2, 3, y)

x1
rsy,is,y (∀is,y, r, s = 2, 3, y)

g0
ary (∀a ∈ A(nr(r)), r, y)

g1
ary,i1,y (∀a ∈ A(nr(r)), i1,y, r, y)

δ0
ry (∀r, y)

δ1
ry,i3,y (∀i3,y, r, y)

ω1
rsy,is,y (∀is,y, r, s = 2, 3, y)

ξ1
ry,i1,y (∀i1,y, r, y)

ζ1
ry,i3,y (∀i3,y, r, y)




and (4.3.72)
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HST S

(vST S

) ≡




dayss

[− γ0
nr(r)sy +

∑
is,y∈Is,y

η(is,y)MCST S ,0
rsy,is,y + δ0

ry +
∑

i3,y∈I3,y

ζ1
ry,i3,y

]

+
∑

is,y∈Is,y

ω1
rsy,is,y (∀r, s = 2, 3, y)

days2

[− η(i2,y)γ1
nr(r)2y,i2,y + η(i2,y)MCST S ,1

rsy,i2,y

+
∑

ĩ∈ISC(i2,y)

(δ1
ry,̃i

+ ζ1
ry,̃i

)
]
+ ω1

r2y,i2,y (∀i2,y, r, y)

days3

[− η(i3,y)γ1
nr(r)3y,i3,y + η(i3,y)MCST S ,1

rsy,i3,y

+ δ1
ry,i3,y + ζ1

ry,i3,y

]
+ ω1

r3y,i3,y (∀i3,y, r, y)

days1

[
τ 0
a1y + τ reg

a1y + π0
n2(a)1y + RC0

asy − δ0
ry(1− lossa)(1− lossr)

]

+
∑

i1,y∈I1,y

ξ1
ry,i1,y (∀a ∈ A(nr(r)), r, y)

days1

[
η(i1,y)

(
τ 1
a1y,i1,y + τ reg

a1y + π1
n2(a)1y,i1,y

)

−
∑

ĩ∈IISC(i1,y)

δ1
ry,̃i

(1− lossa)(1− lossr)
]

+ ξ1
ry,i1,y

∀a ∈ A(nr(r)), i1,y, r, y

days1

∑

a∈A(nr(r))

g0
ary(1− lossa)(1− lossr)−

∑
s=2,3

dayssx
0
rsy (∀r, y)

days1

∑

a∈A(nr(r))

g1
ary,Ψ(i3,y)(1− lossa)(1− lossr)

− days2x
1
r2y,ψ(i3,y) − days3x

1
r3y,i3,y (∀i3,y, r, y)

xr − x0
rsy − x1

rsy,is,y (∀is,y, r, s = 2, 3, y)

gr −
∑

a∈A(nr(r))

(g0
ary + g1

ary,i1,y) (∀i1,y, r, y)

kr −
∑
s=2,3

dayssx
0
rsy − days2x

1
r2y,ψ(i3,y) − days3x

1
r3y,i3,y (∀i3,y, r, y)




(4.3.73)

The first property we show for problem (ST S) is the price relationship between
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the long-term and spot markets. This is accomplished by Lemma 4.3.1 and Theorem

4.3.6.

Lemma 4.3.1. Considering a particular storage operator r in season s=2 or 3 of

year y, if the long-term extraction rate x0
rsy > 0, then δ0

ry >
∑

i3,y∈I3,y δ1
ry,i3,y .

Proof. If x0
rsy > 0, then by (4.3.63), there exists some a ∈ A(nr(r)) such that

g0
ary > 0, which by (4.3.61) implies that:

δ0
ry =

τ 0
a1y + τ reg

a1y + π0
n2(a)1y + RC0

a1y +

∑
i1,y∈I1,y ξ1

ry,i1,y

days1

(1− lossa)(1− lossr)
(4.3.74)

On the other hand, by (4.3.62), we see that for all a ∈ A(nr(r))

∑

ĩ∈IISC(i1,y)

δ1
ry,̃i

≤
η(i1,y)τ 1

a1y,i1,y + η(i1,y)τ reg
a1y + η(i1,y)π1

n2(a)1y,i1,y +
ξ1
ry,i1,y

days1

(1− lossa)(1− lossr)

∀i1,y (4.3.75)

Summing the above equation for all i1,y ∈ I1,y and recall that
∑

i3,y∈I3,y(·) =

∑
i1,y∈I1,y

∑
ĩ∈IISC(i1,y)(·), we have

∑

i3,y∈I3,y

δ1
ry,i3,y ≤

∑
i1,y∈I1,y η(i1,y)

(
τ 1
a1y,i1,y + π1

n2(a)1y,i1,y + τ reg
a1y

)
+

∑
i1,y∈I1,y ξ1

ry,i1,y

days1

(1− lossa)(1− lossr)

≤
τ 0
a1y + π0

n2(a)1y + τ reg
a1y +

∑
i1,y∈I1,y ξ1

ry,i1,y

days1

(1− lossa)(1− lossr)

by Theorems 4.3.1 and 4.3.3

< δ0
ry by (4.3.74)
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Because g0
ary > 0 for some a ∈ A(nr(r)), we deduce that q0

c1y > 0 for some

c ∈ Cn2(a) by (4.3.36) and f 0
a1y > 0 by (4.3.14), both of which further imply that

π0
nc(c)1y ≥

∑
i1,y∈I1,y η(i1,y)π1

nc(c)1y,i1,y , where nc(c) refers to the node where c is lo-

cated, i.e., n2(a) in this case; and τ 0
a1y ≥

∑
i1,y∈I1,y η(i1,y)τ 1

a1y,i1,y by Theorems 4.3.3

and 4.3.1, respectively. Furthermore, given that RC0
asy is a predetermined positive

rate, the conclusion follows δ0
ry >

∑
i3,y∈I3,y δ1

ry,i3,y .

Theorem 4.3.6. If there exists a storage operator r in season s=2 or 3 year y,

such that if the long-term extraction rate x0
rsy > 0, then the price in the long-

term market is greater than the expected one in the spot market, that is, γ0
nr(r)sy >

∑
is,y∈Is,y η(is,y)γ1

nr(r)y,is,y ;

Proof. First, by (4.3.63), the premise of some x0
rsy > 0 implies that some g0

ary >

0 which indicates, by Lemma 4.3.1, that δ0
ry >

∑
i3,y∈I3,y δ1

ry,i3,y . In addition, by

(4.3.58), if some x0
rsy > 0, we see that

γ0
nr(r)sy =

∑
is,y∈Is,y

η(is,y)MCST S ,0
rsy,is,y +δ0

ry +
∑

i3,y∈I3,y

ζ1
ry,i3,y +

∑
is,y∈Is,y ω1

rsy,i3,y

dayss

(4.3.76)

From (4.3.59) for the season 2, we see that

η(i2,y)γ1
nr(r)2y,i2,y ≤ η(i2,y)MCST S ,1

r2y,i2,y +
∑

ĩ∈ISC(i2,y)

(
δ1
ry,̃i

+ ζ1
ry,̃i

)
+

ω1
rsy,i2,y

days2

, ∀i2,y

(4.3.77)

Similarly, summing this inequality for all i2,y ∈ I2,y, we have

∑

i2,y∈I2,y

η(i2,y)γ1
nr(r)2y,i2,y ≤

∑

i2,y∈I2,y

η(i2,y)MCST S ,1
r2y,i2,y +

∑

i3,y∈I(3,y)

(
δ1
ry,i3,y + ζ1

ry,i3,y

)

+
∑

i2,y∈I2,y

ω1
rsy,i2,y

days2

(4.3.78)
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Also, by (4.3.60) for season 3, it follows that

η(i3,y)γ1
nr(r)3y,i3,y ≤ η(i3,y)MCST S ,1

r3y,i3,y + δ1
ry,i3,y + ζ1

ry,i3,y +
ω1

r3y,i3,y

days3

, ∀i3,y (4.3.79)

Summing this inequality for all i3,y ∈ I3,y, we have

∑

i3,y∈I3,y

η(i3,y)γ1
nr(r)3y,i3,y ≤

∑

i3,y∈I3,y

η(i3,y)MCST S ,1
r3y,i3,y +

∑

i3,y∈I3,y

(δ1
ry,i3,y + ζ1

ry,i3,y)

+
∑

i3,y∈I3,y

ω1
r3y,i3,y

days3

(4.3.80)

Combining equations (4.3.78) and (4.3.80) results in one equation as follows

for s = 2, 3:

∑
is,y∈Is,y

η(is,y)γ1
nr(r)sy,is,y ≤

∑
is,y∈Is,y

η(is,y)MCST S ,1
rsy,is,y +

∑

i3,y∈I3,y

(δ1
ry,i3,y + ζ1

ry,i3,y)

+
∑

is,y∈Is,y

ω1
rsy,is,y

dayss

(4.3.81)

=
∑

is,y∈Is,y

η(is,y)MCST S ,0
rsy,is,y +

∑

i3,y∈I3,y

(δ1
ry,i3,y + ζ1

ry,i3,y)

+
∑

is,y∈Is,y

ω1
rsy,is,y

dayss

by (4.3.70)

<
∑

is,y∈Is,y

η(is,y)MCST S ,0
rsy,is,y + δ0

ry +
∑

i3,y∈I3,y

ζ1
ry,i3,y

+
∑

is,y∈Is,y

ω1
rsy,is,y

dayss

by Lemma 4.3.1

=γ0
nr(r)sy by (4.3.76)

This completes the proof.
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The above theorem shows that as long as the extraction rate in the long-term

market is positive, the long-term market price is always greater than the expected

spot market price. This is unlike what was done in Theorems 4.3.1, 4.3.3 for pipeline

operators, producers and Theorem 4.3.9 to be presented for peak gas operators,

respectively. As we can see from the proof, this difference attributes to the existence

of reservation charges, RC0
asy for the long-term market, which are not present in

problems (PLS), (PRS) and (PGS).

Next, an important assumption regarding the marginal cost functions of the

storage operators is presented as follows.

Assumption 4.3.2. The marginal cost functions of storage operator r ∈ R meet

the following conditions in seasons 2 and 3 for all years:

MCST S ,0
rsy,is,y = MCST S ,1

rsy,is,y > 0, when x0
rsy + x1

rsy,is,y > 0, ∀is,y (4.3.82)

When positive marginal cost functions with positive extraction rates are as-

sumed (Assumption 4.3.2), Theorem 4.3.7 shows for the problem (ST S) that positive

extraction rates result positive market prices for both the long-term and spot mar-

kets.

Theorem 4.3.7. Suppose that Assumption 4.3.2 holds for all storage operators

located at a consumption node n. If there exists a storage operator r ∈ Rn who

(a) has a positive long-term extraction rate in season s, year y, i.e., x0
rsy > 0,

then the corresponding long-term storage gas price for that season at node n

is positive too, that is, γ0
nr(r)sy > 0;
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(b) has a positive extraction rate in season s year y in the spot market, i.e.,

x1
rsy,is,y > 0, for some is,y, then the corresponding spot market storage gas

price is positive too, that is, γ1
nr(r)sy,i1,y > 0 for that is,y.

Proof. (a) When x0
rsy > 0, by (4.3.58), we see that

γ0
nr(r)sy =

∑
is,y∈Is,y

η(is,y)MCST S ,0
rsy,is,y +δ0

ry +
∑

i3,y∈I3,y

ζ1
ry,i3,y +

∑
is,y∈Is,y ω1

rsy,i3,y

dayss

(4.3.83)

where
∑

is,y∈Is,y η(is,y)MCST S ,0
rsy,is,y is positive because of Assumption 4.3.2 and that

fact that η(is,y) > 0; δ0
ry > 0 as shown in Lemma 4.3.1 as x0

rsy > 0; ζ1
ry,i3,y and

ω1
rsy,is,y are nonnegative as defined. Therefore, γ0

nr(r)sy > 0.

(b) When x1
rsy,is,y > 0, by (4.3.59) for season 2 we see that

η(i2,y)γ1
nr(r)2y,i2,y = η(i2,y)MCST S ,1

rsy,i2,y +
∑

ĩ∈ISC(i2,y)

(
δ1
ry,̃i

+ ζ1
ry,̃i

)
+

ω1
rsy,i2,y

days2

∀i2,y (4.3.84)

or by (4.3.60) for season 3, we see that

η(i3,y)γ1
nr(r)3y,i3,y = η(i3,y)MCST S ,1

rsy,i3,y + δ1
ry,i3,y + ζ1

ry,i3,y +
ω1

r3y,i3,y

days3

, ∀i3,y (4.3.85)

In both equations, δ1
ry,i3,y , ζ1

ry,i3,y and ω1
rsy,is,y are nonnegative by default;

η(is,y)MCST S ,1
rsy,is,y is positive. Given that η(is,y) > 0,∀s = 2, 3, y, γ1

nr(r)sy,i1,y > 0

must hold for either season 2 or 3. This completes the proof.

Equations (4.3.86) and (4.3.87) are market-clearing conditions for the storage

gas market. Equation (4.3.86) states that in the long-term market, the total gas

supplied by storage operators located at a consumption node (
∑

r∈Rn dayssx
0
rsy)

should be equal to the total amount demanded by marketers at the same location for
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each high demand season in each year (
∑

m∈Mn dayssu
0
msy). Also, (4.3.87) enforces

such a relation for each possible random outcome is,y ∈ Is,y, where s = 2, 3.

∑
r∈Rn

dayssx
0
rsy =

∑
m∈Mn

dayssu
0
msy ∀n ∈ CN, s = 2, 3, y (4.3.86)

∑
r∈Rn

dayssx
1
rsy,is,y =

∑
m∈Mn

dayssu
1
msy,is,y ∀is,y, n ∈ CN, s = 2, 3, y (4.3.87)

Next, the two inequalities in (4.3.88) and (4.3.89) relax these original market-

clearing conditions so that the supply of the storage gas by storage operators could

exceed the demand for it by marketers.

0 ≤
∑
r∈Rn

dayssx
0
rsy −

∑
m∈Mn

dayssu
0
msy ⊥ γ0

nsy ≥ 0

∀n ∈ CN, s = 2, 3, y (4.3.88)

0 ≤
∑
r∈Rn

dayssx
1
rsy,is,y −

∑
m∈Mn

dayssu
1
msy,is,y ⊥ γ1

nsy,is,y ≥ 0

∀is,y, n ∈ CN, s = 2, 3, y (4.3.89)

Coupled with nonnegative prices γ0
rsy and γ0

rsy,is,y as dual variables to the

market-clearing condition relaxations, new market-clearing conditions (4.3.88) and

(4.3.89) are shown to be equivalent to (4.3.86) and (4.3.87) with nonnegative market

prices by Theorem 4.3.8.

Theorem 4.3.8. If Assumption 4.3.2 holds for all r ∈ R, then the system S-ST-

MCC is equivalent to the system S-ST-MCC-NCP, where

S-ST-MCC ≡





NCP (4.3.71)

(4.3.86)− (4.3.87)

γ0
nsy ≥ 0, ∀n ∈ PN, s = 2, 3, y

γ1
nsy,is,y ≥ 0,∀is,y, n ∈ PN, s = 2, 3, y

(4.3.90)
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S-ST-MCC-NCP ≡





NCP (4.3.71)

(4.3.88)− (4.3.89)

(4.3.91)

Proof. By construction, any solution satisfying S-ST-MCC also satisfies S-ST-MCC-

NCP. Therefore, we must show that every solution to S-ST-MCC-NCP will be a

solution to S-ST-MCC. Suppose the contrary that there exists a solution satisfying

S-ST-MCC-NCP such that for some n ∈ CN, s = 2, 3, y,

0 <
∑
r∈Rn

dayssx
0
rsy −

∑
m∈Mn

dayssu
0
msy and γ0

nsy = 0 (4.3.92)

or for some is,y, n ∈ CN, s = 2, 3, y,

0 <
∑
r∈Rn

dayssx
1
rsy,is,y −

∑
m∈Mn

dayssu
1
msy,is,y and γ1

nsy,is,y = 0 (4.3.93)

From (4.3.92) and (4.3.93), it must follow that for some n ∈ CN, s = 2, 3, y,

0 < x0
rsy ∃r ∈ Rn and γ0

nsy = 0 (4.3.94)

or for some is,y, n ∈ CN, s = 2, 3, y,

0 < x1
rsy,is,y ∃r ∈ Rn and γ1

nsy,is,y = 0 (4.3.95)

However, either (4.3.94) or (4.3.95) contradicts Theorem 4.3.7. Consequently,

every solution of S-ST-MCC-NCP is a solution to S-ST-MCC. This completes the

proof.
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4.3.4 Peak Gas Operator

The peak gas market is assumed to operate under perfect competition as was the case

in the pervious market studied. Problem (PGS) as shown below, which aggregates

optimization problems for all peak gas operators in the market, is the optimization

problem for the peak gas market. Given that we model this market as serving the

rest of the market only in season 3, problem (PGS) just takes into account those

realizations that could occur in season 3, that is i3,y ∈ I3,y,∀y. The objective for

the peak gas operator is to maximize the expected net profits as shown in (4.3.96),

subject to the capacity constraints (4.3.97). In the objective function, β0
np(p)y and

β1
np(p)y,i3,y , where np(p) specifies the node where peak gas operator p is located,

represent, respectively, the market prices faced by peak gas operator p and are

exogenous to the problem (PGS) but an overall variable for model S-NGEM. The

seasonly supply of peak gas operator p is denoted by w0
py and w1

py,i3,y for the long-

term and spot market, respectively. The cost function for peak gas operator p,

cPG
p (·), assumed convex and continuously differentiable, is a function of the total

daily production rates, w0
py + w1

py,i3,y . Constraints (4.3.97) require that the daily

supply rates of peak gas cannot exceed the supply capacity.

(PGS) max
∑
p∈P

∑
y∈Y

days3

{
β0

np(p)yw
0
py +

∑

i3,y∈I3,y

η(i3,y)[β1
ny,i3,yw1

py,i3,y

− cPG
p (w0

py + w1
py,i3,y)

]}
(4.3.96)

s.t. w0
py + w1

py,i3,y ≤ wp (σ1
py,i3,y ≥ 0) ∀i3,y, p, y (4.3.97)

0 ≤ w1
py,i3,y ,∀i3,y, w0

py ∀p, y

Given the convexity of the problem (PGS) and the linearity of the constraint

functions, the KKT conditions are both necessary and sufficient for the optimality

[5] of the problem. The KKT conditions for problem (PGS) are:

130



0 ≤ days3

[
− β0

np(p)y +
∑

i3,y∈I3,y

η(i3,y)
∂
(
cPG
p (w0

py + w1
py,i3,y)

)

∂(w0
py)

]

+
∑

i3,y∈I3,y

σ1
py,i3,y ⊥ w0

py ≥ 0 ∀p, y (4.3.98)

0 ≤ η(i3,y)days3

[
− β1

np(p)y,i3,y +
∂
(
cPG
p (w0

py + w1
py,i3,y)

)

∂(w1
py,i3,y)

]

+ σ1
py,i3,y ⊥ w1

py,i3,y ≥ 0 ∀i3,y, p, y (4.3.99)

0 ≤ wp − w0
py − w1

py,i3,y ⊥ σ1
py,i3,y ≥ 0 ∀i3,y, p, y (4.3.100)

As in the case of producer and storage operator, we use two simplified terms

to represent the marginal cost functions for the long term and spot markets. In

particular,

MCPGS ,0
py,i3,y ≡

∂
(
cPG
p (w0

py + w1
py,i3,y)

)

∂(w0
py)

(4.3.101)

MCPGS ,1
py,i3,y ≡

∂
(
cPG
p (w0

py + w1
py,i3,y)

)

∂(w1
py,i3,y)

(4.3.102)

Given w0
py and w1

py,i3,y , the two marginal costs have the same values, that is,

MCPGS ,0
py,i3,y = MCPGS ,1

py,i3,y (4.3.103)

Similar to the previous analysis, the KKT conditions for all peak gas operators

p ∈ P can be expressed equivalently as

0 ≤ vPGS ⊥ HPGS

(vPGS

) ≥ 0 (4.3.104)

where
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vPGS ≡




w0
py (∀p, y)

w1
py,i3,y (∀i3,y, p, y)

σ1
py,i3,y (∀i3,y, p, y)




and (4.3.105)

HPGS

(vPGS

) ≡




days3

[
− β0

np(p)y +
∑

i3,y∈I3,y

η(i3,y)MCPGS ,0
py,i3,y

]

+
∑

i3,y∈I3,y

σ1
py,i3,y (∀p, y)

η(i3,y)days3

[
− β1

np(p)y,i3,y + MCPGS ,1
py,i3,y

]

+ σ1
py,i3,y (∀i3,y, p, y)

wp − w0
py − w1

py,i3,y (∀i3,y, p, y)




(4.3.106)

Similar to the previous analysis, the following theorem shows relationship be-

tween the long-term market prices and spot market prices (ω0
py) for the peak gas

market: when the production rate for the long-term market is positive, the long-

term market price (β0
ny) is greater than or equal to the expected spot market prices

(
∑

i3,y∈I3,y η(i3,y)β1
np(p)y,i3,y). Also, when the production rates for all realizations in

some season are positive, the expected spot market prices for peak gas is greater or

equal to the long-term market price.

Theorem 4.3.9. Considering a consumption node n ∈ CN , if there exists a peak

gas operator p ∈ P n such that

(a) if the long-term production rate w0
py > 0, then the long-term peak gas price

is greater than or equal to the expected spot market price, that is, β0
np(p)y ≥

∑
i3,y∈I3,y η(i3,y)β1

np(p)y,i3,y ;

(b) if the spot market production rate w1
py,i3,y > 0,∀i3,y, then the long-term peak gas

price is less than or equal to the expected spot market price, that is, β0
np(p)y ≤

∑
i3,y∈I3,y η(i3,y)β1

np(p)y,i3,y ;
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(c) if the long-term production rate w0
py > 0 and the spot market production rate

w1
py,i3,y > 0,∀i3,y, then the long-term peak gas price is equal to the expected

spot market price, that is, β0
np(p)y =

∑
i3,y∈I3,y η(i3,y)β1

np(p)y,i3,y .

Proof. (a) By (4.3.98), if w0
py > 0, we see that

β0
np(p)y =

∑

i3,y∈Is,y

η(i3,y)MCPGS ,0
py +

∑
i3,y∈I3,y σ1

py,i3,y

days3

(4.3.107)

Also, by (4.3.99), it follows for all i3,y ∈ I3,y that

η(i3,y)β1
np(p)y,i3,y ≤ η(i3,y)MCPGS ,1

py,is,y +
σ1

py,i3,y

days3

(4.3.108)

Summing this inequality over all i3,y ∈ I3,y, we have

∑

i3,y∈I3,y

η(i3,y)β1
np(p)y,i3,y ≤

∑

i3,y∈I3,y

η(i3,y)MCPGS ,1
py,is,y +

∑
i3,y∈I3,y σ1

py,i3,y

days3

=
∑

i3,y∈I3,y

η(i3,y)MCPGS ,0
py +

∑
i3,y∈I3,y σ1

py,i3,y

days3

by (4.3.103)

=β0
np(p)y by (4.3.107)

Therefore, the conclusion follows.

(b) By equation (4.3.99), if w1
py,is,y > 0,∀is,y, it follows that

η(i3,y)β1
np(p)y,i3,y = η(i3,y)MCPGS ,1

py,is,y +
σ1

py,i3,y

days3

, ∀i3,y (4.3.109)

Summing the above equations over all is,y ∈ Is,y results in the following:
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∑

i3,y∈I3,y

η(i3,y)β1
np(p)y,i3,y =

∑

i3,y∈I3,y

η(i3,y)MCPGS ,1
py,is,y +

∑
i3,y∈I3,y σ1

py,i3,y

days3

(4.3.110)

Also by (4.3.98), we see that

β0
np(p)y ≤

∑

i3,y∈Is,y

η(i3,y)MCPGS ,0
py,i3,y +

∑
i3,y∈I3,y σ1

py,i3,y

days3

=
∑

i3,y∈Is,y

η(i3,y)MCPGS ,1
py,i3,y +

∑
i3,y∈I3,y σ1

py,i3,y

days3

by (4.3.103)

=
∑

i3,y∈I3,y

η(i3,y)β1
np(p)y,i3,y by (4.3.110)

(c) The conclusion follows immediately from parts (a) and (b).

This completes the proof.

The condition of positive marginal cost functions under positive production

rates are presented in Assumption 4.3.3, based on which, a relationship between the

peak gas production rates and the peak gas market prices for both the long-term

and spot markets is established in Theorem 4.3.10.

Assumption 4.3.3. Peak gas operator p’s marginal cost function satisfies the fol-

lowing condition for all years:

MCPGS ,0
py,i3,y = MCPGS ,1

py,i3,y > 0, when w0
py + w1

py,i3,y > 0 ∀i3,y. (4.3.111)

Theorem 4.3.10. Suppose that the marginal cost functions of all the peak gas op-

erators located at a consumption node n satisfy Assumption 4.3.3. If there exists a

peak gas operator p ∈ P n,
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(a) who has a positive production rate in the long-term market, i.e., w0
py > 0, then

the corresponding peak gas price at node n is positive too, that is, β0
np(p)y > 0;

(b) who has a positive production rate in the spot market, i.e., w1
py,i3,y > 0 for

some i3,y, then the corresponding peak gas price at node n is positive too, that

is, β1
np(p)y,i3,y > 0.

Proof. (a) From (4.3.98), with positive w0
py, we have

β0
np(p)y =

∑

i3,y∈Is,y

η(i3,y)MCPGS ,0
py +

∑
i3,y∈I3,y σ1

py,i3,y

days3

(4.3.112)

which, by Assumption 4.3.3 implies that β0
np(p)y > 0.

(b) From (4.3.99), with positive w1
py,i3,y for some i3,y, we have

β1
np(p)y,i3,y = MCPGS ,1

py,i3,y +
σ1

py,i3,y

η(i3,y)days3

, ∃i3,y (4.3.113)

which, by Assumption 4.3.3 implies that β1
np(p)y,i3,y > 0 for that is,y.

Equations (4.3.114) and (4.3.115) are market-clearing conditions for the peak

gas market for the long-term and spot markets, respectively. Both (4.3.114) and

(4.3.115) state that the total peak gas supplied by peak gas operators located at

a consumption node (
∑

p∈P n days3w
0
py and

∑
p∈P n days3w

1
py,i3,y) should equal to the

total peak gas demanded by marketers at the same node (
∑

m∈Mn days3v
0
my and

∑
m∈Mn days3v

1
my,i3,y).

∑
p∈P n

days3w
0
py =

∑
m∈Mn

days3v
0
my ∀n ∈ CN, y (4.3.114)

∑
p∈P n

days3w
1
py,i3,y =

∑
m∈Mn

days3v
1
my,i3,y ∀i3,y, n ∈ CN, y (4.3.115)
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In (4.3.116) and (4.3.117), the market-clearing conditions (4.3.114) and (4.3.115)

and the corresponding market prices β0
ny and β1

ny,i3,y are constructed as an NCP.

Theorem 4.3.11 shows that this NCP is equivalent to the original formulation.

0 ≤
∑
p∈P n

days3w
0
py −

∑
m∈Mn

days3v
0
my ⊥ β0

ny ≥ 0 ∀n ∈ CN, y

(4.3.116)

0 ≤
∑
p∈P n

days3w
1
py,i3,y −

∑
m∈Mn

days3v
1
my,i3,y ⊥ β1

ny,i3,y ≥ 0 ∀i3,y, n ∈ CN, y

(4.3.117)

Theorem 4.3.11. If Assumption 4.3.3 holds for all p ∈ P , then the system S-PG-

MCC is equivalent to the system S-PG-MCC-NCP, where

S-PG-MCC ≡





NCP (4.3.104)

(4.3.114)− (4.3.115)

β0
ny ≥ 0, ∀n ∈ PN, y

β1
ny,i3,y ≥ 0, ∀is,y, n ∈ PN, y

(4.3.118)

S-PG-MCC-NCP ≡





NCP (4.3.104)

(4.3.116)− (4.3.117)

(4.3.119)

Proof. By construction, any solution satisfying S-PG-MCC also satisfies S-PG-

MCC-NCP. Therefore, we must show that every solution to S-PG-MCC-NCP will

be a solution to S-PG-MCC. Suppose the contrary that there exists a solution

satisfying S-PG-MCC-NCP such that for some n ∈ CN, y:

0 <
∑
p∈P n

days3w
0
py −

∑
m∈Mn

days3v
0
my and β0

ny = 0 (4.3.120)

or for some is,y, n ∈ CN, y:
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0 <
∑
p∈P n

days3w
1
py,i3,y −

∑
m∈Mn

days3v
1
my,i3,y and β1

ny,i3,y = 0 (4.3.121)

From (4.3.120) and (4.3.121), it must follow that for some n ∈ CN, y:

0 < w0
py,∃p ∈ P n and β0

ny = 0 (4.3.122)

or for some is,y, n ∈ CN, y:

0 < w1
py,i3,y ,∃p ∈ P n and β1

ny,i3,y = 0 (4.3.123)

However, 0 < w0
py,∃p ∈ P n in (4.3.122) and 0 < w1

py,i3,y ,∃p ∈ P n in (4.3.123)

result in β0
ny > 0 and β1

ny,i3,y > 0 respectively by Theorem 4.3.10, both of which

contradict β0
ny = 0 and β1

ny,i3,y = 0 in (4.3.122) and (4.3.123), respectively. Con-

sequently, every solution of S-PG-MCC-NCP is also be a solution to S-PG-MCC.

This completes the proof.

4.3.5 Marketer

Problem M̃K
S

as shown below is the optimization problem faced by marketer m.

Unlike the model D-NGEM in which marketers have the power to influence the

end-use prices of all the four consumer sectors, marketers in model S-NGEM are

assumed to be Nash-Cournot players only in the residential and commercial sectors

given the fact that the demand in these two sectors is highly seasonal and subject to

factors hardly predictable. They have power to influence these sectors via the inverse

demand functions θknm(m)sy(l
1
kmsy,is,y + l1∗k(−m(n))sy,is,y), where l1kmsy,is,y is the market

supply served by marketer m and l1∗k(−m(n))sy,is,y is “optimal” supply served by other
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marketers located at the same node n as m. As θknsy in model D-NGEM, θ1
knsy,is,y is

typically assumed continuously differentiable, nonincreasing and nonnegative on the

nonnegative orthant. Conversely, the industrial and electric power sectors, whose

demand are less likely impacted by seasonal factors and are relatively constant

throughout the year, use firm contracts extensively in order to ensure the supply

assurance. Therefore, in model S-NGEM, marketers are assumed to be price-takers

in the industrial and electric power sectors. In addition, the industrial and electric

power sectors are modeled to have options to use both firm contracts (in the long-

term market) and swing/best-efforts contracts (in the spot market) with pipeline

operators. In the long-term market, marketers are obligated to supply industrial

and electric power sectors with gas at predetermined rates, denoted D0
knsy over

the time horizon and model-determined prices Θ0
knsy, k = 3, 4 and RC0

asy for firm

pipeline service. The spot market is then used by the two sectors to obtain the extra

gas demand denoted D1
knsy,is,y under different scenarios, where the market prices for

these market are denoted Θ1
knsy,is,y , k = 3, 4. In this sense, marketers are not modeled

to have market power over the industrial and electric demand any more and thus

the end-use prices for industrial and electric sectors Θ0
knsy and Θ1

knsy,is,y , k = 3, 4 are

determined by market-clearing conditions rather than the inverse demand functions.

The objective for marketer m is to maximize the expected net profits, which

is the difference between expected incomes and expected costs. The income for

marketer m is composed of sales to the industrial and electric power sectors in the

long-term market and the expected sales to all sectors in the spot market. The costs

can be broken down into two categories: commodity charges and pipeline charges

both in the long-term and spot markets. The commodity charges are what marketers

pay for the value of the gas and are exogenous to the problem M̃K
S
. Depending on

the source of the gas, the commodity charge rates are π0
n2(a)sy, γ0

nm(m)sy or β0
nm(m)y in

the long-term market and π1
n2(a)sy,is,y , γ1

nm(m)sy,is,y or β1
nm(m)y,i3,y in the spot market,
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respectively. The pipeline charges include pipeline regulated charges (τ reg
asy per Mcf)

whenever the pipeline is used, congestion fees (τ 0
asy or τ 1

asy,is,y per Mcf) whenever

using a full pipeline and reservation charges (RC0
asy per Mcf) for the firm service.

Constraints (4.3.125) - (4.3.130) state that the amount of gas marketer m can

supply the consumers should be equal to the total amount they purchase from the

producers, storage operators or peak gas operators. Constraints (4.3.125) - (4.3.127)

enforce such a balance for the long-term market and constraints (4.3.128) - (4.3.130)

are for spot market.

(M̃K
S
) max

∑
y∈Y

{∑
s∈S

dayss

[ ∑

k=3,4

Θ0
knm(m)syl

0
kmsy

+
∑

k=1,2

∑
is,y∈Is,y

η(is,y)θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

)
l1kmsy,is,y

+
∑

k=3,4

∑
is,y∈Is,y

η(is,y)Θ1
knm(m)sy,is,y l1kmsy,is,y

−
∑
s∈S

∑

a∈A(nm(m))

dayss

[(
τ 0
asy + τ reg

asy + π0
n2(a)sy + RC0

asy

)
h0

amsy

+
∑

is,y∈Is,y

η(is,y)
(
τ 1
asy,is,y + τ reg

asy + π1
n2(a)sy,is,y

)
h1

amsy,is,y

]

−
∑
s=2,3

dayss

[
γ0

nm(m)syu
0
msy +

∑
is,y∈Is,y

η(is,y)γ1
nm(m)sy,is,yu1

msy,is,y

]

− days3

[
β0

nm(m)yv
0
my +

∑

i3,y∈I3,y

η(i3,y)
(
β1

nm(m)y,i3,y

)
v1

my,i3,y

]}

(4.3.124)

s.t. days1

( ∑

a∈A(nm(m))

(1− lossa)h
0
am1y −

∑

k=3,4

l0km1y

)
= 0

(φ0
m1y) ∀y (4.3.125)

days2

( ∑

a∈A(nm(m))

(1− lossa)h
0
am2y + u0

m2y −
∑

k=3,4

l0km2y

)
= 0

(φ0
m2y) ∀y (4.3.126)
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days3

( ∑

a∈A(nm(m))

(1− lossa)h
0
am3y + u0

m3y + v0
my −

∑

k=3,4

l0km3y

)
= 0

(φ0
m3y) ∀y (4.3.127)

days1

( ∑

a∈A(nm(m))

(1− lossa)h
1
am1y,i1,y −

∑

k∈K

l1km1y,i1,y

)
= 0

(φ1
m1y,i1,y free) ∀i1,y, y (4.3.128)

days2

( ∑

a∈A(nm(m)

(1− lossa)h
1
am2y,i2,y + u1

m2y,i2,y

−
∑

k∈K

l1km2y,i2,y

)
= 0 (φ1

m2y,i2,y free) ∀i2,y, y (4.3.129)

days3

( ∑

a∈A(nm(m))

(1− lossa)h
1
am3y,i3,y + u1

m3y,i3,y + v1
my,i3,y

−
∑

k∈K

l1km3y,i3,y

)
= 0 (φ1

m3y,i3,y free) ∀i3,y, y (4.3.130)

0 ≤ l1kmsy,is,y ,∀is,y, l0kmsy ∀k, s, y

0 ≤ h1
amsy,is,y ,∀is,y, h0

amsy ∀a ∈ A(nm(m), s, y

0 ≤ u1
msy,is,y ,∀is,y, u0

msy ∀s = 2, 3, y

0 ≤ v1
my,i3,y∀i3,y, v0

my ∀y

Problem (M̃K
S
) is a convex program provided that the only nonlinear term,

the revenue function θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

) · l1kmsy,is,y in the objective

function (4.3.124) is concave. The conditions of θ1
knm(m)sy,is,y

(
l1kmsy,is,y+l1∗k(−m(n))sy,is,y

)·
l1kmsy,is,y being concave was discussed in Section 3.1.5. Given the problem (M̃K

S
)

is a convex programming, the KKT conditions are both necessary and sufficient for

optimality [5]. The KKT conditions are:

0 ≤ −Θ0
knm(m)sy + φ0

msy ⊥ l0kmsy ≥ 0 ∀k = 3, 4, s, y (4.3.131)
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0 ≤ η(is,y)
[
−

∂θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

)

∂l1kmsy,is,y

l1kmsy,is,y

− θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

)]
+ φ1

msy,is,y ⊥ l1kmsy,is,y ≥ 0

∀is,y, k = 1, 2, s, y (4.3.132)

0 ≤ −η(is,y)Θ1
knm(m)sy,is,y + φ1

msy,is,y ⊥ l1kmsy,is,y ≥ 0 ∀is,y, k = 3, 4, s, y

(4.3.133)

0 ≤ τ 0
asy + τ reg

asy + π0
n2(a)sy + RC0

asy − (1− lossa)φ
0
msy ⊥ h0

amsy ≥ 0

∀a ∈ A(nm(m)), s, y (4.3.134)

0 ≤ γ0
nm(m)sy − φ0

msy ⊥ u0
msy ≥ 0 s = 2, 3,∀y (4.3.135)

0 ≤ β0
nm(m)y − φ0

m3y ⊥ v0
my ≥ 0 ∀y (4.3.136)

0 ≤ η(is,y)(τ 1
asy,is,y + τ reg

asy + π1
n2(a)sy,is,y)− (1− lossa)φ

1
msy,is,y ⊥ h1

amsy,is,y ≥ 0

∀a ∈ A(nm(m)), is,y, s, y (4.3.137)

0 ≤ η(is,y)γ1
nm(m)sy,is,y − φ1

msy,is,y ⊥ u1
msy,is,y ≥ 0 ∀is,y, s = 2, 3, y (4.3.138)

0 ≤ η(i3,y)β1
nm(m)y,i3,y − φ1

m3y,i3,y ⊥ v1
my,i3,y ≥ 0 ∀i3,y, y (4.3.139)

0 =
∑

a∈A(nm(m))

(1− lossa)h
0
am1y −

∑

k=3,4

l0km1y (φ0
m1y free) ∀y (4.3.140)

0 =
∑

a∈A(nm(m))

(1− lossa)h
0
am2y + u0

m2y −
∑

k=3,4

l0km2y (φ0
m2y free) ∀y

(4.3.141)

0 =
∑

a∈A(nm(m))

(1− lossa)h
0
am3y + u0

m3y + v0
my −

∑

k=3,4

l0km3y (φ0
m3y free) ∀y

(4.3.142)

0 =
∑

a∈A(nm(m))

(1− lossa)h
1
am1y,i1,y −

∑

k∈K

l1km1y,i1,y

(φ1
m1y,is,y free) ∀i1,y, y (4.3.143)
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0 =
∑

a∈A(nm(m))

(1− lossa)h
1
am2y,i2,y + u1

m2y,i2,y −
∑

k∈K

l1km2y,i2,y

(φ1
m2y,i2,y free) ∀i2,y, y (4.3.144)

0 =
∑

a∈A(nm(m))

(1− lossa)h
1
am3y,i3,y + u1

m3y,i3,y + v1
my,i3,y −

∑

k∈K

l1km3y,i3,y

(φ1
m3y,i3,y free) ∀i3,y, y (4.3.145)

In light of their mathematical structure, including the KKT conditions for all

marketers m ∈ M results in an MiCP as follows:

GMKS

(uMKS

, vMKS

) = 0, uMKS

free

0 ≤ vMKS ⊥ HMKS

(uMKS

, vMKS

) ≥ 0

(4.3.146)

where

vMKS ≡




l0kmsy (∀k = 3, 4,m, s, y)

l1kmsy,is,y (∀is,y, k,m, s, y)

h0
amsy (∀a ∈ A(nm(m)),m, s, y)

u0
msy (∀m, s = 2, 3, y)

v0
my (∀m, y)

h1
amsy,is,y (∀a ∈ A(nm(m)), is,y,m, s, y)

u1
msy,is,y (∀is,y,m, s = 2, 3, y)

v1
my,i3,y (∀i3,y,m, y)




(4.3.147)
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HMKS

(vMKS

) ≡




−Θ0
knm(m)sy + φ0

msy (∀k = 3, 4, s, y)

η(is,y)
[
−

∂θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

)

∂l1kmsy,is,y

l1kmsy,is,y

− θ1
knm(m)sy,is,y

(
l1kmsy,is,y + l1∗k(−m(n))sy,is,y

)]
+ φ1

msy,is,y

(∀is,y, k = 1, 2, s, y)

− η(is,y)Θ1
knm(m)sy,is,y + φ1

msy,is,y (∀is,y, k = 3, 4, s, y)

τ 0
asy + τ reg

asy + π0
n2(a)sy + RC0

asy − (1− lossa)φ
0
msy

(∀a ∈ A(nm(m)), s, y)

γ0
nm(m)sy − φ0

msy (s = 2, 3,∀y)

β0
nm(m)y − φ0

m3y (∀y)

η(is,y)(τ 1
asy,is,y + τ reg

asy + π1
n2(a)sy,is,y)− (1− lossa)φ

1
msy,is,y

(∀a ∈ A(nm(m)), is,y, s, y)

η(is,y)γ1
nm(m)sy,is,y − φ1

msy,is,y (∀is,y, s = 2, 3, y)

η(i3,y)β1
nm(m)y,i3,y − φ1

m3y,i3,y (∀i3,y, y)




(4.3.148)

uMKS ≡




φ0
msy (∀m, s, y)

φ1
msy,is,y (∀is,y,m, s, y)


 and (4.3.149)
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GMKS

(uMKS

) ≡




∑

a∈A(nm(m))

(1− lossa)h
0
am1y −

∑

k=3,4

l0km1y (∀y)

∑

a∈A(nm(m))

(1− lossa)h
0
am2y + u0

m2y −
∑

k=3,4

l0km2y (∀y)

∑

a∈A(nm(m))

(1− lossa)h
0
am3y + u0

m3y + v0
my −

∑

k=3,4

l0km3y

(∀y)

∑

a∈A(nm(m))

(1− lossa)h
1
am1y,i1,y −

∑

k∈K

l1km1y,i1,y (∀i1,y, y)

∑

a∈A(nm(m))

(1− lossa)h
1
am2y,i2,y + u1

m2y,i2,y −
∑

k∈K

l1km2y,i2,y

(∀i2,y, y)

∑

a∈A(nm(m))

(1− lossa)h
1
am3y,i3,y + u1

m3y,i3,y + v1
my,i3,y

−
∑

k∈K

l1km3y,i3,y (∀i3,y, y)




(4.3.150)

It is well known that MiCP (4.3.146) is equivalent to a collection, denoted

(MK), of the optimization problems for all the marketers who are strategic players

in an imperfect competition setting [26].

All theoretical results shown in this section consider model S-NGEM in its

entirety with previous results holding. For brevity, we do not state them explicitly

for each result. In Theorem 4.3.12, we show that, for the industrial and electric

power sectors, if a sector located at node n receives a positive supply of gas from

some marketer, the sectoral end-use prices for node n must be positive. We first

present two useful lemmas.
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Lemma 4.3.2. Suppose that Assumptions 4.3.1, 4.3.2 and 4.3.3 hold for all pro-

ducers c ∈ C, storage operators r ∈ R and peak gas operators p ∈ P , respectively.

For a marketer m in the long-term market,

(a) if h0
amsy > 0 for some a ∈ A(nm(m)), then φ0

msy > 0;

(b) if u0
msy > 0, then φ0

msy > 0 when s = 2, 3;

(c) if v0
my > 0, then φ0

m3y > 0.

Proof. a) First, h0
amsy > 0 via (4.3.134) implies that

φ0
msy =

τ 0
asy + τ reg

asy + π0
n2(a)sy + RC0

asy

1− lossa

(4.3.151)

where (1− lossa) is positive, since it does not make sense in reality to have the loss

factor lossa greater than or equal to 1.

In addition, h0
amsy > 0 implies that q0

csy > 0 for some producer c located at

node n2(a) by (4.3.36) in season 1 or (4.3.37) in seasons 2 or 3. Further, by Theorem

4.3.4, we see that when q0
csy > 0, π0

nc(c)sy > 0, i.e., π0
n2(a)sy > 0 for node n2(a) is where

producer c is located. Also, h0
amsy > 0 implies that f 0

asy > 0 by (4.3.14) or (4.3.15)

showing that τ 0
asy ≥ 0 by Theorem 4.3.2. Given that π0

n2(a)sy > 0, τ 0
asy ≥ 0 and the

fact that τ reg
asy and RC0

asy are all positive, φ0
msy > 0 must hold in (4.3.151).

b) u0
msy > 0 via (4.3.135) implies that

φ0
msy = γ0

nm(m)sy (4.3.152)

By the market-clearing condition (4.3.86), u0
msy > 0 also implies that x0

rsy > 0

for some storage operator located where marketer m is. This further indicates that
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the storage price for the node is positive, that is, γ0
nm(m)sy > 0 by Theorem 4.3.7.

Therefore φ0
msy in (4.3.152) must be positive.

c) In this case, via (4.3.136), v0
my > 0 implies that

φ0
m3y = β0

nm(m)y (4.3.153)

On the other hand, by the market-clearing condition (4.3.114), v0
my > 0 implies

that w0
py > 0 for some peak gas operator p located where marketer m is. By Theorem

4.3.10, this further shows that the peak gas price for this node is positive, that is,

β0
nm(m)y > 0. Hence φ0

m3y > 0 in (4.3.153). This completes the proof.

Lemma 4.3.3. Suppose that Assumptions 4.3.1, 4.3.2 and 4.3.3 hold. For a mar-

keter m in the spot market,

(a) if h1
amsy,is,y > 0 for some a ∈ A(nm(m)), then φ1

msy,is,y > 0;

(b) if u1
msy,is,y > 0, then φ1

msy,is,y > 0;

(c) if v1
my,i3,y > 0, then φ1

m3y,i3,y > 0.

Proof. a) First, h1
amsy,is,y > 1 via (4.3.137) implies that

φ1
msy,is,y = η(is,y)

τ 1
asy,is,y + τ reg

asy + π1
n2(a)sy,is,y

1− lossa

(4.3.154)

In addition, h1
amsy,is,y > 0 implies that q1

csy,is,y > 0 for some producer located

at node n2(a) by the market-clearing conditions (4.3.38) or (4.3.39). Further, by

Theorem 4.3.4, we see that when q1
csy,is,y > 0, π1

nc(c)sy,is,y > 0, i.e., π1
n2(a)sy,is,y > 0

for nc(c) and n2(a) both refer to the same production node where producer c is.
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Also, h1
amsy,is,y > 0 shows that f 1

asy,is,y > 0 by market-clearing conditions (4.3.16) or

(4.3.17), showing that τ 1
asy,is,y ≥ 0 by Theorem 4.3.2. Given that π1

n2(a)sy,is,y > 0,

τ 1
asy,is,y ≥ 0, and the fact that η(is,y) and τ reg

asy are positive, φ1
msy,is,y > 0 must hold

in (4.3.154).

b) u1
msy,is,y > 0 via (4.3.138) implies that

φ1
msy,is,y = η(is,y)γ1

nm(m)sy,is,y (4.3.155)

By the market-clearing condition (4.3.87), u1
msy,is,y > 0 also implies that

x1
rsy,is,y > 0 for some storage operator r located where marketer m is. Thus by

Theorem 4.3.7, the storage price for the node is positive, that is, γ1
nr(r)sy,is,y > 0, i.e.,

γ1
nm(m)sy,is,y > 0 for in this case, storage operator r and marketer m are located at

the same consumption node. Therefore φ1
msy,is,y in (4.3.155) must be positive due

to the fact that η(is,y) > 0.

c) In this case, via (4.3.139), v1
my,i3,y > 0 implies that

φ1
m3y,is,y = η(i3,y)β1

nm(m)y,i3,y (4.3.156)

By market-clearing condition (4.3.115), v1
my,i3,y > 0 implies that w1

py,i3,y > 0 for

some peak gas operator p located where marketer m is. Thus by Theorem 4.3.10,

the peak gas price for this node is positive, that is, β1
nm(m)y,i3,y . Hence φ1

m3y,i3,y in

(4.3.156) must be positive given that η(i3,y) > 0. This completes the proof.

The following theorem, Theorem 4.3.12 shows that the end-user prices for

the industrial and electric power sectors, Θ0
knsy and Θ1

knsy,is,y are positive when

they receive positive supply from marketers. Note that the end-user prices for the
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residential and commercial sectors are positive in that they are determined by the

inverse demand functions, which are assume nonincreasing and nonnegative on the

nonnegative orthant.

Theorem 4.3.12. Suppose Assumptions 4.3.1, 4.3.2 and 4.3.3 are in force for all

c ∈ C, r ∈ R and p ∈ P , respectively. For the industrial and electric power sectors

(k = 3, 4),

(a) if sector k receives a positive supply from some marketer m in the long-term

market, that is, l0kmsy > 0, then the corresponding sectoral end-use price is

positive too, that is, Θ0
knm(m)sy > 0;

(b) if sector k receives a positive supply from some marketer m in the spot market,

that is, l1kmsy,is,y > 0, then the corresponding sectoral end-use price is positive

too, that is, Θ1
knm(m)sy,is,y > 0.

Proof. (a) First, by (4.3.131), l0kmsy > 0 implies that Θ0
knm(m)sy = φ0

msy. By the mass

balance constraints (4.3.140) - (4.3.142), l0kmsy > 0 also implies, respectively, that at

least one of h0
amsy, u0

msy and v0
my is positive, and Lemma 4.3.2 shows that φ0

msy > 0.

Therefore, l0kmsy > 0 implies that Θ0
knm(m)sy > 0.

(b) By (4.3.133), l1kmsy,is,y > 0 implies that η(is,y)Θ1
knm(m)sy,is,y = φ1

msy,is,y .

By the mass balance constraints (4.3.143) - (4.3.145), l1kmsy,is,y > 0 also implies,

respectively, that at least one of h1
amsy,is,y , u1

msy,is,y and v1
my,i3,y is positive, and Lemma

4.3.3 shows that φ1
msy,is,y > 0. Therefore, l1kmsy,is,y > 0 implies that Θ1

knm(m)sy,is,y > 0

given that fact that η(is,y) is positive.

Since the inverse demand functions for industrial and electric power sectors

are not in the objective function of problem M̃K
S
, we need a new mechanism to
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establish a relationship between the equilibrium consumption and prices. Thus,

market-clearing conditions (4.3.157) and (4.3.158) are introduced. These condi-

tions state that the total supply of gas from the marketers (dayss

∑
m∈Mn l0kmsy and

dayss

∑
m∈Mn l1kmsy,is,y) should be equal to the volume demanded by the end-users

(dayssD
0
knsy and dayssD

1
knsy,is,y) in the long-term and spot markets, respectively,

are used to enforce such an equilibrium.

dayss

∑
m∈Mn

l0kmsy = dayssD
0
knsy ∀k = 3, 4, n ∈ CN, s, y (4.3.157)

dayss

∑
m∈Mn

l1kmsy,is,y = dayssD
1
knsy,is,y ∀k = 3, 4, is,y, n ∈ CN, s, y (4.3.158)

In order to have an MiCP formulation, the above two equations need to be

amended into inequalities as shown in (4.3.159) and (4.3.160). The corresponding

dual variables are the prices Θ0
knsy and Θ1

knsy,is,y .

0 ≤ dayss

( ∑
m∈Mn

l0kmsy −D0
knsy

)
⊥ Θ0

knsy ≥ 0

∀k = 3, 4, n ∈ CN, s, y (4.3.159)

0 ≤ dayss

( ∑
m∈Mn

l1kmsy,is,y −D1
knsy,is,y

)
⊥ Θ1

knsy,is,y ≥ 0

∀k = 3, 4, is,y, n ∈ CN, s, y (4.3.160)

Theorem 4.3.13 shows how the new system of (4.3.159) and (4.3.160) is equiv-

alent to (4.3.157) and (4.3.158) with nonnegative Θ0
knsy and Θ1

knsy,is,y .

Theorem 4.3.13. Suppose Assumptions 4.3.1, 4.3.2 and 4.3.3 are in force for all

c ∈ C, r ∈ R and p ∈ P , respectively. The system S-CM-MCC is equivalent to the
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system S-CM-MCC-NCP, where

S-CM-MCC ≡





MiCP (4.3.146)

(4.3.157)− (4.3.158)

Θ0
knsy ≥ 0,∀k = 3, 4, n ∈ CN, s, y

Θ1
knsy,is,y ≥ 0,∀is,y, k = 3, 4, n ∈ CN, s, y

(4.3.161)

S-CM-MCC-NCP ≡





MiCP (4.3.146)

(4.3.159)− (4.3.160)

(4.3.162)

Proof. By construction, any solution to S-CM-MCC is also a solution to S-CM-

MCC-NCP. It suffices to show that any solution to S-CM-MCC-NCP is also a solu-

tion to S-CM-MCC. Suppose there exists a solution to S-CM-MCC-NCP such that

for some k ∈ {3, 4}, n ∈ CN, s, y:

0 < dayss

( ∑
m∈Mn

l0kmsy −D0
knsy

)
and Θ0

knsy = 0 (4.3.163)

or for some is,y, k ∈ {3, 4}, n ∈ CN, s, y:

0 < dayss

( ∑
m∈Mn

l1kmsy,is,y −D1
knsy,is,y

)
and Θ1

knsy,is,y = 0 (4.3.164)

This implies that for some k ∈ {3, 4}, n ∈ CN, s, y:

0 < l0kmsy and Θ0
knsy = 0 (4.3.165)

or for some is,y, k ∈ {3, 4}, n ∈ CN, s, y:

0 < l1kmsy,is,y and Θ1
knsy,is,y = 0 (4.3.166)
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By Theorem 4.3.12, 0 < l0kmsy in (4.3.165) implies that Θ0
knsy > 0. This is

a contradiction to Θ0
knsy = 0 in (4.3.165). Also, by Theorem 4.3.12, 0 < l1kmsy,is,y

in (4.3.166) implies that Θ1
knsy,is,y > 0, which is a contradiction to Θ1

knsy,is,y = 0 in

(4.3.166).

Therefore, any solution to S-CM-MCC is also a solution to S-CM-MCC-NCP.

This completes the proof.

4.3.6 NCP/VI formulation of Model S-NGEM

In this section, we construct an MiCP, which is equivalent to model S-NGEM based

on the previous analysis of its components. We first define the equilibrium model

S-NGEM mathematically.

Definition 4.3.1. The model S-NGEM is a system composed of optimization prob-

lems PLS, PRS, ST S, PGS and M̃K
S
,∀m ∈ M , market-clearing conditions (4.3.14)

- (4.3.17), (4.3.36) - (4.3.39), (4.3.86) - (4.3.87), (4.3.114) - (4.3.115) and (4.3.157)

- (4.3.158) as well as nonnegative market price conditions, i.e., π0
nsy ≥ 0,∀n ∈

PN, s, y; π1
nsy,is,y ≥ 0,∀is,y, n ∈ PN, s, y; γ0

nsy ≥ 0,∀n ∈ CN, s = 2, 3, y; γ1
nsy,is,y ≥

0,∀is,y, n ∈ CN, s = 2, 3, y; β0
ny ≥ 0,∀n ∈ CN, y; β1

ny,i3,y ≥ 0,∀i3,y, n ∈ CN, y;

Θ0
knsy ≥ 0,∀k = 3, 4, n ∈ CN, s, y; Θ1

knsy,is,y ≥ 0,∀is,y, k = 3, 4, n ∈ CN, s, y. That

is,
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S-NGEM ≡





PLS, PRS, ST S, PGS, M̃K
S
,∀m ∈ M

(4.3.14)− (4.3.17)

(4.3.36)− (4.3.39)

(4.3.86)− (4.3.87)

(4.3.114)− (4.3.115)

(4.3.157)− (4.3.158)

π0
nsy ≥ 0,∀n ∈ PN, s, y

π1
nsy,is,y ≥ 0,∀is,y, n ∈ PN, s, y

γ0
nsy ≥ 0,∀n ∈ CN, s = 2, 3, y

γ1
nsy,is,y ≥ 0,∀is,y, n ∈ CN, s = 2, 3, y

β0
ny ≥ 0,∀n ∈ CN, y

β1
ny,i3,y ≥ 0,∀i3,y, n ∈ CN, y

Θ0
knsy ≥ 0,∀k = 3, 4, n ∈ CN, s, y

Θ1
knsy,is,y ≥ 0,∀is,y, k = 3, 4, n ∈ CN, s, y

(4.3.167)

In previous sections, we found NCP/VI equivalents to the components of the

model S-NGEM with appropriate assumptions in Theorems 4.3.5, 4.3.8, 4.3.11 and

4.3.13. Therefore, it is trivial to show that model S-NGEM is an instance of an

MiCP. First, let us define:

(uMCCS

) ≡




τ 0
asy (∀a, s, y)

τ 1
asy,is,y (∀a, is,y, s, y)


 (4.3.168)
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(vMCCS

) ≡




π0
nsy (∀n ∈ PN, s, y)

π1
nsy,is,y (∀is,y, n ∈ PN, s, y)

γ0
nsy (∀n ∈ CN, s = 2, 3, y)

γ1
nsy,is,y (∀is,y, n ∈ CN, s = 2, 3, y)

β0
ny (∀n ∈ CN, y)

β1
ny,i3,y (∀i3,y, n ∈ CN, y)

Θ0
knsy (∀k = 3, 4, n ∈ CN, s, y)

Θ1
knsy,is,y (∀is,y, k = 3, 4, n ∈ CN, s, y)




(4.3.169)

GMCCS ≡




days1f
0
a1y −

∑

r∈R(n1(a))

days1g
0
ary −

∑

m∈M(n1(a))

days1h
0
am1y

(∀a, y)

dayssf
0
asy −

∑

m∈M(n1(a))

dayssh
0
amsy (∀a, s = 2, 3, y)

days1f
1
a1y,i1,y −

∑

r∈R(n1(a))

days1g
1
ary,i1,y

−
∑

m∈M(n1(a))

days1h
1
am1y,i1,y (∀a, i1,y, y)

dayssf
1
asy,is,y −

∑

m∈M(n1(a))

dayssh
1
amsy,is,y

(∀a, is,y, s = 2, 3, y)




(4.3.170)
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HMCCS ≡




∑

c∈Cn

days1q
0
c1y −

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
0
ary

+
∑

m∈M(n1(a))

days1h
0
am1y

)
(∀n ∈ PN, y)

∑

c∈Cn

dayssq
0
csy −

∑

a∈A(n)

∑

m∈M(n1(a))

days1h
0
amsy

(∀n ∈ PN, s = 2, 3, y)

∑

c∈Cn

days1q
1
c1y,i1,y −

∑

a∈A(n)

( ∑

r∈R(n1(a))

days1g
1
ary,i1,y

+
∑

m∈M(n1(a))

days1h
1
am1y,i1,y

)
(∀i1,y, n ∈ PN, y)

∑

c∈Cn

dayssq
1
csy,is,y −

∑

a∈A(n)

∑

m∈M(n1(a))

days1h
1
amsy,is,y

(∀is,y, n ∈ PN, s = 2, 3, y)
∑

r∈Rn

dayssx
0
rsy −

∑

m∈Mn

dayssu
0
msy (∀n ∈ CN, s = 2, 3, y)

∑

r∈Rn

dayssx
1
rsy,is,y −

∑

m∈Mn

dayssu
1
msy,is,y (∀is,y, n ∈ CN, s = 2, 3, y)

∑

p∈P n

days3w
0
py −

∑

m∈Mn

days3v
0
my (∀n ∈ CN, y)

∑

p∈P n

days3w
1
py,i3,y −

∑

m∈Mn

days3v
1
my,i3,y (∀is,y, n ∈ CN, y)

∑

m∈Mn

dayssl
0
kmsy − dayssD

0
knsy (∀k = 3, 4, n ∈ CN, s, y)

∑

m∈Mn

dayssl
1
kmsy,is,y − dayssD

1
knsy,is,y (∀is,y, k = 3, 4, n ∈ CN, s, y)




(4.3.171)

Theorem 4.3.14 in the following shows that the model S-NGEM is an instance

of an MiCP mathematically with Assumptions 4.3.1, 4.3.2 and 4.3.3 holding, respec-

tively, for cost functions of all producer, storage operators and peak gas operators.
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Theorem 4.3.14. Let

(uS)T ≡ [
(uMKS

)T (uMCCS
)T

]
;

(vS)T ≡ [
(vPLS

)T (vPRS
)T (vST S

)T (vPGS
)T (vMKS

)T (vMCCS
)T

]
;

[GS(uS , vS)]T ≡ [
(GMKS

)T (GMCCS
)T

]
;

[HS(uS , vS)]T ≡ [
(HPLS

)T (HPRS
)T (HST S

)T (HPGS
)T (HMKS

)T (HMCCS
)T

]
.

Suppose that Assumptions 4.3.1, 4.3.2 and 4.3.3 hold for all c ∈ C, r ∈ R

and p ∈ P , respectively. S-NGEM is equivalent to an MiCP, denoted S-NGEM-

MiCP(GS, HS) where

GS(uS, vS) = 0 uS free

0 ≤ vS ⊥ HS(uS, vS) ≥ 0

(4.3.172)

Proof. Following the definition for MiCP, by Theorems 4.3.5, 4.3.8 and 4.3.11, it is

trivial to show the results.

4.4 Conclusions

In this chapter, a stochastic equilibrium model for the natural gas market depicted

in Chapter 2, S-NGEM is developed in an extensive form of stochastic program-

ming. Model S-NGEM takes into account the long-term and spot markets of the

gas industry. The long-term market modeled is featured by supply assurance. The

decision made for the long-term market are first-stage variables. The spot market is

characterized by market uncertainty. The spot market decisions are recourse vari-

ables. Assuming that the marginal cost functions are positive when the production

is positive for producers, storage operators and peak gas operators, model S-NGEM

is shown to be an instance of NCP/VI. The GAMS/PATH solver is thus appropriate

for generating the numerical results presented in Chapter 5.
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Chapter 5

Example Application of Model S-NGEM

In this chapter, we study numerical results for model S-NGEM using a sample

network of two production nodes and two consumptions nodes with eleven players

for a time horizon of one year. Our goal is to examine how the stochastic aspects

of the market influence the market activities. We use a discretized random demand

following Haurie et al. [45] and De Wolf and Smeers [14].

A base case was calibrated using the data publicly available at www.eia.doe.gov.

The values used are not unrepresentative of actual supply and demand conditions

for a small network. In particular, residential and commercial sectors exhibit strong

seasonality in terms of prices and consumption rates; the industrial consumption is

relative stable throughout the year; the electric power sector has a higher demand

in the summer season; and the end-user industrial and electric power prices are

generally lower than the other two sectors. Varying the parameters relevant to the

probability distribution of the end-user demand resulted in two cases (case 1 and

case 2). A third case, case 3 representing a perfect competition market where all

market players were price-takers was also considered. These cases, arranged in in-

creasing order of the end-user consumption, from low to high, were case 1, base case,

case 2 and case 3. We compare the changes in the equilibrium prices and quantities

for all agents in these three cases as opposed to the base case. We also calculate the
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expected producer and consumer surplus for comparison purposes.

5.1 Data Set

This section presents the data used for the model S-NGEM. All the data to be

presented were realistic in terms of order of magnitude for small regions but not

real data per se. First, Section 5.1.1 discusses the composition of a sample network

adapted for the case studies. Next, in Section 5.1.2, we discuss the parameters, in-

cluding cost functions, production capacities, pipeline capacities and charges, which

were taken to be deterministic factors for the model. Lastly, in Section 5.1.3, we

present the stochastic parameters, i.e., the coefficients for the demand functions for

the residential and commercial sectors and the spot market demand for the industrial

and electric power sectors.

5.1.1 Sample Network

The sample network has the following elements, which are illustrated in Figures 5.1

and 5.2.

• Two production nodes, denoted pn1 and pn2;

– One producer located at each production node, denoted C1 and C2,

respectively;

• Two consumption nodes, denoted cn1 and cn2;

– Two storage operators, denoted R1 and R2, located respectively at nodes

cn1 and cn2;
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– Two peak gas operators, denoted P1 and P2, located respectively at

nodes cn1 and cn2;

– Four marketers, denoted M1, M2, M3 and M4: M1 and M2 located at

node cn1, M3 and M4 located at node cn2;

– Four consumption sectors located at each consumption node;

∗ Two residential sectors, denoted RD1 and RD2, located respectively

at nodes cn1 and cn2;

∗ Two commercial sectors, denoted CD1 and CD2, located respec-

tively at nodes cn1 and cn2;

∗ Two industrial sectors, denoted ID1 and ID2, located respectively

at nodes cn1 and cn2;

∗ Two electric power sectors, denoted ED1 and ED2, located respec-

tively at nodes cn1 and cn2;

• Four pipeline arcs connecting the production and consumption nodes, denoted

a1, a2, a3 and a4.
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Figure 5.1: Sample Network Structure
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Figure 5.2: Sample Network Elements

5.1.2 Deterministic Parameters

The cost functions cPR
c (·), cST

r (·) and cPG
p (·) respectively for the producers, storage

operators and peak gas operators were taken to be convex and quadratic, thus of the

form α1x + 1
2
α2x

2, where x was the quantity in question and α1, α2 the coefficients.

Table 5.1 presents these coefficients as well as a variety of capacity values used. It is

clear that the pair of producers, storage operators and peak gas operators are taken

to be identical.

Table 5.1: Data for Producers, Storage Operators and Peak Gas Operators

qc xr gr kr wpParticipants α1 α2
(MMcf/d)

lossr
(MMcf/d) (MMcf/d) (MMcf) (MMcf/d)

C1, C2 0.003 0.0018 2500 - - - - -

R1, R2 0.002 0.002 - 0.01 500 500 50000 -

P1, P2 0.5 0.035 - - - - - 200

Table 5.2 shows the set of inputs for the four pipelines in the sample net-

work, including the pipeline capacity, loss factors, regulated pipeline charges and
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reservation charges.

Table 5.2: Data for Pipelines

fa τ reg
asy ,∀s, y RC0

asy,∀s, y
Pipelines

(MMcf/d)
lossa

($/Mcf) ($/Mcf)

Arc a1 2000 0.01 0.15 0.25

Arc a2 900 0.02 0.15 0.25

Arc a3 900 0.02 0.15 0.25

Arc a4 2000 0.01 0.15 0.25

The long-term industrial and electric power consumption, denoted D0
knsy when

k = 3, 4 in the model, are shown below in Table 5.3. Although model S-NGEM

allows the parameters D0
knsy to vary by season, for simplicity, we set the long-term

demand constant throughout the year, e.g. the long-term demand for the industrial

sector at node cn1 was 700 MMcf/d for all the three seasons.

Table 5.3: Long-term Demand for Industrial and Electric Power Sectors (MMcf/d)

Industrial Demand Electric Power Demand

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

Node cn1 700 700 700 420 420 420

Node cn2 650 650 650 400 400 400

5.1.3 Stochastic Parameters

The end-user spot market demand was the only random element in the case study.

At a consumption node, for each season, there were two possible random outcomes in

the demand level, high or low. Therefore, eight scenarios occurred after three seasons

in each node as shown below in Table 5.4, which resulted in 64 scenarios for the

time horizon in the market of two consumption nodes assuming the random demand
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fluctuations at the two nodes were independent. Table 5.4 shows alternatives to

the scenario tree presented in Figure 4.1. For simplicity, we also assumed that

the four demand sectors at the same consumption node were in the same state of

demand, either high demand or low demand, at the same time. For instance, if one

consumption node has a high level of demand, all demand sectors at this location

would have a high demand.

Table 5.4: Random Outcomes for Demand Levels

(a) Node cn1

Season 1 Season 2 Season 3

Low
Low

High
Low

Low
High

High

Low
Low

High
High

Low
High

High

(b) Node cn2

Season 1 Season 2 Season 3

Low
Low

High
Low

Low
High

High

Low
Low

High
High

Low
High

High

The demand functions for the residential and commercial sectors were of the

form A− By where y was the price in question and A, −B were the intercept and

the slope values, respectively. The uncertainty in the demand allow for the fact that

both A and B could be random. However, in all the cases studied, we assumed that

the intercept A was a random variable while the slope −B was deterministic. In

other words, the demand functions of the same sector at the same node and same

season were parallel to each other in different scenarios. The values of A are shown

in later sections of the case study; the values of B are shown in Table 5.5.

With the sample network and the scenario trees defined in Table 5.4, a linear
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Table 5.5: Slopes of Linear Demand Functions

Residential Demand Commercial Demand

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

Node cn1 -35 -60 -90 -38 -65 -85

Node cn2 -31 -57 -85 -35 -60 -82

complementarity problem (LCP) with 6,186 variables resulted, 142 of which were

first stage variables and the remaining 6,044 recourse variables. Note that using

the same network, model D-NGEM would only result in an LCP of 184 variables.

Clearly, the number of the variables in the problem would increase exponentially

when we consider a more complicated example thus giving rise to a great deal of

computational difficulties. The problem was solved using GAMS/PATH software

(www.gams.com, [28]) on a PC computer with a 2.26 GHz IntelrPentiumr4 Pro-

cessor and 1.0GB of memory. The typical CPU time used by GAMS/PATH software

ranged from 5 seconds to 20 seconds. About two minutes were needed to read input

from an EXCEL file and write the output to another EXCEL file.

5.2 Numerical Results

5.2.1 Base Case

In all cases studied in this chapter, nodes cn1 and cn2 were identical in terms of

the probabilities associated with the corresponding random events. Therefore, we

used Table 5.6 to assign probabilities to the random demand levels for the base case

regardless of which node was under consideration. There were two random events,

high demand and low demand for each season. As a result, eight scenarios were

present for the time horizon. Table 5.6 is another expression of the scenario tree
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introduced in Section 4.2. The first columns for each season list all the possible

random realizations indexed by is,y in terms of demand levels. The last columns for

each season show the values for η(is,y), the probability of the occurrence of event

is,y. The second columns for seasons 2 and 3 show the conditional probability of the

occurrence of event is,y. For example, the high demand level in season 2 would occur

after the high demand of season 1 with a probability of 0.48 while the chance that

this event would occur given a high demand in season 1 was 0.8. Note that among

the two outcomes in each season, the high demand outcomes were more likely than

low demand outcomes in terms of associated probabilities.

Table 5.6: Base Case — Random Outcomes and Associated Probabilities for Nodes cn1

and cn2

Season 1 Season 2 Season 3

Event η(i1,1) Event η(i2,1|i1,1) η(i2,1) Event η(i3,1|i2,1) η(i3,1)
Scenarios

Low 0.3 0.024 Scenario 1
Low 0.2 0.08

High 0.7 0.056 Scenario 2
Low 0.4

Low 0.3 0.096 Scenario 3
High 0.8 0.32

High 0.7 0.224 Scenario 4

Low 0.3 0.036 Scenario 5
Low 0.2 0.12

High 0.7 0.084 Scenario 6
High 0.6

Low 0.3 0.144 Scenario 7
High 0.8 0.48

High 0.7 0.336 Scenario 8

When jointly considering nodes cn1 and cn2 as a whole, the elements of random

outcomes Is,y and the values of η(is,y) changed. Each random event belonging to I

now corresponds to the demand level of consumption nodes cn1 and cn2 occurring

at the same time. As a result, we see 82 = 64 scenarios on the new scenario tree

as shown in Table 5.7. This tree described all random events for three seasons used

for the base case. Because of the assumption of independence between the random

demand between the two consumption nodes, the product of the probabilities of the
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demand level for each node could be used. For example, the chance that node cn1

had a high demand and node cn2 had a low demand in season 1 was 0.24, which

was the product of probabilities of one event that node cn1 had high demand (0.4)

and the other event that node cn2 had low demand (0.6).
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Table 5.7: Scenario Description for Base Case

Season 1 Season 2 Season 3

cn1 cn2 η(i1,1) cn1 cn2 η(i2,1) cn1 cn2 η(i3,1)
Scenarios

Low Low 0.000576 Scenario 1

Low High 0.001344 Scenario 2
Low Low 0.0064

High Low 0.001344 Scenario 3

High High 0.003136 Scenario 4

Low Low 0.002304 Scenario 5

Low High 0.005376 Scenario 6
Low High 0.0256

High Low 0.005376 Scenario 7

High High 0.012544 Scenario 8
Low Low 0.16

Low Low 0.002304 Scenario 9

Low High 0.005376 Scenario 10
High Low 0.0256

High Low 0.005376 Scenario 11

High High 0.012544 Scenario 12

Low Low 0.009216 Scenario 13

Low High 0.021504 Scenario 14
High High 0.1024

High Low 0.021504 Scenario 15

High High 0.050176 Scenario 16

Low Low 0.000864 Scenario 17

Low High 0.002016 Scenario 18
Low Low 0.0096

High Low 0.002016 Scenario 19

High High 0.004704 Scenario 20

Low Low 0.003456 Scenario 21

Low High 0.008064 Scenario 22
Low High 0.0384

High Low 0.008064 Scenario 23

High High 0.018816 Scenario 24
Low High 0.24

Low Low 0.003456 Scenario 25

Low High 0.008064 Scenario 26
High Low 0.0384

High Low 0.018816 Scenario 27

High High 0.018816 Scenario 28

Low Low 0.013824 Scenario 29

Low High 0.032256 Scenario 30
High High 0.1536

High Low 0.032256 Scenario 31

High High 0.075264 Scenario 32
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Table 5.7: (Continued)

Season 1 Season 2 Season 3

cn1 cn2 η(i1,1) cn1 cn2 η(i2,1) cn1 cn2 η(i3,1)
Scenarios

Low Low 0.000864 Scenario 33

Low High 0.002016 Scenario 34
Low Low 0.0096

High Low 0.002016 Scenario 35

High High 0.004704 Scenario 36

Low Low 0.003456 Scenario 37

Low High 0.008064 Scenario 38
Low High 0.0384

High Low 0.008064 Scenario 39

High High 0.018816 Scenario 40
High Low 0.24

Low Low 0.003456 Scenario 41

Low High 0.008064 Scenario 42
High Low 0.0384

High Low 0.008064 Scenario 43

High High 0.018816 Scenario 44

Low Low 0.013824 Scenario 45

Low High 0.032256 Scenario 46
High High 0.1536

High Low 0.032256 Scenario 47

High High 0.075264 Scenario 48

Low Low 0.001296 Scenario 49

Low High 0.003024 Scenario 50
Low Low 0.0144

High Low 0.003024 Scenario 51

High High 0.007056 Scenario 52

Low Low 0.005184 Scenario 53

Low High 0.012096 Scenario 54
Low High 0.0576

High Low 0.012096 Scenario 55

High High 0.028224 Scenario 56
High High 0.36

Low Low 0.005184 Scenario 57

Low High 0.012096 Scenario 58
High Low 0.0576

High Low 0.012096 Scenario 59

High High 0.028224 Scenario 60

Low Low 0.020736 Scenario 61

Low High 0.048384 Scenario 62
High High 0.2304

High Low 0.048384 Scenario 63

High High 0.112896 Scenario 64
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Next, we discuss how the values of A, the intercepts of the demand functions,

vary randomly. Tables 5.8 and 5.9 present the values of A under different random

events for the residential and commercial sectors, respectively. More precisely, the

“low” or “high” demand in the residential and commercial sectors referred to the

relative levels of the values of A in the demand functions rather than the actual

consumption obtained by running the model. The values of A for the “high” demand

levels were universally higher than those in the corresponding “low” demand levels

as shown in Tables 5.8 and 5.9. As we can see from results shown in Section 5.2.3,

a higher value of A in the demand function did not necessarily lead to a higher

consumption at equilibrium point.

Table 5.8: Base Case — Intercepts of Residential Demand Functions

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 1380 1343.2
Low 912 960

High 1650 1679
Low 349.6 355.2

Low 1500 1460
High 1064 1100

High 1725 1606

Low 1350 1314
Low 893 940

High 1695 1635.2
High 410.4 384.8

Low 1425 1387
High 1092.5 1170

High 1875 1722.8
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Table 5.9: Base Case — Intercepts of Commercial Demand Functions

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 1104 1012
Low 720 768

High 1380 1210
Low 329 329

Low 1200 1100
High 825 880

High 1344 1265

Low 1080 990
Low 697.5 744

High 1308 1309
High 371 367.5

Low 1140 1045
High 862.5 920

High 1440 1342

As modeled, the spot market consumption for the industrial and electric power

sectors are predetermined stochastic elements subject to certain probability distri-

butions. Tables 5.10 and 5.11 show the the values of D1
knsy,is,y ,∀k = 3, 4, the spot

market demand for the industrial and electric power sectors. When the outcomes

were called “high” in these two tables, the associated D1
knsy,is,y had a greater values

than those associated with random outcomes of low demand.
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Table 5.10: Base Case — Industrial Demand in Spot Market (MMCf/d)

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 56 58.5
Low 35 39

High 105 97.5
Low 14 19.5

Low 56 58.5
High 63 65

High 91 117

Low 56 58.5
Low 35 39

High 77 97.5
High 28 32.5

Low 56 58.5
High 63 65

High 126 130

Table 5.11: Base Case — Electric Power Demand in Spot Market (MMCf/d)

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 8.4 16
Low 63 60

High 21 32
Low 105 100

Low 8.4 16
High 126 140

High 25.2 40

Low 8.4 16
Low 58.8 80

High 33.6 60
High 189 140

Low 8.4 16
High 142.8 120

High 42 80
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The numerical results for the base case are presented in Tables B.1 to B.20 in

Appendix B. Table B.1 shows the seasonal flow rates of pipeline arcs in the long-

term and spot markets. For example, in the long-term market, the gas flow rates

carried by arc a1 were 1,131.1 MMcf/d, 1,131.31 MMcf/d and 1,017.92 MMcf/d for

seasons 1,2 and 3, respectively. Note that there was no flow along arcs a2 and a3

in the long-term market. The spot market had 64 possible scenarios as established

in Table 5.7. For instance, in scenario 1, the flow rates along arc a1 was 592.06

MMcf/d, 686.46 MMcf/d and 809.33 MMcf/d for seasons 1, 2 and 3, respectively.

Table B.2 shows the seasonal congestion fees for each pipeline arc in the long-term

and spot markets. Note that the congestion fees for arc a3 for season 1 in the long-

term market were negative, -0.02$/Mcf; meanwhile, the corresponding pipeline flow

rates were zero. This fact was consistent with Theorem 4.3.2, which stated that

when the congestion fee τ 0
asy,is,y is less than zero, then the pipeline flow is f 1

asy,is,y

zero. Thus negative fees are unimportant. In the table, some congestion charges

were shown as $(0.00), which were actually the results of rounding off negative values

very close to zeros. For example, the congestion fee charged for arc a1 in season

1 of scenario 1, shown as $(0.00) in Table B.2, was accurately -2.7E-13, which can

be considered as zero instead of a negative number taking into account the solver

tolerance.

Tables B.3 and B.4 present the seasonal production rates and prices for pro-

ducers in both long-term and spot markets. Producers had positive production

rates over the time horizon for both markets. Also, it can be verified from Table

B.8 that the long-term production prices were equal to the expected spot market

prices, which was in accordance with Theorem 4.3.3.

Table B.5 shows the storage injection and extraction rates. The injection rates

are shown in the columns under label “Season 1”, followed by columns for extraction
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rates in Seasons 2 and 3. In this case, storage operators did not have long-term

activities. The storage operators served the spot market for all random outcomes.

Table B.6 shows the storage gas prices faced by marketers. The storage gas prices

were always higher than production prices because of the pipeline transportation

charges and the positive marginal cost functions MCST S ,1
rsy,is,y .

Tables B.7 and B.8 show the production activities and the market prices for

the peak gas operators, respectively. Peak gas operators p1 and p2 contracted to

supply the markets with gas at 112.26 MMcf/d and 112.03 MMcf/d, respectively.

In only three scenarios 32, 48 and 64, the peak gas operators supplied gas for the

spot market. As an example of Theorem 4.3.9, we note that the expected price for

peak gas in the spot market at node cn1 was $4.33/Mcf, which was less than the

corresponding long-term market price $4.46/Mcf when the long-term supply of peak

gas was positive, i.e., 112.26 MMcf/d as shown in Table B.7.

Given a random event, if both the storage and peak gas served the market,

the prices for these two types of gas must be the same, e.g., prices for storage gas

and peak gas were both $4.45/Mcf for node cn2 in scenario 32 or $4.46/Mcf for

node cn1 in scenario 60. This fact follows from the KKT conditions (4.3.138) and

(4.3.139) and implies that storage gas and peak gas were substitutions goods for the

marketers.

Tables B.9 and B.10 summarize the consumption rates and end-user wholesale

prices for the residential sector, respectively. Tables B.11 and B.12 are the equivalent

tables for the commercial sectors. These two sectors were under the market power

of marketers and were not modeled with contracted long-term demand as opposed

to the industrial and electric power sectors.

Tables B.13 and B.14 show the consumption rates and end-user wholesale

prices for the industrial sector, respectively. Whereas tables B.15 and B.16 are
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for the electric power sector. The long-term consumption for these two sectors

was determined by the input of the data presented in Table 5.3. The spot market

consumption was based on data in Tables 5.10 and 5.11. Note that the industrial

and electric power sectors at the same locations had identical end-user prices. This

can be explained by the KKT conditions (4.3.131) and (4.3.132). Taking the long-

term market as an example, from (4.3.131), we see that for some marketer m, when

l0kmsy > 0, it must follow that Θ0
knm(m)sy = φ0

msy, where φ0
msy is independent of the

index k. Thus, Θ0
3nm(m)sy = Θ0

4nm(m)sy as long as l03msy > 0 and l04msy > 0, which

was universally true for all four marketers as shown in Tables B.17 - B.20. Similar

reasoning can be used to explain the identical spot market prices of industrial and

electric power sectors at the same location.

Also, we see that the end-user wholesale prices for residential and commer-

cial sectors were higher than those for industrial and commercial sectors. These

differences were caused by the market power that marketers had in the residential

and commercial sectors. In fact, in case 3 when the market power was lifted, the

differences between these sectoral prices disappeared further validating this line of

reasoning.
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5.2.2 Case 1

In this case, the probabilities for high demand were exchanged with those for low

demand so that the low demand outcomes were more favorable. As shown in Table

5.12, for example, the high demand in season 2 had a chance of 0.2, instead of 0.8

in the base case. All other data remained the same as in the base case. Generally

speaking, for both the input or output, case 1 represented a lower demand market

with less consumption and lower market prices.

Table 5.12: Case 1 — Random Outcomes and Probabilities for Nodes cn1 and cn2

Season 1 Season 2 Season 3

Event η(i1,1) Event η(i2,1|i1,1) η(i2,1) Event η(i3,1|i2,1) η(i3,1)

Low 0.7 0.336
Low 0.8 0.48

High 0.3 0.144
Low 0.6

Low 0.7 0.084
High 0.2 0.12

High 0.3 0.036

Low 0.7 0.224
Low 0.8 0.32

High 0.3 0.096
High 0.4

Low 0.7 0.056
High 0.2 0.08

High 0.3 0.024

Table 5.22 examines the expected profits (i.e., the optimal values of the objec-

tive functions) for each player in the different cases and the respective percentage

differences as opposed to the base case. We see that all players in case 1 were

worse off in terms of expected profits, especially the storage operators whose profits

dropped off by more than 40%. Additionally, the last row of the table shows the

expected producer surplus, which is the sum of the expected profits of all players.

The producer surplus reduced by -13.14% compared with the base case. Also, Table

5.23 compares the expected consumer surplus in terms of the residential and com-

mercial demand sectors. The consumer surplus for the industrial and electric power
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sectors are not shown in this table since we do not have explicit demand functions

for these two demand sectors in the model. Because this case represented a low

consumption scenario, it is reasonable to observe decreases in the consumer surplus

for the residential and commercial sectors.

Next, Table 5.13 compares the results of case 1 with those of the base case in

the aspects of equilibrium quantities and market prices faced by market suppliers

(i.e., producers, storage operators and peak gas operators) and consumers (i.e., four

demand sectors) in both the long-term and spot markets. Activities (the rates of

gas bought and sold) directly related to marketers, who are the middlemen between

suppliers and consumers, can be inferred from what was shown for the suppliers and

consumers and thus were not compared in the table. The “rates” in the table, on

the supply side, are production rates (q0
csy, q1

csy,is,y) for producers C1, C2; injection

rates (g0
ary, g1

ary,i1,y) in season 1 and extraction rates (x0
rsy, x1

rsy,is,y) in seasons 2 and

3 for storage operators R1 and R2; peak gas production rates (w0
py, w1

py,i3,y) for peak

gas operators P1 and P2. For the end-user side, “rates” refer to consumption rates.

Also, on the supply side, the “prices” refer to production prices (π0
nsy, π1

nsy,is,y) in the

row for producers, storage gas prices (γ0
nsy, γ1

nsy,is,y) for storage operators and peak

gas prices (β0
ny, β1

ny,i3,y) for peak gas operators. For the four consumption sectors,

“prices” are end-user prices.

The top part of Table 5.13 compares the long-term rates and prices of case 1

with the base case. We use “same”, “up” or “down” to explain whether the results in

case 1 were the same as, greater than or less than their counterparts in the base case.

The second part of the table summarizes the differences in the spot market for all

outcomes between these two cases. For brevity, the word same/up/down used in this

part means, respectively, same/greater/less for all random outcomes. For instance,

a “down” means that the value from case 1 was less than the base case for all

random outcomes. For mixed results, we would specify which case dominates. The
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Table 5.13: Case 1 v.s. Base Case — Overview

Long-Term Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Same Same Up Down Down Down

R1, R2 Same Same Same - Down Down

P1, P2 - - Down - - Down

RD1, RD2 - - - - - -

CD1, CD2 - - - - - -

ID1, ID2 Same Same Same Down Down Down

ED1, ED2 Same Same Same Down Down Down

Spot Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Down Up Up Down Up Up

R1, R2 Down Down Down - Up Up

P1, P2 - - Up - - Up

RD1, RD2 Up Down Down Down Up Up

CD1, CD2 Up Down Down Down Up Up

ID1, ID2 Same Same Same Down Up Up

ED1, ED2 Same Same Same Down Up Up

Total end-user consumption: Down
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total consumption shown in the last row of the table was the aggregate consumption

volume of the four sectors over the three seasons. Similar tables were also used in

Sections 5.2.3 and 5.2.4 to compare cases 2 and 3 with the base case.

The activities of players in the long-term market did not change much. The

aggregate gas produced in each season for the long-term market was the same be-

cause the long-term demand D0
kmsy as shown in Table 5.3 was unchanged. However,

producers produced more while peak gas operators produced less in season 3 al-

though the total was the same. Storage operators remained nonactive. Meanwhile,

seasonal long-term market prices were lower both on the supply and demand sides.

For all scenarios in the spot market, producers produced less in season 1 while

more in seasons 2 and 3. Storage operators injected less gas in season 1 and thus

less gas was extracted in seasons 2 and 3. Peak gas operators had more peak gas

supply in season 3. The residential and commercial sectors had higher consumption

rates in season 1 but lower in seasons 2 and 3. However, the total consumption

volume over seasons decreased for both sectors. The consumption for the industrial

and electric power sectors was the same as in the base case.

In terms of the prices in the spot market, wellhead prices were lower in season

1 but higher in seasons 2 and 3; storage gas prices were higher for both seasons 2

and 3; peak gas prices were higher; thus it was reasonable to see that four demand

sectors had lower prices in season 1 and higher prices in seasons 2 and 3.

Furthermore, Table 5.14 shows the percentage differences of the expected rates

and prices in the spot market between case 1 and the base case. It is generally true

that expected rates and prices decreased from the base case. The rates for peak gas

were the exception showing 6.62% and 34.45% increases for peak gas operators p1

and p2, respectively. However,the absolute differences the two numbers representing

were only 0.05 MMcf/d and 0.21MMcf/d, respectively.
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Table 5.14: Case 1 v.s. Base Case — Expected Rates and Prices in Spot market

Expected Rates Expected Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1 -9.90% -14.08% -12.11% -3.61% -6.78% -6.15%

C2 -9.00% -12.50% -12.11% -3.61% -6.41% -6.53%

R1 -23.92% -26.98% -18.97% - -6.96% -6.31%

R2 -22.41% -24.45% -19.51% - -6.79% -4.48%

P1 - - 6.62% - - -8.11%

P2 - - 34.45% - - -7.96%

RD1 -3.02% -12.26% -13.72% -3.26% -9.82% -10.27%

RD2 -0.86% -12.62% -9.94% -2.25% -10.12% -8.31%

CD1 -1.76% -12.74% -11.41% -2.83% -9.44% -8.72%

CD2 -1.49% -12.53% -13.06% -2.71% -9.54% -9.49%

ID1 -12.50% -30.04% -25.97% -3.45% -6.96% -6.31%

ID2 -9.52% -26.88% -29.09% -3.44% -6.79% -6.34%

ED1 -10.81% -38.14% -46.55% -3.45% -6.96% -6.31%

ED2 -6.45% -31.53% -47.49% -3.44% -6.79% -6.43%
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5.2.3 Case 2

In this case, we increased the demand for all high demand outcomes from the base

case. In particular, the demand intercept values of A of the residential and com-

mercial demand functions were increased by a certain amount for the high demand

outcomes. Also, the spot market demand D1
knsy,is,y for the industrial and electric

power sectors was doubled all high demand outcomes. The other data remained

unchanged from the base case.

Tables 5.15 and 5.16 present the values of A used for the residential and

commercial sectors in this case. Those underlined values in the tables increased

by approximately 5% to 20% of their counterparts in the base case. Tables 5.17

and 5.18 show the spot market demand values of D1
knsy,is,y used for industrial and

electric power sectors in this case. Those underlined in the tables were double of

their counterpart in the base case. Generally speaking, this case represents a higher

demand scenario as opposed to the base case.

Table 5.15: Case 2 — Intercepts of Residential Demand Functions

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 1380 1343.2
Low 912 960

High 1800 1898
Low 349.6 355.2

Low 1500 1460
High 1178 1200

High 1950 1752

Low 1350 1314
Low 893 940

High 1890 1810.4
High 440.8 399.6

Low 1425 1387
High 1235 1340

High 2250 1985.6

In terms of the expected profits, it is reasonable to see from Table 5.22 that
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Table 5.16: Case 2 — Intercepts of Commercial Demand Functions

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 1104 1012
Low 720 768

High 1560 1320
Low 329 329

Low 1200 1100
High 900 960

High 1488 1430

Low 1080 990
Low 697.5 744

High 1416 1518
High 392 385

Low 1140 1045
High 975 1040

High 1680 1584

Table 5.17: Case 2 — Industrial Demand in Spot Market(MMcf/d)

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 56 58.5
Low 35 39

High 210 195
Low 14 19.5

Low 56 58.5
High 126 130

High 182 234

Low 56 58.5
Low 35 39

High 154 195
High 56 65

Low 56 58.5
High 126 130

High 252 260
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Table 5.18: Case 2 — Electric Power Demand in Spot Market(MMCf/d)

Season 1 Season 2 Season 3

Event Node cn1 Node cn2 Event Node cn1 Node cn2 Event Node cn1 Node cn2

Low 8.4 16
Low 63 60

High 42 64
Low 105 100

Low 8.4 16
High 252 280

High 50.4 80

Low 8.4 16
Low 58.8 80

High 67.2 120
High 378 280

Low 8.4 16
High 285.6 240

High 84 160

all players in case 2 were doing better in their expected profits. In particular, both

storage operators had their profits doubled. The fact of increased profits for players

can be explained as a result of the high demand market with higher consumption

and prices. Also, as shown in Table 5.23, the consumer surplus in all the residential

and commercial sectors increased leading to a total increase by 17.32% as opposed

to the base case.

Similar to what was done done for case 1, Table 5.19 compares case 2 with the

base case in terms of equilibrium rates and market prices for both the supply and

demand sides of the market. For the most part, case 2 represented a high demand

market where the consumption rates and prices were all higher.

The long-term consumption rates remained the same since no data in Table

5.3 were varied. The long-term demand was supplied by producers and peak gas op-

erators. There were no storage activities in the long-term market. We also observed

that all the long-term prices went up, which is the opposite of case 1.

The changes in the spot market were more complicated than case 1. With
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increased intercepts of the demand functions, we see significant increases in the

end-user consumption rates for the residential and commercial sectors in most cases,

accordingly accompanied by increased market prices. However, in some cases, the

rates reduced and so did the corresponding prices while in others, reduced rates

came with increased prices. On the other hand, the increases in the industrial and

electric demand were determined by the parameter changes shown in Tables 5.17

and 5.18; the corresponding prices for the four sectors were up for most random

outcomes. It was generally true that for each random outcome, the changes of

prices were determined by the upstream prices. For example, if the wellhead price

increased, then so did the downstream, including storage gas, peak gas and end-

user prices. Lastly, we noticed that the aggregate end-user consumption of the four

sectors across seasons was higher than the base case except scenario 1 where the

demand levels were low for three seasons in both nodes.

Further, in order to have more insight, we compared the expected spot market

rates and prices of case 2 with the base case as shown in Table 5.20. For suppli-

ers, both the rates and market prices increased significantly. Note that although

expected production rates of peak gas increased by over 2000%, the absolute val-

ues increased by only 15 MMcf/d or so. Except the commercial sectors, CD1 and

CD2 experienced consumption decreases by insignificant percentages, -0.16% and

-0.29%, respectively in season 1, we see significant increases in the expected end-user

consumption rates. Also, the expected end-user prices exhibited universal increases.
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Table 5.19: Case 2 v.s. Base Case — Overview

Long-Term Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Same Same Down Up Up Up

R1, R2 Same Same Same - Up Up

P1, P2 - - Up - - Up

RD1, RD2 - - - - - -

CD1, CD2 - - - - - -

ID1, ID2 Same Same Same Up Up Up

ED1, ED2 Same Same Same Up Up Up

Spot Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Up Mostly Up Mostly Up Up Mostly Up Mostly Up

R1, R2 Up Up Up - Mostly Up Mostly Up

P1, P2 - - Up - - Up

RD1, RD2 Mostly Up Mostly Up Mostly Up Up Mostly Up Mostly Up

CD1, CD2 Mostly Up Mostly Up Mostly Up Up Mostly Up Mostly Up

ID1, ID2 By Table 5.17 Up Mostly Up Mostly Up

ED1, ED2 By Table 5.18 Up Mostly Up Mostly Up

Total end-user consumption: Up except Scenario 1
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Table 5.20: Case 2 v.s. Base Case — Expected Rates and Prices in Spot market

Expected Rates Expected Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1 23.19% 24.30% 10.22% 8.45% 10.74% 17.28%

C2 23.26% 22.30% 9.19% 9.32% 10.75% 17.33%

R1 20.45% 17.53% 26.90% - 10.56% 18.20%

R2 19.30% 16.86% 25.00% - 10.66% 16.57%

P1 - - 2019.87% - - 17.13%

P2 - - 2472.47% - - 15.55%

RD1 2.86% 9.90% 10.15% 6.32% 10.20% 13.90%

RD2 -0.16% 10.26% 7.17% 4.73% 10.43% 11.60%

CD1 0.49% 9.06% 5.39% 5.81% 9.91% 12.15%

CD2 -0.29% 9.16% 9.56% 5.44% 9.94% 13.41%

ID1 75.00% 87.94% 81.71% 8.91% 10.56% 18.20%

ID2 71.43% 87.10% 82.64% 8.90% 10.66% 16.71%

ED1 72.97% 90.10% 90.41% 8.91% 10.56% 18.20%

ED2 67.74% 87.80% 89.89% 8.90% 10.66% 16.71%
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5.2.4 Case 3

This case studied a perfectly competitive market where all players were price-takers

including marketers, based on data of the base case.

In terms of expected profits, all players but the marketers were better off,

especially the storage operators whose profits increased by 370.84% and 342.10%,

respectively. Without market power, the marketers had zero profits. The drop

in the marketers’ profits shifted to other players’ profits and the consumer surplus.

Also, we observed dramatic increases in the consumer surplus for the residential and

commercial demand sectors. These increases included the deadweight loss recovered

by lifting imperfect competition from the market.

Table 5.21 presents the differences between case 3 and the base case. Similar

to what was observed for cases 1 and case 2, the rates in the long-term market were

relatively stable while the corresponding prices either on the supply side or demand

side rose. In the spot market, the supply rates all increased with increased supply

prices since the setup of cost functions, i.e., positive marginal costs, implied that the

more produced, the more expensive the product. The consumption rates increased

for the residential and commercial sectors, where marketers could not exert their

market power any more. As a result, the corresponding end-user prices dropped for

the two sectors. However, the industrial and electric power sectors suffered price

increases because of the increase of the upstream prices. Note that after lifting

the market power on the residential and commercial sectors, price discrimination

disappeared and thus the four sectors faced common end-user prices.
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Table 5.21: Case 3 v.s. Base Case — Overview

Long-Term Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Same Same Down Up Up Up

R1, R2 Same Same Same N/A Up Up

P1, P2 - - Up - - Up

RD1, RD2 - - - - - -

CD1, CD2 - - - - - -

ID1, ID2 Same Same Same Up Up Up

ED1, ED2 Same Same Same Up Up Up

Spot Market

Rates Prices
Participants

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

C1, C2 Up Up Up Up Up Up

R1, R2 Up Up Up - Up Up

P1, P2 - - Up - - Up

RD1, RD2 Up Up Up Down Down Down

CD1, CD2 Up Up Up Down Down Down

ID1, ID2 Same Same Same Up Up Up

ED1, ED2 Same Same Same Up Up Up

Total end-user consumption: Up
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Table 5.22: Expected Profits for Players (Million Dollars)

Participants Base Case Case 1 Case 2 Case 3

C1 1,191.8 1,081.8/-9.23% 1,456.4/22.20% 1,619.3/35.87%

C2 1,185.3 1,077.3/-9.11% 1,459.9/23.16% 1,617.9/36.49%

R1 8.0 4.6/-43.22% 17.5/117.18% 38.0/371.84%

R2 8.6 5.0/-41.67% 17.4/101.88% 38.0/342.10%

P1 6.9 6.0/-12.93% 10.2/46.48% 14.8/114.10%

P2 6.9 6.0/-13.17% 9.8/42.93% 14.3/107.82%

M1 399.4 324.0/-18.88% 469.7/17.60% 0/-100%

M2 399.4 324.0/-18.88% 469.7/17.60% 0/-100%

M3 458.1 376.0/-17.91% 536.3/17.07% 0/-100%

M4 458.1 376.0/-17.91% 536.3/17.07% 0/-100%

Producer Surplusa 4,122.5 3.580.8/-13.14% 4,983.1/20.87% 3,342.4/-18.92%

aThe pipeline operators’ profits are not included since their costs are not modeled in (PL).

Table 5.23: Expected Consumer Surplus (Million Dollars)

Participants Base Case Case 1 Case 2 Case 3

RD1 525.9 423.1/-19.55% 628.4/19.48% 1,031.7/96.16%

RD2 602.5 496.6/-17.57% 706.6/17.29% 1,204.3/99.89%

CD1 272.8 224.9/-17.57% 311.0/13.99% 504.5/84.92%

CD2 313.7 255.4/-18.56% 365.9/16.67% 596.4/90.14%

Consumer Surplusa 1,714.9 1,400.0/-18.36% 2,011.9/17.32% 3,336.8/94.58%

aThe surplus of the industrial and electric power sectors are not included.
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5.3 V SS and EV PI

Several concepts related to the performance of stochastic programming were pre-

sented in Section 4.1.3. Here, we use these concepts in the context of a stochastic

equilibrium model to quantitatively evaluate the advantage of using a stochastic

solution, from both the market and the individual players’ perspectives, as opposed

to a deterministic one. In particular, we explore the WS, RP and EEV for the

four cases presented above. In fact, these four cases themselves indeed are examples

of the here-and-now solution concept. Thus, the values of the RP for the players’

profit and consumer surplus, can be found in Tables 5.22 and 5.23, respectively. In

what follows, the calculations for WS and EEV are presented.

First, we define zi(x, ξ) the profit/consumer surplus for player/demand sector

i choosing the decision x under scenario ξ. The choice of x is obtained by solving

an overall stochastic equilibrium problem for various players, which is formulated

as an MiCP as shown in Theorem 4.3.14. This differs from what was discussed in

Section 4.1.3 for the stochastic programming, where the x is the result of solving an

optimization problem.

In the wait-and-see case, it is assumed that all players have same access to

the information about the future. As a result, we solve an overall MiCP for each

scenario ξ, i.e., S-NGEM-MiCP(GS, HS, ξ) (see Theorem 4.3.14 for the definition),

where ξ is treated as a parameter. The solution for each of these MiCP is denoted

x(ξ), which implies that the WS for player i is

WSi ≡ Eξ

[
zi(x(ξ), ξ)

]
(5.3.1)

Also, we can use the expected value ξ of the random variable random ξ to solve

an alternative problem. Thus, the resulting MiCP is S-NGEM-MiCP(GS, HS, ξ),
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whose solution is x(ξ). Thus the EEV for player i is

EEV i ≡ Eξ

[
zi(x(ξ), ξ)

]
(5.3.2)

Based on the preceding descriptions for the WS, RP and EEV , Tables 5.24 -

5.27 show these three values for the four cases as well as EV PI and V SS by market

agent. From these tables, we observe that the EV PI and V SS have negative values

for some agents in various cases. In general, this means that the relationship shown

in (4.1.12) (i.e., EEV ≤ RP ≤ WS) does not hold in equilibrium problems. How-

ever, these negative values are very small as compared with EEV , RP or WS. Some

of them might be numerical errors caused by the solver’s tolerance. Concentrating

on the value for the stochastic solution, V SS, we further observe that

• Marketers and the producer surplus have positive V SS in the four cases. These

values for V SS are relatively significant as compared with the V SS for the

other players. Thus, the stochastic solutions are favorable for marketers and

the entire market. Note that the marketers are the only players in the market

who explicitly face the random demand in their objective functions and thus

this corresponds best to the case of “regular stochastic programming” with

just one optimization problem.

• In general, the consumer surplus for the residential and commercial sectors

have positive V SS in the four cases, except for the commercial demand sec-

tor CD1 in case 3, which has very small negative V SS of $-0.048 million as

opposed to a here-and-now solution of $504.5 million. Thus, the stochastic so-

lution is generally advantageous to the residential and commercial consumers.

• Producer C2, storage operator R1 and peak gas operator P2 have all positive

V SS for the four cases. While producer C1, storage operator R2 and peak gas
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operator P1 have mixed values for the V SS. Therefore, a stochastic solution

is not necessary a better choice for these players, who see the random demand

implicitly via the market-clearing conditions and do not have as much control

over it as for example, the marketers.

We learn from these values of the V CC that a stochastic solution for an equi-

librium model generally improves the profits of the players as well as the consumer

surplus. However, the observation of the negative V SS cannot be explained accu-

rately without further investigation.

In terms of the EV PI, it seems that the perfect information does not bring

significant returns to the players in that the values of EV PI are generally insignifi-

cant as opposed to the values of RP or WS and some players (e.g., producers C1 and

C2) even suffered losses as a result of the perfect information. Since this dissertation

is concerned with the stochastic solution rather than the perfect information, we do

not elaborate on the details regarding the EV PI for the various agents. Further

research on these phenomena is certainly desired.
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Table 5.24: Base Case — EEV , RP , WS (Million Dollars)

Participants EEV RP WS EV PI V SS

C1 1,192.1 1,191.8 1,190.8 -1.0 -0.3

C2 1,180.5 1,185.3 1,184.8 -0.5 4.8

R1 8.0 8.0 8.4 0.4 0.0

R2 9.0 8.6 9.0 0.4 -0.4

P1 7.0 6.9 6.9 0.0 -0.056

P2 6.8 6.9 6.9 0.0 0.1

M1 395.0 399.4 399.5 0.1 4.4

M2 395.0 399.4 399.5 0.1 4.4

M3 454.5 458.1 458.2 0.1 3.6

M4 454.5 458.1 458.2 0.1 3.6

Producer Surplus 4,102.4 4,122.5 4,122.2 -0.3 20.10

RD1 520.2 525.9 526.1 0.2 5.7

RD2 598.2 602.5 602.6 0.1 4.3

CD1 269.9 272.8 273.0 0.2 2.9

CD2 310.9 313.7 313.8 0.1 2.8

Consumer Surplus 1,699.2 1,714.9 1,715.5 0.6 15.7
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Table 5.25: Case 1 — EEV , RP , WS (Million Dollars)

Participants EEV RP WS EV PI V SS

C1 1,082.3 1,081.8 1,081.4 -0.4 -0.5

C2 1,074.1 1,077.3 1,076.8 -0.5 3.2

R1 4.3 4.6 4.7 0.1 0.3

R2 5.0 5.0 5.1 0.1 0.0

P1 6.1 6.0 6.0 0.0 -0.05

P2 6.0 6.0 6.0 0.0 0.0

M1 320.5 324.0 324.2 0.2 3.5

M2 320.5 324.0 324.2 0.2 3.5

M3 373.4 376.0 376.3 0.3 2.6

M4 373.4 376.0 376.3 0.3 2.6

Producer Surplus 3,565.6 3,580.7 3,581.0 0.3 15.5

RD1 418.6 423.1 423.4 0.3 4.5

RD2 493.3 496.6 497.0 0.4 3.3

CD1 222.4 224.9 225.1 0.2 2.5

CD2 253.4 255.4 255.7 0.3 2.0

Consumer Surplus 1,387.7 1,400.0 1,401.2 1.2 12.3
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Table 5.26: Case 2 — EEV , RP , WS (Million Dollars)

Participants EEV RP WS EV PI V SS

C1 1,428.8 1,456.4 1,454.4 -2.0 27.6

C2 1,414.2 1,459.9 1,455.6 -4.3 45.7

R1 11.6 17.5 21.6 4.1 5.9

R2 13.0 17.4 21.8 4.4 4.4

P1 8.4 10.1 10.6 0.5 1.7

P2 8.3 9.8 10.3 0.5 1.5

M1 467.0 469.7 469.4 -0.3 2.7

M2 467.0 469.7 469.4 -0.3 2.7

M3 533.0 536.3 535.6 -0.7 3.3

M4 533.0 536.3 535.6 -0.7 3.3

Producer Surplus 4,884.3 4,983.1 4,984.3 1.2 98.8

RD1 623.7 628.4 628.0 -0.4 4.7

RD2 701.9 706.6 705.8 -0.8 4.7

CD1 310.3 311.0 310.8 -0.2 0.7

CD2 364.1 365.9 365.4 -0.5 1.8

Consumer Surplus 2,000.0 2,011.9 2,010.0 -1.9 11.9
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Table 5.27: Case 3 — EEV , RP , WS (Million Dollars)

Participants EEV RP WS EV PI V SS

C1 1,625.0 1,619.3 1,620.2 0.9 -5.7

C2 1,600.9 1,617.9 1,617.5 -0.4 17.0

R1 35.8 38.0 39.2 1.2 2.2

R2 38.3 38.0 39.4 1.4 -0.3

P1 14.0 14.8 15.1 0.3 0.8

P2 13.7 14.3 14.6 0.3 0.6

M1 0.0 0.0 0.0 0.0 0.0

M2 0.0 0.0 0.0 0.0 0.0

M3 0.0 0.0 0.0 0.0 0.0

M4 0.0 0.0 0.0 0.0 0.0

Producer Surplus 3,327.7 3,342.4 3,346.0 3.7 14.6

RD1 1,028.8 1,031.7 1,031.1 -0.6 2.9

RD2 1,198.7 1,204.3 1,203.4 -0.9 5.6

CD1 504.6 504.5 504.2 -0.3 -0.05

CD2 593.2 596.4 595.9 -0.5 3.2

Consumer Surplus 3,325.3 3,336.9 3,334.6 -2.3 11.6
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5.4 Conclusions

A sample complementarity problem of 6,186 variables as well as three variations was

used to validate the model S-NGEM and related theorems established in Chapter 4.

From the base case, case 1 and case 2, we learned that the greater the consump-

tion is, the greater the expected profits for suppliers and the higher the expected

end-user prices for four demand sectors. Also, case 3 showed the influence of market

power of imperfect competing marketers on the market. We also observed some

results concerning the properties of the V SS and EV PI established for “regular”

stochastic programming with one optimization problem.

Among market players, storage operators’ profits changed most dramatically.

The levels of storage gas varied greatly with these cases so as to lighten the con-

gestion in pipelines in wintertime and buffer the impact of demand changes on the

market. In addition, recalling that in Section 4.3.3 for storage operators in model

S-NGEM, the mass balance constraints (4.3.53) and (4.3.54) are relaxed as inequal-

ities for modeling purposes, we note that the two constraints held as equalities for

the four cases presented.
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Chapter 6

Summary and Future Work

One of the main thrusts of this dissertation is an endeavor in the field of energy

modeling for the North American natural gas market using an NCP/VI formula-

tion combined with the stochastic programming. To our knowledge, a model with

as much detail as the model S-NGEM using the NCP/VI format and stochastic

programming for modeling equilibrium activities has not appeared before. We an-

ticipate that such a model will be of use to both public and private sector concerns.

As part of the process of building a stochastic model, we first described a deter-

ministic model D-NGEM, which is an enhancement of the equilibrium model initially

developed in [35] in that free market prices (i.e., πnsy, γnsy and βny) are equivalently

replaced by nonnegative prices under minor assumptions. The improvement on the

existence and uniqueness results was also presented. However, since it does not

take into account the uncertain aspects inherent in the industry, model D-NGEM

would not provide a satisfactory solution to an uncertainty environment. To this

end, a new model S-NGEM emphasizing the decision making under uncertainty is

developed using stochastic programming techniques. In general, model S-NGEM is

a stochastic extension of model D-NGEM and model D-NGEM can be considered

as a special case of model S-NGEM.

Model S-NGEM is composed of separate optimization problems that maxi-
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mize the expected profits for pipeline operators, producers, storage operators, peak

gas operators and Nash-Cournot marketers as well as market-clearing conditions.

Besides the long-term decisions incorporated by model D-NGEM, model S-NGEM

also considers decisions regarding how to react to the uncertainty. In particular,

after they have observed the realizations of the randomness, players make recourse

decisions in the spot market to compensate for any adverse effects that might have

been experienced as a result of the long-term decisions. This model generates a set

of strategies or policies in response to difference scenarios resulting from the uncer-

tainty. The model was shown to be a instance of an MiCP under minor assumptions.

These assumptions require that the cost functions are convex and continuously dif-

ferentiable and that the marginal cost functions are positive in the positive orthant.

We illustrate the model S-NGEM on a sample network of two production

and consumption nodes, respectively and four connecting pipeline arcs. The end-

user demand for the four demand sectors is taken as random subject to a discrete

probability distribution. A base case was calibrated using the right magnitude for

this small network based on the data on consumption, wellhead prices and end-

user prices publicized on the EIA website. Varying the distribution of the end-user

demand resulted in two comparison cases, one representing a relatively high demand

scenario, the other for a low demand scenario as opposed to the base case. A third

case of perfectly competing marketers was also presented to show the influence of

market power in the equilibrium prices and quantities. We compared the changes in

the network activities, the expected profits for all agents, the prices and consumption

for the four demand sectors, and the overall producer and consumer surplus. EVPI

and VSS were also presented.

Recall that in Chapter 5, model S-NGEM resulted in over 6,000 variables with

only a four-node sample network, a simple two-realization seasonal demand and a
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time horizon of three seasons. This is far too simple to be a real application. The

increase in the time horizon or the number of scenarios associated with uncertain

seasonal demand will certainly cause great computational difficulties given the larger

number of variables if treated as is. Therefore, an important future direction of the

current work is to develop efficient algorithms for this stochastic equilibrium model

formulated as an MiCP. Algorithms for a stochastic NCP/VI are still in infant stage.

The existing studies include [40] that used a sample-path method, a simulation-

based scheme to solve stochastic variational inequalities and [3] that analyzed the

stochastic NCP/VI using a quasi-Monte-Carlo simulation technique and relied on

the gradient information at sample solution points.

In the numerical results, the concept of the VSS is presented, showing that a

stochastic solution (RP) was better than a solution obtained using the expectation of

the uncertainty (EEV) in terms of the total producer surplus and consumer surplus.

However, this quantity failed to measure the advantage of a stochastic solution in

terms of the individual players. Theoretically, we need to establish a mechanism

similar to what has been done for stochastic programming showing the value of the

stochastic solution in a market equilibrium model.

As opposed to the recourse method, another method in stochastic program-

ming is the chance-constraint method, which, however, was not adopted in this

dissertation. Some results using the chance-constraint method based on the model

D-NGEM have been obtained and presented at the INFORMS annual meeting in

Denver in 2004. Due to time limitations, this part of work was not included here.

Further exploration of the corresponding application of this method for the equilib-

rium model in the future is desired. Last but not least, establishing the existence

and uniqueness results for the model S-NGEM is another future research item.
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Appendix A

Notation

Acronyms

D-NGEM Deterministic natural gas equilibrium model presented in Chapter
3

D-NGEM-MiCP MiCP formulation for model D-NGEM

D-NGEM-VI VI formulation for model D-NGEM

LCP Linear complementarity problems

LNG Liquified natural gas

MiCP Mixed complementarity problems

MCC Market clearing conditions

MK Marketer(s)

NCP Nonlinear complementarity problems

PG Peak gas operator(s)

PL Pipeline operator(s)

PR Producer(s)

S-NGEM Stochastic natural gas equilibrium model presented in Chapter 4

S-NGEM-MiCP MiCP formulation for model S-NGEM

ST Storage operator(s)

VI Variational inequalities problems
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Problem Classes

D-NGEM The deterministic natural gas equilibrium model presented in
Chapter 3

D-NGEM-MiCP The MiCP formulation for model D-NGEM

D-NGEM-VI The VI formulation for model D-NGEM

(MK) The collection of optimization problems (M̃K) for all m ∈ M in
model D-NGEM

(M̃K) Optimization problems of the individual marketers in model D-
NGEM

(MKS) The collection of optimization problems (M̃K
S
) for all m ∈ M in

model S-NGEM

(M̃K
S
) Optimization problems of the individual marketers in model S-

NGEM

(PG) The optimization problem for all peak gas operators in model D-
NGEM

(P̃G) Optimization problems for the individual peak gas operators in
model D-NGEM

(PGS) The optimization problem for all peak gas operators in model S-
NGEM

(P̃G
S
) Optimization problems for the individual peak gas operators in

model S-NGEM

PG-MCC The system of the problem (PG), market-clearing conditions for
peak gas market and the corresponding nonnegative prices βny in
model D-NGEM

PG-MCC-NCP The NCP formulation for system PG-MCC in model D-NGEM

(PL) The optimization problem for all pipeline operators in model D-
NGEM

(P̃L) Optimization problems for the individual pipeline operators in
model D-NGEM

(PLS) The optimization problem for all pipeline operators in model S-
NGEM

(P̃L
S
) Optimization problems for the individual pipeline operators in

model S-NGEM

(PR) The optimization problem for all producers in model D-NGEM

(To be continued)
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Problem Classes (Cont’d)

(P̃R) Optimization problems for the individual producers in model D-
NGEM

(PRS) The optimization problem for all producers in model S-NGEM

(P̃R
S
) Optimization problems for the individual producers in model S-

NGEM

PR-MCC The system of the problem (PR), market-clearing conditions for
the production market and the corresponding nonnegative prices
πnsy in model D-NGEM

PR-MCC-NCP The NCP formulation for system PR-MCC in model D-NGEM

S-CM-MCC The system of the the problem (M̃K
S
) for all m ∈ M , market-

clearing conditions for the industrial and electric power sectors
and the corresponding nonnegative prices Θ0

knsy and Θ1
knsy,is,y in

model S-NGEM

S-CM-MCC-NCP The NCP formulation for system S-CM-MCC in model S-NGEM

S-NGEM The stochastic natural gas equilibrium model presented in Chapter
4

S-NGEM-MiCP The MiCP formulation for model S-NGEM

S-PG-MCC The system of the problem (PGS) , market-clearing conditions
for peak gas market and the corresponding nonnegative prices β0

ny

and β1
ny,i3,y in model S-NGEM

S-PG-MCC-NCP The NCP formulation for S-PG-MCC in model S-NGEM

S-PR-MCC The system of the problem (PRS), market-clearing conditions for
the production market and the corresponding nonnegative prices
π0

nsy and π1
nsy,is,y in model S-NGEM

S-PR-MCC-NCP The NCP formulation for S-PR-MCC in model S-NGEM

S-ST-MCC The system of the problem (STS), market-clearing conditions for
the storage gas market and the corresponding nonnegative prices
γ0

nsy and γ1
nsy,is,y in model S-NGEM

S-ST-MCC-NCP The NCP formulation for system S-ST-MCC in model S-NGEM

(ST ) The optimization problem for all storage operators in model D-
NGEM

(S̃T ) Optimization problems for the individual storage operators in
model D-NGEM

(STS) The optimization problem for all storage operators in model S-
NGEM

(To be continued)
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Problem Classes (Cont’d)

(S̃T
S
) Optimization problems for the individual storage operators in

model S-NGEM

ST-MCC The system of the problem ST-NCP, market-clearing conditions
for the storage gas market and the corresponding nonnegative
prices γnsy in model D-NGEM

ST-MCC-NCP The NCP formulation for system ST-MCC in model D-NGEM

ST-NCP The NCP formulation for problem (ST ) in model D-NGEM

201



Data in Models D-NGEM and S-NGEM

dayss The number of days in season s

D0
knsy The long-term consumption rates of industrial and electric power sectors

located at node n in season s of year y, (MMcf/day)

D1
knsy,is,y The spot market consumption rates of industrial and electric power sec-

tors located at node n in season s of year y under random event is,y,
(MMcf/day)

fa Positive pipeline capacity value of arc a ∈ A, (MMcf/day)

gr Positive upper bound on injection rate for storage operator r,
(MMcf/day)

kr Positive upper bound on capacity of working gas storage volume for
storage operator r, (MMcf)

lossa Loss along arc a ∈ A, lossa ∈ [0, 1)

lossr Storage operator r loss factor, lossr ∈ [0, 1)

qc Positive upper bound on production rate for producer c, (MMcf/day)

prodc positive production forecast for producer c for the time horizon, (MMcf)

wp Positive upper bound on peak gas rate for peak gas operator p,
(MMcf/day)

xr Positive upper bound on extraction rate for storage operator r,
(MMcf/day)

RC0
asy Reservation charge rates for the firm service with pipeline company,

($/Mcf)

η(is,y) The probability node is,y on the event tree

τ reg
asy Positive regulated transportation rate (e.g., FERC rate) for season s and

year y, ($/Mcf)
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Functions and Operations in Models D-NGEM
and S-NGEM

cPL(·) The nonnegative, continuously differentiable, pipeline operations cost
function

cPR
c (·) The nonnegative, continuously differentiable cost function for producer

c

cPG
p (·) The nonnegative, continuously differentiable cost function for peak gas

operator p

cST
r (·) The nonnegative, continuously differentiable cost function for storage

operator r

n1(a) Consumption node at the end of arc a

n2(a) Production node at the end of arc a

nc(c) The node where producer c is located

nm(m) The node where marketer m is located

nr(r) The node where storage operator r is located

np(p) The node where peak gas operator p is located

s(i) The season associated with random event i

y(i) The year associated with random event i

θknsy(·) The nonnegative, nonincreasing, continuously differentiable, inverse end-
use demand function for consumption node n for season s and year y in
model D-NGEM

θ1
knsy,is,y(·) the nonnegative, nonincreasing, continuously differentiable, inverse end-

use demand function for residential and commercial sectors for consump-
tion node n for season s and year y under random event is,y in model
S-NGEM

ψ(i) The immediate predecessor set of random event i on the scenario tree

Ψ(i) The immediate predecessor set the immediate predecessors of random
event i on the scenario tree
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Variables in Model D-NGEM

fasy Flow along arc a ∈ A for season s and year y, (MMcf/day)

gary Flow rate of gas for storage operators r from producer in season 1 along
arc a ∈ A(nr(r)), (MMcf/day)

hamsy Flow rate of gas shipped to marketer m from producers along arc a ∈
Am(m) in season s and year y, (MMcf/day)

lkmsy Rate of gas to demand sector k from marketer m in season s and year
y, (MMcf/day)

qcsy Production rate for producer c for season s and year y, (MMcf/day)

umsy Rate of storage gas shipped to marketer m for s = 2, 3 and year y,
(MMcf/day)

vmy Rate of peak gas shipped to marketer m for s = 3 and year y,
(MMcf/day)

wpy Rate of peak gas produced by peak gas operator p in year y, (MMcf/day)

xrsy Extraction rate by storage operator r for seasons s = 2, 3, and year y,
(MMcf/day)

βpy Peak gas price for node n ∈ CN , in year y, ($/Mcf)

γnsy Storage market gas price for n ∈ CN , seasons s = 2, 3 and year y,
($/Mcf)

δry Multiplier for material balance constraint for storage operator r in year
y, ($/Mcf)

ζry Multiplier for storage volume capacity constraint for storage operator r
and year y, ($/Mcf)

λcsy Multiplier for production capacity constraint of producer c for season s
and year y, ($/Mcf)

µc Multiplier for production forecast constraint, ($/Mcf)

ξrsy Multiplier for injection capacity constraint for storage operator r for
s = 2, 3, and year y, ($1000/MMcf/day)

ωry Multiplier for extraction capacity constraint for storage operator r for
s = 2, 3, and year y, ($1000/MMcf/day)

πnsy Production price for node n ∈ PN in season s and year y, ($/Mcf)

ρasy Multiplier for pipeline capacity constraint for season s and year y,
($1000/MMcf/day)

(To be continued)
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Variables in Model D-NGEM (Cont’d)

σpy Multiplier for capacity constraint for peak gas operator p in year y
($1000/MMcf/day)

τasy Transportation rates for arc a season s and year y, exogenous for
pipeline, marketers and storage operators, but a variable in the over-
all equilibrium problem, ($/Mcf)

φmsy Multiplier for gas balance constraint between four sectors for marketer
m in season s and year y, ($/Mcf)

Variables in Model S-NGEM

f0
asy Flow along arc a ∈ A for season s and year y in the long-term market,

(MMcf/day)

f1
asy,is,y Flow along arc a ∈ A for season s and year y in the spot market under

random event is,y, (MMcf/day)

g0
ary Flow rate of gas to storage operators r from producer in season 1 along

arc a ∈ A(nr(r)), (MMcf/day)

g1
ary,i1,y Flow rate of gas to storage operators r from producer in season 1

along arc a ∈ A(nr(r)) in the spot market under random event is,y,
(MMcf/day)

h0
amsy Flow rate of gas shipped to marketer m from producers along arc a ∈

Am(m) in season s and year y in the long-term market, (MMcf/day)

h1
amsy,is,y Flow rate of gas shipped to marketer m from producers along arc a ∈

Am(m) in season s and year y in the spot market under random event
is,y, (MMcf/day)

l0kmsy Rate of gas to demand sector k from marketer m in season s and year y
in the long-term market, (MMcf/day)

l1kmsy,is,y Rate of gas to demand sector k from marketer m in season s and year y
in the spot market under random event is,y, (MMcf/day)

q0
csy Production rate for producer c for season s and year y in the long-term

market, (MMcf/day)

q1
csy,is,y Production rate for producer c for season s and year y in the spot market

under random event is,y, (MMcf/day)

(To be continued)
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Variables in Model S-NGEM (Cont’d)

u0
msy Rate of storage gas shipped to marketer m for s = 2, 3 and year y in the

long-term market, (MMcf/day)

u1
msy,is,y Rate of storage gas shipped to marketer m for s = 2, 3 and year y in the

spot market under random event is,y, (MMcf/day)

v0
my Rate of peak gas shipped to marketer m for s = 3 and year y in the

long-term market, (MMcf/day)

v1
my,is,y Rate of peak gas shipped to marketer m for s = 3 and year y in the spot

market under random event is,y, (MMcf/day)

w0
py Rate of peak gas produced by peak gas operator p in year y in the

long-term market, (MMcf/day)

w1
py,i3,y Rate of peak gas produced by peak gas operator p in year y in the spot

market under random event is,y, (MMcf/day)

x0
rsy Extraction rate by storage operator r for seasons s = 2, 3, and year y in

the long-term market, (MMcf/day)

x1
rsy,is,y Extraction rate by storage operator r for seasons s = 2, 3, and year y in

the spot market under random event is,y, (MMcf/day)

β0
py Peak gas price for node n ∈ CN , in year y in the long-term market,

($/Mcf)

β1
py,i3,y Peak gas price for node n ∈ CN , in year y in the spot market under

random event is,y, ($/Mcf)

γ0
nsy Storage market gas price for n ∈ CN , seasons s = 2, 3 and year y in the

long-term market, ($/Mcf)

γ1
nsy,is,y Storage market gas price for n ∈ CN , seasons s = 2, 3 and year y in the

spot market under random event is,y, ($/Mcf)

δ0
ry Multiplier for material balance constraint for storage operator r in year

y in the long-term market, ($/Mcf)

δ1
ry,i3,y Multiplier for material balance constraint for storage operator r in year

y in the spot market under random event i3,y, ($/Mcf)

Θ0
knsy End-use prices for industrial and electric power sectors for node n ∈ CN ,

season s year y in the long-term market, ($/Mcf)

Θ1
knsy,is,y End-use prices for industrial and electric power sectors for node n ∈ CN ,

season s year y in the spot market under random event is,y, ($/Mcf)

ζ1
ry,i3,y Multiplier for storage volume capacity constraint for storage operator r

and year y in the spot market under random event i3,y, ($/Mcf)

(To be continued)
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Variables in Model S-NGEM (Cont’d)

λ1
csy,is,y Multiplier for production capacity constraint of producer c for season s

and year y in the spot market under random event is,y, ($/Mcf)

µ1
c,i3,|Y | Multiplier for production forecast constraint in the spot market under

random event i3,|Y |, ($/Mcf)

ξ1
rsy,i1,y Multiplier for injection capacity constraint for storage operator r for

s = 2, 3, and year y in the spot market under random event i1,y,
($1000/MMcf/day)

ω1
ry,is,y Multiplier for extraction capacity constraint for storage operator r for

s = 2, 3, and year y in the spot market under random event is,y,
($1000/MMcf/day)

π0
nsy Production price for node n ∈ PN in season s and year y in the long-

term market, ($/Mcf)

π1
nsy,is,y Production price for node n ∈ PN in season s and year y in the spot

market under random event is,y, ($/Mcf)

ρ1
asy,is,y Multiplier for pipeline capacity constraint for season s and year y in the

spot market under random event is,y, ($1000/MMcf/day)

σ1
py,i3,y Multiplier for capacity constraint for peak gas operator p in year y in

the spot market under random event is,y, ($1000/MMcf/day)

τ0
asy Transportation rates for arc a season s and year y in the long-term

market, exogenous for pipeline, marketers and storage operators, but a
variable in the overall model S-NGEM

τ1
asy,is,y Transportation rates for arc a season s and year y in the spot market

under random event is,y, exogenous for pipeline, marketers and storage
operators, but a variable in the overall equilibrium problem, ($/Mcf)

φ0
msy Multiplier for gas balance constraint between four sectors for marketer

m in season s and year y in the long-term market, ($/Mcf)

φ1
msy,is,y Multiplier for gas balance constraint between four sectors for marketer

m in season s and year y in the spot market under random event is,y,
($/Mcf)
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Sets

A The set of pipeline arcs, a ∈ A

A(n) The set of arcs connected to node n ∈ N

C The set of producers, c ∈ C

Cn The set of producers located at node n ∈ PN

CN The set of consumption nodes, CN ⊂ N

I The set of realizations of random perturbation

Is,y The set of realizations of random perturbation in season s of year y

ISC(i) The set of immediate successors of random outcome i in the scenario
tree

IISC(i) The set of immediate successors of immediate successors of random out-
come i in the scenario tree

M The set of marketers, m ∈ M

Mn The set of marketers located at node n ∈ CN

N The set of nodes in the network, n ∈ N

P The set of peak gas operators, p ∈ P

Pn The set of peak gas operators located at node n ∈ CN

PD(i) The set consisting of all the predecessors of random outcome i in the
scenario tree, inclusive of i

PN The set of production nodes, PN ⊂ N

R The set of storage operators

Rn The set of storage operators located at node n ∈ CN

S The set of seasons under consideration, S = {1, 2, 3}, s ∈ S

SC(i) The set consisting of all the successors of random outcome i in the
scenario tree, inclusive of i

Y The set of years under consideration, y ∈ Y

ψ(i) The immediate predecessor (set) of random event i in the scenario tree

Ψ(i) The immediate predecessor (set) the immediate predecessors of random
event i in the scenario tree
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Appendix B

Numerical Results for Base Case
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Table B.1: Pipeline Flow Rates, f0
asy, f1

asy,is,y (MMcf/d)
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Table B.2: Pipeline Congestion Fees, τ0
asy, τ1

asy,is,y ($/Mcf)
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Table B.3: Production Rates, q0
csy, q1

csy,is,y (MMcf/d)
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Table B.4: Production Prices, π0
nsy, π1

nsy,is,y ($/Mcf)
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Table B.5: Storage Injection/Extraction Rates, g0
ary, g1

ary,i1,y , x0
rsy, x1

rsy,is,y(MMcf/d)
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Table B.6: Storage Gas Prices, γ0
nsy, γ1

nsy,is,y ($/Mcf)
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Table B.7: Peak Gas Production Rates, w0
py, w1

py,i3,y (MMcf/d)
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Table B.8: Peak Gas Prices, β0
ny, β1

ny,i3,y ($/Mcf)
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Table B.9: Consumption Rates for Residential Sector (MMcf/d)
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Table B.10: End-User Prices for Residential Sector ($/Mcf)
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Table B.11: Consumption Rates for Commercial Sector (MMcf/d)
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Table B.12: End-User Prices for Commercial Sector ($/Mcf)
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Table B.13: Consumption Rates for Industrial Sector (MMcf/d)
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Table B.14: End-Use Prices for Industrial Sector ($/Mcf)
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Table B.15: Consumption Rates for Electric Power Sector (MMcf/d)
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Table B.16: End-User Prices for Electric Power Sector ($/Mcf)
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Table B.17: Supply by Marketer M1, l0kmsy, l1kmsy,is,y (MMcf/d)
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Table B.18: Supply by Marketer M2, l0kmsy, l1kmsy,is,y (MMcf/d)

227



Table B.19: Supply by Marketer M3, l0kmsy, l1kmsy,is,y (MMcf/d)
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Table B.20: Supply by Marketer M4, l0kmsy, l1kmsy,is,y (MMcf/d)
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