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Thermal processing is widely used in food industry to ensure the microbial safety, 

however, there is increasing demand on reducing the processing temperature and duration. This 

study specifically focused on mild heating temperatures (<60 °C) with inclusion of low level (≤ 

125 ppm) of the approved preservative butyl-parahydroxy-benzoate (BPB). In a BHI model 

matrix, four pathogens were studied with submerged coil apparatus: Cronobacter sakazakii 607, 

Salmonella enterica serotype Typhimurium, attenuated Escherichia coli O157:H7 and Listeria 

monocytogenes. The results indicated that low concentrations of BPB combined with 

temperatures < 60 °C achieved 5 – 6 log reductions in less than 15 minutes with tested gram-



  

negative microorganisms, whereas reductions without BPB were only 1 – 2 logs. We further 

extended the study to food applications: powdered infant formula, non-fat dry milk, and apple 

juice. The results indicate BPB will be inhibited by proteins, but apple juice is a suitable 

application. 
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Chapter 1: Introduction 

1.1. Background 

While thermal processing is widely used in the food processing industry to ensure 

microbial safety, there can be negative consequences associated with thermal processing. Excess 

thermal processing can result in loss of heat sensitive nutrients, the formation of thermally 

generated toxicants, and both desirable and undesirable changes in flavor and texture. Most of 

these changes in food characteristics are irreversible and might affect the overall attractiveness of 

the final products. Additionally, high temperature processing incurs increased financial costs. All 

of these issues indicate the necessity of conducting thermal processing at milder temperatures 

(e.g., < 60 °C). However, to achieve such a goal without long processing times, a means for 

reducing the thermal resistance of foodborne pathogenic microorganisms would be needed.  

Previous studies have suggested that specific classes of naturally occurring flavor compounds 

and approved food additives can disrupt the bacterial cell membranes and act synergistically with 

mild heating to enhance the inactivation of foodborne pathogens by decreasing the 

microorganisms’ thermal resistance (Milillo et al., 2011; Gurtler et al., 2012; Espina et al., 2013; 

Shi et al., 2015; Ruan and Buchanan, 2016).  This, in turn, allows the thermal inactivation to be 

efficiently conducted at lower temperatures.  In our laboratory (Ruan and Buchanan, 2016), it 

was proved that the addition of low levels of various esters of parahydroxy-benzoic acid (i.e., 

parabens, parahydroxy-benzoates) enhanced the inactivation of a thermally resistant strain of 

Cronobacter sakazakii 607 at a mild heating temperature (58 °C), with the effectiveness being 

dependent on concentration of the compound and the length of the carbon side chain. Parabens 

are a class of widely used preservatives and emulsifiers in cosmetics, foods, and pharmaceutical 
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products. In food industry, they are used as emulsifiers in beverages and alcohols as well as 

preservatives in other food products. Possible bactericidal and fungicidal mechanisms include 

disrupting both membrane transport and the electron transport system (Freese et al., 1973), 

disrupting the membrane integrity and fluidity, and disrupting key enzyme activities (Davidson, 

2005) 

 Most of available paraben studies have focused on model systems rather than actual food 

applications. However, foods are complex in terms of ingredients, processing techniques and the 

characteristics of food itself. This raises the possibility that these compounds could act 

differently in real foods than in model systems. Parabens could potentially interact with chemical 

constituents of foods during processing to modify the compounds’ antimicrobial activity. As a 

result, applying paraben treatment to a wider range of foodborne pathogens and examples of 

foods products would help determine whether this or related classes of compounds could be 

effectively used to enhance thermal processing at mild processing conditions. With this 

consideration, the representative foods selected were powdered infant formula, non-fat dry milk, 

and apple juice. 

 

1.2. Hypothesis and Project Goals 

Based on the previous results collected by Dr. Buchanan’s research group, combined 

paraben and mild heating treatments effectively enhanced thermal inactivation of C. sakazakii in 

BHI as a model. The current study hypothesized that this combined treatment could be 

productively inactivate other foodborne pathogenic microorganisms: Escherichia coli O157:H7, 

Salmonella enterica serotype Typhimurium, and Listeria monocytogenes. It was further 
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hypothesized that is combined treatment would all these four microorganisms to be thermally 

processed at temperature < 60 °C).  

If the hypothesis was correct and enhanced thermal inactivation was observed with all four 

bacteria in a BHI model system, we further hypothesized that low levels of butyl parahydroxyl-

benzoate (BPB) would enhance the thermal inactivation in food products during thermal 

processing at temperatures below 60 °C. As explained later in the study, this hypothesis was 

tested in powdered infant formula and non-fat dry milk as dry and rehydrated foods, and apple 

juice as a liquid food. 

 

1.3. Study Approach 

The general study approach started with the inoculation of target microorganism into the 

testing matrices: BHI, powdered infant formula, non-fat dry milk, and apple juice. Low level of 

BPB was then supplemented into the inoculated substance, after which the heat treatment was 

applied using the designated instrument. The survivor cells were collected at designated times 

with and without BPB or thermal treatment, and then the cells were surface plated on tryptic soy 

agar (TSA) with spiral plater and enumerated with a plate counter. After enumeration, survivor 

curves were plotted and compared using Microsoft Excel. This general principle served as the 

overall study approach on investigating the microbial heat resistance and potential synergism in 

this project. Detailed methodology will be discussed in Chapter 3. 
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Chapter 2: Literature Review 

2.1 The Problem 

 Thermal processing is widely used in food industry. There are two major temperature 

categories employed in thermal processing: pasteurization and sterilization. The basic purposes 

for the thermal processing of foods are to reduce or destroy microbial activity, reduce or destroy 

enzyme activity and to produce physical or chemical changes to make the food meet a certain 

quality standard, (e.g. gelatinization of starch, denaturation of proteins), to produce an edible 

food. There are a number of types of heat processing employed by the food industry (Safefood 

360, Inc., 2014). However, such processes often have a detrimental effect on product sensory 

quality (Bean, et al., 2012). Some heat sensitive nutrients will be lost or inactivated such as 

vitamins and amino acids. Heat will also initiate other chemical reactions that will form 

undesirable compounds. For example, acrylamide will form in heated food, even at temperatures 

lower than 100 °C (Becalski et al., 2011). The disadvantages of thermal processing also include 

high capital costs (Safefood 360, Inc., 2014).  

 To overcome the disadvantages associated with thermal processing, developing the 

processing techniques at mild heating temperatures is a primary alternative (Timmermans et al., 

2011). Based on the consumer behaviors, it is a trend that consumers prefer foods that have 

minimal processing or reduced levels of chemical preservatives (Allenda et al., 2006). Minimal 

processing includes heating the food at lower temperatures and/or for shorter period, however, 

both of the cases will introduce microbial safety risks. Therefore, it is necessary to enhance the 

microbial inactivation or reduce the microbial resistance against the specific processing 

technique. The general consumer demand for reducing chemicals additives suggests the need to 

discover novel applications of processing aids or preservatives. 
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 There are some foods driving public attention in relation to maintaining high levels of 

overall safety, minimizing the processing techniques, and reducing the level of chemicals used in 

foods. One example is infant formula. Powdered formula is made from pasteurized liquid 

formula that is then spray dried into a powder. It is possible for organisms to be introduced in the 

final stages of production (Baker, 2002). A microorganism that specifically associated with 

infant formula is Cronobacter sakazakii (previously Enterobacter sakazakii). Starting from 

1980s, people started to recognize the E.sakazakii infections in neonates associated with intrinsic 

contamination of powdered infant formula (Simmons et al., 1989; Iversen et al., 2004; Drudy et 

al., 2006). Based on the review published by Bowen and Braden (2006), while rare C. sakazakii 

kills 40% to 80% of infected neonates and has been associated with powdered infant formula. 

Comparably, Friedemann (2009) published a review on epidemiological studies on C. sakazakii 

infections. It confirmed the high level of lethality of neonatal Cronobacter infections with the 

data of 120 - 150 cases and concluded that contaminated powdered infant formula was the main 

source of neonatal infections. These outbreaks identified the significance of commercially 

contaminated formulas and emphasized the need to limit contamination and survival of bacteria 

in infant formula. Over the past thirty years, pathogenic microbial infections associated with 

powdered infant formula periodically globally, and primarily involved C. sakazakii and 

Salmonella enterica (Usera et al., 1996; Brouard et al., 2007). In many of these cases, low levels 

of Salmonella were detected in the formula. Although the researchers also inferred that only a 

small proportion of the actual number of Salmonella infections in infants were linked to 

powdered infant formula, it was still a severe problem (Angulo et al., 2008). Managing this 

problem requires a multidimensional approach including manufacturers, regulators, and 

caregivers to infants, but eliminating the contamination sources from the production side would 
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be one of the preferred solutions. The reason that C. sakazakii was a particular risk in powdered 

infant formula was its high thermal resistance. This was particularly true in low moisture foods, 

such as powdered infant formula and flour, where the effective heat treatment requires longer 

times and higher temperatures due to increased thermal resistance at low water activities 

(Syamaladevi et al., 2016). Some early studies evaluated the thermal resistance of different 

Cronobacter strains and other pathogenic microorganisms. In the comparison of D-values at 

temperatures below 60 °C in reconstituted infant formula, the results indicated C. sakazakii was 

one of the most heat resistant, non-spore forming bacteria among ten typical foodborne bacteria 

in dairy products with the Z-value at 5.82 °C and D60°C at 2.5 minutes (Nazarowec-White and 

Farber, 1997).  

One way to decrease the thermal resistance was to use some detergent and sanitizer 

stresses to decrease the thermal resistance of C. sakazakii in infant formula (Osaili et al., 2008). 

In general, the cells exposed to acid, alkaline, chlorine and ethanol stresses had lower D-values 

in reconstituted infant formula. As the non-thermal technologies advanced in recent decades, 

researchers also examined the potential of utilizing non-thermal techniques to control C. 

sakazakii in reconstituted infant formula (Pina-Pérez, 2016). However, all of the evaluated non-

thermal technologies are still in the early stages of development with the ranking of their 

potentials as follows: high hydrostatic pressure > gamma irradiation > pulsed electric fields > 

ultraviolet light. As for preservatives, vanillin, ethyl vanillin, or vanillic acid were evaluated with 

their bactericidal effect in rehydrated infant formula at 58 °C against C. sakazakii (Yemiş et al., 

2012). Addition of 20 mM of these three preservatives significantly reduced the thermal 

resistance of C. salazakii in rehydrated infant formula, but this concentration level was higher 
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than in other processed foods. These results indicated the need to utilize more effective 

alternatives to reduce the thermal resistance of C. sakazakii in powdered infant formula. 

The increased susceptibility of high-risk individuals, including neonates, make effective 

control of food products that received relatively minimal thermal processing such as pasteurized 

milk, juices, and ciders have raised concerns about both the adequacy of thermal processes and 

control of post-pasteurization re-contamination. One of the concerned microorganisms is Listeria 

monocytogenes. During the minimum high-temperature, short-time treatment (71.7 °C, 15 s) 

required by the U.S. Food and Drug Administration for pasteurizing milk, L. monocytogenes 

cells can still survive through the treatment (Doyle et al., 1987). And it also agreed with the 

epidemiological studies on the outbreaks linked to L. monocytogenes in pasteurized milk 

(Centers for Disease Control and Prevention (CDC), 2008; Jackson et al., 2011). Likewise, 

pathogenic microorganisms might also survive in fruit juices, ciders, and concentrates, especially 

for the cells that are pre-adapted to acid which also increases thermal resistance (Sharma et al., 

2005).  

Fresh produce and fresh-cut fruits also carry the risk of C. sakazakii contamination as 

they do not go through thermal processing, but some nonthermal processing techniques would 

also reduce the thermal resistance of the bacteria cells at limited efficacy. The combination of 

100 minutes of ultrasound and 200 ppm sodium hypochlorite was experimentally proved to be a 

potential treatment in leaf vegetable processing as the treatment would introduce more than 1 log 

of additional C. sakazakii inactivation. The results also exhibited the synergistic effect between 

ultrasound and sodium hypochlorite (Park et al., 2016). UV-C treatment was also proved to be a 

possible processing technique in fresh-cut fruits: it resulted in more than 2 logs of microbial 
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reduction than acidic electrolyzed water or neutral electrolyzed water treatment (Santo et al., 

2016).  

 

2.2 The Pathogens 

 This research project studied four pathogenic microorganisms: C. sakazakii 607, 

attenuated E. coli O157:H7, S. enterica serotype Typhimurium, and L. monocytogenes.  

• Cronobacter sakazakii 607: Cronobacter are Gram-negative, rod-shaped, facultative 

anaerobic, non-spore-forming bacteria belonging to the family Enterobacteriaceae. 

Cronobacter sakazakii was originally classified as Enterobacter cloacae but was 

subsequently designated as a separate species (Enterobacter sakazakii) on the basis of 

yellow pigment production, DNA-DNA hybridization, and other phenotypic 

characteristics (Farmer et al., 1980; 1985). Cronobacter was proposed as a new genus by 

Iverson et al. (2007) to include the organisms formerly classified as Enterobacter 

sakazakii, initially comprising eight different organisms including four named species, 

one unnamed species, and five named subspecies (Farmer, 2015). Among all of the 

Cronobacter isolates evaluated by Edelson-Mammel et al (2004), C. sakazakii 607 had 

the highest thermal resistance. Detailed heat resistance comparison among Cronobacter 

species was also conducted by other researchers in BHI broth (Breeuwer et al., 2003), in 

milk and special feeding formula (Osaili et al., 2009). 

• Escherichia coli O157:H7: E. coli is a Gram-negative, facultative anaerobic, rod-shaped, 

coliform bacterium of the genus Escherichia that is commonly found in the lower 

intestinal tract of warm-blooded organisms. It was first identified as a human pathogen in 

1982. One of several Shiga toxin-producing serotypes known to cause human illness, the 
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organism probably evolved through horizontal acquisition of genes for Shiga toxins and 

other virulence factors (Mead et al., 1998). Although E. coli O157:H7 has been not 

reported to have particularly high heat resistance, several factors can increase its heat 

resistance, including increased growth temperature, growth phase, reduced water activity 

and acid adaptation (Kaur et al., 1998; Sharma et al., 2005). The heat resistance of E. coli 

O157:H7 was studied both genetically (Cheville et al., 1996; Mercer et al., 2015) and 

experimentally in food matrices such as meat and poultry (Ahmed et al., 1995). The E. 

coli O157:H7 strain used in this study is an attenuated version that does not produce 

Shiga toxin. 

• Salmonella enterica serotype Typhimurium: Salmonella enterica is one of the two 

species in the genus Salmonella. It is a Gram-negative, rod-shaped, motile, facultative 

anaerobic bacterium. It is subdivided into several subspecies, and almost 3000 unique 

serovars have been isolated. A number of its serovars are serious human pathogens. Its 

virulence is due to an outer membrane consisting largely of lipopolysaccharides (LPS) 

which protect the bacteria from the environment, as well as specific virulence factors that 

are often associated with specific “pathogenicity islands”. Its heat resistance can be 

enhanced by pre-adaption at elevated incubation temperatures (Mackey et al., 1986). In 

epidemiological studies, Salmonella cases were often linked to long-term survival in low 

water activity foods or in low-moisture environments (Archer et al., 1998). The general 

heat resistance of S. Typhimurium can be influenced by a number of environmental 

factors such as water activity (Sumner et al., 1991), pH (Casadei et al., 2001), and sodium 

chloride concentration (Mañas et al., 2001). 
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• Listeria monocytogenes: Listeria are Gram-positive, non-spore-forming, motile, 

facultative anaerobic, rod-shape bacterium, with Listeria monocytogenes being the most 

important pathogenic species of the genus. Although Listeria monocytogenes is actively 

motile by means of peritrichous flagella at room temperature (20−25 °C), the organism 

does not synthesize flagella at body temperatures (37 °C). Invasive infection by Listeria 

monocytogenes causes the disease listeriosis, which is extremely dangerous to pregnant 

women and neonates, people 65 years and older, and people with compromised 

immunity. Listeria monocytogenes is noted for its ability survive at freezing temperatures 

and multiply at refrigeration temperatures (Centers for Disease Control and Prevention, 

2019), which makes it a great public health concern associated with various ready-to-eat 

foods, dairy products, and deli meats (Ferreira et al., 2014). Over the years, the general 

heat resistance of L. monocytogenes was also examined and reviewed in detail by 

multiple research groups (Mackey and Bratchell, 1989; Lemaire et al., 1989; Suarez, 

1989; Doyle et al., 2001). 

 

Much of the focus of this study is on C. sakazakii survival in different food matrices, so 

the heat resistance mechanism of C. sakazakii will be discussed separately. Previous study 

showed that heat shock at temperature 42 to 47 °C for 5 to 15 minutes enhances the thermal 

resistance of C. sakazakii at 51 °C (Chang et al., 2009). Heat shock enhances its heat resistance 

while acid, alkaline, and osmotic stresses decrease the heat resistance of C. sakazakii (Arroyo et 

al., 2011). These results demonstrated the need for innovative ways of decreasing its heat 

resistance. Studying the heat resistance of highly heat resistant strains, Williams et al., (2004) 

utilized a proteomics approach designing a biomarker to identify the protein that is unique in the 
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thermal tolerant strains, demonstrating the potential linkage between specific proteins and 

elevated thermal resistance. PCR and DNA polymorphism-based analyses verified the gene 

expression pattern in heat tolerant strains of C. sakazakii; heat resistant clones showed higher 

infB expression, which encoded the prokaryotic translation initiation factor (IF2), and it signified 

the genetic characterization of the heat resistance in C. sakazakii (Asakura et al., 2007).  

2.3 D-value and Kinetics of Thermal Inactivation 

In microbiology, in the context of a sterilization procedure, the D-value (decimal 

reduction time) is the time (or dose) required, at a given condition (e.g., temperature) or set of 

conditions, to achieve a 1.0-log reduction, i.e., kill 90% of relevant microorganisms (U.S. Food 

and Drug Administration, 2014). D-values are temperature-specific for each strain and is 

commonly used to compare the heat resistance of the microorganisms. For thermal processes, 

understanding a microorganism’s D values allows a processor to measure the amount of 

microbial inactivation delivered by the process (Institute of Food Technologists, 2000). 

For a number of thermal processing systems, the total number of microorganisms destroyed by 

the process can be estimated by incorporating the destruction rate kinetics of the microorganism 

of concern into the heat transfer model for that system (Institute of Food Technologists, 

2000). First-order kinetic model is often assumed. The model assumes that, at a given 

temperature, the fraction of molecules that will reach the level of energy required for the 

transformation (e.g., inactivation) to happen is constant. The fraction of molecules that have 

enough energy to react will increase with temperature (Heldman and Newsome, 2003). 
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2.4 The “parabens” 

2.4.1 Introduction 

 Parabens are a series of parahydroxybenzoates (p-

hydroxybenzoate), i.e., esters of parahydroxybenzoic acid. They 

are effective preservatives widely used in cosmetic and 

pharmaceutical products (Yazar et al., 2011). The basic structure 

of parabens consists a benzene ring, a changeable ester group, 

and a hydroxyl group in the para position. (Figure 2-1). 

The parabens used commercially are usually industrially 

synthesized, but they also occur naturally in some sources, 

including Microbulbifer bacterium (Peng et al., 2006; Que ́vrain 

et al., 2009), and root hairs of the New Zealand yam (Bais et al., 

2003). Methyl, ethyl, and propyl parabens along with their 

sodium salts are most commonly used parabens for their anti-bacterial and anti-fungal activity. 

Based on the study of Ruan and Buchanan (2016), the ability of paraben to enhance their 

inactivation of C. sakazakii is positively correlated to the length of side chain, while the water 

solubility is negatively related to the length of the side chains.  

 As parabens are widely used in industry, they are also regulated worldwide: Methyl-

paraben (21 CFR 184.1490) and propyl-paraben (21 CFR 184.1670) have been granted generally 

recognized as safe (GRAS) status by the FDA for direct addition to food at levels not to exceed 

good manufacturing practices: maximum level of 0.1 percent can be added to food. Butyl 

paraben (<20 ppm) was approved by the FDA for addition to beverages as synthetic flavoring 

substances and adjuvants (21 CFR 172.515). Heptyl-paraben is permitted by the FDA for direct 

Figure 2-1. Chemical 
structure of parabens. 
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addition to fermented malt beverages in amounts not to exceed 12 ppm and in non-carbonated 

soft drinks and fruit in various foods. 

 While butyl paraben is the focus of the current study, the literature review discusses 

parabens in general. 

 

2.4.2 Toxicity 

 As is commonly the case, when the safety of parabens has been brought to the public’s 

attention, people become concerned about it use in foods, cosmetics, and pharmaceuticals despite 

the fact that the chemicals are still approved for specific applications This section will discuss 

the results of parabens toxicity studies in detail.  

Although the toxicity of parabens remains controversial, there is no definite evidence 

showed that application of parabens as preservatives cause cancer to date. “At this time, we do 

not have information showing that parabens, as they are used in cosmetics, have an effect on 

human health” (Food and Drug Administration (FDA), 2018). Starting from the application in 

industry, people began to get directly exposed to parabens through oral and dermal exposure 

from personal care products and environmental sources. After the wide application on food 

products, oral exposure of parabens has increased. Industry estimates of the daily use of cosmetic 

products that may contain parabens were 17.76 g for adults and 0.378 g for infants (CIR, 2008). 

And the amount of oral exposure through food is low compared with the dermal exposure 

through personal care products. Epidemiologic studies are normally conducted through 

biomonitoring method with measurement of parabens in urine sample. However, biomonitoring 

study results could not differentiate the exposure route, which was supposed to be one of the 

major considerations when conducting toxicology studies. 
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 The widely used parabens are usually synthesized in industry, but there are also some 

naturally occurring ones, which are microbial and plant metabolites. A study showed that marine 

bacterium biosynthesized pHBA and its alkyl esters at high levels (Peng et al., 2006). The origins 

of parabens in plant tissue are not fully understood. High levels of paraben production and 

application also lead to the contamination of surface water. There were several studies conducted 

on the surface water contamination with parabens worldwide, the results of which indicate that 

the contamination levels are typically low but highly season-dependent (Błędzka et al., 2014). 

Besides water, parabens were also detected in soils, sediments and sludge. The likelihood of  

accumulation of parabens in sediments increased proportionally to the length of side chain 

(Błędzka et al., 2014). With the usage of personal care products and cleaning agents in 

household, parabens have been detected in door dust and air, which could lead to humans being 

exposed inhalation and oral ingestion (Canosa et al., 2007). In general, although there are 

numerous routes and sources of parabens from the environment, the total dosage of 

environmental exposure is pretty low compared with personal care products and food. The 

majority of parabens in environment came from the leakage or direct pollutions from wastewater 

treatment plants. 

Aubert et al. (2012) conducted a study with radioactive parabens of the fate of parabens 

in rats after oral administration. According to their findings, the overall pharmacokinetics 

profiles on methyl, propyl and butyl parabens were similar in male and female rats. The majority 

of an oral dose was eliminated in the urine within the first 168 h. The typical range of the 

elimination in the urine is more than 90%, with variation due to different parabens and gender. 

The parabens were normally rapidly eliminated into urine within first 24 h. The typical 

percentage is around 80% in both male and female. A small amount of orally administrated 
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parabens was recovered through cage washes of male and female, which takes 6.0% to 14% with 

variation due to compounds and gender. A tiny portion of parabens, range from 0.9% to 3.0%, 

were eliminated in the feces. One of the significant findings of this paper is rapidity and 

efficiency of elimination in rats without differences in gender. The limiting factor in this study 

was the mixture of methyl, propyl and butyl parabens was a one-time ingestion; subchronic and 

chronic ingestion exposures are needed. 

Some in vivo and in vitro studies were also conducted to assess the possible 

carcinogenicity of parabens. Darbre et al., (2003) measured proliferation of human breast cancer 

cells with benzyl 4-hydroxybenzoate. The cell cultures were incubated with parabens in medium, 

and the culture medium was changed 3-4 days in the experiment. In other words, the cells were 

dosed with parabens at a relatively constant concentration over time. Benzyl parabens at 10-6 M 

(P=0.037) and 10-5 M (P<0.05) stimulated cell proliferation, and all the cells were killed at 10-4 

M. There was no significant antagonism was found at 10-7 to 10-10 M concentrations. The 

parabens concentration in this study was relatively high compared to the commercial products. 

Another issue in this study was that the cells were exposed to parabens continually for 14 days, 

which could be considered an unrealistic exposure. Considering the fast elimination results from 

animal study (Aubert et al., 2012), single or multiple doses might be a better experimental 

design. 

Animal studies were also conducted using oral ingestion (Oishi et al., 2004). Methyl 

parabens and ethyl parabens at 0.1% and 1% concentrations were mixed in the standard diet and 

delivered to rats, age 25 to 27 days and initially weighing 75.9 ± 2.87 g, for 8 weeks. The control 

rats was fed with standard diet without any paraben addition. Sperm counts and hormone levels 

were measured after treatment. No relationship between the sperm counts in cauda epididymides 
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and testis and the application of parabens (Oishi et al., 2004). The concentrations of testosterone, 

LH and FSH were not be influenced by the addition of parabens (Oishi et al., 2004). The studies 

discussed above were not in full agreement with prior in vivo and in vitro studies, which 

indicated weak estrogenic effects (Prusakiewicz et al., 2007). The results of this specific 

experiment even did not agree with the authors’ previous study, which demonstrated the anti-

spermatogenic activity of propyl and butyl parabens (Oishi, 2002). Their previous studies were 

also an in vivo test with rats and mouse, and they compared the toxicity of parabens with alkyl 

phenols, in which results showed parabens had same or potent anti-spermatogenic activity. 

 In general, there is no solid evidence confirmed that parabens are carcinogens. On the 

other hand, there are some studies demonstrated possible weak estrogenic effects of parabens at 

relatively high doses, although other studies showed there is no estrogenic effect of parabens in 

animal studies. Based on the current findings, there is no evidence indicating the current 

exposures of parabens to people are dangerous enough to cause any adverse effects. 

 

2.4.3 Antimicrobial properties and synergism 

The antimicrobial mechanisms of parabens are not completely clear at this stage, and this 

study only focused on their bactericidal properties. There are three proposed modes including 

disrupting membrane transport processes (Freese et al., 1973), inhibiting synthesis of DNA and 

RNA, (Nes et al., 1983) or inhibiting some key enzymes, such as ATPases and 

phosphotransferases (Ma et al., 1996). According to, Bredin et al., (2005), propyl paraben 

induced potassium release that was related to the porin expression in the bacterial outer 

membrane in susceptible E. coli cells similar to that observed with polymyxin B. They also 

proposed that this permeabilizing effect is probably related to antibacterial properties of paraben 
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molecules. The primary advantage of the parabens over benzoic acid is their wider effective pH 

range (3.0-8.0), whereas the optimum range for benzoic acid is 2.5-4.0. Additionally, the potent 

antimicrobial activity of parabens enabled use of lower concentrations. One limiting parameter 

associated with parabens is their low solubility. Adding co-solvent such as ethanol, propylene 

glycol, and glycerol would be a practical method to increase the aqueous concentrations of 

parabens above their saturation solubility. Darwish and Bloomfield (1995, 1997) suggested that 

there was an additive effect between parabens and co-solvent on the integrity of cell membrane 

permeability causing more cell leakage, however, the antimicrobial effect of the combination 

was potentially synergistic against Staphylococcus aureus and Pseudomonas aeruginosa. It was 

also suggested that the addition of co-solvent reduced partitioning of parabens into the oil phase, 

which might account for enhanced preservative activity within an emulsion formulation.  

Aalto et al., (1953) and Sokol (1952) were the first researchers to determine the minimal 

inhibitory concentrations of the methyl, ethyl, propyl, and butyl esters using current testing 

techniques. In general, they found that inhibition of Gram-positive bacteria was proportional to 

the molecular weight of the ester used. In contrast, inhibition of Gram-negative bacteria was not 

necessarily related to the ester chain length. On the other hand, Merkl (2010) determined that the 

minimum inhibitory concentrations (MIC) of parabens against E. coli, Bacillus cereus, L. 

monocytogenes, Fusarium culmorum, and Saccharomyces cerevisiae, were all below 5.00 

mmol/L. Their results demonstrated that the antimicrobial activity was enhanced as the length of 

ester chain increased. And these findings generally agreed with the experimental results collected 

by Ruan and Buchanan (2016). They found the ability to enhance thermal inactivation was 

positively related with the length of parabens side chain against C. sakazakii at mild heating 

temperatures. According to these results, methyl paraben was the least potent one among the 
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paraben group. The MIC of methyl paraben was still significantly lower than sodium benzoate 

against all 10 tested microorganisms except Aspergillus niger (Mirsonbol et al., 2014).  

There were also a large number of studies on comparing the antimicrobial efficacy of 

parabens and other preservatives. Moir and Eyles (1992) compared methyl paraben and 

potassium sorbate, in which the results indicated that the differences between the bacteria were 

substantial among L. monocytogenes, Pseudomonas putida, Yersinia enterocolitica, and 

Aeromonas hydrophila. The MICs of the two preservatives were similar at pH 5, but at pH 6 the 

MICs of methyl paraben were well below those of sorbate, except in the case of A. hydrophila. 

The antimicrobial property is not only limited to the parabens but also applies to the potassium 

salts of methyl, ethyl, propyl, and butyl parabens (Mizuba and Sheikh, 1986). Potassium salts of 

methyl and ethyl paraben showed lower antimicrobial activity than the corresponding paraben 

while the potassium salts of propyl and butyl paraben showed higher activity by comparing the 

MIC against Aspergillus niger, E. cloacae, E. coli, Klebsiella pneumoniae, P. aeruginosa and S. 

aureus. The advantage of using potassium salts of paraben is that they are more soluble in 

aqueous systems.  

A synergistic effect is one that occurs when two or more agents, factors, or substances 

that produce an effect greater than the sum of the agent’s individual effects. This concept was 

widely utilized in food processing with various preservatives and foods. For example, organic 

compound vanillin significantly enhanced Listeria inactivation during thermal processing at 

temperatures from 57 to 61°C (Char et al., 2009). Ding (2017) demonstrated the antimicrobial 

effect of benzoic acid or propyl paraben treatment combined with UV-A light on E. coli 

O157:H7. Researchers started to estimate the microbial inhibition activity of parabens from 

1950s (Aalto et al., 1953; Sokol et al., 1952). In our laboratory (Ruan and Buchanan, 2016), the 
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addition of low levels of various parabens was found enhance inactivation of a thermally 

resistant strain, C. sakazakii 607, at a mild heating temperature (58 °C). As described later, apple 

juice was used as a model system in part of the current study. The presence of low levels of 

benzoic and sorbic acids showed great effect on reducing the heat resistance of E. coli O157:H7 

at 50 °C (Splittstoesser et al., 1995). A simultaneous application of heat and ultrasonic waves 

under pressure on the survival of C. sakazakii in apple juice was studied by Arroyo et al. (2012). 

They observed a synergistic effect between 45 °C and 64 °C when combining with ultrasonic 

waves under pressure against C. sakazakii in apple juice. The effectiveness of treatment was 

further enhanced by the die-off of surviving bacteria during refrigerated storage (up to 96 h at 

4°C). Besides apple juice, other pasteurized food such as liquid egg albumen also demonstrated 

potential synergism (Gurtler and Jin, 2012): although the heat resistance of Salmonella generally 

decreased as the pH rose, it was not practical because of the promoted protein aggregation at 

high pH. Addition of 500 ppm of propyl paraben to albumen at pH 7.8 reduced the D-value at 

56.7 °C more than 11-fold, which demonstrated a significant synergism between heat and 

parabens.  

In the current study, we focused on butyl paraben, and extended our earlier work to 

determine if the synergy observed extends to other common foodborne pathogens including E. 

coli O157:H7, S. enterica, and L. monocytogenes, as well as verifying our previous study with C. 

sakazakii. Also, we examined the synergism between heat and butyl paraben in food models: 

powdered infant formula, non-fat dry milk, and apple juice.  
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Chapter 3: Project Objectives and Methods 

3.1 Project objectives 

As discussed in Section 2.4.3, our laboratory has hypothesized that chemicals that disrupt 

the structure/function of bacterial membranes are likely to have antimicrobial activity and act 

synergistically to depress bacterial thermal resistance. Research on the effects of butyl-

parahydroxy-benzoate (BPB) on foodborne pathogenic bacteria are highly limited in regard to 

types of food, the effect of cultural conditions on BPB antimicrobial activity, and its effects on 

thermal resistance. Most studies that have investigated the BPB and other parabens have been 

proved to limit the growth rates rather than inactivation. Furthermore, most studies were 

conducted at temperatures that support growth (< 30 °C) and only two prior studies examined the 

effects of parabens on thermal resistance but only focused on one species. As a means of 

rectifying this lack of knowledge, the current study was undertaken to examine the potential 

enhancement of thermal inactivation of four foodborne pathogenic bacteria, C. sakazakii, E. coli 

O157:H7, S. enterica serotype Typhimurium, and L. monocytogenes, during mild heating in a 

model matrix, Brain Heart Infusion broth (BHI), containing low levels of BPB. The primary 

objectives in this project were:  

1. Using BHI model, examine the effects of various concentration levels of BPB on the 

effectiveness of mild heat treatments at temperatures ≤ 60 °C for each pathogen. 

2. After demonstrating “proof of concept” in BHI model, the second objective was to apply 

this thermal treatment to “real food systems,” and investigate four parameters that 

influence BPB antimicrobial ability: product composition, water activity, pH, and lipid 

solubility. 
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a. Powdered infant formula and non-fat dry milk were selected as nutritious dry food 

models with low moisture/water activity. 

b. Apple juice was selected as a protein-free and fat-free liquid food model with a 

low pH. This model was also used to investigate the effects of pH on BPB 

antimicrobial ability and the potential synergistic activity malic acid activity. 

 

3.2 Materials and Methods 

3.2.1 Brain and Heart Infusion Broth Studies 

Bacterial cultures. Cronobacter sakazakii 607 obtained from the Food and Drug 

Administration, attenuated Escherichia coli O157:H7 (ATCC #700728, Manassas, VA), and 

Salmonella enterica serotype Typhimurium and Listeria monocytogenes from Dr. Robert 

Buchanan’s lab collection were used throughout the study. Working cultures were sub-cultured 

monthly on tryptic soy agar (TSA) plates and stored at 4°C. 

Butyl-parahydroxy-benzoate. BPB was obtained from MP Biomedicals (99.0+%, 

catalog No. ICN222907, Solon, OH) was used throughout the study and stored at room 

temperature. 

Submerged coil apparatus. A new submerged coil apparatus (Sherwood Technologies, 

Model No. Coil-100, Lynnfield, MA) was used in current study, so a thermal resistance study of 

a known pathogen was conducted to test the consistency of the system. Cronobacter sakazakii 

607 was used to conduct thermal inactivation study at 58 °C with and without butyl paraben. 

Following the same methodology that Ruan and Buchanan (2016) used, the control group at 

58 °C showed the same thermal resistance and same level of injury. These results confirmed the 

system consistency and served as basis for studies with the other three pathogens.  
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Culture preparation and inoculation. Approximately 18-20 h prior to the initiation of 

an inactivation trial, 10 ml of sterile BHI was inoculated with the target bacterium, incubated at 

37 °C, and concentrated by centrifugation at 4800 rpm for 20 min (Beckman GS-15R Centrifuge, 

Indianapolis, IN). The pellet was re-suspended by mixing with 1 ml of sterile 0.1% peptone 

water. Prior to the start of a trial, the desired concentration of BPB was solubilized in 70% 

ethanol and 80 µl of solubilized BPB was added to 19 ml sterile BHI. The trial was then initiated 

by transferring a 1.0-ml portion of re-suspended culture being transferred to the 19 ml BHI.  The 

inoculated culture was mixed thoroughly, and a 0.4 ml portion retained to as a time-zero sample. 

The levels of bacteria in the time-zero samples were consistently 108~109 CFU/ml. 

Thermal inactivation trials. Thermal trials were conducted using a submerged coil 

apparatus using a slight modification of the procedure of Edelson-Mammel and Buchanan 

(2004). After programing the instrument with the number of samples to be taken, the appropriate 

number of 4-ml screw-cap vials, each with 3.6 ml of sterile 0.1% peptone water, were placed on 

the sample collection carousel. The submerged coil apparatus was pre-equilibrated to the 

designated temperature and programmed to deliver 400 µl aliquots at designated sample times. A 

10-ml portion of the time-zero culture was injected into the submerged coil apparatus, and the 

program was initialized immediately. After samples were delivered, the vials, which served as 

10-1 dilutions, were immediately capped and put on ice to halt any further thermal inactivation. 

The samples were then diluted to 10-2, 10-3, 10-4, and 10-5 using dilution blanks by transferring 

0.1 ml of lower dilution sample into 0.9 ml of sterile 0.1% peptone water. 

Plating and enumeration. The 10-1, 10-3, and 10-5 dilutions were surface plated onto 

tryptic soy agar (TSA) plates using a spiral plater (Neutec Group Inc., Nr 10003700/113, 

Farmingdale, NY). The plates were allowed to dry at room temperature for 10 minutes, inverted, 
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and incubated at 37°C for 20-24 hours. Plates were enumerated using an automatic plate counter 

(Neutec Group Inc., Nr 10006021/182, Farmingdale, NY), and the numbers were converted to 

log10 values. 

D-values analysis. The collected data were imported into Excel spread sheets and the 

survivor curves were plotted. D-values of each survivor curve under each treatment condition 

were calculated by linear regression analysis. In the calculation of slopes, only the points with 

error bar that did not cross below lower detection limit were included for regression analysis. 

Student t-test was conducted Excel spread sheets for comparison between 125 ppm heat 

treatments and 0 ppm heat treatments with significant level at P=0.05. 

 

3.2.2 Powdered Infant Formula and Non-fat Dry Milk Study 

Bacteria cultures. Cronobacter sakazakii 607 obtained from the Food and Drug 

Administration was used throughout the study. Working cultures were sub-cultured monthly on 

tryptic soy agar (TSA) plates and stored at 4°C. 

Parabens. Butyl parahydroxy-benzoate (BPB) (99.0+%, catalog No. ICN222907, MP 

Biomedicals, Solon, OH) and heptyl parahydroxy-benzoate (HPB) (99.0+%, Pfaltz & Bauer, 

catalog No. 50-749-4189, Waterbury, CT) was used throughout the study and stored at room 

temperature. 

 Powdered Infant Formula (PIF) and Non-fat Dry Milk (NFDM). Powdered infant 

formula purchased from Amazon.com was used throughout the whole study. Non-fat dry milk 

purchased from Amazon.com was used throughout the whole study.  

 Baby bottles and petri dish. BPA-free polypropylene baby bottles with nipples 

purchased from Amazon.com were used throughout the PIF rehydration experiments. Sterile 
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polystyrene 60 mm-diameter petri dishes were used for sample storage at elevated temperature 

throughout the non-fat dry milk experiments. 

 Preparation of culture. Two days prior to the start of a new trial, C. sakazakii 607 was 

inoculated into 10ml of sterile tryptic soy broth (TSB) in a 15ml-centrifuge tube and incubate it 

at 37 °C for 24 h. The 24-h culture was pelleted by centrifugation at 4800 rpm for 25 min 

(Beckman GS-15R Centrifuge, Indianapolis, IN). The supernatant was decanted, and the pellet 

re-suspended by adding 2.0 ml of sterile 0.1% peptone water. A spiral plater (Neutec Group Inc., 

Nr 10003700/113, Farmingdale, NY) was then used to distribute 1.0 ml of the resuspended 

culture onto the surface of a TSA plate. After incubation at 37 °C for 24 h, a sterile spreader was 

used to scrape all the colonies off from plate. The colonies were transferred to a 15ml-centrifuge 

tube, resuspended in 5ml of sterile 0.1% peptone water, and centrifuged at 4800 rpm for 25 min. 

After decanting the supernatant, 0.5 ml of sterile 0.1% peptone water was used to re-suspend the 

pellet. 

Inoculation of PIF and NFDM. A 50-g portion of PIF was transferred to a stomacher 

bag. A micropipetter was used to dropwise inoculate 0.5ml concentrated culture into PIF (or 

NFDM). The stomacher bag was gently shaken to let PIF (or NFDM) absorb the moisture. The 

air in the stomacher bag was squeezed out, and then a wooden mallet was used to crush the 

clumps for 20 to 30 minutes. Then BPB (or HPB) at the desired concentration was solubilized in 

70% ethanol, and 80 µl of solubilized BPB (or HPB) was added dropwise to the stomacher bag. 

The wooden mallet was used again to crush the any remaining clumps for 10 to 20 min. After the 

obvious clumps have been broken down, some air was allowed into the stomacher bag and then 

shaken vigorously. The air in the bag was again removed, then sealed, and then allowed to 

equilibrate at 4 °C for 24 h. After the moisture in PIF (or NFDM) reached equilibrium, an 
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additional 450 g of PIF (or NFDM) was added to the stomacher bag. After vigorous shaking of 

the PIF, the air was squeezed out, the bag sealed, and stored at 4 °C for future use. This bag 

served as BPB treatment group.  The control group was prepared in the same manner but 

received 80 µl of 70% ethanol without BPB (or HPB).  

Determination of thermal inactivation kinetics.  

• PIF: Three 25-g portions of inoculated PIF was transferred into three baby bottles. 

Sterile water was preheated to designated temperatures on hot plate, and a 180-ml 

portion of hot water was quickly poured into baby bottles and followed by 30-second 

shaking. The 0-time sample was taken immediately after the initial shaking, by 

transferring a 1.0 ml aliquot into 9.0 ml of sterile 0.1% peptone water. This served as 

the 10-1 dilution. Two samples at 5 and 10 min were subsequently taken from each 

baby bottle. All samples were then diluted to 10-3, and 10-5, by sequentially 

transferring 0.1 ml of lower dilution into 9.9 ml of sterile 0.1% peptone water. 

• NFDM: Following the same PIF inoculation method, dry NFDM powders were 

inoculated with C. sakazakii 607 and supplemented with BPB. Thirty portions of 3.0 

g of inoculated NFDM with designated levels of BPB were distributed into individual 

petri dishes. Fifteen petri dishes were stored at room temperature (25 °C) and 15 petri 

dishes were stored in 55 °C. Thirty 3-g portions of inoculated NFDM without 

addition of BPB were distributed into individual petri dishes. Fifteen petri dishes 

were stored at room temperature (25 °C), and 15 petri dishes were stored in 55 °C. 

Thirty 3-g portions of uninoculated NFDM without BPB were distributed into 

individual petri dishes for the purpose of monitoring background flora. Fifteen petri 

dishes were stored at room temperature (25 °C), and 15 petri dishes were stored in 
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55 °C. One petri dish from each of condition was analyzed for microbial load every 

day. Three grams of NFDM of each portion was separated into three of 1-gram 

portion, and each 1-gram portion was dissolved in 9 ml of room temperature sterile 

DI water, which served as 10-1. The samples were then diluted to 10-2, and 10-3 using 

dilution blanks by transferring 0.1 ml of lower dilution sample into 0.9 ml of sterile 

0.1% peptone water. 

Plating and enumeration. 10-1, 10-3, and 10-5 dilutions of PIF and 10-1, 10-2, and 10-3 

dilutions of NFDM were surface plated onto tryptic soy agar (TSA) plates using a spiral plater 

(Neutec Group Inc., Nr 10003700/113, Farmingdale, NY). The plates were dried at room 

temperature for 10 minutes, and then inverted and incubated at 37 °C for 20-24 h. Plates were 

enumerated using an automatic plate counter (Neutec Group Inc., Nr 10006021/182, 

Farmingdale, NY), and the counts were converted to log10 values. 

Data analysis. The collected data were imported into Excel spread sheets and the 

survivor curves were plotted and compared.   

 

3.2.3 Apple Juice Study 

Bacteria cultures. Cronobacter sakazakii 607 was used throughout the study. Working 

cultures were sub-cultured monthly on tryptic soy agar (TSA) plates and stored at 4°C. 

Butyl parahydroxy-benzoate. BPB obtained from MP Biomedicals (99.0+%, catalog 

No. ICN222907, Solon, OH) was used throughout the study and stored at room temperature. 

Malic acid. D-Malic acid obtained from Sigma-Aldrich (³97.0%, catalog No. 

MFCD00004245, St. Louis, MO) was used throughout the study and stored at room temperature. 
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Apple juice. Shelf stable pasteurized 100% apple juice from concentrate (from 

Tropicana) purchased from Amazon.com was used throughout the apple juice related 

experimentation. The juice was stored at room temperature prior to opening to conduct an 

experiment trial. 

Apple juice preparation and inoculation. Approximately 18-20 h before initiation of an 

experimental trial, 10 ml of BHI was inoculated with target strain, and incubated at 37 °C.  The 

culture was pelleted by centrifugation at 4800 rpm for 25 min (Beckman GS-15R Centrifuge, 

Indianapolis, IN) and then re-suspended in 1.0 ml of sterile 0.1% peptone water.  

The pH of the apple juice to be used was recorded using a pH meter with a combination 

electrode (Fisherbrand AE150 pH Benchtop Meter, Waltham, MA). In trials examining the effect 

of pH on BPB enhancement of thermal processing, the apple juice was adjusted to the desired pH 

using 10 N HCl and/or 1 N NaOH. Prior to a start of trial, BPB with the desired concentration 

was dissolved in 70% ethanol, and 80 µl of the solubilized BPB was then added to 19 ml apple 

juice at designated pH value. A 1.0-ml portion of re-suspended bacterial culture was transferred 

to the 19 ml apple juice, agitated thoroughly, and immediately used to initiate a thermal survival 

trial.  As before, a portion of the inoculated was retained as a time-zero sample. The initial levels 

of bacteria in the time-zero samples were approximately 108~109 CFU/ml. 

Determination of thermal inactivation kinetics. Thermal trials were conducted using 

the submerged coil apparatus. As described earlier, after programing the instrument with the 

number of samples to be taken, the appropriate number of 4-ml screw-cap vials, each with 3.6 ml 

of sterile 0.1% peptone water were placed on the sample collection carousel. The submerged coil 

apparatus was pre-equilibrated to the designated temperature and programmed to deliver 400 µl 

aliquots at designated sample times. A 10-ml portion of the inoculated time-zero sample was 
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loaded into a syringe, injected into the submerged coil apparatus, and the program was initialized 

immediately after injection. At the designated times, the 400 µl samples were dispensed into 

vials, producing 10-1 dilutions. The vials were immediately capped and put on ice to halt any 

further thermal inactivation. The samples were then diluted to 10-2, 10-3, 10-4, and 10-5 using 

dilution blanks by transferring 0.1 ml of lower dilution sample into 0.9 ml of sterile 0.1% 

peptone water. 

Plating and enumeration. The 10-1, 10-3, and 10-5 dilutions were surface plated onto 

tryptic soy agar (TSA) plates using a spiral plater (Neutec Group Inc., Nr 10003700/113, 

Farmingdale, NY). The plates were allowed to dry at room temperature for 10 minutes, inverted, 

and incubated at 37°C for 20-24 h. The plates were enumerated using an automatic plate counter 

(Neutec Group Inc., Nr 10006021/182, Farmingdale, NY), and the counts converted to log10 

values. 

Data analysis. The collected data were imported into Excel spread sheets and the 

survivor curves were plotted, D-values calculated. Some of the treatments induced extremely 

rapid inactivation rates, in which the calculation of D-values was estimated with some degree of 

uncertainty. In this case, the estimated time to achieve a 6-log reduction was calculated and 

compared for each treatment. Student t-test was conducted Excel spread sheets for comparison 

between 125 ppm heat treatments and 0 ppm heat treatments with significant level at P=0.05. 
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Chapter 4: Collection and Analysis of Inactivation Data 

4.1 Impact of Butyl parahydroxy-benzoate on thermal resistance in a model 

system 

4.1.1 Preliminary study to select thermal treatment temperatures 

 Preliminary tests confirmed that the thermal resistance of C. sakazakii 607 as measured 

using a submerged coil apparatus was consistent with previous studies (Mammel-Edelson and 

Buchanan, 2004; Ruan and Buchanan, 2016), and was equally effective for characterizing the 

thermal resistance of the other three microorganisms evaluated in this study. The experimental 

design that was selected to assess the ability of BPB to enhance thermal inactivation was based 

on selecting a thermal process temperature, which in the absence of BPB reduced the population 

of the target bacterium by 1 -2 log cycles in 900 sec (15 min). Accordingly, a preliminary study 

was performed to assess the thermal resistance of S. enterica serotype Typhimurium, E. coli 

O157:H7, and L. monocytogenes at 54 °C to 60 °C.  The estimated D-values for these three 

bacteria are presented in Table 4-1. The survivor curves for S. enterica and E. coli were 

reasonably log-linear, and single D-values could be estimated. Listeria monocytogenes displayed 

biphasic inactivation kinetics at the lower heating temperatures potentially suggesting a more 

heat resistant subpopulation. Two D-values were calculated in this instance, D1 for the more heat 

sensitive population and D2 for the more heat resistant subpopulation. At 56°C, L. 

monocytogenes survivor curve approached log-linear kinetics; however, the reductions exceeded 

the goal of a 1 to 2 log reduction for the controls without parabens.  Prior studies (Ruan and 

Buchanan, 2016) had demonstrated that thermal processing at 58 °C yielded a 1 to 2 log 

reduction of C. sakazakii during a 900 sec treatment.  This was confirmed in the preliminary 

study.  Based on these results, the heating temperatures subsequently used to assess the effects of 
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BPB were 58°C for C. sakazakii, 57 °C for Escherichia coli O157:H7, 55 °C for Salmonella 

enterica, and 54 °C for Listeria monocytogenes. The survivor curves at these temperatures are 

depicted in Figure 4-1.   

 

 Table 4-1: D-values of the four microorganisms heated at temperatures between 54° and 60°C in 

the absence of butyl parahydroxy-benzoate. 

Temperature 
(°C) 

D-values (s) 

Cronobacter 
sakazakii  

Escherichia 
coli O157:H7 

Salmonella 
enterica  

Listeria monocytogenes 

D1 D2 
54 --- a --- --- 179.8  1000.0 

55 --- --- 571.5 182.7  2777.8  

56 --- 909.1 169.5 149.2 b 

57 --- 365.7 151.5 --- --- 

58 289.3 149.2 --- --- --- 

59 --- --- 158.7 --- --- 

60 --- 138.9 147.1 --- --- 
a  Dash line indicates that assay was not performed at this temperature. 
b  Inactivation kinetics approached linearity at this temperature so no D2 was calculated. 

 

Figure 4-1: Survivor curves of control group of E. coli O157:H7 (57 °C), S. Typhimurium 

(55 °C), and L. monocytogenes (54 °C) 
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4.1.2 Effect of Butyl parahydroxy-benzoate on Thermal Inactivation of Foodborne 

Pathogenic Bacteria in Model System 

 The thermal resistance of C. sakazakii, E. coli O157:H7, S. enterica, and L. 

monocytogenes were evaluated at the selected mild heating temperatures (see section 4.1.1) in 

BHI containing low levels BPB to determine if the compound enhanced the thermal inactivation. 

 

• 4.1.2.1 Cronobacter sakazakii 607 

Cronobacter sakazakii heated at 58 °C had a D-value at 289.3 sec (Table 4-1) in the 

absence of BPB. Initial characterization of the effect of BPB on thermal inactivation used a 

concentration 100 ppm BPB using a dual media system where samples were plated on tryptic soy 

agar (TSA) and MacConkey Agar (MAC).  The former was used to enumerate both injured and 

non-injured cells while the latter only supported the growth of non-injured cells, allowing 
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assessment of non-lethal injury (Fig.4-2). The zero-time samples showed no significant degree of 

injury, but relatively rapid ~1.5 log reduction by 100 sec, followed by a log-linear inactivation 

over the heat treatment. The inclusion of 100 ppm BPB enhanced the thermal inactivation of C. 

sakazakii, with a 6 – 7 log reduction within 400 sec, compared to the ~2-log reduction in the 

controls. The degree of injury increased with heating duration in both the controls and the BPB 

containing cultures. These results are consistent with those observed by Ruan and Buchanan 

(2016). 

 

Figure 4-2: Survivor curves of C. sakazakii heated at 58°C in BHI with and without 100 ppm 

BPB and then plated on Tryptic Soy Agar and MacConkey Agar to assess the degree of injury 
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The temperature selected for attenuated E. coli O157:H7 was 57 °C with the D-value at 

365.7 ± 95.0 seconds (see Table 4-1 and Fig. 4-1). The inclusion of BPB resulted in a 

concentration dependent enhancement of thermal inactivation (Fig. 4-3), with the highest 

concentration producing a > 6-log reduction after approximately 400 sec. The synergistic nature 

of this effect was assessed by including a 125 ppm room temperature (RT) control which 

indicated that at this concentration, BPB had little if any effect at that temperature over the 

course of 900 sec.  Since a low level of 70% ethanol was used to help solubilize the BPB, an 

ethanol control was performed and indicated that the ethanol did not affect the thermal 

inactivation kinetics. The D-values observed are provided in Table 4-2.  The survivor curves 

(Figure 4-3) and calculated D-values (Table 4-2) indicated that the addition of ethanol did not 

have significant effect compared to the control group with no addition of ethanol or butyl 

parabens. On the other hand, with the addition of BPB, the microbial inactivation at 57°C was 

significantly enhanced even with the lowest concentration, which was 31.25 ppm, with the D-

value at 257.4 ± 16.2 seconds (P<0.05). And the highest concentration 125ppm decreased the D-

value to 162.2 ± 3.3 seconds. There was no noticeable antimicrobial effect at room temperature 

even with inclusion of 125 ppm BPB, which was the highest concentration tested. The 

combination of the results indicated BPB. 

 

Figure 4-3: Survivor curves of attenuated E. coli O157:H7 at 57°C as affected by BPB 

concentrations 
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*  All of points represented three replicates. 

 

Table 4-2: D-values for attenuated E. coli O157:H7 at 57°C as affected by BPB concentrations. 

Treatment D-value (s) 

125 ppm BPB + RT 2599.8 ± 609.7 

0 BP + 57°C 365.7 ± 95.0 

EtOH + 57°C 339.9 ± 31.9 

31.25 ppm BPB + 57°C 257.4 ± 16.2 

62.5 ppm BPB + 57°C 162.2 ± 3.3 

125 ppm BPB + 57°C 71.4 ± 27.2 
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• 4.1.2.3 Salmonella enterica serotype Typhimurium 

The temperature selected for S. Typhimurium was 55 °C with the D-value at 571.5 ± 

168.6 seconds. Two concentrations of BPB were tested: 62.5 ppm and 125 ppm. At 55 °C, the D-

values of S. Typhimurium with 62.5 ppm and 125 ppm BPB were 108.3 ± 2.4 seconds and 62.8 

± 5.5 seconds, respectively (Table 4-3 and Fig. 4-4). Low concentrations of BPB significantly 

reduced the D-values of S. Typhimurium at 55 °C in a concentration dependent manner (P<0.05). 

At room temperature, 125 ppm BPB also showed slight antimicrobial activity with D-value at 

971.3 ± 400.6 seconds, which was not observed in other three microorganisms. The ethanol 

control for S. Typhimurium at 55 °C appeared to have a protective effect compared to the 0 ppm 

BPB control trial; however, the slopes of the survivor curve (and thus their D-values) were not 

significantly different (P>0.05).   

 

Figure 4-4: Survivor curves of S. Typhimurium at 55 °C as affected by BPB concentrations 

 

*  All of points represented three replicates. 
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Table 4-3: D-values of S. Typhimurium 55 °C as affected by BPB concentrations 

Treatment D-value (s) 

125BP + RT 971.3 ± 400.6 

0BP + 55°C 571.5 ± 168.6 

EtOH + 55°C 1047.6 ± 141.5 

62.5BP + 55°C 108.3 ± 2.4 

125BP + 55°C 62.8 ± 5.5 

 

• 4.1.2.4 Listeria monocytogenes 

Listeria monocytogenes was the only Gram-positive organism evaluated in this study. It 

displayed a distinctly different pattern of survivor curves (Fig. 4-1 and 4-5). The preliminary 

studies indicated a two-phase inactivation process at 54 and 55 °C. The final inactivation 

temperature selected for L. monocytogenes was 54 °C, at which the microbial population 

decreased about 2 logs during the 900-sec heating trials, but clearly displayed two-phase 

inactivation kinetics. As a result, individual D-values were calculated for each inactivation 

kinetic phase.  Comparison of the 0 ppm BPB controls against the ethanol control suggested that 

the ethanol may have a small protective effect during the 54 °C heating, which could worth to 

perform some future experiments and statistical analysis to confirm this effect. There was no 

observable inactivation at room temperature with 125 ppm BPB, which is in general agreement 

with the results observed with the other three bacteria (Fig 4-5 and Table 4-5). Two BPB 

concentration levels were tested with L. monocytogenes: 62.5 and 125 ppm. In the first phase of 
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the heat treatment (0 to 300 sec), there was no significant difference in the slopes of the 0 ppm 

BPB control group at 54 °C and the 62.5 and 125 ppm BPB treatment groups (P>0.05). From 

300 to 900 seconds, there was a concentration dependent BPB enhancement of the thermal 

inactivation. However, the enhancement was substantially less than that noted with the other 

microorganisms as reflected in the phase 2 D-values (Table 4-4 and 4-5). As a result, 125 ppm 

BPB group only achieved an approximate 4-log reduction during the 900 sec heating cycle, 

whereas the other three bacteria had > 6-log reductions with the same level of BPB. 

 

Figure 4-5: Survivor curves of L. monocytogenes at 54°C as affected by BPB concentrations 

 

*  All of points represent the mean of three replicates. 
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Table 4-4: D-values of L. monocytogenes 54°C as affected by BPB concentrations 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Table 4-5: D-values of C. sakazakii 607, E.coli 0157:H7, S. Typhimurium, and L. monocytogenes 
as affected by BPB concentrations 

 
D-values (s) RT +  

125 ppm 
BP 

Heat +  
0 ppm 
BP 

Heat + 
EtOH 

Heat + 
31.25 
ppm BP 

Heat + 
62.5 
ppm BP 

Heat + 
125 ppm 
BP 

C. Sakazakii 607 (58 °C) N/A 400.0* N/A 218.9* 162.0* 86.5* 

E. Coli O157:H7 (57 °C) 2599.8 ± 
609.7  

365.7 ± 
95.0  

339.9 ± 
31.9  

257.4 ± 
16.2  

162.2 ± 
3.3  

71.4 ± 
27.2  

S. Typhimurium 
(55 °C) 

971.3 ± 
400.6  

571.5 ± 
168.6  

1047.6 ± 
141.5  

N/A 108.3 ± 
2.4  

62.8 ± 
5.5  

L. monocytogenes  
(54 °C) 

D1 5416.7 ± 
3280.8 

179.8 ± 
5.4 

736.0 ± 
111.4 

N/A 164.8 ± 
19.4 

147.1 ± 
56.7 

D2 N/A 1000 ± 0 N/A N/A 589.6 ± 
28.4 

508.3 ± 
92.0 

 
The numbers represent mean of three replicates ± standard deviation. 
*Lack of enough replicates to calculate standard deviation, however, values are consistent with results of 
Ruan and Buchanan (2016). 

Treatment 
D-value (sec) 

D1 D2 

125BP + RT 5416.7 ± 3280.8 - 

0BP + 54°C 179.8 ± 5.4 1000 ± 0 

EtOH + 54°C 736.0 ± 111.4 - 

62.5BP + 54°C 164.8 ± 19.4 589.6 ± 28.4 

125BP + 54°C 147.1 ± 56.7 508.3 ± 92.0 



 39 

4.2 PIF and NFDM studies 

4.2.1 PIF studies 

The PIF study was conducted by simulating the rehydration process, in which BPB was 

added in inoculated PIF during storage and thermal processing was applied by adding hot water 

at designated temperatures. 

• 4.2.1.1 Preliminary studies on the rehydration parameters 

The experiments of PIF were mainly conducted in baby bottles by mixing hot water with 

one serving size of PIF. The microbial load was monitored for first 10 minutes, so the 

temperature drop was also monitored during this period. The experiments indicated that the 

initial PIF temperature did not affect water temperature drop in baby bottles: mixing 65 °C water 

with 4 °C PIF showed same temperature change compared with mixing 65 °C water with room 

temperature PIF. (Data not shown.) In PIF studies, the preliminary experiments demonstrated the 

temperature drop in baby bottles (Figure 4-6). In general, the water temperature decreased at a 

rate 1 °C per minute. The four curves represented four different trials, each containing three 

replicates. Two trials started with 75 °C water and the other two trials started with 65 °C water. 

The timer initiated at the moment the water was added in, and the first temperature record was 

taken at 30 seconds, which was also the first microbial sampling point in the following 

experiments.  

Figure 4-6: Water temperature drop in baby bottles. 
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• 4.2.1.2 Rehydration of inoculated PIF in baby bottles 

 Preliminary trials compared the effect of incorporating BPB into PIF at a level that would 

be equal to 125 ppm when the PIF was rehydrated. When PIF with and without BPB and 

inoculated with C. sakazakii was rehydrated with room temperature water, no significant 

antimicrobial effect was observed (P>0.05) (Fig. 4-7).  

 

 Figure 4-7: Survivor curves of C. sakazakii in PIF with 125 ppm BPB and without BPB 

rehydrated with room temperature water. 
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*  All of points represented two replicates. 

 

The initial trials of PIF hot water rehydration with control group started with water 

temperatures at 70 °C and 80 °C. Both temperatures enabled “instantaneous” inactivation of C. 

sakazakii to levels below lower detection limit even when the first sampling times was as short 

as 30 sec (data not shown). These results generally agreed with previous studies (Edelson- 

Mammel and Buchanan, 2004). When the PIF was rehydrated with 65 °C. (Fig. 4-8), the results 

indicated that water temperatures ≤ 65 °C did not inactivate C. sakazakii with or without BPB or 

HPB during the 10 min exposure. The microbial population difference between BPB group and 

HPB group was mainly resulted from the batch difference.  

 

Figure 4-8: Survivor curves of C. sakazakii in PIF containing no parabens, 125 ppm BPB, and 

125 ppm HPB upon rehydration with 65 °C water. 
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*  All of points represented average of two replicates. 

 

• 4.2.1.3 Potential inhibitory components of PIF that quench the antimicrobial 

effect of parabens 

Based on the preliminary experiments on temperature drop that occurs while rehydrating 

PIF in baby bottles (see section 4.2.1.1), the water temperature drops from 65 °C to nearly 55 °C 

after 10 min, a temperature that is still potentially inactivate C. sakazakii. However, this was 

inconsistent with the rehydration trials (Fig 4-8), suggesting that the PIF was protective in 

relation to thermal inactivation. Furthermore, the lack of enhancement due to inclusion of 

parabens during mild heating temperatures in baby bottles suggested a potential inhibitory 

phenomenon due to some component of PIF that interfered with enhancement of thermal 

inactivation by parabens. As the side chain of parabens become longer, they become increasingly 

insoluble in water but soluble in fat content. Thus, one possibility was that in a PIF emulsion 

after rehydration, the microorganisms would be largely in the aqueous phase and would not 
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come in contact with the parabens which would partition into the non-aqueous phase. 

Alternatively, the composition of PIF is quite complex and one or more of the ingredients could 

be binding or inactivating the BPB or HPB.  

To evaluate this potential quenching phenomenon, two sets of experiments were designed 

and executed:  

• Substitute PIF with NFDM to avoid BPB partitioning into a lipid phase and use in 

conjunction with BHI containing different levels of NFDM as the experimental matrix in 

thermal treatment trials using the submerged coil apparatus. 

• Isolate the major content of PIF and conduct fluorescence testing to evaluate potential 

binding between PIF and BPB. 

 

4.2.1.3.1 Dose response relationship between NFDM content and degree of thermal 

inactivation. This experiment was conducted using the protocol employed in the submerged coil 

model system studies (see section 3.2.1), substituting varied levels of NFDM in place of PIF.  At 

full strength, 25 g of NFDM were dissolved in 180 ml of water (13.75 % by weight which 

equivalent used to level of rehydrated PIF), followed addition of 125 ppm BPB, inoculation with 

C. sakazakii and heating at 58 °C. In addition to the full-strength level of NFDM, NFDM was 

added at levels 0%, 1%, 10%, and 50% of full concentration level, so the final percentage was 

0% (regular BHI), 0.14%, 1.38%, 6.88%, and 13.75% of NFDM in final liquid mixture. The 

survivor curves of C. sakazakii at 58 °C indicated a clear dose-response relationship (Fig. 4-9). 

At 13.75% and 6.88% of NFDM, there was no enhancement of thermal inactivation by inclusion 

of 125 ppm BPB, showed complete inhibition of BPB enhancement of microbial inactivation, 

i.e., there was approximately a 2-log inactivation after 10 minutes, which is roughly equivalent to 
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the degree of inactivation observed with C. sakazakii in BHI broth without paraben at 58 °C (see 

Fig. 4-2). At 1.38% NFDM, some degree of enhanced thermal inactivation was apparent, and at 

0.14% and 0.00% NFDM levels, the enhancement of thermal inactivation was roughly 

equivalent to what was observed with 125 ppm BPB in the BHI model system studies (Fig 4.2). 

The results in Figure 4-9 represented two runs of the experiment with duplicate plating, which 

was not powerful enough to perform statistical analysis but clear enough to show the general 

trends of the results. 

 

 Figure 4-9: Survivor curves of C. sakazakii in heated at 58 °C in solutions containing different 

levels of NFDM and containing 125 ppm BPB. 

 

* All of points represented two replicates. 
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inactivation kinetic study was conducted with different levels of lactose to determine if the sugar 

depressed the enhancement of thermal inactivation by BPB. The rehydrated full serving size of 

PIF concentration was 0.14 gram/ml. Based on this number, we calculated the percentage of 

lactose in the rehydrated full serving portion of PIF, which was 6.94% by weight. Using 6.94% 

as a baseline lactose level, 3.47%, 0.69%, 0.07% and 0% (regular BHI) lactose were used to 

conduct C. sakazakii inactivation kinetic study at 58 °C. The survivor curves of these five lactose 

concentrations are summarized in Fig. 4-10. All five groups achieved 5 to 6 log reductions in 600 

seconds without noticeable differences in slopes between 0 to 300 seconds. There were no 

concentration dependent differences in the inactivation, and the degree of inactivation was 

equivalent to that observed in the model system study (Fig 4.2). The results in Figure 4-10 

represented one run of experiment with duplicate plating, which was not enough to perform 

statistical analysis but clear enough to show the general trends of the results. 

 

Figure 4-10: Survivor curves of C. sakazakii in BHI containing 125 ppm BPB and different 

concentrations of lactose and then heated at 58 °C. 
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* All of points represented one trial with duplicate plating. 

 

4.2.1.3.3 Fluorescence study of potential binding between butyl paraben and PIF. 

Measuring the fluorescence of BPB was an additional tool for determining which component that 

was an auxiliary test to determine if BPB was binding to a component of NFDM or PIF.  When a 

chemical entity binds to BPB, its fluorescence is diminished, and if not, the fluorescence remains 

unchanged. NFDM mainly contains approximately 50% of lactose and 50% of protein by weight. 

Each of the substance was dissolved in water to measure the fluorescence. The concentration of 

each isolated content in NFDM was calculated based on the full serving size of NFDM, and the 

fluorescence was measured on each group with and without 1000 ppm of BPB. A mixture of 

60% casein and 40% whey protein was used to represent protein profile in PIF and NFDM. The 

fluorescence results were shown in Fig. 4-12. The results in Figure 4-12 represented one run of 

experiment with triplicate measurement, which was not enough to perform a complete statistical 

analysis but was clear enough to show the general response. The large fluorescence difference 
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observed with NFDM between 0 ppm control and 1000 ppm BPB demonstrated that BPB was 

effectively binding to some fluorescent substance(s) in NFDM. The mixture of casein and whey 

proteins showed slight fluorescence, but the quenching by BPB was limited, likely due to the low 

solubility of these two proteins. On the other hand, lactose did not appear to bind BPB to any 

degree. As a result, some substances in NFDM, most likely proteins, were effectively binding to 

BPB, which was likely blocking its synergistic antimicrobial effect with mild heating. This 

suggests that successful potential food processing applications would likely be foods that do not 

contain large amounts of proteins. 

Overall, the data suggest that the lack of enhanced thermal inactivation by BPB in PIF 

and NFDM was due to its interaction with the protein components.  

 Figure 4-11: Fluorescence test results on isolated content of NFDM with and without 1000 ppm 

BP. 

 

*  Results represented one replicate. 
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4.2.2 NFDM study 

 Previous experiments on rehydrated PIF indicated that the proteins in PIF and NFDM 

quench thermal enhancing activity of BPB when powder dissolved in water. Aqueous phase 

might help proteins solubilize and interact with BPB. A second NFDM study was undertaken to 

assess the potential application of BPB in dry powders held at an elevated temperature (55 °C) 

for 15 days. NFDM was inoculated with C. sakazakii, and BPB added to a level of 125 ppm in 

final powder product. The water activity of (a) NFDM controls without inoculation or BPB 

inclusion, (b) NFDM inoculated with C. sakazakii but not containing BPB, and (c) NFDM 

inoculated with C. sakazakii and  BPB all had aw values in the range of 0.25 to 0.30 without 

significant differences. The microbial loads generally followed first order log-linear inactivation 

kinetics (Fig. 4-12). The background microbiota was low and remained unchanged at both room 

temperature and 55 °C for 15 days. The level of C. sakazakii in the inoculated samples that were 

held at 55 °C declined by less than 3 logs over the 15-day, while the NFDM held at room 

temperature declined by approximately 0.5-log. There was no difference in the rate or extent of 

C. sakazakii inactivation at room temperature in the presence or absence of 125 ppm BPB.  At 

55 °C, the rate of inactivation was slightly greater in the NFDM containing BPB than the 

corresponding NFDM without BPB, however, the difference was minimal.  The data indicated 

that the addition of BPB to dry NFDM did not offer enhanced thermal inactivation.  

The results were somewhat confounded by the observation that over the course of the 15-

day 55 °C treatment, the aw dropped from an initial level of approximately 0.25 to 0.045 in all 

three groups over the 15-day, 55 °C storage. The decrease in aw would be expected to increase 

the thermal resistance of C. sakazakii. Whether this had any practical impact would require 
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future trials where samples are thermally treated in sealed containers to prevent the further 

desiccation of the NFDM.  

 

 Figure 4-12: Survivor curves of C. sakazakii in NFDM powders with different treatments for 15 

days 

 

*  All of points represented one replicate. 
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commercial apple juice made from apple juice concentrate was selected to assess the potential 

bactericidal enhancement resulting from BPB and mild thermal treatments. 

 The primary components of clarified commercial apple juice are quite simple, whether 

freshly pressed or processed from concentrates. The major components of apple juice from 

concentrates are filtered water, apple juice concentrate, natural flavors, malic acid and ascorbic 

acid. (This information was obtained from the ingredient label of the brand of commercial apple 

juice used to conduct this study.)  Apple juice does not contain notable amounts of protein or 

other complex organic molecules, so it was hypothesized that it would not inhibit BPB. One 

additional important characteristic of apple juice was its acidity (pH range = 3.35 to 4.00), with 

malic acid as its primary organic acid.  The mean pH observed with the commercial apple juice 

used in these studies was 3.80.  This pH/acidity would be expected to enhance microbial 

inactivation during thermal processing. This enhancement was likely to be due to apple juice’s 

low pH and possibly malic acid or ascorbic acid or the combination of both pH and organic acid 

anion. As a result, experiments were designed to investigate the enhancement of thermal 

inactivation by both BPB and malic acid in apple juice and the influence of pH on BPB and 

malic acid bactericidal effects. In addition, the effect of malic acid at low pH on microbial 

inactivation and its potential synergism with BPB. All of experiments with apple juice were 

conducted with C. sakazakii at 58 °C. 

 

4.3.1 Room temperature and 58 °C controls 

The pH value of apple juice used in the study was approximately ranged from 3.65 to 

3.85, and and all juice used for these studies was from the same lot. For purposes of the 

following experiments, the original pH of original apple juice was assumed to be 3.80. It was 
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assumed that the pH/acidity of apple juice would have some degree of bactericidal effect without 

inclusion of BPB. As before, the BPB was dissolved in 80 μl of 70% ethanol, so ethanol only 

controls of 80 μl of 70% ethanol were included. There was no significant differences between 0 

ppm BPB controls and ethanol only control groups. For subsequent trials, the average values of 

BPB control group and ethanol control group were used as the general control group of 

Cronobacter sakazakii 607 in original pH apple juice at 58 °C throughout the experiments (the 

“combined control” in Figure 4-13).  

 

 Figure 4-13: Survivor curves of controls of Cronobacter sakazakii 607 in original pH apple juice 

at 58 °C. 

 

 * All of points represented three replicates. 
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only and apple juice with 80 µl of 70% ethanol. The 80 µl of 70% ethanol used to solubilize BPB 

did not change the survival pattern of C. sakazakii in apple juice at room temperature. Less than 

a 1-log reduction in C. sakazakii was observed at room temperature in apple juice with 125 ppm 

BPB. Thus, 125 ppm BPB was not an effective antimicrobial at room temperature after a 10 min 

exposure, despite the low pH of the apple juice. 

 

 

Figure 4-14: Survivor curves of C. sakazakii with BPB or ethanol at room temperature. 

 

 

*  All of points represented three replicates. 
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4.3.2 Evaluation of the effect of BPB on the thermal inactivation of C. sakazakii in 

apple juice at pH 3.8 

 Apple juice was inoculated with a 24-h C. sakazakii culture and designated levels of BPB 

was added just prior to the start of a thermal trial, using the submerged coil apparatus at 58 °C. 

The initial trials evaluated the effect BPB effect at the original apple juice pH (3.80) (Fig. 4-15). 

The BPB enhanced the effect mild heating in a concentration dependent manner (Fig. 4-15). The 

0 ppm BPB controls heated at 58 °C achieved more than 6-log reduction in 600 seconds whereas 

addition of 125 ppm BPB reached 6-log reduction in less than 30 seconds. Because the microbial 

populations decreased so rapidly, calculation of D-value could only be considered estimates. 

Both the 31.25 ppm and 62.5 ppm groups showed similar patterns, reaching a 6-log reduction 

within 300 seconds. Lack of sampling point between 200 seconds and 300 seconds created 

difficulty to determine the exact time to finish 6-log reduction, but they were significantly 

different from 0 ppm group (P<0.05). It is clear that low levels of BPB were highly effective at 

enhancing inactivation of C. sakazakii in apple juice at 58 °C. 

 

Figure 4-15: Survivor curves of C. sakazakii in pure apple juice at 58 °C with different levels of 

BP. 
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*  All of points represented three replicates. 

 

4.3.3 Investigation of effect of pH on the synergistic effect of BPB and heating at 58 

°C on the inactivation of C. sakazakii in apple juice 

 Apple juice adjusted to pH 5.0, 6.0, 7.0, 8.5, and 9.0 was used as the experimental matrix 

to determine the effect of pH on the enhancement of thermal inactivation at 58 °C by 125 ppm 

BPB (Fig. 4-16). The pH 8.5 value was specifically chosen because the pKa of BPB is 8.48. As 

the pH values increased, the synergism of BPB generally decreased. Compared to pH 3.8/125 

ppm BPB conditions, survivor curves at higher pH values displayed greater heat resistance, i.e., 

significantly higher D-values. In general, biphasic survivor curves were observed, with rapid 

bacterial inactivation during the first 100 sec in the pH 5 to 9 trials. After 100 sec, the slopes of 

the survivor curves decreased in a largely pH dependent manner. Particularly noteworthy is a 

comparison of the pH 3.8/0 ppm BPB survivor curve and that of the pH 9.0/125 ppm BPB 

survivor curve which were roughly equivalent.  This suggests that at pH 9 the BPB has lost all of 

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

Lo
g 

(C
FU

/m
l)

Time (s)

31.25ppm BP 62.5ppm BP 125ppm BP 0ppm BP

Limit of Detection



 55 

its ability to enhance thermal inactivation of C. sakazakii. At pH 9, BPB should largely be in 

dissociated form and therefore be no longer able to penetrate the cell membrane.  

 

 Figure 4-16: Survivor curves of C. sakazakii in pure apple juice with adjusted pH at 5, 6, 7, 8.5, 

and 9 with inclusion of 125 ppm BPB at 58 °C 

 

*  All of points represented three replicates. 

 

The Henderson-Hasselbalch Equation (pH = pKa + log[A-]/[HA]) was used to calculate 

the percentages of BPB that would be in the undissociated form. At pH 5.0, 6.0, 7.0, 8.5 and 9.0 

the percent undissociated BPB would be 99.97%, 99.67%, 96.73%, 48.28%, and 22.79%, 

respectively. Survivor curves of pH 5 and 6 shared highly similar inactivation pattern and this 

similarity generally agreed with the ratios of undissociated form of BPB. Based on the combined 

results of apple juice survivor curves at pH 5 to 9 with 125 ppm BP, we studied the survival 

kinetics at pH 7.0, 8.5 and 9.0 in more detail. This pH range brackets the pKa transition of BPB. 
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We then tested survivor kinetics at pH 7, 8.5 and 9 with and without 125 ppm BPB. (Survivor 

curves not shown). Using the regression analysis to calculate the slopes and derive D-values for 

comparison did not provide useful insights. Alternatively, a comparison on the total log 

reduction achieved in 600 seconds for each treatment combination provide useful. The total 

reduction for the 0 and 125 ppm BPB trials were plotted at the three pH values (Fig. 4-17). To 

assess the “BPB effect” the degree of microbial reduction (log CFU/ml) from the apple juice 

without BPB was subtracted from the microbial reduction in the apple juice containing 125 ppm 

BPB (Fig. 4-17). The total reduction of control groups in 600 seconds increased as the pH 

increased whereas the 125 ppm BPB groups have highly consistent total log reductions at all 

three pH values. These results suggested that at pH values ≥ 7.0 the lack of BPB enhancement is 

offset by decreased heat resistance of C. sakazakii as the pH becomes more alkaline. This 

suggested that future research should consider expanding these data to even more basic pH 

levels. 

 

Figure 4-17: Total log reduction of C. sakazakii in apple juice at pH 7-9 with and without 125 

ppm BP at 58 °C in 600 seconds 
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*  All of points represented three replicates. 

 

4.4.4 Investigation of synergism in apple juice at pH below 5.0 with additional MA 

After the investigation of apple juice at pH higher than 5, we also conducted trials at a pH 

range from 3.2 to 4.2 (Figure 4-18). At pH 3.2, the strong acidity eliminated the microbial 

population from more than 8.5 logs to below lower detection limit in 10 seconds. And this level 

of inactivation for pH 3.4 group required 60 seconds. Because we stopped sampling pH 3.6 

group at 100 seconds, we could only conclude that 5-log reduction required at pH 3.6 was around 

100 seconds. The inactivation rates of pH 3.8 and pH 4 groups were similar, and pH 4.2 group 

only achieved a 4-log reduction in 600 seconds. In general, the survivor curves of pH 3.2 to 4.2 

showed clear trend that as the pH declined, the thermal inactivation significantly enhanced. 

 

Figure 4-18: Survivor curves of C. sakazakii in apple juice with 0 ppm BPB at 58 °C adjusted pH 

range from 3.2 to 4.2. 

0

1

2

3

4

5

6

7

6.5 7 7.5 8 8.5 9 9.5

To
ta

l l
og

 re
du

ct
io

n

pH of apple jucie

BP effect Control 125BP total



 58 

 

* All of points represented three replicates. 

 

Another organic compound that might be influencing microbial inactivation was malic 

acid (MA). According to Krueger Food Laboratories (Krueger Food Laboratories, 2019), the 

median concentration of MA in commercial apple juice is 0.45 g MA/100 g apple juice, with 

most samples falling within the range of 0.3 and 0.6 g/100 g. To investigate the potential 

synergism among BPB, MA, and mild heating processing, apple juice with additional 0.5 g MA 

/100 g was used as liquid matrix to test the survivor kinetics of C. sakazakii at 58 °C. (Figure 4-

19). This liquid matrix was considered as 200 % (2X) MA apple juice. The additional 0.5g 

MA/100 g dropped the pH of apple juice from 3.8 to 3.2, and the pH had to be subsequently 

adjusted with 1N NaOH solution to 3.2 to 4.2 to invest the MA effect on microbial inactivation 

kinetics. The 2X-MA apple juice at pH 3.2 and 3.4 both reached more than 6-log reduction 

within 10 seconds at 58 °C, and 2X-MA apple juice at pH 3.6 achieved more than 6-log 

reduction within 50 seconds at 58 °C, which was faster than the 1X-MA control group at pH 3.6. 
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The time required to achieve a 6-log reduction in original apple juice at pH 3.8 with inclusion of 

125 ppm BPB was within 30 seconds. The inactivation rates of all these four groups were 

considerably fast, and 125 ppm BPB showed similar extent of antimicrobial effect compared to 

2X-MA groups at pH values below 3.6 without BPB. However, BPB was used at an extremely 

lower concentration level and it would not change the pH of matrix. On the other hand, if we 

compare 2X-MA group at pH 3.8 and original apple juice group at pH 3.8, we could clearly 

conclude that MA significantly increased microbial inactivation rate. The additional 0.5g/100g of 

MA reduced the time required for 6-log reduction from 600 seconds to less than 300 seconds. 

When the pH of apple juice raised to 4.0 and 4.2, the addition of MA did not induce synergism 

on microbial inactivation compared to original apple juice at pH 3.8. Based on their survivor 

curves, all three conditions required around 600 seconds to achieve a 6-log reduction. 

Figure 4-19: Survivor curves of C. sakazakii in apple juice with additional 0.5g/100g MA at 

adjusted pH range from 3.2 to 4.2 at 58 °C 
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To further compare the synergism induced by MA and BP, low level of BPB was added 

to 2X-MA apple juice that the pH was already adjusted back to 3.8. And the survivor curves 

prior to 300 seconds were plotted in Figure 4-20 for the comparison between original apple juice 

and 2X-MA apple juice. With additional 0.5g MA/100g apple juice, the inactivation rate 

increased to the same level of original apple juice with 31.25 ppm BPB. These two survivor 

curves almost perfectly overlapped, which means the inactivation rates were same. Thus, in the 

apple juice added with 0.5g MA/100g, adjusted the pH back to 3.8 and supplemented with 31.25 

ppm BP, there was a clear synergistic interaction between MA, BPB, and mild heating, i.e., the 

additional portion of MA helped decrease the time required to achieve 6-log reduction from 300 

seconds to 60 seconds. 

 

Figure 4-20: Survivor curves of C. sakazakii in apple juice with additional 0.5g/100g MA and 

inclusion of 31.25 ppm BP at pH 3.8 at 58 °C 
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Chapter 5: Discussion, Conclusions, Recommendations for Future 

Research and Potential Impact of Study 

5.1 Discussion of study 

Approved preservative, BPB, was investigated for their bactericidal and fungicidal 

properties, including the synergistic effects of BPB with mild heating in different models and 

food matrices. In general, the addition of low levels of BPB significantly enhanced the thermal 

inactivation at mild heating temperatures.  

5.1.1 Brain and heart infusion broth study 

This study examined the potential synergistic effect on inactivation of four foodborne 

pathogenic bacteria, Cronobacter sakazakii 607, Salmonella enterica serotype Typhimurium, 

attenuated Escherichia coli O157:H7 and Listeria monocytogenes, during mild heating by 

inclusion of BPB in BHI model matrix. The results indicated that low levels of BPB produced a 

significant synergistic enhancement of the thermal inactivation at mild heating temperatures. 

Minimal use of ethanol as a solubilizing agent generally did not affect the microbial inactivation. 

Microbial levels in room temperature controls with and without addition of BPB generally 

remained unchanged during treatment, demonstrating that BPB and mild heating were acting 

synergistically. Addition of paraben can significantly enhance the rate of thermal inactivation of 

foodborne pathogens, which may enable mild heating temperatures or shorter processing times. 

This study provides a proof of concept that identification of synergistic processing agents could 

be a means of enhancing the lower temperature thermal processing.  

The only Gram-positive microorganisms tested in this study was L. monocytogenes, and 

it showed a different inactivation pattern than the other three gram-negative bacteria. The 

inactivation of L. monocytogenes was a two-phase process including a relatively rapid death at 
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the beginning of the heat treatment, followed by a slow decrease in the second phase. The 

transition point was approximately at 300 seconds. This type of two-phase inactivation modes 

was observed both in control group (the treatment without any chemicals) and BPB treatment 

groups. These survivor kinetics curves suggested that there was a subpopulation that was quickly 

injured and inactivated. But the underlying reason that this phenomenon only occurred in L. 

monocytogenes remained undiscovered. We did not test other Gram-positive strains in this study, 

so we cannot conclude this two-phase kinetics was only associated with L. monocytogenes or it 

was the characteristic of Gram-positive strains. Listeria monocytogenes also showed high 

resistance to the combined of BPB and mild heating treatment. The highest concentration at 125 

ppm butyl parabens combined with 54 °C heating only produced approximately 3.5-log 

reduction to Listeria monocytogenes in 15 minutes. One of the possible explanations is that 

gram-positive organisms have a different cell structure than gram-negative organisms. In gram-

positive microorganisms, peptidoglycan (PG) accounts about 40% or more of the mass of cell 

wall, and it contains one or more (depending on species) non-PG (or accessory) wall polymers, 

such as teichoic acids (TAs), teichuronic acids (TUAs), and/or neutral or other acidic poly 

saccharides (Shockman and Barrett, 1983). The thick PG layer and teichoic acids might have 

blocking effect that prevent BPB getting through the cell wall and cell membrane. We estimated 

that the structural difference was most likely the reason that L. monocytogenes showed the most 

resistance to the treatment. However, our results did not agree with Eklund’s study (1980) and 

Freese’s study (1973): they stated that gram-negative bacteria were, most likely, resistant to the 

parabens owing to a screening effect by the cell wall lipopolysaccharide layer. Additional future 

studies will be necessary to determine the underlying principle of this phenomenon.  
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5.1.2 PIF and NFDM study 

With the knowledge of the synergism between mild heating and BPB on the inactivation 

of these four pathogens, the study extended the application of this treatment on C. sakazakii to 

dry powder matrix powdered infant formula (PIF) and non-fat dry milk (NFDM).  The overall 

experimental results indicated that BPB was not effective on enhancing C. sakazakii thermal 

enhancement in PIF or NFDM in both rehydrated form and dry powder form. PIF contains large 

portion of lipid contents and BPB is usually easily to solubilize in lipid portion rather than 

aqueous portion. In rehydrated PIF study, the effectiveness might be limited because BPB simply 

precipitated from liquid mixture or partition into lipid portion in PIF. In order to reduce the 

thermal resistance of bacteria cells, BPB must have direct contact with the cells, and either of the 

cases allowed this type of contact. Heated water with minimal amount of DMSO was used to 

rehydrate PIF to help the water solubility issue. (Data not shown). The results showed no 

noticeable difference from regular water group at the same condition. However, there was no 

efficient test to examine whether the addition of DMSO will completely solve the problem of 

BPB precipitation in PIF rehydrating water. On the other hand, NFDM was selected to substitute 

PIF to avoid the partitioning issue associated with high fat content in PIF. According to Figure 4-

9, rehydrated full serving size of NFDM completely inhibited BPB’s effect on bacteria 

inactivation at 58 °C: it achieved approximately 2-log reduction in 600 seconds, and it was 

consistent with the control group in BHI study at 58 °C. The fluorescence test results revealed 

the interaction between BPB and NFDM, and the interaction was most likely only occurred with 

proteins in NFDM but not the lactose. Survivor curves of C. sakazakii in BHI with 125 ppm BPB 

and addition of different percentages of NFDM or lactose at 58 °C also confirmed the results 
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from fluorescence test. In conclusion, the application of BPB in food processing are not likely to 

be effective in foods that contain high fat and/or protein contents.  

To minimize the partition of BPB into fat content and the contact between BPB and 

proteins in rehydrated PIF, low level of BPB was added in dry NFDM powder in which the 

protein would not flow around. Although the results indicated BPB was not effective in NFDM 

powder at 55 °C, we could not simply conclude the underlying mechanism underlying this effect. 

It might also cause by the interaction between proteins and BPB, or the lack of contact between 

BPB contact with the bacteria cells, so it could not disrupt the cell membrane permeability. 

Sampling method on detecting the microbial loads in NFDM involved a rehydration step at room 

temperature. Considering the insolubility of BPB and the low water temperature, the contact 

between BP and bacteria cells in sampling step was likely negligible. 

Another parameter associated with PIF and NFDM study was water activity. 

Microorganisms in low-moisture environments are in general more tolerant to heat (Syamaladevi 

et al., 2016). The current experiment did not control water activity over the complete time course 

of 15 days: the water activity of samples stored at 55 °C dropped from approximately 0.240 to 

0.045 in 15 days, while the room temperature groups remained unchanged. The samples were 

stored in petri dishes without completely sealed but this condition was close to the real-life cases. 

This setting introduced a parameter that was changing during the experiment. So, we could not 

conclude the 3-log enhanced reduction observed in elevated temperature groups was only 

resulted from the temperature difference. 
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5.1.3 Apple juice study 

The only liquid food system tested in this study was apple juice. Low pH, low levels of 

MA and BPB all could significantly enhance the C. sakazakii inactivation at 58 °C. The results 

also proved that parabens had a wider effective pH range compared to benzoic acid (Aalto et al., 

1953). In the comprehensive pH study on the effectiveness of BPB, 125 ppm BPB at pH above 5 

showed significant difference compared to 125 ppm BPB at pH 3.8. Although pKa of BPB was 

8.48, results showed that 125 ppm BPB could significantly strengthen the inactivation even at pH 

9 condition, achieving 6-log reduction in 600 seconds. Compared to the control groups at pH 7-9, 

125 ppm BP were still effective in a limited manner on enhancing C. sakazakii inactivation at 

58 °C in all three pH values. But the enhancement induced only by BPB weakened as the pH 

increased. According to the Henderson-Hasselbalch equation, the undissociated form of BP 

amount substantially decreased as the pH increased to the pH around pKa. And the results 

generally agreed with this hypothesis.  

There was only one set of experiment examined the relationship between malic acid and 

BPB in thermal inactivation (Figure 4-20), and we concluded with an additive relationship. 

However, more data is needed define if the enhancement on thermal inactivation resulted from 

two chemicals was definitively additive rather than synergistic. This experiment was conducted 

only at pH 3.8, so it also excluded the potential effect of pH on the relationship between two 

chemicals. 

 

5.2 Conclusion 

 In conclusion, BPB was generally efficient on assisting the thermal inactivation at mild 

heating temperatures in food does not contain extensive amount of protein and lipid contents. In 
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BHI study, C. sakazakii 607, attenuated E. coli O157:H7, S. Typhimurium, and L. 

monocytogenes were all observed significant enhancement on thermal inactivation with low 

levels of BPB (<125 ppm) at temperatures no more than 58 °C. And the enhancement was 

completely induced by BPB. PIF and NFDM studies indicated BPB was efficiently interacting 

with some component of PIF and NFDM, most likely proteins. And this interaction completely 

inhibited the effect of BPB. In apple juice, the acidity also facilitated the synergism between BP 

and mild heating, and the synergism reduced as the pH increased from 3.8 to 9. At the same time, 

malic acid in apple juice also drastically assisted thermal inactivation and the synergism between 

BPB and mild heating inactivation, which indicated apple juice would be a suitable food 

example for BPB application in thermal processing. 

 

5.3 Recommendations for future research 

In BHI study, the results indicated that L. monocytogenes was the most resistant strain 

against BPB at mild heating. It might be resulted from the gram-positive cell structure properties 

or it was the special characteristics of L. monocytogenes. Using other gram-positive 

microorganisms and other Listeria strains such as L. innocua, L. ivanovii. and L. seeligeri to 

perform the same treatment would be a proper choice to confirm the hypothesis. And it can be 

proved by comparing the antimicrobial activities under the same treatment condition and 

observing the membrane transport under electron microscopy combined with fluorescent 

staining, which would a proper future experiment. Another possible future study is to use the 

cocktail strains of each of four bacteria and perform the same set of treatments combined with 

PCR and DNA polymorphism analyses. The strains tested in this study are the typical 

representative strains or the most heat-resistant strains, but the resistance may vary among 



 67 

different strains within the species. Therefore, an alternative future study will be using the 

cocktail of various clinical isolates to test the resistance to BPB. If the difference occurs, we can 

also use molecular techniques to investigate the gene expression differences and potentially 

identify the genetic characterization of the resistance to this combined treatment. 

Based on the chemical structure of BPB, it was easily dissolved in lipid but nearly 

insoluble in water at room temperature. We used NFDM to eliminate the partitioning problem 

associated with fat content. However, it will be more definitive if there were studies on 

estimating the BPB level in lipid portion. There will be difficulties on isolating the lipid content 

from food matrix and maintain the substances in lipid. But wisely designing an experiment to test 

the BP concentration in lipid will be a proper future research direction. 

Water activity was not strictly controlled in NFDM study, and it restricted us from 

making definitive conclusion that the enhanced thermal inactivation was completely from 

elevated temperature. To solve this problem, it will be beneficial to conduct a similar experiment 

that monitor the microbial population in sealed package with controlled water activity. With 

consistent water activity, we will be able to isolate and examine the potential synergism of BPB 

at elevated temperatures in dry powder foods. 

 The apple juice study revealed the potential pH effect on BPB synergism. Therefore, 

conducting the experiment at higher pH values (above 9) will be supportive to assess the 

quantitative relationship between the synergism and undissociated form of BP. Malic acid in 

apple juice also enhanced the microbial inactivation. And it needs more experiments with 

different levels of MA and BPB in wider pH range to determine if there is additive or synergistic 

antimicrobial effect between MA and BPB in thermal inactivation. At the same time, apple juice 

contains low level of ascorbic acid that might affect the results. Therefore, analyzing the 
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concentration of ascorbic acid and their potential effect on thermal inactivation will also be a 

recommended future study. 

5.4 Potential Impact of Study 

BHI study could serve as a model system to study the effect of BPB combined with mild 

heating against these four microorganisms. The data collected from this model system would 

provide some fundamental understanding of their resistance to butyl paraben during thermal 

processing. And those fundamental studies will help develop the potential preservative formula 

in food and innovative processing approaches. 

A section of this study was to apply the treatment onto foods and collect some primary 

experimental data on how feasible the treatment is during food processing. And the data would 

provide some understanding on both dry food and liquid food. The tests on the pH effect of this 

treatment also offered an overview of how the food pH will change the efficiency of this 

treatment. 
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