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Abstract

Context-free grammars provide the basis for many useful tools such as parser-
generators, compiler-compilers and syntax-directed editors. This paper demonstrates
the potential benefits obtained when context-free grammars are used to define complex
objects in the relational model. The grammar formalism facilitates relational queries
on the hierarchical structure of these objects and promotes the use of grammar-based
tools as front ends to relational database systems.

Keywords: Advanced Applications, Data Models, Query Languages, Complex Objects

1 Introduction

Several research projects ([BK85,CNR90,Lin84,LKM*85,RY85,Row89], among others) pro-
vide relational database support for complex objects such as engineering part descriptions,
text, and software programs. The schema for these projects is defined using the relational
schema definition language and, due to the nature of complex objects, the data of a given
object is often distributed over several relations. These relational schema definitions do
not indicate how the relational data is derived from the original objects or how it can be
combined to reconstruct the original objects. This information must be reflected in data
extraction tools and queries that are written by the user. Furthermore, the resulting rela-
tions only store aspects about the objects that are of interest to the current application.
This poses a problem for query evolution: As the application evolves and new queries arise,
additional information about the objects (which was most likely part of the original speci-
fication) must be gathered and stored in the database. The data extraction tools must be

constantly rewritten to reflect these changes.

*This research was sponsored partially by the National Science Foundation under Grant IR[-8719458, hy
the Air Force Office for Scientific Research under Grant AFOSR-89-0303, and by the University of Maryland
Institute of Advanced Computer Studies.



Grammars have been described as a useful representation for data structures [GT83]
and hierarchical structures in information [GT87]. A formal description of a grammatical
database model is described in [GPV89]. However, they do not discuss how this model is
realized in a relational database system.

This paper proposes one translation of grammatically defined complex objects into re-
lational schema and demonstrates how the grammar definitions form a basis for tools that
support the population and manipulation of the database. Section 2 formally describes a
grammatical schema definition language and gives an algorithm, GeneRel, that translates
the grammatical schema to relational schema under which these objects are stored. Section 3
describes a tool-generator, GeneParse, that generates parsers that populate the database,
illustrating the potential for building tool-generators whose products support database op-
erations for these objects. Support for a grammar catalog, described in section 4, js obtained
by applying GeneParse to a grammar that defines the structure of the input grammars (the
meta-grammar). GeneRel and GeneParse are implemented as semantic actions of the meta-
grammar, and the implementation of the grammar catalog is generated by applying these
tools to the meta-grammar itself. Section 5 discusses the issue of querying these objects,
introducing three graph operators that facilitate the manipulation of hierarchical structures.
The computation of each operator is contained in the fixed point of a set of queries that
are derivable from the grammar specifications. Finally, Section 6 discusses issues of query

evolution that are related to efficiency.

2 Grammatical Schema Definition Language

The grammatical schema definition language we derive, tagged context-free grammars
(TCFGs), is a variant of context-free grammars that incorporates the concept of tokens,
adapts the closure notations from regular expressions, and includes tag-names for uniquely
identifying symbols in the grammar.

Tokens facilitate the grouping of terminal characters into single entities [HU79]. TCFGs
have two classes of tokens: delimiters — tokens whose domain consists of a single value, and
lericone — tokena whose domain consists of more than one value, Furthermore, lexicons and
nonterminals are referred to collectively as nondelimiter symbols. A lexical analyzer that
returns tokens and their values must accompany each grammar.

Closure notation, used in regular expressions, is convenient for representing repeating
structures. Kleene closure applied to a symbol (i.e. x*) represents all strings that are a con-
catenation of zero or more occurrences of strings derivable from the symbol (i.e. 0, x, xx,x™);

positive closure applied to a symbol (i.e. x*) represents the same set of strings as kleene clo-



sure minus the null string (). We incorporate this notation into TCFGs because it encourages
the utilization of the set retrieval aspects of the relational query languages.

Tag-names, inspired by [MN88|, allow the user to specify meaningful names for the gen-
erated relations and attributes. All occurrences of nondelimiter symbols (i.e. nonterminals

and lexicons) are tagged.!

Definition 1 A tagged context-free grammar (TCFG)is a 7-tuple £ = (5,V, L, D, R, A, P)
where V is a finite set of nonterminals; I, is a finite set of lexicons; D is a finite set of
delimiters; R is a set of production tag-names; A is a set of non-delimiter tag-names; V',
L, and D are disjoint; S € V is the special start symbol; and P is a set of productions.
Productions are classified as either constructors or lists. A constructor production has the
form:

<r:N> — wy<ag:N;y>...wx <ag:Ng> wgit,
and a list production has the form:
<Tr:N> — <ap:lNp>F

where r is a production tag-name, N is a nonterminal, wi is a possibly empty string of
delimiters, aj is a non-delimiter tag-name, Nj is a nonterminal or lexicon, and O is either *
or +. n

Example 1 Mechanical engineers wish to provide database support for information about
parts in a manufacturing resource planning (MRP) system [HY88]. The MRP system keeps
a part master record for each part which contains the part number, textual specification,
and other auxiliary data such as unit of measure and leadtime. Parts are either purchased
or manufactured. Information about the supplying vendor and cost is recorded for each
part that is purchased. A bill of material is kept for each manufactured part, which contains
the quantity of each subpart that is required to manufacture the part. The following TCFG

captures this information:

<pmr:part> —  <p#:int> <descr:str> <uom:int>
<leadtime:int> <partType:type>

<vendor:type> —+ <vendorName:str> <cost:int>

<bom:type> — <subpartQty:subpQty>+

<subparts:subpQty> — <subpart:part> <qty:int>

This example contains four productions with production tag-names pmr, vendor, bom, and
subparts for the three nonterminals part, type, and subpartQty. Notice that the produc-

tion tag-namee vendor and bom differentiate betwoen type information for purchased and

1Note that this restriction need not be inflicted on the user; we have built an automatic tagger that

generates TCFGs from YACC grammar specifications.



manufactured parts respectively. There is a non-delimiter tag-name for each occurrence
of a nonterminal or lexicon on the right-side of the productions. There must be a lexical
analyzer that returns tokens for lexicons int and str and their corresponding values, and
would also be responsible for returning tokens for delimiters if there were any. This TCFG
is recursive, since a manufactured part’s bill of material must contain at least one subpart

(indicated by positive closure) which is, in turn, a part. ]

GeneRel is an algorithm that translates a TCFG into relational schema definitions.

Definition 2 A relational schema definition has the form:
create r(aj :dy [not nulll,...,ax:dx [not null])

where r is the relation name, the ajs are attribute names (which are unique within the
definition), the dis define the domains of their corresponding attributes, and not null is
a string which is attached to each attribute that participates in the key of the relation. =

Each nonterminal and lexicon symbol in the TCFG has a corresponding domain. The
domain N contains a surrogate? for each derivation of the nonterminal N stored in the
database. The domain L represents the syntactic category defined by the lexicon L.

One relation scheme is generated for each production in the TCFG. The form of the
relation schemes generated for the two types of productions is similar and is summarized
in Figure 1. Each generated relation inherits its name from the production tag-name of the
corresponding production. It has one attribute for each non-delimiter symbol on the right-
side of the production; the attribute’s name is the same as the non-delimiter’s tag-name
and the attribute’s domain is a domain that corresponds to the non-delimiter symbol. Each
relation has an attribute named occur which is defined over the domain that corresponds to
the left-side nonterminal of the production. Relations representing list productions have an
additional position attribute that indicates the order between elements in the same list.
The key for relations generated from constructor productions consists of the single attribute
occur; the key for relations generated from list productions consists of the attribute pair

(occur, position).

Example 2 The relational schema definitions generated from the TCFG in Example 1 are:

*We assume the relational model ([Cod79]) extended with domains of surrogates as described in [HOT76].
Surrogates are system generated internal identifiers that are ideal for representing unnamed objects.



Production Relation

Constructor

<r:N> — wy<ag:Nyg>...wp<ag:Ng>wg,q | r(occur:N,ay Ny, .. .ap:Ng)

List

<r:N> — <ag:Ny>F r(occur: N,ay : Ny, position : counter)

Figure 1: GeneRel

create pmr(occur:part not null, p#:int, descr:str,
uom:int, leadtime:int, partType:type)
create vendor(occur:type not null, vendorName:str, cost:int)
create bom(occur:type not null, subpart(ty:subpQty,
position:counter not null)
create subparts(occur:subpQty not null, subpart:part, qty:int)

There are four productions in Example 1, so four relations are generated. There is a do-
main of surrogates (part, type, subpQty) corresponding to each of the three nonterminals,
and the lexical domains int and str contain all values that are in the syntactic category
returned by the lexical analyzer for the corresponding lexicons. The relation bom has a

position attribute since it is generated from a list production. "

3 Database Population

Context-free grammars provide the basis for many extremely useful tools such as parser-
generators, compiler-compilers and editing environments. For instance, we have designed
and implemented a tool, GeneParse, that generates parsers that populate the database.
This tool is appropriate in applications, such as programming languages, in which objects
are defined by context-free grammars and are written as sentences of the grammar.
GeneParse generates one parser, parser™, for each TCFG. Sentences accepted by the
TCFG can then be parsed and stored under the TCFG’s corresponding relational schema.
Each production in the TCFG is translated into an equivalent production in YACC[Joh78].
The translation for constructor productions is straightforward — tags are removed and the
proper delimiters are used. The list productions generate two YACC productions: one is
left recursive and the other is either a single symbol (for T) or the empty string (for *). In
addition, GeneParse generates semantic actions that insert the sentences into the database

when the corresponding productions are recognized.



begin

X:=3

if X == 4 then

e s——.
X :=5
occur stmt position
else
STS1 ST1 1 assign
if X == 3 then
STS1 ST2 2 occur var value
STS2 5T3 1 ST1 nyxn nan
else
STS3 ST4 1 ST3 ayn g
X:=3
3TS4 ST5 1 STS nyr ngn
endif
STSs STe 1 STé nyn nan
endif
end
ifstmt equal
prog occur bool trueact falseact occur var value
occur body ST2 C1 5TS2 STS3 C1 "X ngr
B1 STS1 ST4 C2 STS4 STS5 C2 X" nan

Figure 2: GeneParse: Stores Data into Relations

Example 3 Software engineers are interested in providing database support for program-

ming languages, whose structures are often formally specified by grammars. The following

TCFG defines a simplified structured programming language.

<prog:block>

<stmts:stmtlist> —
<ifstmt:stmt>

<assign:stmt>

<equal:cond>

— begin <body:stmtlist> end
<stmt:stmt>*

— if <bool:cond>
then <trueact:stmtlist>
else <falseact:stmtlist> endif

<value:int>

—  <var:id> == <value:int>

—  <var:id>

. -

Figure 2 shows a program that is in the language of this TCFG and how it is stored

under the corresponding relations by the parser™ generated by GeneParse. Note that for

this example we show surrogates that would not normally be exposed to the user.

4 The Grammar Catalog

The TCFGs and their sentences correspond to the schema and data levels in the intension-

extension framework for DBMSs presented in [Mar85] and [MR87]. ? In this framework, a

3[0’C90] depicts the tasks that are associated with the usage of context-free grammars in a similar

framework.




Meta- Meta-Grammar
_____________ Grammar Schema
TCFG for TCFGs GeneParse

I !

I. s
INTENSION/ | |

! |
EXTENSION : ;

| i

A 4 ¥
TCFG-Desigher :-—__—_Sgo_réci——‘__:

] I
v Grammars (- _I\_/Ie_:t_a-_Cir_a_ mar__
""""""" 1 GeneRel Stored Grammars
A I\ S~ [T
TCFG for L Relational Schema

i i

! |
INTENSION/ I GeneParse i

! |
EXTENSION : :

i i

L3 v
USER

Sentences Stored
Sentences

Sentences in L

Figure 3: Intension-Extension Framework

relational schema is the intension of the (extensional) data. TCFGs and their sentences are
coupled to this framework using GeneRel and GeneParse (figure 3).

The middle level of this framework is the level of database definition where the user
specifies TCFGs. GeneRel generates the corresponding relational schemes, and GeneParse
generates the corresponding parser® which is employed at the lowest level to store the
sentences in the database. Additionally, the specified TCFGs are parsed and stored in
a grammar catalog. This supports, as is often necessary, access to structural information
about the data stored in the database.

In our implementation, we support the middle level of the framework having only imple-
mented the top level. Support for the grammar catalog was generated by applying GeneRel
and GeneParse to a TCFG (the meta-grammar) that describes the class of TCFGs. GeneRel

was applied to the meta-grammar to produce a set of relation schemes under which any
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TCFG - including the meta-grammar itself - can be stored. GeneParse was applied to the
meta-grammar to produce the parser™ in the middle level for storing the TCFGs in the

database.

5 Queries

The following examples demonstrate that several queries involving complex objects that are

described by TCFGs can be expressed in current relational languages. *

Example 4 What is the level 1 explosion (i.e. the immediate sub-parts) of the manufac-

tured part p1?

select sub.p#

from super as pmr, bom, subparts, sub as pmr

where super.p#=pl

and super.partType=bom.occur

and bom.subpartQty=subparts.occur

and subparts.subpart=sub.occur; n

Example 5 Which variables have a value of 4 assigned to them?

select var
from assign
where value = 4; -

Example 6 What are all the occurrences of statements?®

(select occur from ifstmt)
union
(select occur from assign); =

However, queries on complex objects frequently involve some form of recursion and,
therefore, cannot be described by standard relational queries. Several research efforts extend
the expressiveness of relational languages with limited forms of recursion such as transitive
closure [Agr88], linear recursion [JANS7], path algebra [DS86,Car78], and traversal recursion
[RHDMS86]. A survey of extensions to query languages to support graph traversal appears in
[MS90]. However, none of these extensions allow the user to express recursion that involves
multiple relations. This type of recursion is important for complex objects since the data

of a given object is often distributed over several relations.

*The examples in this section are based on the example grammars in Section 2 and Section 3.

® Although surrogates cannot be printed, they may be the intermediate results of queries.



The operators introduced in this section help the user express queries about sentences
that correspond to TCFGs. They can be combined with relational expressions to form
queries that associate information from multiple sentences even when these sentences are
derived from different TCFGs. The operators can be expressed as a system of simultaneous
relational queries (e. g. a set of queries whose fixed point contains the desired result) that

are generated from the TCFG at the same time the relations are defined.

5.1 Graph Operators - Semantics

The semantics of the graph operators presented in this section is described in terms of a
conceptual directed acyclic graph (DAG) that corresponds to the set of complex objects
stored in the relations. ® The operator derives, based on the notion of = from language
theory [HU79], reconstructs the lexical information (as defined by the TCFG) for surrogates
that represent the nodes in the DAG. The operators reach and contain facilitate the
extrapolation of parent-sibling relationships from graphs that span several relations. They
are based on the concepts of reach and inverse reach from graph theory: Suppose G is a
directed graph and there is a path from node j to node k in G; then & is in the reach of j
and j is in the inverse reach of k.

The graph operators are defined as follows:

Let S be a unary relation with one attribute of surrogate values denoting nodes: let N

be a set of production tag-names representing node types.

derives(S) is a binary relation with attributes node and sentence representing the map-

ping between nodes in S and their derived sentences.

reach(N, S) is a unary relation with attribute occur that consists of the surrogates for all
nodes that are in the reach of at least one of the nodes represented by the surrogates
in S and have one of the node types in N. If N is not specified, then all node types are

considered.

contain(N, S) is a unary relation with attribute occur consisting of the surrogates for all
nodes that are in the inverse reach of at least one of the nodes represented by the
surrogates in S and have one of the node types in N. If N is not specified, then all node

types are considered.

The queries in this paper are written in the Starburst query language [HCL*90] which,

among other features, onhances SQL with table exprossions [Dat84] and table functions,

A given object corresponds to a parse tree, but if sharing of sub-objects is supported, the set of objects

corresponds to a DAG.



Table functions are used to express the graph operators, and table expressions are used
to bind subqueries as input to the operators. A table expression, var as query, binds
the variable var to the subquery query. A table function, var as tf(p1,...,pn), binds
the variable var to the table produced by the function tf which takes zero or more input
parameters. Any of these parameters can be tables. Table expressions and table functions
are listed in the from clause of a query, and the variables are treated as table names of the
referenced tables for the duration of the query. An example of an implementation that uses

table functions to extend the query language is described in [WCL91].

Example 7 Find the part numbers of all purchased parts that are needed in the manufac-

tured part pl.

select r.occur
from i as
(select occur
from pmr
where p#=p1)
r as reach({VENDOR}, 1); ™

Example 8 Find the part numbers of all the parts that will be delayed if supplies of the
purchased part p7 are delayed.

select pmr.p#
from pmr
where pmr.occur in
(select c.occur
from i as
(select pmr.occur
from pmr
where pmr.p#=p7)
c as contain({pmr}, i)); .

Example 9 All the sentences derived from the nonterminal STMT are obtained with the

following query:

select d.sentence
from i as ( (select occur from ifstmt)
union
(select occur from assign)
), d as derives(i); .

Example 10 The surrogates of all statements that contain an assignment of the value 3

to a variable can he expressed using the contain operator.

10



select c.occur
from i as (select occur from assign where value = 3),
c as contain({stmt}, i); .

Example 11 The results of contain and reach operations can be combined with other
operators to further enhance the query. Let the result of the above query be the view P.
All conditions of if statements that contain the assignment of the value 3 to a variable can

be retrieved with the following query:

select ifstmt.cond
from ifstmt, P
where ifstmt.occur = P.occur; .

Example 12 The surrogates of all assignment statements that are embedded in if-statements
that have a condition on the variable X can be retrieved with the following query:

select r.occur
from i as (select ifstmt.occur
from equal
where var = ¢¢X’?),
r as reach({assign}, i); n

5.2 Graph Operators - Computation

A computation for each operator is derived from the TCFGs. During schema definition, a
set of SQL queries is constructed from the TCFG for each operator. An expression involving
a graph operator is evaluated by computing the fixed point of the set of queries (for that
operator) applied to the given input parameter. The construction of the set of queries for

computing reach and contain is similar, so only the computation of reach is given here.

11



The reach set of queries has one query for each production. The query, K, generated

for production with tag-name K has the following form:

select * from K
where occur in
(select I.occur from I
union
select {rhstagi} from {prodtagi},

union

select {rhstagp} from {prodtagnp}, )
where I is the relation to which the operation is applied, and for each right-side occur-
rence i of the nonterminal for production K, prodtag; is the tag-name of the production
containing this occurrence and rhstag;j is the non-delimiter tag-name of i. To evaluate
reach({K1,...,Ky},E) where K; is production tag-name from the TCFG, the fixed point of
this set of queries is computed with E substituted for 1, and the relation

{K1}, union {Kp},, ..., union {Ky}, is returned.

Example 13 Suppose we have the following grammar:

<Al1:A> — <b1:B> <cil:C>
<A2:A> —  <d1:D>*

<E1:E> — <Db2:B> <al:A>
<F1:F> — <c2:C> <a2:A>

The following queries are generated for the reach operator:

Al, = select * from Al
where occur in
(select occur from I
union
select al from El,
union
gselect a2 from Fi.)

A2, = select * from A2
where occur in
(select I.occur from I
union
select al from Ely
union
select a2 from Fi,)

12



Ely

(select * from E1 where occur in select I.occur from I)

Fir

(select * from F1 where occur in select I.occur from I)

To evaluate reach({A1, A2}, E), compute the fixed point of the reach system of queries

with E substituted for I, and return A1, union A2,. n

The derives set of queries is not as natural to the relational model as that of the other
operators because of its dependence on the position information in the list rules. It uses the
aggregate operator max and the string concatenation operator (||). The reach operator is
used to restrict the computation of derivations to only those objects that are components
of objects specified in the input relation, I.

The set of queries has one nonterminal query for each nonterminal and one list query
for each list production. A nonterminal query for nonterminal N generates the ternporary
relation Ngyy(occur, str), where str is the derivation of the object represented by occur.
Nstr is a union of subqueries, one for each production for N. The form of the subqueries is
dependent on the type of the production. A list query for a list production with production
tag name r generates the temporary relation rpg¢r(occur,position, str) where str is the
concatenation of the derivations for all surrogates including and following the positiont”
element in the list.

Recall the production forms from section 2. Let

e {<vy:Vy>,...<vp:Vy >} for n < k represent all the < ay : Ny > that are non-

terminal symbols.

o {<1y:Ly>....<1p:Ly >} for m < krepresent all the < ay : Ny > that are lexicon

symbols.
e aystr represent the string value for < ay : Ny >, where

— ayxstr = N,Str.str if Ny is a nonterminal, and

—~ axstr = r.ay if Ny is a lexicon.
o reachOfI = select r.occur from i as I, r as reach(i).

Subqueries for constructor rules where n > 0 have the form:

selact r.sceur, wy || ajetr || .. |fwg |lagetr || wy
from r, ry as Vlstr23’ .-+ In as Vpg,
where r.vqy = rij.occur and ...and r.vp = rp.occur;

13



Subqueries for constructor rules where n = 0 have the form:

select r.occur, wi || agstr || ...|lwg |lagstr || wgqq
from r, rq as V1Str, ..., Iy as V,[IStr , reachofI
where r.vy = rj.occur and ...and r.vy = rp.occur and r.occur = reachofI.occur ;

The subquery that is generated as part of the nonterminal query for list queries has the form:

select occur, str

from rrgstr

where position = 1;

The list query rps¢r for a list production where the repeating symbol is a non-terminal

has the form:

Tistr = select rigtr.occur, rrggr.position, str = {Nj}g,,..StT || rrstr.Str
from ristr, {Nijgep T
where r.position = rpgtr.position—1 and r.a = {Nj}g, .0occur
union

select r.occur, max(r.position), {Ni}g .str
from r, {Ni}g,, group by r.occur
where r.a = {Nj}gq,, .0ccur;

The list query rrger for a list production where the repeating symbol is a lexicon has

the form:

TLstr = Select rigir.occur, rpgtr.position, str = r.a || TLstr.-StTr
from rpstr, T
where r.position = rlstr.position - 1
union
select r.occur, max(r.positicn), r.a
from r, reach0fI group by r.occur
where r.occur = reachOfI.occur;

14



Example 14 The following is the derives set of queries for the language example given

in Section 3.

blOCkStr

stmtlistgty

stmtSrstr

condgtr

select prog.occur, ‘‘begin’’|| ri.str || ‘‘end’’
from prog, rl as stmtlistgyr
where prog.body = ril.occur;

select ifstmt.occur, ‘‘if’’ || ri.str ||
“‘then’’ || r2.str ||
‘‘else’’ || r3.str

from ifstmt, rl as condgtr, r2 as stmtlistgiy, r3 as stmtlistser
where ifstmt.bool = rl.occur and ifstmt.trueact = r2.occur
and ifstmt.falseact = r3.occur
union
select assign.occur, assign.var [] ‘‘:=’’ || assign.value
from assign, reachOfI
where assign.occur = reachOfI.occur;

select occur, str
from stmtlistigsir
where position = 1;

select stmtspgyr.occur, stmtspgir.position
str = stmts.stmt |] stmtspgir.Str
from stmtsygir, Stmts
where stmts.position = stmtspgty.position - 1
union
select stmts.occur, max(stmts.position), stmts.stmt
from stmts
group by stmts.occur;

“f==22 || equal.value

gselect equal.occur, equal.var ||
from equal, reachOfI

where equal.occur = reachOfI.occur;

6 Varying the Level of Decomposition

As previously mentioned, other projects that provide database support for complex objects

store only aspects about the objects that are of interest to the current application. This

poses a problem for query evolution. As the application evolves and new queries arise,

additional information about the objects must be gathered and stored in the database.

15



The premise for our work is that all the information about complex objects, in particular
textual objects, is stored in the database. If this information is stored fully decomposed
and only accessed as a whole, there is clearly a lot of unnecessary overhead required to
reconstruct the information, (i.e. the computation of derives from Section 5).

We suggest that the level of decomposition for any complex object should reflect the
level of access needed to support the applications that are querying this information. The
combination of GeneRel, GeneParse, and derives provides this flexibility. Information
for which component fields are not being accessed can be composed. If, in the future, it
is necessary to access the components of these fields, the information needed to parse the
composed fields is contained in the stored TCFG. Furthermore, if the component fields are
being accessed frequently, relations for storing these fields can be generated and the data
in these fields can be decomposed into the new relations.

The level of decomposition is specified by a set of composite nonterminals. The decom-
position of a composite nonterminal, N, can be automated. The procedure that decomposes

N must perform the following:

1. apply derives to the meta-grammar to regenerate the TCFG from the Catalog

2. let Gy represent a TCFG with start symbol N that contains all productions reachable
from N in the original TCFG:

¢ apply GeneRel to Gy to define the new relations needed to support the decom-
position of N

e apply GeneParse to Gy to generate a sub-parsert for parsing and storing the
composed lexical fields of N

3. for every production that has N on the right-side, generate a new relation with the
same structure as the old relation replacing the the lexical domain N with a domain
of surrogates,

4. update the parser™ with insertion statements for storing of future sentences, and

5. define views to support queries that previously accessed composed fields for N.

Clearly, their is an inverse procedure for building composite nonterminals from decomposed

information.

Example 15 Imagine an application that maintains a database of names and addresses,
described by the TCFG that follows.

<pinfo:info> — <pname:name> <paddress:address>
<usa:address> — <street:street> <state:state> <zip:zipCode>

16



In the early stages of the application, the database was only required to print the ad-
dresses, so address was added to the list of composite nonterminals, and the information

above was stored in the relation:
pinfo(occur:info, pname:name, paddress:address)

where info is a set of surrogates, name is a lexical domain for storing names, and address
is a domain that is defined by the above production for address.
It then became necessary to form queries that require access to the state and zipcode

fields of the addresses. The new relations generated to handle this scenario were:

pinfor(occur:info, pname:name, paddress:address/);
usa(usa:address/, street:street, state:state, zip:zipCode);

where address/ is now a set of surrogates, and street, state, and zipCode are lexical
domains.
The following steps must be taken to decompose the data in the database and to provide

support for queries that accessed the old relations.

for each tuple P in pinfo

{

parse P.address and store in usa;

let S be the surrogate of the stored tuple;

insert into pinfo/

values (occur = P.occur, name = P.name, address = S);

}

delete relation pinfo;

create view pinfo =
select occur, name, address=d.sentence
from pinfo/, a as (select occur from usa), d as derives(a)
where pinfof/.occur = a.occur;

Future applications can now form queries that access the states and zipcodes of the ad-
dresses. Meanwhile, the existing applications that access pinfo will not be invalid, but

supported by the view pinfo. "

7 Future Work

Several other projects have developed grammatical models for describing complex objects
[GT83,GT87,GPV89,CCRZ*90], built tool-generators [MKN89], employed grammar spec-

ifications to support database operations [Loh87,RB8&2], incorporated relational concepts
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to enhance language specifications [HT86,Hor90,CCRMLS88], and used relational databases
to store complex objects [BK85,CNR90,Lin84,LKM+85,RUTP85,RY85,ROW89]. To our
knowledge, no one else has attempted to map grammatical descriptions of objects into the
relational model and to use the structural information contained in these descriptions to
facilitate the manipulation of the stored data.

There are still several issues that must be addressed to understand the full potential

and practicality of our approach.

¢ GeneRel is one possible mapping from TCFGs to relational schema. Is there a better
representation for the generated relations? One which collapses recursive queries that
span several relations into transitive closure queries within a single relation? This
would allow us to take advantage of the existing formalisms for expressing transi-
tive closure [Agr88,JAN87,Car78, RHDM86,KB88] and the known techniques for the
efficient management of transitive closure [ABJ89,VBS86].

]

¢ GeneParse is a tool that facilitates the population of the database for textual objects.
Other tools must be developed that support the update of objects in the database and
the specification of shared subobjects (a requirement for any system that supports
complex objects [BRKKG88]). The Exodus data model [CDV88] provides support
for distinguishing between shared and non-shared fields that can be adapted to our
environment. Can shared subobjects be specified through a data editor generated by

an editor-generator?

e The three graph operators demonstrate that the database can utilize the structural
information from the grammatical descriptions. There must be additional facilities
for expressing queries that relate information within a complex object. We are very
interested in investigating the utilization of a modified attribute grammar formalism
[Hor90] for expressing queries that relate information within a complex object and
combining these results with relational languages to relate information between several

complex objects.

¢ GeneRel and GeneParse facilitate varying levels of decomposition. How should the
level of decomposition be specified? Can it be adjusted during database operation by

analyzing query usage patterns [Rou82]?

¢ Grammars are the basis for several software tools such as syntax-directed editors
[RT85] and data translation [MKN89, RC89]. Can these tools be employed in a
database environment? For example, how useful are syntax-directed editors for edit-

ing database objects? In the scenario described in section 6, can they be used to
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ensure that the data conforms to the relational schema and to enforce the structure

of the domains of composed nonterminals?

This paper has described one realization of a grammatical schema definition language in
the relational model that has been implemented using meta-description, parser generators,
and attribute grammars. The generation of the graph-operator computations demonstrated
that the grammar descriptions contain more information about the objects stored in the
database than previous flat relational descriptions. Furthermore, efficiency issues concerning
fully decomposed objects can be alleviated using GeneParse and GeneRel to vary the level

of decomposition.
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