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This dissertation deals with aspects of sequential data assimilation (in particular ensemble 

Kalman filtering) and numerical weather forecasting.  

 

In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is 

revisited. It is shown that the previously used numerical integration scheme fails when 

the magnitude of the background error covariance grows beyond that of the observational 

error covariance in the forecast window. Therefore, we present a suitable integration 

scheme that handles the stiffening of the differential equations involved and doesn’t 

represent further computational expense. Moreover, a transform-based alternative to the 

EnKBF is developed: under this scheme, the operations are performed in the ensemble 



 

 

space instead of in the state space. Advantages of this formulation are explained. For the 

first time, the EnKBF is implemented in an atmospheric model. 

 

The second part of this work deals with ensemble clustering, a phenomenon that arises 

when performing data assimilation using of deterministic ensemble square root filters in 

highly nonlinear forecast models. Namely, an M-member ensemble detaches into an 

outlier and a cluster of M-1 members. Previous works may suggest that this issue 

represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble 

clustering can be reverted also due to nonlinear processes, in particular the alternation 

between nonlinear expansion and compression of the ensemble for different regions of 

the attractor. Some EnSRFs that use random rotations have been developed to overcome 

this issue; these formulations are analyzed and their advantages and disadvantages with 

respect to common EnSRFs are discussed.  

 

The third and last part contains the implementation of the Robert-Asselin-Williams 

(RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely 

popular Robert-Asselin filter that successfully suppresses spurious computational waves 

while avoiding any distortion in the mean value of the function. Using statistical 

significance tests both at the local and field level, it is shown that the climatology of the 

SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning 

of the parameterizations is required. It is found the accuracy of the medium-term 

forecasts is increased by using the RAW filter. 
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1. Introduction and objectives 

1.1. Introduction 

The goal of numerical weather prediction (NWP) is to determine the future state of the 

atmosphere by having some knowledge of its current conditions and performing a 

forward integration of the differential equations that describe its behavior (e.g. 3D 

Navier-Stokes equations, thermodynamical equation, etc.). This is not, however, an easy 

task. The atmosphere is a very complicated system with many degrees of freedom and a 

myriad of nonlinear processes happening at different space and time scales. Moreover, the 

atmosphere belongs to a type of dynamical systems known as chaotic. One of the primal 

characteristics of these systems is that trajectories starting from initial conditions 

infinitesimally close will diverge exponentially in time until their difference saturates at 

some climatological level (for a good introduction to chaos see e.g. Ott, 2004). Figure 1 

illustrates this divergence of trajectories in the evolution of the 500-hPa geopotential 

height over College Park, Maryland.  
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Figure 1. Time evolution of the 500-hPa geopotential height in College Park, MD, forecasted 

with the SPEEDY model (section 2.2.3).Two forecasts are started from infinitesimally close 

initial conditions, after ~10 days they start to differ considerably and after 2 weeks any 

resemblance is lost, exemplifying the chaotic behavior of the atmosphere. 

 

It is then clear that an accurate knowledge of initial conditions is of paramount 

importance for NWP. Usually, two sources of information are available: (a) observations, 

which can be in-situ (e.g., weather balloons) or remote (e.g., Doppler radar or satellites), 

and (b) a previous forecast (i.e., information coming from models), which is labeled as 

“background”. Both sources of information are prone to contain errors. The set of 

techniques used to blend together the information from models and observations in an 

optimal way, i.e., taking into consideration their respective uncertainities, is known as 

data assimilation (DA).  

 

A detailed discussion of DA can be found in Daley (1991), Kalnay (2003) and Simon 

(2006); this introduction only provides some highlights. The DA process usually consists 

Evolution of the 500-hPa geopotential height in CP 
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of two parts: (a) the forecast, i.e. when the initial conditions are integrated forward in time 

using a forecast model, and (b) the assimilation, when the information coming from 

observations is blended in and ‘corrects’ the trajectory forecasted by the model. The 

resulting optimally-combined estimate is known as “analysis”. A very simple schematic 

of the data assimilation process is presented in figure 2. 

 

Figure 2. Schematic depicting a general data assimilation process. Information coming from 

forecasts (blue dashed line) is blended with that coming from observations (red dots) to get a 

better estimate of the truth, the analysis (purple squares). The analysis is used as the best initial 

condition for the next forecast. 

 

The data assimilation problem can be posed as a maximum likelihood problem 

(variational DA) or as a minimum variance problem (sequential DA). In the case of 

Gaussian statistics for both the model error and the observational error, the two 

approaches can be shown to be equivalent. An additional goal of DA is to study the 

propagation of the initial uncertainty through the forecast window. Not all methods 

perform this task (e.g. optimal interpolation and 3D-var do not). In particular, the 

sequential DA methods based on the Kalman filter (KF) do. The present study deals with 

theoretical and implementations aspects of methods belonging to this category (see e.g. 

Evensen (2006) for a good introduction on these methods). 

 



4 

 

Once we have determined the ‘best’ initial conditions, the model equations must be 

integrated forward in time with some numerical scheme. This choice is not trivial. In 

general, there are several time-stepping schemes for the numerical integration of the 

differential equations representing the evolution of a dynamical system (e.g. table 1 in 

Durran 1991). The particular scheme chosen for any given integration will depend upon a 

compromise between the desired accuracy, stability, computational efficiency, ease of 

implementation, and run-time memory requirements. Whilst it is always hoped that 

simulations will be insensitive to time-stepping choices, the evidence suggests that this 

hope may be forlorn (e.g. Pfeffer et al. 1992; Williamson & Olson 2003; Zhao & Zhong 

2009).  Therefore, the following question naturally arises: Which of the many possible 

time-stepping schemes offers the most realistic simulations for the least computational 

expense? 

 

This dissertation comprehends new developments in sequential DA and numerical 

weather forecasting. It is divided in three parts. The first two parts aims to strengthen the 

theory of some KF-based DA methods and allow for the development of useful 

applications. The first part revisits the recently proposed Ensemble Kalman-Bucy filter 

(EnKBF: Bergemman et al., 2009; Bergemman and Reich, 2010). In this formulation, the 

assimilation step of the DA problem is expressed by a set of ordinary differential 

equations (ODEs) instead of using linear algebra (as in the KF). The EnKBF has many 

potential advantages that can be exploited. Its quasi-continuous formulation allows 

“mollification” of the observational increments (Bergemann and Reich, 2010a), thus 

maintaining the balance of the analysis state at least as well as the widely used 
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Incremental Analysis Update (Bloom et al., 1996). Furthermore, the continuous 

formulations are suitable for extensions that deal with non-Gaussian uni-modal and multi-

modal ensemble distributions (Reich, 2011). Further inspection of these formulations, 

however, reveal that the ODEs involved in the EnKBF can become stiff under certain 

conditions. In this work we develop a numerical scheme that can handle this stiffness is 

developed. Furthermore, we propose an alternative in which the operations are performed 

in the ensemble space instead of in the model space, allowing the use of techniques that 

have been developed for transform-based formulations. Finally, it is important to mention 

that the EnKBF has only been tested with small models. This work is the first one to show 

that it can be used in atmospheric general circulation models (AGCMs), and hence it 

demonstrates that these formulations are good candidates to be used in real-life NWP 

applications. The results of this study led to a paper now under review in the Quarterly 

Journal of the Royal Meteorological Society (Amezcua et al., 2012). 

 

In the second part, we perform an analysis of a phenomenon related to deterministic 

ensemble square root filters (EnSRFs: Tippet et al, 2003) that arises when these 

formulations are used for data assimilation in the presence of strong nonlinearities. In 

ensemble clustering (EC), an M-member ensemble separates in an outlier and a cluster of 

M-1 members. Results from previous works could lead to think that once this 

phenomenon sets in, it is irreversible. The intention of this work is to dispel this notion: 

we show that EC can be reverted naturally by the same nonlinearities of the system, and 

an explanation behind this behavior is provided. Some alternatives to traditional EnSRFs 

have been formulated to prevent EC; these alternatives include random rotations of the 
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analysis ensemble of perturbations. A simple and generic way to construct these 

formulations is provided. In particular, we show that using an orthonormal matrix that has 

a column of ones as eigenvector is sufficient to preserve the prescribed covariance and 

zero mean for the perturbations. A detailed comparison of the advantages and 

disadvantages of these methods with respect to traditional EnSRFs is presented. The 

results of this study led to a paper accepted in Tellus A (Amezcua et al., 2012a). 

 

The third part of this dissertation deals with a recently formulated improvement to the 

popular Robert-Asselin (RA) filter (Robert, 1966; Asselin, 1972). The RA filter 

successfully suppresses the spurious computational resulting from using a leap-frog 

integration scheme. Nonetheless, this filter can also damp physical waves and alter the 

mean value of the function being integrated. The Robert-Asselin-Williams (RAW) filter 

(Williams, 2009) is an improvement to ameliorate this problem. So far, the effects of the 

RAW filter have been tested only in a simple linear model representing inertial 

oscillations of the simple harmonic type (Williams, 2009). The objective of our study is to 

comprehensively evaluate the effects of the modification in the SPEEDY atmospheric 

general circulation model. It is our purpose to examine whether the use of the RAW filter 

changes either the climatology or the skill of weather forecasts, or both. Using statistical 

tests and considering significance both at local and field level (Livezey and Chen, 1983), 

it is shown that the climatology of the model is not changed by the new integration 

scheme. Therefore, the use of the new filter does not require a retuning of the model 

physics. On the other hand, using data from the NCEP-NCAR reanalysis (Kalnay et al., 

1996) we assess the impact of the new filter in deterministic forecasts. We find that the 
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new filter improve the forecasts for all variables (except relative humidity), especially in 

the medium range (4 to 6 days). The geopotential height in the tropics and the meridional 

wind in the midlatitudes are particularly benefited. The results of this study led to a paper 

now published in Monthly Weather Review (Amezcua et al., 2011). 

 

The second chapter of this dissertation presents a review of concepts of sequential data 

assimilation that are used in the remaining of the work. Also, a description of the three 

models used for experiments is provided. Chapters 3, 4 and 5 contain the main body of 

the dissertation, dealing with EnKBFs, EC and the RAW filter respectively. A brief 

chapter presenting a summary and future work concludes the work. Two appendices 

complement the dissertation: the first is related to the EnKBF chapter and the second 

provides a glossary of abbreviations and symbols used throughout this work. 
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1.2. Objectives 

The objectives of this work are punctually listed for each one of the three parts 

separately. 

 

Objectives related to the ensemble Kalman-Bucy filter: 

- Show that the integration scheme used in the EnKBF stiffens for infrequent 

observations (corresponding to long assimilation windows) and provide an explanation of 

the mechanism that causes this stiffness.  

- Develop an alternative integration scheme that is robust but not computationally 

expensive. Test this scheme in highly nonlinear systems.  

- Develop a transform-based alternative for the EnKBF in which the operations are 

performed in state space and not in model space. Explain the benefits of this formulation 

and complement its formulation with a gridpoint R-localization scheme. 

- Prove that the EnKBF can be used for data assimilation in atmospheric models. 

 

Objectives related to ensemble clustering 

- Develop a metric to quantify EC in a simple and tangible manner. 

- Starting from a simple nonlinear model, show that EC is not an irreversible process. 

Thus, show that EnSRFs are not helplessly handicapped in the presence of strong 

nonlinearity.  

- Show that clustering can set in and reverse in a natural way. Provide an explanation for 

this phenomenon.  
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- Analyze randomly rotated EnSRF and compare the advantages and disadvantages with 

respect to traditional EnSRFs. 

- Explore the impact of EC in application with atmospheric models.  

 

Objectives related to the RAW filter 

- Considering statistical significance both at the local and field level, find whether the use 

of the RAW filter affects the climatology of the SPEEDY model. 

- Evaluate if the use of the RAW filter leads to any improvements in forecasts of the 

SPEEDY model.  
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2. Background 

This chapter is divided in two parts. In the first, the concepts and tools related to data 

assimilation are introduced and discussed. In the second part, we present the details of 

three models of increasing complexity; these models will allow us to test the ideas 

presented in the next sections.  

 

2.1. Concepts of sequential data assimilation 

2.1.1. Kalman Filter  

The Kalman Filter (KF: Kalman, 1960) is a sequential data assimilation technique widely 

used in control theory and applications. The KF deals with discrete systems which can be 

expressed as linear difference equations of the form:  

N

tttt   xwxAx 11      (1) 

L

tttt  yvxHy        (2) 

 

Equation (1) represents the linear evolution of the state variables Nx  from the instant 

1t  to the instant t  by the action of the state transition matrix 
NNA . The stochastic 

term  Q0w ,~ Nt  represents the (unbiased) model error, which may come from 

inadequacies in the model, subgrid processes that cannot be represented explicitly or 

other sources of error. In the rest of this discussion, we will consider a perfect model 

scenario, i.e. 0w t . Equation (2) defines the observations Ly  as a linear 



11 

 

combination of state variables transformed by the (observation) matrix NLH  plus a 

stochastic term  R0v ,~ Nt  that represents the observational error, with 
LLR  

being the observational error covariance (usually assumed to be diagonal).  

 

The KF solves this estimation problem as a two-step process. The first is the forecast 

from time t 1 to time t of both the estimator for the state variables x̂  and their error 

covariance matrix P . This step is perfomed as:  

111  t

b

tt

b

t APAP          (3) 

b

tt

b

t 11
ˆˆ

 xAx           (4) 

 

Equation (3) represents the evolution of the estimator of the covariance of the state 

variables, denoted as the matrix NNP , while equation (4) represents the evolution of 

the estimator of the state variables x̂ . The superscript b  stands for background (or 

forecast), a label used to denote that the information obtained from observations has not 

been assimilated yet. The superscript a  stands for analysis, denoting that the information 

from observations has already been included. 

 

The second is the assimilation of observations at time t done by least squares 

optimization, resulting in the following expressions (where we drop the time subindex t ): 

  bTa
PKHIP           (5) 

 yxHKxx  bba ˆˆˆ         (6) 
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The matrix K  is known as the Kalman gain, and is given by:  

  11 
 RHPRHHPHPK

TaTbTb
      (7) 

 

The KF can be considered as a least squares minimization procedure in which both the 

estimator of the state variable as well as its uncertainty are evolved in time.  

  

2.1.2. Kalman-Bucy filter 

The KF considers both the state variables and the observations to be discrete. A 

continuous-time equivalent is known as the Kalman-Bucy Filter (KBF: Kalman and 

Bucy, 1961). In this case, both the state variables and the observations are considered to 

be continuous functions of time. The ODEs from which the KBF departs are the 

following: 

       tttt
dt

d
wxFx          (8) 

        tttt vxHy           (9) 

 

The elements in these equations are the same as the ones described for (1) & (2), with the 

only difference that  tw  and  tv  now represent continuous time white noise processes
1
. 

Again we consider a perfect model, i.e,   0w t . The matrix  tF  represents the linear 

dynamics of the system; the matrix A in (1) is given by the resolvent of (8). In the 

solution to this estimation problem there is no distinction between the forecast and the 

                                                           
1
 See e.g. Simon 2006 for a complete discussion on discrete vs. continuous white noise. 
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analysis steps; they are represented together in the solution of a system of ODEs (see 

appendix A for a detailed derivation): 

TT

dt

d
PFFPHPRPH

P
 1        (10) 

 yxHRPHxF
x

  ˆˆ
ˆ 1T

dt

d
        (11) 

 

Equation (10) describes the evolution and assimilation of the covariance; it is usually 

referred to as the Riccati equation
2
 for the covariance. Equation (11) corresponds to the 

evolution and assimilation of the mean.  

 

There is no major problem in considering the state variables to be continuous. In many 

cases we have continuous time systems expressed as differential equations which we 

discretize in order to allow their numerical solution. However, it is more difficult to 

consider observations as being continuous. Conceptually, they can be regarded as a 

transformation of the state variables into observation space, but they are not available at 

any arbitrary time. In fact, dynamical systems can rarely be observed even with the 

frequency of the time step used in the numerical solution of the model. 

 

To assimilate observations at a discrete time, one can use the Kalman-Bucy formulation 

by adopting a pseudo-time s  spanning over 10  s  out of an instant t  (Bergemann et 

al., 2009). The KBF equations in pseudo-time are:  

                                                           
2
 A scalar Riccati equation is a non-linear ordinary differential equation, whose non-linearity comes from a 

quadratic term of the dependent variable  tx . It’s general form is: 

            2

21 txtatxtatatx o  . The matrix Ricatti equation is a generalization of the former 

and is of great interest in control theory. 
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HPRPH
P 1 T

ds

d
         (12) 

 yxHRPH
x

  ˆ
ˆ 1T

ds

d
        (13) 

 

Given the initial conditions in pseudo-time   b
PP 0 ,   b

xx ˆ0ˆ  , integrating (6) and (7) 

one obtains  1PP a ,  1ˆˆ xx a , i.e., starting from the background values at the 

beginning of the pseudo-time window, one obtains the analysis values at the end of the 

window. A schematic representation of the spanning of pseudo-time is shown in the next 

figure. 

 

 

Figure 3. Schematic representation pseudo-time in the EnKBF, it is spanned at each assimilation 

instant. 

 

It is possible to show that the solution of these two differential equations at 1s  is 

equivalent to the system (5) & (6). By performing a factorization for the covariance 

matrix as 1LYP , one can show that the solution in pseudo-time 10  s  for the 

covariance is (see details in  appendix A):  

    11   IHPRHPP ss bTb
        (14) 
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2.1.3. Ensemble Kalman Filters 

Both the KF and the KBF deal with linear equations for the forecast step, but many 

dynamical systems of interest –in particular those found within the atmospheric sciences- 

are nonlinear. For these systems, (1) is replaced by: 

 1 tt f xx           (15) 

 

where f represents the nonlinear model operator. The Extended Kalman Filter (EKF) was 

developed to handle this case. This generalization of the KF is based upon the first order 

truncation of the Taylor expansion of the nonlinear model around some point of reference 

of the state variables, i.e. it uses a tangent model to advance the system. Detailed 

descriptions of the EKF and their application to atmospheric and oceanic sciences can be 

found in Ghil (1989) and Miller et al. (1994). While effective, the EKF is suited for small 

systems with a relatively small number of state variables, but quickly becomes 

computationally expensive as the number of state variables gets large. It is virtually 

impossible for this method to be applied to higher order models. This is the case of 

atmospheric models, where the number of state variables is typically    96 1010 OO  . 

 

The Ensemble Kalman Filter (EnKF) is a Monte Carlo alternative to the EKF. In the 

EnKF, one takes an ensemble of M  solutions of equation (15) -usually NM  - and 

evolves each member with the nonlinear model f . The matrix for the ensemble can be 

denoted as:  

  MN

M

 XxxxX ||| 21        (16) 
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where we use the subscript to represent the individual members of the ensemble. Let 

M1  be a column vector of ones, then the sample mean of the ensemble is: 

1Xxx
MM

M

i

i

11

1

 


          (17) 

 

An ensemble of perturbations can be defined by subtracting the sample mean column 

from each column of the ensemble. Let TM 11U
1 , MMU  is idempotent 

(Un  U ); then the ensemble of perturbations can be written as:  

   UIXxxxxxxX  M||| 21        (18) 

 

Using the ensemble of perturbations we can obtain the sample covariance: 

     
T

T MM XUIXXXP 
 11

11       (19) 

 

For the assimilation cycles in the EnKF one must obtain the analysis ensemble from the 

background ensemble. This is not an obvious task since obtaining X  from P  in (12) has 

an infinite number of solutions: let   TM XXP
1

1


 and XΦZ  , then 

  PZZPZ 
 TM

1
1  for any unitary matrix Φ .  

 

Evensen’s original idea (1994) was to update each member in the same way the mean is 

updated. A revision of this method (Burgers et al., 1998; Houtekamer and Mitchell, 

1998) is known as the ‘perturbed observations’ method. In this case, for each ensemble 

member the observations are randomly perturbed to avoid the ensemble collapse. The 
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stochastic EnKF, however, does not fulfill the KF covariance equation exactly, but only 

in a statistical sense. 

 

Another way to update the perturbations -which is deterministic rather than stochastic- is 

the family of square root filters (EnSRFs Tippett et al., 2003). The deterministic EnKFs 

rely on explicit mathematical transformations for the ensemble update. Some members of 

this family are the Ensemble Adjustment Kalman Filter (EAKF, Anderson, 2001), the 

serial EnSRF (Whitaker and Hamill, 2002), the Ensemble Transform Kalman Filter 

(Bishop et al, 2001; Wang et al, 2004) and the Local Ensemble Transform Kalman Filter 

(Ott et al., 2004, Hunt et al., 2007).  

 

2.1.4. Local Ensemble Transform Kalman Filter and a non-symmetric 

solution 

In this work we will use as reference a post-multiplication-type EnSRF known as local 

ensemble transform Kalman filter (LETKF; Hunt et al., 2007). This formulation is 

unbiased (Livings et al., 2008), and without localization it is equivalent to the spherical-

symplex ETKF (Wang et al, 2004). The LETKF obtains the analysis ensemble of 

perturbations a
X  by a post-multiplication of the background ensemble of perturbations 

and a matrix of weights: 

aba
WXX            (20) 

 

a
W  has to be obtained in a way such that a

P  has the value prescribed by the KF. In 

particular, for the LETKF: 
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     2121 ~
1 aa M PCΓICW

T 


      (21) 

 

where 




















1

1

M
eig

bTb
T YRY

CΓC         (22) 

 

The matrix bb
HXY   is the mapping of the ensemble of background perturbations into 

observational space. The matrix Γ  contains the eigenvalues of the multidimensional ratio 

of ensemble covariance (projected into observational space) and observational error 

covariance, while C  is the matrix with the corresponding eigenvectors as columns. As 

indicated in (21), a
W  is proportional to the symmetric square root of the analysis 

covariance in ensemble space a
P
~

. This solution minimizes the ‘distance’ between a
W  

and the identity matrix, thus getting an a
X  as close as possible as b

X  (Ott et al., 2004). 

This form automatically guarantees the analysis perturbations to be unbiased (Hunt et al., 

2007; Livings et al., 2008), i.e.   

01X a           (23) 

 

where M1  and N0 . The mean analysis mean can be computed as: 

abba
wXxx           (24) 

 

i.e. a lineal combination of the ensemble of background perturbations departing from the 

background mean. The vector of weights a
w  is computed in the following way: 
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 bTb

Taa
a

M
yyRY

WW
w 


 1

1
       (25) 

 

where b
xHy b

 is the projection of the background mean into observational space.  

 

The factor   21
 ΓIC  in  a

W  is enough to guarantee the fulfillment of the KF 

covariance equation.  A general non-symmetric ETKF can be written as  

  T
SΓICW

21
a          (26) 

 

where S  is any orthonormal matrix. Equation (26) does not automatically guarantee the 

analysis perturbations to be unbiased, i.e.  

01X
a            (27) 

 

where M1 . The symmetric solution is unbiased (Wang et al, 2004; Hunt et al, 2007), 

a non-symmetric solution will be unbiased if S  is such that W  contains 1  as an 

eigenvector. A simple way to construct a matrix S  with the desired zero-mean preserving 

characteristic is presented in chapter 4. We denominate any solution of this form a Mean-

Preserving Non-Symmetric ETKF (MPNS-ETKF). These types of solutions -which 

involved a random rotation through the action of the matrix S - can be regarded a 

constrained resampling of the ensemble, akin to that used in particle filters (see e.g. 

Spiller et al., 2008). 
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2.1.5. Ensemble Kalman-Bucy Filters 

The pseudo-time implementation of the KBF discussed in section 2.1.2 can also be used 

in an ensemble setting. Starting from (12), BGR09 used the sample estimator for 

covariance: 

111 














MMMds

d T T
1T

T
XX

HRH
XXXX

      (28) 

 

One can use the chain rule for the derivative in the left hand side. 

T1TTTTT
HXXRHXXXXXXXX
































1

1
2

Mds

d

ds

d

ds

d
 

 

A simplification leads to the equation for the update the ensemble of perturbations using 

the sample covariance:  

 
HXRHXX

X 1

12

1 


 TT

Mds

d
      (29) 

 

so that given   b
XX 0  we can obtain  1XX a

. Thus the perturbations are updated via 

an ODE while the mean is still updated using (6) with the sample estimators. The BGR09 

computational implementation is as follows: given b
X  compute a

X  by the numerical 

integration of (29). Then compute   11
1 

 RHXXK
TTaaM  and use it to compute a

x  

by (6).  
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BR10 differs from BGR09, in that the two Bucy equations in pseudo-time (12) and (13) 

are combined to get a single ODE formulation for the full ensemble itself; a brief 

derivation of BR10 is presented next. The ODE representing the analysis step for the full 

ensemble can be written as: 

  TT

ds

d

ds

d

ds

d

ds

d
1xX1xX

X








       (30) 

 

The two terms of in this equation correspond to the ensemble version of the KBF 

equations for the perturbations (29) and the mean: 

 yxHRHXX
x




 1

1

1 TT

Mds

d
       (31) 

 

Substitute (29) and (31) into (30) and factorize: 

  










  TTT

Mds

d
1yxHHXRHXX

X

2

1

1

1 1      (32) 

 

This equation describes the assimilation of the X  in terms of X  and x . To obtain an 

expression in terms of X , recall that 1Xx
1 M  and  UIXX  , where 

TM 11U
1 . Substituting these into (32), using the fact that UI   is idempotent and 

simplifying we obtain the BR10 formulation: 

 
   





 


  TT

T

Mds

d
1yUIXHRHXUIX

X
2

12

1 1      (33) 
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In this formulation, the entire ensemble is updated by solving (33) as  1XX 
a

 given 

 
b

XX 0 . We note that this equation appears in BR10 in the equivalent form of the 

gradient of a cost function.  

 

A fundamental difference between BGR09 and BR10 is that BGR09 computes the 

analysis mean 
a

x  separately using (6). Accordingly, observations y themselves impact 

only the analysis mean 
a

x  but not the analysis ensemble perturbation 
a

X . In BGR10, 

observations y affect both 
a

X  and 
a

x . This difference can be important for numerical 

implementations as the update of the ensemble mean will be affected by the chosen time-

stepping. It is worth mentioning that neither BGR09 nor BR10 requires any matrix 

inversion except 
1

R , which is frequently diagonal and usually can be pre-computed. 

 



23 

 

2.2. Dynamical models used in this work 

Here we present a description of the three dynamical systems used for experiments in this 

work. For all our experiments, identical twin experiments are carried out. In this type of 

experiments there are three elements: the nature run (truth), the observations and the 

background/analysis ensemble. 

 

Each one of the models allows testing different aspects: very strong nonlinearities, the 

need for localization and multiplicative covariance inflation, as well as situations that 

mimic real-life NWP aspects.  

 

2.2.1. The Lorenz 1963 model 

The Lorenz 1963 model (L63) is a strongly nonlinear 3-variable model widely used in 

evaluating data assimilation schemes because of its challenging properties near regime 

changes (e.g. Miller et al., 1994; Evensen, 1998; Evans et al., 2004). It comes from the 

simplification of the Rayleigh-Benard convection process (Lorenz, 1963). The system of 

nonlinear coupled ODEs describing its evolution is: 

      
        

       3213

2312

121

bxxxx

xxrxx

xxx











 

        (34) 

 

The standard values used for the parameters are: 10 , 28r  and 3/8b . This 

choice results in a chaotic behavior with two regimes in a very well-known butterfly-

shaped fractal attractor in the phase space. The model is integrated with the Runge-Kutta 
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4
th

 order method using a time step of 01.0t . A depiction of the time evolution of the 

variables as well as a snapshot of the attractor is presented next. 

 

Figure 4. Lorenz 1963 model. The top panel depicts the time evolution of the three variables in 

the model. The bottom panel shows the shape of the attractor in phase space. 

 

2.2.2. The 40-variable Lorenz 1996 model 

The 40-variable L96 model (Lorenz 1996; Lorenz and Emanuel, 1998) is described by 

the set of differential equations: 

           Fxxxxx qqqqq   121        (35) 

 

for 40,,1q , with     400 xx  ,    391 xx   and    141 xx  . The model is designed to 

mimic the time evolution of an atmospheric variable in a circle of latitude. The model is 
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schematic; it cannot be derived from physical laws (Lorenz, 2005). Nonetheless it 

represents a system in which three processes are present: nonlinear advection (first term), 

dissipation (second term) and  forcing (last term, which is usually given a numerical 

value 8F ). The attractor of this model has a fractal dimension of about 27 and it has 13 

positive Lyapunov exponents (Lorenz, 2005). It does not have regime transitions as L63. 

The model is integrated with a Runge-Kutta 4
th

 order method and a time step of 

025.0t  units.  

 

Figure 5 illustrates the behavior of this model. All variables are started from the 

(unstable) steady state     jFtx j  ,0  except for a variable that is initially perturbed: 

    001.0020  Ftx . One can notice that the transient lasts less than 2 time units. The 

left side of figure 5 shows the time evolution of 4 selected variables. The right side is a 

Hovmoller diagram showing the time evolution of all variables. In this diagram one can 

visualize the westward propagation of waves.   
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Figure 5. Lorenz 1996 model: time evolution of selected variables (left) and all the 40 variables 

using a Hovmoller diagram (right). 

 

This model allows experiments with implementation aspects such as localization and 

multiplicative covariance inflation.  

 

2.2.3. A medium complexity AGCM: SPEEDY 

The Simplified Parameterizations, primitivE-Equation Dynamics (SPEEDY) model is a 

medium complexity Atmospheric General Circulation Model (AGCM) developed by 

Molteni (2003). As its name indicates, this model has a spectral primitive-equation 

dynamic core and a set of simplified physical parameterization schemes. It is useful for 

our experiments because it achieves computational efficiency while maintaining realistic 

simulations similar to those of state-of-the-art AGCMs with complex physics. Hence, it 

allows us to mimic situations that would arise in a real NWP scenario. 
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Miyoshi (2005) adapted SPEEDY for use in data assimilation, with output every 6 hours 

(the model time step is 40 minutes). This implementation has a resolution of T30L7, with 

horizontal spectral truncation at 30 wave numbers and 7 vertical levels. Data are output 

on a horizontal grid of 96 longitudinal and 48 latitudinal points. The model includes basic 

physical parameterizations, the description of which can be found in the appendix of 

Molteni (2003). It is based on a spectral dynamical core developed at the Geophysical 

Fluid Dynamics Laboratory. SPEEDY is a hydrostatic model formulated in   

coordinates, in the vorticity-divergence form described by Bourke (1974). It calculates 

five field variables: zonal wind u , meridional wind u , temperature T , relative humidity 

q  and surface pressure ps . The geopotential height z  for different pressure levels may 

be obtained by interpolation (since it is hydrostatic).  

 

One can generate artificial observations that resemble a realistic radiosonde observational 

network as presented in figure 6 (reproduced from Miyoshi 2005). The observation 

density is higher over continents than over the oceans, and the Northern Hemisphere 

(NH) is better observed than the Southern Hemisphere (SH). In our experiments, 

observations are generated by adding Gaussian random perturbations to every variable (in 

each one of the 7 vertical levels) with the following standard deviations: 1 m/s   for u and 

v, 1 K for T, 10
-3

 kg/kg for q and 1 hPa for ps.  

 

To assess the performance of assimilation techniques in this model, a latitude-weighted 

RMSE was computed for each one of the variables: 
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 


 
J

j

j

a

j

t

jweilat xx
J

RMSE
1

2
cos

1
       (36) 

 

where tx corresponds to the nature run, ax  corresponds to the analysis, and   is the 

latitude angle and J is the total number of state variables. Each one of the 6 variables 

(u , v ,T , q , ps , z ) should be considered separately at each one of the 7 vertical levels.  

 

Figure 6. Observational density used for the experiments with the SPEEDY model. The spatial 

distribution of the observations resembles a realistic radiosonde network (Miyoshi, 2005). Two 

positions are circled, one over the Labrador Peninsula and other over the Southern Pacific Ocean; 

these locations will be used to display results in subsequent sections. 

 

Furthermore, the RMSE can be computed separately for different geographical regions: 

NH, tropics and SH.  
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3. Analysis on the Ensemble Kalman-Bucy Filter  

A consequence of sequential data assimilation is that there is a jump from the background 

mean to the analysis mean at the assimilation instant
3
. Then, the jumps from background 

to analysis can be depicted in the following way: 

 

 

Figure 7. Schematic depicting the jump from background mean to analysis mean in sequential 

data assimilation. The bold dashed line depict the background/analysis mean, the red dots are 

observations, and the pink lines represent the jump from background mean to analysis mean when 

the assimilation is performed.  

 

These jumps can have adverse consequences for some dynamical systems, especially for 

those containing balance relationships among variables (e.g., the geostrophic balance in 

an atmospheric model or in a shallow water equations system), since they can excite 

waves. Attempts have been made to distribute the impact of observations over finite time 

periods to generate a smooth transition from background mean to analysis mean. An 

example is the Incremental Analysis Update (IAU) from Bloom et al., 1996.  

 

                                                           
3
 For the sake of this discussion, let us consider that the assimilation is performed every time an observation 

is available. 



30 

 

The EKBF for discrete observations discussed in section 2.5.1 is another framework to 

avoid these jumps. For the full ensemble X , we can write the forecast and assimilation 

processes together in an ODE of the following form: 

  










 assimttAf

dt

d
XX

X
       (37) 

 

Where  XA  represents the right-hand side of equation (33) and   is the Dirac delta 

centered in the each assimilation instant. Bergemman and Reich (2011a) propose a 

method to extend the impact of the observations into a finite time interval by mollifying 

the Dirac delta functions. Schematically, this process is presented in the following figure:  

 

 

Figure 8. In order to create a smoother transition from background to analysis, the impact of the 

observation (red dot) can be extended into a finite time interval, represented by the base of the red 

triangles. The height of the triangle represents the relative importance given to the observation in 

this interval. This can be achieved in the EKBF by a mollification of the Dirac delta function. 

 

Using a slow-fast extension of the Lorenz 1996 model with an intrinsic balance, 

Bergemman and Reich (2011a) showed that this mollified EKBF helps to avoid the loss 

of balance that would occur using a regular stochastic EnKF (see their figure 4). Before 

applying the mollified EKBF in more complicated systems, one would want to guarantee 

the robustness of the EKBF. This is the main purpose of this chapter: to analyze the 

behavior of the ODEs involved in the EKBF with respect to observational frequency, the 
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nonlinearity of the model, etc. It will be shown that these ODES suffer from stiffness 

under certain conditions, so that a robust and efficient integration scheme must be 

developed for their solution.  

 

On the other hand, transform-based EnSRFs are efficient implementations since they 

perform most of the assimilation operations in the ensemble space rather than in the state 

space. Moreover, many implementation tools have been developed for transform-based 

EnSRFs, in particular the LETKF. These include an efficient R-localization and gridpoint 

adaptive multiplicative covariance inflation. To take advantage of these features, a 

transform alternative to the EKBF is developed; we call it Ensemble Transform Kalman-

Bucy Filter (ETKBF). 

 

This chapter is divided in three subsections. In the first section, the stiffening issue of the 

EnKBF is explained and a numerical integration scheme designed to tackle it is 

presented. In the second, the ETKBF is formulated and we provide a set of properties of 

this scheme that can make it advantageous. The third section presents experiments with 

different models; in particular, this section demonstrates that the ETKBF can be applied 

in atmospheric models. 

 

3.1 Numerical integration in the EnKBF 

An essential challenge in both formulations of the EnKBF (BGR09 and BR10) is to 

integrate the involved ODEs in pseudo-time in an efficient and affordable manner. In 

particular, the solution of these ODEs can present problems in the presence of nonlinear 
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perturbation growth resulting from infrequent observations (Kalnay et al., 2007; Yang 

and Kalnay, 2009a). The nonlinear growth undermines the performance of EnKF since it 

violates the assumption that Gaussian analysis perturbations remain Gaussian after the 

forecast.  

 

BGR09 used the Euler forward method (the simplest explicit integration method) with a 

variable number of steps. The optimal choice under their settings turned out to be 4, 

optimal in the sense that adding more steps did not translate in a further reduction of 

RMSE. In this section we show that the ODEs involved in the solution of BGR09 and 

BR10 stiffen under certain conditions, and that Euler forward is no longer an adequate 

choice for their solution.  

 

Let us start the study of the ODEs in BGR09. To simplify, let us start our analysis with 

IR
2  and IH  , then equation (29) becomes: 

 
XXXX

T

12

1
2 


Mds

d


        (38) 

 

This matrix ODE can be written down explicitly as: 



33 

 

     

     

     

 

                 

                 

                 































































































































   

   

   

   

   

   

M

m

N

n

n

m

n

M

N

m

M

m

N

n

n

m

nN

m

M

m

N

n

n

m

nN

m

M

m

N

n

n

m

n

Mm

M

m

N

n

n

m

n

m

M

m

N

n

n

m

n

m

M

m

N

n

n

m

n

Mm

M

m

N

n

n

m

n

m

M

m

N

n

n

m

n

m

N

M

NN

M

M

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

M

xxx

xxx

xxx

ds

d

1 11 1

2

1 1

1

1 1

2

1 1

2

2

1 1

1

2

1 1

1

1 1

2

1

1 1

1

1

2

21

22

2

2

1

11

2

1

1

12

1



















 (39) 

 

This matrix differential equation is in fact a system of MN  coupled ODEs; each ODE 

has MN  3
rd

 order polynomial terms in the right hand side. Therefore, the best choice for 

numerical integration is an explicit method (as done in BGR09). Nonetheless, a deeper 

analysis reveals that the BGR09 ODEs can become stiff depending on the relative ratio of 

P  and R . Two main controlling factors of this ratio are the frequency of observations 

and length of the assimilation window. When this ratio is large, (29) loses stability due to 

stiffening. This challenge is addressed using an improved, semi-implicit numerical 

integration method for the EnKBFs. 

 

 

 

Consider the analytical solution of the Bucy equation for the covariance in pseudo-time 

(appendix A): 

    11   IHPRHPP ss bTb
        (40) 
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For illustration purposes, let IH   and consider the scalar case of the previous equation, 

i.e. 1N . It is convenient to write this equation as the following fraction, which is the 

ratio of the covariance at any moment s in pseudo-time and the background covariance:  

 
1

1

1

1




sP

sP
b 

 
 

       (41) 

 

In (41), 2

11  bP  represents the ratio of background error covariance to observational 

error covariance (variance, in this scalar example). The behavior of equation (41) 

depends upon the magnitude of this ratio as illustrated in the following figure:  

 

Figure 9. Analytical solution of the Bucy covariance equation in pseudo-time for a scalar case 

with the variable observed directly. Different lines correspond to different values ratio of 

background variance over observational error variance (see the legend). Two colors distinguish 

lines at different sides of the threshold of 1 . The ODE stiffens as this ratio becomes larger. 

 

The McLaurin expansion of (41) with respect to s  is: 
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

       (42) 

 

It is clear then that for small values of   ( 1 , represented in the upper-right curves in 

figure 7), we have   sPsP b 111 , i.e. the function behaves close to linear. It is 

possible to get an accurate numerical approximation of these curves with the Euler 

forward method and using few steps. Nonetheless, for large values of   ( 1 , 

represented by the lower-left curves in figure 7), the solution becomes increasingly stiff 

and an explicit method such as Euler forward is no longer effective without significantly 

increasing the number of steps.  

 

Returning to the general multivariate case with an arbitrary H , the expression for   

becomes: 

1

1






M

bTb
YRY

          (43) 

 

where  denotes the spectral matrix norm (maximum singular value). 
b

P  and therefore 

  depend on the length of the forecast window. For short enough windows, 
b

P  remains 

smaller than the observational error covariance R  (hence 1 ), while for long 

windows it can become considerably larger (hence 1 ). As an illustration, we 

consider an assimilation experiment using LETKF and the Lorenz 1963 model for both 

frequent observations ( s ) and infrequent observations ( l ) windows (defined as 
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observing every 8 or 25 steps respectively; the details are explained in section 3.4.1). The 

empirical cumulative distribution functions (ECDF) of s  and l  are shown in the 

following figure:  

 

Figure 10. Empirical cumulative distribution function of  11   MbTb
YRY  for short 

(orange line) and long (purple line) assimilation windows using the Lorenz 1963 model. The 

value of this ratio for infrequent observations is in general an order of magnitude larger than for 

frequent observations. 

 

From this figure we see that the ECDF for s  is an order of magnitude to the smaller 

than the one for l . For short windows 110s  occurs about 45% of the cycles, and 

1s  only 15% (in fact   81.4max s ). By contrast, for long windows 110l  only 

1% of the times, 1l  for about 60% of the cases, and   07.187max l . Hence, for 

the latter case the ODEs involved in the Bucy-type formulations are bound to stiffen. 
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We develop a Diagonal Semi-Implicit (DSI) method to overcome this stiffness. For 

convenience, let us recall the ODE for BGR09 (29): 

HXRPH
X 1

2

1  T

ds

d

 
 

 

where 
1


M

T
XX

P . A linearly
4
 semi-implicit solution of this equation is: 
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Solving for 1kX  we obtain: 

 
k

T

k

T

kk

ss
XHRHPIHRHPIX 






 








 
 







1

1

1

1
22

1 
   (45) 

 

Using the Sherman-Morrison-Woodbury lemma for the first factor in the rhs of the last 

equation: 
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Then this becomes: 
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4
 It is linear since the quadratic term 

T
XXP   is only evaluated in the instant k . 
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Letting 1 , we recover the Euler forward solution used in BGR09: 
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On the other hand, letting 0  leads to the linearly-implicit Euler scheme
5
: 
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This scheme, however, can become excessively damping (i.e. 0X 1k ) in the case 

RP  ks . Finally, if we let 1  we obtain the following semi-implicit scheme: 

  k

T

k

T

kkk s
s

HXRRHHPIHPXX
111

1
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

      (49) 

 

This scheme has the convenient property that kk XX 211   when RP  ks . 

Furthermore, to avoid computational burden, we substitute this equation by its diagonally 

semi-implicit (DSI) approximation: 

   k

T

k

T

kkk sdiag
s

HXRRHHPIHPXX
111

1
2



 


     (50) 

 

The inversion introduced is performed on a diagonal matrix and adds a negligible cost 

compared to the Euler forward method. In fact it does not change the order of accuracy of 

the Euler forward approximation (Hairer and Wanner, 1991). It does improve, however, 

                                                           
5
 Note that a regular implicit scheme would not suffer from this. 
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the stability and hence it is useful when the step size s  is restricted by the method’s 

stability rather than the accuracy.  

 

The resulting update for the ensemble mean is: 

    yxHRIRHHPHPxx  

 k

T

k
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kkk sdiags 111

1     (51) 

 

Finally, the DSI scheme of BR10 given by (33) is given by: 
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The DSI method of (52) falls into the category of Rosenbrock methods with inexact 

Jacobian; it is also called the W methods in Hairer and Wanner (1991). Moreover, this 

method can handle non-diagonal R . 

 

To complement the DSI method, we choose a sequence of pseudo-time steps with 

increasing size that sum to one. For example a sequence of 7 steps will be 

{1/16,1/16,1/8,1/4,1/4,1/4}, a sequence of 8 steps will be {1/32,1/32,1/16,1/8,1/4,1/4,1/4} 

and so forth. The rationale behind this stepping is that the fastest change of equations (29) 

and (33) occurs at the beginning of pseudo-time, just around 1s , so shorter steps are 

required there. This is illustrated in the following figure: 
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Figure 11. Analytical solution of the Kalman-Bucy equation for covariance in pseudo-time. For 

large values of  more resolution is needed at the beginning of the window (shaded region). 
 

3.2. Transform-based alternatives for the EnKBF
6
 

In the EnKBF formulations presented in BGR09 and BR10 some of the operations are 

performed in the state space and some are performed in the observation space. In an 

ensemble-transform approach, the analysis ensemble of perturbations is obtained as a 

product of the background ensemble of perturbations MNX  in the model space and a 

matrix of weights in the ensemble space MMW , i.e. aba
WXX  . This approach 

leads to the Ensemble Transform KF (ETKF; Bishop et al, 2001; Wang et al, 2004), the 

Local Ensemble Kalman Filter (Ott et al, 2004) and the Local ETKF (LETKF: Hunt et al, 

2007). By incorporating the ensemble-transform approach, we develop two EnKF 

                                                           
6
 Professor Kayo Ide is kindly acknowledged for her idea to propose this alternative formulation. 
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methods that are stemmed from BGR09 and BR10 and refer to them as the Ensemble 

Transform KBFs (ETKBFs). 

 

Working in the ensemble space can have several advantages. To begin with, the ensemble 

space M  is usually spanned in lower in dimensions than the state space N . If the 

majority of the operations are performed in this lower-dimensional space this can lead to 

computational savings and efficiency. 

 

Another important feature is related with implementation aspects. Most practical data 

assimilation systems need two basic algorithms, localization and inflation, to attain 

successful performance. When the ensemble size is much smaller than the dimension of 

the model state ( NM  ), and more importantly smaller than the number of the positive 

Lyapunov exponents, straightforward application of any EnKF may lead to unreliable 

correlation estimations especially at long distance. The gridpoint R-localization (Hunt et 

al, 2007, Greybush et al., 2011) is a simple yet powerful technique to handle this 

challenge for the EnKFs with the ensemble-transform approach. Underestimation of the 

background ensemble perturbation may also occur due to small M and other sources of 

imperfection. A common solution to overcome this problem is the use of multiplicative 

covariance inflation (Anderson and Anderson, 1999), in which the background ensemble 

covariance is multiplied by a factor larger than one. Usually, the search for an optimal 

inflation parameter is an ad-hoc tuning process, which can be time-consuming. 

Nonetheless, for the EnKFs with the ensemble-transform approach, an adaptive inflation 

scheme (Miyoshi, 2011) addresses this issue; this powerful scheme is tailored to R-
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localization and provides an independent inflation parameter for each gridpoint of the 

model, each inflation parameter evolves with time.  

 

In addition, having the weights available in the ensemble space, one can design a variety 

of schemes to improve the EnKF performance at no or very little cost; for example, the 

low-cost post-processing techniques such as accurate low-resolution analyses by weight 

interpolation (Yang et al., 2009a), a no-cost smoother (Kalnay et al, 2007b), forecast 

sensitivity to observations without adjoint model (Liu and Kalnay, 2008, Li et al., 2009), 

and Running in Place/Quasi Outer-Loop (Kalnay and Yang, 2010; Yang and Kalnay, 

2009). These techniques rely on the fact that the weights at the analysis time are valid 

through the entire forecast window (Kalnay et al, 2007b, Yang and Kalnay, 2009). These 

techniques have been shown to work effectively for data sparse situations that give rise to 

nonlinear perturbations (Kalnay and Yang, 2010; Yang et al, 2009).  

 

In this section we develop two formulations: the transform-based alternative to BGR09 is 

denominated the Ensemble Transform Kalman-Bucy Filter (ETKBF), while the transform 

based alternative to BR10 is denominated Direct Ensemble Transform Kalman-Bucy 

Filter (ETKBF). 

 

Derivation of ETKBF 

For ETKBF, starting from BGR09 (29) and using the representation    ss b
WXX  , one 

can write: 

 
 

      sss
M

s
ds

d bTTbb
WHXRHWXWXWX

1b 




12

1
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Recalling the mapping b
HXY b  and simplifying the previous expression allows us to 

get the update analysis equation for ETKBF: 

 
WYRYWW

W bTbT

Mds

d 1

12

1 


       (53) 

 

Solving this equation in pseudo-time s over 10  s  with the initial condition   IW 0 , 

we obtain the analysis weight matrix  1WW a
  at 1s . The ensemble mean is updated 

using equation (24). 

 

For the numerical integration, the corresponding Euler forward scheme yields: 

k

bTb

kkk

s
WYRYPWW

1

1

~

2






        (54) 

 

where   T

kkk M WWP
1

1
~ 

  is the covariance in the ensemble space. The 

corresponding DSI integration scheme is:  

  k

bTb

k

bTb

kkk sdiag
s

WYRRYPYIYPWW
1

1
1

1

~~

2






 


    (55) 

 

It can be shown that in the limit of infinite steps, the ETKBF is numerically equivalent to 

the LETKF (Hunt et al., 2007). To proceed, we start by writing the expressing the 

covariance in ensemble space for any instant in pseudo-time:  

 
   

1

~




M

ss
s

T
WW

P          (56) 
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with     IPP
1

1
~

0
~ 

 Mb  and   a
PP
~

0
~

 . Using the chain rule, we can find the 

pseudo-time derivate of this expression and perform simplifications: 

     
 

       ssss
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Hence, 

PYRYP
WW

YRY
WW

P
~~

11

~ 11 bTb
T

bTb
T

MMds

d  


     (57) 

 

The analytical solution to this Riccati equation is (appendix A): 

      
1

1
1

1

11
0

~
0

~~






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
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

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I
IPYRYPP

M

s

M
ss bTbbTb

     1
1 1

~ 
  IYRYP Mss bTb        (58) 

  

In particular, for 1s  we get the same expression as for the LETKF: 

     1
1 1

~
1

~ 
  IYRYPP MbTba        (59) 

 

Derivation of DETKBF 

For DETKBF, we let MMW  transform the background ensemble into the analysis 

ensemble, i.e. 
aba

WXX  . We note that the full ensemble space matrix W  is different 

from the perturbation matrix W  of the ETKBF. Then, (33) can be written as: 
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  
 
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


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After simplifying, the DETKBF obtain the analysis W  by solving: 

 
    











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2
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1 1

     (60) 

 

with the initial condition   IW 0 , where 
bb

XHY  is the mapping of the (full) 

background ensemble into observations space. At 1s , we obtain the analysis weight 

matrix  1WW 
a

. The corresponding Euler forward integration is: 

  





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where        T
kk

T

kkk MM WUIWWWP 
 11

11
~

. The corresponding DSI 

integration scheme is: 
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3.3. Localization in the ETKBFs 

A problem that is common to all EnKF formulations is the appearance of long distance 

spurious correlations as a result of the finite size of the ensemble (Hamill et al. 2001). 

Localization is a common solution to this problem. It is essential when the size of the 
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ensemble is smaller than the size of the state space, and more importantly, smaller than 

the number of positive Lyapunov exponents. 

 

Different localization techniques can lead to different filter performance and behavior, for 

example in the conservation of balance (Greybush et al., 2011). Within the EnKF 

framework, there are mainly two types of localizations: B-localization and R-localization. 

Roughly speaking, B-localization reduces the forecast (background) error covariance 

between a pair of grid points by a factor depending monotonically on the distance 

between them, while R-localization increases the observational error by the inverse of the 

same factor (see a more detailed discussion in Greybush et al., 2011). In R-localization, 

an independent analysis is carried out for every single grid point using observations 

within a certain distance, and assuming that the observation error increases with the 

distance to the grid point. An schematic of this localization is presented next: 

 

Figure 12. Schematic of R-localization (courtesy of Dr. Greybush). 
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In the previous figure, the gridpoints are shown with blue circles, the observations with 

pink starts. For a given gridpoint (shown in green, in the center), only observations within 

a radius of influence (shown as a large blue area with a color intensity decreasing 

radially) are used with a weighting that depends on the distance to the gridpoint. A 

commonly used compact support weighting function that approximates a Gaussian can be 

found in Gaspari and Cohn (1999). 

 

BGR09 and BR10 are amenable to B-type localization. The localization matrix LNC  

is in fact applied to T
PH , the elements of C  depend upon the distance between 

observations and state variables. A localized version of BR10 can be written as: 

     TT

ds

d
y1UIXHRPHC

X
2

2

1 1         (63) 

 

where the symbol  indicates Schur (element-wise) product. In some of our experiments 

we will compare the performance of B-localized BR10 against that of R-localized 

ETKBFs. For both ETKBF and DETKBF a gridpoint R-localization can be implemented 

in a straightforward manner. We illustrate this procedure for DETKBF, but the same 

sequence of steps apply for ETKBF.  

 

a) Compute the mapping of the global background ensemble into the observation space 

bb

XHY  . This is the only global operation. For each gridpoint i, a local (denoted with 

the subindex  l ) subset of this mapping  

b

liY  along with a local subset of observations 
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 liy  are selected. These sets correspond to the observations in the physical region where 

the product 1
RCi

 is nonzero, where iC  is the localization matrix for the gridpoint i. 

 

b) The rest of the operations are local, for greater efficiency steps (b) and (c) can be done 

in parallel.  For the i th
 gridpoint, the Euler forward and DSI schemes can be written as: 
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(65) 

The matrices  liC  and  liR  are submatrices of iC  and R  respectively.  

 

c) After performing the integration to get 
a

iW , the analysis at that gridpoint is obtained as 

a

i

b

i

a

i WXX  .  This matrix has size MN
b

i
iX , where iN is the number of state 

variables in said gridpoint.  

 

The computational expense for R-localized DETKBF is estimated next. The local 

procedure in each one of the N  gridpoints is    32 ,max MMLO l , where  lL  is the 

number of observations used for that location. Since each gridpoint is independent from 

the others, they can be processed in parallel. Nonetheless, as with the LETKF, an 

important aspect to ensure stability of this localization is to have significant overlap in the 
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observations used for the analysis in neighboring gridpoints. For a broader discussion on 

this issue the reader is referred to Hunt et al. (2007).  
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3.4. Experiments  

Now we use the three models described in section 2.2 to test the ETKBF. The high 

nonlinearity of the Lorenz 1963 model will help to test the ability of the DSI integration 

method to handle stiffness. The Lorenz 1996 will allow us to test localization aspects, and 

in particular to see the interaction between different combinations of values for 

localization and multiplicative covariance inflation. The SPEEDY model will allow us to 

prove that these formulations can be used in a real life NWP setting.  

3.4.1. Experiments with the 3-variable Lorenz 1963 model 

We use settings similar to those of Kalnay et al. 2007 and Miller et al. 1994. An initial 

period of 1000 time steps in the nature run was discarded to ensure that it is on the model 

manifold. The “observations” are generated by adding a random term  IR0 2, N  to the 

nature run. All the variables are observed directly, i.e., IH  . 

 

Figure 13. Example of the evolution and assimilation of 
 2x  in the infrequent observations case 

with LETKF. The true run, the observations and the analysis ensemble are shown. 

Two cases are considered:  
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 “Frequent” observations. These are taken every 8 time steps and lead to short 

windows in which the perturbations grow essentially linearly; this roughly 

corresponds to a 6-hr assimilation cycle in an atmospheric global circulation model.  

  “Infrequent” observations. These are taken at 25 time steps and lead to long 

assimilation windows in which perturbations grow nonlinearly and their distribution 

is no longer Gaussian; Kalman filtering becomes less accurate for this long case.  

 

An ensemble of size 3M  was used for the assimilation. It is a small size (e.g., 

Evensen, 1997 used over a thousand members for this model), but it emulates the fact 

that in atmospheric models the number of state variables is usually much larger than the 

number of ensemble members that is computationally feasible. The ensemble members 

are initialized by adding random noise to the truth with the same covariance as the 

observational error. Figure 10 illustrates the time evolution of one of the state variables; it 

illustrates the truth, the observations, and each one of the ensemble members. In this case, 

the original EnKBF formulations and our EnTKBF formulations are practically 

equivalent.  

 

In order to optimize the performance of the filter (and avoid divergence in the infrequent 

observations case) we use multiplicative covariance inflation (Anderson and Anderson, 

1999). Under this scheme, the background ensemble perturbation is multiplied by a factor 

  1bb
XX , with 0 , equivalent to multiplying the background covariance matrix 

by  21  bb
PP . For both frequent and infrequent observations, we examine the 

effect of different values of   in the Bucy-type formulations as well as in the LETKF. In 
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addition to   we also vary the number of pseudo-time steps in our experiments to 

achieve optimal performance. Due to the size and structure of the model, there is no need 

to apply localization. 

 

Frequent observations 

For the frequent observations case, the values of   are taken from 15.00     (in 

Kalnay et al., 2007, the optimal value was found to be 04.0 ). First, we test the 

original EnKBF formulations with a variable number of steps in pseudo-time were used. 

We started using the Euler forward integration scheme; the results of these experiments 

are shown in figure 14 (a sample size of 125000 analysis cycles was used in this case). 

 

For both BGR09 and BR10 it is found that using less than 3 steps for the integration leads 

to a poor performance. The filters started performing well with 3 steps, and with just 5 

steps the performances of both EnKBFs converge to that of LETKF. The computing time 

was indistinguishable even with 6 steps in pseudo-time. The three formulations show 

similar behavior with respect to the inflation parameter. From 0  to about 03.0 , 

the performance of the filter improves fast as inflation increases. After this value, there is 

an optimal performance region for the three filters. Beyond this region, the covariance 

inflation becomes excessive and the filter begins to lose skill slowly in an apparent linear 

way. The results coming from using the ETKBFs are identical.  
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Figure 14. Analysis RMSE for LETKF and the two Bucy-based formulations in the case of 

frequent observations in the Lorenz 1963 model. The integration uses the EF method. 

 

The experiments were repeated with the DSI integration method. No perceivable increase 

in computational time was detected. In order to produce smoother curves, the sample size 

was increased to 10
6
 analysis cycles. The results of this experiment are presented in the 

following figure; in this case we depict the results using the ETKBFs. One can notice the 

almost perfect equivalence in the performance of LETKF and ETKBF and DETKBF with 

5 steps in pseudo-time.  
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Figure 15. Analysis RMSE for LETKF and ETKBF and DETKBF with 5 steps in pseudo-time in 

the frequent observations case. The DSI integration method is used for the Bucy-type 

formulations. 

 

Infrequent observations 

For the infrequent observations case, inflation values are taken from 10   (in Kalnay 

et al. 2007, the optimal inflation was 39.0 ). Again, we start by testing both original 

EnKBF formulations. Our first experiments use the Euler forward integration method. As 

expected from the analysis performed in section 3.1, stiffening occurrs and this scheme 

fails with a number of steps of  101O . A large number of pseudo-time steps (~70 for 

BGR09 and ~300 for BR10) are necessary to achieve a performance similar to LETKF, 

and occasional failure is still observed. The next figure shows the slow convergence in 
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the case of BGR09 using EF with increasing number of steps in pseudo-time; this figure 

was produced using sample sizes of 40,000 analysis cycles.  

 

 

Figure 16. Analysis RMSE for LETKF and BGR09 in the case of infrequent observations in the 

Lorenz 1963 model. The integration uses the EF method. 

 

We don’t show the results for BR10 since constant filter failure does not allow producing 

smooth curves. The fact that BR10 presents more problems than BGR09 can be 

understood if we remember that for BR10 the observations participate in the update of 

both the analysis mean and the analysis ensemble of perturbations. Moreover, the update 

for the mean in BGR09 is linear while in BR10 it is not. Again, the experiments using the 

ETKBF formulations lead to the same conclusions. 
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We then switch to the DSI integration method, first using uniform pseudo-time steps. 

Under these settings we find that at least 30 steps are needed for BGR09 to achieve the 

performance of the LETKF and for BR10 we find that this number is ~50. Switching to 

the variable time stepping discussed at the end of section 3.1, we find a reduction of these 

numbers to 8. 

 

In the next figure, we show the results of using the DSI scheme with variable time 

stepping with the ETKBF formulations. A sample size of 10
6
 assimilation cycles is used. 

Again, for the 3 formulations a rapid reduction in RMSE is observed as one increases the 

value of inflation before 3.0 ; then an optimal inflation region is found.  

 

Figure 17. Analysis RMSE values (averaged over 10
6
 assimilation cycles) for ETKF, ETKBF and 

DETKBF in L63 in the the infrequent observations case is shown. The Bucy-type formulations 

were integrated using the (DSI) method with 8 non-uniform steps. 
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Summary 

The next table summarizes the lowest RMSE results for both frequent and infrequent 

observations using DSI integration with variable time stepping for the ETKBFs and a 

sample of 10
6
 analysis cycles. The performance of the LETKF is also shown as reference. 

In the infrequent observations case, the lowest RMSE values are about 1% larger for both 

Bucy-based formulations than for LETKF but with comparable computing time. 

 LETKF ETKBF DETKBF 

Frequent 

observations 

0.3108 ( 0.07 ) 0.3064 ( 06.0 ) 0.3163 ( 06.0 ) 

Infrequent 

observations 

0.7544 ( 0.4 ) 0.7664 ( 5.0 ) 0.7612 ( 5.0 ) 

Table 1. Lowest RMSE values in the Lorenz 1963 model with frequent and infrequent 

observations using three filters. The optimal inflation value is indicated in parenthesis. 
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3.4.2. Experiments with the 40-variable Lorenz 1996 model 

In this case, observations are taken every 2 time steps, i.e. in intervals of length 

05.0t . For L96 with 8F  this is roughly equivalent to a 6 hours window in an 

atmospheric general circulation model (Lorenz and Emmanuel, 1998). We observe every 

other grid point with an observational error covariance IR  . An ensemble of 10M  

members is used for the experiments. The first 500 analysis cycles were discarded as a 

transient.  

 

With these settings, localization is necessary to avoid filter divergence. First, we test the 

B-localized BR10 and the R-localized DETKBF schemes and compar their performance 

with that of the LETKF. Fixed multiplicative covariance inflation is used with inflation 

values taken from 125.00   . The values for the localization radius are taken from 

95.1   . The two integration schemes (EF and DSI with varying time steps) are tested 

with 3 to 6 integration steps.  

 

For both integration schemes, the performance with 3 pseudo-time steps was comparable 

to that of the LETKF and after 4 steps we found only marginal improvements. Figure 18 

shows the results of this experiment for the case of 4 steps; the performance of the 3 

methods is shown as function of both multiplicative inflation and localization radius. B-

localized BR10 corresponds to the left column, R-localized DETKBF corresponds to the 

center column and LETKF corresponds to the right column. The Bucy-based 

formulations were integrated using the DSI method. These results are computed from a 

sample of 10
5
 analysis cycles. The top row of the figure shows the analysis RMSE; only 
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the RMSE values smaller than the observational error (equal to 1) are colored, but all the 

RMSE values obtained are finite and smaller than 6.4~ . The bottom row shows the ratio 

of the average spread of the ensemble divided by the analysis RMSE; ideally the value 

should be close to 1.  

 

The overall performance is quite similar among the 3 methods; the best RMSE values are 

within 1% of each other. In this case the computational time is not shown; the 

comparison is not straightforward –as in the non-localized case of L63- since it depends 

on details of the implementation, in particular if the gridpoints can be processes in 

parallel for the R-localized case. In general, for both integration schemes and different 

steps (not shown) the methods using gridpoint R-localization achieve their optimum for 

smaller localization radii than the B-localization. Similar findings were reported in the 

experiments performed by Greybush et al. 2011 with other models. 
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Figure 18. Filter performance for B-localized BR10 (left), R-localized DETKBF (center) and 

LETKF (right) in the L96; for the Bucy-type formulations the DSI integration scheme with 4 

uniform steps is used. The effects of multiplicative inflation and localization radius are shown; 

each tile represents an average over 10
5
 analysis cyles. The top row show the analysis RMSE, the 

uncolored tiles denote RMSE values larger than the observational error, but all the RMSE values 

were finite and 6.4 . The bottom row shows the ratio of the average ensemble spread divided 

by the analysis RMSE; ideally this ratio should be close to 1. 

 

In the previous experiments, little difference was found between the two integration 

schemes. This is due to the following facts: (a) this model is slower than L63, (b) our 

settings correspond to a frequent assimilation scheme, and (c) the observation network is 

relatively dense. Nonetheless, the value of the DSI integration method becomes clear if 
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we consider the issue of initializing our background ensemble. If this initial ensemble is 

too far from the truth, using the Euler Forward integration often leads to failure. This fact 

can be illustrated with a simple experiment described next and illustrated in figure 19. 

The unstable steady state of the L96 system is jFj X . Hence a simple way to 

generate an initial ensemble is to add random perturbations to this steady state for each 

one of the 40N  variables and 10M  ensemble members. Using R-localized 

DETKBF with 05.0  and 5 , we generated initial ensembles using the 

observational error R  (top panel), then R2  (center panel) and R3  (bottom panel) and let 

the forecast/analysis cycles evolve; the first 150 analysis cycles are shown. As the 

random perturbations of the initial ensemble decreases, using the Euler Forward method 

leads to very large analysis RMSE values in first cycles as the filter stabilizes. This does 

not happen with the DSI method. For even larger initial perturbations (not shown), the EF 

usually fails in the first analysis cycles.  

 

 

Figure 19. Analysis RMSE for the first 150 assimilation cycles of an experiment using L96 and 

R-localized DETKBF. The effect of the two integration schemes (Euler Forward and Diagonal 

Semi-Implicit) is shown for different initial ensembles. As the initial ensemble is more inaccurate 

(from left to right), EF takes longer to initialize the filter while DSI does not present problems. 
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So far, in the previous experiments we have manually tuned the multiplicative covariance 

inflation parameter  , and its value has been fixed for all gridpoints and for all time. An 

attractive feature of R-localization is that gridpoint-by-gridpoint adaptive multiplicative 

covariance inflation can be implemented (Miyoshi, 2011). This scheme uses the 

diagnostic relationships of Desroziers et al, 2005. Besides avoiding the manual tuning of 

 , it allows each gridpoint to have its own inflation which evolves with time.  

 

In the next set of experiments, we use this scheme. We extend the sample size to 10
6
 

analysis cycles and, since we do not have to tune anything, we allow ourselves use two 

ensemble sizes:  15,10M . In table 1 we present the average analysis RMSE, the 

average analysis ensemble spread and the average (both in space and time) covariance 

inflation parameter. Each column corresponds to a different filter: LETKF, ETKBF and 

DETKBF (the latter two with 4 steps in pseudo-time), and each row corresponds to a 

different ensemble size. As expected the RMSE is smaller for the larger ensemble size 

(albeit by little). On the other hand, there is negligible difference in the performance of 

the three filters. The RMSE values are slightly smaller than those obtained with the fixed 

tuned inflation case. 
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 LETKF ETKBF (4 steps) DETKBF (4 steps) 

10M  RMSE = 0.3215 (0.0832) 

spread = 0.3532(0.0324) 

 = 0.0289 (0.0112) 

RMSE = 0.3215 (0.0862) 

spread = 0.3515(0.0327) 

 = 0.0289 (0.0114) 

RMSE = 0.3227 (0.0883) 

spread = 0.3513(0.0330) 

 = 0.0289 (0.0115) 

15M  RMSE = 0.3190 (0.0789) 

spread = 0.3694(0.0329) 

 = 0.0294 (0.0115) 

RMSE = 0.3184 (0.0793) 

spread = 0.3671(0.0326) 

 = 0.0292 (0.0114) 

RMSE = 0.3197 (0.0791) 

spread = 0.3670(0.0328) 

 = 0.0292 (0.0114) 

Table 2. Results of the experiments with the L96 model. Three assimilation methods (columns) 

and two ensemble sizes (rows) are used. In each case, a sample of 10
6
 assimilation cycle was used 

to find the average analysis RMSE, average ensemble spread and average inflation parameter 

(averaged also over the 40 gridpoints). The numbers in parenthesis correspond to the standard 

deviations of the reported parameters. 

 

In the next figure, we plot the time-averaged value of multiplicative covariance inflation 

in each one of the 40 gridpoints. No noticeable differences are found between observed 

and unobserved gridpoints or among filters. 
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Figure 20. Local value of (multiplicative covariance inflation) for each one of the 40 gridpoints, 

averaged over 10
6
 analysis cycles. Three filters and two ensemble sizes are presented. 
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3.4.3. Experiments with the SPEEDY model 

Finally, we implement ETKBF and DETKBF in a model that is more representative of 

those used in operational numerical weather prediction. For the assimilation, an ensemble 

with M=20 members is used. The R-localization parameters are km500  in the 

horizontal and pv ln1.0  in the vertical. As in the last experiments with L96, adaptive 

multiplicative covariance inflation (Miyoshi, 2011) is applied to avoid manual tuning. 

The model is started from rest (zero winds and an isothermal atmosphere) and run for a 

year for spin up. Then, the model is run for 2 months (January and February); these 

months constitute the truth. The observations are taken in locations resembling a realistic 

radiosonde network as explained in section 2.3.3. The performance of the different 

formulations was evaluated using the latitude weighted analysis RMSE presented in the 

same section.  

 

As with the previous models, for the ETKBFs we look for the minimum number of 

pseudo-time steps that led to a performance equal to that of the LETKF. Using 3 steps or 

less leads to noticeable differences, starting at 4 the differences are minimal and by 6 the 

impact is practically indistinguishable. Moreover, for this number of steps the 

computational time required for an assimilation cycle is comparable to that of LETKF. 

For the results presented hereafter, we use a DSI scheme with 6 non-uniform steps in 

pseudo-time.  

 

It will be illustrative to perform single-observation experiments in different regions of the 

world, especially contrasting densely observed regions vs. poorly observed regions.  
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Figure 21. Schematic of set up for single-observation experiments. After the spin-up period, all 

observations are assimilated for three days. These allows for the differences caused by the 

observational density in different regions of the world to appear. 

 

The previous figure shows the set-up for single-observations experiments. After the spin-

up period, we assimilate all the observations for a short period of 3 days. This allows for 

the effects of the observational network density to arise. In densely observed regions of 

the globe the magnitude of the background error covariance is bound to be smaller than 

in poorly observed regions. It is after this 3-day period that we conduct the single-

observation experiments described next. 

 

In figure 22 we illustrate the impact of a single observation located over the Labrador 

Peninsula using the three filters. The variable depicted is zonal wind at 510 hPa. In the 

bottom panel of the figure we present the background value for the variable, as well as 

the location (red star) and magnitude of the observation being assimilated. We compute 

the difference between analysis mean and background mean (top part, one panel for each 

filter). We notice that the result is nearly identical for the three cases.  
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Figure 22. Impact of a single-observation experiment. The observation is located in the well-

observed Labrador Peninusula. The difference between analysis mean and background mean is 

the same using the three methods; the variable illustrated is zonal wind at 510 hPa. 

 

Furthermore, we use the same location and the same variable to show the time evolution 

(with output every 6 hours) of the background and analysis mean resulting from each one 

of the three filters, as well as the evolution of the background and ensemble spread. In 
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this case, we use all observations. The results are shown in the next figure, which again 

exhibits an almost indistinguishable behavior among the three formulations.  

 

Figure 23. Time evolution of the background and analysis mean (left panel) and ensemble spread 

(right panel) for LETKF, ETKBF and DETKBF. The depicted variable is zonal wind at 510hPa in 

a location over the Labrador peninsula. 

 

Can we expect stiffening for this model for the EnKBF/ETKBF equations? A 6-hour 

assimilation window can be considered linear, especially for synoptic scale features. 

Nonetheless, we had stated that the magnitude of b
P  also depends on the density of the 

observational network. Hence, we should expect stiffness in the poorly observed areas 

like the southern Pacific Ocean. Figure 24 depicts a single observation experiment for an 

observation in this area. We choose to depict the ratio of analysis spread to background 

spread for the meridional wind at 950 hPa. If this ratio is small, it implies that the 

background ensemble covariance is reduced considerably with the information taken 

from observations (and hence stiffness is present). As one can notice, both ETKBF and 

DETKBF using the DSI method with 6 non-uniform steps in pseudo-time give the same 

results as LETKF. In gridpoints closest to the observation, we can observe that the 
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background ensemble spread was reduced by ~70%, but the DSI method could properly 

handle any stiffness without any further complication while the EF method failed. 

 

Figure 24. Impact of two single-observation experiments. The observation is located in the 

poorly-observed Southern Pacific, hence in an area prone to stiffness. We show the ratio of the 

analysis spread to background spread for the meridional wind at 950 hPa. 

 

So far only results of particular cases have been shown. Next, we show the results from 

the assimilation experiments through the two months for which we generated the truth. In 

figure 27, we depict the time average latitude-weighted analysis RMSE for the variables 

 zqTvu ,,,,  (each one in every row) at each pressure level (different columns). In each 

panel the bars represent 1 standard deviation around the time average RMSE, which is 

computed globally. This figure displays indistinguishable results from the three filters. 
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Figure 25. Analysis RMSE values computed globally for each variable at different pressure levels 

for the three filters.  

 

Next we re-compute this metric separately for the following regions: Northern 

Hemisphere (25N-75N), topics (25S-25N) and Southern Hemisphere (75S-25S). In 

figures 26-28 we show the analysis RMSE for different variables; each vertical level is 

represented in each column and a different region represented in each row. Figure 26 

shows the results for zonal and meridional wind, figure 27 shows the results for 

temperature and geopotential height, and figure 28 shows the results for relative 

humidity. For all variables, the effect of the observational density is clear and the same 

for the three filters.  For the (well-observed) NH the mean analysis RMSE is about half of 

the observational error while for the SH it is generally more than the double.  
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Figure 26. Analysis RMSE for zonal (left) and meridional (right) wind computed for different 

regions (rows) at different pressure levels (columns) for the three filters. 

 

 

Figure 27. Analysis RMSE for temperature (left) and geopotential height (right) computed for 

different regions (rows) at different pressure levels (columns) for the three filters. 
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Figure 28. Analysis RMSE for relative humidity computed for different regions (rows) at 

different pressure levels (columns) for the three filters. 
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4. Ensemble clustering in ensemble square root filters 

As with the KF, the optimality of any EnKF is no longer guaranteed when the 

nonlinearity of the error growth in the forecast becomes significant and the distribution of 

the ensemble members is no longer Gaussian. In nonlinear forecast models, the departure 

from linearity depends upon the frequency of observations, the length of the assimilation 

window and the magnitude of the observational error covariance R (Lawson and Hansen, 

2004; Kalnay et al., 2007). 

 

In a seminal study, Lawson and Hansen (2004) analyzed the update mechanisms of the 

stochastic EnKF and the serial EnSRF, and compared their performance in linear and 

nonlinear regimes for the two-dimensional Ikeda system (Ikeda, 1979). Their analysis 

showed that the EnSRF is better at retaining higher order moments of the background 

distribution than the stochastic EnKF. This implies, however, that any departure from 

Gaussianity in the background ensemble is retained in the analysis and propagated 

forward in time. An important finding was that using the serial EnSRF in nonlinear 

regimes could lead to ensemble clustering, a phenomenon in which an M-member 

ensemble splits in an outlier and a tight cluster of
 
M-1 members, where the outlier is 

responsible for keeping the variance predicted by the KF. A result from their experiments 

illustrating clustering is presented in the left of figure 29. The higher order moments of 

the EnSRF ensembles presented non-Gaussian values, and the rank histograms 

(Talagrand diagrams) for the verification of the truth were U-shaped, implying that the 

truth and the analysis ensemble members could not be considered statistically 
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indistinguishable. Nonetheless, there was no difference reported in the analysis root mean 

squared error (RMSE) between the stochastic and the deterministic EnKFs. 

 

Lawson and Hansen (2004) also suggested that a periodic resampling of the ensemble 

(e.g. via bootstrapping) could revert clustering when using an EnSRF. This idea was first 

implemented by Leeuwenburg et al. (2005) for temperature assimilation in an ocean 

model. They compared the performance of the one-sided ETKF (Bishop et al., 2001) and 

a randomized alternative (which they called EnSRF+) that post-multiplied the transform 

matrix of the one-sided ETKF by a random rotation matrix. The EnSRF+ outperformed 

the one-sided ETKF in terms of the RMSE, with the higher order moments of the 

ensemble closer to the Gaussian. There is a caveat, however, in this study. The one-sided 

ETKF is not an unbiased square root filter (Livings et al, 2008; Sakov and Oke, 2008), 

and the EnSRF+ was not unbiased either. In fact, the one-sided ETKF is not suited to be 

used in data assimilation since it introduces a bias because the analysis ensemble of 

perturbations is not centered in zero
7
. The resulting problems are illustrated in Sakov and 

Oke (2008), who also compared the performance of the (unbiased) spherical-simplex 

ETKF (Wang et al, 2004) and an unbiased randomly rotated ETKF. Using the 40-variable 

Lorenz 1996 model (L96; Lorenz and Emmanuel, 1998) with different ensemble sizes 

and multiplicative covariance inflation factors, Sakov and Oke (2008) found similar 

performance for the both filters in terms of analysis RMSE (see their figure 3). Their 

rotated ETKF, however, produced ensembles with more Gaussian-like characteristics in 

terms of higher order moments and flatter rank histograms in the verification of the truth.  

                                                           
7
The original purpose of the one-sided ETKF was adaptive sampling, for which it does not present any 

issue. 
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Figure 29. Examples of ensemble clustering in (a) the Ikeda model (Lawson and Hansen, 2004) 

and the L63 model (Anderson, 2010). 

 

Anderson (2010) proposed a Rank Histogram Filter (RHS) as an alternative to the EAKF 

in highly nonlinear scenarios. Starting with a simple quadratic univariate model, he 

concluded that clustering is the result of the disparity between the nonlinear expansion of 

the ensemble spread in the forecast and the linear contraction of the ensemble spread in 

the analysis. This causes the outermost member to eventually become an outlier since the 

linear compaction needed to keep the variance constrained is sufficient for this member 

but larger than required for the rest of the ensemble (Anderson, 2010). Using other 

models (e.g. L63, shown in the right panel of figure 29), this study also showed that the 

analysis RMSE of the EAKF increased with ensemble size due to the nonlinear 

expansion in the forecast.  

 

These problems might suggest that once clustering occurs due to the nonlinearity in the 

forecast model, it sets in and severely handicaps the performance of an EnSRF. The 

objective of this chapter is to dispel this notion. We show that clustering is in general a 
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transient phenomenon and illustrate the mechanism for emergence and decay. To 

quantify ensemble clustering at a given time, we introduce a metric, which we 

denominate it clustering degree (CD). Through analysis and experiments, we show 

advantages and disadvantages in both traditional EnSRFs and those that include random 

rotations to avoid clustering; each assimilation method appeals to different situations and 

different requirements.  

 

All our experiments are identical twin experiments using two EnSRFs: the LETKF (Hunt 

et al, 2007) that is prone to the ensemble clustering, and the Mean Preserving Non-

Symmetric LETKF (MPNS-LETKF), which we develop in the next subsection. The 

methods are compared through the background (i.e., forecast) and analysis RMSE, the 

higher order moment of the ensemble with sample skewness as defined in the appendix of 

Lawson and Hansen (2004), and the time evolution of the CD. 

 

4.1 Generating mean-preserving non-symmetric solutions of ETKF 

As mentioned before, ETKF is a post-multiplicative scheme such that aba
WXX  . In 

this subsection we show a simple way construct non-symmetric solutions that preserve a 

zero mean. First, recall the one-sided ETKF (Bishop et al., 2001), which uses the 

following matrix of weights: 

  21

1



  ΓICW
a

sided          (66)  

 

where the matrices C  and Γ  come from the eigenvalue decomposition: 
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1

1






M

bTb
T YRY

CΓC  

 

The covariance in ensemble space is: 

    T
CΓICWWP

1

11

~ 

 
Ta

sided

a

sided

a       (67) 

 

This scheme, however, does not preserve a mean zero for the analysis ensemble of 

perturbations, i.e. if M1  and M0  then in general: 

  01ΓIC1X 




21

1

a

sided           

 

The equality is fulfilled in very restricted cases (Livings et al., 2008). An alternative to 

the one-sided ETKF is the spherical simplex ETKF (Wang et al., 2004), which is 

equivalent to the Local ETKF (Hunt et al., 2007) with no localization. This scheme uses a 

‘symmetric’ form for the matrix of weights:  

  T
CΓICW

21
a

sym         (68)  

 

Since C  is an orthonormal matrix, the covariance in ensemble space is the same as the 

one obtained with the one-sided ETKF: 

        TTT
CΓICCΓICCΓICWWP

12121~ 


Ta

sym

a

sym

a   (69) 

 

Moreover, this formulation guarantees the preservation of the zero mean, i.e.: 

  01CΓIC1X
T 

 21a

sym          
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A general ‘non-symmetric’ ETKF can be written as  

  T
SΓICW

21
a

ns          (70) 

 

where S  must be orthonormal (to preserve the prescribed covariance) and guarantee that: 

  01SΓICX1X
T 

 21ba

ns . 

 

This occurs as long as S  contains the column 1  as an eigenvector. Instructions to 

construct this matrix as well as a proof of the claim are listed next: 

 

a) Generate a matrix with random entries   MM

M,,  gggG ,21  .  

 

b) Compute a matrix of perturbations  ggggggG  M,, 21 , where 1Gg
1 M . 

By construction 0G1  .  

 

c) Perform the eigenvalue decomposition of the matrix TT
SSΛGG  . Since GG

T is 

symmetric (and therefore normal), S  has orthonormal columns, i.e. ISSSS
TT  .  

Moreover, all the eigenvalues in Λ  are nonnegative.  

 

d) Sort the eigenvalues by magnitude, and order the eigenvectors in S  correspondingly. 

Since MMG  and 0G1  , 0M  and 1s
21 MM . The elements of Λ  and S  are: 

  0,,,, 121  Mdiag  Λ ,  1sssS
21

121 ,,,, 

 MM . 
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Now let’s prove that the solution preserves the zero mean. First, we perform the 

operation: 

       TTTTT
ΓICX11sssΓICX1X

212121

121

21
,0,,0,0,,,, MM b

M

ba
ns 






  (71) 

 

To proceed any further, we have to consider the structure of C  and Γ . Since 

 11  MbTb
YRY  is symmetric (hence normal), the columns of C  are orthonormal and 

the eigenvalues of Γ  are nonnegative. Two cases arise: 

 

Case 1: NM  . This is the most common case in practice, and also the one for the proof 

is simpler. If we sort the eigenvalues of Γ  by magnitude and the columns of C  

correspondingly, then we have that  0M  and 1c
21 MM . Therefore: 

 

 
   TTTT

1ssX1X
21

21

2

21

1

21

21 ,,0,0

100

010

001

,,, MMba
ns 









































 



 

If we perform operations we find that: 

   01X1sssX1X
TTTTT  



b

M

ba MMns

2121

121 ,0,,0,0,,,,     (72) 

 

Case 2 NM  . It is unusual in practice to have more ensemble members than variables. 

This is the case, nonetheless, of our experiments with the univariate quadratic model. For 

this case the last NM   eigenvalues in Γ  will be zero, but we cannot say much about 
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the corresponding eigenvectors, only that they are not orthogonal to the vector 1  (hence 

we cannot apply the procedure used in the other case). We can write: 

 

 

 

 

 TTTT
sssX1X

21

21

21

2

21

1

121 ,0,,0,0

100

010

001

,,, M

M

M

ba
ns 





















































 

And performing the operations we have: 

T

M

ba M
ns 












1
,,0,0 CX1X        (73) 

 

At this point we focus on the structure of MNb X . Its singular value decomposition is 

T
VUΣX b  where NNU , MMV  and MNΣ  is a rectangular diagonal 

matrix. Taking this into consideration, we find: 

     
T

T
TTb

T
Tb

bTb
T

VUΣ
HRH

UVΣX
HRH

X
YRY

CΓC
111

111












MMM
   

 

Therefore, VC  and  11   MHUΣRHUΣΓ
TTT . With this in mind: 

  
T

M

T

M

a M
Mns 

















1
,,0,01,,0,0 2121

 UΣCCUΣ1X
T   (74) 

Since MNΣ  is a rectangular diagonal matrix and NM  , the last NM   rows are 

columns of zeros. Therefore, the product    N
T

M M 


0Σ
2121

1,,0,0  . 

Therefore 

0U0UΣ1X 











T

M

a M
ns

1
,,0,0        (75) 
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This concludes the proof for the two cases. 

 

When localization is used, we may need to rotate the symmetric solution of the ETKF 

(section 4.4), namely to have a transformation matrix of the form: 

  TT
SCΓICSWW ˆˆ 21

 aa
sym        (76) 

 

MMŜ  obviously needs to be orthogonal and we also require 11S
T ˆ . An easy way 

to construct this matrix is the following (based on Sakov and Oke (2008b) and Horn and 

Johnson (1985)): 

T
S

T
SS 










10

0ˆ          (77) 

 

Where MMS  and    11  MM
T  are constructed as indicated in the steps (a)-(d) of 

this appendix. 

 

4.2. Metric for ensemble clustering and experimental setup 

Starting with a univariate ensemble, we define clustering degree (CD) as: 

2

2

1

M

MCD


            (78) 

 

The denominator of (78) is the variance of the M-member ensemble, while the numerator 

is the variance of the M-1-member ensemble that remains after removing the outermost 
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member of the original. By this definition, CD spans from zero to one. If ensemble 

clustering is present, most of the variance comes from the outermost member and hence 

CD will tend towards zero. The time evolution of this metric for an unclustered ensemble 

will vary around a mean value which depends upon M, so that an accurate interpretation 

of this metric is restricted in identifying clustering. 

 

For a multidimensional case, this metric can be generalized to: 

 
 M

M

PTrace

PTrace
CD 1          (79) 

 

The denominator is the trace of the M-member ensemble covariance matrix, while the 

numerator is the trace of the M-1-member ensemble covariance matrix after removing the 

outermost member. Equation (79) is adequate in the multidimensional case only when the 

variables have the same units. If this is not the case, one can use a proper norm (e.g. an 

energy norm) when summing the variances, or one can perform the analysis separately 

for different sets of variables.  

 

4.3. Ensemble clustering in a simple nonlinear model 

We start from a simple model to explain the mechanisms that set in and reverse 

clustering. Following Anderson (2010), we consider the univariate quadratic ODE 

xxbxdtdx  . A prediction model based on the Euler forward discretization of this 

ODE is: 

 ttttt xxbxxx 1         (80) 
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where 05.0  is the time step. This model exhibits the desirable nonlinear expansion 

described in the previous section through the nonlinear coefficient b. The system 

described by (80) has an unstable fixed point at the origin, which we use as the truth, i.e., 

0*  xxt . Observations are made every 2 model steps unless otherwise noted, by 

adding a random noise term  1,0~ N . We assimilate every time we observe. We vary the 

ensemble size,  100,20,10M  and the nonlinearity coefficient,  2.0,0b , where 

Anderson (2010) used 2.0b . The members of the initial ensemble are drawn 

uniformly from the interval  1,1 . 

 

Figure 30 shows the time evolution of the analysis ensemble for the case 1.0=b  and 

10M  with LETKF (panel (a)) and MPNS-ETKF (panel (b)). Panel (c) illustrates the 

application of CD : for LETKF, CD  smoothly decreases towards zero, while for MPNS-

ETKF it changes abruptly at every analysis, but the variation remains around the mean.  
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Figure 30. Data assimilation experiment with the model  ttttt xxbxxx  05.01 , 

observations every 2 model steps, and 10M . For panels (a)-(c) 2.0b . LETKF (a) presents 

ensemble clustering soon after 5 time units while the MPNS-ETKF (b) doesn’t. In (c) we quantify 

the clustering degree for both filters. 

 

Then we study how the combinations of different ensemble sizes M and degrees of 

nonlinearity b  affect the appearance of clustering; this is shown in the next figure. 

Clustering occurs for the LETKF for any 0b ; it emergence occurs earlier as b  

increases. The clustering tends occur more gradually for smaller M and more abruptly for 

larger M. In all cases the ensembles seem to collapse at the same time that depends solely 

on b .  
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Figure 31. Data assimilation experiment with the model  ttttt xxbxxx  05.01 . The 

clustering degree is measured for LETKF different ensemble sizes and values of b. 

 

So far our experiments have shown that clustering does not arise when using MPNS-

ETKF. To illustrate why this non-symmetric formulation prevents EC, we depict the 

update process of both filters from background to analysis for each one of the 10M  

members in the figure 32. To accelerate the emergence of clustering we take observations 

every 5 model steps and 2.0b . For LETKF (top panel), the analysis ensemble is chosen 

to be as close as possible to the background ensemble (Ott et al., 2004). Therefore, any 

deformation introduced by the nonlinear expansion in the forecast will remain in the 

analysis; the separation of the outliner member from the cluster cannot be stopped once it 

starts. By contrast, MPNS-ETKF (bottom panel) effectively erases any deformation 

occurred during the forecast via a constrained resampling at each analysis. 

 

 



86 

 

 

Figure 32. Update mechanisms for LETKF and MPNS-ETKF for the individual ensemble 

members, with the red dots indicating the observation value. LETKF preserves the structure from 

the background ensemble into the analysis ensemble. The MPNS-ETKF effectively scrambles the 

ensemble every time an assimilation occurs. The model is  ttttt xxbxxx  05.01 , 2.0b , 

observations every 5 model steps, and 10M . 

 

The verification of the truth with respect to the analysis ensemble was computed for both 

methods. This information is presented in figure 33: the blue line represents the evolution 

of CD (measured in the left axis) with respect to time, and the green asterisks represent 

the position of the truth (measured in the right axis) within the ensemble for different 

times. As shown in this figure, for LETKF the truth very often falls either outside the 

ensemble or between the outlier and the cluster. For MPNS-ETKF the truth is statistically 

undistinguishable for the ensemble, leading to flat rank histograms (not shown). Both 

methods, however, estimate very similar analysis means, leading to indistinguishable 

performances in terms of RMSE. Nonetheless, an important aspect is that for LETKF one 
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can trace individual ensemble trajectories to the past (this is one of the benefits of 

EnSRFs pointed out by Anderson 2001), but for MPNS-ETKF the information about the 

individual trajectories is lost every time at every assimilation. This is shown in figure 34.  

 

Figure 33. Clustering degree (left axis) and position of the truth within the ensemble (right axis) 

for LETKF and MPNS-ETKF for the individual ensemble members. 

 

 

Figure 34. Data assimilation with the simple univariate model. When using LETKF (left) one can 

follow individual trajectories for the ensemble members. This ability is lost when using 

MPNS_ETKF (right) since the ensemble is ‘rebooted’ every time assimilation is performed.  
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The experiments presented so far seem to suggest that once the clustering sets in, it is 

irreversible and can imply a major obstacle for an EnSRF. It is crucial to realize that 

nonlinearity is kept constant by keeping b fixed using the simple univariate model (80); 

in higher-dimensional models, however, nonlinearity is spatially and temporally variable 

as the trajectory may visit different regions of the phase space. In the reminder of this 

chapter, we demonstrate that this variability of the nonlinearity can help revert the 

clustering and thus the clustering is a transient phenomenon.  

 

To introduce the variability of nonlinearity in (80), we let b  change every T  model time 

steps, where T  comes from a uniform distribution  00 2,~ TTU . Every time a ‘cycle’ of 

length T  completes, a new b  is drawn from  1.0,0N . Hence, forecast model dynamics 

experience different dynamical regimes for ensemble spread near the truth: unstable 

expansion ( 0b ) or stable contraction ( 0b ). Dynamics is quasi linear for 0~b , and 

~95% of the cycles have 2.0b . 
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Figure 35. Assimilation experiments with the model   ttttt xxbxxx  05.01 . We allow the 

nonlinear coefficient bt to vary as a piece-wise function of time (green line, right vertical axes). 

The clustering degree is represented by the black line and left vertical axes. The time intervals in 

which bt is fixed are different for each panels. Panel (e) shows the ensemble evolution for the 

time interval  850,600t  of case (b); the reattachment of the outlier occurs in a natural way. 

 

In panels (a)-(d) of figure 35 we show the time evolution of b in gray line (right vertical 

axis) along with the clustering degree (CD) of the LETKF in black line (left vertical axis) 

for the interval  900,200t . We show the results for the cases  1000,500,100,500 T  

model steps in these panels.  By introducing the variability in nonlinearity of the forecast 

model, the LETKF no longer suffers from irreversible clustering. In panel (b), around 

200t  clustering sets in due to large positive values of b. Clustering persists until 

600t  but decays as the outlier returns to the rest of the ensemble as shown in panel (e). 

 

In this simple model, clustering can persistent over a long period although introduction of 

the artificial variability in nonlinearity eventually resolves the clustering. In higher-

dimensional model with natural variability in nonlinearity, the clustering is less persistent 

as we demonstrate in the next sections. 
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4.3 Localization aspects of the MPNS-LETKF  

As discussed in previous sections R-localization (Hunt et al., 2007) is a natural choice for 

post-multiplicative EnSRFs. In this scheme, an independent analysis is carried out for 

every single grid point using observations within a certain distance, and assuming that the 

observation error increases with the distance to the grid point (see Greybush et al., 2011 

for details). For stability in the model forecast, it is important that the analyses obtained 

in neighboring grid points vary smoothly. This was one of the reasons behind the 

symmetric square root used in the LETKF (Hunt et al., 2007).  

 

The smoothness among grid points in the analysis is not guaranteed automatically by 

MPNS-ETKF. We perform a simple assimilation experiment with the 40-variable L96 

model to illustrate that this method cannot be applied directly with R-localization and that 

it requires some additional steps. 

 

With R-localization, the filter independently calculates a local matrix of weights 

MMa

local

W  for each one of the 40N  gridpoints, as illustrated schematically in the 

next figure: 
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Figure 36. Schematic depicting the effect of R-localization in the LETKF. Each grid-point has its 

own matrix of weights; a smooth transition among these weights is indispensable to ensure 

stability. 

 

For illustration purposes, we select gridpoint 12 (the result is valid for all gridpoints) and 

calculate the correlation of each one of its 22 10M  weights with respect to the weights 

from the all the other gridpoints. Figure 37 shows these correlations for LETKF (black 

line, left vertical axis) and MPNS-ETKF (gray line, right vertical axis). The difference is 

evident: while the correlation obtained by LETKF varies smoothly and with values very 

close to unity, for MPNS-ETKF this curve varies sharply and in general has small 

correlation values. As expected, we observe filter divergence when using this method. 
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Figure 37. Correlation between the analysis weights of gridpoint 12 with respect to the weights in 

neighboring gridpoints for the L96 model. For LETKF (black line, left vertical axis) the 

correlation values are high and they present a smooth transition. For MPNS-ETKF (gray line, 

right vertical axis), the transition is not smooth and the correlation values are low. MPNS-ETKF 

cannot be directly applied with R-localization. 

 

Random rotations can still be applied in this case. Using R-localization implies building 

a
X  by sets of rows at a time, the size of each set corresponding to the number of 

variables in every gridpoint. Once a
X  is completely calculated from local symmetric 

analyses (i.e., using LETKF), it can be globally rotated. This version of the MPNS-ETKF 

has no problems of divergence and can benefit from the ensemble resampling. 
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4.4. Experiments 

We now proceed to perform experiments with larger dimensional models, first with L63 

and then with SPEEDY. 

 

4.3.1 Experiments with the Lorenz 1963 model 

Focuses of this section are the effect of the ensemble size M with respect to the model 

dimension N as well as that of linear and nonlinear dynamics on the background 

ensemble spread in the forecast. In these experiments, we use ensemble sizes 

 20,10,3M . For 3M  with the rank-deficient background covariances PM and PM-1 in 

(79) M-1<N, multiplicative covariance inflation   1bb
XX  is applied with 

04.0  for the short assimilation window and 4.0  for the long assimilation 

window. These values are close to the optimal values obtained in Kalnay et al. (2007) 

and those obtained in the experiments in the chapter 3 of this work. As in section 3.3.1, 

two types of observing system are used: one with a short assimilation window using 

frequent observations at every 8 model steps and the other with a longer window sing 

infrequent observations at every 24 model steps. The short and long assimilation 

windows respectively correspond to the linear and nonlinear regimes for ensemble spread 

in the mode forecast (Kalnay et al., 2007). 

 

Figure 38 shows the CD  for the  1550,1525t . The top row illustrates the cases for the 

linear regime, while the bottom row represents the cases within the nonlinear regime. For 
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3M  (left column), we observe very rapid variations in the CD  for both LETKF (black 

line) and MPNS-ETKF (gray line). This is natural, since the sample size is rather small. 

Still some instances of clustering (e.g. 1548t   in the nonlinear regime) emerge in the 

nonlinear regime for LETKF. With larger ensemble sizes there is a clear difference in the 

CD  between LETKF and MPNS-ETKF. For MPNS-ETKF it varies abruptly (but around 

a mean value) every time the assimilation is performed, but the variation is smaller as the 

ensemble size increases. For LETKF the variations in the CD  are slower and smoother; 

CD  can reach low values in both the linear and nonlinear regimes, but it does so more 

often in the nonlinear regime. There are no cases of irreversible collapse of the ensemble; 

when clustering occurs it is only transient and not as persistent as with the simple 

quadratic model.  

 

 

Figure 38. Time evolution of the ensemble clustering degree for LETKF (black solid line) and 

MPNS-ETKF (green dashed line) from an assimilation experiment with the L63 model.  Three 

ensemble sizes (columns) are used in a linear regime (top row) and a nonlinear regime (bottom 

row). 
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Figure 39 deals in more detail with the nonlinear regime case with 20M  using 

LETKF. Instances of set in and reversal of clustering can be identified. The top panel 

shows the CD  evolution for a longer time period  200,165t . There is an indication of 

clustering around 190t . The three panels in the bottom row of this figure show the 

trajectories for the truth (black line) and the analysis ensemble members (gray lines) at 

three different instants with different CD  values. The middle panels shows the case with 

clustering, being evident in what seems to be a two member ensemble. This, however, 

does not prevent the ensemble to revert the clustering afterwards. We find many episodes 

like this in the time evolution of the ensemble.  

 

 

Figure 39. Experiments with L63, observations every 24 model steps and M=3. The evolution of 

the clustering degree is shown in the top. Snapshots of the phase space are presented for three 

time intervals with contrasting CD values, the one in the middle shows clustering occurring. 

 

Why is clustering less persistent in this model? In the univariate quadratic model, 

clustering occurs and decays with the varying magnitude of the nonlinear expansion and 

contraction of the ensemble spread. In higher dimensional models, not only the 
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magnitude but also the direction changes temporally and spatially. A way to study the 

characteristics in the local perturbation growth is by using bred vectors (Toth and Kalnay, 

1997). Evans et al. (2004) applied this technique in the Lorenz 1963 model and showed 

different magnitudes of growth for different regions of the attractor. In figure 41 we 

reproduce one of their main results. In the left panel, the attractor is depicted in phase 

space, the color represent the magnitude of the bred vector growth (the breeding time is 8 

model steps). Dark blue represent negative values, i.e. quiescent regions where 

perturbations tend to vanish. All the other colors represent regions with positive growth, 

in particular the red color is associated with a strong growth of perturbations. Hence, as 

the trajectory travels by different regions of the attractor, it indeed feels changes in the 

magnitude and sign of growth (both linear and nonlinear). The right panels in this figure 

show the time evolution for the three variables. As stated in Evans et al (2004), the 

largest bred vector growth occurs near regime transitions. Zhang et al. (2012) have 

recently extended this study and have illustrated the change in direction as well.  

 

Figure 40. Bred vector growth rate in the Lorenz 1963 attractor. In the left panel, a picture of the 

attractor in phase space is shown. In the right three panels, the time evolution of each variable is 

shown colored by growth rate (reproduced from Evans et al, 2004). 
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We have presented study cases of particular instances in our experiments. A more robust 

statistical summary is performed now for both LETKF and MPNS-ETKF in the linear 

and nonlinear regimes and with different ensemble sizes; the results come from a run of 

10
6
 model steps after a short transient. Figure 41 shows statistical measures of both filters 

for the linear (left column) and nonlinear (right column) regimes, with boxplots for CD 

(top row), and analysis RMSE (right column) for the three ensemble sizes. The black dots 

accompanying the boxplots represent the mean for each metric; these values are also 

displayed in the figure. For a small ensemble size, performance of the LETKF and 

MPNS-ETKF is practically the same.  For a larger ensemble size differences arise. The 

LETKF in general presents smaller CD values, a sign that it is more prone to clustering. 

For the linear regime, both for the background and analysis RMSEs have a similar 

distribution with little difference in the mean for the two EnSRFs. For the nonlinear 

regime, the MPNS-ETKF exhibits less outliers in the ensemble spread, leading to smaller 

mean RMSE, especially for the case 20M . This is consistent with the finding by 

Anderson (2010) that the mean analysis RMSE of the EAKF increased for the larger 

ensemble size. One can hypothesize whether there is a relationship between the mean CD 

value in the forecast and the analysis RMSE in the assimilation at the end of that window. 

One could think, for example, that having a low CD value is unequivocal sign of an 

‘unhealthy’ ensemble and that this will lead to get a large analysis RMSE. Performing a 

scatter plot between CD and RMSE (both for background and analysis) we don’t find any 

such relationship (not shown). 
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Figure 41. Boxplots for CD (top row) and analysis RMSE (bottom row) for both LETKF and 

MPNS-ETKF in the linear (left column) and nonlinear (right columns) regimes. Results are 

shown for three different ensemble sizes. 

 

Finally, figure 42 presents the rank histograms for the verification of the truth with 

respect to the analysis ensemble for variable 
 1x  (the results are the same for the three 

variables). For 3M  there is no difference between the EnSRFs: all ensembles are over-

dispersive. This may be a result of the use of inflation. For 20M , the LETKF has a U-

shaped histograms, especially in the nonlinear regime. Using MPNS-ETKF, on the other 

hand, produces flat rank histograms; a similar behavior is observed with 10M  (not 

shown).  
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Figure 42. Rank histograms for the verification of the truth with respect to the analysis ensemble 

in the Lorenz 1963 model. Two different ensemble sizes are used in the linear  and nonlinear  

regimes. 

 

The results in this section show that MPNS-ETKF has a better performance in the 

nonlinear regime when M>N, and this difference is more evident as M grows. In practical 

applications, however, usually M<<N and techniques such as localization and covariance 

inflation are needed to compensate for the limited ensemble size. This is the focus of the 

next subsection. 

 

4.3.2. Experiments with SPEEDY 

As for the ETKBF experiments, the nature run for our experiments starts after a one-year 

spin-up from state of rest and lasts two month (January and February). Both EnSRFs use 

an ensemble of M=20. The R-localization parameters are km500  in the horizontal 

and pv ln1.0  in the vertical. We use the adaptive multiplicative covariance inflation 

(Miyoshi, 2011). In figure 43, we compute we compute two latitude-weighted metrics –

analysis
8
 RMSE (left half of the figure) and sample skewness for the analysis ensemble 

                                                           
8
 Computing the metrics for the background ensemble lead to identical results; these are not presented.  
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(right half of the figure)- for the variables  zqTvu ,,,,  (one per row) at each vertical 

level (one per column). The mean value of the metric is indicated with a dot and the bars 

represent one standard deviation. 

 

Figure 43. Latitude weighted analysis RMSE (left) and analysis skewness (right) for all variables 

computed globally. The bars represent one standard deviation of the metric around its mean. ET 

denotes LETKF and NS denotes MPNS-ETKF.   

 

In terms of analysis RMSE, there is no perceivable difference in the performance of 

LETKF vs. MPNS-ETKF. In terms of skewness, we have different results for different 

variables. No noticeable (or very little) difference in skewness or RMSE values is 

observed for the variables  zvu ,,  for any vertical level. The variables  qT ,  do present 

differences for skewness, although the RMSE is indistinguishable. The skewness for 

these variables is less noticeable in the NH.  

 

The metrics are now recomputed independently for each region of the world: NH (25N-

75N), tropics (25S-25N) and SH (75S-25S). Figures 44-48 present the results for zonal 
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wind, meridional wind and geopotential height, i.e. those variables for which no skewed 

ensembles result from either method (at least globally).   

 

 

Figure 44. Latitude weighted analysis RMSE (left) and analysis skewness (right) for zonal wind 

computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The bars 

represent one standard deviation of the metric around its mean. ET denotes LETKF and NS 

denotes MPNS-ETKF. 

 

 

Figure 45. Latitude weighted analysis RMSE (left) and analysis skewness (right) for meridional 

wind computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The bars 

represent one standard deviation of the metric around its mean. ET denotes LETKF and NS 

denotes MPNS-ETKF. 



102 

 

 

 

Figure 46. Latitude weighted analysis RMSE (left) and analysis skewness (right) for geopotential 

height computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The 

bars represent one standard deviation of the metric around its mean. ET denotes LETKF and NS 

denotes MPNS-ETKF. 

 

After computing the metrics per region, we observe that LETKF leads to asymetric 

ensembles in the tropics for u and in the SH for v and z. We now compute the regional 

metrics for T and q in figures 42 and 43. We observe that for T, LETKF tends to create 

asymetric ensembles in the tropics and in the SH. For q, this behavior can arise anywhere. 

Nonetheless, this is not reflected in the RMSE.  
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Figure 47. Latitude weighted analysis RMSE (left) and analysis skewness (right) for relative 

hummidity computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. 

The bars represent one standard deviation of the metric around its mean. ET denotes LETKF and 

NS denotes MPNS-ETKF. 

 

 

Figure 48. Latitude weighted analysis RMSE (left) and analysis skewness (right) for temperature 

computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The bars 

represent one standard deviation of the metric around its mean. ET denotes LETKF and NS 

denotes MPNS-ETKF. 

 

For most variables, LETKF tends to create asymmetric ensembles in the tropics and the 

SH. These are poorly observed regions in which nonlinear behavior can arise. 
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Nonetheless, in spite of these non-Gaussian ensembles, the analysis RMSE values show 

no difference between the two assimilation methods. The only variable with a different 

behavior is q ; for this variable EC appears even in  well-observed regions (NH). 

However, this variable is subject to nonlinear processes not represented explicitly in the 

model, but through parameterizations. Nonetheless, there were no specific cases in which 

one could observe clustering in SPEEDY. 

 

We plot rank histograms for the verification of the truth with respect to the analysis 

ensemble for the variables at different pressure levels and for different regions. In 

particular, in the next figure we present this for temperature at 510hPa in the NH. We do 

not observe differences between the two methods, both lead to under-dispersive 

ensembles. This is a common feature for all variables.  

 

Figure 49. Verification of the truth with respect to the analysis ensemble mean for temperature at 

510 hPa in the NH. The black line comes from the use of LETKF and the green line from the use 

of MPNS-ETKF. 
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5. The effects of the RAW filter on the climatology and forecast 

skill of the SPEEDY model 

Numerical weather prediction involves the numerical time integration of prognostic 

equations describing the behavior of the atmosphere. A widely used option in 

contemporary models of the atmosphere and ocean is a centered time-stepping scheme 

known as the leapfrog, specifically the Robert-Asselin (RA) filtered version. This 

popularity is mainly due to three factors: the ease of implementation, the low 

computational expense (only one evaluation of the model’s tendency is needed per time 

step), and the low run-time storage requirements. The most serious problem associated 

with the leapfrog scheme is the “time splitting” instability associated with the creation of 

a spurious computational mode. The RA filter provides a considerable amelioration of 

this problem. The application of this filter, however, while damping the computational 

mode, can also have the undesired effect of significantly damping the physical mode of 

the solution, hence degrading its accuracy. In recent work, Williams (2009) introduced a 

simple modification to the RA filter, with the objective of improving its performance 

while avoiding its associated problems; the modification will hereafter be referred to as 

the Robert-Asselin-Williams (RAW) filter. 

 

In this chapter, the RAW filter is implemented and tested in the SPEEDY model 

(Molteni, 2003). Furthermore, we examine whether the use of the RAW filter changes 

either the climatology or the skill of weather forecasts, or both. For the first objective, we 

calculate the local and field significance following Livezey and Chen (1983). For the 
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second objective, we compute deterministic forecasts and assess the performance using 

base data from the NCEP reanalysis (Kalnay et al., 1996).  

 

5.1. The Robert-Asselin-Williams (RAW) filter 

The centered discretization scheme known as the leapfrog is implemented as follows: 

   nnn xFtxxxF
t

x





 211      (81)  

The leapfrog scheme is a widely used numerical integration method, in particular for 

hyperbolic equations and complex models. There are two main reasons for this. First, 

being a centered scheme, it is reasonably accurate and has an error of order  2
tO  . 

Second, it requires only one computation of the time derivative per time step, and is 

therefore reasonably computationally efficient. A schematic of its design is presented in 

the following figure.  

 

Figure 50. Schematic for the leapfrog integration method. Successive integrations are shown with 

an alternation of pink and blue colors. Only the first integration is an extrapolation, the rest are 

centered integrations. 
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The leapfrog scheme, however, introduces into the solution of the equation a spurious 

computational mode besides the actual physical mode (e.g. Kalnay 2003). This undesired 

mode manifests itself in nonlinear integrations as a spurious, growing oscillation between 

even and odd time steps. In figure 51 we present the evolution of the 510hPa geopotential 

height above College Park, MD, using the SPEEDY model. The black line represents the 

leapfrog integration without any filtering. The appearance of the computational mode is 

evident since early stages; the bottom panel shows the spurious oscillations after 8 days 

of integration. The growth of these unphysical modes leads to very rapid variations of the 

function after a little over a month of integration. The function loses its smoothness 

progressively and this leads eventually to ‘computational blowup’.  

 

Several approaches have been proposed to combat the growth of the computational mode; 

the most widely used is the Robert-Asselin (RA) filter. This filter was introduced by 

Robert (1966) and was shown by Asselin (1972) to suppress the computational mode 

while leaving the physical mode untouched for low frequencies with long periods 

compared to the time step, t .  The RA filter is implemented in leapfrog integrations as 

follows: 

 

 

 11

11

2
2

2









nnnnn

nnn

xxxxx

xFtxx

        (82) 

 

The smoothing parameter   in equation is usually chosen to be  2.001.0 O . The 

choice of this parameter is important: if its value is too small it can hardly manage to 

dampen the computational mode, but if it is too large it can lead to loss of accuracy in the 
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solution. In his original analysis, Asselin (1972) studied values up to 2.0 . For 

atmospheric models, Durran (1991) notes that values of 12.0  are typically used in the 

NCAR community (Williamson, 1983); Déqué and Cariolle (1986) consider values as 

high as 2.0  and so does the GFDL-MOM model. For oceanic models Khanta and 

Clayson (2000) recommend values between 1.0  and 3.0 .  

 

In figure 51, the RA-filtered leapfrog is represented with the red line; it is evident that the 

spurious gravity waves are damped satisfactorily. Although the RA filter is widely used 

in operational and research models of the atmosphere and ocean (Williams, 2009), it has 

two related problems. First, besides damping the computational mode, the filter also 

weakly damps the physical mode, especially at high frequencies. This damping may 

become important for long integrations. Second, the RA filter degrades the accuracy of 

the unadulterated leapfrog scheme, since, by being un-centered in time, the RA-filtered 

leapfrog is only first-order accurate.  

 

In order to ameliorate the negative effects that the RA filter has on the physical solution 

of the model, Williams (2009) introduced a modification that we hereafter refer to as the 

Robert-Asselin-Williams (RAW) filter. The original RA filter reduces, by a factor of 

 1 , the magnitude of the temporal curvature of the state, and it is this smoothing 

effect that damps the computational mode. However, the filtering also changes the mean 

value of the state, averaged over the three time levels: 

33

1111  





nnnnnn xxxxxx
M       (83) 
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Figure 51. Time evolution of the 510hPa-geopotential height over College Park, MD using the 

SPEEDY model. The integration is performed using the leapfrog scheme using no filter (black 

line), the RA filter (red line)  and the RAW filter (blue line).The appearance of spurious 

computational waves in the unfiltered integration occurs quickly (bottom panel) and leads to the 

loss of smoothness in the solution after a little over a month (top panel).  
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Williams (2009) showed that, when used with the leapfrog scheme, it is this non-mean-

conserving feature of the filter that degrades the numerical accuracy. In the same work, 

the author tackled this problem by introducing an extra step in the filtering process, in 

order to include the possibility of conserving the mean value. The resulting RAW filter is 

implemented in leapfrog integrations as follows: 
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In figure 51, the RAW-filtered leapfrog integration is represented with the blue line. Like 

the RA filter, the computational mode is damped satisfactorily. The RAW filter 

introduces an extra operation which is simple and doesn’t represent a considerable 

computational expense with respect to the RA filter. It also introduces a new parameter, 

 1,0 . Taking an un-damped oscillation equation Fi
dt

dF
 , Williams (2009) found 

the amplification relationship for the RAW filter to be:  
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In this amplification relation , t  corresponds to the time step of the numerical solution 

of the equation. The next figure  (taken from Williams, 2009) illustrates the behavior of 

equation –for a fixed value of   (taken to be 0.2)- with respect to t .  
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Figure 52. The impacts of different values of the parameter   of the RAW filter on the 

numerical amplification of an unforced, undamped wave; taken from Williams (2009). The value 

of 1  corresponds to the original RA filter.  The value of 53.0  is a preferred choice, 

since it keeps the amplification close to its exact value (unity) over a broad frequency range. 

 

Each curve illustrates the effect of a different value of   on the numerical amplification 

(or numerical dissipation) of a free wave oscillation, which is physically unforced and 

undamped in the time-continuous differential equation. A value of 1  corresponds to 

the traditional RA filter. From this figure we can see that, for a value of 53.0  one can 

minimize the spurious, numerical impacts on the physical solution and obtain the closest 

match to the exact solution over a broad frequency range.  

 

In Williams (2009), the RAW filter was tested in a simple linear system representing 

harmonic inertial oscillations. For this model, an explicit analytical solution exists and 

therefore it is easy to visualize and compare the effects of both the RA filter and the 
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RAW filter in the numerical solution of the model. In this work we implement and test 

the RAW filter in a more realistic atmospheric model, the SPEEDY model described in 

section 2.2.3.  

 

We have been using figure 52 to illustrate the effectiveness of the RA and RAW filter in 

suppressing the unphysical modes for a variable of this model. One can appreciate that 

the RA- and RAW-filtered integrations differ after around 13 days even when they 

started from the same initial conditions. This is understandable since the model is chaotic, 

so the chance in integration scheme will cause the divergence of trajectories eventually. 

So, in order to assess the true impact of upgrading the RA filter to the RAW filter, we 

will have to assess if there are changes in the climatology of the model, and whether 

forecasts coming from RAW-filtered integrations are more accurate.  

 

5.2. Effects of the RAW filter on the climatology of the SPEEDY model 

Since we are interested in possible changes to the climatology of the model, in this 

section we consider relatively long time averages for our variables. In order to strike a 

balance between retaining long averages and avoiding the effects of seasonality, we 

choose to focus on monthly averages. We will take the variables separately at each of the 

seven pressure levels For example, we will consider the mean 510hPa geopotential height 

for March, denoted marz510 , and the mean 200hPa temperature for September, denoted 

sepT 200 .  Surface pressure and precipitation are two-dimensional fields without vertical 

dependence. Taking into consideration the previous specifications, we will have 37 

variables for each month of the year, giving 444 variables in total. 
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For each one of the 444 variables, we will look for differences between the climatology 

generated by the RAW filter and the climatology generated by the RA filter. Hence, we 

can write our null hypothesis as RAWmonthRAmonth xx ,,   and our alternative hypothesis as 

RAWmonthRAmonth xx ,,  , where the second subscript indicates the time-stepping method by 

which the variable was generated.  

 

To generate our climatology, we run the model for 8yearsN  years, and for each filter 

scheme separately. For each year we compute the monthly means. Since the value of the 

temporal autocorrelation of the monthly means from one year to the next is very low, it is 

acceptable to neglect it when computing the statistics. If our variables were daily values 

instead of monthly averages, then we would surely need to consider this temporal 

autocorrelation and use a more suitable method, such as the moving blocks bootstrap 

proposed by Elmore et al. (2006). 

 

5.2.1. Local significance 

It is important to distinguish between local variations and field variations. For the former 

case, we test the null hypothesis for each variable at each vertical level and at each point 

on the 96 by 48 grid.  The result for each grid point represents the local significance 

(Livezey and Chen, 1983). For the latter case, the way in which we take into 

consideration the set of results for all the grid points of a variable determines the field 

significance (Livezey and Chen, 1983), as described in the following subsection.  
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To test the null hypothesis in the local context, we perform the Satterthwaite-Welch (SW) 

version of the t-test. This test requires the data to come from normal distributions, allows 

small samples, and permits the two groups compared to have different variances. The test 

statistic is: 
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In the previous equation, x  represents the inter-annual mean and 2s  represents the inter-

annual variance.. The statistic has a t distribution with f degrees of freedom, this number 

is calculated as indicated next:  
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This expression for the ‘effective’ number of degrees of freedom is the main difference of 

the SW t-test from the standard t-test. 
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Figure 53. Results of applying the t-test for difference of means in the variables 510z  for each 

month with a local significance 05.0local . Under each map we indicate the number of grid 

points that resulted locally significant out of the 96x48 grid. One asterisk denotes that the variable 

is field significant ( 05.0field ) considering finite sample size, and two asterisks denote that it 

is field significant considering both finite sample size and spatial correlation. Only the month of 

September is field significant. 

 

We perform the two-tailed version of the SW t-test on all our variables, using a 

significance level of 05.0local . (Note our use of a subscript here, to distinguish this 

variable name from the un-subscripted   used in equation 4 for the RAW filter.) Figure 

53 presents the results for the variable 510z  (i.e. the 510hPa geopotential height) for 

every month of the year. For the maps shown in this figure, we color in blue the points 

with 025.0p  and in pink those with 975.0p . Hence, the pink regions are grid points 
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at which the climatology generated by the RAW filter has significantly smaller values 

than the climatology generated by the RA filter, while the blue regions are grid points at 

which the climatology generated by the RAW filter has significantly larger values than 

the climatology generated by the RA filter.  

 

In figure 53 we see no preferred regions for the significant points, but they are instead 

scattered around the globe without coherency from one month to the next. This is true not 

only for this variable but for the others too (not shown). Moreover, since we are 

performing the same test in each grid point, some of the tests can be passed just by 

chance. This is called the “multiplicity problem” by Wilks (2005) and can lead to 

erroneous conclusions. One has to ask the following question (Livezey and Chen 1983): 

What is the minimum number of tests (out of the 96x48) that must be passed in order to 

achieve some desired field significance field ? 

 

5.2.2. Field significance 

As indicated above, one must look at the results together in a ‘field’ sense. In order to 

obtain this field significance, two effects must be taken into consideration (Livezey and 

Chen 1983).   The first is finite sample size.  We are performing the significance test at 

each of the 4896M  grid points of the model. Each test may be regarded as a 

Bernoulli trial with a probability of success equal to the significance of the local t-test, 

05.0local . For the moment, let us assume that each of the M  trials is independent 

from each of the others. Then we can regard the total number of tests passed as a random 
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variable from a binomial distribution with a total of 4896M  trials and an individual 

probability of success of 05.0local . 

 

The mass probability function and the cumulative probability density function for this 

discrete binomial distribution are shown in the next figure: 

  

Figure 54. Probability mass function (left) and cumulative probability function (right) for the 

binomial distribution representing the total number of local significance tests passed (assuming 

independence). For a total of 96x48 tests of local significance 05.0local , at least 255 must be 

passed in order to achieve a field significance 05.0field . 

 

The distribution is centered on 5% of 96x48 tests, i.e. 230.4 tests. In order to have a field 

significance of 05.0local , the minimum number of tests that must be passed 

corresponds to the  
field 1100 ’th percentile of this binomial distribution. Therefore, if 

we choose the field significance to be 05.0field , then at least 2550 m  tests must be 
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passed. Let us see how many variables fulfill the requirement to be field significant at the 

level 05.0field . For each of the 2+5x7=37 variables and each of the 12 months, the 

next table shows the number of points at which the t-test was passed, i.e. the number of 

points that were locally significant.  

 

Table 3. For each one of the variables, this table presents the number of grid points (out of 96x48) 

that resulted locally significant 05.0local  after applying the t-test. The variables that result 

field significant with a value of  05.0field  are presented bolded if they are field significant 

considering only finite sample size [and independence], and they are also presented in italics 

(besides the bolding) if they are field significant considering both finite sample size and spatial 

correlation. 
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Considering the finite sample size effect, 119 out of the 444 variables are field 

significant. In the table, these variables are bolded. The month with the most field 

significant variables is September, with 26 out of 37 variables. There is apparently no 

preferred pressure level or variable for the field significance to appear.  

 

Given only the above analysis, we would lean towards concluding that the RAW filter is 

indeed changing the climatology of the SPEEDY model for a considerable number of 

variables. However, a second effect must be taken into consideration: spatial correlation. 

When considering the total number of tests locally passed as a binomial distribution, we 

had to assume that the tests were independent from each other. That is, we considered 

that the result of a t-test in a given grid point would not affect the result of the test in the 

surrounding grid points. We now improve this analysis by replacing the binomial 

distribution with a null empiric distribution in which the spatial correlation is embedded. 

A way to construct this distribution is Monte Carlo simulation. Elmore (2006) describes 

how to generate the distribution by correlating random numbers with the data for each 

one of the variables for a number of trials. We selected this number of trials to be 1000.  

 

Figure 55 shows the results of generating these empirical distributions for marz510 , 

sepT 200 , julv835 ,  and agou950 . we generated the empirical distributions only for those 

variables that had resulted field significant. One can immediately notice that these 

empirical distributions are substantially broader than the corresponding binomial 

distribution, having considerably heavier tails. For each variable, the shape of the 

distribution will be unique, since it contains the particular information of the spatial 
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correlation for that variable. They are all, however, expected to present a qualitative 

similarity, since there is a common pattern of spatial interdependence for all the 

variables. For our purposes (evaluating the field significance of the individual t-tests), we 

will be particularly interested in the upper tail of each of the distributions.  

 

As one can see from this figure  –and as previously noted by Livezey (1983) and Elmore 

(2006) – spatial correlation makes it more difficult to achieve the same level of field 

significance. The minimum number of local tests required to be passed is larger than with 

the binomial distribution. With the field significance level we had selected, 05.0field , 

the minimum number of tests that must be passed under independence is 255, whereas for 

the empirical distributions, the minimum numbers of tests are considerably larger.  

 

Table 4 shows these numbers for the four variables under consideration. Considering 

more than just the four variables in the table, the new minimum number of tests required 

to be passed ranges from around 380 to 530. 
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Figure 55. Distribution of the total number of local significance tests passed. The binomial 

distribution (black line) corresponds to the assumption of field independence. The empirical 

distributions (color lines), which consider the spatial correlation, are shown for four variables. 

These distributions were constructed via Monte Carlo simulation with 1000 iterations. The 

vertical lines indicate the 95th percentile for each distribution. It is noticeable that these values 

are substantially higher than the value of 255 (associated with the binomial distribution) 

appropriate for the spatially correlated variables. 

 

Variable Minimum number of locally 

significant points 

Any variable under spatial independence 255 

marz510  498 

sepT 200  531 

julv835  387 

augu950  380 

Table 4. Minimum number of tests (out of 96x48) to be passed with a local significance 

05.0local  to achieve a field significance 05.0field . 

 

Let us conservatively consider one of the smallest of these numbers (380) as our 

minimum number of local tests required to be passed in order to achieve the field 
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significance 05.0field , and let us reconsider the results of table 1. After considering 

the effect of spatial correlation, only 8 out of the 444 variables are field significant 

at 05.0field . That is, only 1.8% of the variables suffered a significant change. These 

variables are identified in table 3 with italics (in addition to the previous bolding). This is 

clearly a huge reduction from the 119 field significant variables we had obtained under 

the assumption of independence.  

 

Hence, considering spatial correlation, we conclude that there is no evidence to support 

the hypothesis that the climatology of the SPEEDY model generated by integrating with 

the RAW filter is different from that generated by integrating with the RA filter. This is 

an advantageous finding, in the sense that the new scheme does not require a retuning of 

the parameterized physics. 

 

5.3. Effects of the RAW filter on the skill of short term and medium term 

forecasts 

Since the climatology of the SPEEDY model is unchanged by the introduction of the new 

filter, we can now proceed to answer the question of accuracy: Are solutions obtained 

with the RAW filter more accurate than solutions obtained with the RA filter? 

 

In order to assess any possible change in accuracy, we use the Anomaly Correlation 

Coefficient (ACC) for h -hour forecasts. This is computated for the month of January 

1982. For the analysis data, we use the NCEP Reanalysis dataset interpolated onto the 
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SPEEDY grid
9
. Every 6 hours we take the reanalysis values an initial conditions to 

generate h-hour forecasts -  14448,24 h -, which are later verified with respect to the 

reanalysis values. This is depicted schematically in the following figure: 

 

 

Figure 56. Schematic depicting the experiment to assess the impact of the RAW filter in the 

accuracy forecasts. Starting from an initial condition coming from the NCEP reanalysis, h-hour 

forecasts are generated which later are verified using the ACC metric.  
 

The ACC is a measure of the agreement between the spatial variations in the forecast and 

the analysis, each with respect to the climatology. The ACC is calculated using 
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where if  is the forecast, ia  is the analysis, icr  is the climatology of the analysis, ics  is 

the climatology of the SPEEDY model, i  is the latitude and N  is the total number of 

grid points for the variable. Note that we use the SPEEDY model’s own climatology 

rather than the reanalysis climatology to define forecast anomalies, because the SPEEDY 

model has resolution much lower than operational forecast models, and hence larger 

climatological errors. The subscript i labels the points on the grid. The climatology of 

                                                           
9
 Dr. Hong Li is gratefully acknowledged for providing the NCEP reanalysis data already interpolated onto 

the grid of the SPEEDY model 



124 

 

SPEEDY is computed from the eight-year runs for the RA filter and the RAW filter. 

Following the conclusion from section 3, we compute the climatology as follows: 

  2,, RAWJANRAJANJAN xxx            

 

We select 3 of the 7 vertical levels of the model, representing roughly the upper 

atmosphere (200 hPa), the middle atmosphere (510 hPa), and the lower atmosphere (835 

hPa). The ACC analysis is performed for the model variables ( u , v , T , q , z ) in each of 

the above levels, and it is also computed for the surface variable ps .  

 

The ACC analysis is first performed globally. The results for the five variables 

(excluding ps ) are presented in the next figure, which displays the differences 

RARAW ACCACC  . There is a clear, general improvement due to the use of the RAW 

filter, and the improvements are around  310O  in magnitude. The improvement 

increases with lead time and is more important for medium-term forecasts with lead times 

of 96, 120, and 144 hours. The variables that benefit most from the RAW filter are z  and 

v , while q  is the only variable that has no apparent improvement. There are almost no 

cases where the difference RARAW ACCACC   is negative.  
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Figure 57. Increase in anomaly correlation coefficient ( RARAW ACCACC  ) for six different 

forecast times. The values were computed globally, for three different pressure levels, and for 

each of the five variables. The most benefited variables are the meridional wind and the 

geopotential height. The bars denote one standard deviation of the difference. 

 

To examine regional differences, we finally perform the ACC analysis for three 

latitudinal bands: the tropics, defined by 25°S to 25°N, the northern hemisphere mid-

latitudes, defined by 25°N to 75°N, and the southern hemisphere mid-latitudes, defined 

by 75°S to 25°S. The next figure shows the results for the two variables that were 

globally most benefited by the RAW filter: the geopotential height and meridional wind. 
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Figure 58. Increase in anomaly correlation coefficient ( RARAW ACCACC  ) for six different 

forecast times for two variables (geopotential height and meridional wind) at three pressure levels 

and four different latitudinal bands. The bars denote one standard deviation of the difference. 

 

For the geopotential height, z , the largest improvements in the ACC occur in the tropics. 

Moreover, the improvements start to be noticeable in the 72-hour forecast, which is 

earlier than for the other variables. The difference, RARAW ACCACC  , which is of the 

order of 02.0  for medium-range forecasts, is larger for this variable and region than for 

any other. Results are similar for the surface pressure, ps  (not shown).  These 

improvements in the skill of medium-range forecasts, which arise directly from the 

upgrade to the RAW filter, increase the anomaly correlation coefficient for surface 

pressure (and 500hPa geopotential height) in the tropics by 10-20%, as seen in the next 

figure.  As a consequence, five-day forecasts made using the RAW filter have 

approximately the same skill as four-day forecasts made using the RA filter, and four-day 
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forecasts made using the RAW filter have approximately the same skill as three-day 

forecasts made using the RA filter.  

 

 

Figure 59. Anomaly Correlation Coefficient for forecasts of surface pressure in the tropics. 

Notice that 96-hour forecasts using the RAW filter have approximately the same skill as 72-hour 

forecasts using the RA filter. Also, 120 hour forecasts using the RAW filter have approximately 

the same skill as 96-hour forecasts using the RA filter. 

 

For the meridional wind, v , the largest improvements in the ACC occur outside the 

tropics, in the three levels of the atmosphere, and they are more noticeable as the forecast 

time increases. The improvements in the temperature, T  (not shown), are very similar to 

those for v , with the largest values occurring in the northern hemisphere and especially 

in the middle atmosphere. For the zonal wind, u  (not shown), there is a moderate 

improvement for the medium term forecasts, but it is not as striking as for the previously 
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listed variables, and the improvement never exceeds 005.0 . For the relative humidity, q  

(not shown), we consistently get an improvement close to zero.   

 

In order to complement the ACC analysis, an additional Root Mean Square Error 

(RMSE) analysis is performed. This statistic doesn’t involve the climatology; instead it 

compares directly the forecast (generated by integrating with any of the two filters) with 

the reanalysis data. We calculated a latitude-weighted RMSE as expressed in section 

2.2.3.  

 

This experiment yielded results similar to the ACC analysis; the figures generated are not 

shown. For the majority of the variables we observed a reduction in the RMSE, 

particularly for medium term forecasts. In the RMSE, however, it is more difficult to 

assess the relative impact of the filter among the different variables, since for each of the 

variables we have different units, while the ACC is non-dimensional.  
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6. Summary and conclusions 

 

The focus of this work has been to advance forward ideas of sequential data assimilation 

and numerical weather forecasting. Theoretical analyses have been performed as well as 

implementation of techniques in models of diverse complexity. This work has dealt with 

the three following aspects: 

 

Ensemble Transform Kalman-Bucy filters 

In the first part, we analyzed two recently proposed ensemble formulations based on the 

Kalman-Bucy filter which use an ODE formulation in pseudotime. It has been shown that 

the ODEs involved in these formulations stiffen under certain conditions and cause the 

failure of the Euler forward integration used in these works. Namely, this occurs in the 

case of infrequent observations (long forecast windows) or for regions with sparse 

observational networks. As an alternative, a Diagonal Semi-Implicit integration method 

with variable step size was introduced; this method ensures stability and is 

computationally affordable.  

 

Transform-based versions of BGR09 and BR10 were developed; we call them ensemble 

transform Kalman-Bucy filters. For these alternatives, the variables integrated in pseudo-

time are weights, with dimension equal to the ensemble size rather than the much larger 

model dimension. The transform formulations have the additional advantage that the 

availability of the weights allows the application of methods such as QOL and RIP that 

improve the accuracy of ensemble Kalman filtering under nonlinear, non-Gaussian 
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perturbation growth (Kalnay and Yang, 2010, Yang and Kalnay, 2009a). Moreover, an R-

localization scheme was designed to complement the ETKBFs. Adaptive multiplicative 

covariance inflation (Miyoshi 2011) is a very powerful tool that can be applied with R-

localized assimilation schemes, so the ETKBFs can benefit from it too.  

 

Three models were used to test our transform-based Kalman-Bucy filters and to illustrate 

the value of the Diagonal Semi-Implicit integration method. First, the highly nonlinear 

L63 model allowed us to perform experiments with frequent and infrequent observations. 

In the L96 model we applied the ETKBFs using R-localization and adaptive 

multiplicative covariance inflation. The advantages of using the DSI integration when 

initializing the background ensemble without prior information were demonstrated with 

an example. Finally, we implemented our schemes in an AGCM known as the SPEEDY 

model with a realistic radiosonde observational network. The equivalence in their 

performance with respect to the LETKF was shown, even for data sparse regions (e.g. 

over the oceans) in which the ODEs are bound to stiffen.  

 

An essential implementation issue for the Bucy-type formulations is the choice of the 

number of steps for the integration. We have shown that in the ‘frequent observations’ 

case (corresponding to 08.0t  in L63, 05.0t  in L96, and hrt 6 in an AGCM), 

an adequate performance starts at 3-6 steps. For infrequent observations ( 25.0t  in 

L63) this number doesn’t surpass 8 (as a result of using the DSI method with non-

uniform steps). For any dynamical system, it will be necessary to first estimate  ) for the 

given assimilation window length. A possible improvement of the R-localization 
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implementation would to compute   locally and let every gridpoint use a different 

number of steps depending on the local degree of stiffness.  

 

The computational implementation of the Bucy-type approaches and their transform 

versions are straightforward and amenable to parallel computing. Finally, the continuous 

formulation of the ensemble Kalman filter allows for a seamless implementation of the 

incremental analysis update (IAU, Bloom et al, 1996) as demonstrated in the mollified 

ensemble Kalman-Bucy filter (Bergemann and Reich, 2010a). The purpose of this 

implementation is to avoid the imbalance introduced by the jumps from background to 

analysis that are present in sequential data assimilation by spreading the observation over 

a larger portion of the forecast window as presented in figure. Now that we have shown 

that the EnKBF/ETKBF can be used in an atmospheric model, the next step in this line of 

research should be to implement the mollified EnKF in the SPEEDY model and look for 

reduction in balance disturbance.  

 

Ensemble clustering in deterministic EnSRFs 

In the second part of this work we have studied ensemble clustering (EC), a phenomenon 

that arises when performing data assimilation in nonlinear forecast models using 

deterministic EnSRFs. In this phenomenon, an M-member ensemble is split into an 

outlier and a tight cluster of M-1 members. It results from the interaction of the nonlinear 

expansion of the ensemble spread in the forecast step and the linear contraction in the 

analysis step. We started by introducing a metric, clustering degree ( CD ), to quantify and 

follow the behavior of this phenomenon through time.  
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The main goal of this study was to dispel the notion that clustering is an irreversible 

phenomenon that severely handicaps EnSRFs. We have shown that generally it is a 

transient phenomenon and that the same nonlinear features of the forecast model that lead 

to it can also revert it. In particular, the variation on both the magnitude and ‘direction’ of 

nonlinear growth of perturbations for different regions of the phase space prevent 

clustering from becoming a permanent feature, and its persistence seems to diminish as 

the dimensionality of the model grows.  

 

Unbiased rotated versions of (deterministic) EnSRFs (Sakov and Oke 2008; Livings et al, 

2008) can be considered a middle point between the stochastic and deterministic 

alternatives, performing an effective resampling of the ensemble at every analysis step. 

This resampling removes any deformation in the background ensemble caused by 

nonlinear perturbation growth during the forecast window, and helps to maintain the 

statistical properties of the ensemble closer to Gaussian. Both unbiased randomly rotated 

EnSRFs and stochastic EnKFs avoid ensemble clustering, however only the former fulfill 

the KF covariance equation exactly. 

 

We have compared the behavior of the LETKF and the MPNS-ETKF, a modification of 

the LETKF by an unbiased randomly rotated modification that we have introduced and 

which is rather simple to construct. Using the L63 and the SPEEDY models, we have 

assessed the performance of both filters in the following aspects: (a) the accuracy of the 

ensemble mean as best estimator of the truth in terms of background and analysis RMSE, 
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(b) the behavior of higher order moments of the ensemble, in particular sample skewness, 

and (c) the statistical reliability of the ensemble with respect to the truth as measured by 

rank histograms. In the linear regimes, the two filters have indistinguishable 

performances. It is in the nonlinear regimes, differences arise as expected; the remaining 

of the text refers to this case. We do not intend to assert that one filter is better than the 

other; as a matter of fact the conclusion would be different depending on the particular 

aspect we focus on.  

 

In terms of RMSE, the results of experiments with the L63 show that differences are 

noticeable only when the ensemble size becomes much larger than the number of 

variables. The MPNS-ETKF has a lower mean RMSE because a smaller number of 

cycles with very large RMSE appear, but the general distribution of the RMSE is not very 

different from that of LETKF as shown by boxplots. For the SPEEDY model, the RMSE 

values obtained by the two methods are indistinguishable for all variables even in the 

poorly observed regions of the globe. LETKF tends to create ensembles with values 

different from the Gaussian in nonlinear regimes. For the SPEEDY model, we clearly 

observe this behavior for the variables  qT ,   in the tropics and the SH, where the sample 

skewness values are clearly different from zero. This, however, does not lead to higher 

RMSE values with respect to MPNS-ETKF.  

 

When verifying the truth against the analysis ensemble in L63 when NM  , the rank 

histograms obtained from MPNS-ETKF tend to be flat, while those obtained from 

LETKF are not. The truth tends to be statistically indistinguishable from the MPNS-
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ETKF-generated ensemble, while this assertion cannot be stated in the LETKF case. This 

is not the case when NM  , in this case we get over-dispersive ensembles for both 

filters. For SPEEDY, using NM   with localization and adaptive multiplicative 

inflation the rank histograms obtained by both filters have the same behavior, viz. they 

show an under-dispersive ensemble. Nonetheless, a desirable feature of the LETKF is 

that it allows us to follow the evolution of individual ensemble trajectories through time, 

while for the MPNS-ETKF any information about individual trajectories is lost every 

time assimilation is performed due to the resampling on the ensemble.  

 

Finally, we have emphasized that R-localization requires a locally symmetric analysis in 

every gridpoint. If one wishes to use random rotations these have to be performed only 

after the global analysis has been constructed. This signifies an extra step, but there may 

be applications in which it is worth it.  We end this work echoing a conclusion from 

Lawson and Hansen 2004, namely, that the key to handle different filters is to understand 

their mechanisms, implications and limitations.  

 

Effects of the RAW filter in the SPEEDY model 

In this last part we have addressed two questions. The first question is: Are there any 

statistically significant changes in the monthly climatology of the SPEEDY model caused 

by the upgrade in the numerical integration scheme from Robert-Asselin (RA) filter to 

Robert-Asselin-Williams (RAW) filter? To answer this question, we performed a 

Satterthwaite-Welch t-test for the difference of means for each variable, in order to assess 

local significance at the 5% level.  At some grid points the tests were passed, but these 
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points appeared to be scattered around the globe and showed no particular preference for 

location. In field significance tests, after considering the effects of both finite sample size 

and spatial correlation, we found that there is no significant evidence to reject the null 

hypothesis of identical climatologies.  In other words, for each month, the climatology 

generated by integrating with the RA filter is the same as the one obtained with the RAW 

filter. Hence, the RAW filter is suitable for use in the SPEEDY model. 

 

The second question asked is: Is there a statistically significant improvement in the skill 

of short to medium term (24-144 hour) forecasts caused by the upgrade from RA filter to 

RAW filter? To answer this question, an ACC analysis was performed for 24, 48, 72, 96, 

120 and 144-hour forecasts for the month of January 1982. As analysis data we used the 

NCEP Reanalysis dataset interpolated onto the SPEEDY grid. The model climatology 

was generated by 8 year integrations of SPEEDY. The ACC analysis was performed on 

three pressure levels (835, 510 and 200 hPa), both globally and by latitude. A 

complementary RMSE analysis was performed following the same scheme, and yielding 

the same conclusions as the ACC analysis.  

 

In general, an improvement of order  310O  in the ACC can be attributed to the use of 

the RAW filter, and the improvement is larger for medium term forecasts with lead times 

of 72, 120 and 144 hours. The geopotential height was strongly benefited in the tropics, 

with ACC increases as large as 0.02 for a 72-hour forecast and 0.025 for a 120-hour 

forecast. As a consequence, five-day forecasts made using the RAW filter have 

approximately the same skill as four-day forecasts made using the RA filter, and four-day 
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forecasts made using the RAW filter have approximately the same skill as three-day 

forecasts made using the RA filter. The meridional wind was strongly benefited in the 

extra-tropics. The improvements in surface pressure mimicked those in geopotential 

height, and the impacts on temperature were very similar to those on meridional velocity. 

The improvements for the zonal velocity were less noticeable and there were no 

significant improvements in the relative humidity. 

 

The results of this work are encouraging for the use of the RAW filter in the numerical 

solution of models based on the widely used RA filter. More generally, we have found 

that the skill of medium-range weather forecasts is sensitive to the time-stepping method, 

about as much as could be expected from the use of different physics parameterizations to 

improve forecast skill.  We suggest that, in future work, numerical time schemes be 

revisited as a potentially important component of model error. 
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Appendix A. Derivation of the Kalman-Bucy filter and the 

equivalence of the KBF and KF equations in pseudo-time 

The derivation of the KBF relies on discretizing a continuous-time system, applying the 

KF equations, and then letting 0t . The derivation in this appendix follows the steps 

outlined in Simon (2006). Consider the following ODE system describing the evolution 

of a continuous-time system  tx  and observations  ty  of this system: 

       tttt
dt

d
wxFx          (A1) 

       tttt vxHy           (A2) 

 

where    cNt Q0,w ~  and    cNt R0,v ~  represent continuous-time white noise. If 

  FF t  is constant with respect to time, then the solution to this system is fairly simple: 

         




t

t

ttt
deett

0

0

0 
wxx

FF
       (A3) 

 

The expression teF  is a matrix exponential. There are several ways to compute it, the 

simplest (yet not the most efficient) is to use the McLaurin series expansion:  

 






0 !j

j

t

j

t
e

FF
          (A4) 
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Discretizing the system 

One can use the previous idea to discretize continuous-time systems over a “small” time 

step, denoted 1 kk ttt . If t  is sufficiently small, one can consider:    1 ktt FF  

and    1 ktt ww  as constants through the time step. Then, the solution for  ktx  

becomes: 

       1

0

1 
















  k

t

t

k

t

k tdetet k wxx
FF        (A5) 

 

Letting: 1 kt , (A3) can be written as: 

     1

0

1 
















  k

t

t

k

t

k tdeetet wxx
FFF 

      (A6) 

 

The integral in the last expression can be solved explicitly (for any invertible F ) as:  

  1

0





  FI
FF t

t

ede  .         (A7) 

 

This gives rise to the following explicit solution for  ktx : 

       1

1

1 





  k

t

k

t

k tetet wFIxx
FF

      (A8) 

 

We can identify this equation with the difference equation used in the KF: 

1111   kkkkk wΛxAx         (A9) 
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with te  F
A  and   1  FIΛ

F te . If the time step t  is sufficiently small, then the 

exponential matrix can be approximated with the first two terms of its McLaurin series 

expansion te t 
FI

F . This allows simplifying: 

t FIA           (A10) 

t IΛ           (A11) 

 

The continuous-time Kalman gain 

The discretized equivalent for the white noises behave  tN ck Q0,w ~  and 

 tNv ck R0,~  (for a further explanation see Simon, 2006). With this in mind, one 

computes the Kalman gain: 

  1
1














 c

b

k

Tb

k
cb

k

b

kk tt
t

RHHPHP
R

HHPHPK
TTT

   (A12) 

 

From this expression, one can learn two limits: 

1

0







c

Tb

k
k

t t
Lim RHP

K
         (A13) 

0K 


k
t

Lim
0

          (A14) 

 

The Ricatti equation for the covariance  

One can use the KF equation for covariance to get: 

       tttttt c

Ta

k

a

kc

Ta

k

b

k   QFIFPPQFIPFIP 111  

 

Expanding the product, the expression can be simplified to: 
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  Ta

kc

Ta

k

a

k

a

k

b

k tt FFPQFPFPPP 1

2

111        (A15) 

 

One can insert   b

kk

a

k 111   PHKIP  in the last equation to get: 

      
  Tb

kk

c

Tb

kk

b

kk

b

kk

b

k

FPHKIF

QFPHKIPHKIFPHKIP

11

2

111111

t

t








 (A16) 

 

 Pass b

k 1P  to the left hand side and divide by t : 

   

  Tb

kkc

Tb

kk

b

kk

b

k
k

b

k

b

k

t

tt

FPHKIFQ

FPHKIPHKIFHP
KPP

11

11111
11
















 (A17) 

 

Taking the limit 0t  of the last expression is equivalent to finding the time derivative 

of P . We use the limits we had previously computed.  



  
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b
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b
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





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




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Which after simplifying reduces to the following: 

c

Tb

k

b

k

b

kc

b

k

b

k

b

k

t t
Lim QFPFPHPRHP

PP T 









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1

1
1

0
    (A18) 

 



141 

 

We can now drop both the subindex denoting time and the superindex denoting 

background or analysis, since this equation describes both propagation and analysis steps. 

Hence, we get the ODE: 

c

T

c

T

dt

d
QFAFPHPRPH

P
 1

      (A19) 

 

The equation for the mean 

The KF equations for the evolution a

kk

b

k 11
ˆˆ

 xAx
 
and analysis  k

b

kk

b

k

a

k yxHKxx  ˆˆˆ
 

for the estimator of the mean can be combined to get: 

 k

a

kkk

a

kk

a

k yxHAKxAx   1111
ˆˆˆ        (A20) 

 

Substituting the expressions we have for 1kA  and kK : 

    k

a

kc

a

k

a

k ttt yxFIHRPHxFIx
T  



 1

1

1
ˆˆˆ     (A21) 

 

If we pass 
a

k 1
ˆ

x  to the left hand side and divide by t : 

  k

a

kc

a

k

a

k

a

k tF
t

yxFIHRPHx
xx T 











1

1

1
1 ˆˆ

ˆˆ
     (A22) 

 

Taking the limit 0t  of the last expression is equivalent to finding the time derivative 

of x̂ . 
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After simplifying one gets: 

 k

a

kc

a

k

a

k

a

k

t t
Lim yxHRPHxF

xx T 









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1

1

1
1

0
ˆˆ

ˆˆ

 
    (A23)

 

 

Again, we can drop both the subindex denoting time and the superindex denoting 

background or analysis and write the following ODE.  

 yxHRPHxF
x T   ˆˆ
ˆ 1

c
dt

d
        (A24) 

 

Equivalence of the solution of the KBF in pseudotime and the KF equations 

The Kalman-Bucy filter can be used to perform an instantaneous analysis step by using a 

pseudo-time 10  s  formulation with the following equations: 

HPRPH
P 1T 

ds

d

         
(A25) 

 yxHPHR
x 1   ˆ
ˆ

ds

d
        (A26) 

 

Now we show that the Ricatti equation for covariance in pseudo-time can be integrated 

analytically and reduces to: 

   bTTbTba
PHRHHPHPIP

1
       (A27) 

 

For the ease of notation, let us define HRHΓ
1T   and denote the pseudo-time 

derivative with a dot over the variable. Then, use a factorization for the covariance matrix 

as: 
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1
LYP

 .           (A28) 

 

The pseudo-time derivative of this expression is: 

    1111111
YYLYLYYLYYLYLYLP



       (A29) 

 

Also, substitute the same factorization in the Ricatti equation: 

11
ΓLYLYP

          (A30) 

 

Equate the last two equations for P  and solve for L : 

ΓLLYYLYL
11     

 YΓLLYYLYΓLLYL
111          (A31) 

  

The last expression implies that, in order for our factorization to be valid, the following 

system of equations must be satisfied: 
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This system has an analytical solution of the form: 
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











0Γ

00
J

s
s  and se J  is a matrix exponential. Notice that sJ  is a 2-nilpotent 

matrix, i.e.   20  rs
r

J . This fact helps the matrix exponential to be simple to 

compute. 
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Substituting the matrix exponential into the solution and recalling that PYL  : 

   
 

   
  
































0

000

s

ss

sss

ssss

o

oo

Y

YP

IΓ

I

Y

YP
     (A35) 

 

Perform the matrix multiplication in the right hand side of this equation, and performing 

a straightforward substitution of the resulting equations leads to: 

      00 ssssso PIΓPP   

 

Hence, we can get an explicit solution for  sso P :  

       1

00

  IHPRHPP
1T ssssso       (A36) 

 

For the analysis, we have        11T
IHPRHPP

  ssss 001 , or more clearly: 

   11Tba
IHPRHPP

  ss0        (A37) 

 

One can use the Sherman-Morrison-Woodbury lemma to show the equivalence with (27). 
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Appendix B. Abbreviations and symbols 

ACC:   Anomaly correlation coefficient 

AGCM: Atmospheric general circulation model 

BGR09: Bergemann et al., 2009. 

BR10:  Bergemann and Reich, 2010 

DA:   Data assimilation 

DETKBF: Direct ensemble transform Kalman-Bucy filter 

EC:  Ensemble clustering 

EnKBF: Ensemble Kalman-Bucy filter 

EnKF:  Ensemble Kalman filter (stochastic) 

EnSRF  Ensemble square root filter 

ETKBF: Ensemble transform Kalman-Bucy filter 

ETKF:  Ensemble transform Kalman filter 

KF:  Kalman filter 

L63:  3-variable Lorenz 1963 model 

L96:  40-variable Lorenz 1996 model 

LETKF: Local ensemble transform Kalman filter 

MPNS-ETKF: Mean-preserving non-symmetric ensemble transform Kalman filter 

NWP:  Numerical weather prediction 

ODE:  Ordinary differential equation 

RAW:  Robert-Asselin-Williams filter 

RMSE:  Root mean squared error 

SPEEDY: Simple parametrizations primitive equations dynamics model 
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tt ,   Time, time step 

ss ,   Pseudotime, pseudotime step 

Nx  Vector of state variables 

Ly  Vector of observations 

NLH  Observation matrix 

LLR  Observational error covariance 

NNP  State error covariance 

LNK  Kalman gain matrix 

MNX  Ensemble of state variables 

Nx  Sample mean 

MNX  Ensemble of perturbations 

zqTvu ,,,,  Zonal wind, meridional wind, temperature, relative humidity, geopotential height 

ps   Surface pressure 
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