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This dissertation deals with aspects of sequential data assimilation (in particular ensemble

Kalman filtering) and numerical weather forecasting.

In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is

revisited. It is shown that the previously used numerical integration scheme fails when

the magnitude of the background error covariance grows beyond that of the observational

error covariance in the forecast window. Therefore, we present a suitable integration

scheme that handles the stiffening of the differential equations involved and doesn’t

represent further computational expense. Moreover, a transform-based alternative to the

EnKBF is developed: under this scheme, the operations are performed in the ensemble



space instead of in the state space. Advantages of this formulation are explained. For the

first time, the EnKBF is implemented in an atmospheric model.
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1. Introduction and objectives

1.1. Introduction

The goal of numerical weather prediction (NWP) is to determine the future state of the
atmosphere by having some knowledge of its current conditions and performing a
forward integration of the differential equations that describe its behavior (e.g. 3D
Navier-Stokes equations, thermodynamical equation, etc.). This is not, however, an easy
task. The atmosphere is a very complicated system with many degrees of freedom and a
myriad of nonlinear processes happening at different space and time scales. Moreover, the
atmosphere belongs to a type of dynamical systems known as chaotic. One of the primal
characteristics of these systems is that trajectories starting from initial conditions
infinitesimally close will diverge exponentially in time until their difference saturates at
some climatological level (for a good introduction to chaos see e.g. Ott, 2004). Figure 1
illustrates this divergence of trajectories in the evolution of the 500-hPa geopotential

height over College Park, Maryland.
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Figure 1. Time evolution of the 500-hPa geopotential height in College Park, MD, forecasted
with the SPEEDY model (section 2.2.3).Two forecasts are started from infinitesimally close
initial conditions, after ~10 days they start to differ considerably and after 2 weeks any
resemblance is lost, exemplifying the chaotic behavior of the atmosphere.

It is then clear that an accurate knowledge of initial conditions is of paramount
importance for NWP. Usually, two sources of information are available: (a) observations,
which can be in-situ (e.g., weather balloons) or remote (e.g., Doppler radar or satellites),
and (b) a previous forecast (i.e., information coming from models), which is labeled as
“background”. Both sources of information are prone to contain errors. The set of
techniques used to blend together the information from models and observations in an
optimal way, i.e., taking into consideration their respective uncertainities, is known as

data assimilation (DA).

A detailed discussion of DA can be found in Daley (1991), Kalnay (2003) and Simon

(2006); this introduction only provides some highlights. The DA process usually consists



of two parts: (a) the forecast, i.e. when the initial conditions are integrated forward in time
using a forecast model, and (b) the assimilation, when the information coming from
observations is blended in and ‘corrects’ the trajectory forecasted by the model. The
resulting optimally-combined estimate is known as “analysis”. A very simple schematic

of the data assimilation process is presented in figure 2.
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Figure 2. Schematic depicting a general data assimilation process. Information coming from
forecasts (blue dashed line) is blended with that coming from observations (red dots) to get a
better estimate of the truth, the analysis (purple squares). The analysis is used as the best initial
condition for the next forecast.

The data assimilation problem can be posed as a maximum likelihood problem
(variational DA) or as a minimum variance problem (sequential DA). In the case of
Gaussian statistics for both the model error and the observational error, the two
approaches can be shown to be equivalent. An additional goal of DA is to study the
propagation of the initial uncertainty through the forecast window. Not all methods
perform this task (e.g. optimal interpolation and 3D-var do not). In particular, the
sequential DA methods based on the Kalman filter (KF) do. The present study deals with
theoretical and implementations aspects of methods belonging to this category (see e.g.

Evensen (2006) for a good introduction on these methods).



Once we have determined the ‘best’ initial conditions, the model equations must be
integrated forward in time with some numerical scheme. This choice is not trivial. In
general, there are several time-stepping schemes for the numerical integration of the
differential equations representing the evolution of a dynamical system (e.g. table 1 in
Durran 1991). The particular scheme chosen for any given integration will depend upon a
compromise between the desired accuracy, stability, computational efficiency, ease of
implementation, and run-time memory requirements. Whilst it is always hoped that
simulations will be insensitive to time-stepping choices, the evidence suggests that this
hope may be forlorn (e.g. Pfeffer et al. 1992; Williamson & Olson 2003; Zhao & Zhong
2009). Therefore, the following question naturally arises: Which of the many possible
time-stepping schemes offers the most realistic simulations for the least computational

expense?

This dissertation comprehends new developments in sequential DA and numerical
weather forecasting. It is divided in three parts. The first two parts aims to strengthen the
theory of some KF-based DA methods and allow for the development of useful
applications. The first part revisits the recently proposed Ensemble Kalman-Bucy filter
(EnKBF: Bergemman et al., 2009; Bergemman and Reich, 2010). In this formulation, the
assimilation step of the DA problem is expressed by a set of ordinary differential
equations (ODEs) instead of using linear algebra (as in the KF). The EnKBF has many
potential advantages that can be exploited. Its quasi-continuous formulation allows
“mollification” of the observational increments (Bergemann and Reich, 2010a), thus

maintaining the balance of the analysis state at least as well as the widely used



Incremental Analysis Update (Bloom et al., 1996). Furthermore, the continuous
formulations are suitable for extensions that deal with non-Gaussian uni-modal and multi-
modal ensemble distributions (Reich, 2011). Further inspection of these formulations,
however, reveal that the ODEs involved in the EnKBF can become stiff under certain
conditions. In this work we develop a numerical scheme that can handle this stiffness is
developed. Furthermore, we propose an alternative in which the operations are performed
in the ensemble space instead of in the model space, allowing the use of techniques that
have been developed for transform-based formulations. Finally, it is important to mention
that the EnKBF has only been tested with small models. This work is the first one to show
that it can be used in atmospheric general circulation models (AGCMs), and hence it
demonstrates that these formulations are good candidates to be used in real-life NWP
applications. The results of this study led to a paper now under review in the Quarterly

Journal of the Royal Meteorological Society (Amezcua et al., 2012).

In the second part, we perform an analysis of a phenomenon related to deterministic
ensemble square root filters (EnSRFs: Tippet et al, 2003) that arises when these
formulations are used for data assimilation in the presence of strong nonlinearities. In
ensemble clustering (EC), an M-member ensemble separates in an outlier and a cluster of
M-1 members. Results from previous works could lead to think that once this
phenomenon sets in, it is irreversible. The intention of this work is to dispel this notion:
we show that EC can be reverted naturally by the same nonlinearities of the system, and
an explanation behind this behavior is provided. Some alternatives to traditional EnSRFs

have been formulated to prevent EC; these alternatives include random rotations of the



analysis ensemble of perturbations. A simple and generic way to construct these
formulations is provided. In particular, we show that using an orthonormal matrix that has
a column of ones as eigenvector is sufficient to preserve the prescribed covariance and
zero mean for the perturbations. A detailed comparison of the advantages and
disadvantages of these methods with respect to traditional EnSRFs is presented. The

results of this study led to a paper accepted in Tellus A (Amezcua et al., 2012a).

The third part of this dissertation deals with a recently formulated improvement to the
popular Robert-Asselin (RA) filter (Robert, 1966; Asselin, 1972). The RA filter
successfully suppresses the spurious computational resulting from using a leap-frog
integration scheme. Nonetheless, this filter can also damp physical waves and alter the
mean value of the function being integrated. The Robert-Asselin-Williams (RAW) filter
(Williams, 2009) is an improvement to ameliorate this problem. So far, the effects of the
RAW filter have been tested only in a simple linear model representing inertial
oscillations of the simple harmonic type (Williams, 2009). The objective of our study is to
comprehensively evaluate the effects of the modification in the SPEEDY atmospheric
general circulation model. It is our purpose to examine whether the use of the RAW filter
changes either the climatology or the skill of weather forecasts, or both. Using statistical
tests and considering significance both at local and field level (Livezey and Chen, 1983),
it is shown that the climatology of the model is not changed by the new integration
scheme. Therefore, the use of the new filter does not require a retuning of the model
physics. On the other hand, using data from the NCEP-NCAR reanalysis (Kalnay et al.,

1996) we assess the impact of the new filter in deterministic forecasts. We find that the



new filter improve the forecasts for all variables (except relative humidity), especially in
the medium range (4 to 6 days). The geopotential height in the tropics and the meridional
wind in the midlatitudes are particularly benefited. The results of this study led to a paper

now published in Monthly Weather Review (Amezcua et al., 2011).

The second chapter of this dissertation presents a review of concepts of sequential data
assimilation that are used in the remaining of the work. Also, a description of the three
models used for experiments is provided. Chapters 3, 4 and 5 contain the main body of
the dissertation, dealing with EnKBFs, EC and the RAW filter respectively. A brief
chapter presenting a summary and future work concludes the work. Two appendices
complement the dissertation: the first is related to the EnKBF chapter and the second

provides a glossary of abbreviations and symbols used throughout this work.



1.2. Objectives

The objectives of this work are punctually listed for each one of the three parts

separately.

Obijectives related to the ensemble Kalman-Bucy filter:

- Show that the integration scheme used in the EnKBF stiffens for infrequent
observations (corresponding to long assimilation windows) and provide an explanation of
the mechanism that causes this stiffness.

- Develop an alternative integration scheme that is robust but not computationally
expensive. Test this scheme in highly nonlinear systems.

- Develop a transform-based alternative for the EnKBF in which the operations are
performed in state space and not in model space. Explain the benefits of this formulation
and complement its formulation with a gridpoint R-localization scheme.

- Prove that the EnKBF can be used for data assimilation in atmospheric models.

Obijectives related to ensemble clustering

- Develop a metric to quantify EC in a simple and tangible manner.

- Starting from a simple nonlinear model, show that EC is not an irreversible process.
Thus, show that EnSRFs are not helplessly handicapped in the presence of strong
nonlinearity.

- Show that clustering can set in and reverse in a natural way. Provide an explanation for

this phenomenon.



- Analyze randomly rotated EnSRF and compare the advantages and disadvantages with
respect to traditional EnSRFs.

- Explore the impact of EC in application with atmospheric models.

Objectives related to the RAW filter

- Considering statistical significance both at the local and field level, find whether the use
of the RAW filter affects the climatology of the SPEEDY model.
- Evaluate if the use of the RAW filter leads to any improvements in forecasts of the

SPEEDY model.



2. Background

This chapter is divided in two parts. In the first, the concepts and tools related to data
assimilation are introduced and discussed. In the second part, we present the details of
three models of increasing complexity; these models will allow us to test the ideas

presented in the next sections.

2.1. Concepts of sequential data assimilation

2.1.1. Kalman Filter

The Kalman Filter (KF: Kalman, 1960) is a sequential data assimilation technique widely
used in control theory and applications. The KF deals with discrete systems which can be

expressed as linear difference equations of the form:
X, = A X+ W, x e R" (1)

Y. =HX +V, ye R 2

Equation (1) represents the linear evolution of the state variables x e R" from the instant
t—1 to the instant t by the action of the state transition matrix A R"" . The stochastic

term  w, ~N(O,Q) represents the (unbiased) model error, which may come from

inadequacies in the model, subgrid processes that cannot be represented explicitly or

other sources of error. In the rest of this discussion, we will consider a perfect model

scenario, i.e. w, =0. Equation (2) defines the observations ye®R" as a linear
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combination of state variables transformed by the (observation) matrix He R™" plus a
stochastic term v, ~ N(0,R) that represents the observational error, with R e R

being the observational error covariance (usually assumed to be diagonal).

The KF solves this estimation problem as a two-step process. The first is the forecast
from time ¢#—1 to time ¢ of both the estimator for the state variables X and their error
covariance matrix P . This step is perfomed as:

Ptb = At—lptb—lAt—l (3)

)A(? = At—lkg—l (4)

Equation (3) represents the evolution of the estimator of the covariance of the state
variables, denoted as the matrix P e R™", while equation (4) represents the evolution of
the estimator of the state variables X. The superscript b stands for background (or
forecast), a label used to denote that the information obtained from observations has not

been assimilated yet. The superscript a stands for analysis, denoting that the information

from observations has already been included.

The second is the assimilation of observations at time 7done by least squares

optimization, resulting in the following expressions (where we drop the time subindex t):
P =(1-KH" Jp° )

%2 =% —K(H&" -y) (6)
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The matrix K is known as the Kalman gain, and is given by:

K=P'H (HP’H" +R)' =P*H'R" @

The KF can be considered as a least squares minimization procedure in which both the

estimator of the state variable as well as its uncertainty are evolved in time.

2.1.2. Kalman-Bucy filter

The KF considers both the state variables and the observations to be discrete. A
continuous-time equivalent is known as the Kalman-Bucy Filter (KBF: Kalman and
Bucy, 1961). In this case, both the state variables and the observations are considered to

be continuous functions of time. The ODEs from which the KBF departs are the

following:
Sx(t)= FOx(E) + wit) ®
yit) = HOX(E)+ V() ©)

The elements in these equations are the same as the ones described for (1) & (2), with the
only difference that w(t) and v(t) now represent continuous time white noise processes'”.
Again we consider a perfect model, i.e, w(t)=0. The matrix F(t) represents the linear

dynamics of the system; the matrix A in (1) is given by the resolvent of (8). In the

solution to this estimation problem there is no distinction between the forecast and the

! See e.g. Simon 2006 for a complete discussion on discrete vs. continuous white noise.
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analysis steps; they are represented together in the solution of a system of ODEs (see

appendix A for a detailed derivation):

‘Z—': = —PH"RHP +FP + PF' (10)
d),\( A T -1 &
i FR—PHTR™(HX-y) (11)

Equation (10) describes the evolution and assimilation of the covariance; it is usually
referred to as the Riccati equation® for the covariance. Equation (11) corresponds to the

evolution and assimilation of the mean.

There is no major problem in considering the state variables to be continuous. In many
cases we have continuous time systems expressed as differential equations which we
discretize in order to allow their numerical solution. However, it is more difficult to
consider observations as being continuous. Conceptually, they can be regarded as a
transformation of the state variables into observation space, but they are not available at
any arbitrary time. In fact, dynamical systems can rarely be observed even with the

frequency of the time step used in the numerical solution of the model.

To assimilate observations at a discrete time, one can use the Kalman-Bucy formulation
by adopting a pseudo-time s spanning over 0<s<1 out of an instant t (Bergemann et

al., 2009). The KBF equations in pseudo-time are:

2 A scalar Riccati equation is a non-linear ordinary differential equation, whose non-linearity comes from a
quadratic term of the dependent variable X(t). It’s general form is:

)'((t): a, (t)+ al(t)X(t)+ a, (t)(x(t))z. The matrix Ricatti equation is a generalization of the former

and is of great interest in control theory.
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P _PHTRHP (12)
ds

dx o (110

d—=—PH R (H&-y) (13)
S

Given the initial conditions in pseudo-time P(0)=P", %(0)=%", integrating (6) and (7)
one obtains P*=P(), X* =X(1), i.e., starting from the background values at the

beginning of the pseudo-time window, one obtains the analysis values at the end of the
window. A schematic representation of the spanning of pseudo-time is shown in the next

figure.

! 1 t
N N\ /\

Figure 3. Schematic representation pseudo-time in the EnKBF, it is spanned at each assimilation
instant.

v
S

It is possible to show that the solution of these two differential equations at s=1 is
equivalent to the system (5) & (6). By performing a factorization for the covariance
matrix as P=LY ™, one can show that the solution in pseudo-time 0<s<1 for the

covariance is (see details in appendix A):

P(s)=P°(H'R*HP s +1)" (14)
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2.1.3. Ensemble Kalman Filters

Both the KF and the KBF deal with linear equations for the forecast step, but many
dynamical systems of interest —in particular those found within the atmospheric sciences-

are nonlinear. For these systems, (1) is replaced by:

Xy = f(xt—l) (15)

where f represents the nonlinear model operator. The Extended Kalman Filter (EKF) was
developed to handle this case. This generalization of the KF is based upon the first order
truncation of the Taylor expansion of the nonlinear model around some point of reference
of the state variables, i.e. it uses a tangent model to advance the system. Detailed
descriptions of the EKF and their application to atmospheric and oceanic sciences can be
found in Ghil (1989) and Miller et al. (1994). While effective, the EKF is suited for small
systems with a relatively small number of state variables, but quickly becomes
computationally expensive as the number of state variables gets large. It is virtually

impossible for this method to be applied to higher order models. This is the case of

atmospheric models, where the number of state variables is typically 0(106 )— 0(109 )

The Ensemble Kalman Filter (EnKF) is a Monte Carlo alternative to the EKF. In the
EnKF, one takes an ensemble of M solutions of equation (15) -usuallyM << N - and
evolves each member with the nonlinear model f . The matrix for the ensemble can be

denoted as:

X =[x, 1%, |+ %y ] X & R (16)
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where we use the subscript to represent the individual members of the ensemble. Let

1eR™ be a column vector of ones, then the sample mean of the ensemble is:

= 1c
x=—Zxi :MX1 (17)

An ensemble of perturbations can be defined by subtracting the sample mean column

from each column of the ensemble. Let U=M" 11", UeR™"™ is idempotent

(U" =U); then the ensemble of perturbations can be written as:

X =[x, —X| X, =X |+ | %,, —X]=X(1-U) (18)

Using the ensemble of perturbations we can obtain the sample covariance:

B =T

P=(M-1)"XX" =(M-1)"X(1-U)X (19)

For the assimilation cycles in the EnKF one must obtain the analysis ensemble from the

background ensemble. This is not an obvious task since obtaining X from P in (12) has

an infinitt number of solutions: let P=(M-1)"XX"and Z=X®, then

P, =(M —1)"ZzZ" =P for any unitary matrix ®.

Evensen’s original idea (1994) was to update each member in the same way the mean is
updated. A revision of this method (Burgers et al., 1998; Houtekamer and Mitchell,
1998) is known as the ‘perturbed observations’ method. In this case, for each ensemble

member the observations are randomly perturbed to avoid the ensemble collapse. The

16



stochastic EnKF, however, does not fulfill the KF covariance equation exactly, but only

in a statistical sense.

Another way to update the perturbations -which is deterministic rather than stochastic- is
the family of square root filters (EnSRFs Tippett et al., 2003). The deterministic EnKFs
rely on explicit mathematical transformations for the ensemble update. Some members of
this family are the Ensemble Adjustment Kalman Filter (EAKF, Anderson, 2001), the
serial EnSRF (Whitaker and Hamill, 2002), the Ensemble Transform Kalman Filter
(Bishop et al, 2001; Wang et al, 2004) and the Local Ensemble Transform Kalman Filter

(Ott et al., 2004, Hunt et al., 2007).

2.1.4. Local Ensemble Transform Kalman Filter and a non-symmetric

solution

In this work we will use as reference a post-multiplication-type EnSRF known as local
ensemble transform Kalman filter (LETKF; Hunt et al., 2007). This formulation is
unbiased (Livings et al., 2008), and without localization it is equivalent to the spherical-
symplex ETKF (Wang et al, 2004). The LETKF obtains the analysis ensemble of
perturbations X?* by a post-multiplication of the background ensemble of perturbations

and a matrix of weights:

X =X"W? (20)

W? has to be obtained in a way such that P? has the value prescribed by the KF. In

particular, for the LETKF:
17



W2 =C(1 +T)*2CT =((M —1)p* J* (21)

where

(22)

bT5-1\/b
creT g[&J

M -1

The matrix Y® =HXP" is the mapping of the ensemble of background perturbations into
observational space. The matrix I' contains the eigenvalues of the multidimensional ratio
of ensemble covariance (projected into observational space) and observational error
covariance, while C is the matrix with the corresponding eigenvectors as columns. As
indicated in (21), W? is proportional to the symmetric square root of the analysis
covariance in ensemble space P?. This solution minimizes the ‘distance’ between W?*

and the identity matrix, thus getting an X* as close as possible as X" (Ott et al., 2004).
This form automatically guarantees the analysis perturbations to be unbiased (Hunt et al.,
2007; Livings et al., 2008), i.e.

X21=0 (23)

where 1e R™ and 0eR" . The mean analysis mean can be computed as:

X2 =%x° + X"W? (24)

i.e. a lineal combination of the ensemble of background perturbations departing from the

background mean. The vector of weights W*® is computed in the following way:
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where y° = HX" is the projection of the background mean into observational space.

The factor C(1+I')" in W?® is enough to guarantee the fulfillment of the KF
covariance equation. A general non-symmetric ETKF can be written as

w2 =C(1+T)**s" (26)

where S is any orthonormal matrix. Equation (26) does not automatically guarantee the

analysis perturbations to be unbiased, i.e.

X21=0 (27)

where 1eR"™ . The symmetric solution is unbiased (Wang et al, 2004; Hunt et al, 2007),
a non-symmetric solution will be unbiased if S is such that W contains 1 as an
eigenvector. A simple way to construct a matrix S with the desired zero-mean preserving
characteristic is presented in chapter 4. We denominate any solution of this form a Mean-
Preserving Non-Symmetric ETKF (MPNS-ETKF). These types of solutions -which
involved a random rotation through the action of the matrix S- can be regarded a
constrained resampling of the ensemble, akin to that used in particle filters (see e.g.

Spiller et al., 2008).
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2.1.5. Ensemble Kalman-Bucy Filters

The pseudo-time implementation of the KBF discussed in section 2.1.2 can also be used
in an ensemble setting. Starting from (12), BGR09 used the sample estimator for

covariance:

(28)

T T T
XXX gy XX
ds|M-1] M-1 M -1

One can use the chain rule for the derivative in the left hand side.

(i XJXT + X(i XTj: 2(1 XJXT :—L XXTHTRTHXXT
ds ds ds M

A simplification leads to the equation for the update the ensemble of perturbations using

the sample covariance:

X1 XTHTRHX (29)
ds  2(M-1)

so that given X(0)= X" we can obtain X = X(1). Thus the perturbations are updated via
an ODE while the mean is still updated using (6) with the sample estimators. The BGR09

computational implementation is as follows: given X° compute X* by the numerical
integration of (29). Then compute K = (M —1)*X*X* H'R™ and use it to compute X°

by (6).
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BR10 differs from BGRO09, in that the two Bucy equations in pseudo-time (12) and (13)
are combined to get a single ODE formulation for the full ensemble itself; a brief
derivation of BR10 is presented next. The ODE representing the analysis step for the full

ensemble can be written as:

d—x=i(x+>_<1T)=iX+(i>_<)lT (30)
ds ds ds ds

The two terms of in this equation correspond to the ensemble version of the KBF
equations for the perturbations (29) and the mean:

dx 1
S = XXTH'R(Hx - 31
ds M-1 (Hx-y) (1)

Substitute (29) and (31) into (30) and factorize:

dX 1 1

e = XXTH'RY ZHX+(Hx-y)N" 32

ds M-1 {2 +(Xy)} (32)
This equation describes the assimilation of the X in terms of X and X. To obtain an
expression in terms of ; recall that X=M"'X1 and X=>=((I ~U), where

U=M"11". Substituting these into (32), using the fact that | —U is idempotent and

simplifying we obtain the BR10 formulation:

dX__ 1 I —U])=(THTR1[H)=([I +U]—2y1TJ (33)

ds 2(M-1)
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In this formulation, the entire ensemble is updated by solving (33) as X =>_<(1) given

= =b
X(O): X . We note that this equation appears in BR10 in the equivalent form of the

gradient of a cost function.

A fundamental difference between BGR09 and BR10 is that BGR09 computes the
analysis mean X* separately using (6). Accordingly, observations y themselves impact
only the analysis mean X* but not the analysis ensemble perturbation X. In BGR10,

observations y affect both X* and x*. This difference can be important for numerical
implementations as the update of the ensemble mean will be affected by the chosen time-

stepping. It is worth mentioning that neither BGR09 nor BR10 requires any matrix

inversion except R™, which is frequently diagonal and usually can be pre-computed.
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2.2. Dynamical models used in this work

Here we present a description of the three dynamical systems used for experiments in this
work. For all our experiments, identical twin experiments are carried out. In this type of
experiments there are three elements: the nature run (truth), the observations and the

background/analysis ensemble.

Each one of the models allows testing different aspects: very strong nonlinearities, the
need for localization and multiplicative covariance inflation, as well as situations that

mimic real-life NWP aspects.

2.2.1. The Lorenz 1963 model

The Lorenz 1963 model (L63) is a strongly nonlinear 3-variable model widely used in
evaluating data assimilation schemes because of its challenging properties near regime
changes (e.g. Miller et al., 1994; Evensen, 1998; Evans et al., 2004). It comes from the
simplification of the Rayleigh-Benard convection process (Lorenz, 1963). The system of

nonlinear coupled ODEs describing its evolution is:

X0 = o(x@ - x)

The standard values used for the parameters are: o =10, r=28 and b=8/3. This
choice results in a chaotic behavior with two regimes in a very well-known butterfly-

shaped fractal attractor in the phase space. The model is integrated with the Runge-Kutta
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4™ order method using a time step of At =0.01. A depiction of the time evolution of the
variables as well as a snapshot of the attractor is presented next.

(3

L2

1)
Figure 4. Lorenz 1963 model. The top panel depicts the time evolution of the three variables in
the model. The bottom panel shows the shape of the attractor in phase space.

2.2.2. The 40-variable Lorenz 1996 model

The 40-variable L96 model (Lorenz 1996; Lorenz and Emanuel, 1998) is described by
the set of differential equations:

X(q) — (X(q+l) _ X(qu) )X(qfl) _ X(q) + F

(35)

for g=1...,40, with x@ =x“0 xV=x6 and x“ =x®_ The model is designed to

mimic the time evolution of an atmospheric variable in a circle of latitude. The model is
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schematic; it cannot be derived from physical laws (Lorenz, 2005). Nonetheless it
represents a system in which three processes are present: nonlinear advection (first term),
dissipation (second term) and forcing (last term, which is usually given a numerical
value F =8). The attractor of this model has a fractal dimension of about 27 and it has 13
positive Lyapunov exponents (Lorenz, 2005). It does not have regime transitions as L63.
The model is integrated with a Runge-Kutta 4™ order method and a time step of

At =0.025 units.

Figure 5 illustrates the behavior of this model. All variables are started from the
(unstable) steady state x“)(t =0)=F,Vj except for a variable that is initially perturbed:
x®)(t =0)=F +0.001. One can notice that the transient lasts less than 2 time units. The

left side of figure 5 shows the time evolution of 4 selected variables. The right side is a
Hovmoller diagram showing the time evolution of all variables. In this diagram one can

visualize the westward propagation of waves.
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Time evolution of some variables of the L96 model Hovmoller diagram for the time evolution of the L96 model

20
go_MW\/"\/J\./\A/\/\/\/\‘

>

=205 5 10 15 20

20 : : ,

gOW\/\/‘I\/\/\[M\/\/M

x

205 5 10 15 20 -

20 : : ,

x

205 5 10 15 20

20 : : :

e o W MW AN NN

x

205 5 10 15 20 % 5 10 15 20 25 30 35

time variable number

Figure 5. Lorenz 1996 model: time evolution of selected variables (left) and all the 40 variables
using a Hovmoller diagram (right).

This model allows experiments with implementation aspects such as localization and

multiplicative covariance inflation.

2.2.3. A medium complexity AGCM: SPEEDY

The Simplified Parameterizations, primitivE-Equation Dynamics (SPEEDY) model is a
medium complexity Atmospheric General Circulation Model (AGCM) developed by
Molteni (2003). As its name indicates, this model has a spectral primitive-equation
dynamic core and a set of simplified physical parameterization schemes. It is useful for
our experiments because it achieves computational efficiency while maintaining realistic
simulations similar to those of state-of-the-art AGCMs with complex physics. Hence, it

allows us to mimic situations that would arise in a real NWP scenario.
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Miyoshi (2005) adapted SPEEDY for use in data assimilation, with output every 6 hours
(the model time step is 40 minutes). This implementation has a resolution of T30L7, with
horizontal spectral truncation at 30 wave numbers and 7 vertical levels. Data are output
on a horizontal grid of 96 longitudinal and 48 latitudinal points. The model includes basic
physical parameterizations, the description of which can be found in the appendix of
Molteni (2003). It is based on a spectral dynamical core developed at the Geophysical
Fluid Dynamics Laboratory. SPEEDY is a hydrostatic model formulated in o
coordinates, in the vorticity-divergence form described by Bourke (1974). It calculates
five field variables: zonal wind u, meridional wind u, temperature T , relative humidity

g and surface pressure ps. The geopotential height z for different pressure levels may

be obtained by interpolation (since it is hydrostatic).

One can generate artificial observations that resemble a realistic radiosonde observational
network as presented in figure 6 (reproduced from Miyoshi 2005). The observation
density is higher over continents than over the oceans, and the Northern Hemisphere
(NH) is better observed than the Southern Hemisphere (SH). In our experiments,
observations are generated by adding Gaussian random perturbations to every variable (in
each one of the 7 vertical levels) with the following standard deviations: 1 m/s for u and

v, 1 K for T, 10° kg/kg for q and 1 hPa for ps.

To assess the performance of assimilation techniques in this model, a latitude-weighted

RMSE was computed for each one of the variables:
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3 (xt =x? coso, (36)

j=1

L.||A

RMSEIat—Wei = \/

where x'corresponds to the nature run, x* corresponds to the analysis, and ¢ is the

latitude angle and J is the total number of state variables. Each one of the 6 variables

(u,v,T,q, ps,z) should be considered separately at each one of the 7 vertical levels.

OBSERVATION STATIONS (REALISTIC NETWORK NOBS=415)

120E 150 120w BOW
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Figure 6. Observational density used for the experiments with the SPEEDY model. The spatial
distribution of the observations resembles a realistic radiosonde network (Miyoshi, 2005). Two
positions are circled, one over the Labrador Peninsula and other over the Southern Pacific Ocean;
these locations will be used to display results in subsequent sections.

Furthermore, the RMSE can be computed separately for different geographical regions:

NH, tropics and SH.
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3. Analysis on the Ensemble Kalman-Bucy Filter

A consequence of sequential data assimilation is that there is a jump from the background
mean to the analysis mean at the assimilation instant®. Then, the jumps from background

to analysis can be depicted in the following way:

Figure 7. Schematic depicting the jump from background mean to analysis mean in sequential
data assimilation. The bold dashed line depict the background/analysis mean, the red dots are
observations, and the pink lines represent the jump from background mean to analysis mean when
the assimilation is performed.

These jumps can have adverse consequences for some dynamical systems, especially for
those containing balance relationships among variables (e.g., the geostrophic balance in
an atmospheric model or in a shallow water equations system), since they can excite
waves. Attempts have been made to distribute the impact of observations over finite time
periods to generate a smooth transition from background mean to analysis mean. An

example is the Incremental Analysis Update (IAU) from Bloom et al., 1996.

® For the sake of this discussion, let us consider that the assimilation is performed every time an observation
is available.
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The EKBF for discrete observations discussed in section 2.5.1 is another framework to

avoid these jumps. For the full ensemble X, we can write the forecast and assimilation

processes together in an ODE of the following form:

X (%) S AX ottt @)

Where A()=() represents the right-hand side of equation (33) and & is the Dirac delta
centered in the each assimilation instant. Bergemman and Reich (2011a) propose a
method to extend the impact of the observations into a finite time interval by mollifying

the Dirac delta functions. Schematically, this process is presented in the following figure:

| | | > |

Figure 8. In order to create a smoother transition from background to analysis, the impact of the
observation (red dot) can be extended into a finite time interval, represented by the base of the red
triangles. The height of the triangle represents the relative importance given to the observation in

this interval. This can be achieved in the EKBF by a mollification of the Dirac delta function.

Using a slow-fast extension of the Lorenz 1996 model with an intrinsic balance,
Bergemman and Reich (2011a) showed that this mollified EKBF helps to avoid the loss
of balance that would occur using a regular stochastic EnKF (see their figure 4). Before
applying the mollified EKBF in more complicated systems, one would want to guarantee
the robustness of the EKBF. This is the main purpose of this chapter: to analyze the
behavior of the ODEs involved in the EKBF with respect to observational frequency, the
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nonlinearity of the model, etc. It will be shown that these ODES suffer from stiffness
under certain conditions, so that a robust and efficient integration scheme must be

developed for their solution.

On the other hand, transform-based EnSRFs are efficient implementations since they
perform most of the assimilation operations in the ensemble space rather than in the state
space. Moreover, many implementation tools have been developed for transform-based
EnSRFs, in particular the LETKF. These include an efficient R-localization and gridpoint
adaptive multiplicative covariance inflation. To take advantage of these features, a
transform alternative to the EKBF is developed; we call it Ensemble Transform Kalman-

Bucy Filter (ETKBF).

This chapter is divided in three subsections. In the first section, the stiffening issue of the
EnKBF is explained and a numerical integration scheme designed to tackle it is
presented. In the second, the ETKBF is formulated and we provide a set of properties of
this scheme that can make it advantageous. The third section presents experiments with
different models; in particular, this section demonstrates that the ETKBF can be applied

in atmospheric models.

3.1 Numerical integration in the EnKBF

An essential challenge in both formulations of the EnKBF (BGR09 and BR10) is to
integrate the involved ODEs in pseudo-time in an efficient and affordable manner. In

particular, the solution of these ODEs can present problems in the presence of nonlinear
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perturbation growth resulting from infrequent observations (Kalnay et al., 2007; Yang
and Kalnay, 2009a). The nonlinear growth undermines the performance of EnKF since it
violates the assumption that Gaussian analysis perturbations remain Gaussian after the

forecast.

BGRO9 used the Euler forward method (the simplest explicit integration method) with a
variable number of steps. The optimal choice under their settings turned out to be 4,
optimal in the sense that adding more steps did not translate in a further reduction of
RMSE. In this section we show that the ODEs involved in the solution of BGR09 and
BR10 stiffen under certain conditions, and that Euler forward is no longer an adequate

choice for their solution.

Let us start the study of the ODEs in BGRO09. To simplify, let us start our analysis with
R =o?l and H =1, then equation (29) becomes:

X=e— = XXTX (38)

This matrix ODE can be written down explicitly as:
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This matrix differential equation is in fact a system of NM coupled ODEs; each ODE
has NM 3" order polynomial terms in the right hand side. Therefore, the best choice for
numerical integration is an explicit method (as done in BGR09). Nonetheless, a deeper
analysis reveals that the BGR09 ODEs can become stiff depending on the relative ratio of
P and R. Two main controlling factors of this ratio are the frequency of observations
and length of the assimilation window. When this ratio is large, (29) loses stability due to
stiffening. This challenge is addressed using an improved, semi-implicit numerical

integration method for the EnKBFs.

Consider the analytical solution of the Bucy equation for the covariance in pseudo-time

(appendix A):

P(s)=P*(H"R*HP s +1)" (40)
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For illustration purposes, let H =1 and consider the scalar case of the previous equation,
i.e. N=1. It is convenient to write this equation as the following fraction, which is the
ratio of the covariance at any moment s in pseudo-time and the background covariance:

P(s)_ 1
P Bs+l

(41)

In (41), p=P’/c? represents the ratio of background error covariance to observational

error covariance (variance, in this scalar example). The behavior of equation (41)
depends upon the magnitude of this ratio as illustrated in the following figure:

Analylical solution of the Riccati equation in pseudotime for several values of = Pbis?
1 T T | | T T | |

——02
——

09 0.5_
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—i— 5
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Figure 9. Analytical solution of the Bucy covariance equation in pseudo-time for a scalar case
with the variable observed directly. Different lines correspond to different values ratio of
background variance over observational error variance (see the legend). Two colors distinguish
lines at different sides of the threshold of £ =1. The ODE stiffens as this ratio becomes larger.

The McLaurin expansion of (41) with respectto fs is:
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2f)=§x—ﬂglﬂ—ﬁs+UmY“. (42)

It is clear then that for small values of g (3 <1, represented in the upper-right curves in

figure 7), we have P,(s)/P° ~1- /s, i.e. the function behaves close to linear. It is
possible to get an accurate numerical approximation of these curves with the Euler
forward method and using few steps. Nonetheless, for large values of g (5>1,
represented by the lower-left curves in figure 7), the solution becomes increasingly stiff
and an explicit method such as Euler forward is no longer effective without significantly

increasing the number of steps.

Returning to the general multivariate case with an arbitrary H, the expression for £

becomes:

‘Y”R-lvb

= 43
p=r (43)

where | | denotes the spectral matrix norm (maximum singular value). P* and therefore

B depend on the length of the forecast window. For short enough windows, P° remains
smaller than the observational error covariance R (hence S <1), while for long
windows it can become considerably larger (hence g >1). As an illustration, we
consider an assimilation experiment using LETKF and the Lorenz 1963 model for both

frequent observations (f,) and infrequent observations (/) windows (defined as
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observing every 8 or 25 steps respectively; the details are explained in section 3.4.1). The
empirical cumulative distribution functions (ECDF) of g, and f, are shown in the

following figure:

empirical cumulative distribution function for |‘r‘bTR'1YJJ|I{M-1]
1 T T T
—freq obs
09t infreq obs -

0.7 1

06 .

fraction of cycles
=1
tn

Figure 10. Empirical cumulative distribution function of S = ‘YbT R™Y® /(M —1) for short

(orange line) and long (purple line) assimilation windows using the Lorenz 1963 model. The
value of this ratio for infrequent observations is in general an order of magnitude larger than for
frequent observations.

From this figure we see that the ECDF for S, is an order of magnitude to the smaller
than the one for f,. For short windows g, <10 occurs about 45% of the cycles, and
B, >1 only 15% (in fact max (3, )=4.81). By contrast, for long windows 3, <10 only

1% of the times, 3, >1 for about 60% of the cases, and max (3, )=187.07. Hence, for

the latter case the ODEs involved in the Bucy-type formulations are bound to stiffen.
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We develop a Diagonal Semi-Implicit (DSI) method to overcome this stiffness. For

convenience, let us recall the ODE for BGRQ9 (29):

X _ _lpyTRHX
ds 2
.
where P = . A linearly”* semi-implicit solution of this equation is:
X —X
S :—%(aPkHTR‘lHXk +(1-a)P H'RHX,,,)
S

Solving for X, ., we obtain:

1
X, :(I Laas PkHTRlH) [I —a—ASPkHTRlHij
2 2

(44)

(45)

Using the Sherman-Morrison-Woodbury lemma for the first factor in the rhs of the last

equation:

-1 -1
(|+(1_$PKHTR1HJ :I——(l_Z)ASPkHT(R+—(1_§)ASHPkHTJ H

Then this becomes:

-1
X, =[1-0mas (i Aoais o eV _als g gy )y )
k+1 2 k 2 k 2 k k

“1tis linear since the quadratic term P = XX is only evaluated in the instant K .
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Letting « =1, we recover the Euler forward solution used in BGR09:

Xy = (I —“TAS PkHTR‘lHJXk (47)

On the other hand, letting « = 0 leads to the linearly-implicit Euler scheme®:

-1
XM:XK—§PKHT(I+%HPI<HTRlj R™MHX, (48)

This scheme, however, can become excessively damping (i.e. X,,, —0) in the case
AsP, >>R . Finally, if we let & =—1 we obtain the following semi-implicit scheme:

X, :Xk—§PkHT(I+ASHPkHTR1)1R1HXk (49)

This scheme has the convenient property that X, , —»1/2X, when AsP, >>R.

Furthermore, to avoid computational burden, we substitute this equation by its diagonally

semi-implicit (DSI) approximation:

A

X, =X, — ?S PH (diag (1 + AsHP,H'R ™)) 'R 'HX, (50)

The inversion introduced is performed on a diagonal matrix and adds a negligible cost
compared to the Euler forward method. In fact it does not change the order of accuracy of

the Euler forward approximation (Hairer and Wanner, 1991). It does improve, however,

® Note that a regular implicit scheme would not suffer from this.
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the stability and hence it is useful when the step size AS is restricted by the method’s

stability rather than the accuracy.

The resulting update for the ensemble mean is:

X,y = X, — AsPHT (diag (HP,H'R*As+ 1)) "R™[Hx, -y | (51)

Finally, the DSI scheme of BR10 given by (33) is given by:

R e ) B L T -

The DSI method of (52) falls into the category of Rosenbrock methods with inexact
Jacobian; it is also called the W methods in Hairer and Wanner (1991). Moreover, this

method can handle non-diagonal R .

To complement the DSI method, we choose a sequence of pseudo-time steps with
increasing size that sum to one. For example a sequence of 7 steps will be
{1/16,1/16,1/8,1/4,1/4,1/4%, a sequence of 8 steps will be {1/32,1/32,1/16,1/8,1/4,1/4,1/4}
and so forth. The rationale behind this stepping is that the fastest change of equations (29)

and (33) occurs at the beginning of pseudo-time, just around s =1/, so shorter steps are

required there. This is illustrated in the following figure:

39



Figure 11. Analytical solution of the Kalman-Bucy equation for covariance in pseudo-time. For
large values of B more resolution is needed at the beginning of the window (shaded region).

3.2. Transform-based alternatives for the EnKBF®

In the EnKBF formulations presented in BGR09 and BR10 some of the operations are
performed in the state space and some are performed in the observation space. In an

ensemble-transform approach, the analysis ensemble of perturbations is obtained as a
product of the background ensemble of perturbations X € R"*™ in the model space and a

matrix of weights in the ensemble space W e R"*™ | i.e. X* = X"W?. This approach
leads to the Ensemble Transform KF (ETKF; Bishop et al, 2001; Wang et al, 2004), the
Local Ensemble Kalman Filter (Ott et al, 2004) and the Local ETKF (LETKF: Hunt et al,

2007). By incorporating the ensemble-transform approach, we develop two EnKF

® Professor Kayo Ide is kindly acknowledged for her idea to propose this alternative formulation.
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methods that are stemmed from BGR09 and BR10 and refer to them as the Ensemble

Transform KBFs (ETKBFs).

Working in the ensemble space can have several advantages. To begin with, the ensemble

space R™ is usually spanned in lower in dimensions than the state space R". If the
majority of the operations are performed in this lower-dimensional space this can lead to

computational savings and efficiency.

Another important feature is related with implementation aspects. Most practical data
assimilation systems need two basic algorithms, localization and inflation, to attain
successful performance. When the ensemble size is much smaller than the dimension of
the model state (M << N ), and more importantly smaller than the number of the positive
Lyapunov exponents, straightforward application of any EnKF may lead to unreliable
correlation estimations especially at long distance. The gridpoint R-localization (Hunt et
al, 2007, Greybush et al., 2011) is a simple yet powerful technique to handle this
challenge for the EnKFs with the ensemble-transform approach. Underestimation of the
background ensemble perturbation may also occur due to small M and other sources of
imperfection. A common solution to overcome this problem is the use of multiplicative
covariance inflation (Anderson and Anderson, 1999), in which the background ensemble
covariance is multiplied by a factor larger than one. Usually, the search for an optimal
inflation parameter is an ad-hoc tuning process, which can be time-consuming.
Nonetheless, for the EnKFs with the ensemble-transform approach, an adaptive inflation

scheme (Miyoshi, 2011) addresses this issue; this powerful scheme is tailored to R-
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localization and provides an independent inflation parameter for each gridpoint of the

model, each inflation parameter evolves with time.

In addition, having the weights available in the ensemble space, one can design a variety
of schemes to improve the EnKF performance at no or very little cost; for example, the
low-cost post-processing techniques such as accurate low-resolution analyses by weight
interpolation (Yang et al., 2009a), a no-cost smoother (Kalnay et al, 2007b), forecast
sensitivity to observations without adjoint model (Liu and Kalnay, 2008, Li et al., 2009),
and Running in Place/Quasi Outer-Loop (Kalnay and Yang, 2010; Yang and Kalnay,
2009). These techniques rely on the fact that the weights at the analysis time are valid
through the entire forecast window (Kalnay et al, 2007b, Yang and Kalnay, 2009). These
techniques have been shown to work effectively for data sparse situations that give rise to

nonlinear perturbations (Kalnay and Yang, 2010; Yang et al, 2009).

In this section we develop two formulations: the transform-based alternative to BGRO09 is
denominated the Ensemble Transform Kalman-Bucy Filter (ETKBF), while the transform
based alternative to BR10 is denominated Direct Ensemble Transform Kalman-Bucy

Filter (ETKBF).

Derivation of ETKBF

For ETKBEF, starting from BGRO9 (29) and using the representation X(s )= X"W(s), one

can write:
9 xom(s) = — == XPW(S)XWI(S)) HTRHXW(s)
ds 2(M 1)
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Recalling the mapping Y® = HX® and simplifying the previous expression allows us to

get the update analysis equation for ETKBF:

aw__ 1 WWT YR RLYPW (53)
ds  2(M-1)

Solving this equation in pseudo-time s over 0<s<1 with the initial condition wW()=1,

we obtain the analysis weight matrix W* = W(1) at s =1. The ensemble mean is updated

using equation (24).

For the numerical integration, the corresponding Euler forward scheme yields:

W,,, =W, — % P Y’ RIY W, (54)

where P, =(M-1)"W,W," is the covariance in the ensemble space. The

corresponding DSI integration scheme is:

~ ~ -1
W, =W, —%PkYdeiag(l +AsYbPkYbTR‘1) RY°W, (55)

It can be shown that in the limit of infinite steps, the ETKBF is numerically equivalent to
the LETKF (Hunt et al., 2007). To proceed, we start by writing the expressing the

covariance in ensemble space for any instant in pseudo-time:

B(s)= WO (o) (56)
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with P(0)=P° =(M —1)™1 and P(0)=P?®. Using the chain rule, we can find the

pseudo-time derivate of this expression and perform simplifications:

OBe)- g W W0 2 W O TR Y W) )

Hence,
A WW iy WWE_ SyeTpoayop (57)
ds M —1 M —1

The analytical solution to this Riccati equation is (appendix A):

ﬁ(s)zﬁ(O)(YbTR’le5(0)5+ |)7l :ML_l(YbTRlvb MS + |]_l

5(3):(YbTR‘les +(M =)l )_1 (58)

In particular, for s =1 we get the same expression as for the LETKF:

P(1)=P? :(YbTR’le +(M =) )71 (59)

Derivation of DETKBF

For DETKBF, we let W e RM™ transform the background ensemble into the analysis

—=a —b=—7=a v
ensemble, i.e. X =X W . We note that the full ensemble space matrix W is different

from the perturbation matrix W of the ETKBF. Then, (33) can be written as:
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i(?"Tv(s)j:_ L WU :(>_<bv_v( )jTH R{H "W+ U] 2y1T}

After simplifying, the DETKBF obtain the analysis W by solving:

& = _1)W(I—U)W Y R [Y W(I +U)- 2y1T} (60)

ES =b =hb
with the initial condition W(0)=1, where Y =HX is the mapping of the (full)

background ensemble into observations space. At s=1, we obtain the analysis weight

matrixV=v = V=V(1) The corresponding Euler forward integration is:

— As ~ =bT =b=—
Wit = Wi —?P Y R‘l[Y wk(|+u)—2y1T} (61)

where P, =(M —1) "W, W," =(M —1) "W (1 —UW.". The corresponding DSI

integration scheme is:

— — A5~ =bT( | —b_ —bT - —b—
Wi = Wk—7P Y |diag|l+AsY P, Y R™ R*[Y Wk(|+u)—2y1T}(62)

3.3. Localization in the ETKBFs

A problem that is common to all EnKF formulations is the appearance of long distance
spurious correlations as a result of the finite size of the ensemble (Hamill et al. 2001).

Localization is a common solution to this problem. It is essential when the size of the
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ensemble is smaller than the size of the state space, and more importantly, smaller than

the number of positive Lyapunov exponents.

Different localization techniques can lead to different filter performance and behavior, for
example in the conservation of balance (Greybush et al., 2011). Within the EnKF
framework, there are mainly two types of localizations: B-localization and R-localization.
Roughly speaking, B-localization reduces the forecast (background) error covariance
between a pair of grid points by a factor depending monotonically on the distance
between them, while R-localization increases the observational error by the inverse of the
same factor (see a more detailed discussion in Greybush et al., 2011). In R-localization,
an independent analysis is carried out for every single grid point using observations
within a certain distance, and assuming that the observation error increases with the

distance to the grid point. An schematic of this localization is presented next:

@, @, @, @, O
*4—_ Observdtions

e o//*-/ O .

I

:ridPOir‘t\&.\ /
7

Figure 12. Schematic of R-localization (courtesy of Dr. Greybush).
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In the previous figure, the gridpoints are shown with blue circles, the observations with
pink starts. For a given gridpoint (shown in green, in the center), only observations within
a radius of influence (shown as a large blue area with a color intensity decreasing
radially) are used with a weighting that depends on the distance to the gridpoint. A
commonly used compact support weighting function that approximates a Gaussian can be

found in Gaspari and Cohn (1999).

BGRO09 and BR10 are amenable to B-type localization. The localization matrix C e R""*

is in fact applied to PHT, the elements of C depend upon the distance between

observations and state variables. A localized version of BR10 can be written as:

%:—%(Co(PHT))R‘l[H):([I +u]—2y1T] (63)

where the symbol o indicates Schur (element-wise) product. In some of our experiments
we will compare the performance of B-localized BR10 against that of R-localized
ETKBFs. For both ETKBF and DETKBF a gridpoint R-localization can be implemented
in a straightforward manner. We illustrate this procedure for DETKBF, but the same

sequence of steps apply for ETKBF.

a) Compute the mapping of the global background ensemble into the observation space

=b =b
Y =HX . This is the only global operation. For each gridpoint i, a local (denoted with

=hb
the subindex [i]) subset of this mapping Yi[i] along with a local subset of observations
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yip are selected. These sets correspond to the observations in the physical region where

the product C,R™ is nonzero, where C, is the localization matrix for the gridpoint i.

b) The rest of the operations are local, for greater efficiency steps (b) and (c) can be done

in parallel. For the i™ gridpoint, the Euler forward and DSI schemes can be written as:

= E AS~ =bp T =b =—
Wi = Wi - P Yil Ci[I]R;[}][Yimwk,i [1+U]-2y,1" (64)

—p T

1
=b _ =b T
Yili] [diag(l +As YinP,; Yin] Ci[l]Ri[}]j X

— — As=~
Wi = Wi ey Py

(65)
—ph =
Ci[|]Ri[:|L][Yi[I]Wk,i [I + U]— 2y|[|]lT:|

The matrices C;;; and R,y are submatrices of C; and R respectively.

c) After performing the integration to get Wi , the analysis at that gridpoint is obtained as

=p=—=a

—a =bhb
Xi =Xi Wi. This matrix has size Xi e R"™"™, where N, is the number of state

variables in said gridpoint.

The computational expense for R-localized DETKBF is estimated next. The local
procedure in each one of the N gridpoints is O(max(L[,]MZ,M3)), where Ly is the

number of observations used for that location. Since each gridpoint is independent from
the others, they can be processed in parallel. Nonetheless, as with the LETKF, an

important aspect to ensure stability of this localization is to have significant overlap in the
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observations used for the analysis in neighboring gridpoints. For a broader discussion on

this issue the reader is referred to Hunt et al. (2007).

49



3.4. Experiments

Now we use the three models described in section 2.2 to test the ETKBF. The high
nonlinearity of the Lorenz 1963 model will help to test the ability of the DSI integration
method to handle stiffness. The Lorenz 1996 will allow us to test localization aspects, and
in particular to see the interaction between different combinations of values for
localization and multiplicative covariance inflation. The SPEEDY model will allow us to

prove that these formulations can be used in a real life NWP setting.

3.4.1. Experiments with the 3-variable Lorenz 1963 model

We use settings similar to those of Kalnay et al. 2007 and Miller et al. 1994. An initial
period of 1000 time steps in the nature run was discarded to ensure that it is on the model
manifold. The “observations™ are generated by adding a random term N (0, R= 2I) to the

nature run. All the variables are observed directly, i.e., H=1.

25 :

A5 e ensemble members
nature run
+ observations

e background/ analysis mean

25 | | |
52 525 53 53.5 54

Figure 13. Example of the evolution and assimilation of x@ in the infrequent observations case
with LETKF. The true run, the observations and the analysis ensemble are shown.
Two cases are considered:
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e “Frequent” observations. These are taken every 8 time steps and lead to short
windows in which the perturbations grow essentially linearly; this roughly
corresponds to a 6-hr assimilation cycle in an atmospheric global circulation model.

e “Infrequent” observations. These are taken at 25 time steps and lead to long
assimilation windows in which perturbations grow nonlinearly and their distribution

is no longer Gaussian; Kalman filtering becomes less accurate for this long case.

An ensemble of size M =3 was used for the assimilation. It is a small size (e.g.,
Evensen, 1997 used over a thousand members for this model), but it emulates the fact
that in atmospheric models the number of state variables is usually much larger than the
number of ensemble members that is computationally feasible. The ensemble members
are initialized by adding random noise to the truth with the same covariance as the
observational error. Figure 10 illustrates the time evolution of one of the state variables; it
illustrates the truth, the observations, and each one of the ensemble members. In this case,
the original EnKBF formulations and our EnTKBF formulations are practically

equivalent.

In order to optimize the performance of the filter (and avoid divergence in the infrequent
observations case) we use multiplicative covariance inflation (Anderson and Anderson,

1999). Under this scheme, the background ensemble perturbation is multiplied by a factor

X — Xb(1+ 5), with 6 >0, equivalent to multiplying the background covariance matrix

by P" —>Pb(1+5)2. For both frequent and infrequent observations, we examine the

effect of different values of & in the Bucy-type formulations as well as in the LETKF. In
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addition to 6 we also vary the number of pseudo-time steps in our experiments to
achieve optimal performance. Due to the size and structure of the model, there is no need

to apply localization.

Frequent observations

For the frequent observations case, the values of & are taken from 0<5<0.15 (in
Kalnay et al., 2007, the optimal value was found to be 6 =0.04). First, we test the
original EnKBF formulations with a variable number of steps in pseudo-time were used.
We started using the Euler forward integration scheme; the results of these experiments

are shown in figure 14 (a sample size of 125000 analysis cycles was used in this case).

For both BGR09 and BR10 it is found that using less than 3 steps for the integration leads
to a poor performance. The filters started performing well with 3 steps, and with just 5
steps the performances of both EnKBFs converge to that of LETKF. The computing time
was indistinguishable even with 6 steps in pseudo-time. The three formulations show
similar behavior with respect to the inflation parameter. From 6 =0 to about 6 = 0.03,
the performance of the filter improves fast as inflation increases. After this value, there is
an optimal performance region for the three filters. Beyond this region, the covariance
inflation becomes excessive and the filter begins to lose skill slowly in an apparent linear

way. The results coming from using the ETKBFs are identical.
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RMSE (averaged over 125000 analysis cycles) for frequent obs (every 8 ts) with 3 different analysis schemes used
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Figure 14. Analysis RMSE for LETKF and the two Bucy-based formulations in the case of
frequent observations in the Lorenz 1963 model. The integration uses the EF method.

The experiments were repeated with the DSI integration method. No perceivable increase
in computational time was detected. In order to produce smoother curves, the sample size
was increased to 10° analysis cycles. The results of this experiment are presented in the
following figure; in this case we depict the results using the ETKBFs. One can notice the
almost perfect equivalence in the performance of LETKF and ETKBF and DETKBF with

5 steps in pseudo-time.
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Figure 15. Analysis RMSE for LETKF and ETKBF and DETKBF with 5 steps in pseudo-time in

the frequent observations case. The DSI integration method is used for the Bucy-type
formulations.

Infrequent observations

For the infrequent observations case, inflation values are taken from 0 < & <1 (in Kalnay
et al. 2007, the optimal inflation was & = 0.39). Again, we start by testing both original
EnKBF formulations. Our first experiments use the Euler forward integration method. As
expected from the analysis performed in section 3.1, stiffening occurrs and this scheme
fails with a number of steps of O(1-10). A large number of pseudo-time steps (~70 for

BGRO09 and ~300 for BR10) are necessary to achieve a performance similar to LETKF,

and occasional failure is still observed. The next figure shows the slow convergence in
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the case of BGRO9 using EF with increasing number of steps in pseudo-time; this figure

was produced using sample sizes of 40,000 analysis cycles.

RMSE (averaged over 40000 analysis cycles) for infrequent obs (every 25 ts) with 3 different analysis schemes used
I I I I I I I

——BGR09 15 st
——BGRO09 30 st
——BGR09 50 st
——BGRO09 60 st
—B—ETKF

RMSE

06 | | | | | | | |

inflation

Figure 16. Analysis RMSE for LETKF and BGRO09 in the case of infrequent observations in the
Lorenz 1963 model. The integration uses the EF method.

We don’t show the results for BR10 since constant filter failure does not allow producing
smooth curves. The fact that BR10 presents more problems than BGR09 can be
understood if we remember that for BR10 the observations participate in the update of
both the analysis mean and the analysis ensemble of perturbations. Moreover, the update
for the mean in BGRO9 is linear while in BR10 it is not. Again, the experiments using the

ETKBF formulations lead to the same conclusions.
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We then switch to the DSI integration method, first using uniform pseudo-time steps.
Under these settings we find that at least 30 steps are needed for BGR09 to achieve the
performance of the LETKF and for BR10 we find that this number is ~50. Switching to

the variable time stepping discussed at the end of section 3.1, we find a reduction of these

numbers to 8.

In the next figure, we show the results of using the DSI scheme with variable time
stepping with the ETKBF formulations. A sample size of 10° assimilation cycles is used.
Again, for the 3 formulations a rapid reduction in RMSE is observed as one increases the
value of inflation before & ~ 0.3; then an optimal inflation region is found.
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Figure 17. Analysis RMSE values (averaged over 10° assimilation cycles) for ETKF, ETKBF and
DETKBF in L63 in the the infrequent observations case is shown. The Bucy-type formulations
were integrated using the (DSI) method with 8 non-uniform steps.

56



Summary

The next table summarizes the lowest RMSE results for both frequent and infrequent
observations using DSI integration with variable time stepping for the ETKBFs and a
sample of 10° analysis cycles. The performance of the LETKF is also shown as reference.
In the infrequent observations case, the lowest RMSE values are about 1% larger for both

Bucy-based formulations than for LETKF but with comparable computing time.

LETKF ETKBF DETKBF
Frequent 0.3108 (5 =0.07) 0.3064 (5 =0.06) 0.3163 (5 =0.06)
observations
Infrequent 0.7544 (5 =0.4) 0.7664 (5 =0.5) 0.7612 (5 =0.5)
observations

Table 1. Lowest RMSE values in the Lorenz 1963 model with frequent and infrequent
observations using three filters. The optimal inflation value is indicated in parenthesis.
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3.4.2. Experiments with the 40-variable Lorenz 1996 model

In this case, observations are taken every 2 time steps, i.e. in intervals of length
At =0.05. For L96 with F =8 this is roughly equivalent to a 6 hours window in an
atmospheric general circulation model (Lorenz and Emmanuel, 1998). We observe every
other grid point with an observational error covariance R =1. An ensemble of M =10
members is used for the experiments. The first 500 analysis cycles were discarded as a

transient.

With these settings, localization is necessary to avoid filter divergence. First, we test the
B-localized BR10 and the R-localized DETKBF schemes and compar their performance
with that of the LETKF. Fixed multiplicative covariance inflation is used with inflation
values taken from 0< 6 <0.125. The values for the localization radius are taken from
1.5<1<9. The two integration schemes (EF and DSI with varying time steps) are tested

with 3 to 6 integration steps.

For both integration schemes, the performance with 3 pseudo-time steps was comparable
to that of the LETKF and after 4 steps we found only marginal improvements. Figure 18
shows the results of this experiment for the case of 4 steps; the performance of the 3
methods is shown as function of both multiplicative inflation and localization radius. B-
localized BR10 corresponds to the left column, R-localized DETKBF corresponds to the
center column and LETKF corresponds to the right column. The Bucy-based
formulations were integrated using the DSI method. These results are computed from a

sample of 10° analysis cycles. The top row of the figure shows the analysis RMSE; only
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the RMSE values smaller than the observational error (equal to 1) are colored, but all the
RMSE values obtained are finite and smaller than ~ 4.6 . The bottom row shows the ratio
of the average spread of the ensemble divided by the analysis RMSE; ideally the value

should be close to 1.

The overall performance is quite similar among the 3 methods; the best RMSE values are
within 1% of each other. In this case the computational time is not shown; the
comparison is not straightforward —as in the non-localized case of L63- since it depends
on details of the implementation, in particular if the gridpoints can be processes in
parallel for the R-localized case. In general, for both integration schemes and different
steps (not shown) the methods using gridpoint R-localization achieve their optimum for
smaller localization radii than the B-localization. Similar findings were reported in the

experiments performed by Greybush et al. 2011 with other models.
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B-localized BR10, DSI with 4 steps R-localized DETKBF, DSI with 4 steps LETKF
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Figure 18. Filter performance for B-localized BR10 (left), R-localized DETKBF (center) and
LETKEF (right) in the L96; for the Bucy-type formulations the DSI integration scheme with 4
uniform steps is used. The effects of multiplicative inflation and localization radius are shown;
each tile represents an average over 10° analysis cyles. The top row show the analysis RMSE, the
uncolored tiles denote RMSE values larger than the observational error, but all the RMSE values
were finite and < 4.6. The bottom row shows the ratio of the average ensemble spread divided
by the analysis RMSE; ideally this ratio should be close to 1.

In the previous experiments, little difference was found between the two integration
schemes. This is due to the following facts: (a) this model is slower than L63, (b) our
settings correspond to a frequent assimilation scheme, and (c) the observation network is

relatively dense. Nonetheless, the value of the DSI integration method becomes clear if
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we consider the issue of initializing our background ensemble. If this initial ensemble is
too far from the truth, using the Euler Forward integration often leads to failure. This fact
can be illustrated with a simple experiment described next and illustrated in figure 19.

The unstable steady state of the L96 system is X; = F Vj. Hence a simple way to

generate an initial ensemble is to add random perturbations to this steady state for each
one of the N =40 variables and M =10 ensemble members. Using R-localized
DETKBF with 6=0.05 and A=5, we generated initial ensembles using the
observational error R (top panel), then 2R (center panel) and 3R (bottom panel) and let
the forecast/analysis cycles evolve; the first 150 analysis cycles are shown. As the
random perturbations of the initial ensemble decreases, using the Euler Forward method
leads to very large analysis RMSE values in first cycles as the filter stabilizes. This does
not happen with the DSI method. For even larger initial perturbations (not shown), the EF

usually fails in the first analysis cycles.

i = F 4+ os = F +20%° W = F + 300ks

—+ —RMS3E_ EF
—+—RMSE_ D3I

RMSE

“ © Asgﬁni\atii?ﬂ cyglgu e o © Assﬁnilatisni cyg\gu . * © Asgwﬂmwlatimn cy;IDeD e
Figure 19. Analysis RMSE for the first 150 assimilation cycles of an experiment using L96 and
R-localized DETKBF. The effect of the two integration schemes (Euler Forward and Diagonal

Semi-Implicit) is shown for different initial ensembles. As the initial ensemble is more inaccurate
(from left to right), EF takes longer to initialize the filter while DSI does not present problems.
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So far, in the previous experiments we have manually tuned the multiplicative covariance
inflation parameter ¢, and its value has been fixed for all gridpoints and for all time. An
attractive feature of R-localization is that gridpoint-by-gridpoint adaptive multiplicative
covariance inflation can be implemented (Miyoshi, 2011). This scheme uses the
diagnostic relationships of Desroziers et al, 2005. Besides avoiding the manual tuning of

o , it allows each gridpoint to have its own inflation which evolves with time.

In the next set of experiments, we use this scheme. We extend the sample size to 10°
analysis cycles and, since we do not have to tune anything, we allow ourselves use two
ensemble sizes: M = {10,15}. In table 1 we present the average analysis RMSE, the
average analysis ensemble spread and the average (both in space and time) covariance
inflation parameter. Each column corresponds to a different filter: LETKF, ETKBF and
DETKBF (the latter two with 4 steps in pseudo-time), and each row corresponds to a
different ensemble size. As expected the RMSE is smaller for the larger ensemble size
(albeit by little). On the other hand, there is negligible difference in the performance of
the three filters. The RMSE values are slightly smaller than those obtained with the fixed

tuned inflation case.
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LETKF ETKBF (4 steps) DETKBF (4 steps)

M =10 | RMSE =0.3215 (0.0832) | RMSE =0.3215 (0.0862) | RMSE = 0.3227 (0.0883)
spread = 0.3532(0.0324) | spread = 0.3515(0.0327) | spread = 0.3513(0.0330)

5 = 0.0289 (0.0112) & = 0.0289 (0.0114) & = 0.0289 (0.0115)

15 | RMSE =0.3190 (0.0789) | RMSE =0.3184 (0.0793) | RMSE = 0.3197 (0.0791)

<
I

spread = 0.3694(0.0329) | spread = 0.3671(0.0326) | spread = 0.3670(0.0328)

5 =10.0294 (0.0115) 5 =0.0292 (0.0114) 5 =0.0292 (0.0114)

Table 2. Results of the experiments with the L96 model. Three assimilation methods (columns)
and two ensemble sizes (rows) are used. In each case, a sample of 10° assimilation cycle was used
to find the average analysis RMSE, average ensemble spread and average inflation parameter
(averaged also over the 40 gridpoints). The numbers in parenthesis correspond to the standard
deviations of the reported parameters.

In the next figure, we plot the time-averaged value of multiplicative covariance inflation
in each one of the 40 gridpoints. No noticeable differences are found between observed

and unobserved gridpoints or among filters.
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Figure 20. Local value of (multiplicative covariance inflation) for each one of the 40 gridpoints,
averaged over 10° analysis cycles. Three filters and two ensemble sizes are presented.
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3.4.3. Experiments with the SPEEDY model

Finally, we implement ETKBF and DETKBF in a model that is more representative of
those used in operational numerical weather prediction. For the assimilation, an ensemble
with M=20 members is used. The R-localization parameters are A =500km in the

horizontal and A, = 0.1In p in the vertical. As in the last experiments with L96, adaptive

multiplicative covariance inflation (Miyoshi, 2011) is applied to avoid manual tuning.
The model is started from rest (zero winds and an isothermal atmosphere) and run for a
year for spin up. Then, the model is run for 2 months (January and February); these
months constitute the truth. The observations are taken in locations resembling a realistic
radiosonde network as explained in section 2.3.3. The performance of the different
formulations was evaluated using the latitude weighted analysis RMSE presented in the

same section.

As with the previous models, for the ETKBFs we look for the minimum number of
pseudo-time steps that led to a performance equal to that of the LETKF. Using 3 steps or
less leads to noticeable differences, starting at 4 the differences are minimal and by 6 the
impact is practically indistinguishable. Moreover, for this number of steps the
computational time required for an assimilation cycle is comparable to that of LETKF.
For the results presented hereafter, we use a DSI scheme with 6 non-uniform steps in

pseudo-time.

It will be illustrative to perform single-observation experiments in different regions of the
world, especially contrasting densely observed regions vs. poorly observed regions.
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Figure 21. Schematic of set up for single-observation experiments. After the spin-up period, all
observations are assimilated for three days. These allows for the differences caused by the
observational density in different regions of the world to appear.

The previous figure shows the set-up for single-observations experiments. After the spin-
up period, we assimilate all the observations for a short period of 3 days. This allows for
the effects of the observational network density to arise. In densely observed regions of
the globe the magnitude of the background error covariance is bound to be smaller than
in poorly observed regions. It is after this 3-day period that we conduct the single-

observation experiments described next.

In figure 22 we illustrate the impact of a single observation located over the Labrador
Peninsula using the three filters. The variable depicted is zonal wind at 510 hPa. In the
bottom panel of the figure we present the background value for the variable, as well as
the location (red star) and magnitude of the observation being assimilated. We compute
the difference between analysis mean and background mean (top part, one panel for each

filter). We notice that the result is nearly identical for the three cases.
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Figure 22. Impact of a single-observation experiment. The observation is located in the well-

observed Labrador Peninusula. The difference between analysis mean and background mean is

Furthermore, we use the same location and the same variable to show the time evolution
(with output every 6 hours) of the background and analysis mean resulting from each one

of the three filters, as well as the evolution of the background and ensemble spread. In

the same using the three methods; the variable illustrated is zonal wind at 510 hPa.
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this case, we use all observations. The results are shown in the next figure, which again

exhibits an almost indistinguishable behavior among the three formulations.
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Figure 23. Time evolution of the background and analysis mean (left panel) and ensemble spread
(right panel) for LETKF, ETKBF and DETKBF. The depicted variable is zonal wind at 510hPa in
a location over the Labrador peninsula.

Can we expect stiffening for this model for the EnKBF/ETKBF equations? A 6-hour

assimilation window can be considered linear, especially for synoptic scale features.

Nonetheless, we had stated that the magnitude of P® also depends on the density of the
observational network. Hence, we should expect stiffness in the poorly observed areas
like the southern Pacific Ocean. Figure 24 depicts a single observation experiment for an
observation in this area. We choose to depict the ratio of analysis spread to background
spread for the meridional wind at 950 hPa. If this ratio is small, it implies that the
background ensemble covariance is reduced considerably with the information taken
from observations (and hence stiffness is present). As one can notice, both ETKBF and
DETKBF using the DSI method with 6 non-uniform steps in pseudo-time give the same

results as LETKF. In gridpoints closest to the observation, we can observe that the
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background ensemble spread was reduced by ~70%, but the DSI method could properly
handle any stiffness without any further complication while the EF method failed.

Ratio of analysis ensemble spread and background ensemble spread for V
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Figure 24. Impact of two single-observation experiments. The observation is located in the
poorly-observed Southern Pacific, hence in an area prone to stiffness. We show the ratio of the
analysis spread to background spread for the meridional wind at 950 hPa.

So far only results of particular cases have been shown. Next, we show the results from
the assimilation experiments through the two months for which we generated the truth. In
figure 27, we depict the time average latitude-weighted analysis RMSE for the variables
{u,v,T, g, z} (each one in every row) at each pressure level (different columns). In each
panel the bars represent 1 standard deviation around the time average RMSE, which is

computed globally. This figure displays indistinguishable results from the three filters.
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Figure 25. Analysis RMSE values computed globally for each variable at different pressure levels
for the three filters.

Next we re-compute this metric separately for the following regions: Northern
Hemisphere (25N-75N), topics (25S-25N) and Southern Hemisphere (75S-25S). In
figures 26-28 we show the analysis RMSE for different variables; each vertical level is
represented in each column and a different region represented in each row. Figure 26
shows the results for zonal and meridional wind, figure 27 shows the results for
temperature and geopotential height, and figure 28 shows the results for relative
humidity. For all variables, the effect of the observational density is clear and the same
for the three filters. For the (well-observed) NH the mean analysis RMSE is about half of

the observational error while for the SH it is generally more than the double.
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Figure 26. Analysis RMSE for zonal (left) and meridional (right) wind computed for different
regions (rows) at different pressure levels (columns) for the three filters.
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Figure 27. Analysis RMSE for temperature (left) and geopotential height (right) computed for
different regions (rows) at different pressure levels (columns) for the three filters.
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Figure 28. Analysis RMSE for relative humidity computed for different regions (rows) at
different pressure levels (columns) for the three filters.
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4. Ensemble clustering in ensemble square root filters

As with the KF, the optimality of any EnKF is no longer guaranteed when the
nonlinearity of the error growth in the forecast becomes significant and the distribution of
the ensemble members is no longer Gaussian. In nonlinear forecast models, the departure
from linearity depends upon the frequency of observations, the length of the assimilation
window and the magnitude of the observational error covariance R (Lawson and Hansen,

2004; Kalnay et al., 2007).

In a seminal study, Lawson and Hansen (2004) analyzed the update mechanisms of the
stochastic EnKF and the serial EnSRF, and compared their performance in linear and
nonlinear regimes for the two-dimensional lkeda system (lkeda, 1979). Their analysis
showed that the EnSRF is better at retaining higher order moments of the background
distribution than the stochastic EnKF. This implies, however, that any departure from
Gaussianity in the background ensemble is retained in the analysis and propagated
forward in time. An important finding was that using the serial EnSRF in nonlinear
regimes could lead to ensemble clustering, a phenomenon in which an M-member
ensemble splits in an outlier and a tight cluster of M-1 members, where the outlier is
responsible for keeping the variance predicted by the KF. A result from their experiments
illustrating clustering is presented in the left of figure 29. The higher order moments of
the EnSRF ensembles presented non-Gaussian values, and the rank histograms
(Talagrand diagrams) for the verification of the truth were U-shaped, implying that the

truth and the analysis ensemble members could not be considered statistically
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indistinguishable. Nonetheless, there was no difference reported in the analysis root mean

squared error (RMSE) between the stochastic and the deterministic EnKFs.

Lawson and Hansen (2004) also suggested that a periodic resampling of the ensemble
(e.g. via bootstrapping) could revert clustering when using an EnSRF. This idea was first
implemented by Leeuwenburg et al. (2005) for temperature assimilation in an ocean
model. They compared the performance of the one-sided ETKF (Bishop et al., 2001) and
a randomized alternative (which they called EnSRF+) that post-multiplied the transform
matrix of the one-sided ETKF by a random rotation matrix. The EnSRF+ outperformed
the one-sided ETKF in terms of the RMSE, with the higher order moments of the
ensemble closer to the Gaussian. There is a caveat, however, in this study. The one-sided
ETKF is not an unbiased square root filter (Livings et al, 2008; Sakov and Oke, 2008),
and the EnSRF+ was not unbiased either. In fact, the one-sided ETKF is not suited to be
used in data assimilation since it introduces a bias because the analysis ensemble of
perturbations is not centered in zero’. The resulting problems are illustrated in Sakov and
Oke (2008), who also compared the performance of the (unbiased) spherical-simplex
ETKF (Wang et al, 2004) and an unbiased randomly rotated ETKF. Using the 40-variable
Lorenz 1996 model (L96; Lorenz and Emmanuel, 1998) with different ensemble sizes
and multiplicative covariance inflation factors, Sakov and Oke (2008) found similar
performance for the both filters in terms of analysis RMSE (see their figure 3). Their
rotated ETKF, however, produced ensembles with more Gaussian-like characteristics in

terms of higher order moments and flatter rank histograms in the verification of the truth.

"The original purpose of the one-sided ETKF was adaptive sampling, for which it does not present any
issue.
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Figure 29. Examples of ensemble clustering in (a) the Ikeda model (Lawson and Hansen, 2004)
and the L63 model (Anderson, 2010).

Anderson (2010) proposed a Rank Histogram Filter (RHS) as an alternative to the EAKF
in highly nonlinear scenarios. Starting with a simple quadratic univariate model, he
concluded that clustering is the result of the disparity between the nonlinear expansion of
the ensemble spread in the forecast and the linear contraction of the ensemble spread in
the analysis. This causes the outermost member to eventually become an outlier since the
linear compaction needed to keep the variance constrained is sufficient for this member
but larger than required for the rest of the ensemble (Anderson, 2010). Using other
models (e.g. L63, shown in the right panel of figure 29), this study also showed that the
analysis RMSE of the EAKF increased with ensemble size due to the nonlinear

expansion in the forecast.

These problems might suggest that once clustering occurs due to the nonlinearity in the
forecast model, it sets in and severely handicaps the performance of an EnSRF. The

objective of this chapter is to dispel this notion. We show that clustering is in general a
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transient phenomenon and illustrate the mechanism for emergence and decay. To
quantify ensemble clustering at a given time, we introduce a metric, which we
denominate it clustering degree (CD). Through analysis and experiments, we show
advantages and disadvantages in both traditional EnSRFs and those that include random
rotations to avoid clustering; each assimilation method appeals to different situations and

different requirements.

All our experiments are identical twin experiments using two EnSRFs: the LETKF (Hunt
et al, 2007) that is prone to the ensemble clustering, and the Mean Preserving Non-
Symmetric LETKF (MPNS-LETKF), which we develop in the next subsection. The
methods are compared through the background (i.e., forecast) and analysis RMSE, the
higher order moment of the ensemble with sample skewness as defined in the appendix of

Lawson and Hansen (2004), and the time evolution of the CD.

4.1 Generating mean-preserving non-symmetric solutions of ETKF

As mentioned before, ETKF is a post-multiplicative scheme such that X* = X"W?. In
this subsection we show a simple way construct non-symmetric solutions that preserve a
zero mean. First, recall the one-sided ETKF (Bishop et al., 2001), which uses the

following matrix of weights:

W Sigea = C(I + 1_‘)_]/2 (66)

where the matrices C and I' come from the eigenvalue decomposition:
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YPTR1Y®
M —1

CIrc'=

The covariance in ensemble space is:

E)a = Wla—sided (Wla—sided )T = C(I + F)_lCT (67)

This scheme, however, does not preserve a mean zero for the analysis ensemble of
perturbations, i.e. if 1e R™ and 0eR" then in general:

X2 gl=C(1+T) 120

The equality is fulfilled in very restricted cases (Livings et al., 2008). An alternative to
the one-sided ETKF is the spherical simplex ETKF (Wang et al., 2004), which is
equivalent to the Local ETKF (Hunt et al., 2007) with no localization. This scheme uses a

‘symmetric’ form for the matrix of weights:
w2 =c(l+1)¥’C” (68)

sym

Since C is an orthonormal matrix, the covariance in ensemble space is the same as the

one obtained with the one-sided ETKF:

P =w2 (W2, ) =c(l+r)y**c"c(l+r)**Cc” =c(1+T)*C" (69)

sym sym

Moreover, this formulation guarantees the preservation of the zero mean, i.e.:

X2 1=Cc(l+T)¥’C"1=0

sym
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A general ‘non-symmetric’ ETKF can be written as

W2 =C(1+T)™"?sT (70)

where S must be orthonormal (to preserve the prescribed covariance) and guarantee that:

X2 1=XC(l+T)¥’s™1=0.

This occurs as long as S contains the column 1 as an eigenvector. Instructions to

construct this matrix as well as a proof of the claim are listed next:

a) Generate a matrix with random entries G- [gl,gz,--',gM ]e RM

b) Compute a matrix of perturbations G = [g1 -0,0, 0,0y —g], where g =M 1G1.

By construction G1=0.

c) Perform the eigenvalue decomposition of the matrix G'G =SAS'. Since G'G is

symmetric (and therefore normal), S has orthonormal columns, i.e.STS=SS" =1.

Moreover, all the eigenvalues in A are nonnegative.

d) Sort the eigenvalues by magnitude, and order the eigenvectors in S correspondingly.

Since G e R™M and G1=0, 4,, =0 and s,, =M ¥?1. The elements of A and S are:
A:diag([ﬂi’lz""’imfl’o])v S:[51152,"',31\4,1,'\/'7]/21].
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Now let’s prove that the solution preserves the zero mean. First, we perform the

operation:

X2 1=X"C(1+T) " [sT 7 .57, ;,M Y17 [ = X°C(1 + T) **[0,0,---,0,M**]" (71)

To proceed any further, we have to consider the structure of C and I'. Since

YbTR’le/(M —1) is symmetric (hence normal), the columns of C are orthonormal and

the eigenvalues of T" are nonnegative. Two cases arise:

Case 1: M < N. This is the most common case in practice, and also the one for the proof

is simpler. If we sort the eigenvalues of I' by magnitude and the columns of C

correspondingly, then we have that y,, =0 and ¢,, =M ¥21. Therefore:

@+r)™ 0 0
vz
xaa=xl om0 BT Vg e
0 0 e 1

If we perform operations we find that:

X2 1=X[sT,sT, 8% ..M 217 ]0,0,---,0, M¥? [ =X*1=0 (72)

Case 2 M > N.. It is unusual in practice to have more ensemble members than variables.
This is the case, nonetheless, of our experiments with the univariate quadratic model. For

this case the last M — N eigenvalues in I' will be zero, but we cannot say much about
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the corresponding eigenvectors, only that they are not orthogonal to the vector 1 (hence

we cannot apply the procedure used in the other case). We can write:

@) 0 e
2oL
x21=x°T sl st ] O Lera)™ °  loo.-om¥T
0 0 R (W
And performing the operations we have:
M T
X31= xbc{o,o,..., } (73)
1+

At this point we focus on the structure of X® e R™™ | Its singular value decomposition is
X*=UxZV" where UeR"™, VeR"™M and TeRV™ is a rectangular diagonal

matrix. Taking this into consideration, we find:

YbTR—le B o7 HTR—lH Xb :VZTUT HTR—lH

N N (=) ™M1

CIrc'= uxv’

Therefore, C=V and T'=X"U"H'R*HUZX /(M —1). With this in mind:

i
X'“n‘51:U)2CTC[O,O,...,(1+7/M)_]/ZMM]T=UZ{O,0,..., M } (74)
1+yy

Since e R™™ is a rectangular diagonal matrix and M > N, the last M —N rows are

columns of zeros. Therefore, the product Z[O,O,...,(1+7M)’1/2M”2]T:Oeﬂ%N.

Therefore

.
XileE%qu M } =U0=0 (75)
1+
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This concludes the proof for the two cases.

When localization is used, we may need to rotate the symmetric solution of the ETKF

(section 4.4), namely to have a transformation matrix of the form:

W =wW2 8T =C(1+1)"°CS” (76)

S e RM*M obviously needs to be orthogonal and we also require ST1=1. An easy way
to construct this matrix is the following (based on Sakov and Oke (2008b) and Horn and

Johnson (1985)):

S= SF O}ST (77)

Where S e R™™ and T e R™M M are constructed as indicated in the steps (a)-(d) of

this appendix.

4.2. Metric for ensemble clustering and experimental setup

Starting with a univariate ensemble, we define clustering degree (CD) as:

2
cp =M (78)
Owm

The denominator of (78) is the variance of the M-member ensemble, while the numerator
is the variance of the M-1-member ensemble that remains after removing the outermost
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member of the original. By this definition, CD spans from zero to one. If ensemble
clustering is present, most of the variance comes from the outermost member and hence
CD will tend towards zero. The time evolution of this metric for an unclustered ensemble
will vary around a mean value which depends upon M, so that an accurate interpretation

of this metric is restricted in identifying clustering.

For a multidimensional case, this metric can be generalized to:

D- Trace(PM _1)
Trace\R,

(79)

The denominator is the trace of the M-member ensemble covariance matrix, while the
numerator is the trace of the M-1-member ensemble covariance matrix after removing the
outermost member. Equation (79) is adequate in the multidimensional case only when the
variables have the same units. If this is not the case, one can use a proper norm (e.g. an
energy norm) when summing the variances, or one can perform the analysis separately

for different sets of variables.

4.3. Ensemble clustering in a simple nonlinear model
We start from a simple model to explain the mechanisms that set in and reverse
clustering. Following Anderson (2010), we consider the univariate quadratic ODE

dx/dt = x+b|x|x. A prediction model based on the Euler forward discretization of this
ODE is:

Xy =% +Ax +b[x[x) (80)
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where A=0.05 is the time step. This model exhibits the desirable nonlinear expansion
described in the previous section through the nonlinear coefficient b. The system

described by (80) has an unstable fixed point at the origin, which we use as the truth, i.e.,

:X*

0. Observations are made every 2 model steps unless otherwise noted, by
adding a random noise term ~ N(O,l). We assimilate every time we observe. We vary the
ensemble size, M ={10,20,100} and the nonlinearity coefficient, be[0,0.2], where
Anderson (2010) used b=0.2 . The members of the initial ensemble are drawn

uniformly from the interval [-11] .

Figure 30 shows the time evolution of the analysis ensemble for the case 5 =0.1 and
M =10 with LETKF (panel (a)) and MPNS-ETKF (panel (b)). Panel (c) illustrates the
application of CD: for LETKF, CD smoothly decreases towards zero, while for MPNS-

ETKF it changes abruptly at every analysis, but the variation remains around the mean.
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Figure 30. Data assimilation experiment with the model X,,, = X, +0.05(x, + b|xt|xt),

the clustering degree for both filters.
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observations every 2 model steps, and M =10. For panels (a)-(c) b=0.2. LETKF (a) presents
ensemble clustering soon after 5 time units while the MPNS-ETKF (b) doesn’t. In (¢) we quantify

Then we study how the combinations of different ensemble sizes M and degrees of
nonlinearity b affect the appearance of clustering; this is shown in the next figure.
Clustering occurs for the LETKF for any b>0; it emergence occurs earlier as b
increases. The clustering tends occur more gradually for smaller M and more abruptly for

larger M. In all cases the ensembles seem to collapse at the same time that depends solely




ETKF for the model X, 1=xt+0.05*(xt+b*xt2)
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Figure 31. Data assimilation experiment with the model x,., = X, +0.05(x, +b|xx, ). The
clustering degree is measured for LETKF different ensemble sizes and values of b.

So far our experiments have shown that clustering does not arise when using MPNS-
ETKF. To illustrate why this non-symmetric formulation prevents EC, we depict the
update process of both filters from background to analysis for each one of the M =10
members in the figure 32. To accelerate the emergence of clustering we take observations
every 5 model steps and b =0.2. For LETKF (top panel), the analysis ensemble is chosen
to be as close as possible to the background ensemble (Ott et al., 2004). Therefore, any
deformation introduced by the nonlinear expansion in the forecast will remain in the
analysis; the separation of the outliner member from the cluster cannot be stopped once it
starts. By contrast, MPNS-ETKF (bottom panel) effectively erases any deformation

occurred during the forecast via a constrained resampling at each analysis.
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ETKF, b=0.2, M=10, observations every 5 time steps
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Figure 32. Update mechanisms for LETKF and MPNS-ETKF for the individual ensemble
members, with the red dots indicating the observation value. LETKF preserves the structure from
the background ensemble into the analysis ensemble. The MPNS-ETKEF effectively scrambles the

ensemble every time an assimilation occurs. The model is X,,; = X, +0.05(x, + b|xt|xt), b=0.2,

observations every 5 model steps, and M =10.

The verification of the truth with respect to the analysis ensemble was computed for both
methods. This information is presented in figure 33: the blue line represents the evolution
of CD (measured in the left axis) with respect to time, and the green asterisks represent
the position of the truth (measured in the right axis) within the ensemble for different
times. As shown in this figure, for LETKF the truth very often falls either outside the
ensemble or between the outlier and the cluster. For MPNS-ETKEF the truth is statistically
undistinguishable for the ensemble, leading to flat rank histograms (not shown). Both
methods, however, estimate very similar analysis means, leading to indistinguishable

performances in terms of RMSE. Nonetheless, an important aspect is that for LETKF one
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can trace individual ensemble trajectories to the past (this is one of the benefits of
EnSRFs pointed out by Anderson 2001), but for MPNS-ETKEF the information about the
individual trajectories is lost every time at every assimilation. This is shown in figure 34.
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Figure 33. Clustering degree (left axis) and position of the truth within the ensemble (right axis)
for LETKF and MPNS-ETKF for the individual ensemble members.

LETKF M=10b=0.15 MPNS-ETKF M=10 b=0.15
3 T 3 :
— truth —truth
* observations * observations
background/analysis background/analysis

15 2

Figure 34. Data assimilation with the simple univariate model. When using LETKF (left) one can
follow individual trajectories for the ensemble members. This ability is lost when using
MPNS_ETKEF (right) since the ensemble is ‘rebooted’ every time assimilation is performed.
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The experiments presented so far seem to suggest that once the clustering sets in, it is
irreversible and can imply a major obstacle for an EnSRF. It is crucial to realize that
nonlinearity is kept constant by keeping b fixed using the simple univariate model (80);
in higher-dimensional models, however, nonlinearity is spatially and temporally variable
as the trajectory may visit different regions of the phase space. In the reminder of this
chapter, we demonstrate that this variability of the nonlinearity can help revert the

clustering and thus the clustering is a transient phenomenon.

To introduce the variability of nonlinearity in (80), we let b change every T model time

steps, where T comes from a uniform distribution ~U(T,,2T, ). Every time a ‘cycle’ of

length 7 completes, a new b is drawn from N(0,0.l). Hence, forecast model dynamics
experience different dynamical regimes for ensemble spread near the truth: unstable

expansion (b >0) or stable contraction (b <0). Dynamics is quasi linear for |b| ~0,and

~95% of the cycles have |b| <0.2.
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Figure 35. Assimilation experiments with the model X,,, = X, +0.05(x, + b|xt|xt). We allow the

nonlinear coefficient b, to vary as a piece-wise function of time (green line, right vertical axes).
The clustering degree is represented by the black line and left vertical axes. The time intervals in
which by is fixed are different for each panels. Panel (e) shows the ensemble evolution for the

time interval t € [600,850] of case (b); the reattachment of the outlier occurs in a natural way.

In panels (a)-(d) of figure 35 we show the time evolution of b in gray line (right vertical
axis) along with the clustering degree (CD) of the LETKF in black line (left vertical axis)

for the interval t [200,900]. We show the results for the cases T, = {50,100,500,1000}

model steps in these panels. By introducing the variability in nonlinearity of the forecast
model, the LETKF no longer suffers from irreversible clustering. In panel (b), around
t ~200 clustering sets in due to large positive values of b. Clustering persists until

t ~ 600 but decays as the outlier returns to the rest of the ensemble as shown in panel (e).

In this simple model, clustering can persistent over a long period although introduction of
the artificial variability in nonlinearity eventually resolves the clustering. In higher-
dimensional model with natural variability in nonlinearity, the clustering is less persistent

as we demonstrate in the next sections.
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4.3 Localization aspects of the MPNS-LETKF

As discussed in previous sections R-localization (Hunt et al., 2007) is a natural choice for
post-multiplicative EnSRFs. In this scheme, an independent analysis is carried out for
every single grid point using observations within a certain distance, and assuming that the
observation error increases with the distance to the grid point (see Greybush et al., 2011
for details). For stability in the model forecast, it is important that the analyses obtained
in neighboring grid points vary smoothly. This was one of the reasons behind the

symmetric square root used in the LETKF (Hunt et al., 2007).

The smoothness among grid points in the analysis is not guaranteed automatically by
MPNS-ETKF. We perform a simple assimilation experiment with the 40-variable L96
model to illustrate that this method cannot be applied directly with R-localization and that

it requires some additional steps.

With R-localization, the filter independently calculates a local matrix of weights

a
VVIoca

, € R M for each one of the N =40 gridpoints, as illustrated schematically in the

next figure:
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Figure 36. Schematic depicting the effect of R-localization in the LETKF. Each grid-point has its
own matrix of weights; a smooth transition among these weights is indispensable to ensure
stability.

For illustration purposes, we select gridpoint 12 (the result is valid for all gridpoints) and
calculate the correlation of each one of its M* =10 weights with respect to the weights
from the all the other gridpoints. Figure 37 shows these correlations for LETKF (black
line, left vertical axis) and MPNS-ETKF (gray line, right vertical axis). The difference is
evident: while the correlation obtained by LETKF varies smoothly and with values very
close to unity, for MPNS-ETKF this curve varies sharply and in general has small

correlation values. As expected, we observe filter divergence when using this method.
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Correlation between the local weights of gridpoint 12 and the other gridpoints
1 T \ T \ T T \ \ \ T \ T 1

075
05
'8
4
7 lu
= 099 025
H z
o
=
o
025
0.98 | | | | | | | | | | | | | | | | 05

| | | |
1 3 5 7 9 11 13 15 17 18 21 23 25 27 29 31 33 35 37 39
gridpoint

Figure 37. Correlation between the analysis weights of gridpoint 12 with respect to the weights in
neighboring gridpoints for the L96 model. For LETKF (black line, left vertical axis) the
correlation values are high and they present a smooth transition. For MPNS-ETKF (gray line,
right vertical axis), the transition is not smooth and the correlation values are low. MPNS-ETKF
cannot be directly applied with R-localization.

Random rotations can still be applied in this case. Using R-localization implies building
X® by sets of rows at a time, the size of each set corresponding to the number of
variables in every gridpoint. Once X*® is completely calculated from local symmetric

analyses (i.e., using LETKEF), it can be globally rotated. This version of the MPNS-ETKF

has no problems of divergence and can benefit from the ensemble resampling.
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4.4. Experiments

We now proceed to perform experiments with larger dimensional models, first with L63

and then with SPEEDY.

4.3.1 Experiments with the Lorenz 1963 model

Focuses of this section are the effect of the ensemble size M with respect to the model
dimension N as well as that of linear and nonlinear dynamics on the background

ensemble spread in the forecast. In these experiments, we use ensemble sizes

M ={310,20}. For M =3 with the rank-deficient background covariances Py and Py.1 in

(79) M-1<N, multiplicative covariance inflation Xb—>Xb(l+5) is applied with

0=0.04 for the short assimilation window and 6=0.4 for the long assimilation
window. These values are close to the optimal values obtained in Kalnay et al. (2007)
and those obtained in the experiments in the chapter 3 of this work. As in section 3.3.1,
two types of observing system are used: one with a short assimilation window using
frequent observations at every 8 model steps and the other with a longer window sing
infrequent observations at every 24 model steps. The short and long assimilation
windows respectively correspond to the linear and nonlinear regimes for ensemble spread

in the mode forecast (Kalnay et al., 2007).

Figure 38 shows the CD for the t € [15251550]. The top row illustrates the cases for the

linear regime, while the bottom row represents the cases within the nonlinear regime. For
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M =3 (left column), we observe very rapid variations in the CD for both LETKF (black
line) and MPNS-ETKEF (gray line). This is natural, since the sample size is rather small.
Still some instances of clustering (e.g. t ~1548 in the nonlinear regime) emerge in the
nonlinear regime for LETKF. With larger ensemble sizes there is a clear difference in the
CD between LETKF and MPNS-ETKF. For MPNS-ETKEF it varies abruptly (but around
a mean value) every time the assimilation is performed, but the variation is smaller as the
ensemble size increases. For LETKF the variations in the CD are slower and smoother;
CD can reach low values in both the linear and nonlinear regimes, but it does so more
often in the nonlinear regime. There are no cases of irreversible collapse of the ensemble;
when clustering occurs it is only transient and not as persistent as with the simple

quadratic model.
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Figure 38. Time evolution of the ensemble clustering degree for LETKF (black solid line) and

MPNS-ETKF (green dashed line) from an assimilation experiment with the L63 model. Three

ensemble sizes (columns) are used in a linear regime (top row) and a nonlinear regime (bottom
row).
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Figure 39 deals in more detail with the nonlinear regime case with M =20 using

LETKF. Instances of set in and reversal of clustering can be identified. The top panel
shows the CD evolution for a longer time period t €[165,200]. There is an indication of

clustering around t=190. The three panels in the bottom row of this figure show the
trajectories for the truth (black line) and the analysis ensemble members (gray lines) at
three different instants with different CD values. The middle panels shows the case with
clustering, being evident in what seems to be a two member ensemble. This, however,
does not prevent the ensemble to revert the clustering afterwards. We find many episodes

like this in the time evolution of the ensemble.

Clustering degree for L63 using ETKF M=10, R=2I, obs every 24 model steps
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Figure 39. Experiments with L63, observations every 24 model steps and M=3. The evolution of
the clustering degree is shown in the top. Snapshots of the phase space are presented for three
time intervals with contrasting CD values, the one in the middle shows clustering occurring.

Why is clustering less persistent in this model? In the univariate quadratic model,
clustering occurs and decays with the varying magnitude of the nonlinear expansion and

contraction of the ensemble spread. In higher dimensional models, not only the
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magnitude but also the direction changes temporally and spatially. A way to study the
characteristics in the local perturbation growth is by using bred vectors (Toth and Kalnay,
1997). Evans et al. (2004) applied this technique in the Lorenz 1963 model and showed
different magnitudes of growth for different regions of the attractor. In figure 41 we
reproduce one of their main results. In the left panel, the attractor is depicted in phase
space, the color represent the magnitude of the bred vector growth (the breeding time is 8
model steps). Dark blue represent negative values, i.e. quiescent regions where
perturbations tend to vanish. All the other colors represent regions with positive growth,
in particular the red color is associated with a strong growth of perturbations. Hence, as
the trajectory travels by different regions of the attractor, it indeed feels changes in the
magnitude and sign of growth (both linear and nonlinear). The right panels in this figure
show the time evolution for the three variables. As stated in Evans et al (2004), the
largest bred vector growth occurs near regime transitions. Zhang et al. (2012) have

recently extended this study and have illustrated the change in direction as well.
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Figure 40. Bred vector growth rate in the Lorenz 1963 attractor. In the left panel, a picture of the
attractor in phase space is shown. In the right three panels, the time evolution of each variable is
shown colored by growth rate (reproduced from Evans et al, 2004).
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We have presented study cases of particular instances in our experiments. A more robust
statistical summary is performed now for both LETKF and MPNS-ETKEF in the linear
and nonlinear regimes and with different ensemble sizes; the results come from a run of
10° model steps after a short transient. Figure 41 shows statistical measures of both filters
for the linear (left column) and nonlinear (right column) regimes, with boxplots for CD
(top row), and analysis RMSE (right column) for the three ensemble sizes. The black dots
accompanying the boxplots represent the mean for each metric; these values are also
displayed in the figure. For a small ensemble size, performance of the LETKF and
MPNS-ETKEF is practically the same. For a larger ensemble size differences arise. The
LETKF in general presents smaller CD values, a sign that it is more prone to clustering.
For the linear regime, both for the background and analysis RMSEs have a similar
distribution with little difference in the mean for the two EnSRFs. For the nonlinear
regime, the MPNS-ETKEF exhibits less outliers in the ensemble spread, leading to smaller
mean RMSE, especially for the case M =20. This is consistent with the finding by
Anderson (2010) that the mean analysis RMSE of the EAKF increased for the larger
ensemble size. One can hypothesize whether there is a relationship between the mean CD
value in the forecast and the analysis RMSE in the assimilation at the end of that window.
One could think, for example, that having a low CD value is unequivocal sign of an
‘unhealthy’ ensemble and that this will lead to get a large analysis RMSE. Performing a
scatter plot between CD and RMSE (both for background and analysis) we don’t find any

such relationship (not shown).
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Figure 41. Boxplots for CD (top row) and analysis RMSE (bottom row) for both LETKF and
MPNS-ETKEF in the linear (left column) and nonlinear (right columns) regimes. Results are
shown for three different ensemble sizes.

Finally, figure 42 presents the rank histograms for the verification of the truth with
respect to the analysis ensemble for variable Xt (the results are the same for the three
variables). For M = 3 there is no difference between the EnSRFs: all ensembles are over-
dispersive. This may be a result of the use of inflation. For M =20, the LETKF has a U-
shaped histograms, especially in the nonlinear regime. Using MPNS-ETKF, on the other
hand, produces flat rank histograms; a similar behavior is observed with M =10 (not

shown).
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Figure 42. Rank histograms for the verification of the truth with respect to the analysis ensemble
in the Lorenz 1963 model. Two different ensemble sizes are used in the linear and nonlinear
regimes.

The results in this section show that MPNS-ETKF has a better performance in the
nonlinear regime when M>N, and this difference is more evident as M grows. In practical
applications, however, usually M<<N and techniques such as localization and covariance
inflation are needed to compensate for the limited ensemble size. This is the focus of the

next subsection.

4.3.2. Experiments with SPEEDY

As for the ETKBF experiments, the nature run for our experiments starts after a one-year
spin-up from state of rest and lasts two month (January and February). Both EnSRFs use
an ensemble of M=20. The R-localization parameters are A =500km in the horizontal
and A, =0.1In p in the vertical. We use the adaptive multiplicative covariance inflation
(Miyoshi, 2011). In figure 43, we compute we compute two latitude-weighted metrics —

analysis® RMSE (left half of the figure) and sample skewness for the analysis ensemble

& Computing the metrics for the background ensemble lead to identical results; these are not presented.
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(right half of the figure)- for the variables {u,v,T,q, z} (one per row) at each vertical

level (one per column). The mean value of the metric is indicated with a dot and the bars

represent one standard deviation.
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Figure 43. Latitude weighted analysis RMSE (left) and analysis skewness (right) for all variables

computed globally. The bars represent one standard deviation of the metric around its mean. ET
denotes LETKF and NS denotes MPNS-ETKF.

In terms of analysis RMSE, there is no perceivable difference in the performance of
LETKF vs. MPNS-ETKEF. In terms of skewness, we have different results for different
variables. No noticeable (or very little) difference in skewness or RMSE values is
observed for the variables {u,v,z} for any vertical level. The variables {T,q} do present
differences for skewness, although the RMSE is indistinguishable. The skewness for

these variables is less noticeable in the NH.

The metrics are now recomputed independently for each region of the world: NH (25N-

75N), tropics (25S-25N) and SH (75S-25S). Figures 44-48 present the results for zonal
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wind, meridional wind and geopotential height, i.e. those variables for which no skewed

ensembles result from either method (at least globally).
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Figure 44. Latitude weighted analysis RMSE (left) and analysis skewness (right) for zonal wind
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represent one standard deviation of the metric around its mean. ET denotes LETKF and NS
denotes MPNS-ETKF.
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Figure 46. Latitude weighted analysis RMSE (left) and analysis skewness (right) for geopotential
height computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The
bars represent one standard deviation of the metric around its mean. ET denotes LETKF and NS
denotes MPNS-ETKF.

After computing the metrics per region, we observe that LETKF leads to asymetric
ensembles in the tropics for u and in the SH for v and z. We now compute the regional
metrics for T and q in figures 42 and 43. We observe that for T, LETKF tends to create
asymetric ensembles in the tropics and in the SH. For g, this behavior can arise anywhere.

Nonetheless, this is not reflected in the RMSE.
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Figure 47. Latitude weighted analysis RMSE (left) and analysis skewness (right) for relative
hummidity computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model.
The bars represent one standard deviation of the metric around its mean. ET denotes LETKF and
NS denotes MPNS-ETKEF.
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Figure 48. Latitude weighted analysis RMSE (left) and analysis skewness (right) for temperature
computed per region (rows) for 3 vertical levels (columns) in the SPEEDY model. The bars
represent one standard deviation of the metric around its mean. ET denotes LETKF and NS

denotes MPNS-ETKF.

For most variables, LETKF tends to create asymmetric ensembles in the tropics and the

SH. These are poorly observed regions in which nonlinear behavior can arise.
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Nonetheless, in spite of these non-Gaussian ensembles, the analysis RMSE values show
no difference between the two assimilation methods. The only variable with a different
behavior is ¢g; for this variable EC appears even in well-observed regions (NH).
However, this variable is subject to nonlinear processes not represented explicitly in the
model, but through parameterizations. Nonetheless, there were no specific cases in which

one could observe clustering in SPEEDY .

We plot rank histograms for the verification of the truth with respect to the analysis
ensemble for the variables at different pressure levels and for different regions. In
particular, in the next figure we present this for temperature at 510hPa in the NH. We do
not observe differences between the two methods, both lead to under-dispersive
ensembles. This is a common feature for all variables.

10" T at510 hPa

12

10 .

S

2 - v—-,____-____-____ ________.._-—" .

0 | 1 | | | 1 1 | 1 | | | 1 1 | 1 | | | 1 1
1234567 8 9101112131415161718192021
position of the truth with respect to the analysis ensemble

Figure 49. Verification of the truth with respect to the analysis ensemble mean for temperature at
510 hPa in the NH. The black line comes from the use of LETKF and the green line from the use
of MPNS-ETKF.
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5. The effects of the RAW filter on the climatology and forecast
skill of the SPEEDY model

Numerical weather prediction involves the numerical time integration of prognostic
equations describing the behavior of the atmosphere. A widely used option in
contemporary models of the atmosphere and ocean is a centered time-stepping scheme
known as the leapfrog, specifically the Robert-Asselin (RA) filtered version. This
popularity is mainly due to three factors: the ease of implementation, the low
computational expense (only one evaluation of the model’s tendency is needed per time
step), and the low run-time storage requirements. The most serious problem associated
with the leapfrog scheme is the “time splitting” instability associated with the creation of
a spurious computational mode. The RA filter provides a considerable amelioration of
this problem. The application of this filter, however, while damping the computational
mode, can also have the undesired effect of significantly damping the physical mode of
the solution, hence degrading its accuracy. In recent work, Williams (2009) introduced a
simple modification to the RA filter, with the objective of improving its performance
while avoiding its associated problems; the modification will hereafter be referred to as

the Robert-Asselin-Williams (RAW) filter.

In this chapter, the RAW filter is implemented and tested in the SPEEDY model
(Molteni, 2003). Furthermore, we examine whether the use of the RAW filter changes
either the climatology or the skill of weather forecasts, or both. For the first objective, we

calculate the local and field significance following Livezey and Chen (1983). For the
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second objective, we compute deterministic forecasts and assess the performance using

base data from the NCEP reanalysis (Kalnay et al., 1996).

5.1. The Robert-Asselin-Williams (RAW) filter

The centered discretization scheme known as the leapfrog is implemented as follows:

% =F(x) = X, =X_,+2At-F(x,) (81)

The leapfrog scheme is a widely used numerical integration method, in particular for
hyperbolic equations and complex models. There are two main reasons for this. First,
being a centered scheme, it is reasonably accurate and has an error of order O(At)’.
Second, it requires only one computation of the time derivative per time step, and is
therefore reasonably computationally efficient. A schematic of its design is presented in

the following figure.

2A1

Figure 50. Schematic for the leapfrog integration method. Successive integrations are shown with
an alternation of pink and blue colors. Only the first integration is an extrapolation, the rest are
centered integrations.
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The leapfrog scheme, however, introduces into the solution of the equation a spurious
computational mode besides the actual physical mode (e.g. Kalnay 2003). This undesired
mode manifests itself in nonlinear integrations as a spurious, growing oscillation between
even and odd time steps. In figure 51 we present the evolution of the 510hPa geopotential
height above College Park, MD, using the SPEEDY model. The black line represents the
leapfrog integration without any filtering. The appearance of the computational mode is
evident since early stages; the bottom panel shows the spurious oscillations after 8 days
of integration. The growth of these unphysical modes leads to very rapid variations of the
function after a little over a month of integration. The function loses its smoothness

progressively and this leads eventually to ‘computational blowup’.

Several approaches have been proposed to combat the growth of the computational mode;
the most widely used is the Robert-Asselin (RA) filter. This filter was introduced by
Robert (1966) and was shown by Asselin (1972) to suppress the computational mode
while leaving the physical mode untouched for low frequencies with long periods
compared to the time step, Az. The RA filter is implemented in leapfrog integrations as

follows:

X, = Xna1 +2At-F(x, )

1% (82)
Xn =X, +E[x

—2X, + xn,l]

n+1

The smoothing parameter v in equation is usually chosen to be O(0.01—0.2). The

choice of this parameter is important: if its value is too small it can hardly manage to

dampen the computational mode, but if it is too large it can lead to loss of accuracy in the
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solution. In his original analysis, Asselin (1972) studied values up to v=0.2. For
atmospheric models, Durran (1991) notes that values of v =0.12 are typically used in the
NCAR community (Williamson, 1983); Déque and Cariolle (1986) consider values as
high as v =0.2 and so does the GFDL-MOM model. For oceanic models Khanta and

Clayson (2000) recommend values between v =0.1 and v =0.3.

In figure 51, the RA-filtered leapfrog is represented with the red line; it is evident that the
spurious gravity waves are damped satisfactorily. Although the RA filter is widely used
in operational and research models of the atmosphere and ocean (Williams, 2009), it has
two related problems. First, besides damping the computational mode, the filter also
weakly damps the physical mode, especially at high frequencies. This damping may
become important for long integrations. Second, the RA filter degrades the accuracy of
the unadulterated leapfrog scheme, since, by being un-centered in time, the RA-filtered

leapfrog is only first-order accurate.

In order to ameliorate the negative effects that the RA filter has on the physical solution
of the model, Williams (2009) introduced a modification that we hereafter refer to as the
Robert-Asselin-Williams (RAW) filter. The original RA filter reduces, by a factor of
(1—v), the magnitude of the temporal curvature of the state, and it is this smoothing
effect that damps the computational mode. However, the filtering also changes the mean

value of the state, averaged over the three time levels:

Xpiy + X + X0t Xpg +Xn + X0t
3 3

M = (83)
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Figure 51. Time evolution of the 510hPa-geopotential height over College Park, MD using the
SPEEDY model. The integration is performed using the leapfrog scheme using no filter (black
line), the RA filter (red line) and the RAW filter (blue line).The appearance of spurious
computational waves in the unfiltered integration occurs quickly (bottom panel) and leads to the

loss of smoothness in the solution after a little over a month (top panel).
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Williams (2009) showed that, when used with the leapfrog scheme, it is this non-mean-
conserving feature of the filter that degrades the numerical accuracy. In the same work,
the author tackled this problem by introducing an extra step in the filtering process, in
order to include the possibility of conserving the mean value. The resulting RAW filter is

implemented in leapfrog integrations as follows:

Xpi1 =)=(n71 + 2At - F()_(n)

)_(n :)_(n +%[Xn+l—2)—(n +)=(n1} (84)

)_(n+l = X1 —V(lT_a)[Xm_l —2)_(n +)=(nlj|

In figure 51, the RAW-filtered leapfrog integration is represented with the blue line. Like
the RA filter, the computational mode is damped satisfactorily. The RAW filter
introduces an extra operation which is simple and doesn’t represent a considerable

computational expense with respect to the RA filter. It also introduces a new parameter,
. I . dF . -

a €[0,1]. Taking an un-damped oscillation equation o iwF , Williams (2009) found

the amplification relationship for the RAW filter to be:

Ai(a, v, a)At) = %+ {1— @}iaﬂt

iJ@—%T—P—ﬂ%;ﬁy@mﬁ+v@—gkfaﬁ@u

(85)

In this amplification relation , At corresponds to the time step of the numerical solution
of the equation. The next figure (taken from Williams, 2009) illustrates the behavior of

equation —for a fixed value of v (taken to be 0.2)- with respect to wAt .
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Figure 52. The impacts of different values of the parameter & of the RAW filter on the
numerical amplification of an unforced, undamped wave; taken from Williams (2009). The value
of o =1 corresponds to the original RA filter. The value of a =0.53 is a preferred choice,
since it keeps the amplification close to its exact value (unity) over a broad frequency range.

Each curve illustrates the effect of a different value of « on the numerical amplification
(or numerical dissipation) of a free wave oscillation, which is physically unforced and
undamped in the time-continuous differential equation. A value of « =1 corresponds to
the traditional RA filter. From this figure we can see that, for a value of « =0.53 one can
minimize the spurious, numerical impacts on the physical solution and obtain the closest

match to the exact solution over a broad frequency range.

In Williams (2009), the RAW filter was tested in a simple linear system representing
harmonic inertial oscillations. For this model, an explicit analytical solution exists and

therefore it is easy to visualize and compare the effects of both the RA filter and the
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RAW filter in the numerical solution of the model. In this work we implement and test
the RAW filter in a more realistic atmospheric model, the SPEEDY model described in

section 2.2.3.

We have been using figure 52 to illustrate the effectiveness of the RA and RAW filter in
suppressing the unphysical modes for a variable of this model. One can appreciate that
the RA- and RAW-filtered integrations differ after around 13 days even when they
started from the same initial conditions. This is understandable since the model is chaotic,
so the chance in integration scheme will cause the divergence of trajectories eventually.
So, in order to assess the true impact of upgrading the RA filter to the RAW filter, we
will have to assess if there are changes in the climatology of the model, and whether

forecasts coming from RAW-filtered integrations are more accurate.

5.2. Effects of the RAW filter on the climatology of the SPEEDY model

Since we are interested in possible changes to the climatology of the model, in this
section we consider relatively long time averages for our variables. In order to strike a
balance between retaining long averages and avoiding the effects of seasonality, we
choose to focus on monthly averages. We will take the variables separately at each of the
seven pressure levels For example, we will consider the mean 510hPa geopotential height

for March, denoted z510,_ ., and the mean 200hPa temperature for September, denoted

mar !

T200,,. Surface pressure and precipitation are two-dimensional fields without vertical

dependence. Taking into consideration the previous specifications, we will have 37

variables for each month of the year, giving 444 variables in total.
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For each one of the 444 variables, we will look for differences between the climatology

generated by the RAW filter and the climatology generated by the RA filter. Hence, we

can write our null hypothesis as X, .mra = Xmontnraw aNd our alternative hypothesis as

Xmonthra # Xmontraw »+ WHere the second subscript indicates the time-stepping method by

which the variable was generated.

To generate our climatology, we run the model for N ... =8 years, and for each filter

years
scheme separately. For each year we compute the monthly means. Since the value of the
temporal autocorrelation of the monthly means from one year to the next is very low, it is
acceptable to neglect it when computing the statistics. If our variables were daily values
instead of monthly averages, then we would surely need to consider this temporal
autocorrelation and use a more suitable method, such as the moving blocks bootstrap

proposed by Elmore et al. (2006).

5.2.1. Local significance

It is important to distinguish between local variations and field variations. For the former
case, we test the null hypothesis for each variable at each vertical level and at each point
on the 96 by 48 grid. The result for each grid point represents the local significance
(Livezey and Chen, 1983). For the latter case, the way in which we take into
consideration the set of results for all the grid points of a variable determines the field

significance (Livezey and Chen, 1983), as described in the following subsection.
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To test the null hypothesis in the local context, we perform the Satterthwaite-Welch (SW)
version of the t-test. This test requires the data to come from normal distributions, allows
small samples, and permits the two groups compared to have different variances. The test

statistic is:

XRA,month — XRaw ,month

tmonth = 2 2
S S
\/ RA,month + RAW ,month

(86)

N N

years years

In the previous equation, X represents the inter-annual mean and s? represents the inter-
annual variance.. The statistic has a t distribution with f degrees of freedom, this number

is calculated as indicated next:

2 §2 2
SRA,month + RAW ,month
N N

£ years . years . (87)
2 2
(SRA,month SRAW ,month
N N
years " years
N years -1 N years 1

This expression for the ‘effective’ number of degrees of freedom is the main difference of

the SW t-test from the standard t-test.
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510hPa z significant differences (5%) RA-RAW under Satterthwaite test

January February March

120/ 4606 182 7 4608 292 14608 * 217 / 4605

September October MNovemnber December

490 / 4608 = 43 /4608 224 7 4608 221 4608

Figure 53. Results of applying the t-test for difference of means in the variables z510 for each
month with a local significance ¢,.,, = 0.05. Under each map we indicate the number of grid

points that resulted locally significant out of the 96x48 grid. One asterisk denotes that the variable
is field significant (& 4,y = 0.05) considering finite sample size, and two asterisks denote that it

is field significant considering both finite sample size and spatial correlation. Only the month of
September is field significant.

We perform the two-tailed version of the SW t-test on all our variables, using a

significance level of «,,, =0.05. (Note our use of a subscript here, to distinguish this

variable name from the un-subscripted « used in equation 4 for the RAW filter.) Figure

53 presents the results for the variable z510 (i.e. the 510hPa geopotential height) for

every month of the year. For the maps shown in this figure, we color in blue the points

with p <0.025 and in pink those with p >0.975. Hence, the pink regions are grid points
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at which the climatology generated by the RAW filter has significantly smaller values
than the climatology generated by the RA filter, while the blue regions are grid points at
which the climatology generated by the RAW filter has significantly larger values than

the climatology generated by the RA filter.

In figure 53 we see no preferred regions for the significant points, but they are instead
scattered around the globe without coherency from one month to the next. This is true not
only for this variable but for the others too (not shown). Moreover, since we are
performing the same test in each grid point, some of the tests can be passed just by
chance. This is called the “multiplicity problem” by Wilks (2005) and can lead to
erroneous conclusions. One has to ask the following question (Livezey and Chen 1983):
What is the minimum number of tests (out of the 96x48) that must be passed in order to

achieve some desired field significance « gy ?

5.2.2. Field significance

As indicated above, one must look at the results together in a ‘field” sense. In order to
obtain this field significance, two effects must be taken into consideration (Livezey and
Chen 1983). The first is finite sample size. We are performing the significance test at
each of the M =96x48 grid points of the model. Each test may be regarded as a
Bernoulli trial with a probability of success equal to the significance of the local t-test,

&, = 0.05. For the moment, let us assume that each of the M trials is independent

from each of the others. Then we can regard the total number of tests passed as a random
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variable from a binomial distribution with a total of M =96x48 trials and an individual

probability of success of «,,.,, =0.05.

The mass probability function and the cumulative probability density function for this

discrete binomial distribution are shown in the next figure:

pdf [discrete] for the number of tests passed cdf for the number of tests passed
N=96%48, p=0.05 N=36%48, p=0.05
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Figure 54. Probability mass function (left) and cumulative probability function (right) for the
binomial distribution representing the total number of local significance tests passed (assuming

independence). For a total of 96x48 tests of local significance «,,.,, = 0.05, at least 255 must be

passed in order to achieve a field significance o,y =0.05.

The distribution is centered on 5% of 96x48 tests, i.e. 230.4 tests. In order to have a field

significance of ¢, =0.05, the minimum number of tests that must be passed
corresponds to the100 x (1— X fierd )’th percentile of this binomial distribution. Therefore, if

we choose the field significance to be «,, =0.05, then at least m, = 255 tests must be
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passed. Let us see how many variables fulfill the requirement to be field significant at the

level a gy, =0.05. For each of the 2+5x7=37 variables and each of the 12 months, the

next table shows the number of points at which the t-test was passed, i.e. the number of

points that were locally significant.

1y u W T

255|39r9 Q50 [ &35 | 685 | 510| 340 | 200 B0) 950 B35 685| 510 340 200 | =0[ 250 [ 835 | 685 | 510| 340| 200] &0
Jan 0f) BB 112 120 190 | 190 [ 305] 138 | 164| 198 ) 221 | 268 | 307 | 351 | 138 | 164 | 198 | 221 | 268 | 307 [ 351
Feb 140 157 203 219 245 | 226 | 198 ] 163 | 173 | 191 | 184 | 199 | 261 | 310 163 | 173 191 | 184 | 199 261 | 310
Nl ar 269 239 | 243 | 265 | 233 | 186 | 127 | 239 | 256 | 274 | 256 | 247 | 213 | 226 | 239 [ 256 | 274 | 256 | 247 | 2153 | 226
Ay 306 319|294 | 268 | 231 | 210 | 198 | 162 | 188 153 | 203 | 213 | 228 | 200 162 [ 188 | 153 | 2053 | 2153 | 238 | 290
Il ay 210 213 217 | 183 | 164 | 146 | 113 ] 240 230 248 | 276 | 280 | 241 | 264 | 240 [ 230 | 248 | 276 | 280 241 | 264
Jun 27 230 231 | 263 | 256 | 267 | 232|264 | 258 | 290 | 301 | 293 | 253 | 242 | 264 [ 258 | 200 | 301 | 293 | 253 | 242
Tl 350 348 | 349 | 402 | 296 | 400| 342| 255 | 259 244 | 245| 230 | 146 | 182|255 (259 | 246 | 245) 230 146 | 182
Aug 328|316 248 | 264 | 351 | 153 116 254 262 245| 208 | 176 | 181 | 214] 254 [262 | 245 | 208 | 176 | 181 ] 214
Sep 346| 383 | 376 | 393|337 |337|297| 248 | 270 | 278|301 | 276 | 243 | 234] 248 [ 270 | 278 | 301 | 276| 243 | 234
Cict 120) 103 ) 113 91| 15 ) 16| 65 1681 192 | 180 141 | 108 83| F1|161)192| 180 | 141 | 108 | 83 71
Mov 276 247 | 55| 266 | 239 | 194 | 154|305 345 314 | 294 | 216 | 185 | 120 | 305 [ 345| 314 | 294 | 216 | 185 ] 180
Dec 122) 106 ) 106 93| 119105 | a1 166 | 174 175) 143 ) 113 74| 55| 166 ) 174 175 143 | 113 | 74| 55
iy i z ps [ prec

255|394 050 B35 | 685 510| 340( 200( 20| 950 835 | 685 | 510| 340) 200| =0

Jan 2021 160 | 135) 126 114) 130) 133 121 ) 103 84 M7[ 153[ 146 | 181 |57 ] 11%

Feb AT | 25T | 248 226 | 180 230 207 | 130 95 90 133 [ 119 88| 4938 ] 195

Ml ar 221 | 188 | 216 | 205 | 202 232 201 | 188 | 180 167 | 175 [ 166 [ 130 &7 [40] 185

Ay 158 ) 149 ) 145 197 | 216 | 198 | 204 231 | 233 | 215 | 205 | 153 ] 125 191 |63 | 263

Ml ay 300) 252 | 274 (339 209 [ 124 119 91| 96| 102 | 120] 150 ) 154) 100 |65 | B84

Tun 288|285 | 315 221 [ 243 [ 179 174 84| 93] 130 [ 182] 194 174 143 |95 | 8O

Tl 247 | 225 (27T | 2585 164 | 170 158 | 175 174 179 | 202 308 163 | 135 |62 | 198

Aug 327|289 | 318|251 [ 165 [ 164| 17a | 241 | 241 | 211 | 217 | 380 348 | 135 |67 | 248

Sep 308|310 | 323| 174 246 [ 182 202 | 361 | 376 | 430 | 490 425| 408|304 | 45 | 349

Cct 154 136 | 135 140 176 | 215| 204 60| 40| 42| 43| 78| 100 88|45 45

Nov 237|200 | 172 125] 181 194 187 | 269 | 280 282 | 224 148 112 | &2 |46 | 261

Dier 136 103 ) 102 94| 175 227 | 157 2 3 2| 23[ 45[ 37| él|as 4

Table 3. For each one of the variables, this table presents the number of grid points (out of 96x48)

that resulted locally significant ¢, = 0.05 after applying the t-test. The variables that result

field significant with a value of «,, =0.05 are presented bolded if they are field significant

considering only finite sample size [and independence], and they are also presented in italics

(besides the bolding) if they are field significant considering both finite sample size and spatial
correlation.
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Considering the finite sample size effect, 119 out of the 444 variables are field
significant. In the table, these variables are bolded. The month with the most field
significant variables is September, with 26 out of 37 variables. There is apparently no

preferred pressure level or variable for the field significance to appear.

Given only the above analysis, we would lean towards concluding that the RAW filter is
indeed changing the climatology of the SPEEDY model for a considerable number of
variables. However, a second effect must be taken into consideration: spatial correlation.
When considering the total number of tests locally passed as a binomial distribution, we
had to assume that the tests were independent from each other. That is, we considered
that the result of a t-test in a given grid point would not affect the result of the test in the
surrounding grid points. We now improve this analysis by replacing the binomial
distribution with a null empiric distribution in which the spatial correlation is embedded.
A way to construct this distribution is Monte Carlo simulation. EImore (2006) describes
how to generate the distribution by correlating random numbers with the data for each

one of the variables for a number of trials. We selected this number of trials to be 1000.

Figure 55 shows the results of generating these empirical distributions for z510

mar !

T200,,, v835 and u950,,,. we generated the empirical distributions only for those

sep ! jul»
variables that had resulted field significant. One can immediately notice that these
empirical distributions are substantially broader than the corresponding binomial

distribution, having considerably heavier tails. For each variable, the shape of the

distribution will be unique, since it contains the particular information of the spatial
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correlation for that variable. They are all, however, expected to present a qualitative
similarity, since there is a common pattern of spatial interdependence for all the
variables. For our purposes (evaluating the field significance of the individual t-tests), we

will be particularly interested in the upper tail of each of the distributions.

As one can see from this figure —and as previously noted by Livezey (1983) and Elmore
(2006) — spatial correlation makes it more difficult to achieve the same level of field
significance. The minimum number of local tests required to be passed is larger than with

the binomial distribution. With the field significance level we had selected, « ., =0.05,

the minimum number of tests that must be passed under independence is 255, whereas for

the empirical distributions, the minimum numbers of tests are considerably larger.

Table 4 shows these numbers for the four variables under consideration. Considering

more than just the four variables in the table, the new minimum number of tests required

to be passed ranges from around 380 to 530.
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Empirical distributions for the local tests passed with local significance of 0.05
The 95 percentile for each distribution is marked with a vertical line.
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Figure 55. Distribution of the total number of local significance tests passed. The binomial
distribution (black line) corresponds to the assumption of field independence. The empirical
distributions (color lines), which consider the spatial correlation, are shown for four variables.
These distributions were constructed via Monte Carlo simulation with 1000 iterations. The
vertical lines indicate the 95th percentile for each distribution. It is noticeable that these values
are substantially higher than the value of 255 (associated with the binomial distribution)
appropriate for the spatially correlated variables.

Variable Minimum number of locally
significant points
Any variable under spatial independence 255
z510,,, 498
T200, 531
V835, 387
u950,,, 380

Table 4. Minimum number of tests (out of 96x48) to be passed with a local significance
.o = 0.05 to achieve a field significance o,y = 0.05.

Let us conservatively consider one of the smallest of these numbers (380) as our
minimum number of local tests required to be passed in order to achieve the field
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significance a,, =0.05, and let us reconsider the results of table 1. After considering

the effect of spatial correlation, only 8 out of the 444 variables are field significant

ata ;e =0.05. That is, only 1.8% of the variables suffered a significant change. These

variables are identified in table 3 with italics (in addition to the previous bolding). This is
clearly a huge reduction from the 119 field significant variables we had obtained under

the assumption of independence.

Hence, considering spatial correlation, we conclude that there is no evidence to support
the hypothesis that the climatology of the SPEEDY model generated by integrating with
the RAW filter is different from that generated by integrating with the RA filter. This is
an advantageous finding, in the sense that the new scheme does not require a retuning of

the parameterized physics.

5.3. Effects of the RAW filter on the skill of short term and medium term
forecasts

Since the climatology of the SPEEDY model is unchanged by the introduction of the new
filter, we can now proceed to answer the question of accuracy: Are solutions obtained

with the RAW filter more accurate than solutions obtained with the RA filter?

In order to assess any possible change in accuracy, we use the Anomaly Correlation
Coefficient (ACC) for h-hour forecasts. This is computated for the month of January

1982. For the analysis data, we use the NCEP Reanalysis dataset interpolated onto the
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SPEEDY grid®. Every 6 hours we take the reanalysis values an initial conditions to
generate h-hour forecasts - h = {24,48...144}-, which are later verified with respect to the

reanalysis values. This is depicted schematically in the following figure:

I
Initial | 1 |
conditions ' , , f——> Truth (reanalysis)

| |
=0 t=241t=48 =72 t=961=120

Figure 56. Schematic depicting the experiment to assess the impact of the RAW filter in the
accuracy forecasts. Starting from an initial condition coming from the NCEP reanalysis, h-hour
forecasts are generated which later are verified using the ACC metric.

The ACC is a measure of the agreement between the spatial variations in the forecast and

the analysis, each with respect to the climatology. The ACC is calculated using
N
Z[( f, —cs; )(ai —CI; )COS O ]

i=1

ACC = ' , (88)

\/EN: [(fi —cs, )’ cos o, ]Zi: [(ai —cr, )’ cos ¢, ]

where f, is the forecast, a, is the analysis, cr; is the climatology of the analysis, cs, is
the climatology of the SPEEDY model, ¢, is the latitude and N is the total number of

grid points for the variable. Note that we use the SPEEDY model’s own climatology
rather than the reanalysis climatology to define forecast anomalies, because the SPEEDY
model has resolution much lower than operational forecast models, and hence larger

climatological errors. The subscript ilabels the points on the grid. The climatology of

° Dr. Hong Li is gratefully acknowledged for providing the NCEP reanalysis data already interpolated onto
the grid of the SPEEDY model
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SPEEDY is computed from the eight-year runs for the RA filter and the RAW filter.

Following the conclusion from section 3, we compute the climatology as follows:

Ximw = (XJAN,RA + Xjan raw )/2

We select 3 of the 7 vertical levels of the model, representing roughly the upper
atmosphere (200 hPa), the middle atmosphere (510 hPa), and the lower atmosphere (835

hPa). The ACC analysis is performed for the model variables (u, v, T, g, z) in each of

the above levels, and it is also computed for the surface variable ps.

The ACC analysis is first performed globally. The results for the five variables

(excluding ps) are presented in the next figure, which displays the differences

ACC.,, —ACC,, . There is a clear, general improvement due to the use of the RAW

filter, and the improvements are around 0(10‘3) in magnitude. The improvement

increases with lead time and is more important for medium-term forecasts with lead times
of 96, 120, and 144 hours. The variables that benefit most from the RAW filter are z and

v, while g is the only variable that has no apparent improvement. There are almost no

cases where the difference ACC.,, — ACC_, Iis negative.
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ACCE 1 ACCR, for the & variables, computed globally and separated per pressure level
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Figure 57. Increase in anomaly correlation coefficient ( ACC,, — ACC,, ) for six different

forecast times. The values were computed globally, for three different pressure levels, and for
each of the five variables. The most benefited variables are the meridional wind and the
geopotential height. The bars denote one standard deviation of the difference.

To examine regional differences, we finally perform the ACC analysis for three
latitudinal bands: the tropics, defined by 25°S to 25°N, the northern hemisphere mid-
latitudes, defined by 25°N to 75°N, and the southern hemisphere mid-latitudes, defined
by 75°S to 25°S. The next figure shows the results for the two variables that were

globally most benefited by the RAW filter: the geopotential height and meridional wind.
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ACCE - ACCL,  fory per region and vertical level ACCE - ACCR,  for T per region and vertical level
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Figure 58. Increase in anomaly correlation coefficient ( ACC,, — ACC, ) for six different

forecast times for two variables (geopotential height and meridional wind) at three pressure levels
and four different latitudinal bands. The bars denote one standard deviation of the difference.

For the geopotential height, z, the largest improvements in the ACC occur in the tropics.

Moreover, the improvements start to be noticeable in the 72-hour forecast, which is

earlier than for the other variables. The difference, ACC,, —ACCg, , which is of the

order of +0.02 for medium-range forecasts, is larger for this variable and region than for
any other. Results are similar for the surface pressure, ps (not shown). These
improvements in the skill of medium-range forecasts, which arise directly from the
upgrade to the RAW filter, increase the anomaly correlation coefficient for surface
pressure (and 500hPa geopotential height) in the tropics by 10-20%, as seen in the next
figure. As a consequence, five-day forecasts made using the RAW filter have

approximately the same skill as four-day forecasts made using the RA filter, and four-day
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forecasts made using the RAW filter have approximately the same skill as three-day

forecasts made using the RA filter.
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Figure 59. Anomaly Correlation Coefficient for forecasts of surface pressure in the tropics.
Notice that 96-hour forecasts using the RAW filter have approximately the same skill as 72-hour
forecasts using the RA filter. Also, 120 hour forecasts using the RAW filter have approximately

the same skill as 96-hour forecasts using the RA filter.

For the meridional wind, v, the largest improvements in the ACC occur outside the
tropics, in the three levels of the atmosphere, and they are more noticeable as the forecast
time increases. The improvements in the temperature, T (not shown), are very similar to
those for v, with the largest values occurring in the northern hemisphere and especially
in the middle atmosphere. For the zonal wind, u (not shown), there is a moderate

improvement for the medium term forecasts, but it is not as striking as for the previously
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listed variables, and the improvement never exceeds 0.005. For the relative humidity, q

(not shown), we consistently get an improvement close to zero.

In order to complement the ACC analysis, an additional Root Mean Square Error
(RMSE) analysis is performed. This statistic doesn’t involve the climatology; instead it
compares directly the forecast (generated by integrating with any of the two filters) with
the reanalysis data. We calculated a latitude-weighted RMSE as expressed in section

2.2.3.

This experiment yielded results similar to the ACC analysis; the figures generated are not
shown. For the majority of the variables we observed a reduction in the RMSE,
particularly for medium term forecasts. In the RMSE, however, it is more difficult to
assess the relative impact of the filter among the different variables, since for each of the

variables we have different units, while the ACC is non-dimensional.
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6. Summary and conclusions

The focus of this work has been to advance forward ideas of sequential data assimilation
and numerical weather forecasting. Theoretical analyses have been performed as well as
implementation of techniques in models of diverse complexity. This work has dealt with

the three following aspects:

Ensemble Transform Kalman-Bucy filters

In the first part, we analyzed two recently proposed ensemble formulations based on the
Kalman-Bucy filter which use an ODE formulation in pseudotime. It has been shown that
the ODEs involved in these formulations stiffen under certain conditions and cause the
failure of the Euler forward integration used in these works. Namely, this occurs in the
case of infrequent observations (long forecast windows) or for regions with sparse
observational networks. As an alternative, a Diagonal Semi-Implicit integration method
with variable step size was introduced; this method ensures stability and is

computationally affordable.

Transform-based versions of BGR09 and BR10 were developed; we call them ensemble
transform Kalman-Bucy filters. For these alternatives, the variables integrated in pseudo-
time are weights, with dimension equal to the ensemble size rather than the much larger
model dimension. The transform formulations have the additional advantage that the
availability of the weights allows the application of methods such as QOL and RIP that

improve the accuracy of ensemble Kalman filtering under nonlinear, non-Gaussian
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perturbation growth (Kalnay and Yang, 2010, Yang and Kalnay, 2009a). Moreover, an R-
localization scheme was designed to complement the ETKBFs. Adaptive multiplicative
covariance inflation (Miyoshi 2011) is a very powerful tool that can be applied with R-

localized assimilation schemes, so the ETKBFs can benefit from it too.

Three models were used to test our transform-based Kalman-Bucy filters and to illustrate
the value of the Diagonal Semi-Implicit integration method. First, the highly nonlinear
L63 model allowed us to perform experiments with frequent and infrequent observations.
In the L96 model we applied the ETKBFs using R-localization and adaptive
multiplicative covariance inflation. The advantages of using the DSI integration when
initializing the background ensemble without prior information were demonstrated with
an example. Finally, we implemented our schemes in an AGCM known as the SPEEDY
model with a realistic radiosonde observational network. The equivalence in their
performance with respect to the LETKF was shown, even for data sparse regions (e.g.

over the oceans) in which the ODEs are bound to stiffen.

An essential implementation issue for the Bucy-type formulations is the choice of the
number of steps for the integration. We have shown that in the ‘frequent observations’
case (corresponding to At =0.08 in L63, At =0.05 in L96, and At =6hr in an AGCM),
an adequate performance starts at 3-6 steps. For infrequent observations (At =0.25 in
L63) this number doesn’t surpass 8 (as a result of using the DSI method with non-

uniform steps). For any dynamical system, it will be necessary to first estimate ) for the

given assimilation window length. A possible improvement of the R-localization
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implementation would to compute A locally and let every gridpoint use a different

number of steps depending on the local degree of stiffness.

The computational implementation of the Bucy-type approaches and their transform
versions are straightforward and amenable to parallel computing. Finally, the continuous
formulation of the ensemble Kalman filter allows for a seamless implementation of the
incremental analysis update (IAU, Bloom et al, 1996) as demonstrated in the mollified
ensemble Kalman-Bucy filter (Bergemann and Reich, 2010a). The purpose of this
implementation is to avoid the imbalance introduced by the jumps from background to
analysis that are present in sequential data assimilation by spreading the observation over
a larger portion of the forecast window as presented in figure. Now that we have shown
that the EnKBF/ETKBF can be used in an atmospheric model, the next step in this line of
research should be to implement the mollified EnKF in the SPEEDY model and look for

reduction in balance disturbance.

Ensemble clustering in deterministic EnSRFs

In the second part of this work we have studied ensemble clustering (EC), a phenomenon
that arises when performing data assimilation in nonlinear forecast models using
deterministic EnSRFs. In this phenomenon, an M-member ensemble is split into an
outlier and a tight cluster of M-1 members. It results from the interaction of the nonlinear
expansion of the ensemble spread in the forecast step and the linear contraction in the
analysis step. We started by introducing a metric, clustering degree (CD), to quantify and

follow the behavior of this phenomenon through time.

131



The main goal of this study was to dispel the notion that clustering is an irreversible
phenomenon that severely handicaps EnSRFs. We have shown that generally it is a
transient phenomenon and that the same nonlinear features of the forecast model that lead
to it can also revert it. In particular, the variation on both the magnitude and ‘direction’ of
nonlinear growth of perturbations for different regions of the phase space prevent
clustering from becoming a permanent feature, and its persistence seems to diminish as

the dimensionality of the model grows.

Unbiased rotated versions of (deterministic) EnSRFs (Sakov and Oke 2008; Livings et al,
2008) can be considered a middle point between the stochastic and deterministic
alternatives, performing an effective resampling of the ensemble at every analysis step.
This resampling removes any deformation in the background ensemble caused by
nonlinear perturbation growth during the forecast window, and helps to maintain the
statistical properties of the ensemble closer to Gaussian. Both unbiased randomly rotated
EnSRFs and stochastic EnKFs avoid ensemble clustering, however only the former fulfill

the KF covariance equation exactly.

We have compared the behavior of the LETKF and the MPNS-ETKF, a modification of
the LETKF by an unbiased randomly rotated modification that we have introduced and
which is rather simple to construct. Using the L63 and the SPEEDY models, we have
assessed the performance of both filters in the following aspects: (a) the accuracy of the

ensemble mean as best estimator of the truth in terms of background and analysis RMSE,
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(b) the behavior of higher order moments of the ensemble, in particular sample skewness,
and (c) the statistical reliability of the ensemble with respect to the truth as measured by
rank histograms. In the linear regimes, the two filters have indistinguishable
performances. It is in the nonlinear regimes, differences arise as expected; the remaining
of the text refers to this case. We do not intend to assert that one filter is better than the
other; as a matter of fact the conclusion would be different depending on the particular

aspect we focus on.

In terms of RMSE, the results of experiments with the L63 show that differences are
noticeable only when the ensemble size becomes much larger than the number of
variables. The MPNS-ETKF has a lower mean RMSE because a smaller number of
cycles with very large RMSE appear, but the general distribution of the RMSE is not very
different from that of LETKF as shown by boxplots. For the SPEEDY model, the RMSE
values obtained by the two methods are indistinguishable for all variables even in the
poorly observed regions of the globe. LETKF tends to create ensembles with values
different from the Gaussian in nonlinear regimes. For the SPEEDY model, we clearly

observe this behavior for the variables {T,q} in the tropics and the SH, where the sample

skewness values are clearly different from zero. This, however, does not lead to higher

RMSE values with respect to MPNS-ETKF.

When verifying the truth against the analysis ensemble in L63 when M > N, the rank
histograms obtained from MPNS-ETKF tend to be flat, while those obtained from

LETKF are not. The truth tends to be statistically indistinguishable from the MPNS-
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ETKF-generated ensemble, while this assertion cannot be stated in the LETKF case. This
is not the case when M =N, in this case we get over-dispersive ensembles for both
filters. For SPEEDY, using M <<N with localization and adaptive multiplicative
inflation the rank histograms obtained by both filters have the same behavior, viz. they
show an under-dispersive ensemble. Nonetheless, a desirable feature of the LETKF is
that it allows us to follow the evolution of individual ensemble trajectories through time,
while for the MPNS-ETKF any information about individual trajectories is lost every

time assimilation is performed due to the resampling on the ensemble.

Finally, we have emphasized that R-localization requires a locally symmetric analysis in
every gridpoint. If one wishes to use random rotations these have to be performed only
after the global analysis has been constructed. This signifies an extra step, but there may
be applications in which it is worth it. We end this work echoing a conclusion from
Lawson and Hansen 2004, namely, that the key to handle different filters is to understand

their mechanisms, implications and limitations.

Effects of the RAW filter in the SPEEDY model

In this last part we have addressed two questions. The first question is: Are there any
statistically significant changes in the monthly climatology of the SPEEDY model caused
by the upgrade in the numerical integration scheme from Robert-Asselin (RA) filter to
Robert-Asselin-Williams (RAW) filter? To answer this question, we performed a
Satterthwaite-Welch t-test for the difference of means for each variable, in order to assess

local significance at the 5% level. At some grid points the tests were passed, but these
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points appeared to be scattered around the globe and showed no particular preference for
location. In field significance tests, after considering the effects of both finite sample size
and spatial correlation, we found that there is no significant evidence to reject the null
hypothesis of identical climatologies. In other words, for each month, the climatology
generated by integrating with the RA filter is the same as the one obtained with the RAW

filter. Hence, the RAW filter is suitable for use in the SPEEDY model.

The second question asked is: Is there a statistically significant improvement in the skill
of short to medium term (24-144 hour) forecasts caused by the upgrade from RA filter to
RAW filter? To answer this question, an ACC analysis was performed for 24, 48, 72, 96,
120 and 144-hour forecasts for the month of January 1982. As analysis data we used the
NCEP Reanalysis dataset interpolated onto the SPEEDY grid. The model climatology
was generated by 8 year integrations of SPEEDY. The ACC analysis was performed on
three pressure levels (835, 510 and 200 hPa), both globally and by latitude. A
complementary RMSE analysis was performed following the same scheme, and yielding

the same conclusions as the ACC analysis.

In general, an improvement of order 0(10‘3) in the ACC can be attributed to the use of

the RAW filter, and the improvement is larger for medium term forecasts with lead times
of 72, 120 and 144 hours. The geopotential height was strongly benefited in the tropics,
with ACC increases as large as 0.02 for a 72-hour forecast and 0.025 for a 120-hour
forecast. As a consequence, five-day forecasts made using the RAW filter have

approximately the same skill as four-day forecasts made using the RA filter, and four-day
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forecasts made using the RAW filter have approximately the same skill as three-day
forecasts made using the RA filter. The meridional wind was strongly benefited in the
extra-tropics. The improvements in surface pressure mimicked those in geopotential
height, and the impacts on temperature were very similar to those on meridional velocity.
The improvements for the zonal velocity were less noticeable and there were no

significant improvements in the relative humidity.

The results of this work are encouraging for the use of the RAW filter in the numerical
solution of models based on the widely used RA filter. More generally, we have found
that the skill of medium-range weather forecasts is sensitive to the time-stepping method,
about as much as could be expected from the use of different physics parameterizations to
improve forecast skill. We suggest that, in future work, numerical time schemes be

revisited as a potentially important component of model error.

136



Appendix A. Derivation of the Kalman-Bucy filter and the
equivalence of the KBF and KF equations in pseudo-time

The derivation of the KBF relies on discretizing a continuous-time system, applying the
KF equations, and then letting At — 0. The derivation in this appendix follows the steps
outlined in Simon (2006). Consider the following ODE system describing the evolution

of a continuous-time system x(t) and observations y(t) of this system:
—x(t)=F(t)x(t) + w(t) (A1)

y(t) = H(tx(t)+ v(t) (A2)

where w(t)~ N(0,Q,) and v(t)~ N(0O,R,) represent continuous-time white noise. If

F(t)=F is constant with respect to time, then the solution to this system is fairly simple:

() =xlt, e + [t F o)z (A3)

to

The expression e™ is a matrix exponential. There are several ways to compute it, the

simplest (yet not the most efficient) is to use the McLaurin series expansion:

e = i@ (A4)
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Discretizing the system
One can use the previous idea to discretize continuous-time systems over a “small” time

step, denoted At=t, —t,,. If At is sufficiently small, one can consider: F(t)~ F(t,,)

and w(t)~w(t, ,) as constants through the time step. Then, the solution for x(t,)

becomes:

x(t, )= e x(t, , )+ ﬁe(tk “Fd r}w(tkl) (A5)

Letting:  =7—t,_,, (A3) can be written as:

x(t,)=e™x(t, ,)+e™ ﬁt eF“da}w(tk_l) (AB)

The integral in the last expression can be solved explicitly (for any invertible F) as:

Te_':“da = (I —e )F‘l. (A7)

0

This gives rise to the following explicit solution for x(tk):

X(t)=e™x(t )+ ™ ~ 1wt ,) (A8)

We can identify this equation with the difference equation used in the KF:

Xy =AGX g T AW (A9)
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with A=e™" and A:(eFAt —I)F‘l. If the time step At is sufficiently small, then the
exponential matrix can be approximated with the first two terms of its McLaurin series
expansion e™" ~ | + FAt. This allows simplifying:

A=1+FAt (A10)

A =IAt (A11)

The continuous-time Kalman gain
The discretized equivalent for the white noises behave w, ~ N(0,Q.At) and

v, ~ N(0,R_/At) (for a further explanation see Simon, 2006). With this in mind, one

computes the Kalman gain:

-1
K, = PfHT(HPkaT + i;j =P’HAt(HPHTAt+R, )" (Al2)

From this expression, one can learn two limits:

Lim e _ PPH'R. (A13)
A—0 At
LimK, =0 (A14)

The Ricatti equation for the covariance

One can use the KF equation for covariance to get:

P> = (1+ FAPZ, (1+ FAL) +Q At = (P2, + AtFPE (1 +FAt) +Q At

Expanding the product, the expression can be simplified to:
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P =P, +At(FP?, + P2 FT +Q, )+ At’FP2 FT (A15)

One can insert P2, = (1-K, ,H)P?, in the last equation to get:

Py = (1=K H)PL, + AUF(I - K, GH)PY, + (1 - K G HPLFT +Q,)

(A16)
+AF(I - K, H)PFT
Pass P/, to the left hand side and divide by At:
PO-P), K,
k n S Aktl HP?, +F(I-K,_HP, +(1-K,_H)P,F (AL7)

+Q, +AtF(1 =K, H)P,FT

Taking the limit At — 0 of the last expression is equivalent to finding the time derivative

of P. We use the limits we had previously computed.

P -P] K
Lim X2t = klpygpo o F[l - Kk_lH]Pkb_l
At—0 At At —

%’_/

PHTR;!

0

+ (I - Kk_lHJPkb_lFT +Q, + AtF[I — Kk_lHJPkb_lFT
— T —

0 0

Which after simplifying reduces to the following:

b pb

LimPe Pt __pv {TRIHPY 4 FPP PP FT +Q A18
0 At k-1 c k-1 k-1 k-1 c

At—
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We can now drop both the subindex denoting time and the superindex denoting
background or analysis, since this equation describes both propagation and analysis steps.

Hence, we get the ODE:

z—fz—PHTRclHP+FP+FAT +Q, (A19)

The equation for the mean
The KF equations for the evolution X2 =A,_,%%, and analysis X% =X} —Kk(Hkﬁ —yk)
for the estimator of the mean can be combined to get:

*? = Ak—l)’\(zlj—l - Kk (HAk—lkE—l =Y« ) (AZO)

Substituting the expressions we have for A, ; and K, :

%2 =(1+FAUR:, —PHTRAAUH(1 +FALRE , v, ) (A21)

If we pass X;_, to the left hand side and divide by At:

Xk;—i(“ = F%, —PHTR(H(1+FALRE, —y, ) (A22)

Taking the limit At — 0 of the last expression is equivalent to finding the time derivative

of X
. 5\(: _)A(El:—l ~Aa Tp-1 &a
Lim ==t it ~PHTR, (H(I T F%gjxk_l —yk)
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After simplifying one gets:

&a &a

. X —X A — ’
Lim 2 P = P~ PHTRM(HX!, -y, ) (A23)

Again, we can drop both the subindex denoting time and the superindex denoting

background or analysis and write the following ODE.

% =Fx—PHTR(HX-y) (A24)

Equivalence of the solution of the KBF in pseudotime and the KF equations
The Kalman-Bucy filter can be used to perform an instantaneous analysis step by using a

pseudo-time 0<s<1 formulation with the following equations:

P _PHTRHP (A25)

ds

dx e

o —PHR *(H& —y) (A26)
S

Now we show that the Ricatti equation for covariance in pseudo-time can be integrated

analytically and reduces to:

pt =1 - P*HT (HP°HT +R)HT b (A27)

For the ease of notation, let us define '=H'R™H and denote the pseudo-time
derivative with a dot over the variable. Then, use a factorization for the covariance matrix

as:
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P=LY (A28)

The pseudo-time derivative of this expression is:

p=Ly e L[y )= Lyt oLy vyt =L oLy v (A29)

Also, substitute the same factorization in the Ricatti equation:

P=-LY'TLY™ (A30)

Equate the last two equations for P and solve for L :
L-LY'Y=-LY'TL

L=-LY'TL+LY *Y=LY*[-TL+Y] (A31)

The last expression implies that, in order for our factorization to be valid, the following

system of equations must be satisfied:
L L] . 00
. |=J , with J = (A32)
Y Y r O

This system has an analytical solution of the form:

{L(sO + As)}

Y(s, +As)

]
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0 0
JAS:L“A O} and e’ is a matrix exponential. Notice that JAs is a 2-nilpotent
S

matrix, i.e. (JAs)" =0 V r>2. This fact helps the matrix exponential to be simple to

compute.

= (Jas) &(as) [1 o] [o o] [1 o
Z ! Z(): ! { JJ{FAS o}{ms J (A34)

Substituting the matrix exponential into the solution and recalling that L =PY :

{P(so +As)Y(s, +As)} { | O}F(SO)Y(SO)}

Y(s, +4s) ras 1] Y(s,) (A35)

Perform the matrix multiplication in the right hand side of this equation, and performing
a straightforward substitution of the resulting equations leads to:

P(s, + As)[TP(s, )As + 1]=P(s,)

Hence, we can get an explicit solution for P(s, + As):

P(s, +As)=P(s, JHTRHP(s, )As + 1) (A36)

For the analysis, we have P(s =1)=P(s = 0\HTRHP(s, )As+1) ", or more clearly:

P = P*(HTR*HP(s, )As + 1) (A37)

One can use the Sherman-Morrison-Woodbury lemma to show the equivalence with (27).
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Appendix

ACC:
AGCM:
BGRO9:
BR10:
DA:
DETKBF:
EC:
EnKBF:
EnKF:
EnSRF
ETKBF:
ETKF:
KF:
L63:
L96:
LETKEF:
MPNS-ETKF:
NWP:
ODE:
RAW:
RMSE:

SPEEDY:

B. Abbreviations and symbols

Anomaly correlation coefficient
Atmospheric general circulation model
Bergemann et al., 2009

Bergemann and Reich, 2010

Data assimilation

Direct ensemble transform Kalman-Bucy filter
Ensemble clustering

Ensemble Kalman-Bucy filter
Ensemble Kalman filter (stochastic)
Ensemble square root filter

Ensemble transform Kalman-Bucy filter
Ensemble transform Kalman filter
Kalman filter

3-variable Lorenz 1963 model
40-variable Lorenz 1996 model

Local ensemble transform Kalman filter
Mean-preserving non-symmetric ensemble transform Kalman filter
Numerical weather prediction

Ordinary differential equation
Robert-Asselin-Williams filter

Root mean squared error

Simple parametrizations primitive equations dynamics model
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t, At Time, time step

S, AS Pseudotime, pseudotime step
x e RN Vector of state variables
y e Rt Vector of observations

HeR-N Observation matrix
ReR“t Observational error covariance

PeRVN State error covariance

KeR™ Kalman gain matrix

X e RN Ensemble of state variables
XeR" Sample mean

XeRjWM Ensemble of perturbations

uv,T,q,2 Zonal wind, meridional wind, temperature, relative humidity, geopotential height

ps Surface pressure
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