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In a microscopic setting, humans behave in rich and unexpected ways. In a
macroscopic setting, however, distinctive patterns of group behavior emerge, lead-
ing statistical physicists to search for an underlying mechanism. The aim of this
dissertation is to analyze the macroscopic patterns of competing ideas in order to
discern the mechanics of how group opinions form at the microscopic level.

First, we explore the competition of answers in online Q&A (question and an-
swer) boards. We find that a simple individual-level model can capture important
features of user behavior, especially as the number of answers to a question grows.
Our model further suggests that the wisdom of crowds may be constrained by in-
formation overload, in which users are unable to thoroughly evaluate each answer
and therefore tend to use heuristics to pick what they believe is the best answer.

Next, we explore models of opinion spread among voters to explain observed
universal statistical patterns such as rescaled vote distributions and logarithmic vote

correlations. We introduce a simple model that can explain both properties, as well



as why it takes so long for large groups to reach consensus. An important feature
of the model that facilitates agreement with data is that individuals become more
stubborn (unwilling to change their opinion) over time.

Finally, we explore potential underlying mechanisms for opinion formation in
juries, by comparing data to various types of models. We find that different null
hypotheses in which jurors do not interact when reaching a decision are in strong
disagreement with data compared to a simple interaction model. These findings
provide conceptual and mechanistic support for previous work that has found mutual
influence can play a large role in group decisions. In addition, by matching our
models to data, we are able to infer the time scales over which individuals change
their opinions for different jury contexts. We find that these values increase as a
function of the trial time, suggesting that jurors and judicial panels exhibit a kind

of stubbornness similar to what we include in our model of voting behavior.
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Chapter 1: Introduction

The opinions of groups are important to decision making, e.g., in elections,
trials by jury, or even crowdsourcing platforms. Therefore opinion dynamics, the
study of how opinions form in groups, may help explain and predict dynamics at the
national level, such as who becomes president, as well as at the very local level, such
as whether a defendant will be found guilty or not. In a different context, opinion
dynamics can help us understand how crowds determine the quality of answers in
online question and answer boards, such as in Stack Exchange. These boards allow
users to choose the best answers to questions about everything from programming
in C to learning a natural language, and with an aggregation of experts that helps
to make a decision on the best answer, one will presumably find a very good answer
quickly. All of these systems feature group-level decisions. Groups, especially large
ones, have been known to find answers more accurately than individuals [15], there-
fore we might expect democracies to find better leaders than any political expert, or
crowds to find the best answers, in aggregate. Social influence, however, is known
to have a large effect on crowd behavior [16-19], suggesting that these groups may
not arrive at an optimal decision. Several factors besides the the the quality of

competing ideas can heavily affect which idea is chosen by a group. Modeling how



ideas form is therefore critical to understanding influence and exploring the complex
effects it can have on groups.

Why should physics be used to understand these dynamics? Early on, opinion
dynamics was noted by some physicists as being “out of the realm of physics” [20].
Even today, with many publications in the field, one may question whether a simple
model can adequately capture why opinions form or ideas spread, because each
person may decide to follow an idea by weighing options based on their unique past
experiences.

To answer these critiques, we can take a step back and examine what aggre-
gate statistics on opinion dynamics suggest. For example, the correlations between
the percentage of individuals who vote for a Democratic or Republican presidential
candidate [21], or the correlations among individuals who turnout for elections [3]
falls as approximately the logarithm of the distance between individuals. In com-
parison, the population correlation exhibits a significantly different form, at least
in the US [22]. We also see surprisingly universal distributions in the vote-share a
candidate receives [1,2] and a similar scaling collapse of time distributions for juries
and judicial panels to reach decisions (Chap. 4). Our goal in this dissertation to
analyze the macroscopic patterns of competing ideas in order to infer the mechanics
of group opinion formation at the microscopic level.

There is a complication when modeling opinion dynamics, however. Previous
work strongly questioned whether homophily, where individuals with similar opin-
ions become friends, can be distinguished from influence, where individuals adopt

an opinion from their neighbors [23]. We are therefore motivated to find out how in-



fluence can be quantified, or if influence can ever be distinguished from independent
decision making. Chapter 4 explores signatures of mutual influence among indi-
viduals in group decision dynamics. We find that the distribution of deliberation
times and final votes provides evidence that influence may play a role in the dynam-
ics, therefore we have taken some initial steps to distinguish independent decision
making from influence and quantify this effect.

With these points in mind, we explore opinion dynamics in three ways. First,
we model how individuals in aggregate choose a higher quality answer over lower
quality ones across all question answering boards in Stack Exchange (Chap. 2). (This
research has been submitted to KDD and posted online as a pre-print [24].) Next,
we create a model to reproduce long range vote correlations and vote share distribu-
tions (Chap. 3). (This research has been published in Physical Review E [25].) In
Chapter 4, we use survival analysis to help distinguish which model can best cap-
ture the dynamics of juries and judicial panels. (This research, in preparation, is in
collaboration with Michelle Girvan and William Rand). Further evidence support-
ing the modeling assumptions made in Chap. 3 are found, as well as statistics that
suggest juries exhibit unusually complex dynamics. Finally, we summarize what we

have found in the concluding chapter (Chap. 5).



Chapter 2: The Myopia of Crowds:

A Study of Collective Evaluation on Stack Exchange

2.1 Introduction

Are crowds wiser than informed individuals? Generally speaking, a crowd’s
collective opinion—whether through votes, likes, or thumbs up/down—is often used
to rank order items in crowdsourcing systems, which determines how much attention
they receive [26], as well as users’ incentives for participating [27]. The assumption
is that collective opinions outperform individual experts, an observation long seen
in a variety of contexts [28-30], even when they are less-informed than the experts.
Recent evidence, however, has shown that the collective decision of the crowd is
not foolproof. One known limitation, for example, is social influence, which biases
individual judgments and degrades crowd performance [31], obscuring the underlying
quality of choices [32]. We try to answer whether crowd wisdom limitations affect a
common crowdsourcing application, question answering boards.

We carry out an empirical study of Stack Exchange!, a network of more than

a hundred question answering (Q&A) communities, where millions of people post

Thttp://stackexchange.com



questions on a variety of topics, and others answer them asynchronously. Like other
Q&A sites, such as Quora and Yahoo! Answers, Stack Exchange has a number
of features for enhancing collaborative knowledge creation. In addition to asking
and answering questions, users can evaluate answers by (1) voting for them, and (2)
askers can accept a specific answer to their question. The votes, in aggregate, reflect
the crowd’s opinion about the quality of content, and are used by Stack Exchange to
surface the right answers. They also provide a lasting value to the community [33],
enabling future users to identify the most helpful answers to questions without
asking the questions themselves.

We find that the number of answers users parse through can dramatically af-
fect how users choose answers, including a greater reliance on heuristic-like answer
attributes, potentially limiting the usefulness of question answering boards. In ad-
dition, we find behavior biases allow for users to choose answers in an increasingly
predictable way, as the number of answers increases, running counter to our intuition
that increasing the numbers of choices makes user decisions less predictable.

Alternatively, work also addresses some of the challenges of data heterogeneity.
Large-scale datasets of human behavior, such as this one, provide new opportunities
to study decision-making processes in crowdsourcing systems. In contrast to labora-
tory studies, which typically involve dozens of subjects, behavioral data are collected
from millions of people under real-world conditions. Mining observational behavioral
data, however, presents significant computational and analytic challenges. Human
behavior is noisy and highly heterogeneous: aggregating data to improve the signal-

to-noise ratio may obscure underlying patterns in heterogeneous data and even lead



to nonsensical conclusions about human behavior [34]. We discover that splitting
data by the number of answers addresses one of the larger sources of user heterogeity,
potentially providing greater predictive power in future models.

We use penalized regression to uncover factors associated with users’ decisions
to vote for or accept answers on all Stack Exchange communities. To partly control
for heterogeneity, we split data by community type (technical, non-technical, meta)
and leave out the largest community to check the robustness of results. In all cases,
behavior was qualitatively the same and quantitatively similar. We find that the a
significant source of behavioral heterogeneity is the number of existing answers to
questions. To account for this, we separate data according to the number of answers
questions have at the time that a user makes a decision about which answer to vote
for (or accept).

We find that a few answer attributes are important in our regressions, including
the order in which the answer appears, its share of words compared to the other
available answers to the question, and whether it was accepted by the asker. This
appears to imply that users rely on simple heuristics to choose an answer based on
its rank, how much screen space it occupies, or whether it was approved by others.
These heuristics may be useful proxies for answer quality, but our work suggests
otherwise. For example, voters are more likely to choose an accepted answer after
it has been accepted than before. Although answer acceptance is often viewed as
a standard of answer quality [35-37], the only discernable difference in an answer
after acceptance is a signal that the asker chose this answer, suggesting users view

acceptance as a useful signal about quality, but are less able to discern that quality



on their own.

We also find that heuristics better explain user behavior as the number of avail-
able answers to a question grows. Two different explanations are feasible. First, as
the number of answers to a question grows, users may become less willing to thor-
oughly evaluate all answers, instead increasingly relying on cognitive heuristics when
choosing an answer. A similar effect exists in other domains. For instance, informa-
tion overload impacts consumer’s choice of products [38] and the spread information
in online social networks [39,40]. An alternative explanation is that later voters are
different and happen to rely more on cognitive heuristics compared to people who
vote early. This view is potentially supported by the observation that users who
answer early in a question’s life cycle on Stack Overflow, a programming-related com-
munity on Stack Exchange, have higher reputation than users who answer later [33];
therefore, time acts as a potential source of heterogeneity. In either case, the find-
ing that voters rely more on heuristics as the number of answers grows points to a
limitation of the “wisdom of crowds” effect on Stack Exchange: crowd’s judgments
become less reliable as proxies of quality as questions accumulate answers.

The rest of the chapter is as follows. In the related work section, we review
work related to our current analysis, while, in the materials and methods section,
we discuss our data and ways in which we analyze it. Next, in the results section, we
discuss our main findings. Finally, in the conclusion section, we review our findings,

discuss future work, and discuss ways to improve upon question answering sites.



2.2 Related Work

Prior research on Q&A sites has shown that a variety of attributes can provide
useful insights into content quality [37,41-43]. For example, Kim and Oh [36]
examined how users evaluate information in Yahoo! Answers forums, by examining
the comments askers leave on answers. They found socioemotional-, content-, and
utility-related criteria are dominant in the choice of the best answer, and found users
evaluate information based not only upon the content, but also on cognitive and
collaborative aspects. Adamic et al. [44] conducted a large-scale network analysis of
Yahoo! Answers, trying to predict which answers would be judged best and found
that, for both technical and non-technical sites, answer length and the number
of other answers the asker has to choose from are the most significant features to
predict the future best answer. A preference for longer answers, however, diminishes
with the number of answers. One limitation in these previous studies, however, is in
assuming that the answer an asker chose was the “best” answer, and did not correct
for asker biases when choosing any answer.

Several authors [35-37] used logistic regression to determine which attributes
best describe high quality answers, although, again, it is often assumed that a“high
quality” answer is one an asker accepts, a conclusion that our work casts doubt on.
Other works have examined the impact of answer order on answer quality. Anderson
et al. [33] found that early answers in Stack Overflow (the Stack Exchange commu-
nity that deals with programming questions) tend to be posted by expert users with

higher reputation, and subsequent answers come from lower reputation users. While



the first answer tends to be more appreciated by the asker, the longer a question goes
unanswered, the less likely that an answer will eventually be accepted. Similarly,
Rechavi and Rafaeli [45] concluded that askers use response time as a parameter at
evaluation time. However, this hypothesis was refuted in other works. Shah [46]
analyzed the responsiveness in Yahoo! Answers forums, finding that more than 90%
of the questions receives an answer within an hour. However, satisfactory answers
may take longer, depending on the difficulty of the questions. Interestingly, our
work, discussed in the Results section, suggests that answer age and chronological
order are not particularly important attributes for askers or voters. In part this is
because high reputations answerers do not strongly affect whether an answer gets
voted on (not shown). Older answers, however will accumulate more votes and will
therefore be more likely to be voted on , but the main driver appears to by answer
attributes not directly dependent on time.

Unlike previous studies, we examine how voting may be affected by various
answer attributes. This is an an important area to study, because people often use
votes as a signal of the best answer to a particular problem. One previous study
that also attempted to tackle this problem deduced a set of possible factors that
indicate bias in user voting behavior [47]. They provided a method to calibrate the
votes inside Q&A sites, principally based on the average value of the answer and
the average vote value received in the answerer history. This type of calibration
is useful to restrict the effects of users who are trying to game the system, or to
signal the reputation of answerers. Our work, however, answers a different set of

questions: we want to find the role heuristics play in answer evaluation, how voter



and asker behaviors differ, and what drives heterogeneity within voter and asker
populations. The role of heuristics in human decisions has been studied by behav-
ioral economics [48,49], but, to the best of our knowledge, our work is the first that
investigates the potential impact of heuristics on the performance of crowdsourcing

systems.

2.3 Data and Methods

Stack Exchange launched in 2008 with Stack Overflow, its first Q&A commu-
nity for computer programming questions. Over time, Stack Exchange has added

more communities covering diverse topics:

e 49 Technical communities on topics, such as Programming, Server Faults,

Information Security, Apple, Android and Ubuntu;

e 33 Culture and recreation communities, e.g., English Language Learners, Bi-

cycles, Videogamers Platforms, and Anime & Manga;

e 17 Life and Arts communities on topics related to the everyday life: e.g.,

Cooking, Photography, DIYers, and Movies & TV,

e 16 Science communities, e.g., Mathematics, Statistics, Biology, and Philoso-

phy;

e 4 Business communities on topics, such as Bitcoin, Project Management, and

Finance;
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There is a meta board for each community where users discuss the workings and
policies of the community: e.g., in Meta Stack Overflow users discuss the policies
of Stack Overflow rather than computer programming itself. Posts that are overly
subjective, argumentative, or likely to generate discussion rather than answers, are
removed from the website.

A user can post a question, which may receive multiple answers from different
people, as shown in Fig. 2.1. The asker can accept an answer, which generally
signifies that the asker finds it helpful. Regardless of acceptance, others can vote an
answer up (or down) if they think that it provides helpful (or irrelevant) information.
By upvoting more helpful answers, a community collectively curates the information
for both askers and future users interested in the same topic. The difference between
the up and down votes is the score of the answer. Answers with higher scores are
shown at the top of the list of answers to the question, so that they are easier to
find (answers with the same score are shown in random order). Figure 2.1 shows an
example question with answers, score for both answers and question, the time the
answer was submitted, answerer’s reputation, and whether the answer was accepted
by the asker.

For our study we used anonymized data consisting of all user contributions to
Stack Exchange from 2009 until September 2014%. The data contain information
about five million posts (questions and answers) and 23 million votes. In particular,
we used the data of 250 communities, including information related to the posts: the

ID of the post, creation date, type of post (question or answer), ID of the relative

Zhttps://archive.org/details/stackexchange
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“var” or no “var” in JavaScript's “for-in” loop?

4. What's the correct way to write @ for-in loop in JavaScript? The browser doesn't issue a

complaint about either of the two approaches | show here. First, there is this approach where the
52 iteration variable x is explicitly declared:

. for {var x in set) {
1
7
And alternatively this approach which reads more naturally but doesn't seem correct to me:
for (x in set) {
1
javascript  syntax  for-in-loop
share improve this question edited 5 mins ago asked Apr 19 ‘11 at 13:28
s“gs‘k DavidRR futlib
P ni3,151 3015833 2,016 » 4 » 24 # 43
B Answers active oldest votes

4 | Use var it reduces the scope of the variable otherwise the variable looks up to the nearest
closure searching for a var statement. If it cannot find a var then it is global (if you are in a strict
48 mode, using strict , global variables throw an error). This can lead to problems like the following.

function £ (){

for (i=8; 1<5; i++);
-V i

var 1 = 2;
Lo H
alert (i); //i == 5. i should be 2

If you write var i inthe for loop the alert shows 2.
JavaScript Scoping and Hoisting

share improve this answer

edited Jul 25 13 at 7:50 answered Apr 19 '11 at 13:36

Gabriel Llamas
7,063 » 7 » 45883

Figure 2.1: A screenshot of a Stack Exchange web page, showing a question (at top)
and answers listed below in default order. The score next to the answer (red box),
is defined by upvotes minus downvotes, and the green checkmark (blue box) denotes
that the answer was accepted by the asker. We also consider other factors, including

the times the question was asked (green box) and the answer was provided, as well

as the answerer’s reputation (purple box).
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question (in case of answers), the ID of the eventually accepted answer (in case
of questions), and the content of the post; and related to the history of the votes
made on each single post: the type of vote (up, down votes, or acceptance), the
ID of the related post, and the time of assignment. In addition, we considered the
information related to the users, such as the ID of the user, creation date (date of
the sign up), and reputation. Particularly, we calculated the reputation of the users
at the moment they asked or answered a question, considering the rules of Stack
Exchange?.

Each question on these communities received almost three answers, on aver-
age. The “Programming Puzzles & Code Golf” community had the highest number
of average answers per question at 8, while the “Magento” site had an average of
only 1. About 10% of the questions went unanswered, and 42% received only one
answer. Only the questions that received two or more answers were included in our
study.Figure 2.2 shows the complementary cumulative distribution of the number of
answers posted for each question on technical, non-technical, and meta communi-
ties. We considered an average of 11k answers per community, although this varied
significantly. Technical communities had on average twice as many answers as non-
technical communities, and an order of magnitude more than meta communities,
which were not broad in appeal. Askers accepted an answer 59% of the time in
technical communities, and 59% in non-technical communities, but, curiously, only
37% of the questions in meta boards were similarly accepted. Answers with votes

consist of 86% (std 7%) of the total, but this too varied across site types. 78% of the

3http://meta.stackexchange.com/how-does-reputation-work
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Figure 2.2: (Top row) Complementary cumulative distribution of the final number
of answers posted in reply to a question as of August, 2014, on (a) technical, (b) non-
technical, and (c) meta sites. Shaded areas correspond to the standard deviation in
the distributions. (Bottom row) Number of views per question (in August, 2014)
as a function of the number of answers on (d) technical, (e) non-technical, and (f)
meta sites. Boxes indicate 50% confidence intervals, with a red line to indicate the

median view count, and a red dot to represent the mean viewcount.

answers on technical sites have votes, versus 86% in non-technical and 88% in meta
communities (all differences are statistically significant with p < 1072 using t-tests).
The median time to obtain the first answer was 2.77 hours, and the eventually ac-
cepted answer, 4.47 hours. As the community matures, the questions become more
complex, which attracts the attention of users who may focus on different facets of

the problem, posting multiple good answers for the same question.
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2.3.1 Logistic Regression

We use logistic regression to understand which factors drive user actions on
Stack Exchange. Because our data is highly multi-dimensional, and some attributes
are strongly correlated with others, we use LASSO penalized regression, where pa-
rameters are determined by maximizing the likelihood function with the addition
of a penalty to avoid overfitting [50]. The value of this penalty was adjusted such
that the deviance from 10-fold cross-validation (CV) was minimzed. As a check, we
did the same fits with a different type of penalty, ridge regression, and found the
behavior to be qualitatively the same. The fitting was performed with the R pack-
age “glmnet” [51], which allows for fast and accurate determination of regression
coefficients, f3.

We checked the robustness of our results by omitting data from the largest com-
munity for each board type (meta, non-technical, and technical), and re-determining
the regression parameters. The qualitative results were unaffected, and quantita-
tively, the results were very similar. For the rest of the chapter, we focus on LASSO

penalized regressions with all boards included.

2.3.2 Deviance Ratio

We use deviance ratio to determine how well the model fits the data. The
deviance ratio is reminescent of R?, although it is used for models that maximize

the likelihood function rather than minimize the mean squared error.
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The deviance ratio is defined as:

Ryey = 1 — =1 (2.1)

where
D = —2 {loglp(yldo)] — loglp(y10.)] } (2:2)

In this case, log[p(y|0,)] is the log-likelihood of the saturated model, with one
degree of freedom per observation, while log[p(y|é0)] is the log-likelihood for the
fitted model. Dy, is for the best fit model, while D,,,; is the null intercept model.
A careful observation reveals D is simply —2x (the log likelihood ratio), therefore
the deviance ratio tells us how much of the likelihood ratio for the null model can be

explained with a fitted model. Errors for this value are defined in the next section.

2.3.3 Error

The uncertainty in § and the deviance ratio (shaded regions in subsequent
figures) is defined as the range of values such that, by changing the LASSO regression
bias, the mean 10-fold CV error (in this case, the deviance) is within one standard
deviation of the minimum mean CV error. This spread of values is the clearest
way we are aware of to show parameter uncertainty or sensitivity, because LASSO
regression, like all penalized regression methods, does not have a standard method

to caluculate uncertainties with high dimensional data [52].

2.3.4 Attributes and Normalization

We use the following answer attributes in analysis:
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10.

11.

12.

. answerer’s reputation at the time the answer was created,

mean rate of reputation increase over time,

. answer’s Flesch Reading Ease [53], or readability, score,

answerer’s tenure (i.e., time since joining the site) at the time of the answer,

. number of hyperlinks per answer,

. binary value denoting whether the answer was eventually accepted (for voting

only),

answer score before each vote,

default web page order for an answer (i.e., its relative position),

chronological order of an answer (whether it was first, second, third, etc.),
time since an answer was created, or its age

number of words per answer,

answer’s word share, that is the fraction of total words in all answers to the

question.

Answerer reputation [35], Flesch readability, and word count [54] were used

in previous works as measures of answer quality, and often a “high quality” answer

was at least in part defined as the accepted answer [35-37]. To adeqately compare

datasets, we removed all data where the question was not eventually accepted within

the collection timeframe. Qualitatively, voters and askers in unaccepted questions

had similar behavior to those in accepted questions, but quantitatively, we found

variations on regression coefficients, potentially suggesting voters behave differently

in this hold-out set. We also consider an answer’s rank in the list of answers (what
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we refer to as web page order) and score, because these variables affect how much
attention the answer receives [18,32,55]. The other attributes were also examined
as additional factors that could affect how answers are voted or accepted. These
were, however, not found to significantly affect the results.

There is large variability in attribute values within and across the attributes.
To account for the variability, we normalize all attributes by mapping them to
their associated cumulative distribution function (CDF). CDF normalization is non-
parametric and accounts for the distribution of attribute values. An advantage of
this normalization is that outliers have a minimal effect because values are evenly
spread and bounded between 0 and 1. Normalization allows us to compare the
relative importance of different attributes by comparing their regression coefficients.
For web page order attribute, we divided by the number of answers available, which
is equivalent to a CDF for the number of answers equal to 2, 3, etc., while for
all other attributes, we used the CDF across all answers on all Stack Exchange
communities.

To verify the selected attributes, we checked each attribute to make sure corre-
lations with other attributes were reasonably low, and, if they were greater than 0.7,
we checked whether removal of the attribute increased the CV error significantly.
This correlation condition seems very liberal, but we wanted to include as many
attributes used in previous literature as possible, and then use penalized regression
to appropriately reduce the effect of colinearity. To check if this affected our results,
we separately removed the most important attributes: webpage order, wordshare,

and whether the answer was eventially accepted. Broadly, we found the results
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were qualitatively the same, although when webpage order was removed, the score

became a more important attribute.

2.4 Results

We analyze Stack Exchange data to understand what attributes are strongly
associated with the decision to vote for, or accept, an answer. To do this, we find
all attribute values just before an answer was voted for (or accepted), and then

estimate attribute coefficients for a logistic regression model.

2.4.1 Taming Heterogeneity

Automatically uncovering homogeneous populations within heterogeneous ob-
servational data remains an open research challenge. In our study of Stack Exchange,
we used exploratory data analysis to identify potential sources of heterogeneity. For
example, users who are interested in technical topics (e.g., programming) may be
driven by different factors to contribute to Stack Exchange than those who are in-
terested in non-technical subjects (e.g., cooking), or governance (meta boards). To
account for this source of heterogeneity, we split the data by the type of board—
technical, non-technical and meta—and run regression analysis separately on each
dataset. We further split data by whether the asker eventually accepted an answer
in our observation window, how an answer is chosen (vote versus accept), and the
number of answers, but find that the greatest source of heterogeneity is the number

of answers a question has at the time the user votes for or accepts it.
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In the next two sections, we discuss our findings in greater detail, including the
implications of the most important attributes, and the reasons for the heterogeneity
in our data. Regression fits suggest users who vote when many answers are visible
strongly depend on a small set of heutistic-like attributes compared to users who
vote when there are few. Furthermore, askers are found to depend on heurstics
much more than voters, which undermines the assumption that accepted answers
are probably one of the best answers [35-37]. Overall, we find evidence that the
wisdom of crowds in Stack Exchange boards could be reduced by the number of

answers to a question, and the role of the user.

2.4.2 Answer Attributes and Behavior

We take logistic regressions for votes cast before any answer was accepted,
votes after an answer was accepted, as well as accepted answers. The average and
variance of the regression parameters across 2 — 20 answers are shown in Figure 2.3.
Because all attributes were normalized, the larger the value, the more the respective
parameter affects user behavior, relative to all others in the regression.

We find that web page order and word share are the two most important
factors for users to choose an answer (Fig. 2.3). Because strong correlations may
affect the coefficient of a particular attribute in penalized regression, we also remove
each attribute separately (not shown), and find the CV error decreases the most
when the highest-coefficient attributes are removed, thus validating the usefulness

of CDF normalization.
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Figure 2.3: Regression coefficients for answerers to accept (green circles) and voters
to vote for an answer both before (red triangles) and after (blue squares) an answer is
accepted on (a) technical, (b) non-technical, and (c) meta boards, averaged over the
number of available answers from 2-20. Higher values indicate a stronger relationship
between attributes and user behavior (voting or accepting an answer). Error bars

indicate the variance of these values as the number of answers increases.

These findings alone are not necessarily surprising. We know from previous
research that people’s choices are biased by the rank order of items [18, 55, 56].
Word share is potentially correlated with higher answer quality, because relatively
long answers may be more informative, or they may just be easier to see (take up
a large portion of the web page space). We notice that both of these regression
coefficients are even higher for askers than voters, across different board types,
already suggesting a surprising degree of heterogeneity. Other factors, however, such
as an answerer’s reputation or tenure, how thoroughly an answer is documented with
hyperlinks, how easy it is to read (readability), etc., do not seem to play a big role

in users’ choices of which answers to vote or accept.

21



Tech Boards Non-Tech Boards Meta Boards

o
5 04 @ by (©)
14
© ] I ] ]
g \d\\%\_/\x
>
3 _-/..-—-—w
0
0.0 : : : : : :
0 5 10 15 20 O 5 10 15 20 O 5 10 15 20
Number Of Answers Number Of Answers Number Of Answers

Figure 2.4: The deviance ratio (fraction of deviance explained by the model) for
votes before acceptance (red), answer acceptance (green), and votes after accep-
tance (blue), for (a) technical, (b) non-technical, and (c) meta boards, with 2 to
20 answers. The shaded region represents the uncertainty in our values (see Sec-
tion 2.3). Askers have a larger deviance ratio, and therefore appear to be better
modeled by our regressions, compared to answerers. Furthermore, the deviance ra-
tio of voters tends to increase with the number of answers, suggesting increasing

agreement with our model.

2.4.3 Behavior vs Number of Answers

What is more surprising than the overall size of the regression coefficients,
however, is that the largest coefficients, e.g., for web page order and word share,
change substantially as the number of available answers to a question increases
(Fig. 2.6 and Fig. 2.7). Furthermore, the models describe the data increasingly
well (Fig. 2.4) and reduce predictive error (Fig. 2.5). In other words, users’ future
decisions appear to be increasingly dependent on these attributes. This is also

seen when we remove each attribute and check the resulting CV error of the model
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Figure 2.5: Mean deviance from 10-fold CV for votes before acceptance (red), answer
acceptance (green), and votes after acceptance (blue), for (a) technical, (b) non-
technical, and (c) meta boards, with 2 to 20 answers. The deviance for votes before
and after acceptance almost completely overlap. Askers have a lower prediction
error compared to voters, but the most significant drop in deviance for all users
occurs when the number of answers increases.

(not shown). We find that removing attributes, such as whether the answer was
accepted or its web page order, would increasingly impact the CV error of voters as
the number of answers grow.

A number of plausible explanations exist:
e The subsequent answers improve upon the previous answer, or

e Some unknown confounding variable affects both the number of answers as

well as user behavior, or finally
e User behavior changes as a function of the number of available answers.

According to the first hypothesis, the last answer may be such an improvement

on the previous ones that users will “flock” to it. Therefore, it should be no surprise
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Figure 2.6: Web page order regression coefficients for voting before (red triangles)
and after (blue squares) an answer is accepted, as well as accepting an answer
(green circles) for (a) technical, (b) non-technical, and (c¢) meta boards, with 2
to 20 answers. The shaded region represents the uncertainty in our values (see
Section 2.3). Users increasingly depend on the web page order of an answer as the

number of answers increases.

that as the number of answers increases, changes in votes are seen. In theory, this
should be captured by a significant dependence on answer’s chronological order:
voters should prefer newer answers to older ones. In practice, this does not seem to
be the case. The dependence on chronological order is relatively small (Figure 2.3),
and furthermore decreases with the number of answers (Figure 2.8), which is exactly
the opposite of what should be expected if this hypothesis were true.

The second hypothesis says that the number of answers and the behavior of
the user both correlate to something else entirely; the results presented so far could
be strongly affected by some confounding variable. For example, [33] finds that
the reputation of later answerers on Stack Overflow, a technical board within Stack

Exchange devoted to programming questions, is lower than the reputation of earlier
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Figure 2.7: Word share regression coefficients for voting before (red triangles) and
after (blue squares) an answer is accepted, as well as accepting an answer (green
circles) for (a) technical, (b) non-technical, and (c) meta boards, with 2 to 20 an-
swers. The shaded region represents the uncertainty in our values (see Section 2.3).
Across all baords, voters appear increasingly likely to choose answers that take up

a relatively large amount of web page space as the number of answers grows.

answerers. If later voters similarly differ in reputation or some other attribute,
this could potentially explain our results. We call this the “lazy voter” hypothesis,
because later voters may simply be “lazier” and rely on heuristics to a greater extent.
It is curious, however, that voter behavior does not seem to be significantly affected
by the age of the answer, based on our regressions, and instead on the shear number
of answers, as time progresses.

The last hypothesis is that users behave differently as the number of answers
grows. Economics and psychologists believe that people usually do not have the
time, nor inclination or cognitive resources, to process all available information,
but instead, employ heuristics to quickly decide what information is important.

This phenomenon, known as “bounded rationality” [48,49], profoundly affects what
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Figure 2.8: Chronological answer order regression coefficients for voting before (red
triangles) and after (blue squares) an answer is accepted, as well as accepting an
answer (green circles) for (a) technical, (b) non-technical, and (c) meta boards,
with 2 to 20 answers. The shaded region represents the uncertainty in our values
(see Section 2.3). For all boards, there is a decreasingly significant dependence
on the order in which answers appear. For askers and voters after acceptance,
newer answers are preferred, while, for voters before acceptance, older answers are

preferred.

information people pay attention to and the decisions they make [57]. Our results
suggest that rather than thoroughly evaluating all available answers to a question
on Stack Exchange, users employ cognitive heuristics to choose the “best” answer.
These heuristics include choosing top-ranked answer (Fig. 2.6) or one that occupies
more screen space (Fig. 2.7). These heuristics become more pronounced when the
volume of information (number of available answers) grows.

Instead of being a cognitive heuristic, word share could plausibly reflect answer
quality: high quality answers may be wordy. Interestingly, however, the regression

coefficient for the number of words for each answer (rather than its share of words)
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is slightly negative, suggesting users overall prefer somewhat shorter answers if they
prefer anything at all. It is intuitive that longer answers are more salient and catch
a user’s eye, especially when there are many answers.

Whether second or third hypothesis is true, our observation of a strong depen-
dence of votes and accepts on the number of available answers suggests a strong lim-
itation of crowdsourcing answer quality: collective judgment of quality may change
with the number of answers, which is especially noticable with popular, and pre-
sumably important, questions which have many answers available (Fig. 2.2).

We see further evidence of the final two arguments in Figure 2.9, where we
plot the regression coefficients for accepting an answer as a function of number of

answers for voters before, and after, an answer is accepted.
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Figure 2.9: Regression coefficients for voting on an (eventually) accepted answer
before (red triangles) and after (blue squares) that answer is accepted for (a) tech-
nical, (b) non-technical, and (c) meta boards, with 2 to 20 answers. The shaded
region represents the uncertainty in our values (see Section 2.3). There is a large
and increasing vote dependence on the accepted answer once the asker accepts it,
compared to before the answer is accepted, meaning the signal that this answer is

accepted appears to have a statistically significant effect on voter behavior.
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We find that voters are more likely to choose an answer that is eventually
accepted (the regression coefficients are positive), but, curiously, voters are even
more likely to choose the answer after it is accepted as the number of answers
increase (the regression coefficient is usually even higher, and increases with the
number of answers). In other words, although answer quality does not change
before or after acceptance, users are more likely to vote on whatever the asker
chooses, especially as the number of answers increases. This could either be due to
“lazy voters”, who appear later on, when the number of answers is high, or because
voters are overwhelmed by the number of answers.

Finally, askers are much better modeled by our regressions compared to voters
(Fig. 2.4) and similarly, are more predictable (Fig. 2.5). To better understand what
we are seeing, we must understand Stack Exchange’s rules. Namely, voters need a
reputation above 15 in order to vote, which becomes a barrier to entry: typically,
users must have provided answers or questions in the past that others upvoted
in order to be able to vote. Askers on the other hand require less reputation.
Presumably they rely more on heuristics than voters, because they are less able to
recognize the correct answer. This is important because accepted answers have been
used as a gold standard of answer quality in previous research [35-37|, but, if askers
strongly rely on heuristics like answer rank order, this puts into question whether
accepted answers are the best standard. Instead, we find that highly voted answers

may be a better standard, because voters appear to depend less on heuristics.
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2.5 Conclusion

We analyzed user activity over a five year period on 250 Q&A communities on
the Stack Exchange network. The goal of our study was to understand what factors
influence users to vote for, or accept, particular answers. Analysis from our models of
voter and asker behavior suggest that Stack Exchange users rely on simple cognitive
heuristics to choose an answer to vote for or accept, especially as the number of
answers available increases. First, model parameters describing the dependence of
behavior on answer’s web page order and word share increase with the number of
available answers. Such dependence would not necessarily exist if web page order
and word share were merely proxies for answer quality. Second, askers appear to rely
more on heuristics compared to voters, who need higher reputation and therefore
may be more proficient Stack Exchange users. This suggests that answer acceptance
might not be the best proxy for answer quality. Finally, voters are more likely to vote
for an answer after it is accepted than before that very same answer is accepted as
the number of available answers grow. Not only does acceptance appear to change a
user’s judgment of answer quality, it appears to become an increasingly strong bias
with the number of answers.

The behaviors we describe are consistent with, but not proof of, bounded ratio-
nality, in which decision-makers employ cognitive heuristics to make quick decisions
instead of evaluating all available information [57,58]. Moreover, people tend to
use heuristics to cope with the “cognitive strain” of information overload [59]. Psy-

chologists and behavioral scientists have identified a wide array of cognitive heuris-
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tics, which introduce predictable biases into human behavior. Social influence, aka
“bandwagon effect”, is one such heuristic: people pay attention to the choices of oth-
ers [32]. We find, however, that this affect is not very significant in Stack Exchange.
Another important heuristic for online activity is “position bias” [60]: people pay
more attention to items at the top of the list or the screen than those below [55].
Position bias, or rank order, plays a large effect in user choices even after accounting
for item quality [55,61], which is in agreement with the results presented here. Alter-
native explanations of our results, however, are plausible. For example “lazy” (more
heuristically driven) voters might arrive later, after a question has many answers.

No matter which explanation holds, however, our work offers a cautionary note
to designers of crowdsourcing systems, such as Stack Exchange: collective judgments
about content quality are not necessarily accurate.To partly address this problem,
the order in which answers are presented to users could be randomized, or questions
could be closed to voting after some time.

Our work makes a number of methodological contributions valuable to the
Data Science community. First, we use CDF normalization to make all variables
commensurate. While this is a nonlinear transformation, it accounts for the distri-
bution of variable values in the dataset, which reduces the influence of outliers and
allows for fair comparison of heterogeneous variables. Also, we handled behavioral
heterogeneity by splitting by board type and number of answers. To check robust-
ness of regression results, we used two types of penalized regression and “leave out
the largest board” analysis. These methods can be applied to model other het-

erogeneous behavioral data. Finally, we measured the uncertainty in parameter
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coefficients as the range of coefficients, due to varying the penalization in our re-
gressions, such that the CV error is within one standard deviation of the minimum
mean error. We are unaware of alternative methods to accurately display the uncer-
tainty in measurements from penalized regressions, and the uncertainties from our
regressions appear reasonable.

Our analysis of observational data cannot completely control for the some of
the known (and unknown) covariates that can affect our conclusions. For example,
we cannot completely separate the effects of cognitive heuristics from those of an-
swer quality. A necessary step in future research is to conduct a laboratory study
to control for variation in answer quality, similar to previous studies [55,61], to
quantify the degree to which crowds are “myopic.” Despite known limitations, our
work highlights the benefits of using data mining to understand and predict human
behaviors, and may provide insight into improving the quality and performance of

crowdsourcing systems.
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Chapter 3: Competing Opinions and Stubbornness:

Connecting Models to Data

3.1 Introduction

The study of opinion dynamics, which has received considerable attention from
statistical physicists, network scientists, and social scientists [10,62-68], explores
the dynamics of competing ideas or opinions via interactions between individuals.
Example application areas include voting patterns [1,2,7,8,10,66,69-72], product
competition [73], and the spread of cultural norms and religions [74-76]. The goal
of our work is to gain new insights into opinion dynamics by introducing a well-
motivated model that can simultaneously describe multiple empirical observations
which have previously been explained by several different models.

A variety of models have been proposed to explain individual features of
opinion dynamics observed in empirical data. For example, some models have
focused on producing nonconsensus in equilibrium [63, 65, 77], while others can
reproduce observed vote distributions [2,70], or long-range vote correlations [21].
Because we believe these observations are all fundamentally related, we introduce a

new model, called the Competing Contagions with Individual Stubbornness (CCIS)
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model, which can robustly explain the above behaviors using agent-based dynam-
ics designed to mimic observed human behaviors. Not only does the CCIS model
match the aforementioned observations with consistent parameter values, it is gen-
eral enough to incorporate a wide array of plausible factors affecting the success of
opinions in the real world, allowing for agents with a neutral state, opinions that are
stronger than others, and opinions that may be introduced after an earlier opinion
has spread through a population. Here, for simplified modeling and analysis, we
focus on the case of equal strength opinions introduced at the same time and leave
these other cases for future work.

In the CCIS model, at any given time point, individuals can either be in a
neutral state or in one of @) different opinion states. Opinions can change over
time as individuals try to “convince” others in their social network to adopt their
opinion. In our model, individuals exhibit ”stubbornness,” meaning that the longer
an opinionated individual keeps his or her opinion, the less likely they are to switch
to a new one. This property has been seen empirically in previous studies [78]. We
distinguish this from other models in which individuals resist changes in their opinion
independent of time, e.g., [66,70-72,79,80]. Within the CCIS model, individuals
that have held on to their opinion for a long time will eventually completely lose
the ability to be convinced by one of their neighbors to adopt a different opinion.
However, all opinionated individuals move back to the neutral state at a constant
rate, which is designed to allow for a large fraction of “independent” voters, as is
the case for the United States electorate [81]. Once an individual becomes neutral,

they can switch opinions to any of their neighbors’, which creates longer timescale

33



opinion dynamics.

The remainder of the chapter is structured as follows. We first describe re-
lated work (Section 4.2) and then provide the details of our model and algorithm
implementation (Section 3.3), before comparing the results of our model to empir-
ical data (Section 3.4). We then analyze the dynamics of our model using a series
of approximations (Section 3.5) and numerically study the consensus time outside
of the parameter ranges for which our analysis is valid (Section 3.6). Finally, we

conclude with a discussion of future work (Section 4.6).

3.2 Related Work

In this section, we review the empirical studies that motivate the CCIS model
and we discuss related models.

In recent years, large sets of empirical data have allowed researchers to better
observe collective social dynamics [1, 2,21, 82-85], leading to new insights in the
field. We first focus on two themes that have received recent attention: candidate
vote distributions [1,2,21] and spatial vote correlations [21].

Two important studies on election data from several countries demonstrate
that vote distributions, when rescaled by /N, where @) is the number of candidates
and N is the number of voters, often collapse to a universal distribution (see inset
of Fig. 3.2) [1,2]. Two recent models have been proposed to explain this behavior
2,70].

A model by Fortunato and Castellano [2] assumes that voters are convinced to
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vote for a specific candidate unique to each of () social networks, with no interaction
between voters of opposing candidates. While the model provides good agreement
with vote distribution data and demonstrates how “word-of-mouth” or contagion-
style spreading can play an important role in observed voting patterns, it cannot
capture one important feature of real elections — that candidates seem to often
compete for a common set of voters [86-88]. Hence, we believe that a model with
competing opinions on a single network, such as the one introduced in this chapter, is
needed to for a more complete picture of how individual level dynamics can translate
to observed voting patterns.

Another model by Palombi and Toti, which does include interactions between
supporters of different candidates, yields qualitative agreement with empirical data
on vote distributions by assuming a network of interactions with significant structure
(non-overlapping cliques connected by sparse random links) as well as a distribu-
tion of zealots (unwavering candidate supporters) that is related to the underlying
clique structure of the network. By contrast, our goal is to show agreement with
empirical data on both vote distributions and voter correlations using a somewhat
more generic network of interactions and without imposing any connection between
candidate preferences and network placement for any individuals. The contagion-
inspired framework of our CCIS model, e.g., the inclusion of a neutral state and a
tunable transmissability parameter, gives it the flexibility to match the two afore-
mentioned empirical patterns of interest while simultaneously remaining relatively
simple.

Recent empirical studies have shown that the spatial correlation of vote-shares
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in United States elections and the spatial correlation of turn-out rates in European
elections decreases as the log of the distance between two voting districts [3,21]. This
contrasts to correlations of spins in many statistical mechanic spin models, which
decrease as a power law or exponentially with distance [89], but is a prediction of
some spin (or opinion) models, such as the VM, at an arbitrary, fixed time [7,8,90].

In addition to matching these empirical patterns by yielding spatial opinion
correlations that decrease as the log of the distance between individuals (in the
case of networks with significant spatial structure), the CCIS model shares other
important features with the well-studied VM. In the VM, at each time step, an
individual chooses to adopt the opinion of one of their randomly chosen neighbors
[7,8]. In the basic CCIS model, opinions also change via interactions with neighbors,
but instead of interacting with one neighbor at a time, individuals try to persuade all
their neighbors simultaneously, similar to the approach used in the aforementioned
Fortunato and Castellano [2] paper. In Section 3.5, we also consider CCIS type
dynamics for the situation in which, as in the VM, interactions at each time step
are focused on an pair of connected individuals instead of one individual and all of
their neighbors.

The CCIS model also has important similarities to the well-studied Susceptible-
Infected-Susceptible (SIS) model from epidemics. In the SIS model, individuals ex-
ist in only one of two states: “susceptible” and “infected,” and infections propagate
via contacts between infected and susceptible individuals, with infected individuals
eventually recovering to the susceptible state. The SIS model can be applied to

the study of opinion dynamics, but, because the basic model is an explicitly a two-
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state model, it can only be used to explore how a single opinion (contagion strain)
propagates through a neutral (susceptible) population, and the SIS model must be
modified to explore the competition dynamics among multiple opinions.

A few recent studies have modeled the coexistence of two contagion strains on
networks with SIS-like models [91-97]. Typically, in these models, individuals can
only switch from one strain to another if they recover first [92,95,96], or else two
strains can cohabit a single individual but interact on coupled networks [94]. In the
CCIS model, however, individuals can switch directly between opinions instead of
first moving to the recovered state, and all opinions propagate on a single network.
Furthermore, no individual can have more than one opinion at any time. These are
realistic assumptions for opinion dynamics, because individuals can directly switch
between opinions more easily than they might directly switch between diseases, and
would be unlikely to hold contrasting opinions at the same time. We note, however,
that across a wide parameter space in our model, one opinion eventually dominates
(e.g., Eq. 3.4 and Figs. 7, 8, & 9), while the contagion models described above have
large parameter regimes where two contagions can stably coexist. In Section 3.5,
we discuss in more detail how the CCIS model approaches consensus.

The CCIS model is further distinguished from the VM and SIS model by having
individuals exhibit stubbornness [98] (similar model assumptions are made in other
works [69,99-101]). In our definition of stubbornness, individuals increasingly resist
changing their opinion, in contrast to other models where individuals resist changes
in their opinion independent of time, e.g., [66,70-72,79,80]. In pre-trial publicity
(PTP) experiments [78], the correlation between the jury decision and the PTP
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opinion is stronger when individuals are exposed to PTP more than a week before
the mock trial compared to when the exposure happens closer to the start of the trial.
This provides some evidence that individuals change their resistance to alternative
opinions, but not necessarily monotonically with time. Further evidence from voter
data is currently lacking and is an important area for future study. Nonetheless, the
initial evidence from jury experiments and the strong agreement to data we find with
our current model is suggestive that stubbornness may play an important role in
the dynamics of opinions. We also note that stubbornness is similar to the primacy
effect, well studied in psychology [102,103], in which the first idea someone hears is
favored regardless of its validity. That effect, however, deals only with the ordering
of choices and does not take into account the time intervals between choices.

The CCIS model is designed to offer a more general framework than many
previous models. It allows for different opinions to be more or less likely to be
adopted relative to each other, for individual opinions to be more or less likely to
exhibit stubbornness, for some opinions to be introduced at later times than others,
and for individuals to exist in a neutral state. These additions give it the flexibility
to capture a variety of situations. For simplicity, we focus on the case of opinions

with equal strengths and individuals with identical stubbornness parameters.

3.3 Model Details

In this section, we describe the dynamics of the CCIS model in detail (see Fig.

3.1 for a schematic). The model operates on a network with N nodes, in which
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the state of each node, 7, is s; € {0,1,2,...,Q}, where @ is the total number of
opinionated states and 0 corresponds to the neutral state. For ease of analysis, we
study the case in which interactions between individuals occur on a fixed, unweighted
network.

At time t = 0, ny (possibly 0) nodes are in state 0, n; (again, possibly 0) are
in state 1, etc., such that ng +n; + ... +ng = N. We leave open the possibility
for new opinions to be added at arbitrary times in the simulation. However, in this
paper, we focus on the case where at t = 0, ny = ny = ... = ng (and therefore all
opinions are simultaneously introduced).

Algorithmically, we implement the model as follows:

1. Pick a random opinionated node i (i.e, a node not in state 0)

. . i 5
(a) Revert i’s state to 0 with probability 35
(b) Otherwise pick each of i’s neighbor at random:

i. Convert any neutral (state 0) neighbor to state s; with probability
ii. Convert any contrary opinionated neighbor j to state s; with proba-
bility max{8(1 — 7;u), 0}, where 7; is the time since node j adopted

its current opinion.

2. Count the number of opinionated individuals, N,, = N —ng, and repeat from

step 1 with time incremented by At = N,,(1 + §)~*.

Here, for simplicity, we assume that the persuasiveness of each individual, 3, the
recovery rate, ¢, and the stubbornness, 1, does not depend on which opinion is held,
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but there may be situations for which these parameters should be differentiated
according to opinion. We implement stubbornness in the following way: the effec-
tive persuadability of a node j by a neighbor with a contrary opinion, 5(1 — 7;4),
decreases linearly in time until 7; = !, at which point individual j’s opinion re-
mains fixed unless j moves to the neutral state, which occurs at rate 4. A natural
alternative to our implementation of stubbornness is to construct an effective per-
suadability that decreases exponentially, Sexp(—7;u). We choose the linear form for

its simplicity, but we expect similar dynamics for the two cases.

/ /
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Figure 3.1: The schematic of our model. Arrows indicate attempts to convince
neighboring individuals, with probabilities for success appearing next to each arrow.
The length of time the nodes have held their current opinion is indicated by the text

inside the node.

Note that at each time step, At, is normalized such that N,, node-node interac-
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tions take place, and N, of the opinionated nodes recover, after a time ), At; = 1.
Holding N,, constant for each time step, At = ((14+8)N,,) "' and the recovery prob-
ability is 0/(1 + 0). This method is based upon a similar approached used for the
SIS model to approximate continuous time dynamics [104].

We include the recovery rate in our model to allow for a large fraction of
individuals to remain neutral over long time scales. This is motivated in part by the
empirical observation that a significant fraction of Americans remain unaffiliated
with any political party, and that this fraction is stable over the timescale of years
[81], yet in individual elections, these “independents” frequently vote for candidates
with party affiliations, and hence can be thought of as having adopted the party
“opinion” over short timescales. Additional elements of realism, such as mass media
[105], party affiliation [9], and variations in the recovery rate, have been left out of

this model for simplicity, and may be important for future study.

3.4  Agreement With Data

In this section, we show that the CCIS model can reproduce two empirical
observations: (1) distributions of votes received by candidates, when appropriately
rescaled, follow a nearly universal function [1,2] and (2) correlations between voters
decrease only logarithmically as a function of distance [3,21]. We find agreement
between the CCIS model and both empirical observations using spatially extended
networks with heavy-tailed degree distribution (a reasonable model for social net-

works [106,107]). In agreement with Fortunato and Castellano [2], we find that
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a heavy-tailed degree distribution is important for matching the opinion model’s
distribution to the empirical vote distribution data. We emphasize that the spatial
component (meaning that nodes preferentially connect to others that are spatially
close) is necessary to create spatial correlations that match empirical observation.
The networks are created as follows: all nodes are embedded on an VN x VN two-
dimensional grid with periodic boundary conditions. The out-degree, k; > kpin, iS
chosen from from a power law degree distribution, p(k) ~ k=% with minimum degree
Kmin, which is specified so that the desired average degree, (k), is reached. Directed
links from node i to the k; nearest (in grid-space) other nodes are then created. A
fraction f of edges are then rewired at random to add noise to the network. A more

detailed description of the network is given in Appendix A.1.

3.4.1 Voter Scaling

As Fig. 3.2 shows, the CCIS model with appropriate parameter choices can
closely match empirical vote distributions rescaled by @@/N. We simulate each elec-
tion one time for each set of parameters to test how well our model can typically
follow the empirical data, and each election is run on a spatially distributed scale-free
graph (as described above) with N and @ the same as empirical data to account for
finite size effects. We vary the initial fraction of individuals seeded until the model
fits the distribution from Poland’s 2005 elections (which has the largest number of
elections). All other simulation parameters are fixed to reasonable values: 5 = 0.1,

(ky =10, p =1, 6 =0, and a = 2.01 (see Appendix A.1 for details regarding the fit
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and the robustness of the results to changes in the parameters).
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Figure 3.2: A comparison of scaled vote distributions between the CCIS model
(closed markers) and elections (open markers) (data from [1]), in which data is
shifted down by decades for clarity (inset shows the original data collapse). Here v
corresponds to the number of votes, with the number of candidates, (), and size of
the population, N, equal to the empirical data values. The initial fraction seeded
with a preference to a candidate is fitted to the scaled vote distribution of Poland’s

2005 elections. All other parameters are fixed.

The simulation results plotted are for networks without random rewiring (i.e.,
f = 0), but we find similarly good fits for larger values of f. In the simulations,
1> 0 and 0 = 0 in order to reach a non-consensus equilibrium, because otherwise
we would have to stop the simulation at some arbitrary time before consensus is
reached. These same parameters were used to fit all the other countries’ elections.
Overall, we find good fits between our model and voter data as long as p > 0,

and the distribution is sufficiently heavy tailed, i.e. the magnitude of the degree
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distribution exponent is small (v < 3). See Fig. A.2 in Appendix A.1 for a de-
tailed analysis of the robustness of the fit to parameter variation. Our findings
suggest that both individual stubbornness and heavy-tailed degree distributions in
social networks [106] may be important underlying drivers of the generic behaviors
observed in opinion dynamics.

The reason for the strong fit in Fig. 3.2 is in part because our model appears
to follow a nearly universal distribution when each vote is rescaled by Q /N, like the
empirical data from the elections it attempts to model. Of the elections modeled,
we find that only Switzerland’s diverges significantly from our model due to its
unusual “double-hump” distribution, plausibly because votes are swayed by the
local language differences (primarily French and German).

Agreement between the model and empirical data (Fig. 3.2) is also possible
when the initial fraction of individuals seeded, P(0), is 100% if the persuasiveness of
each individual, 5, is adjusted to 0.65 (see Fig. 3.3). In this case, because 6 = 0, no
individual ever reaches the neutral state. Despite the fact that agreement with data
can be achieved without the inclusion of a neutral state, we believe that such a state
is important because most voters start out with little knowledge of the candidates.

One natural way to seed opinions when explaining the candidate vote distri-
bution is to assume that only one individual has an initial vote preference: the
candidate himself. This creates a poor fit for our model (not shown), possibly sug-
gesting that the initial spreading process differs from the one that takes over after
a short time.

Our work is influenced by the Fortunato and Castellano (FC) model (intro-
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Figure 3.3: A comparison of the best fits between the CCIS model and the 2005
Poland elections with a fraction of nodes initially seeded with an opinion (P(0))
equal to 6% and 100% (see List of Abbreviations for the definitions of parameters).
The parameters are the same except when P(0) = 6%, 8 = 0.1, and when P(0) =

100%, 8 = 0.65.

duced in Section 4.2), which was developed to describe the same distribution data [2].
In both the FC and CCIS model, individuals try to persuade neutral neighbors in
the network at some rate. Opinions do not compete in the FC model, but instead
spread within isolated networks, meaning that each of the () candidates convince
voters to vote for him or her by word of mouth to their friends, which then spreads
to their friends’ friends, etc. In this scenario, an individual only decides whether or
not to vote for one specific candidate and never decides between candidates. The
CCIS model is designed to capture a more realistic scenario in which candidates
compete for the same set of voters [86-88]. We directly compare our model to the

FC model in Fig. 3.4. Both models create similar fits, based on the log-likelihood
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function, with neither being significantly better.

10°%. Y

F ;X 4
i b 4 AR

— L 4 Aoy ]

pa oL Ay

~ O A Z!

O _2 AXL

> 10 E : X E

I - | o All Data (Excl. Switzerland) v 1
_| v Fortunato Model 5‘ ]
| & CCIS Model . ]

-4 |
10745

1072 107" 10° 10" 107
v Q/N

10™

Figure 3.4: We plot the distribution across all elections shown in Fig. 3.2, excluding

Switzerland, and compare our fit to the fit of the FC model [2].

3.4.2 Spatial Correlation

Next, we show that the CCIS model creates correlations that decrease loga-
rithmically with distance, as seen in empirical studies [3,21]. This behavior is not
unique to our model because many models can create logarithmically decreasing
correlations as they approach the VM Universality Class [108] in some special pa-
rameter range. We find it important, however, that our model is the first model we
are aware of that can reproduce both the previously mentioned vote distributions,
and this behavior, especially over a wide set of parameters. In comparison, the
FC model [2] assumes non-interacting opinions on random graphs, and the Palombi
and Toti model [70] assumes opinions interact on non-spatially distributed cliques

with edges connected randomly between them, so votes are uncorrelated in space.
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Analysis of the observed logarithmic correlations in the CCIS model are discussed
in the next section. Simulations, however, suggest the most important property
in our model to reproduce the empirical observations is a spatial structure in our
social network, whether the network is a lattice, small-world (random rewiring), or
the current scale-free spatial network. Therefore, this property is very general, and

should be generically seen in empirical data.

0.3

0.2

C(r)

0.1

0.0

Figure 3.5: The correlation as a function of distance for the CCIS model (where
nodes are separated by a unit 1 distance on a 10° node network). The CCIS model
parameters are the same as in Fig. 3.2 except here @ = 2 and 100% of nodes seeded.
f fraction of edges are randomly rewired on a scale-free spatially distributed graph
(f = 0 corresponds to the network in Fig. 3.2) showing that the logarithmically
decreasing correlations are robust. Inset: similar correlations are seen for data from

the year 2000 United States Presidential election [3].

Figure 3.5 shows results from simulations of our model on spatial scale-free
networks with 10° nodes and the same model parameters as in Fig. 3.2 (if f = 0).
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The figure also shows results from simulations for which a fraction, f, of edges were
randomly rewired. The rewiring process reduces the spatial features of the graph by
creating long-range ties that significantly reduce the mean geodesic distance between
points. Even with large f, however, we still see strong qualitative agreement with
empirical data.

We note, however, that while empirical voting patterns are consistent with
the CCIS model operating on a spatially-extended network, we cannot rule out the
possibility that the empirical correlation data is the result of self-segregation, e.g.,
that “Republicans” move to “Republican” counties. Additional data is necessary
to differentiate these two potential explanations for spatial correlations in voting

behavior.

3.5 Analysis

In this section, we analyze the dynamics of our model to better understand
the behaviors it is capable of producing. To do so, we simplify the model in three
different ways, allowing us to probe the dynamics more thoroughly than any single
approximation.

First, to probe the spatial correlation behavior discussed in the previous sec-
tion we explore the limit in which our model simplifies to a diffusion process. Second,
we explain how opinion sizes change in time with a transport-like equation, which
assumes individuals mix homogeneously in an infinitely large network and tracks the

time evolution of the density of individuals who have held a specified opinion for
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designated length of time. Finally, we use the Fokker-Planck equation to explore, for
the case = 0 = 0 (i.e., no stubbornness and no recovery), how our model reaches
opinion consensus for finite systems with heterogeneity in the connectedness of in-
dividuals. Under the Fokker-Planck approximation (FPA), we handle heterogeneity
in the number of connections but we do not capture spatial effects or incorporate

stubbornness and recovery, motivating all three separate types of analysis.

3.5.1 Spatial Correlations

Spatial correlations between opinions in the CCIS model decrease logarith-
mically over a wide parameter space (see Fig. 3.5). We can demonstrate this
spatial correlation behavior analytically for the continuum limit of the CCIS model
seeded with two opinions (and no neutral individuals) on a lattice grid, for the case
=0 = 0. Because 6 = 0, nodes do not independently change to any other state,
and furthermore, because u = 0, the probability of each node changing their state is
(number of opposing neighbors)/[(2d)?[] at any timestep, where 2d is the degree of
a d-dimensional lattice. In comparison, the two-opinion VM assumes that agents are
convinced by a random neighbor’s opinion at each timestep [7,8], or equivalently, the
probability of any node changing their state is (number of opposing neighbors)/(2d),
therefore, in this parameter range, the CCIS kinetics is exactly the same as the VM,
with time scaled by 2d/.

The VM can be approximated as a diffusion process in the continuum limit [90],
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meaning the correlation as a function of time, ¢, can be expressed as:

d=1
d=2 (3.1)
d>3

in which D = d, r is the distance between nodes, and nodes are separated from their

neighbors by a distance of one unit. Eq. 3.1 is the same for the CCIS model in this

limit, with D = (2d%8)~! to reflect the rescaling of time. The spatial correlation

between opinions in the CCIS model therefore decreases as log(r) for fixed time in

this limit.

3.5.2 Transport-Like Approximation (TLA)

Next, we try to better understand how opinions change in time in the CCIS

model. We present a partial differential equation similar to the transport equation,

to describe the dynamics of the CCIS model in the mean field. This approximation,

which we discuss in more detail in Appendix A.2, holds for all g, 4 > 0, and 6 = 0:

O+ 0)p (1, 7) = =O(1 = 7p) (1 — 7p) Blp (2, 7) > PP(1). (3:2)

B#A

Here, p4(t,7) is the density of individuals at time ¢ that have have opinion

A for a time 7. The above equation says that p4(t,7) — p(t + At, 7 + At), and

change to an opinion B # A at arate f(1—7p). If 7w > 1, the right hand side is 0 due



to the Heaviside step function, ©. The boundary condition (not shown) describes
the gain in new individuals (increase in p*)(¢,0)) via conversion of individuals who
were neutral or of an opposing opinion, allowing P“ f pA(t, 7')d1’ to remain
constant in equilibrium. Agreement between the equation and simulations is poor
when g = 0, because, after being stochastically pushed out of equilibrium, the
system quickly approaches consensus. Similar results are seen when § > 0, after
incorporating a few additional terms. We will discuss how to analyse the dynamics
when 6 > 0 in the next section. However, excellent agreement between theory and

simulations is observed in Fig. 3.6 when 6 = 0 and p > 0.

1.0
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Figure 3.6: The difference in equilibrium opinion densities, AP = |[P®Y) — P?)| as a
function of § between theory (solid lines) and simulations, where 6 = 0 and p = 0.2.
AP = 0 corresponds to a 50/50 split in opinions while AP = 1 corresponds to

complete consensus. Simulations are on networks N = 10° and degree k = 10.
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3.5.3 Fokker-Planck Approximation of the CCIS Model

We can also analyze the model when o = § = 0, with the Fokker-Plank Ap-
proximation (FPA). The main difference between the FPA and the TLA is that the
FPA takes into account the size of the system, and degree heterogeneity of a ran-
dom graph, but does not incorporate the effects of stubbornness or recovery. Under
this approximation, links randomly rewire, so we have no spatial information about
the network, and cannot say anything about spatial correlations. It is therefore
a powerful theory but only for specific network topologies. Our analysis may be
improved upon, by modeling bipartite networks, networks with strong cliques, or
using a more accurate pair approximation [10,109,110], but our goal here is to derive
simple expressions that can describe some of the most interesting behavior. We give
the details of the FPA in Appendix A.3 and describe the main results here.

Consensus time, T, is found to be finite and scales in non-trivial ways with
the network topology and the persuasiveness parameter 5. If p are the fraction of

individuals with one of two opinions, we find that

p(1—p) T eons
Neff 8p2

~ 1, (3.3)

where N5y is the effective size of the network:

(

BQJQIQ% Outward Process
Nesr = W]\llf)g Neutral Process > (3.4)

\ % Inward Process
and where (k) and (k?) are the first and second moments, respectively, of the network
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degree distribution. Solving Eq. 3.3, we find that T,,,s ~

for derivation).

cff (see Appendix A.3

In Eq. 3.4, the outward process is where an opinion spreads from an individual

to its neighbors (which is assumed in the basic CCIS model). More generally, there

are two other ways the opinion could spread: (1) the neutral process is where an

opinion spreads between two individuals on a random link, and (2) the inward

process is where opinions spread from neighbors to an individual.

We now discuss comparisons between simulations and theory for the outward

process (in Appendix A.3, we compare Ti.,s in simulations to an equivalent 7.,

theory for the neutral and inward processes).
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Figure 3.7: Mean consensus time versus N for a complete graph with f = 1072.

Theory is the dashed gray line T,,,s ~ (283) for small N, and the black line T,,,s ~

(NB%)~1 for large N. This figure contrasts significantly with the IP model, which

predicts that T,,,s ~ N.

When 6 = 0, p = 0, and Sk = 1, the CCIS model is similar to the invasion
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process (IP) [10], in which a neighbor is randomly chosen to have the same opinion as
the root node [10]. In the true IP, T,p,s ~ N {(k~1)(k), but in the CCIS model, Tpops ~
(k—fi) for large N. The discrepancy is due to a fixed fraction of neighbors, 1/(k),
being changed in the CCIS model, instead of exactly one in the IP. Interestingly,
this implies that T,,,s ~ (NB?)~! in a complete graph, which we observe in Fig.
3.7, while in the IP, T,pps ~ N for N > 10 (not shown). In the CCIS model, we
find that, for small N, the consensus time is roughly (23)~!, the mean time for
consensus to be reached between two nodes. The crossover to the asymptotic limit
is when T,,,s = (28)7' = (NB?)~! or N = 2/8. In conclusion, although some of
the scaling behavior resembles previous work on the VM, we make predictions that
are completely distinct from previous VM-like models. This discrepancy has the
potential to be tested in a social experiment by observing the time to consensus in

small groups, because the difference is apparent even for small N. We leave this for

future work.

3.6 Consensus Times For 6 > 0

Finally, we numerically study T,.,s for 6 > 0, where the previous analysis
breaks down, in two ways. Figure 3.8 illustrates how the consensus time depends on
the recovery rate  when p = 0. Figure 3.9 shows how the consensus time depends on
the stubbornness rate p for different values of 9. Note that “consensus” here refers
to the state in which at most one opinion remains. Thus the consensus state may

contain a mixture of opinionated and neutral individuals, as long as all opinionated
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individuals hold the same opinion.

Fig. 3.8 shows that the consensus time decreases with §.Because the expected
number of opinionated individuals at any given time decreases as 0 increases, the
time it takes for the opinionated individuals to reach consensus is also shorter.
For this reason, we hypothesize that Tepns ~ Nepr > 4 PW with Ness as defined
previously. In other words, we generalize Eq. 3.4 and claim Nggp >, P@ s the

new effective size of the network which we leave for future work to explore more

deeply.
0t e co o
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Figure 3.8: The consensus time versus ¢ with g = 0, and 5 = 0.05, on a (k) =
10 Erdos-Renyi Network. The arrow indicates the critical point (calculated using
SIS model analysis [4]) of the CCIS model, above which all individuals quickly

approach the neutral state. We note that the consensus time appears to decrease

monotonically with 6. The initial condition is a 50/50 mixture of opinions 1 and 2.

In Fig. 3.9, we plot T,,,s versus u for various values of § to understand how
our model more generally reaches consensus for finite networks. First, we find that
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Figure 3.9: Mean consensus time for varying p and 6 on (k) = 10, N = 10* Poisson
networks with g = 0.5. A minimum in the consensus time is observed for p ~ 0.1,

while analysis of model behavior for > 0.1 reveals that T,,,s ~ log(N)d 1.

Trons ~ log(N)o~! for small § and g > 0.1, which, in this limit, is in agreement
with previous analysis [98]. The behavior of T,,,s versus ; demonstrates interesting
parallels to other models [69,98,99] (Fig. 3.9), whereby at a non-trivial value of
i = pe(0), the consensus time reaches a minimum, and at larger values of u the
consensus time increases significantly. This may generically imply that large groups
reach consensus relatively quickly if individuals are moderately resistant to changing

their opinion.

3.7 Conclusion

In conclusion, we have introduced a model of opinion dynamics that agrees

with current empirical data and exhibits interaction dynamics based upon real hu-
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man behavior.

In addition, because our model makes few assumptions, it may plausibly ex-
plain a range of behaviors, which future empirical investigations may be able to
corroborate. For example, the model can be used to explore the “viral” spread
of competing products, in which stubbornness is mapped to increasing brand loy-
alty [111,112]. In this case, the brand-share distribution might be similar to Fig.
3.2.

Future work is necessary, however, to model opinions with greater realism. As
mentioned previously, this model might benefit from additional realistic assump-
tions. For example, mass media could be added, because it can be more influen-
tial than individual persons. Similarly, we could add party affiliation, which may
bias which candidate(s) individuals initially prefer, or are likely to support in the
future [9]. Additionally, the recovery rate could be tied to an individual’s stubborn-
ness, instead of constant as we assume here for simplicity.

In addition, one could model heterogeneous stubbornness, either at the opinion
level (as our model assumes) or individual level, because some individuals appear
to stubbornly hold on to an idea, while others may shift their stance more readily.
This is known to add greater realism to opinion dynamics because the most stubborn
individuals possible, known as “zealots” in previous literature, can help push the
political preference in a two party system near the 50/50 mark, alike to what we
observe in the CCIS model [66,71,72]. Expanding on previous work, we expect
that adding heterogeneous stubbornness to our model can further slow down or

stop consensus and potentially create better agreement with data. In addition,
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we assume agents linearly increase their resistance to alternative opinions in time.
This is not necessarily true because PTP a day before a trial produced a negative
correlation between the biased news and the juror decision, while PTP exactly a
week before a trial is not statistically significant [78]. A non-linear or non-monotonic
stubbornness may significantly change the dynamics.

Finally, this work assumes that all opinions are equally strong and spread at
the same time, but this is not necessarily true in reality, which we discuss briefly
in Section 3.3. MySpace started before Facebook, for example, and therefore more
people initially preferred MySpace [91]. Facebook was later seen as a preferred op-
tion, however, and eventually dominated social media at the expense of MySpace
and similar platforms. Future work should therefore allow for a first-mover advan-
tage [113] and opinions that are stronger or weaker than others to better capture

reality.
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Chapter 4:  Opinion Dynamics in Juries and Judicial Panels

4.1 Introduction

Opinion dynamics, the study of how competing ideas spread through social
interactions, has a long history in mathematics [7,8], physics [75, 79, 80,108, 114],
linguistics [115,116], and computer science [91,117-119]. Recent work has focused on
whether competing opinion models can successfully describe the statistical patterns
observed in empirical data, such as the lack of consensus among groups [65, 77],
universal distributions of votes [1,2,25], and the long-range correlations between
voters [21,25]. Typically, these kinds of studies focus on a large population of
individuals, using an assumed [2,65,77], or partially inferred [21] interaction network,
and a single minimal model is used to explain the data, rather than a class of
plausible models, although exceptions to this rule exist [120].

In this chapter, we study how juries and judicial panels arrive at their ver-
dicts. When these groups hear a case, they deliberate amongst themselves and tend
to avoid influence from outsiders. After a period of time, they vote on one of two
verdicts, “guilty” or “innocent”. It is therefore safe to assume that juries and judi-
cial panels strictly interact with each other, if anyone, which reduces the potential

complication of trying to model influence from outside the group.
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One feature of the process we wish to capture through modeling is how the
time to reach a decision varies across cases. We note that different opinion models
have very different time distributions when reaching a verdict [121], even though
the average or variance in their distributions may be similar. Matching the model’s
time distribution to the data can allow us to systematically test what models can
fit the data best, based on methods introduced in previous work [122,123].

Our findings contrast with previous work on opinion dynamics, which typically
study the interaction of thousands or even millions of individuals [1,2,21,124], and
do not model the time for groups to reach a (possibly split) decision in empirical
data. Despite that, several studies have looked at the times to reach consensus
9,10, 69,98,109, 110,121, 125] or even the asymptotic consensus time distributions
[124], which partly inspired our current work.

An important limitation in our data is that each group of jurors and judges
observes a different trial, and there is a diversity of lawyers, defendants, evidence and
so on between trials that can potentially affect how cases are decided. To address this
issue, we first explore whether the data is too diverse to be described by a consistent
mechanistic model. To do this, we examine whether we see consistent patterns in
the data even once we control for diverse aspects. For instance, we split the data
by the number of jurors or judges, the trial time (when available) and the final
vote (when available, e.g., 10-2 in favor of a guilty verdict). Across these different
categories, we see some statistically significant differences in the distributions, but
we also see common patterns in the data, to be discussed shortly, therefore many

common properties in this data appear resilient across trial and jury attributes. This
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provides a strong hint that a consistent mechanistic model may be able to describe
all our data.

Before undertaking our modeling goals, we first analyzed the empirical data
for notable patterns. We find that the mean deliberation time, (Tyeb), typically
appears to scale with the trial time, Tiya1, as (Tuenn) ~ (Tiria1)'/?, and notably it
scales sublinearly across all datasets. If T}, is a proxy for the amount of informa-
tion gathered, and (Tge,) a proxy for the amount of information individuals argue
over, this scaling would suggest that a smaller relative share of the information is
deliberated on, as the trial time increases. We also observe that the system size does
not scale strongly with the number of jurors or judges, which is counter to many
intuitive models [10,125].

In order to identify what model features are most important for capturing the
data, we study a set of plausible models of our data: the majority voter model
(MVM) [6], three non-interacting null models, in which jurors make decisions in-
dependently of each other, and models in which the deliberation time has an ex-
ponential tail. Non-interacting null models reflect the hypothesis that jurors might
reach a decision without significant influence or consultation from each other, while
exponential tail models represents a wide class of competing models where opinion
consensus is rare, e.g., [6,9]. We find that none of these models can describe the
deliberation time distributions. By ruling out simple non-interacting null models
and showing that an interacting model does describe the data, our studies suggest
that jurors influence each other to reach a decision.

We find that we can modify the MVM to more successfully describe the delib-

61



eration time and final vote distributions under the assumption that groups stop at
a constant rate once enough people are in the majority for a verdict to be reached
(75% for juries, and a simple majority for judges in the ECHR). Alternative non-
interacting null models, in comparison, are unable to qualitatively match the final
vote statistics. Our results provide mechanistic support for previous work on group
decision formation [16-19] suggests the accuracy of group judgements is harmed by
social influence. Finally, by assuming the timescale for individuals to change their
opinions is determined by a random walk, we can successfully recreate the observed
scaling between deliberation time and trial time.

The rest of the chapter is organized as follows. First, we discuss related work
in Section 4.2). We then discuss patterns seen across our datasets in Section 4.3.
Next, in Section 4.4 we discuss in detail how we model the data, which models
disagree with data, and how models in agreement with data hint at mechanisms
for group opinion formation. Finally, we summarize our results, and present future

work in Section 4.6.

4.2 Related Work

Here, we discuss previous work on how the decision time and decision quality
is affected by various factors for juries. We also discuss work that has more generally
tried to understand how collective human behavior can emerge from individual in-
teractions, before discussing opinion dynamics research in physics and mathematics

that has tried to quantify these behaviors. Finally, we discuss how the time to reach
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a decision is closely related the study of survival analysis.

First, we want to better understand how our work relates to previous work on
juries and judicial panels. After the US Supreme Court case Williams v. Florida
399 U.S. 78 (1970), in which jury sizes of less than 12 individuals were ruled consti-
tutional, sociologists became very interested in whether a smaller jury still provided
a fair trial to defendants [126-129]. Researchers found, for example, that juries with
twelve members achieved consensus less frequently than three-member juries [129]
(based on a lab experiment) or six-member juries [127] (based on a meta-analysis of
experiments), and that larger groups generally took longer to reach consensus [127].

In addition, Devine et al. explored how the distribution of times to reach a
decision varied with external factors, such as size, number of counts, civil-versus-
criminal trials, unanimity, and the verdict [127]. As might be expected, a higher
number of counts, criminal trials, and non-unanimous verdicts all take longer to
be decided.The authors also find that, for civil trials, innocent verdicts take longer
than guilty verdicts, although guilty verdicts are more common. This property is
also seen in many datasets we explore as well. Our work differs from that of Devine
et al., however, in exploring several newer datasets, including court cases from the
ECHR, and most importantly, in modeling the dynamics of the decision process to
understand why particular universal properties are observed.

Unlike previous work, we try to understand the mechanisms behind the forma-
tion of jury and judicial verdicts. We find evidence that decisions depend strongly
on the influence individuals have on each other, rather than only on the compelling

evidence of the court case.
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In addition to the aforementioned studies of juries, our work also builds upon
general models of collective behavior. Statistical patterns in language diffusion [116]
1 elections [21], and the spread of opinions on a cosmetic website [130] all appear
to be well-modeled by variants of this model.

We also explore the utility of the MVM, a well-studied model of opinion dy-
namics [6], for explaining the empirical patterns we observe. In this model, at each
time step, a randomly chosen individual adopts the opinion of the majority of his/her
neighbors with probability p (and hence adopts the minority opinion with probabil-
ity 1 —p). individuals pick the majority opinion of their neighbors, and then change
their opinion at a constant rate. Although the dynamics appear similar to the VM,
the MVM creates very different predictions. For example, unlike in the VM, the
two-opinion MVM has a critical value of p, above which a majority of individuals
settle on one of the two opinions, while below this point, opinions are equally split.

There have also been a number of empirically-based studies exploring how
individual opinion formation is influenced by others. For example, some previous
work has discussed the strength social influence has on individual decisions [16-19,
24], or has inferred the mechanism of opinion formation by studying the influence
neighbors have on a user [131]. Furthermore, a recent paper explored how to infer
the best model of opinion formation, based on how users influence each other in a

cosmetic website [130]. More specifically, data from a popular Japanese cosmetics

website was modeled with a VM-like model that weighted a decision based on the

'The similarity between the cited model and the VM was brought to my attention by Prof.

Maxi San Miguel.
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current and past opinions of neighbors. It appears that a power-law weighting, where
the weight of older opinions falls as ¢*, and where ¢ is time, and «a is a constant, best
describes this data. Further research has tried to capture general statistical patterns,
such as the distribution of votes [2,21,25], correlations between votes [21,25], and
the propagation of competing hashtags on Twitter [118,132].

We distinguish our study from previous work by inferring the opinion dynamics
of groups through easy-to-measure macroscopic variables, such as the distribution
of times to reach a decision. Importantly, in juries and judicial panels, this method
allows us to understand dynamics far better than we might otherwise, because, in
an offline setting, it is difficult to know what each individual’s opinion is at a given
time, and therefore we cannot directly determine the mechanism through which
individuals influence each other. For this reason, however, our method to determine
how opinions form could be applied to more general settings than many previous

experiments.

4.3 Data

The goal of this chapter is to gain insights into the dynamics of competing
opinions by modeling data from juries and judicial panels. In this section, we discuss
the data that we aim to model.

Before we describe the features of the data we study, we first discuss the
features we seek in an ideal data set to use for building modeling models of competing

ideas. Namely, we believe the ideal data set should have some or all of the following
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qualities:

1. Well-defined competing opinions (i.e., each individual has a precisely known

opinion)

2. A closed environment with Isolated groups of individuals, uninfluenced by

outside environmental factors

3. Randomized groups (i.e., not self-selected)

4. No arbitrary time limit before agreement has to be reached

Well-defined opinions would be opinions that can be quantified. Asking an
individual their stance on abortion, for example, may not be well-defined, because
the topic is too broad to usually get a single opinion. We should not confuse a well-
defined opinion with a discrete opinion, however. One could quantify an opinion to
be on a continuous range, a la the Deffuant model [133].

Groups must be isolated from outside factors like media, or friends, in order
to reduce the influence they may have on group decisions, enabling better control
over the experimental conditions. With isolated groups, we will have some idea of
who influences whom, but if the influence is compounded by unknown sources, then
modeling the dynamics becomes more difficult.

Groups must be randomized to partially account for homophily, where indi-
viduals choose to contact those with similar opinions. This has been known to cause
biases in studies on influence [134], and a paper by Shalizi and Thomas [23] sug-

gested that homophily and influence are extremely difficult to distinguish in many
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systems. Even after randomizing links, individuals may still live in cities that are
spatially close, and therefore some opinions may be more similar than expected by
chance [21], but the effect can at least be reduced by making connections between
strangers.

Any time limit, we believe, could bias how opinions form. In a time-limited
study, a group may want to reach any collective decision before the allotted time,
rather than the best decision through a careful discussion. There are realistic in-
stances when groups make decisions with in a strongly limited timeframe, e.g.,
collaborative decisions made before a deadline, thus motivating studies on these
dynamics in the future, but we want to first focus on a simpler system in this work.

Despite the relatively strict goals we set, we find that juries and judicial panels
can create strong candidate datasets for modeling. First, the decisions are binary,
i.e., a juror typically votes that a defendant is either guilty or not. Second, juries
are typically randomized groups of strangers who are not allowed to be influenced
by any outside factors, like the media, and deliberations typically take place in in
one sitting in an isolated room, which reduces the chance for outside influence. In
addition, there is no strong limit to the deliberation times, therefore the distribution
of times before agreement is reached only happens at the groups choosing.

There are, however, some less-than-ideal properties of our data. First, the
decisions made by juries and the ECHR are case-dependent, a verdict for one case
should not necessarily be the same as the verdict in another case. Similarly, some
cases appear to simply take less time to deliberate on average, which affects how

we can model the time distributions before a decision is reached. That said, despite

67



the richness of individual cases, in aggregate, broad statistical patterns appear.
Our analysis finds there are statistically significant differences in behavior within
datasets, but the qualitative findings, and agreement with our models is broadly
unchanged.

Next, our data is limited to small groups (e.g., ~ 10 individuals), and jurors
do not necessarily reach consensus. Since the US Supreme Court case Apadaca v.
Oregon 406 U.S. 404 (1972), state court cases did not require unanimity from juries
for a verdict to be reached, and similarly, the ECHR only requires a simple majority
for a case to be decided. Recent theoretical models, however, have typically assumed
complete consensus can be reached and that groups are very large groups (e.g.,
sufficiently large as to study using finite scaling analysis) [9, 10,25, 69, 98,121, 135].
Therefore, a direct comparison between the time distributions in empirical data and
previous models is not necessarily easy. We find in the next section, however, that
incorporating the final vote into our models allows us to more directly compare
models to data, and to gain more insight into how group decisions are reached than
previous work.

Our jury data is taken from Multnomah County, Oregon [14], San Fransisco
County, California [11], Thurston County, Washington, and Douglas County, Ne-
braska [12,13], as well as from the European Court of Human Rights (ECHR) [5]
(see Appendix B.1 and B.2 for details). We will call these datasets OR, CA, WA,
and NE, respectively, and split this data by the number of jurors in each case (see
Appendix B.2). Therefore, the OR 6 and OR 12 datasets corresponds to the OR

data with 6 jurors and 12 jurors, respectively. In all our datasets except for those
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from WA and NE, the deliberation time and final vote are known, which can affect
each other. However, unique to the CA, WA, and NE datasets, is information on the

trial time, which we discovered can also strongly affect when decisions are reached.
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Figure 4.1: Fraction of juries still deliberating versus time in the jury datasets.

Shown are datasets from CA, OR, WA, and NE.

We first observe that the fraction of juries still deliberating as a function of
time varies between datasets (Fig. 4.1), but they have comparable median times
(1-2 hours), and an exponential-like tail. It may be intuitive to expect that similar
processes underly the dynamics of all datasets.

Second, we find significant heterogeneity in the final vote for juries (Fig. 4.2).
Surprisingly, very few cases have a final vote of between 25% and 75% guilty. Look-
ing more closely at the data, we find that the 25% and 75% fractions correspond
to the proportion of guilty votes necessary for a verdict to be reached [11,14]. Tt

would apparently suggest that juries deliberate until enough individuals are in the
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Figure 4.2: Number of Jury Cases as a function of vote (NE and WA data does
not provide the final vote). We notice the cases are highly peaked near the critical
fractions of guilty voters, 25% and 75%. Between those ranges, where very few cases
lie, juries are considered hung. This data may suggest that juries skew their votes

to reach a verdict.

majority to justify stopping the deliberation. We show that this hypothesis agrees
with our mechanistic model in the next section.

Next, we explore how the deliberation times differ (Fig. 4.3). We notice a
strong correlation between the mean deliberation time and the trial time in CA?2,
WA, and NE datasets. Notably, this appears to roughly follow the line (Tia1)"/?,

suggesting, that despite the heterogeneity in the datasets, there is a common un-

2Unlike the WA and NE datasets, the trial time in the CA dataset was recorded with a resolution
of days and not hours. WA and NE datasets did, however, list both days and hours a jury was in
trial. From this data, we found that a day in a trial took approximately 4 hours, which was our

conversion for CA data as well.
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Figure 4.3: The mean time to reach a verdict versus trial time, with error bars
corresponding to 90% confidence intervals. Interstingly, we see a strong trend in
the data which roughly follows (Ti.1)'/?. The single outlier for the CA 6 data was
estimated from only two datapoints, and is therefore only a product of how we bin

the data.

derlying mechanism for how long deliberation usually takes, which we discuss in
greater detail in the next section. Fitting the datasets separately, we find that all
datasets except the WA dataset 3 has a scaling in line with our hypothesis, most
notably with the CA 12 dataset, one of the largest, scaling as Tyeip, ~ (Tiriar) 73003,
We also find that the deliberation time is not strongly dependent on the number
of jurors (Fig. B.la in Appendix B.3), in contrast to predictions made from the
VM [7,8], and variants of the VM [9].

Finally, we notice that the time to reach a verdict is strongly dependent on

the final vote (Fig. 4.4a), although the trial time and final vote are not strongly

3For this dataset, we find Tyeip ~ (Tiriar) 197007
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Figure 4.4: (a) The mean deliberation time versus the final vote, with error bars
corresponding to 90% confidence intervals. Dashed line corresponds to the intervals
that juries are hung. The mean deliberation time peaks just after, and just before,
respectively, the critical fractions for juries to reach a verdict. (b) The mean trial
time versus final vote with the same legend as (a), with error bars corresponding to
90% confidence intervals. Although Figs. 4.3 and 4.4 show that the final vote and
trial time can affect the deliberation time, these two properties do not appear to be

strongly correlated with each other.

correlated with each other (Fig. 4.4b). Generally, with less unanimity, there is more
time needed for a verdict to be reached, a finding also seen in the ECHR dataset
(not shown). However, unique to the jury data, when juries are hung, there is an
enormous amount of time needed to reach a verdict (as much as 8 hours on average
for hung juries, versus 2 — 3 hours for a jury verdict. If we image the critical frac-
tions between juries that reach a verdict and are hung as critical points, in statistical
mechanical language, it would appear that the deliberation time acts as an order

parameter, which peaks near this critical point. This is known in statistical me-
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chanics as “critical slowing down”. We stress this data is suggestive and not a proof
of critical dynamics, however if our finding is true, then the mechanics of opinion
formation near this critical point could approach an opinion dynamics universality
class, where the statistical behavior looks similar even when the detailed mechanics
of opinion dynamics differ from dataset to dataset. Future work is necessary to find
whether this behavior is seen in other datasets, and to model the dynamics near

this phase.

4.4 Modeling Data

The goal of our models is to address the following questions:

Can we distinguish whether the similarity of opinions among jurors results

from independent opinion formation versus influence?

Why are decisions typically in non-consensus?

Why does the trial time affect the time to reach a decision?

Most fundamentally, how can we understand social systems without the need

for expensive and time-consuming social experiments?

To begin answering the final question, recall that once we successfully model
the dynamics, we can vary parameters at will, and make predictions of how new
behavior arises without needing to carry out social experiments, a motivation similar
to the motivations of modeling disease epidemics [136]. More practically, once we
understand how individuals influence each other, we can understand how to promote
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wanted ideas, and suppress unwanted ideas, from spreading, without expensive social
experiments. This has been a driver of recent work in idea spread literature [137,
138], but future work should extend the work to competing idea spread.

In order to simplify the problem at hand, we do not try to capture all of the
statistical patterns in the data, and instead focus on key features while ignoring,
for the time being, some other properties. First, we do not model hung juries.
Although their deliberation time behavior appears unusual (Fig. 4.4), the number
of juries that end up being hung is a small fraction of the entire dataset. This will be
important to model in the future however, if we want to ask, for example, whether
the requirement for unanimity in jury data necessarily creates more hung juries, or
whether the mechanics of juries approaches a universality class near these points.
We also choose not to look at the varying amount of influence individuals may have.
We find in the OR dataset, for example, that juries are much more likely to agree
with the majority of other jurors, compare to the typical juror (not shown). This
may suggest the foreman is highly influential, or is heavily persuaded by the other
jurors.

What we wish to model instead are the deliberation time distributions, espe-
cially as a function of trial time. We will show, however, that this is insufficient
information for our minimal models to adequately model data. We will next model
both the deliberation time and final vote to understand why decisions are not strictly
in consensus, and find surprisingly good qualitative agreement with data. First, we
compare well-motivated models against each other and find what model best de-

scribes the opinion dynamics of juries and judicial panels.
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We test several models, including:

Exponential tail distribution models

e Maximum of random variables with exponential distributions

e Maximum of random variables with Gaussian distributions

A simplified MVM

In all cases, parameter estimations are found by maximum likelihood estimation.

Models with exponential tail distributions are surprisingly common, e.g., when
verdicts take so long to be reached that they can be approximated by the first passage
time of a Poisson process. This may be seen, for example, in the MVM, with a non-
zero flip rate [6], and in variants of the VM [9]. This should be typically seen in
models with a non-consensus equilibrium point.

We find, however, agreement is very poor with most of our data (Table 4.1),
especially when the dataset is large, such as the CA 12, or OR 12 datasets. Fur-
thermore, recall that it takes more time to reach a verdict when the final vote is
non-consensus than consensus (e.g., 9-3 versus a 12-0 decision), seen in Fig. 4.4.
This is opposite of what we would expect if juries are in non-consensus more than
consensus, in which it is rarer for near-consensus to be reached.

The maximum of exponential or Gaussian distribution models assume that
the time to reach a verdict occurs when then final juror or judge makes a decisions,
where each individual’s decision is a Gaussian or exponential random variable (which

are plausible and common distributions in nature, but not necessarily the only
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distributions possible). We call these models the Block Maxima Models (BMM),
and is one of the simplest non-interacting null models, where individuals make a

decision independently of one another. The algorithm is as follows:

1. Pick N random variables from an exponential (Gaussian) distribution, where

N is the number of jurors.

2. The deliberation time for this set of random variables is the maximimum of

the set.

3. The entire distribution from this model can be constructed after running steps

1 and 2 many (e.g., 10°) times.

Similarly, we could create a more complicated null model where the exponential
distribution differs depending on whether the juror’s verdict is guilty or innocent,
which we call the Two-Timescale (TT) Null model. The final vote can then be
picked from a binomial distribution based on the overall fraction of individuals who
vote guilty. This model is therefore able to predict both a time and vote distribution
which we can compare to data (Table 4.1 and Fig. 4.5). We focus on a model with
exponential time distributions because the exponential BMM, a simplified version
of this model, fits the data much better than the Gaussian BMM, based on the
log-likelihood ratio.

Surprisingly, we find poor agreement to the null hypotheses, leading us to rule
all these models out (see Appendix B.4). Furthermore, we will provide evidence that
a simple model, which includes influence from neighbors, can better match these
mechanics. This would suggest that jury verdicts are shaped by mutual influence.
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Previous work suggested that independent decision making (specifically homophily)
and influence can be indistinguishable in certain circumstances [23,134], but the
disagreement with our null model may provide a way to distinguish these two mech-
anisms. We cannot rule out that a more complicated model without influence could
produce these same statistics, although we will show that a simple influence model
provides surprisingly strong qualitative agreement.

Finally, we model the deliberation times with a simplified MV M, which is much
like the original MVM [6], except we remove the noise term. We assume jurors and
judges interact on a complete network, meaning each individual can influence, and
be influenced by, every other individual whom they deliberate with. We assume a
particular node is picked at random and chooses the majority opinion at a rate 7.
As mentioned previously, an MVM with a noise term might create an exponential
tail, which we have already ruled out as an appropriate model, therefore it would
seem that the MVM model in the noiseless limit is the best way to adequately
model jury decision times. If we ignore vote data, however, it would appear that
agreement with the dynamics is poor (Table 4.1), so we instead will modify this
model to incorporate both the vote and time distributions.

Importantly, this “modified MVM”, can help us better understand why con-
sensus does not appear in juries or the ECHR. First, we start with a jury where
votes are evenly split 1/2 guilty and 1/2 innocent. Next, let p, be the proportion
of people who ultimately vote guilty, across the whole data set of interest. The

algorithm for the modified MVM is as follows:
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1. At the first step: pick a innocent-voting individual with probability p,, and a

guilty-voting individual with probability 1 — p,)

2. If the first individual picked is a non-guilty voter, the jury will eventually reach
a guilty consensus if not stopped at an earlier time (see step below). Once
a majority and minority opinion are established, individuals each choose the

majority opinion at a rate 7.

3. For juries, once 75% or more individuals choose a guilty verdict, at a rate ars,
deliberation stops, and a verdict is reached. Similarly, if 25% or less individuals
choose a guilty verdict, deliberation stops at rate ags. For the ECHR, verdicts
stop at a rate ag or aj, when the fraction of guilty verdicts is over 50% or

< 50%, respectively.

The motivation for the various parameters is the following. Guilty verdicts
are seen in roughly 60% of jury cases, and 90% of ECHR cases. We therefore need
more individuals to pick a guilty verdict over a non-guilty one to match the vote
histograms. Second, we notice in our jury data that innocent verdicts can take more
time than guilty verdicts, and that consensus does not always happen. We therefore
have deliberations stop at a fixed rate that depends on whether the jury verdict is
guilty or innocent. We can interpret these various rates as the probabilities that
juries decide to take a vote and stop when they are in they have a supermajority.
Finally, we allow individuals to change their opinion at a rate, 77!, where 7 is
the mean time to change their opinion. Although 7 itself could vary depending
on whether the verdict is guilty or innocent, we keep this parameter constant to
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simplify the dynamics.
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Figure 4.5: A plot of the OR 12 vote histogram, the TT Null model’s vote distri-
bution, and the modified MVM’s best fit distribution, which is in better agreement

with data.

We find agreement with data is still poor (Table 4.1), at least in part because
the requirements for good agreement are much stronger. Namely, we test the model
to a 2-dimensional Kolmogorov-Smirnov (KS) test, where the model must match
both the vote and time distributions for each dataset. Despite the quantitative
disagreement, we find strong qualitative agreement to the data (Fig. 4.5), which
suggests that we are approaching the true dynamics.

Next, we try to better understand the dynamics by observing how these pa-
rameters change with external factors, like the trial time and number of jurors. We
first observe that 7 ~ (Tiya)'/? (Fig. 4.6), which implies something stronger than
Fig. 4.3: not only does the overall time to consensus increase with trial time, but
the time for each individual to switch their opinion increases as well. We therefore
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Figure 4.6: A plot of the best fit mean time to change ones opinion 7 versus the
trial time, with bands corresponding to 90% confidence intervals. The solid line is
(Ttrial)l/ 2 to guide the eye. We find that the rate at which opinions change depends

strongly on the trial time.

wish to model why 7 scales the way it does.

A simple model is to assume that 7 changes for each individual as a random
walk over the course of the trial with a reflecting boundary at 7 = 0. Simple math
implies that (7) ~ (Tisa1)'/?. This argument, however, implies 7 is not a constant for
all jurors in a single case. We therefore compared models where 7 was constant, and
7 followed the random walk distribution, but find that both fit our data equally well,
based on the log-likelihood ratio (not shown).Our data is therefore consistent with
this argument. We can interpret the random walk as the amount of information
each individual accumulates (remembers). The more information they have, the
less easily they will change their opinion when faced with a contrary opinion. This

mechanistic explanation is alike to a previous model, called the CCIS model [25],
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which was found to strongly agree with empirical data, such as universal scaled-vote
distributions, and long-range correlations between voters.

Finally, we explore in greater detail how aws and ars varies across datasets.
Fig. 4.7 suggests that the rate individuals stop for innocent verdicts, aws, is higher
than the rate to to stop for guilty verdicts, ars, and appears to decrease slightly
with the trial time. We find, however, that as5 < a75 in the OR 6 dataset, and
there are too few cases in the CA 6 dataset to make any conclusion (not shown).
The OR 12 datasets, however, (not shown) is consistent with the findings in Fig.
4.7. Whether ass > ay; or not appears to depend on whether the guilty verdicts
take more or less time. These results may therefore help explain why guilty verdicts
take longer to decide than innocent verdicts: jurors decide to stop more often when

they know that the verdict will be guilty.

4.5 Extending Results To Judicial Panels

We find that many of our results can be extended to judicial panels in the
ECHR. For example, the fraction of cases under deliberation as a function of time
(Fig. 4.8) qualitatively resembles Fig. 4.1.

This is unexpected because the ECHR is composed of sitting judges from
various countries in Europe, while the data we have explored so far is of juries in
the US composed of randomly selected civilians. Furthermore, while juries typically
deliberate continuously, judges in the ECHR deliberate on select dates that can be

separated by several months. Finally, judges do not need a supermajority to reach
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Figure 4.7: Plots of as; and ar5 across various datasets. We notice that, in this
data, ags5 > ars, consistent with the idea that juries take longer to make a guilty

verdict.

a decision, but instead only require a simple majority. Similar results may therefore
suggests a common underlying mechanism of deliberation.

One limitation of this data, however, is that we only know the days that
deliberation has occurred, rather than hours or minutes. We therefore assume that
deliberation occurs 8 hours a day. We expect similar results for our models regardless
of this assumption.

Another limitation is that, unlike jury cases, several counts against the defen-
dant are brought before the ECHR, which are then ruled on. We cannot determine
the length of time to rule on each count, although, to our surprise, we see nega-
tive correlations between the number of cases and the total amount of deliberation,

which may need to be explored in the future. We included each count as a separate
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Figure 4.8: Example plots of the fraction of cases under deliberation as a function
of time for the ECHR, with the number of judges (N) equal to three, seven, and
seventeen, corresponding to a committee, chamber, and grand chamber, respectively

[5]. We find that N can vary from three to roughly twenty three.

vote, with a time equal to the total deliberation time (in other words, we assume
that judges deliberate on all counts at once, and that no single count takes up a
significant share of the vote). Alternatively, we could have averaged the votes across
all counts, but this ignores the fact that many counts in the same case were unani-
mously accepted or rejected, while an average would view those unanimous verdicts
as non-unanimous decisions. Our method, however, is meant to directly compare
the ECHR and jury data, where votes are discrete and are typically only for one
count.

Finally, we do not have any data on the time judges were in a trial, which we

found in Fig. 4.6 can strongly affect the dynamics.
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Through a careful comparison of models to data (Table 4.2), we find that, in
agreement with Table 4.1, the time distribution data is generally in disagreement
with the models, unless the number of cases is very small. If there is greater agree-
ment to models than Table 4.1, however, it would likely be because of the very
coarse time binning, which is known to strongly affect the amount of information a
distribution can contain [123].

Because judges only require a simple majority to make a ruling, we modified
the MVM further such that groups stop deliberating when they have a simple ma-
jority, therefore a5 — oy and 75 — ag. We further assume a split decision is an

innocent verdict.
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Figure 4.9: Plot of a; and a for the ECHR dataset.

Alike to Table 4.1, we also see in Table 4.2 poor quantitative fits to the newly
modified MVM. However, qualitatively, it fits far better than the null hypothesis

we proposed, alike to Fig. 4.5 (not shown). Unlike Fig. 4.7, however, there is no
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consistency in the values of a; and a¢, probably because a relatively small share of

votes are non-consensus.

4.6 Conclusion

The goal of this chapter was to better understand how competing ideas spread
in groups using the time distribution for verdicts in criminal court cases.We find that
models where individuals make decisions independent from each other disagrees with
our data. On the other hand, models where individuals are influenced by each other
agrees well, at least qualitatively, with our data, when we take into account the final
vote of each individual.

We found a novel way to measure the influence individuals have on each other
in a way that needs a minimal amount of interaction with the group itself. This is
important because we cannot directly study the dynamics of real juries, but can,
to our surprise, indirectly infer the dynamics by using the statistics of when they
finish deliberating. Our findings also suggest that the deliberation time scales with
(Tisia1)/?, which similarly affects how quickly individuals can change their opinion
when deliberating with each other. When modeling this behavior, we find that the
timescales for individuals to change their opinion scales similarly. This ideas of
“stubbornness”, where individuals are increasingly likely to keep their old opinion
is seen in a previous model which found agreement with scaled vote distributions
and spatial correlations between voters [25]. We therefore have more evidence that

stubbornness can explain many statistical patterns in opinion dynamics.
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Finally, our modeling results are in surprising agreement with data from the
ECHR. This is notable because the ECHR in many ways breaks from the properties
of juries, e.g., groups are not randomly assigned, and deliberation can occur over
the course of many days, therefore any significant agreement between the datasets
suggests common mechanics underly each.

There is a significant amount of future work, however. First, we appear to
have evidence of a critical point in the dynamics of juries when less than 75% of
individuals are in the majority. If this is a true critical point, we should see this
behavior in similar scenarios, where a proxy for the control parameter, the final
vote, makes the deliberation time, an order parameter, peak at a a critical point.
Furthermore, the peak should vary strongly with system size, due to finite scaling
effects. If this is a true critical point, then we should expect broad agreement in
statistical patterns near that point, consistent with an opinion dynamics universality
class.

Second, we need to find a model of the dynamics of juries that quantitatively
agrees with data. There are a number of plausible steps forward, for example by
modeling how the details of the trial may affect the deliberation. A simpler model
may even be able to explain how deliberation time depends on the final vote (Fig.
4.4).

Finally, future research should extend our work to predict how opinions will
change over time. Our work can only say what the statistics of should look like,
rather than how each jury’s decision will unfold. Being able to predict decisions will
represent a great advancement in our understanding of opinion dynamics, because
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we can directly test our model to data.
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Chapter 5: Conclusion

In conclusion, we have explored how physics can help us model competing ideas
in groups. Specifically, we have analyzed empirical data on macroscopic patterns of
opinion formation in order to infer features of individual-level models.

First, we find that the number of answers users see in question answering
boards can strongly affect both the predictability of user behavior, and the likeli-
hood users will choose answers based on heuristics, such as whether an answer is
listed at the top. The universality of this behavior across boards suggests a common
mechanism, but the data cannot tell us whether this behavior is due to informa-
tion overload, or if older questions tend to gather more heuristically driven users.
Regardless of the mechanism, however, we find strong constraints in the power of
crowdsourcing information as the number of answers to a question increases.

Next, we find that a simple model can explain the universal vote-share dis-
tribution in Europe and long range spatial correlations of voters in the US and
Europe. The model is robust to variations in parameters, but two general principles
are necessary for the model to fit the data: the contact network must be heavy
tailed, and individuals must increasingly resist adopting alternative ideas (i.e., they

exhibit stubbornness). The former principle is interesting because many social net-
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works appear to be heavy tailed, e.g., the social networks of Twitter [139]. The
inclusion of stubbornness in the model is motivated by work on pre-trial publicity
(PTP) [78], where older information appears to be preferred over newer information,
but we have no way of observing stubbornness using the data collected in Chapter
3.

To more directly measure stubbornness, and other modeling assumptions, we
explored the dynamics of juries in the US and judicial panels in the ECHR. Using
survival analysis, we find that the time (and vote) distributions of juries can de-
termine which models are in agreement with our data, and, of those in agreement,
which model fits best. Importantly, we rule out classes of models, such as those
with exponential tail time distributions, in order to narrow down what models can
plausibly explain our data. We find that a modified MVM can qualitatively explain
our data well, including the vote and time distributions, in stark contrast to non-
interacting null models, which perform poorly in both regimes. From fits of this
model, we find that the rate an individual changes his or her opinion decreases with
trial time, in agreement with our hypothesis of stubbornness made in Chap. 3. The
model’s agreement with data suggests that an interacting or influence model may
better describe the mechanism of opinion formation in juries and judicial panels.
This result helps address issues raised earlier that influence and independent deci-
sion making are indistinguishable [23,134], although we cannot rule out that a more
complicated model without influence could produce these same statistics.

It is clear that opinion dynamics could strongly affect dynamics across a diverse

range of topics. Our goal in the future, however, is to better quantify the dynamics,
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especially by experimental verification of the findings in Chap. 2 and better modeling
in Chap. 4. We will begin answering what drives heuristically driven dynamics in
question answering boards with an experiment in Amazon’s Mechanical Turk, where
we can independently vary attributes such as the number of answers, the answer
order, and the number of votes each answer receives. In addition, we want to
directly test how individuals change their opinion over time, and derive a model in

quantitative agreement with jury and judicial data in Chap. 4.
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Chapter A:  CCIS: Modeling and Analysis

A.1 Fitting the CCIS Model to Data

In this section we describe in more detail how the CCIS model is fit to empirical

vote distribution data and correlation data

A.1.1 Network Model

To match the model to data, we use a spatially distributed network, which
creates a non-zero spatial correlation, and we find that we need a scale-free distri-
bution to best match scaled vote distribution data. Adding both of these properties
to a single network, however, is not just convenient, but realistic. For example,
we could try to run a model on the most natural spatial network: a grid. In a
grid, individuals only interact if they are spatially close, but previous work on the
“six degrees of separation” between two randomly chosen individuals [140,141] and
“weak ties” between socially disparate individuals [142], suggests that ties can exist
between individuals who are spatially separated by large distances. Furthermore,
unlike grids, the degree distribution of many social networks is a power law [106].

Combining all these properties, we can create spatial scale-free networks, such
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Figure A.1: A schematic of the network chosen to fit our models to empirical data.
All nodes have a scale-free out-degree distribution whereby a node ¢ with degree k;

(in this example, k; = 9) is then connected to its nearest neighbors.

as the one in Fig. A.1. Nodes have an out-degree k chosen from a scale-free distri-
bution, and are placed on a grid with unit distance. Each node is then connected to
their nearest neighbors, although to test the robustness of our results, a fraction f of
are randomly rewired. As f increases, the model makes similar fits to the vote dis-
tribution data but the spatial correlation decreases. To keep (k) constant for fixed
degree distribution p(k > k), we change the proportion of nodes with degree k.,
until we have the appropriate (k). The directed nature of the network reduces the
chance of multi-edges or self loops, and it seems to be a reasonable assumption that
people with a lot of connections broadcast their opinion to a wide audience without

as much attention paid to the ideas of those same individuals.
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A.1.2 Fitting Model Parameters

Next we discuss how our model is fit to data. The Poland 2005 data set is
chosen due to the large number of elections (593, versus ~ 200 — 400 for other
countries). In our simulations, seeded individuals are equally split among the var-
ious candidates, but variations in seeding should create similar results. Maximum
Likelihood Estimation (MLE) is used to determine the appropriate seeding fraction.

The model has no readily apparent closed-form solution, and a Kernel Density
Estimator for the model greatly over-estimates the probability for small z;, therefore
we approximate the probabilities with log-binned histograms (the widths, however,

do not seem to change the best fit parameter significantly).

A.1.3 Parameter Values

In the FC model, only the candidate has an initial preference of whom to
vote for, while in our model, we assume a set percentage of individuals have an
initial preference to some candidate. The CCIS model creates a poorer fit when
@ individuals are seeded (not shown), but seeding a fixed percentage seems to be
an equally realistic assumption if we imagine that a small percentage of voters are
initial strong supporters of the candidates.

We can also let the fraction seeded be 100%. Holding p = 1, the best fit g
value is 0.65, with a fit similar to Fig. 3.2 (see Fig. 3.3). We choose to seed less
than the total population, because it seems reasonable that at some starting point,

not everyone is aware of the candidates.
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Figure A.2: The log-likelihood function versus (a) u, (b) the fraction of individuals
seeded, P(0), (c¢) (k), and (d) . Not shown in (d) is the log-likelihood of a 10-
regular spatial graph (—10771), which is far below the current y-axis scale. Arrows
indicate the chosen values for our fit. £ varying by less than 100 does not look

appear visually different from our fit.
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To fit our model to the distributions, we set 8 to 0.1, u to 1, and (k) to
10, but variations in these values do not significantly affect our results (see Fig.
A.2 in Appendix A.1, where we hold all parameters fixed, except for the given
parameter plotted). We also fix 6 = 0 in order for the distribution to remain fixed in
equilibrium. The MLE for alpha, however, varies depending on the type of network
chosen. For example, while @ = 2.01 creates a good fit with our current model
network (spatially-extend scale-free), o = 2.5 creates a good fit on an undirected
scale-free network with no spatial structure. Whatever the optimal «, however, we
find that a wide distribution (e.g., & < 3) works best, when fitting to data. A Poisson
or k-regular graph, for example, never appears to fit well with data, regardless of
the other parameter choices.

We have more freedom to vary all parameters if our only goal is to create
vote correlations similar to empirical data (Fig. 3.5). The roughly logarithmically
decreasing correlation with distance is observed for many values of 6 > 0, u > 0,
B >0, P(0) > 0 and « > 2. Just one example are the parameters chosen in Fig.

3.5.

A.1.4 Determining The Spatial Correlation

We finally mention how the correlations in Fig. 3.5 are calculated. To be con-
sistent with previous work [3,21] and Fig. 3.5a, we define the normalized correlation

in our figures as:

P.(l)P-(l) dyi = 1) — P4(1) 2
C(T):<Z J ‘ J T) <z >’ (A].)

2
Ip)
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in which Pi(l) is the fraction of voters for candidate 1 within a small region (which we
choose to be 5 x 5 node squares), (P} is the average fraction of voters for candidate
1, and 0, is the variance in vote distribution across all regions. (PZ.(I) Pj(l) |di; = r) is
the 2-point correlation function between regions whose centroid is a distance r+1/2

from each other.

A.2 Derivation of the Transport-Like Approximation

In this appendix, we use the TLA to understand the initial jump in the opinion
densities (see Figs. 6 & 12).

Our model can be described by the following equation in the mean field:

(Or+0-)p NV (t,7) = =0pM (t, 7)=O(1 — ) (1 — 7p0) Bhp N (2, 7) Y~ PP A.2)

B£A

with the boundary conditions:
L. pA(t,00) =0,
2. pN(1,0) = 5(0)[BRPD ()P +ARPD(1) Yy 1 (1= 7)) (0, 7))
3. and p(A)(O,T) = f(7),

(see Fig. A.3 for a visual representation) where ¢ is time, 7 is the time an individual
has had their most recent opinion, P¥) is the fraction of individuals with opinion
X at time ¢, p®) is the density of individuals with opinion X at time ¢ who have
kept their opinion for a time 7 (variables and parameters are also defined in Table
I). Finally, P(t) = 1 — 3. P®)(t). The right hand side of the equation describes
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the ability of individuals to recover as well as the ability to change opinions. We

can interpret the boundary conditions as:
1. Normalizability

2. An increase in the infection density due to neutral neighbors and opinionated

neighbors.
3. Initial conditions

We focus on the simpler case of 6 = 0 for our analysis because adding ¢ to
the equation numerically does not seem to affect consensus, while, in simulations,
consensus happens quickly. Future analysis of perturbations around equilibrium,
however, may give us better insight into what happens in simulations. We do know,
however, that when § < 1, the equation can be simplified to the one seen in [98], were

they find, to use our notation, Ty, ~ 61

, in agreement with our own simulations
(not shown).

The simplified equation is:

(0 + 0:)p W (t,7) = —O(1 — Tp) (1 — 7p0) Bkp! D (2, 7) Y PP(1), (2)
B#A

with the same boundary conditions.

We first try to understand the transient “jump” in the fraction of individuals
following a given opinion on a timescale that is in many cases much smaller than

the time to reach consensus. We wish to understand the the equilibrium fraction of

individuals with a given opinion, and the time to reach equilibrium.
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We find strong agreement between theory and simulations for the equilibrium
fraction of individuals in each opinion (Fig. 3.6), especially when (k) > 102. For
fixed networks with (k) < 10%, the equilibrium values are on average below theoret-
ical values, plausibly because individuals are less connected to their neighbors, and
thus less influenced by them, than the mean field theory assumes. To find agreement
with simulations, we numerically determined equilibrium values by stepping forward
the equation using the forward Euler method.

This method is inherently sensitive to the timestep width, At, especially when
AP,, =~ 0.5, therefore we find the equilibrium value can be more accurately deter-
mined by varying the timestep width and, via linear regression, determining the
asymptotic limit for the equilibrium as At — 0 (Fig. A.4). This seems to reduce
our statistical error to less than 0.5% compared to as much as 1 — 6%, and is in
excellent agreement with the simulations.

Next, we determine the time to reach equilibrium. We discretize 7, following
[98], to derive a set of equations that we linearize around a fixed point to determine
the scaling of the transient time (Eq. A.10 & A.11). Our approximations are only
accurate for p < 1, but seem to be qualitatively similar to numerical data for

w~ O(1). We define the following macroscopic variables:

PO = 3 p0(t,7), and PA(1) = 3" o1, 7), (A.3)

in which ), is shorthand for Y 7_ . If we let Q[|] be the conditional probability
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function, and & = £, then Eq. 3.2 becomes (for 7 > 0):

Pt T)
(A.4)

= Q[ (t, 1)V (t, 7 = D)t~ 1) = p (2, 7)

Expanding these variables out, we find that:

POt 1) = (L4 B{[PO () + u(r = DIPD (1) = 11)p (8,7 — 1) — pV(t, 7). (A5)

and for 7 = O:
p(1,0) = BEPO @) [PA(e) - 10/(1)] — ) (1,0), (4.6)

With an equivalent set of equations for p? (¢, 7) and

Z/ﬁp (t,7") Z/ﬁp (t,7") (A.7)

From the above results we can sum p() (t,7) to find the equations for the macroscopic
variables:
PO () = BE[IV (t) PP (t) — I1® () PV (1)]. (A.8)
To lowest order in p, we also find that:
19(t) ~ p(1 = BE) PO ()
+Bk[pPY()? + TV () PO (1) — T (1)),
These equations are solvable by expanding around the solution PV = P?) = 1/2

and 1M = I® = ;[1/(Bk) — 1/2] to first order. The resulting largest eigenvalue is

>\1%

—Bk — 4p + 2Bkp + \/16Bkp + (Bk + 4 — 28kp)?)
- .

(A.10)
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+BkPA (&) Epya o (1= 7'wp(t,7')dr']

Figure A.3: Schematic of the scalar variable in Eq. A.2 as a function of time, ¢, and
time since opinion adoption, 7.
The time to reach equilibrium, T, is:

log(N)
A

Teg=v

(A.11)

where v is a fitting parameter found to be 1.26 + 0.04 from simulations. When
Bk = 1, this eigenvalue should agree exactly with the value cited previously [98], but
we find disagreement by an overall prefactor of 1/4 which, at least to our knowledge,
may have been missed in the previous work. Figure A.5 shows how simulations agree

with theory. We notice disagreement is most significant when p approaches 1, and

B is small (e.g., 5 =0.1).

A.3 Scaling of effective network size

In this appendix we derive Eq. 3.4 using a FPA, which is distinct from the TLA

in Appendix A.2. Our derivation is heavily based on the derivation of consensus
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Figure A.4: Details regarding the theory curve of Figure 3.6. (Inset) For each
value of 3, we vary the timestep width for Eq. 3.2 (At), and find the resulting
equilibrium value. AP, (At — 0) is estimated via linear regression. (Main figure)
Plotting AP.,(At — 0) and slope for AP(0) = 0.05, we find the slope, seen in the
inset, is greatest when AP,, ~ 0.6, implying the error from using a single value of

At would have been largest in this range.
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Figure A.5: T,, versus N for various p and Sk (simulations on k-regular random
graphs,with & = 10). Inset shows collapse when T, is rescaled by A;, with the best

fit slope equal to v in Eq. A.11.

times for the VM and Invasive Process by Sood, Antal, and Redner [10].

A.3.1 Derivation

We use the same conventions as in that paper, except the transition probability
scaling factor, S, the degree distribution, p(k), and associated moments, (k™) =
> p(k)E™. Note that we assume for now that § < 1/(k) for the inward spreading
process (opinions spread inward toward an individual).

Let n(z) be the state of a node = on a network with adjacency matrix A,,
and order N. Assuming 2 opinions and that g and § — 0, we have a two-state
system. Using the conventions of Sood, Antal, and Redner [10] the opinions of the

two-state system are “0” or “1” instead of “1” or “2”. We stress that the 0 state is
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an opinionated state. Lastly 7, is the state of the system after changing a node x:

n(y), yF#a
2(y) = : (A.12)
1—n(z), y==
The transition probability at node z is therefore:
Agy
P —n) =) vol 2@ y) + 2y, )], (A.13)
y
in which:
S =" (A.14)
and
®(z,y) = n(z)[L —nly)]. (A.15)

We further assume a mean field solution, in which the adjacency matrix be-

comes the average adjacency matrix:

ok,

Ay — (Ayy) = TN

(A.16)

Instead of individual states n(z), we can instead focus on pg, the density of states
with degree k:

Pk = % > ). (A17)
Here, 2’ is the sum of all nodes with degree k. To clarify the below equations, we

also define a variable w:

1
Y= N0 zx: kan(x) = 0] > kp(k)p. (A.18)

Next, we define our raising and lowering operators for pi, which defines the

probability of increasing or decreasing py by a small increment:

Pk = P = pr % Opr, (A.19)
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in which

SR Outward Process

Opy = k) Neutral Process (A.20)
Sp(k)
% Inward Process

\

The change in p; is proportional to the probability that an individual of degree k

changes his or her opinion in a given time step. This probability scales as <<k—;>>, (k),

and k for the outward, neutral, and inward processes, respectively.

The raising operator is defined as:

R, =P(pr = p)) = Z Z STZ;{;\’[ZCI)(y,x). (A.21)

With simplification, this yields

R = Sp(k)k(1 = py). (A.22)

Similarly, for the lowering operator:

Li = P(px = pi)) = SGp(k)k(1 - w). (A.23)

The exit probability, &, defined as the probability for all nodes to reach state one

in equilibrium, is the same for all cases

&=y =) mp(k), (A.24)

and similarly, that (p) (or magnetization, if this were a spin system) is a conserved

quantity. The reason is because

(An(z)) = [1 = 2n(z)|P(n — n.)
(A.25)

= 1 29(e)) 3 S [B(,) + B(y, ),

)
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Alp) =Y (n(x)) =~ _In(x) =n(y)], (A.26)

x T,y

which is trivially 0. We note that this argument is exact (not a mean field approxi-
mation) and is independent of the method in which opinions spread (at least, again,

assuming 5 < 1/(k) for the inward dynamics). The time to consensus is

Tcons({pk}) = Z Atk

+ R ({1 }) Teons (p) + Lie({ o }) Teons (03 )] (A.27)

+11 =D Re({pe}) + Li({o )] Teons({pr})

The average number of interactions per timestep is:

(

p(k) &) Outward Process

k)SN
Aty = P(k)% Neutral Process - (A.28)
k

Inward Process

SN
\

We expand to second order in Ap; and find that

o, 0T,
cons _D cons — _1 A__29
;Uk dor T op2 ’ (A.29)
in which
A
v = PRy, — L) — 0. (A.30)

As is shown in in the original voting model paper [10], this value reaches 0 for time

Teons ~ O(1) which is much smaller than the next term:

(Ap)? (Re + L)

D, = A.31
©= A 5 (A.31)
A change of variables implies that:
aZ—VCOTLS 8TCOTLS 8p aTCOTLS
o0 o0 on "o (432



therefore
0*T B

M
ij W(w + ok - 2wpk)p(k>a—p2 —L (A.33)

in which
(

(k*)  Outward Process
M =4 (k)? Neutral Process (A.34)

k2 Inward Process

\

This can be made into a more compact form, noting that p is conserved and v, — 0,

w—p.:

p(l B p) 827700713

= —1.
Neff 8p2

[Eq. 3.3 from the main text], where Nz is as follows:

(
% Outward Process
NS?
Negr = W = W%Q Neutral Dynamics -
,32](\122> Inward Dynamics

[Eq. 3.4 from the main text].
We find that this equation simplifies down to (24) in [10], noting the boundary
condition, Teons(0) = Trons(1) = 0 in which:

1 1
Teons(p) = Negy |(1 = P)lnﬁ + Pln; : (A.35)

implying that Tions ~ Neysy.

As we discuss shortly, if 8 > 1/(k) in the inward-spreading case, we have VM
dynamics, and the mean field consensus time replaces § with 1/(k). Furthermore,
this approximation breaks down for small (k) and small 5, in which we show in
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Section 3.5 that the consensus time scales as 37!. Future work could improve the
accuracy of the current results with a pair approximation theory [109,110].

This paper mainly focuses on the outward process, but we have also compared
theory and simulation for the other processes by varying 8 and (k?), in Poisson and
scale-free networks, while setting 0 and p to 0. First, we observe the dependence on
(k%) by simulating the models on scale-free networks.

In a scale-free network, (k?) diverges with network order, N:

/

N3«  a<3
(k%) ~ log(N) a=3"- (A.36)
o(1) a>3

Therefore, for outward and inward dynamics:

(

O(1) a<?2
log(N)? a=2
Tcons ~ NQ(O‘_Q)/(O‘_U 2<a<3- (A37)

N/log(N) a=3

N a>3

\

A.3.2 Agreement With Simulations

Fig. A.6 compares outward process simulations to the FPA (inward processes
simulations are similar, due to the equilvalent scaling). Although a finite size tran-
sient impedes this scaling behavior for N < 10%, we still see agreement for large

109



cons

05 Tcons

0 8000
101 L \ Lol
10* 10°

N

Figure A.6: Mean consensus time, T,,,s, for scale-free networks with g = 0.5, 6 = 0,
and p = 0. Inset is one example of consensus with P()(¢) and P (¢). Using the
FPA, the expected fit (solid lines) is Eq. 3.4. Simulations are averaged over 10
networks (30 networks for 3 x 10* < N < 10°, and 20 networks for N = 1.2 x 10°)

with 100 trials per network.

enough networks. For Poisson networks, we see T.ons ~ (k*)™! = ((k)? — (k))™' in
the inset of Fig. A.7.

The inward-spreading dynamics closely parallel the outward spreading dynam-
ics when $%(k?) < 1. On the other hand, when j is large enough, each node is, on
average, infected by multiple nodes at each timestep, although, by the end of the
timestep, only one opinion is chosen. This maps exactly onto the VM, and therefore
so does the consensus time (Fig. A.8). Setting the model’s mean field consensus
time equal to the VM consensus time implies that 3. = (k)~! is the critical value

between CCIS and VM dynamics '. Neutral spreading (not shown), on the other

'We should mention that more accurate methods for determining the mean consensus time exist
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Figure A.7: Mean consensus time for varying 8 (6 and p = 0) on 1000 node Poisson
networks with different average degree, (k). Inset: consensus time versus average
degree for f = 0.99. Simulations are averaged over 30 networks. The theory are the
dashed lines (T.ons ~ 872 when 3 and (k) large, and T,,,, ~ 37! in the opposite

limit) and solid line in the inset (T,ons ~ (k*)71).

hand, breaks with the other spreading methods by only depending on the first degree
moment, and is therefore mostly independent of the network’s degree distribution
in the mean field.

Finally, we check whether T,,, ~ 32 for each process (Figs. A.7 and A.8).
Agreement with theory is closest when 8 ~ O(1) and (k) ~ 10 — 20. When (k)
approaches 1 or 8 < 1 we see that T.ons ~ S~!. The reason is as follows: the
number of nodes convinced at each timestep in this limit is very low (i.e., 2 with
probability 2 = 0, 1 with probability 3, and 0 with probability 1 — 3), therefore,

the time until a given node is convinced is a geometric process:

for the VM, as explained further in [109,110].
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T

Figure A.8: Mean consensus time versus [ for Poisson graphs in which we use the
inward infection method. Theory is the black line T,,,s ~ 87! and arrows indicate

when (k) = 1, whereby we transition to true VM dynamics, which is independent

of .
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p(t) = B(1—B), (A.38)

which would imply the average time until a node is convinced is 37*. The consensus

time would scale similarly.
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Chapter B: Jury Data: Collecting, Parsing, and Modeling

In this section, we describe how we found our data, how it was parsed and

split, and how it was compared to models.

B.1 Gathering Data

Data from Oregon and California juries came from the Inter-university Consor-
tium for Political and Social Research [11,14]. Data from Nebraska and Washington

juries was used with permission from the authors of the studies [12,13].

B.2 Cleaning Data

After we gathered data, we found that each set of data had to be cleaned in a
different way.

For the Oregon, Washington, and Nebraska data, we discovered some case data
was redundant. Namely we had information on multiple jurors who were in the same
cases, so we only recorded the first instance for each case number. Furthermore, in
the Oregon data, the times individuals were deliberating was not always recorded,
so we removed these cases (3 cases in the OR 6 data, and 10 cases in the OR 12

data, or < 2% of cases in the respective datasets).
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For the California data, there were some complications when parsing data.
Namely, some deliberation times were recorded in days (which we did not record),
and others in hours (which we did). Furthermore, some cases did not record the
trial time or the final vote, and were therefore removed because both case attributes
are known to strongly affect the deliberation time. In total, we removed 3184 cases
in this manner. Furthermore, in 124 of the cases, multiple votes were cast to decide
whether the defendant was innocent or guilty. We found these cases had statistically
significantly higher deliberation times (&~ 5 hours instead of the more typical 3-4
hours). We therefore removed those from analysis as well. We find, however, that
this particular data subset suggests one vote to the next varies fairly continuously,
and in rarer instances, votes can flip from a mostly guilty verdict to an innocent
one. These properties were not captured in our models, because we were unsure of
how universal these properties were. Among the cases that were deemed applicable,
we noticed that an unusually large proportion of cases were marked “12 hours”
compared to 10, 11, 13 hours, etc. This may imply that some approximately day-long
cases were labeled 12 hours, and therefore, we havw no idea of the true deliberation
time. For this reason, we removed all 12-hour cases from our data. We believe
this may have been a conservative assumption, but in not removing these cases, we
believe the dataset would have been poorer.

Data from the ECHR was gathered by HURIDOCS [143], spanning the be-
ginnings of the court in 1959 until roughly 2014. The data was a 1.7 GB CSV file
seemingly without a consistent tag to denote the beginning of one document or end

of another. We therefore used common key words to determine the start of a docu-
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ment, and found the number of judges, final votes, and dates of deliberation, while
being mindful to only capture this metadata within this document. To complicate
matters further, some cases were written entirely in french, which was a language
unfamiliar to the authors. Therefore we used a few keywords found in french docu-
ments, but by no means was this search exhaustive. In total, we were successfully

able to parse 12,076 cases, or approximately 40% of all cases.

B.3 Splitting Data

Given the various attributes, we had to decide how to best split up our data.
If we split our data too finely, e.g., all cases with a trial time of 1 day, 2 days, 3 days,
etc., we risked having too little data to be useful. If we coarsely split our data, then
we risk modeling the several heterogeneous processes. To find the best solution, we

first split by the number of judges/juries.

4 _ (b

£s 52 {
3, 3 W
S g1 (10

< 1! = i ® ...”..

Figure B.1: Mean deliberation time versus the number of (a) jurors or (b) judges.
Error bars correspond to 90% confidence intervals. We notice little dependence on

N, in contrast to many models [6-9]/

As seen in Fig. B.la, for juries and, and Fig. B.1b for the ECHR, this has
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some effect on the deliberation time. It is notable that the deliberation time does not
increase strongly with the number of individuals, in contrast to, e.g., [7,8,69,98,121,
125]. In these models, typically timesteps are normalized such that N interactions
happen in one unit time. Therefore, a constant deliberation time here would mean,
the consensus time in models would have to decrease as 1/, where N is the number
of individuals, which is a prediction made in [25] for all-to-all networks.

As Fig. 4.3 in the main text shows, we similarly find a strong dependence on
the trial time. We therefore split up data with logarithmic bins. We fairly arbitrarily
chose bin sizes of between 1 — 1.8 hours, between 1.8 — 1.82 hours, etc., such that

the data was fairly evenly spread out.

B.4 Comparing Models To Data

To fit models to data, we used maximum likelihood estimation, which is a
first-principles approach to finding the optimal point estimate of parameter values.
We then bootstrapped data 1000 times (300 in the case of the ECHR modified MVM
model) to find confidence intervals in these estimates.

To determine the exponential tail, however, I first find the bin that minimizes
the Kolmogorov-Smirnov (KS) test between the exponential distribution and the
data, based on previous work on distributions in empirical data [122,123]. This is
the minimim bin, after which the data is fit to an exponential.

We test how well the models agree with data by bootstrapping the estimated

distribution, and finding how often the KS test between the bootstrapped model,
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and the corresponding fitted model of the bootstrap data, is larger than the KS test
between the data and the model, following the methods of [122,123]. If the KS test
deviates more from from data than our model in < 10% of the time, then we rule
out this model. Usually one uses 5% significance to rule whether data is statistically
significant, but we are trying to answer a slightly different question: whether the
data tends to agree with a particular model. In this case, 10% is high enough that
we do not risk creating too many false positives. When incorporating both vote and
time distributions, we use a two-dimensional version of the KS test, based on [144],
with code adapted from [145].

If p-values are high, however, this test fails to distinguish which model fits the
data better. To find the best model, we use the log-likelihood ratio test, where the

log-likelihood ratios are normalized in the following way:

R — R/oN~/? (B.1)

where o is the standard deviation of log(p(x;|A)), the log of the probability
that a random valuable would be z; in the model, and N is the number of data
points. For large N, this approaches a normal gaussian distribution. If the log-
likelihood ratio deviates from 0 more than 1.96 standard deviations (p < 0.05) then
we can say that one of the two models matches the data statistically significantly
better than the other. In our data, however, we could not always distinguish which

model fit better, potentially because the data was so strongly binned.
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