Preprint 0 (1999) 7-? 1

Adaptive Use of Iterative Methods in
Predictor-Corrector Interior Point Methods for Linear
Programming

Weichung Wang?

¢ Department of Mathematics Education, National Tainan Teachers College, Tainan 700,
Taiwan
E-mail: wwang@ipx.ntntc.edu.tw

Dianne P. O’Leary P

¥ Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, U.S.A.
E-mail: oleary@cs.umd.edu
Dedicated to Richard Varga, for making the use of iterative methods a science,

without diminishing the artistry.

In this work we devise efficient algorithms for finding the search directions for
interior point methods applied to linear programming problems. There are two
innovations. The first is the use of updating of preconditioners computed for previous
barrier parameters. The second is an adaptive automated procedure for determining
whether to use a direct or iterative solver, whether to reinitialize or update the
preconditioner, and how many updates to apply. These decisions are based on
predictions of the cost of using the different solvers to determine the next search
direction, given costs in determining earlier directions. We summarize earlier results
using a modified version of the OB1-R code of Lustig, Marsten, and Shanno, and
we present results from a predictor-corrector code PCx modified to use adaptive
iteration. If a direct method is appropriate for the problem, then our procedure
chooses it, but when an iterative procedure is helpful, substantial gains in efficiency
can be obtained.

Keywords: Interior point methods, linear programming, iterative methods for
linear systems, adaptive algorithms, self-timing algorithms

AMS Subject classification: Primary 65K05, 65F10, 90C05

* This work was supported in part by the National Science Foundation under Grants CCR
95-03126 and CCR 97-32022.

2 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

1. Introduction

Interior point algorithms are now widely used to solve linear programming
problems

minimize ¢l x
subject to Az = b, (1)
x>0,

where ¢, x are real n-vectors, b is a real m-vector, and A is a real m X n matrix
of rank m, with m < n. These methods typically solve a sequence of logarithmic
barrier subproblems with the barrier parameter decreasing to zero. Newton’s
method is applied to solve the first order optimality conditions corresponding
to each of the logarithmic barrier subproblems. The bulk of the work in such
algorithms is the determination of a search direction for each step.

Gonzaga [19] and Wright [38] surveyed interior point methods, and many
computational issues are addressed by Lustig, Marsten, and Shanno [26] and
Andersen, Gondzio, Mészaros, and Xu [1]. Therefore, in this section we focus
only on the linear systems arising in interior point methods. For definiteness,
we consider the primal-dual formulation of interior point methods, but the linear
algebra of primal formulations and dual formulations is similar.

The search direction is usually determined by solving either the reduced
KKT (Karush-Kuhn-Tucker) system,

~X71ZATN (Az\ (ra+ Ze—puX"le 2)
A 0 Ay) Tp '
or the normal equations, formed by eliminating Az from this system. Defining
rp=b—Ax,rg=c— ATy — 2z, and D? = Z' X, we obtain

(AD?ATYAy = AD*(rq + Ze — puz~"e) + 1. (3)

Here z is the vector of dual slack variables, p is the barrier parameter, and X
and Z are diagonal matrices containing z and z (respectively) on their main
diagonals. Once Ay is determined from the normal equations, Az may be easily
computed from

(X' 2)Ax+ ATAy =rg+ Ze — pX e (4)

Comparing the normal equations (3) and the KKT system (2), we observe
that the matrix for the normal equations is positive definite and symmetric, has
smaller size (m x m), and may be more dense. In contrast, the KKT matrix is
symmetric indefinite and usually more sparse.

One nice feature of these problems is that only D and the right hand side of
the system change from step to step. Thus, the sparsity structure of the problem
remains the same, in contrast to the linear systems arising in the simplex algo-
rithm which differ by exchanges of columns of A. Some interior point algorithms

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 3

(e.g., OB1-R) solve one linear system with each matrix, while others (e.g., PCx)
solve multiple systems.

The roots of interior point algorithms date back to the algorithms of Fi-
acco and McCormick [10], but ever since interior point algorithms first gained
prominence in 1984 [20], researchers have given attention to speeding up the step
time through efficient solution of the linear system. Direct methods that rely on
sparse matrix factorizations have been the most popular approaches (e.g., [25],
[33]), although iterative methods for solving linear systems have also received a
fair amount of attention.

Karmarkar and Ramakrishnan reported computational results of Kar-
markar’s dual projection algorithm using a preconditioned conjugate gradient
solver [21]. An incomplete Cholesky factorization of the matrix AD?AT was
computed for one interior point step and then used as a preconditioner over
several subsequent steps. In their experiments, Cholesky factorization was per-
formed on average every 2 to 3 steps. Mehrotra used preconditioned conjugate
gradients to solve the normal equations in a dual affine scaling interior point algo-
rithm [27]. He addressed issues such as the stopping criterion and the stability of
the implementation. At each interior point step, an incomplete Cholesky factor
was computed and used as the preconditioner. Carpenter and Shanno used a
diagonal preconditioner for a conjugate gradient solver for the normal equations
in an interior point method for quadratic and linear programs [3]. They also
considered recomputing the preconditioner every other step. Portugal, Resende,
Veiga, and Jidice introduced a truncated primal-infeasible dual-feasible interior
point method, focusing on network flow problems [32]. The preconditioned con-
jugate gradient algorithm was used to solve the normal equations. They initially
used the diagonal of the matrix AD?AT as a preconditioner and replaced it by
spanning tree preconditioners in later steps. Mehrotra and Wang [28] used an
incomplete Cholesky factor of AD?AT as a preconditioner for conjugate gradi-
ents in a dual interior point method for network flow problems. Gill, Murray,
Saunders, Tomlin, and Wright established the equivalence between Karmarkar’s
projected method and their projected Newton barrier method [15]. They used
LSQR [31], preconditioned by an approximation to AD?A”| to find the search
directions. Goldfarb and Mehrotra developed a relaxed version of Karmarkar’s
method that allows inexact projection [17]. They applied CGLS [31] to determine
the search direction. Nash and Sofer investigated the choice of a preconditioner
in the positive definite system Z7GZ where Z is rectangular and G is general
symmetric [29].

Chin and Vannelli [5] solved a reduced KKT system using the preconditioned
conjugate gradient algorithm and Bi-CGSTAB with incomplete factorization. In
a different paper [4] they used an incomplete factorization as a preconditioner for
the normal equations (3). Freund and Jarre [11] employed a symmetric variant
of the quasi-minimal residual (QMR) method to solve the KKT systems. They
suggested using indefinite SSOR preconditioners to accelerate the convergence.

4 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Despite all of this work, the use of iterative methods has so far produced
limited success. The obstacles to the use of these methods are considerable.

e Over the course of the interior point steps, the requirements on accuracy
change greatly; approximate solutions can be allowed early in the steps but
can cause the algorithm to fail later when the iterates are near the boundary.

e The matrix D changes quite rapidly and becomes highly ill-conditioned in the
final steps.

For these reasons, it is difficult to find a preconditioning strategy that produces
good performance of iterative methods over the entire course of the interior point
computation.

In this paper we develop an adaptive algorithm that changes strategy over
the course of the interior point algorithm. It determines dynamically whether the
preconditioner should be held constant, updated, or recomputed, and it switches
to a direct method when it predicts that an iterative method will be too expensive.
In our experiments, we use a preconditioned conjugate gradient iteration on the
linear system involving the matrix ADAT, but our ideas could be extended to
iterations involving the KKT formulation as well.

This idea of choosing among various numeric algorithms depending on the
timing performance or timing prediction of algorithmic components for a par-
ticular problem on a particular machine architecture was summarized in a 1995
report by O’Leary and Wang [36] and elaborated by Wang in his 1996 thesis [35].
This idea has proved quite useful in other numeric algorithms, such as a 1997
algorithm of Frigo and Johnson for computing Fourier transforms [12] and a 1998
proposal by Whaley and Dongarra for linear algebra computations [37].

In the next section, we discuss the characteristics of direct and iterative
methods and present our preconditioner. Section 3 focuses on our algorithm for
the adaptive choice of direct vs. iterative methods and the adaptive choice of a
preconditioner. Numerical results are presented in § 4. Final comments are made
in § 5.

2. The linear system solvers

The most expensive part of an interior point algorithm is determining the
search direction by solving one or more linear systems. Either direct or iterative
methods may be used for these systems. In this section, we focus on the solution
of the normal equations (3). This discussion sets the goals to be accomplished in
designing an efficient algorithm.

We will assume that the columns of A have been permuted using standard
techniques in order to improve sparsity in the Cholesky factor of AD?AT (e.g.,

[9], [24])-

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 5

2.1. Direct solvers: Cholesky factorization

Most existing linear programming interior point methods solve the normal
equations by direct methods. The implementations OB1-R of Lustig, Marsten,
and Shanno [25] and PCx of Czyzyk, Mehrotra, and Wright [7] are representa-
tive of these methods, and the iterative methods will be compared with these
implementations.

To solve equation (3), the OB1-R implementation computes a sparse
Cholesky factorization of the matrix K = AD?AT as LPL", where L is a unit
lower triangular matrix and P is a diagonal matrix. Forward and backward sub-
stitution are then applied to compute the search direction Ayg. The OB1-R
algorithm then checks whether A Azy is close enough to the artificial variables
(b—Azy). If not, iterative refinement using the factored matrix LPL" is employed
repeatedly until the one-norm of the difference is sufficiently small. To deal with
the dense columns in A, the OB1-R algorithm adopts the method suggested by
Choi, Monma, and Shanno [6].

The PCx implementation uses a similar strategy for the solution of linear
systems, using the Ng-Peyton [30] sparse matrix code, with modification by re-
placing small pivots by a very large number, and again dealing with dense columns
separately. The algorithm also performs iterative refinement using the conjugate
gradient algorithm with the factorization as a preconditioner.

There are three main disadvantages to direct methods. First, the iterative
refinement used in the OB1-R code may fail if the matrix K = AD?A” is very
ill-conditioned because the factorization may not be accurate enough to produce
an iteration matrix with spectral radius less than one. Such a situation can
occur when the primal and dual variables are near to the optimal solution, since
then the matrix D is quite ill-conditioned. The iteration can also be affected by
ill-conditioning in A.

Another potential problem of direct methods is fill-in. Although the dense
columns of A can be treated separately, the remaining Cholesky factor may still
be rather dense. This might be caused by difficulty in detecting “dense” columns
or by the nature of the problem. For example, network problems solved by
linear programming may lead to a Cholesky factor that is much more dense than
AD? AT even though A has no dense columns.

Lastly, the direct algorithms must form and factor the matrix K =
AD?A%each time p is changed. This procedure may be expensive in time, espe-
cially when the problem size is large. If m < n, the resulting matrix K may be
small and easy to factor, but forming it can still be costly.

2.2. Iterative solvers: preconditioned conjugate gradients

A variety of iterative methods can be used to solve the normal equations
or the KKT system. For definiteness, we focus on the preconditioned conjugate

6 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

gradient method for solving equation (3). In this method, we compute a sequence
of approximate solutions that converge to the true solution. The work during each
iteration involves one product of K with a vector, one solution of a linear system
involving the preconditioner, and several vector operations. More details about
the method can be found in [18].

The storage requirement for the preconditioned conjugate gradient method
is quite low, amounting to a few vectors of length m. Although a matrix-vector
multiplication Kv = (AD?AT)v is required at each iteration, we may compute
Kv as (A(D?*(ATv))) and thus need only to store the nonzeros of A and the
diagonal of D rather than the matrix AD?AT, which can be quite dense. The
preconditioner should also be chosen to conserve storage.

Since accuracy requirements for the search direction in the beginning phase
of the interior point algorithm are quite low, only a few conjugate gradient it-
erations are required. As the primal and dual variables approach the optimal
solution, the convergence tolerance must be tightened and more iterations are
needed.

The crucial issue in the preconditioned conjugate gradient algorithm is to
find a preconditioner for each step of the interior point method. A good precon-
ditioner may dramatically accelerate the convergence rate and gain great compu-
tational savings. We consider some strategies for choosing the preconditioners in
the next subsection.

2.8. The preconditioner

Convergence of the conjugate gradient iteration will be rapid if the pre-
conditioned matrix has either a small condition number or great clustering of
eigenvalues [18, Chap. 10]. We discuss our strategy for preconditioning.

The basic preconditioner is the Cholesky factorization of one of the matri-
ces that has been generated in the course of the interior point method. PCx
always uses the sparse piece of the current matrix, but this requires frequent
factorizations.

An alternative to computing a new Cholesky factorization on every interior
point step is to reuse the preconditioner that was computed for one value of the
barrier parameter p in order to solve systems for several successive values of u
[3] [21]. This reduces the computational work in forming the factorization.

An incomplete Cholesky factorization, originally proposed by Varga [34],
could be used in place of the Cholesky if density of the matrix factors is too
great, but we do not pursue that idea in our implementations.

Rather than keeping the preconditioner fixed when p changes, though, we
can update it by a small-rank change, since the normal equations matrix is a
continuous function of y. Let D be the current diagonal matrix and D be the
one for which we have a factorization AD2AT = LPLT. Define AD = D? — D?

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 7

and let a; be the i-th column of matrix A. Since

AD?AT = AD?AT + AADAT = LPL" +) Adjaal, (5)
=1

we may obtain an improved preconditioner LPLT by applying a rank-a update to
LPLT, where o < n. This update may be computed as in [2] and [8]. We choose
« large enough to include most of the large magnitude terms in the summation.
Then we have factored a matrix that differs from AD2AT by a matrix of rank
n—«. This difference matrix can be expressed as a matrix of small norm plus one
of small rank, and we can hope for rapid convergence of the conjugate gradient
iteration.

We now turn our attention to criteria for deciding when to keep or update
or reinitialize the current preconditioner and how many iterations to perform.

3. The adaptive algorithm

Our interior point algorithm chooses the initial variables, the step lengths,
the barrier parameter pu, and convergence criteria following standard strategies
[7,25]. Each step requires the solution of one or more linear systems, and that
is where the bulk of the computational work lies. The difference between our
algorithm and standard ones is that for each step of the interior point method
(each distinct value of p1), we choose an efficient linear equation solver adaptively.

We need to specify when to use an iterative method, when to refactor the
matrix, how many updates to use in the preconditioner, and how to terminate
the iteration.

8.1. When to use the iterative method

In the first step of the algorithm, the normal equations (3) are solved directly
by factoring K = AD?AT = LPL”. Starting from the second step, the algo-
rithm uses preconditioned conjugate gradients. The preconditioner for each step
is determined by factoring the current matrix K or by updating the current pre-
conditioner. This “factor-update cycle” will be continued up to the “end-game,”
entered when the relative duality gap is small enough. In the end-game, the it-
erates are close to the optimal solution and accuracy requirements are high. The
elements in matrix D vary significantly and make the matrix K = AD?Avery
ill-conditioned. The Cholesky factorization of K may not generate a good pre-
conditioner, even if stable methods such as [14] are used. For all of these reasons,
a direct method is used to determine the final search directions.

We also switch to a direct method when OB1-R computes a Cholesky fac-
torization with a zero on the diagonal. This contingency could be avoided by
using a modified Cholesky factor; see, for example, [16, Chap. 4].

8 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

For interior point methods like PCx that use the predictor-corrector strategy
[2,7], the “factor-update cycle” is modified when the number of different u values
between refactorization drops to 3 or fewer. At that point (the middle stage),
we begin to force a refactorization at least every 3 steps. This continues until
the relative gap drops below a user-defined tolerance (1.0 x 107® in the current
implementation) at which time a refactorization is performed at least every other
step (the late stage), and then the algorithm proceeds with the end-game as
above.

While the adaptive algorithm monitors the cost of the iterative method, it
separates out problems that are not well suited to iterative methods. If twice in a
row the updated preconditioner is inefficient in the step after the preconditioner
is reinitialized, then the algorithm will use only the direct method from then on.
An example of such a situation is illustrated in Figure 5.

In summary, our algorithm uses direct methods for linear systems in the
first step, in the final (end-game) steps, periodically in the middle and late stages
of predictor-corrector methods, and at other times in which the iterative method
is estimated to be more expensive than the direct method.

3.2. Deciding whether to refactor or to update the preconditioner

We make decisions regarding refactorization or update of the preconditioner
based on the actual cost incurred in determining previous search directions, as
measured in seconds by a system timing program:

drct_cost = the cost of factoring and solving the system directly;
updt_cost = the cost of each rank-one update;
pcgicost = the cost of each conjugate gradient iteration.

(For simplicity, we neglect the fact that updates and downdates have slightly
different costs.) We initialize each of these estimates to zero, but after the first
few steps of the interior point method, we have accurate estimates of each. In
order to reduce the effects of variability from the timer output, though, we suggest
that these estimates continue to be updated over many steps.

The decision to update the current preconditioner or refactor the matrix
AD?ATto obtain a new preconditioner is based on the approximate cost of the
preceding iteration, including the cost of any updates that were made to the
preconditioner. This cost is

prev_cost = (updt_cost X updt_nmbr) + (pcgi_cost X pcgi_nmbr) 4 (overhead),

where updt nmbr is the number of updates that were performed and pcgi nmbr
is the number of pcg iterations. The overhead includes operations such as initial-
izing the solution to zeros, computing the norm of the right-hand side, deciding
on the number of rank-one updates, etc.

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 9

o If the cost of determining the previous search direction was high, we reinitialize
the preconditioner by factoring the current matrix K = AD?A”. We take this
action when the cost of the previous iteration exceeds 80% of the cost of direct
solution:

prev_cost > .8 X drct_cost.

o If the cost of the previous iteration was not that high, then we base our decision
on a prediction of the cost of the current iteration, refactoring if the predicted
cost is greater than the cost of the direct method.

Our prediction method is simple and requires only a few arithmetic operations.
We fit a straight line to the number of iterations required to determine two
preceding search directions. We choose the previous number, and the latest
other one that gives a line with positive slope, and use this line to predict the
number of iterations, predi nmbr, required to determine the current search
direction. If the solver refactored on the previous step, or if we cannot obtain
a positive slope with data since the last refactorization, then our predicted
number of iterations is one more than the number taken last time, predi nmbr
= pcginmbr+1.

Given this predicted number of iterations, our predicted cost for computing
the search direction, neglecting overhead, is

pred_cost = (updt_cost X updt.nmbr) + (pcgi_cost x predi_nmbr).

If this cost is less than drct_cost, then the preconditioner is obtained by
updating the previous one. Otherwise it is obtained by factoring K = AD? AT,

3.3. The adaptive updating strategy

We adopt the strategy discussed in § 2.3: we update the Cholesky factors
using the updt nbmr= « “largest” outer product matrices as determined by |Ad;;|.
(We could have used |Ad;;|||a;||* instead.)

We change the number of Cholesky updates adaptively over the course of
the algorithm in order to improve efficiency. The number is increased if the
previous search direction took many iterations, and decreased if it took a very
small number.

Two parameters sml < 1lrg are initially set to 20 and 30 respectively. The
parameter sml denotes a number of conjugate gradient iterations that takes time
much less than drct_cost, while 1rg denotes a number that requires a more
substantial fraction of drct_cost. After timing data is available, we set

drct_cost drct_cost
_ sml =0.12 X —

lrg =0.15 X - ; X .
pcgi_cost pcgi_cost

10 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

To decide the number of rank-one updates, updt nmbr, to be performed, let
pcgi-slope be the slope of the line connecting last two pcgi nmbrs.

increased, if 1rg < pcginmbr and pcgi_slope > 0,
The updt nmbr is { decreased, if pcginmbr < sml and pcgi_slope < 0,
unchanged, otherwise.

Increases or decreases in updt_nmbr are proportional to the pcgi_slope:

)

isl
(to increase) updt_nmbr = updt_nmbr X max(1.2, %

(to decrease) updt_nmbr = (updtnmbr x 0.9) 4+ 1.

Note that the sparsity of the Cholesky factors remains the same, no matter how
many updates are used.

3.4. Terminating the PCG iteration

After computing the preconditioner, we solve the normal equations using
the preconditioned conjugate gradient method. We start from an initial guess of
zero, and iterate until the computed residual norm is less than a parameter e,
times the norm of the right-hand side. We choose the parameter ¢, adaptively:

for OB1-R,

1078, if relgap > 107%;
Epeg = L .
e 1078 x (relgap)é,otherWlse7

where relgap is the relative duality gap for the previous value of p. This is
similar to the stopping criterion in [28]. For PCx, we use

5.0 x 1073, for the beginning stage,
£peg = { min(relgapx10?, 1.0 x 1073), for the middle stage,
min(relgapx10*, 1.0 x 107%), for the late stage,

If the preconditioned conjugate gradient iteration number exceeds the maxi-
mum number of iterations allowed, then the current preconditioner is abandoned
and a new preconditioner is determined by Cholesky factorization. If this hap-
pens twice, the iterative method is not suitable and we switch to a direct method.
Unfortunately, the preconditioned conjugate gradient iteration might be stopped
just before convergence, thereby making the refactoring wasteful, but we consider
such a safeguard bounding the number of iterations to be important.

The maximum number of iterations is set to the number that produces a
cost of 1.2 times the cost of a direct method:
drct_cost

max_pcg-itn = 1.2 X .
Pee pcgi_cost

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Problem: pds-10
180
1694 O O Reinit. preconditioner +— +
1601 + + Updt. preconditioner :
Max PCG itnallowed +
- == Irg/sml
140
+ Lt + t
+ [
120 : +
%) .
5 ! oLy
2 N n
5 +
é’ 100F *
e [Tt o '
: +
5 gl F ++ +
3 EEE o
£ + +
g + ++ + + +
z L + + + 4 + +
60 -+ i i £ SRR
+
+H RS * +
401 + +t + " Ty
+ + +
+ + FohiL g T
7Y PP S P S e U S S
R~~~ — - T e e o = T
+ o)
: 660 00 00
olro o LO 00 0 60 0 00 00600000 1 I
2 20 40 60 80 100 118
Outer iteration

Figure 1. Number of PCG iterations for the adaptive algorithm

To summarize, our algorithm solves the normal equations directly to deter-
mine the first search direction, uses a preconditioned conjugate gradient method
starting from the second search direction, and switches back to the direct method
for the final search directions. The preconditioned conjugate gradient solver solves
the normal equations by first choosing and computing a preconditioner using an
adaptive strategy to decide whether to refactor the matrix and the rank of the
update performed. The algorithm automatically sets all parameters expected to

11

influence performance, based on actual time performance of the components of

the algorithm.

4. Numerical results

4.1. OBI-R

We modified the code OB1-R to adaptively choose the linear system solver,

and we performed numerical experiments comparing the results of this modified
version of OB1-R to the standard OB1-R code, dated December 1989.

12 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Problem: pds-10
400
* * Use direct solver
- - - Estimated direct solver cost
350F |+ + With reinitialized preconditioner 00 ©
[¢] O With updated preconditioner
300
250
0
°
c
=]
8]
@ 200 -
g +
= + +
E . . v + 5
3% © 0 — —p- — —0-0- ©-0- 6 —0-0 —0-0- — -0-0-00-00800.0 9
i +
1141 = '
E F SR P + T F
100 + + H
+ +
it 4 T+ H +
+ + n + + +
ol o B ERRE S + o
+ * HE ++ b7 + -t ' +
+ i P T S o
+ + + +
+
0 1 | | | | | | | |
1 1 20 31 40 60 80 100 119
Outer iteration

Figure 2. Timing performance for the adaptive algorithm

Both OB1-R and the adaptive algorithm are coded in FORTRAN and use
double precision arithmetic. Our experiments were performed on a SUN SPARC-
station 20 with 64 megabytes of main memory, running SunOS Release 4.1.3. The
FORTRAN optimization level was set to -03. We report CPU time in seconds,
omitting the time taken by the preprocessor HPREP since it is the same for both
codes.

Before comparing the two codes, we illustrate the behavior of the adaptive
algorithm on a large problem, pds-10 (with artificial variables) whose problem
characteristics are given in Table 1. Figure 1 shows the number of iterations
needed by the preconditioned conjugate gradient method for the u values chosen
by OB1-R. Conjugate gradients are used for uy through py1s, and then the algo-
rithm chooses to switch to direct solution because it detects a zero on the diagonal
of the preconditioner. The horizontal line at 169 marks the maximum number of
conjugate gradient iterations allowed (i.e. max_pcg-itn). The two dashed lines
at 21 and 16 indicate 1rg and sml, respectively. The Cholesky factorization is
recomputed 25 times, marked by circles in the figure. This is a savings of 92 fac-
torizations compared to the OB1-R algorithm. In between refactorizations, the

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 13

number of conjugate gradient iterations generally grows, more quickly for later
values of u than for earlier ones.

Figure 2 displays the time taken by each of these linear system solves. The
dashed line is drct_cost, the estimated direct solver cost based on its perfor-
mance for the first value of u. The solid line marks 0.8 times drct_cost.

We highlight the following observations from the figures.

e The adaptive algorithm produces significant savings in the beginning stage,
especially from the 11th to the 31st value of pu.

e The frequency of reinitializing the preconditioner grows as p is decreased.

e The preconditioners obtained from refactoring the matrix AD?A” are unsuit-
able in the late stage.

e The adaptive algorithm succeeds in keeping the cost near or better than the
direct cost on all iterations but three. On those, the predicted number of
iterations is too low.

We now summarize computational results on various types of linear pro-
gramming problems. If the total time for solution is small (i.e., 5 minutes or
less), then the performance of the two algorithms is similar. On more costly
problems, the adaptive method is faster: e.g., 9% faster on pilot87, 16% faster
on df1001, and 28% faster on maros-r7 from the NETLIB collection.

More complete results can be found in [36].

4.2. PCzx

We modified the code PCx to adaptively choose the linear system solver,
and we performed numerical experiments comparing the results of this modified
version of PCx to PCx version 1.1, dated November 1997.

Both PCx and the adaptive algorithm are coded by FORTRAN and C lan-
guage and use double precision arithmetic. Our experiments were performed on
a HP C1100/9000 workstation with 128 megabytes of main memory, running
HP-UX B.10.20 operating system. The FORTRAN and C optimization level
were set to =0. We report CPU time in seconds, including the time taken by the
preprocessor which is the same for both codes.

We report computational results on various types of linear programming
problems chosen from NETLIB, NETLIB’s Kennington problems, and some net-
work problems. We omit data for problems taking fewer than 10 seconds, since
direct methods are quite suitable for these.

Table 1 summarizes the problem characteristics. The numbers of rows and
columns indicated in the table refer to the output from the PCx preprocessor
and may be different from the data in [13]. The tabulated number of nonzero

14 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Problem: pds-20
* * Use direct solver
250k - == Estimated direct solver cost
0 O With reinitialized preconditioner
+ + With updated preconditioner
+
206k — — — — — O- - 00— - -0-- - -G - 0060 0-0-G-0 9-0-0-
+ +
+
0
2
S 150 +
@ +
]
3
F +
+
100+ ++ +
+ +
+ + +
+ it !
L + +
50 FE— + +4 +
+
+ + + +
+ + +
0 11 | | | | | | |
12 10 20 30 33 40 50 54
Outer iteration

Figure 3. Timing performance for the adaptive algorithm on problem pds-20.

elements of the Cholesky factor L include the diagonal part of L. The density of
L is computed as

2 X (Number of nonzeroes of L) — m

m X m ’
where M is the number of rows of A after presolving.

Minimum cost flow network problems may be solved using linear program-
ming algorithms (although it is generally more efficient to use a network algorithm
like [22]). We test our algorithm on this class of problems because the matrix
AAT and its resulting Cholesky factor tend to be much more dense than the
original coefficient matrix A, even if there is no dense column in A. Forming and
factoring the matrix AD?AT is thus quite expensive. We generated minimum
cost flow network problems using NETGEN, developed by Klingman, Napier,
and Stutz [23].

Before comparing the two codes, we illustrate the typical behavior of the
adaptive algorithm using three examples.

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 15

LP size Cholesky factor L
Problem Rows Columns Nonzeros Density
NETLIB:
d2q06¢ 2132 5728 137349 0.060
degen3 1503 2604 120906 0.106
dfloo1 5984 12143 1638085 0.091
fit2d 25 10524 324 0.997
greenbea 1933 4164 49055 0.026
maros-r7 2152 7440 534188 0.230
pilot 1368 4543 200812 0.214
pilot&7 1971 6373 425654 0.219
stoch3 15362 22228 177936 0.001
Kennington:
cre-b 5336 36382 248629 0.017
cre-d 4102 28601 212094 0.025
ken-11 10085 16740 102906 0.002
ken-13 22534 36561 298417 0.001
ken-18 78862 128434 1928863 0.002
osa-07 1081 25030 28276 0.047
osa-14 2300 54760 60795 0.023
osa-30 4313 104337 115081 0.012
osa-60 10243 243209 265909 0.005
pds-06 91556 28472 589339 0.014
pds-10 15648 48780 1687660 0.014
pds-20 32287 106180 7089645 0.014
Network:
net0108 1000 8000 207560 0.414
net0116 1000 16000 280678 0.560
net0408 4000 8000 556366 0.069
net0416 4000 16000 1766394 0.221
net0816 8000 16000 2201390 0.069
net0832 8000 32000 7000874 0.219
net0864 8000 64000 12247346 0.383
net1632 16000 32000 8653616 0.068

Table 1

Statistics of the test problems.

Figure 3 shows the time taken by linear system solves on problem pds-20.
The time for computing predictor and corrector are summed. The dashed line
is drct_cost, the estimated direct solver cost based on its performance for the
first value of p. Preconditioned conjugate gradients are used for py through pisg.
The algorithm switches to the late stage at ps3 and then to the ending stage at
155 because it detects a relative duality gap that is smaller than the parameter
ending tol. The Cholesky factorization is recomputed 15 times, marked by cir-

16 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Problem: dfl001
90
®)
* * Use direct solver
g0l — — — Estimated direct solver cost
0 O With reinitialized preconditioner
+ + With updated preconditioner
70
+
60
+
—~ +
B
§ 50 n .
Q
0
Py +
£35S - - 0-=--0-9-0--0-06-9-H--0-6+6-0-9
}_
+
30
+
+
20 + i i
+ +
+ + + +
101 v+
LA + + f
¥ + + i
0 L1 | | | | | | | | | |
12 5 10 12 15 20 25 30 35 39 44
Outer iteration

Figure 4. Timing performance for the adaptive algorithm on problem df1001.

cles in the figure. This is a savings of 38 factorizations compared to the PCx
algorithm. In between refactorizations, the number of conjugate gradient itera-
tions generally grows, more quickly for late values of p than for earlier ones. We
highlight the following observations from the figure, similar to the observations

for the OB1-R code.

e The adaptive algorithm produces significant savings in the beginning stage,
especially from the 2nd to the 10th value of p.

e The frequency of reinitialization of the preconditioner grows as p is decreased.

e The adaptive algorithm succeeds in keeping the cost at or better than the direct
cost on all iterations but two. On those, the timings are close to drct_cost.

Figure 4 shows that Problem df1001 has a long middle stage. While com-
puting the predictor at pg, the adaptive algorithm does not converge to the
predefined tolerance within the maximum number of iterations allowed. The al-
gorithm thus decides to carry out refactorization, resulting in high cost. The
algorithm switches to the middle stage at py9 and remains there through puss.
The adaptive algorithm keeps the cost close to or better than the direct cost on

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 17

Problem: cre-b
* * Use direct solver
- - - Estimated direct solver cost
3k o] O With reinitialized preconditioner
+ + With updated preconditioner
+
s +
5]
Q
L
]
E
Flay —— - ————————— = — =~ o - - ——-
1 |-
0 | | | |
1 2 3 4 5
Outer iteration

Figure 5. Timing performance for the adaptive algorithm on problem cre-b.

all iterations in the middle stage except for p14 and psg. The adaptive algorithm
switches to late and ending stages at pzg and 45 respectively.

Problem cre-b is not suitable for the iterative method. The adaptive al-
gorithm discovers this at pus and switches to the direct method (Figure 5). This
happens because twice in a row the updated preconditioner is inefficient right
after the preconditioner is reinitialized. Such behavior occurs in problems like
cre-d, ken-11, ken-13, and osa-07. It is vitally important that the algorithm
can make this decision automatically.

Table 2 shows the computational results on the three problem sets, com-
paring the number of u values needed by the interior point method, the relative
duality gap in the final answer, and the CPU time required by PCx and the
adaptive algorithm. The last column is the difference between the PCx and the
adaptive times. A positive difference means the adaptive algorithm is faster.

We summarize the following observations from the results in table 2.

e Both PCx and the adaptive algorithm converge to solutions satisfying the
optimality criteria defined in PCx except on the problem greenbea, which is
well-known to be difficult for interior point methods [33]. The optimal criteria

18 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

The more costly problems (PCx timing > 1000 seconds).
T T T T T T 7

X X PCx algorithm X

100 G—=© Adaptive algorithm

Time (seconds)

10t

1 1 1 1 1
22 23 24 25 26 27 28 29
Test problems sorted by PCx timing

The cheaper problems (PCx timing <= 1000 seconds).

10°f T T T
Flx X PCx algorithm
G——=o0 Adaptive algorithm
0
e X
3
fvi 10°F !
o f 1
£
= X
X
1 1 1 1 1
1 5 10 15 20 21

Test problems sorted by PCx timing

Figure 6. Timing performance comparison for all test problems, sorted by the time taken by

the PCx algorithm.

include small duality gap, primal feasibility, and dual feasibility.

e The algorithms take a similar number of p values and achieve similar duality
gaps in most of the test problems. On some problems like pds-10, pds-20,
degen3, and maros-r7, however, the adaptive algorithm takes 1 or 3 additional
steps and achieves duality gaps several orders of magnitude smaller.

e In df1001, the adaptive algorithm achieves the optimal criteria in 10 fewer
steps, obtains a duality gap 1 order of magnitude smaller, and is faster than
PCx by 880 seconds.

e If the total time for solution is small (i.e., 7 minutes or less), then the per-
formance of the two algorithms is similar. On more costly problems such as
df1001, pilot87, net0832, and pds-20, the adaptive method is faster. Figure
6 compares the timing of the problems.

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 19
IPM ite. Rel. dul. gap Time
Problem PCx Adap PCx Adap PCx Adap Diff.

NETLIB:

d2q06¢ 29 29 2.53e-07 2.55e-07 18.14 18.79 -0.65
degen3 16 19 1.18e-08 8.49e-12 18.11 20.70 -2.59
dfioo1 58 48 5.63e-08 2.58e-09 2350.12 1470.08 880.04
fit2d 23 23 4.94e-07 3.67e-07 15.36 14.77 0.59
greenbea 48 50 1.90e-10 2.13e-09 10.93 11.31 -0.38
maros-r7 18 19 1.31e-08 2.97e-14 60.23 60.08 0.15
pilot 36 36 2.88e-07 2.91e-07 44.40 45.00 -0.60
pilot87 34 35 1.96e-07 2.31e-08 163.25 155.89 7.36
stoch3 31 31 6.13e-08 8.20e-08 26.16 29.90 -3.74
Kennington:

cre-b 40 40 9.69e-07 8.40e-07 70.04 71.49 -1.45
cre-d 40 40 1.21e-06 1.46e-06 58.43 60.31 -1.88
ken-11 21 21 6.44e-08 6.45e-08 14.42 15.25 -0.83
ken-13 26 26 5.42e-07 5.20e-07 44.34 16.34 28.00
ken-18 30 29 1.84e-06 5.75e-06 293.36 291.66 1.70
osa-07 25 25 2.55e-07 2.11e-07 15.44 16.24 -0.80
osa-14 27 27 1.75e-08 1.68e-08 40.62 42.24 -1.62
osa-30 27 26 2.22e-08 5.72e-08 94.70 94.91 -0.21
osa-60 30 31 3.60e-07 1.95e-07 346.73 359.73 -13.00
pds-06 37 36 8.51e-07 1.75e-06 197.41 194.37 3.04
pds-10 41 44 4.59e-06 8.34e-08 1081.83 973.82 108.01
pds-20 55 58 7.19e-06 9.82e-08 13268.11 8969.40 4298.71
Network:

net0108 16 16 7.68e-08 7.68e-08 30.37 29.23 1.14
net0116 18 19 1.58e-07 2.23e-09 61.90 58.04 3.86
net0408 20 21 4.38e-08 1.31e-08 193.73 150.97 42.76
net0416 19 20 5.72e-10 1.10e-13 1062.08 746.55 315.53
net0816 20 21 3.95e-07 2.81e-08 1575.71 1064.75 510.96
net0832 20 21 3.54e-07 3.87e-09 9067.49 5886.13 3181.36
net0864 20 21 1.03e-07 9.87e-09 20954.51 14905.89 6048.62
net1632 22 23 1.34e-07 2.46e-08 15344.07 8867.81 6476.26

Table 2

Computational results for the test problems. A positive value in the last column means that

5. Conclusion

the adaptive algorithm is faster.

For interior point methods, with or without predictor-corrector strategies,

we have presented an adaptive automated procedure for determining whether to

use a direct or iterative solver, whether to reinitialize or update the precondi-
tioner, and how many updates to apply, and demonstrated that it can enhance
performance of interior point algorithms on large sparse problems.

20 W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

Our preconditioning strategy is based on recomputing or updating the pre-
vious preconditioner.

Our numerical tests were performed using two specific codes, but it is pos-
sible to implement this idea in other codes by adding three pieces:

1. a mechanism to determine whether a direct or iterative solver should be used;

2. a routine that performs updating and downdating of an existing Cholesky
factorization; and

3. an iterative solver, such as a preconditioned conjugate gradient method.

Further improvements could be made in the algorithm. Deeper understand-
ing of effective termination criteria for the iterative method may further en-
hance the efficiency of the algorithm. A block implementation of the matrix
updating and downdating would reduce overhead. Finally, parameters such as
max_pcg-itn, 1lrg, sml, and updt nmbr might be tuned to particular problem
classes.

Acknowledgements

We are grateful to Roy Marsten for giving us access to OB1-R, and to him
and Irvin Lustig for helpful comments. Dianne O’Leary is grateful for the hos-
pitality provided by Professor Walter Gander and the Departement Informatik,
ETH Ziirich, Switzerland.

References

[1] Erling D. Andersen, Jacek Gondzio, Csaba Mészéros, and Xiaojie Xu. Implementation of
interior point methods for large scale linear programming. Technical Report Technical Re-
port 1996.3, Logilab, HEC Geneva, Section of Management Studies, University of (Geneva,
102 Bd Carl Vogt, CH-1211 Geneva 4, Switzerland, January 1997.

[2] Richard Bartels and Linda Kaufman. Cholesky factor updating techniques for rank 2
matrix modifications. SIAM Journal on Matriz Analysis and Applications, 10(4):557-592,
October 1989.

[3] TamraJ. Carpenter and David F. Shanno. An interior point method for quadratic programs
based on conjugate projected gradients. Computational Optimization and Applications,
2:5-28, 1993.

[4] P. Chin and A. Vannelli. Computational methods for an LP model of the placement
problem. Technical Report UWE&CE-94-02, Department of Electrical and Computer En-
gineering, University of Waterloo, November 1994.

[5] P. Chin and A. Vannelli. Iterative methods for the augmented equations in large-scale linear
programming. Technical Report UWE&CE-94-01, Department of Electrical and Computer
Engineering, University of Waterloo, October 1994.

[6] In Chan Choi, Clyde L. Monma, and David F. Shanno. Further development of a primal-
dual interior point method. ORSA Journal on Computing, 2(4):304-311, 1990.

[7] Joseph Czyzyk, Sanjay Mehrotra, and Stephen J. Wright. PCx user guide. Technical
Report ANL/MCS-TM-217, Argonne National Laboratory, Argonne, Illinois, 1997.

(8]

[9]

[10]

[11]

[12]

[13]

(27]

(28]

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM 21

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, Oxford, 1986.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming : Sequential Unconstrained
Minimization Techniques. John Wiley & Sons, New York, 1968. Reprint : Volume 4 of
SIAM Classics in Applied Mathematics, STAM Publications, Philadelphia, PA 19104-2688,
USA, 1990.

Roland W. Freund and Florian Jarre. A QMR-based interior-point algorithm for solving
linear programs. Technical report, AT&T Bell Laboratories and Institut fiir Angewandte
Mathematik und Statistik, 1995.

Matteo Frigo and Steven G. Johnson. The fastest fourier transform in the west. Technical
Report MIT-LCS-TR-728, Massachusetts Institute of Technology, September 1997.

D. M. Gay. Electronic mail distribution of linear programming test problems. Mathematical
Programming Soc. COAL Newsletter, 1985.

Philip E. Gill and Walter Murray. Newton-type methods for unconstrained and linearly
constrained optimization. Mathematical Programming, 7:311-350, 1974.

Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright.
On projected Newton barrier methods for linear programming and an equivalence to Kar-
markar’s projective method. Mathematical Programming, 36:183-209, 1986.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Academic
Press, 1981.

D. Goldfarb and S. Mehrotra. A relaxed version of Karmarkar’s method. Mathematical
Programming, 40(3):289-315, 1988.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, second edition, 1989.

Clovis C. Gonzaga. Path-following methods for linear programming. SIAM Review,
34(2):167-224, June 1992.

N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinator-
eca, 4:373-395, 1984.

N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point
algorithm for large scale linear programming. Mathematical Programming, 52:555-586,
1991.

J. L. Kennington and R. V. Helgason. Algorithms for network programming. John Wiley
and Sons, New York, NY, 1980.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow network problems. Man-
agement Science, 20(5):814-821, January 1974.

J. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM
Transactions on Mathematical Software, 11:141-153, 1985.

Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Computational experience with a
primal-dual interior point method for linear programming. Linear Algebra and Its Appli-
cation, 152:191-222, 1991.

Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Interior point methods for linear
programming: Computational state of the art. ORSA Journal on Computing, 6(1):1-14,
Winter 1994.

Sanjay Mehrotra. Implementation of affine scaling methods: Approximate solutions of sys-
tems of linear equations using preconditioned conjugate gradient methods. ORSA Journal
on Computing, 4(2):103-118, 1992.

Sanjay Mehrotra and Jen-Shan Wang. Conjugate gradient based implementation of inte-

22

W. Wang, D. P. O’Leary / Adaptive Iterative Method in IPM

rior point methods for network flow problems. Technical Report 95-70.1, Department of
Industrial Engineering and Management Sciences, Northwestern University, Evanston, 1L
60208-3119, U.S.A., October 1995.

Stephen G. Nash and Ariela Sofer. Preconditioning of reduced matrices. Technical Re-
port Report 93-01, Department of Operations Research and Engineering, George Mason
University, Fairfax, VA 22030, February 1993.

E. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM J. on Scientific Computing, 14:1034-1056, 1993.

C. C. Paige and M. A. Saunders. LSQR : An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software, 8:43-71, 1982.

L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Judice. A truncated primal-infeasible
dual-feasible network interior point method. November 1994.

Robert J. Vanderbei. LOQO : An interior point code for quadratic programming. Program
in Statistics and Operations Research, Princeton University. rvdb@princeton.edu, 1995.
Richard S. Varga. Factorization and normalized iterative methods. In Rudolph E. Langer,
editor, Boundary Problems in Differential Equations, pages 121-142. University of Wiscon-
sin Press, Madison, 1960.

Weichung Wang. [lterative Methods in Interior Point Methods for Linear Programming.
PhD thesis, Applied Mathematics Program, University of Maryland, 1996.

Weichung Wang and Dianne P. O’Leary. Adaptive wuse of iterative meth-
ods in interior point methods for linear programming. Technical Report CS-
TR-3560, Computer Science Department, University of Maryland, November 1995.
http://www.cs.umd.edu/Dienst /U1/2.0/Describe/nestrl.umep /CS-TR-3560.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned lin-
ear algebra software. In SC 1998 Proceedings (Electronic Publication)
hitp://www.netlib.org/utk/people/Jack Dongarra/papers.html. IEEE Press, 1998.

M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor, Acta
Numerica 1992, pages 341-407. Cambridge University Press, New York, USA, 1992.

