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2 W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM1. IntroductionInterior point algorithms are now widely used to solve linear programmingproblems minimize cTxsubject to Ax = b;x � 0; (1)where c; x are real n-vectors, b is a real m-vector, and A is a real m� n matrixof rank m, with m � n. These methods typically solve a sequence of logarithmicbarrier subproblems with the barrier parameter decreasing to zero. Newton'smethod is applied to solve the �rst order optimality conditions correspondingto each of the logarithmic barrier subproblems. The bulk of the work in suchalgorithms is the determination of a search direction for each step.Gonzaga [19] and Wright [38] surveyed interior point methods, and manycomputational issues are addressed by Lustig, Marsten, and Shanno [26] andAndersen, Gondzio, M�esz�aros, and Xu [1]. Therefore, in this section we focusonly on the linear systems arising in interior point methods. For de�niteness,we consider the primal-dual formulation of interior point methods, but the linearalgebra of primal formulations and dual formulations is similar.The search direction is usually determined by solving either the reducedKKT (Karush-Kuhn-Tucker) system,��X�1Z ATA 0 ���x�y� = �rd + Ze� �X�1erp � ; (2)or the normal equations, formed by eliminating �x from this system. De�ningrp = b�Ax, rd = c� ATy � z, and D2 = Z�1X , we obtain(AD2AT )�y = AD2(rd + Ze � �x�1e) + rp: (3)Here z is the vector of dual slack variables, � is the barrier parameter, and Xand Z are diagonal matrices containing x and z (respectively) on their maindiagonals. Once �y is determined from the normal equations, �x may be easilycomputed from �(X�1Z)�x+AT�y = rd + Ze� �X�1e: (4)Comparing the normal equations (3) and the KKT system (2), we observethat the matrix for the normal equations is positive de�nite and symmetric, hassmaller size (m� m), and may be more dense. In contrast, the KKT matrix issymmetric inde�nite and usually more sparse.One nice feature of these problems is that only D and the right hand side ofthe system change from step to step. Thus, the sparsity structure of the problemremains the same, in contrast to the linear systems arising in the simplex algo-rithm which di�er by exchanges of columns of A. Some interior point algorithms



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 3(e.g., OB1-R) solve one linear system with each matrix, while others (e.g., PCx)solve multiple systems.The roots of interior point algorithms date back to the algorithms of Fi-acco and McCormick [10], but ever since interior point algorithms �rst gainedprominence in 1984 [20], researchers have given attention to speeding up the steptime through e�cient solution of the linear system. Direct methods that rely onsparse matrix factorizations have been the most popular approaches (e.g., [25],[33]), although iterative methods for solving linear systems have also received afair amount of attention.Karmarkar and Ramakrishnan reported computational results of Kar-markar's dual projection algorithm using a preconditioned conjugate gradientsolver [21]. An incomplete Cholesky factorization of the matrix AD2AT wascomputed for one interior point step and then used as a preconditioner overseveral subsequent steps. In their experiments, Cholesky factorization was per-formed on average every 2 to 3 steps. Mehrotra used preconditioned conjugategradients to solve the normal equations in a dual a�ne scaling interior point algo-rithm [27]. He addressed issues such as the stopping criterion and the stability ofthe implementation. At each interior point step, an incomplete Cholesky factorwas computed and used as the preconditioner. Carpenter and Shanno used adiagonal preconditioner for a conjugate gradient solver for the normal equationsin an interior point method for quadratic and linear programs [3]. They alsoconsidered recomputing the preconditioner every other step. Portugal, Resende,Veiga, and J�udice introduced a truncated primal-infeasible dual-feasible interiorpoint method, focusing on network 
ow problems [32]. The preconditioned con-jugate gradient algorithm was used to solve the normal equations. They initiallyused the diagonal of the matrix AD2AT as a preconditioner and replaced it byspanning tree preconditioners in later steps. Mehrotra and Wang [28] used anincomplete Cholesky factor of AD2AT as a preconditioner for conjugate gradi-ents in a dual interior point method for network 
ow problems. Gill, Murray,Saunders, Tomlin, and Wright established the equivalence between Karmarkar'sprojected method and their projected Newton barrier method [15]. They usedLSQR [31], preconditioned by an approximation to AD2AT , to �nd the searchdirections. Goldfarb and Mehrotra developed a relaxed version of Karmarkar'smethod that allows inexact projection [17]. They applied CGLS [31] to determinethe search direction. Nash and Sofer investigated the choice of a preconditionerin the positive de�nite system ZTGZ where Z is rectangular and G is generalsymmetric [29].Chin and Vannelli [5] solved a reduced KKT system using the preconditionedconjugate gradient algorithm and Bi-CGSTAB with incomplete factorization. Ina di�erent paper [4] they used an incomplete factorization as a preconditioner forthe normal equations (3). Freund and Jarre [11] employed a symmetric variantof the quasi-minimal residual (QMR) method to solve the KKT systems. Theysuggested using inde�nite SSOR preconditioners to accelerate the convergence.



4 W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPMDespite all of this work, the use of iterative methods has so far producedlimited success. The obstacles to the use of these methods are considerable.� Over the course of the interior point steps, the requirements on accuracychange greatly; approximate solutions can be allowed early in the steps butcan cause the algorithm to fail later when the iterates are near the boundary.� The matrix D changes quite rapidly and becomes highly ill-conditioned in the�nal steps.For these reasons, it is di�cult to �nd a preconditioning strategy that producesgood performance of iterative methods over the entire course of the interior pointcomputation.In this paper we develop an adaptive algorithm that changes strategy overthe course of the interior point algorithm. It determines dynamically whether thepreconditioner should be held constant, updated, or recomputed, and it switchesto a direct method when it predicts that an iterative method will be too expensive.In our experiments, we use a preconditioned conjugate gradient iteration on thelinear system involving the matrix ADAT , but our ideas could be extended toiterations involving the KKT formulation as well.This idea of choosing among various numeric algorithms depending on thetiming performance or timing prediction of algorithmic components for a par-ticular problem on a particular machine architecture was summarized in a 1995report by O'Leary and Wang [36] and elaborated by Wang in his 1996 thesis [35].This idea has proved quite useful in other numeric algorithms, such as a 1997algorithm of Frigo and Johnson for computing Fourier transforms [12] and a 1998proposal by Whaley and Dongarra for linear algebra computations [37].In the next section, we discuss the characteristics of direct and iterativemethods and present our preconditioner. Section 3 focuses on our algorithm forthe adaptive choice of direct vs. iterative methods and the adaptive choice of apreconditioner. Numerical results are presented in x 4. Final comments are madein x 5.2. The linear system solversThe most expensive part of an interior point algorithm is determining thesearch direction by solving one or more linear systems. Either direct or iterativemethods may be used for these systems. In this section, we focus on the solutionof the normal equations (3). This discussion sets the goals to be accomplished indesigning an e�cient algorithm.We will assume that the columns of A have been permuted using standardtechniques in order to improve sparsity in the Cholesky factor of AD2AT (e.g.,[9], [24]).



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 52.1. Direct solvers: Cholesky factorizationMost existing linear programming interior point methods solve the normalequations by direct methods. The implementations OB1-R of Lustig, Marsten,and Shanno [25] and PCx of Czyzyk, Mehrotra, and Wright [7] are representa-tive of these methods, and the iterative methods will be compared with theseimplementations.To solve equation (3), the OB1-R implementation computes a sparseCholesky factorization of the matrix K = AD2AT as LPLT , where L is a unitlower triangular matrix and P is a diagonal matrix. Forward and backward sub-stitution are then applied to compute the search direction �yk . The OB1-Ralgorithm then checks whether A�xk is close enough to the arti�cial variables(b�Axk). If not, iterative re�nement using the factored matrix LPLT is employedrepeatedly until the one-norm of the di�erence is su�ciently small. To deal withthe dense columns in A, the OB1-R algorithm adopts the method suggested byChoi, Monma, and Shanno [6].The PCx implementation uses a similar strategy for the solution of linearsystems, using the Ng-Peyton [30] sparse matrix code, with modi�cation by re-placing small pivots by a very large number, and again dealing with dense columnsseparately. The algorithm also performs iterative re�nement using the conjugategradient algorithm with the factorization as a preconditioner.There are three main disadvantages to direct methods. First, the iterativere�nement used in the OB1-R code may fail if the matrix K = AD2AT is veryill-conditioned because the factorization may not be accurate enough to producean iteration matrix with spectral radius less than one. Such a situation canoccur when the primal and dual variables are near to the optimal solution, sincethen the matrix D is quite ill-conditioned. The iteration can also be a�ected byill-conditioning in A.Another potential problem of direct methods is �ll-in. Although the densecolumns of A can be treated separately, the remaining Cholesky factor may stillbe rather dense. This might be caused by di�culty in detecting \dense" columnsor by the nature of the problem. For example, network problems solved bylinear programming may lead to a Cholesky factor that is much more dense thanAD2AT even though A has no dense columns.Lastly, the direct algorithms must form and factor the matrix K =AD2AT each time � is changed. This procedure may be expensive in time, espe-cially when the problem size is large. If m� n, the resulting matrix K may besmall and easy to factor, but forming it can still be costly.2.2. Iterative solvers: preconditioned conjugate gradientsA variety of iterative methods can be used to solve the normal equationsor the KKT system. For de�niteness, we focus on the preconditioned conjugate



6 W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPMgradient method for solving equation (3). In this method, we compute a sequenceof approximate solutions that converge to the true solution. The work during eachiteration involves one product of K with a vector, one solution of a linear systeminvolving the preconditioner, and several vector operations. More details aboutthe method can be found in [18].The storage requirement for the preconditioned conjugate gradient methodis quite low, amounting to a few vectors of length m. Although a matrix-vectormultiplication Kv = (AD2AT )v is required at each iteration, we may computeKv as (A(D2(ATv))) and thus need only to store the nonzeros of A and thediagonal of D rather than the matrix AD2AT , which can be quite dense. Thepreconditioner should also be chosen to conserve storage.Since accuracy requirements for the search direction in the beginning phaseof the interior point algorithm are quite low, only a few conjugate gradient it-erations are required. As the primal and dual variables approach the optimalsolution, the convergence tolerance must be tightened and more iterations areneeded.The crucial issue in the preconditioned conjugate gradient algorithm is to�nd a preconditioner for each step of the interior point method. A good precon-ditioner may dramatically accelerate the convergence rate and gain great compu-tational savings. We consider some strategies for choosing the preconditioners inthe next subsection.2.3. The preconditionerConvergence of the conjugate gradient iteration will be rapid if the pre-conditioned matrix has either a small condition number or great clustering ofeigenvalues [18, Chap. 10]. We discuss our strategy for preconditioning.The basic preconditioner is the Cholesky factorization of one of the matri-ces that has been generated in the course of the interior point method. PCxalways uses the sparse piece of the current matrix, but this requires frequentfactorizations.An alternative to computing a new Cholesky factorization on every interiorpoint step is to reuse the preconditioner that was computed for one value of thebarrier parameter � in order to solve systems for several successive values of �[3] [21]. This reduces the computational work in forming the factorization.An incomplete Cholesky factorization, originally proposed by Varga [34],could be used in place of the Cholesky if density of the matrix factors is toogreat, but we do not pursue that idea in our implementations.Rather than keeping the preconditioner �xed when � changes, though, wecan update it by a small-rank change, since the normal equations matrix is acontinuous function of �. Let D̂ be the current diagonal matrix and D be theone for which we have a factorization AD2AT = LPLT . De�ne �D = D̂2 �D2



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 7and let ai be the i-th column of matrix A. SinceAD̂2AT = AD2AT + A�DAT = LPLT + nXi=1�diiaiaTi ; (5)we may obtain an improved preconditioner L̂P̂ L̂T by applying a rank-� update toLPLT , where � � n. This update may be computed as in [2] and [8]. We choose� large enough to include most of the large magnitude terms in the summation.Then we have factored a matrix that di�ers from AD̂2AT by a matrix of rankn��. This di�erence matrix can be expressed as a matrix of small norm plus oneof small rank, and we can hope for rapid convergence of the conjugate gradientiteration.We now turn our attention to criteria for deciding when to keep or updateor reinitialize the current preconditioner and how many iterations to perform.3. The adaptive algorithmOur interior point algorithm chooses the initial variables, the step lengths,the barrier parameter �, and convergence criteria following standard strategies[7,25]. Each step requires the solution of one or more linear systems, and thatis where the bulk of the computational work lies. The di�erence between ouralgorithm and standard ones is that for each step of the interior point method(each distinct value of �), we choose an e�cient linear equation solver adaptively.We need to specify when to use an iterative method, when to refactor thematrix, how many updates to use in the preconditioner, and how to terminatethe iteration.3.1. When to use the iterative methodIn the �rst step of the algorithm, the normal equations (3) are solved directlyby factoring K = AD2AT = LPLT . Starting from the second step, the algo-rithm uses preconditioned conjugate gradients. The preconditioner for each stepis determined by factoring the current matrix K or by updating the current pre-conditioner. This \factor-update cycle" will be continued up to the \end-game,"entered when the relative duality gap is small enough. In the end-game, the it-erates are close to the optimal solution and accuracy requirements are high. Theelements in matrix D vary signi�cantly and make the matrix K = AD2ATveryill-conditioned. The Cholesky factorization of K may not generate a good pre-conditioner, even if stable methods such as [14] are used. For all of these reasons,a direct method is used to determine the �nal search directions.We also switch to a direct method when OB1-R computes a Cholesky fac-torization with a zero on the diagonal. This contingency could be avoided byusing a modi�ed Cholesky factor; see, for example, [16, Chap. 4].



8 W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPMFor interior point methods like PCx that use the predictor-corrector strategy[?,?], the \factor-update cycle" is modi�ed when the number of di�erent � valuesbetween refactorization drops to 3 or fewer. At that point (the middle stage),we begin to force a refactorization at least every 3 steps. This continues untilthe relative gap drops below a user-de�ned tolerance (1:0� 10�8 in the currentimplementation) at which time a refactorization is performed at least every otherstep (the late stage), and then the algorithm proceeds with the end-game asabove.While the adaptive algorithm monitors the cost of the iterative method, itseparates out problems that are not well suited to iterative methods. If twice in arow the updated preconditioner is ine�cient in the step after the preconditioneris reinitialized, then the algorithm will use only the direct method from then on.An example of such a situation is illustrated in Figure 5.In summary, our algorithm uses direct methods for linear systems in the�rst step, in the �nal (end-game) steps, periodically in the middle and late stagesof predictor-corrector methods, and at other times in which the iterative methodis estimated to be more expensive than the direct method.3.2. Deciding whether to refactor or to update the preconditionerWe make decisions regarding refactorization or update of the preconditionerbased on the actual cost incurred in determining previous search directions, asmeasured in seconds by a system timing program:drct cost = the cost of factoring and solving the system directly;updt cost = the cost of each rank-one update;pcgi cost = the cost of each conjugate gradient iteration.(For simplicity, we neglect the fact that updates and downdates have slightlydi�erent costs.) We initialize each of these estimates to zero, but after the �rstfew steps of the interior point method, we have accurate estimates of each. Inorder to reduce the e�ects of variability from the timer output, though, we suggestthat these estimates continue to be updated over many steps.The decision to update the current preconditioner or refactor the matrixAD2AT to obtain a new preconditioner is based on the approximate cost of thepreceding iteration, including the cost of any updates that were made to thepreconditioner. This cost isprev cost = (updt cost�updt nmbr)+(pcgi cost�pcgi nmbr)+(overhead);where updt nmbr is the number of updates that were performed and pcgi nmbris the number of pcg iterations. The overhead includes operations such as initial-izing the solution to zeros, computing the norm of the right-hand side, decidingon the number of rank-one updates, etc.



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 9� If the cost of determining the previous search direction was high, we reinitializethe preconditioner by factoring the current matrix K = AD2AT . We take thisaction when the cost of the previous iteration exceeds 80% of the cost of directsolution: prev cost > :8� drct cost:� If the cost of the previous iteration was not that high, then we base our decisionon a prediction of the cost of the current iteration, refactoring if the predictedcost is greater than the cost of the direct method.Our prediction method is simple and requires only a few arithmetic operations.We �t a straight line to the number of iterations required to determine twopreceding search directions. We choose the previous number, and the latestother one that gives a line with positive slope, and use this line to predict thenumber of iterations, predi nmbr, required to determine the current searchdirection. If the solver refactored on the previous step, or if we cannot obtaina positive slope with data since the last refactorization, then our predictednumber of iterations is one more than the number taken last time, predi nmbr= pcgi nmbr+1.Given this predicted number of iterations, our predicted cost for computingthe search direction, neglecting overhead, ispred cost = (updt cost� updt nmbr) + (pcgi cost� predi nmbr):If this cost is less than drct cost, then the preconditioner is obtained byupdating the previous one. Otherwise it is obtained by factoringK = AD2AT .3.3. The adaptive updating strategyWe adopt the strategy discussed in x 2.3: we update the Cholesky factorsusing the updt nbmr= � \largest" outer product matrices as determined by j�diij.(We could have used j�diijkaik2 instead.)We change the number of Cholesky updates adaptively over the course ofthe algorithm in order to improve e�ciency. The number is increased if theprevious search direction took many iterations, and decreased if it took a verysmall number.Two parameters sml < lrg are initially set to 20 and 30 respectively. Theparameter sml denotes a number of conjugate gradient iterations that takes timemuch less than drct cost, while lrg denotes a number that requires a moresubstantial fraction of drct cost. After timing data is available, we setlrg = 0:15� drct costpcgi cost ; sml = 0:12� drct costpcgi cost :



10 W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPMTo decide the number of rank-one updates, updt nmbr, to be performed, letpcgi slope be the slope of the line connecting last two pcgi nmbrs.The updt nmbr is8<: increased, if lrg � pcgi nmbr and pcgi slope > 0,decreased, if pcgi nmbr � sml and pcgi slope < 0,unchanged, otherwise:Increases or decreases in updt nmbr are proportional to the pcgi slope:(to increase) updt nmbr = updt nmbr�max(1:2; pcgi slope8:0 ) ;(to decrease) updt nmbr = (updt nmbr� 0:9) + 1 :Note that the sparsity of the Cholesky factors remains the same, no matter howmany updates are used.3.4. Terminating the PCG iterationAfter computing the preconditioner, we solve the normal equations usingthe preconditioned conjugate gradient method. We start from an initial guess ofzero, and iterate until the computed residual norm is less than a parameter "pcgtimes the norm of the right-hand side. We choose the parameter "pcg adaptively:for OB1-R, "pcg = (10�8; if relgap > 10�2;10�8 � (relgap)12 ; otherwise,where relgap is the relative duality gap for the previous value of �. This issimilar to the stopping criterion in [28]. For PCx, we use"pcg = 8<: 5:0� 10�3; for the beginning stage,min(relgap�103, 1:0� 10�3), for the middle stage,min(relgap�104, 1:0� 10�4), for the late stage,If the preconditioned conjugate gradient iteration number exceeds the maxi-mum number of iterations allowed, then the current preconditioner is abandonedand a new preconditioner is determined by Cholesky factorization. If this hap-pens twice, the iterative method is not suitable and we switch to a direct method.Unfortunately, the preconditioned conjugate gradient iteration might be stoppedjust before convergence, thereby making the refactoring wasteful, but we considersuch a safeguard bounding the number of iterations to be important.The maximum number of iterations is set to the number that produces acost of 1:2 times the cost of a direct method:max pcg itn = 1:2� drct costpcgi cost :
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Figure 1. Number of PCG iterations for the adaptive algorithmTo summarize, our algorithm solves the normal equations directly to deter-mine the �rst search direction, uses a preconditioned conjugate gradient methodstarting from the second search direction, and switches back to the direct methodfor the �nal search directions. The preconditioned conjugate gradient solver solvesthe normal equations by �rst choosing and computing a preconditioner using anadaptive strategy to decide whether to refactor the matrix and the rank of theupdate performed. The algorithm automatically sets all parameters expected toin
uence performance, based on actual time performance of the components ofthe algorithm.4. Numerical results4.1. OB1-RWe modi�ed the code OB1-R to adaptively choose the linear system solver,and we performed numerical experiments comparing the results of this modi�edversion of OB1-R to the standard OB1-R code, dated December 1989.
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Figure 2. Timing performance for the adaptive algorithmBoth OB1-R and the adaptive algorithm are coded in FORTRAN and usedouble precision arithmetic. Our experiments were performed on a SUN SPARC-station 20 with 64 megabytes of main memory, running SunOS Release 4.1.3. TheFORTRAN optimization level was set to -O3. We report CPU time in seconds,omitting the time taken by the preprocessor HPREP since it is the same for bothcodes.Before comparing the two codes, we illustrate the behavior of the adaptivealgorithm on a large problem, pds-10 (with arti�cial variables) whose problemcharacteristics are given in Table 1. Figure 1 shows the number of iterationsneeded by the preconditioned conjugate gradient method for the � values chosenby OB1-R. Conjugate gradients are used for �2 through �118, and then the algo-rithm chooses to switch to direct solution because it detects a zero on the diagonalof the preconditioner. The horizontal line at 169 marks the maximum number ofconjugate gradient iterations allowed (i.e. max pcg itn). The two dashed linesat 21 and 16 indicate lrg and sml, respectively. The Cholesky factorization isrecomputed 25 times, marked by circles in the �gure. This is a savings of 92 fac-torizations compared to the OB1-R algorithm. In between refactorizations, the



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 13number of conjugate gradient iterations generally grows, more quickly for latervalues of � than for earlier ones.Figure 2 displays the time taken by each of these linear system solves. Thedashed line is drct cost, the estimated direct solver cost based on its perfor-mance for the �rst value of �. The solid line marks 0:8 times drct cost.We highlight the following observations from the �gures.� The adaptive algorithm produces signi�cant savings in the beginning stage,especially from the 11th to the 31st value of �.� The frequency of reinitializing the preconditioner grows as � is decreased.� The preconditioners obtained from refactoring the matrix AD2AT are unsuit-able in the late stage.� The adaptive algorithm succeeds in keeping the cost near or better than thedirect cost on all iterations but three. On those, the predicted number ofiterations is too low.We now summarize computational results on various types of linear pro-gramming problems. If the total time for solution is small (i.e., 5 minutes orless), then the performance of the two algorithms is similar. On more costlyproblems, the adaptive method is faster: e.g., 9% faster on pilot87, 16% fasteron dfl001, and 28% faster on maros-r7 from the NETLIB collection.More complete results can be found in [36].4.2. PCxWe modi�ed the code PCx to adaptively choose the linear system solver,and we performed numerical experiments comparing the results of this modi�edversion of PCx to PCx version 1.1, dated November 1997.Both PCx and the adaptive algorithm are coded by FORTRAN and C lan-guage and use double precision arithmetic. Our experiments were performed ona HP C1100/9000 workstation with 128 megabytes of main memory, runningHP-UX B.10.20 operating system. The FORTRAN and C optimization levelwere set to -O. We report CPU time in seconds, including the time taken by thepreprocessor which is the same for both codes.We report computational results on various types of linear programmingproblems chosen from NETLIB, NETLIB's Kennington problems, and some net-work problems. We omit data for problems taking fewer than 10 seconds, sincedirect methods are quite suitable for these.Table 1 summarizes the problem characteristics. The numbers of rows andcolumns indicated in the table refer to the output from the PCx preprocessorand may be di�erent from the data in [13]. The tabulated number of nonzero
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Figure 3. Timing performance for the adaptive algorithm on problem pds-20.elements of the Cholesky factor L include the diagonal part of L. The density ofL is computed as 2� (Number of nonzeroes of L)� bmbm� bm ;where bm is the number of rows of A after presolving.Minimum cost 
ow network problems may be solved using linear program-ming algorithms (although it is generally more e�cient to use a network algorithmlike [22]). We test our algorithm on this class of problems because the matrixAAT and its resulting Cholesky factor tend to be much more dense than theoriginal coe�cient matrix A, even if there is no dense column in A. Forming andfactoring the matrix AD2AT is thus quite expensive. We generated minimumcost 
ow network problems using NETGEN, developed by Klingman, Napier,and Stutz [23].Before comparing the two codes, we illustrate the typical behavior of theadaptive algorithm using three examples.



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 15LP size Cholesky factor LProblem Rows Columns Nonzeros DensityNETLIB:d2q06c 2132 5728 137349 0.060degen3 1503 2604 120906 0.106d
001 5984 12143 1638085 0.091�t2d 25 10524 324 0.997greenbea 1933 4164 49055 0.026maros-r7 2152 7440 534188 0.230pilot 1368 4543 200812 0.214pilot87 1971 6373 425654 0.219stoch3 15362 22228 177936 0.001Kennington:cre-b 5336 36382 248629 0.017cre-d 4102 28601 212094 0.025ken-11 10085 16740 102906 0.002ken-13 22534 36561 298417 0.001ken-18 78862 128434 1928863 0.002osa-07 1081 25030 28276 0.047osa-14 2300 54760 60795 0.023osa-30 4313 104337 115081 0.012osa-60 10243 243209 265909 0.005pds-06 91556 28472 589339 0.014pds-10 15648 48780 1687660 0.014pds-20 32287 106180 7089645 0.014Network:net0108 1000 8000 207560 0.414net0116 1000 16000 280678 0.560net0408 4000 8000 556366 0.069net0416 4000 16000 1766394 0.221net0816 8000 16000 2201390 0.069net0832 8000 32000 7000874 0.219net0864 8000 64000 12247346 0.383net1632 16000 32000 8653616 0.068Table 1Statistics of the test problems.Figure 3 shows the time taken by linear system solves on problem pds-20.The time for computing predictor and corrector are summed. The dashed lineis drct cost, the estimated direct solver cost based on its performance for the�rst value of �. Preconditioned conjugate gradients are used for �2 through �54.The algorithm switches to the late stage at �33 and then to the ending stage at�55 because it detects a relative duality gap that is smaller than the parameterending tol. The Cholesky factorization is recomputed 15 times, marked by cir-
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Figure 4. Timing performance for the adaptive algorithm on problem dfl001.cles in the �gure. This is a savings of 38 factorizations compared to the PCxalgorithm. In between refactorizations, the number of conjugate gradient itera-tions generally grows, more quickly for late values of � than for earlier ones. Wehighlight the following observations from the �gure, similar to the observationsfor the OB1-R code.� The adaptive algorithm produces signi�cant savings in the beginning stage,especially from the 2nd to the 10th value of �.� The frequency of reinitialization of the preconditioner grows as � is decreased.� The adaptive algorithm succeeds in keeping the cost at or better than the directcost on all iterations but two. On those, the timings are close to drct cost.Figure 4 shows that Problem dfl001 has a long middle stage. While com-puting the predictor at �9; the adaptive algorithm does not converge to theprede�ned tolerance within the maximum number of iterations allowed. The al-gorithm thus decides to carry out refactorization, resulting in high cost. Thealgorithm switches to the middle stage at �12 and remains there through �38.The adaptive algorithm keeps the cost close to or better than the direct cost on
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Figure 5. Timing performance for the adaptive algorithm on problem cre-b.all iterations in the middle stage except for �14 and �38. The adaptive algorithmswitches to late and ending stages at �39 and �45 respectively.Problem cre-b is not suitable for the iterative method. The adaptive al-gorithm discovers this at �5 and switches to the direct method (Figure 5). Thishappens because twice in a row the updated preconditioner is ine�cient rightafter the preconditioner is reinitialized. Such behavior occurs in problems likecre-d, ken-11, ken-13, and osa-07. It is vitally important that the algorithmcan make this decision automatically.Table 2 shows the computational results on the three problem sets, com-paring the number of � values needed by the interior point method, the relativeduality gap in the �nal answer, and the CPU time required by PCx and theadaptive algorithm. The last column is the di�erence between the PCx and theadaptive times. A positive di�erence means the adaptive algorithm is faster.We summarize the following observations from the results in table 2.� Both PCx and the adaptive algorithm converge to solutions satisfying theoptimality criteria de�ned in PCx except on the problem greenbea, which iswell-known to be di�cult for interior point methods [33]. The optimal criteria
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Figure 6. Timing performance comparison for all test problems, sorted by the time taken bythe PCx algorithm.include small duality gap, primal feasibility, and dual feasibility.� The algorithms take a similar number of � values and achieve similar dualitygaps in most of the test problems. On some problems like pds-10, pds-20,degen3, and maros-r7, however, the adaptive algorithm takes 1 or 3 additionalsteps and achieves duality gaps several orders of magnitude smaller.� In dfl001, the adaptive algorithm achieves the optimal criteria in 10 fewersteps, obtains a duality gap 1 order of magnitude smaller, and is faster thanPCx by 880 seconds.� If the total time for solution is small (i.e., 7 minutes or less), then the per-formance of the two algorithms is similar. On more costly problems such asdfl001, pilot87, net0832, and pds-20, the adaptive method is faster. Figure6 compares the timing of the problems.



W. Wang, D. P. O'Leary / Adaptive Iterative Method in IPM 19IPM ite. Rel. dul. gap TimeProblem PCx Adap PCx Adap PCx Adap Di�.NETLIB:d2q06c 29 29 2.53e-07 2.55e-07 18.14 18.79 -0.65degen3 16 19 1.18e-08 8.49e-12 18.11 20.70 -2.59d
001 58 48 5.63e-08 2.58e-09 2350.12 1470.08 880.04�t2d 23 23 4.94e-07 3.67e-07 15.36 14.77 0.59greenbea 48 50 1.90e-10 2.13e-09 10.93 11.31 -0.38maros-r7 18 19 1.31e-08 2.97e-14 60.23 60.08 0.15pilot 36 36 2.88e-07 2.91e-07 44.40 45.00 -0.60pilot87 34 35 1.96e-07 2.31e-08 163.25 155.89 7.36stoch3 31 31 6.13e-08 8.20e-08 26.16 29.90 -3.74Kennington:cre-b 40 40 9.69e-07 8.40e-07 70.04 71.49 -1.45cre-d 40 40 1.21e-06 1.46e-06 58.43 60.31 -1.88ken-11 21 21 6.44e-08 6.45e-08 14.42 15.25 -0.83ken-13 26 26 5.42e-07 5.20e-07 44.34 16.34 28.00ken-18 30 29 1.84e-06 5.75e-06 293.36 291.66 1.70osa-07 25 25 2.55e-07 2.11e-07 15.44 16.24 -0.80osa-14 27 27 1.75e-08 1.68e-08 40.62 42.24 -1.62osa-30 27 26 2.22e-08 5.72e-08 94.70 94.91 -0.21osa-60 30 31 3.60e-07 1.95e-07 346.73 359.73 -13.00pds-06 37 36 8.51e-07 1.75e-06 197.41 194.37 3.04pds-10 41 44 4.59e-06 8.34e-08 1081.83 973.82 108.01pds-20 55 58 7.19e-06 9.82e-08 13268.11 8969.40 4298.71Network:net0108 16 16 7.68e-08 7.68e-08 30.37 29.23 1.14net0116 18 19 1.58e-07 2.23e-09 61.90 58.04 3.86net0408 20 21 4.38e-08 1.31e-08 193.73 150.97 42.76net0416 19 20 5.72e-10 1.10e-13 1062.08 746.55 315.53net0816 20 21 3.95e-07 2.81e-08 1575.71 1064.75 510.96net0832 20 21 3.54e-07 3.87e-09 9067.49 5886.13 3181.36net0864 20 21 1.03e-07 9.87e-09 20954.51 14905.89 6048.62net1632 22 23 1.34e-07 2.46e-08 15344.07 8867.81 6476.26Table 2Computational results for the test problems. A positive value in the last column means thatthe adaptive algorithm is faster.5. ConclusionFor interior point methods, with or without predictor-corrector strategies,we have presented an adaptive automated procedure for determining whether touse a direct or iterative solver, whether to reinitialize or update the precondi-tioner, and how many updates to apply, and demonstrated that it can enhanceperformance of interior point algorithms on large sparse problems.
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