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ABSTRACT

The kinematic structure of tendon-driven robotic mechanisms has been
investigated with the aid of graph theory. The correspondence between the
graph representation of the kinematic structure and the mechanism has been
established. We have shown that the kinematic structure of tendon-driven
kinematic chains is similar to that of epicyclic gear trains. We have also
shown that, using the concept of fundamental circuit, displacement equations
of tendon-driven robotic mechanisms can be systematically derived from the
kinematic structure. The theory has been demonstrated by the kinematic analy-
sis of three articulated robotic devices.

To be submitted to the 1988 ASME Mechanisms Conference for presentation and
publication.



1. Introduction

The kinematic structure of a robot manipulator often takes the form of an
open-loop kinematic chain. An open-loop manipulator is mechanically simple
and easy to construct. However, it does require the actuators to be located
along the joint axes which, in turn, increases the inertia of the manipulator
system. 1In order to reduce the inertia load, partially closed-loop kinematic
chains have been designed. For example, the Cincinnati Milacron T® robot uses
a three-DOF (Degree-of-Freedom) bevel-gear-train for its wrist mechanism so

that the wrist actuators can be installed remotely from the wrist [14].

Another method of reducing the inertia is to use tendon or belt for force
transmission. A tendon- or belt-driven articulated manipulator has the advan-
tage of remote control. A few tendon-driven mechanical systems can be found
in the literature [8-13]. To date, the kinematic or static analysis of such
mechanical systems has been accomplished on a one-by-one basis. The purpose
of this investigation is to establish a systematic procedure for the kinematic
and static analysis of multi-degree-of-freedom, tendon-driven, robotic mecha-

nisms.

The application of graph theory to the kinematic analysis and synthesis of
epicyclic gear trains has been well established in recent years [1-3, 5-7,
15-16]. In what follows, we will investigate the kinematic structure of
tendon-driven robotic mechanisms using graph representation. We will
demonstrate that the kinematic structure of tendon-driven mechanisms is in
every way similar to that of epicyclic gear trains. Therefore, the fundamen-

tal circuit equation developed for the kinematic analysis of epicyclic gear



trains [16] can be directly applied to this type of mechanisms. We will also
demonstrate that once the displacement equations are obtained, the input and

output torque (or forces) relationship can be easily derived.

2. General Assumptions

Gear trains are commonly used to transmit power or motion between either
parallel or non-parallel shafts with small offset distance. When the center
distance between two offset shafts becomes large, it is often necessary to add
intermediate shafts and idler gears in order to keep the size of the gears

reasonably small.

An alternative method of power transmission is to use tendons or belts and
pulleys. We shall call this type of mechanisms tendon-driven mechanisms. In
what follows, we shall consider only those mechanisms which obey the following

assumptions:

(1) The tendons are always under tension and the amount of stretch in

tendons due to variation of tension is negligible.

(ii) The friction between pulleys and tendons is large enough to prevent

relative siiding to occur.

(iii) The mechanism shall obey the general DOF equation, i.e., no special
proportions are required to ensure the mobility of a tendon-driven

mechanism.

(iv) Each pulley must have a turning pair on its axis and every pair of
pulleys connected by a tendon must have a carrier (or arm) in order
to maintain a constant center distance between the pulleys.
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(v) The mechanism shall be of articulated type, i.e., after the removal

of tendons and pulleys, the mechanism becomes an open-loop chain.

3. Structural Representations

(a) Functional Representation. This refers to the conventional drawing
of a mechanism. Shafts, pulleys, tendons, and other elements are identified
as such. For the reason of clarity and simplicity, only functional elements
essential to the kinematic structure are shown. Different functional repre-
sentation may represent different designs of the same topological structure
(e.g., planar vs. spatial mechanisms). For tendon-driven robotic mechanisms,
there are two basic routing techniques. The first is known as the

open-ended tendons and the second the endless tendons.

In an open-ended tendon, one end of the tendon is tied to a driven pulley
while the other end is attached to a linear actuator or a driving pulley that
is installed on a rotary actuator. The driven pulley is usually attached to
a link to be controlled. Figure 1(a) shows two pulleys, i and j, that are
coupled by an open-ended tendon. Link k which is used to maintain a constant
center distance for the two pulleys, is called the carrier. It is well known
in the literature [11,12] that an n-DOF robotic mechanism requires at least

(n+1) open-ended tendons to achieve a positive control.

In the endless tendon, each belt or tendon is wrapped around two or more
pulleys of constant center distance in an endless loop. Figure 1(b) shows an

endless tendon routed around two pulleys.

We note that both kinematic chains (or sub-chains) shown in Figs. 1(a)

and 1(b) consist of three rigid 1inks, links i, j and k, and a flexible ten-



don. The geometry of such mechanisms can be defined by the Denavit and
Hartenberg's parameters [4], i.e. offset distance, twist angle between two

joint axes, etc., in addition to the radii of the pulleys.

(b) Planar Schematic Representation. In this representation, we assign a
positive direction of rotation to each joint axis in the mechanism of interest
and consider the joint axis that is fixed to the reference frame as the first
joint axis. Then, starting from the second joint axis, every axis is twisted
about the common normal defined by the axis itself and its preceding axis
until all the joint axes are parallel to each other and are pointed toward the
same positive Z-direction. In this manner, the routing of tendons can be
clearly shown without 1oosing the fundamental characteristics of relative

rotation among the pulleys and their carriers.

Figures 2(a) and 2(b) show the planar schematics of the mechanisms shown in
Figs. 1(a) and 1(b). The routing method shown in Fig. 2(a) is called the
cross-type while the one shown in Fig. 2(b) is called the parallel-type. We

note that the routing of the kinematic chain shown in Fig. 1(a) can also be
sketched in a parallel-type construction if the definition of the positive Z-
direction for either one of the two axes has been reversed. Although, this
change does effect the sign of rotation in the fundamental circuit equation

to be described below, it has no effect on the actual motion of the mechanism.

In general, two pulleys are said to have parallel-type routing if a posi-
tive rotation of one pulley, with respect to its carrier, produces a positive
rotation of the other, and cross-type routing if a positive rotation of one

pulley produces a negative rotation of the other.



(c) Graph Representation. In the graph representation, links are denoted
by vertices and joints by edges. The edge connection between vertices
corresponds to the joint connection between links. Every pair of pulleys
coupled together by a tendon, either open-ended or endless tendon, is con-
sidered as a pulley pair. In this regard we have treated the tendon as an
element which merely provides the necessary constraints to the two coupled
pulleys. In order to distinguish different types of pair connections, turning

pair is denoted by thin edge, parallel-type routing by double-1ine edge, and

cross-type routing by heavy edge. Further, thin edges are labeled according
to their axis locations. The graph of a tendon-driven articulated mechanism

is, therefore, similar to that of an epicyclic gear train.

Figure 3(a) shows the graph representation for the tendon-driven mechanism
shown in Fig. 2(a), where the vertices i, j and k correspond to links i, j,
and k; thin edges i-k and j-k correspond to the turning pairs connecting 1inks
i and k, and 1links j and k; heavy edge i-j corresponds to the cross-type
routing between 1inks i and j; and the edge labels a and b corresponds to the
axis levels a and b, respectively. Similarly, Fig. 3(b) shows the graph
representation of the mechanism shown in Fig. 2(b) in which the parallel-type

routing is denoted by a double-line edge{
4, Structural Characteristics

Similar to epicyclic gear trains, the graph of tendon-driven articulated

mechanisms can be characterized by the following fundamental rules:

(i) For an n-link, F degrees of freedom, tendon-driven articulated mechanism,

there are n-1 turning pairs and n-F-1 pulley pairs.



(ii) The subgraph obtained by deleting all the double-line and heavy edges is

a tree, and there can be no circuit formed exclusively by thin edges.

(ii1) Any double-line or heavy edge added to the tree forms a fundamental
circuit (f-circuit) having one double-line or heavy edge and several

thin edges.

(iv) The number of f-circuits equals the number of double-line and heavy

edges.

(v) Each thin edge can be characterized by a level which identifies the axis

location of a turning pair.

(vi) 1In each f-circuit there is one vertex, called the transfer vertex, such
that all edges on one side of the transfer vertex are at the same level
and edges on the opposite side are at a different level. The transfer

vertex corresponds to the carrier in a pulley train.
5. Basic Equations

(a) Fundamental Circuit Equation. Let i and j denote the vertices of a
pulley pair in an f-circuit for which k is the transfer vertex. Then, 1links
i, j and k constitute a simple tendon-and-pulley train. We can assign a
positive direction to each joint axis of the pulley pair, and write a fun-

damental circuit equation as shown below:
(1)

where 84 g and 65 k denote the relative rotations of links i and j with respect

to link k, and, Rj and Rj denote the radii of the two matching pulleys, i and



j, respectively. The sign of Eq. (1) is to be determined by the routing of
the tendon: positive for the parallel-type routing and negative for the

cross-type. Note that Eq. (1) is valid whether the carrier is fixed or not.

(b) Coaxial Condition. Let i, j, and k be three 1inks that share a com-
mon joint axis, then similar to epicyclic gear trains, the following chain

rule applies:

ik~ 85k (2)

Equation (2) is useful for relating the relative rotations among three or more

coaxial links.

(c) Single-Tendon-Driven Pulley Trains. Let links 0, 1, 2 and 3 be con-
nected in series, by turning pairs, to form a spatial open-loop chain; let a,
b and ¢ be the consecutive joint axes; and let pulleys j, j+1 and j+2 be
pivoted about the joint axes a, b and c, respectively, as shown in Fig. 4(a).
Pulleys j and j+1 are free to rotate with respect to links 0, 1, and 2 while
pulley j+2 is rigidly tied to 1ink 3. An endless tendon has been routed
around these pulleys as shown jn Fig. 4(a). We consider link "0" as the base
link and 1ink 3 as the link to be controlled, and seek to find a transfor-
mation between the rotation of the base pulley, j, and the joint angles, 81,0,
82,1 and 63,2, in the open-loop chain,

Figure 4(b) shows the corresponding graph representation of Fig. 4(a).
This graph consists of two f-circuits: (j, j+1, 1) and (j+1, 3, 2), where the
first two numbers in the parenthesis denote the 1ink numbers of a pulley pair,
and the third denotes the corresponding carrier. Writing Eq. (1) once for

each of the two f-circuits, we obtain:



and

Ris1 8541,2 = Rys2 832 (4)

Since 1inks 0, 1 and j are coaxial, we have

8. , =6, -8

5,1 = 85,07 %10 (5)

Similarly, since links 1, 2 and j+1 are coaxial, we have

j+1,2 T Yj+1,1

Substituting Egs. (5) and (6) into (3) and (4) respectively, and then elimi-

nating 8j4+1,1 from the two resulting equations, we obtain:

850 = 01,0+ Ry, /R)8, 1 + (Ry,o/R;)85 5 (7)

Equation (7) provides the influence of the joint angles, 81 0, 82,1 and
83,2, on the rotation of the base pulley, 8j,0. In general, we can write the
relationship between the rotation of a base pulley and the joint angles in an

open-loop chain with m+l 1ink as follows:

850= 91,0 % (Ry,/R;)8 R,.,/R;)0

2,1 % (Ry,2/R5)83 5

fooeet Rypn 1 /RYIBY 1y (8)

J

The sign of each term, (Rj4k-1/Rj)6k, k-1, in EQ. (8) is to be determined by
the number of cross-type routing preceding the kth joint axis. If the number

of cross-type routing is even, then the sign is positive, otherwise it is



negative. This equation can be obtained by an inspection of the kinematic
structure without going through the graph representation, once we become fami-

1iar with the subject.
Taking the derivative of Eq. (8), we obtain

de.,

5,0 =98y o (Ry,q/Ry) dB, | & (Ry5/Rg) 05 5

I+

et Ry g /Ry) A8 (9)

where d( ) denotes the derivative of ( ). Hence, the coefficients of each
derivative on the right-hand side of Eq. (9) may be considered as the partial
rate of change of the base pulley rotation with respect to the corresponding

joint angle.
6. Kinematics of Tendon-Driven Robotic Mechanisms

It has been shown in a previous paper that the graph of spatial robotic

bevel-gear trains can be reconfigured into a canonical form from which an

equivalent open-loop chain can be identified [16]. Similarly, we can also
construct a canonical graph to represent tﬁe topological structure of a
tendon-driven robotic mechanism, and identify the associated equivalent open-
loop chain. Hence, the kinematic analysis of articulated, tendon-driven,
robotic devices can be accomplished in two steps. First, the end-effector

position and/or orientation can be related to the joint angles associated with

the equivalent open-loop chain. Then, these joint angles can be related to

the rotational displacements of the base pulleys.



In what follows, we describe a systematic procedure for the derivation of
the linear transformation relating the rotational displacements of the base
pulleys and the joint angles. Three examples will be used to illustrate the

principle:
Example 1. Three-DOF Robotic Arm Driven by Endless Tendons.

Figure 5(a) shows the planar schematic of a spatial robotic arm. Pulleys 4
and 5 are free to rotate about axis "a," pulleys 2 and 6 are free to rotate
about axis "b," and pulley 3 is free to rotate about axis "c." The first
moving link serves as the carrier for the pulley pairs (4, 2), and (5, 6),
the second moving link which is rigidly tied to pulley 2, serves as the carrier
for the pulley pair (6, 3), and the third moving link is attached to pulley 3.
The first tendon connects pulleys 4 and 2 and the second tendon connects pulleys
5, 6 and 3. Overall, the mechanism consists of seven rigid 1inks and two
endless tendons. It has three degrees of freedom. We can designate 1links 1,

4 and 5 as the inputs and 1ink 3 as the output or end-effector. The mechanism

shown in Fig. 5(a) has been sketched in its zero reference position [16].

Figure 5(b) shows the corresponding canonical graph of the mechanism. It
can be seen from Figure 5(b) that the equivalent open-loop chain for the mecha-
nism consists of 1inks 0-1-2-3, and there are three f-circuits: (2, 4, 1), (5,
6, 1) and (3, 6, 2). Figure 5(c) shows the routing of the two tendons with
respect to the equivalent open-loop chain. The parallel-type routing is

clearly depicted in both Figures 5(b) and 5(c).

Writing Eq. (8) once for each of the two tendon routings shown in Fig.

5(c), we obtain,
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4,0 = 91,0+ (R/Ry)8, 4 (10)

and

8

5.0 61’0 + (R6/R5)62’1 + (R3/R5)e3’2 (11)

where Rj’ j=2,3,4,..., denote the radii of the pulleys shown in Fig. 5(a).

We can add an identity equation, 61 0 = 81 0, to Egs. (10) and (11) and

then rearrange them in a matrix form as shown below:

- - -~ - -

8 6

1,0

1,0
840 = |1 RpfRy O 8, (12)
85 g 1 Rg/Rg R4/Rg L93’2

Equation (12) provides the necessary transformation between the angular displa-
cements of the input links (87,0, 64,0 and 65 g) and the joint angles (81,0,
62,1 and 83 2). The equations are linear and its inverse transformation can

be easily derived.

Let R4 = R2 and R5 = R6 = R3, then Eq. (12) becomes,
61’0 1 0 0 91,0
80| = |! 1 0 6, 4 (13)
65,0 L1 1 1 93,2

11



and its inverse transformation is given by,

8 0 1 0 0] 8.0
8,1 = |-t 1 0 84.0 (14)
Le3’2 0o -1 1 8 o

We note that, for this special proportion, the second joint is locked when
links 1 and 4 are driven at the same rate; the third joint is locked when
1inks 4 and 5 are driven at the same rate; and both the second and third

joints are locked when links 1, 4 and 5 are all driven at the same rate.
Example 2. The Stanford/JPL Finger.

Figure 6(a) shows the functional representation of the Stanford/JPL Finger
taken from [10], where the first joint axis, Zl’ is fixed to the base link,
link 0; the second joint axis, 22, is perpendicular to the first; and the
third joint axis, Z3, is parallel to the second. Pulleys 4, 5, 6 and 7 are
free to rotate about the first joint axis, pulleys 2 and 8 are free to rotate
about the second joint axis, and pulley 3 is free to rotate about the third
joint axis. The first link, link 1, serves as the carrier for the pulley
pairs (4, 2), (5, 2), (6, 8), and (7, 8). The second link, which is attached
to pulley 2, serves as the carrier for the pulley pair (8, 3). The third link
is attached to pulley 3. The first tendon connects pulley 2 to 4, the second
connects pulley 2 to 5, the third connects pulley 3 to 8 and then 6, and the

fourth connects pulley 3 to 8 and then 7 in open-ended routing as shown in

12



Figure 6(a). Over all, the mechanism consists of nine rigid 1inks and four uni-
directional tendons. Although it has three degrees of freedom, it requires

four open-ended tendons to achieve positive control of the mechanism.

Figure 6(b) shows the mechanism in a planar schematic. The equivalent open-
loop chain consists of 1links 0-1-2-3. The routing of the four tendons with

respect to the equivalent open-loop chain is clearly depicted in Fig. 6(b).

Writing Eq. (8) once for each of the four tendon routings shown in Fig.

6(b), we obtain:

84,0 = 81,0 + (Ry/R)8, | (15)

850 = 81,0 - (Ry/Rg)E; 4 (16)

8.0=° 0" (Rg/Re)8p 1 = (R3/Rg)B3 5 (17)
and

8,0 = 0y o+ (Rg/R;)8, | + (Ry/R;)0; , (18)

Writing Eqs. (15)-(18) in matrix form, we obtain:

13



840 1 R,/R, 0 8 ¢
50| = |1 RylRs 0 8, 4
(19)
8.0 1 -Rg/Rs -Rs/Re 93’2J
8 0 L1 Rg/R;,  Rs/R,

The linear displacements of the tendons to be pulled away from their

neutral positions are given by:

Sq = Re8y 0 (20)

Sg = R565,0 (21)

56 = ~Re¥% (22)
and

$; = -R7 7,0 (23)

Multiplying the first row of Eq. (19) by Ry, the second row by Rs, the
third row by -Rg, and the fourth row by -Ry, we obtain,

S=AT (24)

T

- T =
where s = (54, Sg» Sgs S ) , 6= (8 8, ,) , and

7 1,0 92,10 93,2
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Ry R, 0
R R 0
A = 5 2 (25)
Rg Rg R3
R, Ry R,

where the superscript T denotes the transpose of the associated matrix.
We note that if R4 = Rg = Rg = Ry, and Rz = Rg, then the matrix A can be

decomposed into the product of two matrices:

A =BR (26)
where
1 1 0]
1 -1 0
B = (27)
-1 1 1
-1 -1 -1
and ) B
R4 0 0
R = 0 R2 0 (28)
0 0 R3

Matrix B which depends on the routing of tendons, is called the structure
matrix. Matrix R, under the assumption that all pulleys on the same joint
axis are of the same size, is a diagonal matrix whose non-zero elements are
the radii of the pulleys installed at the consecutive axes of the equivalent

open-loop chain.
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We conclude that, once the joint angles, 81 g, 62,1 and 83,2 are known,
linear displacements of the tendons can be uniquely determined. On the other
hand, we cannot specify all the four linear displacements, s1, S2, s3, and sg
arbitrarily. Once three of the four linear displacements are specified, the

fourth linear displacement and the joint angles are to be determined by Egq.

(24).

It can be shown that the vector of forces, f, exerted by the tendons are
related to the torques, T, in the joints of the open-loop chain by the

following relationship:

T=AF (29)

- T - T
where T = (TI,O’ e t3’2) , and f = (f,, fg, fg, f5)°,

Hence, once tensions in the tendons are specified, torques in the joints
can be uniquely determined. On the other hand, when torques in the joints are
specified, tensions in the tendons are indeterminate. For a given set of
joint torques, Eq. (29) yields three 1linear equations in four unknowns. The
homogeneous solution corresponds to a set of tensions that result in no joint
torque about any of the three axes. The general solution is given by the sum
of a particular solution plus the homogeneous solution multiplied by an
arbitrary constant. Thus positive tension can be maintained by selecting an

appropriate multiplier to the homogeneous solution.
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Example 3. A Six DOF Manipulator.

We now consider a general six DOF manipulator as shown in Fig. 7 in a pla-
nar schematic. For the reason of clarity, we have sketched each individual
routing of the tendons about the equivalent open-loop chain on a separate
drawing. The equivalent open-loop chains is made up of links 0-1-2-3-4-5-6.
It can be seen from Fig. 7 that there are twenty pulleys and five endless ten-
dons. Pulleys 2 to 6 are rigidly attached to links 2 to 6, respectively.

Over all there are twenty-two rigid links, twenty-one turning pairs and fif-
teen pulley pairs. Hence, the mechanism has six degrees of freedom. We can
designate pulleys 7 to 11 and the first moving link as the input links and
seek for the transformation between the rotational displacements of these

inputs and the joint angles associated with the equivalent open-loop chain.

Writing Eq. (8) once for each of the tendon routing shown in Fig. 7, we

obtain the following linear transformation in matrix form:

$=AB (30)
- T
where ¢ = (8; 4. 8; s 85 ¢ 89 0s ©10,0° 811,0)
B = (8 ns By s Bs 0y By s Be 45 B o)
1,0° 92,10 83,25 84,30 85 45 O 5
and
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1 0 0 0 0 0 ]
1 RyR, O 0 0 0
1 Ry ,/Rg RylRg 0 0 0
A (31)
1 Ryg/Ry Ryg/Rg  Ry/Rg 0 0
L Ryg/Ryg Ryp/Ryg -Rig/Rig -Rg/Ryg 0
1 Rys/Ryp "Rig/Ryp Rpo/Ryp Rpi/Ryp Re/Ryy

Again, Let Ry= Rg= Rg= Ryp= Ry1, Rp= R12= R13= Ry4= R15, R3= Rig= Ryy=
R18s R4= Rig= R2g, and Rg= Rp1, then the matrix A can be decomposed into the

product of two matrices as shown below:

A=BR (32)
where
1 0 0 0 0 0]
1 1 0 0 0 0
1 1 1 0 0 0
B =
1 1 1 1 0 0
1 1 1 -1 -1 0
1 1 -1 -1 -1 1
and, )

18



[ 1 0 0 0 0 0 ]
0 R,/R, 0 0 0 0
. 0 0 Ry/Rg 0 0 0
0 0 0 Ry/Rg 0 0
0 0 0 0 Rg/Ryyg O
0 0 0 0 0 Rg/Ryy

The matrix B is called the structure matrix and matrix R the radius matrix.
This example illustrates how easily we can derive the matrix of transfor-

mation by merely inspecting the kinematic structure of the mechanism.
7. Conclusions

The kinematic structure of tendon-driven robotic mechanisms has been
investigated with the aid of graph theory. The correspondence between the
graph representation of the kinematic structure and the mechanism has been
established. We have shown that the routing of tendons in a spatial robotic
device can be best represented by the planar schematic. We have also shown that
the kinematic structure of tendon-driven robotic mechanisms is similar to that

of epicyclic gear trains.

Using the concept of fundamental circuit, a general expression relating
the rotational displacement of a base pulley to the joint angles of a single-
tendon-driven mechanism has been derived. We have shown that dispiacement
equations of a tendon-driven robotic mechanism can be easily obtained by an
inspection of the kinematic structure of the mechanism. The theory has been

demonstrated by the kinematic analysis of three articulated robotic devices.
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Figure Captions

Two Basic Tendon-Routing Methods.

Planar Schematic Representation of
Tendon-Driven Mechanisms.

Graph Representation of Tendon-Driven
Mechanisms.

A Single-Tendon-DrivenArticulated
Mechanism.

A Three-DOF Robotic Arm Driven by
Endless Tendons.

The Stanford/JPL Finger.

A Six DOF Manipulator-Planar Schematic.
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To the previous pulley

Figure 1(a) Open - Ended Tendon

Figure 1(b) Endless Tendon



To the next pulley

To the previous
pulley

Figure 2 (a) Planar Schematic
of Figure 1 (a)
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Figure 2 (b) Planar Schematic
of Figure 1 (b)



Figure 3 (a) Graph Representation
of Figure 2 (a)

Figure 3(b) Graph Representation
of Figure 2 (b)



(Base link)

Figure 4 (a) A Single Tendon- Driven Articulated
Mechanism
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Figure 4(b) Graph Representation of Figure 4(a)
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Figure 5(a) Planar Schematic Representation
of a Three DOF Manipulator

Figure 5(b) Canonical Graph of Figure 5(a)

Figure 5(c) Two Tendon Drives
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Figure 6(a) Functional Representation of Stanford/JPL Finger

Figure 6(b) Planar Schematic of Figure 6(a)
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