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ABSTRACT

The surge and rotating stall post-instability behaviors of axial flow compres-
sors are investigated from a bifurcation-theoretic perspective. A sequence of local
and global bifurcations of the nonlinear system dynamics is uncovered. This in-
cludes a previously unknown global bifurcation of a pair of large amplitude periodic
solutions. Resulting from this bifurcation are a stable oscillation (“surge”) and an
unstable oscillation (“antisurge”). The latter oscillation is found to have a decid-
ing significance regarding the particular post-instability behavior experienced by
the compressor. These results are used to reconstruct Greitzer’s (1976) findings
regarding the manner in which post-instability behavior depends on system pa-
rameters. Moreover, the results provide significant new insight deemed valuable in
the prediction, analysis and control of stall instabilities in gas turbine jet engines.
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I. Introduction

A factor which severely limits the operating envelope of modern gas turbine
jet engines is the fact that the axial flow compressor can become unstable when
operated near its maximum achievable pressure rise. At such an operating condi-
tion, a moderate disturbance can result in instability, or even loss, of the nominal
operating point. In this circumstance, the compression system can assume one of
basically two types of dynamic behavior. The first, known as surge, is a large am-
plitude, periodic oscillation in which the compressor experiences a series of rapid
flow reversals and recovery. The second, which is the more serious of the two, is
known as rotating stall (or nonrecoverable stall ). This behavior is characterized
by very inefficient engine operation at constant mass flow and pressure rise. A
complete shutdown of the engine and subsequent re-start is usually required for
recovery from this type of stall.

In this paper we investigate, from a bifurcation-theoretic perspective, the
surge and rotating stall post-instability dynamic behaviors of axial flow compres-
sors. A sequence of local and global bifurcations of the nonlinear system dynamics
is uncovered. This is used to reconstruct Greitzer’s [1] findings regarding the
manner in which post-instability behavior depends on system parameters. More-
over, the results provide significant new insight deemed valuable in the prediction,
analysis and control of stall instabilities in gas turbine jet engines.

Greitzer [1] introduced a lumped parameter, nonlinear model of axial flow
compressor dynamics, simulations of which agreed with experimental results [2].
Among the key contributions of [1] was the introduction of a nondimensional
parameter, B, whose value was found to be a determinant of the nature of post-
instability compressor behavior (surge vs. rotating stall). Subsequently, others [7],
[4] have sought to explain surge behavior by showing that Greitzer’s model and
extensions thereof support a Hopf bifurcation, i.e., the emergence of a periodic
solution from an equilibrium point as a parameter is quasistatically varied. The
main assumption in the Hopf Bifurcation Theorem is that a pair of eigenvalues of
the system linearization cross the imaginary axis transversely at a critical value of
the parameter (see, e.g., [3]).

In contrast, here we do not attribute surge in nonaxisymmetric axial flow
compressors to this bifurcation. Rather, we present evidence for a bifurcation
sequence which predicts the observations of Greitzer [1] for both surge and rotating
stall. Hopf bifurcation, which has been noted by previous researchers, is accounted
for in this work, but its role can be viewed is being of secondary significance. In this
discussion, rotating stall and surge and their dependence on B are considered from
a global bifurcation standpoint. Special care is taken in the choice of an analytical
model for the steady-state compressor characteristic which closely matches that
reported by Greitzer [1]. Using this characteristic, we detect a global (so-called
“cyclic fold”) bifurcation of a pair of large amplitude periodic solutions. One
of these is a stable limit cycle and corresponds to the surge type of stall, whilc
the second is unstable and is therefore unobserved in experiments. We refer to
this latter unstable oscillation as the antisurge oscillation, and to the former as
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the surge limit cycle. We find that the changing size and shape of the antisurge
oscillation determines the critical value of B at which the post-instability behavior
of the compression system switches from rotating stall to surge.

The presence of the global bifurcation of the surge and antisurge oscillations
noted above depends strongly on the assumed compressor characteristic. For ex-
ample, the cubic characteristic taken in [4] does not support such a bifurcation.
We have chosen a more complicated algebraic model of the characteristic which
faithfully represents essential features of the experimentally obtained character-
istics studied by Greitzer [1],[2]. The critical values of B reported here do not
coincide exactly with those found in [1], but the reasons for this are apparent and
further calculations, not reported in detail here, do result in agreement. Two main
reasons for the apparent disagreement in critical B values are our use of a reduced
order version of the model employed in [1] and of an approximate analytic model
of the compressor characteristic.

McCaughan [4] focused on an extension of Greitzer’s model (Moore and Gre-
itzer [5]) which reflects nonaxisymmetric flow dynamics in addition to the axisym-
metric flow dynamics assumed in the model of [1]. In the present work, the steady
state compressor characteristic, being based on the experimental characteristics
reported in [1],[2], is nonaxisymmetric. However, nonaxisymmetric flow dynamaics
are not accounted for here, although the results of [5] can be used to extend the
present work in that direction.

The paper is organized as follows. In Section II, we recall a nonlinear lumped
parameter model from [1] for the dynamics of an axial flow compressor, and sum-
marize the observations in [1] regarding dependence of the particular type of post-
instability behavior on system parameters. In Section III, singular perturbation
is used to reduce the order of the fourth order model of Section II, resulting in a
second-order nonlinear model. The model used in our simulations for the stcady-
state compressor characteristic is also discussed in Section ITI. In Section IV, we
present the bifurcation sequence which occurs as an important nondimensional
parameter (B [1]) is quasistatically varied. Analytical and simulation evidence for
this bifurcation sequence, and implications for post-instability behavior, are also
given in Section IV.

II. Lumped Parameter Nonlinear Model

In this section, we recall the lumped parameter model of Greitzer [1] and
summarize his observations regarding the circumstances of the appearance of the
rotating stall and surge types of instabilities as a function of the nondimensional
parameter B.



II1.1. The Model

The fourth order lumped parameter model introduced by Greitzer [1] is given,
in nondimensional variables, by:

d;h—tc = B(C — AP) (1)
L= (QNAP - F) )
o = () — 1) (3)

= (10w~ 0) (@)

Here, m, (resp. rr) is the nondimensional compressor (resp. throttle) mass flow,
AP is the nondimensional plenum pressure rise, and C' is the nondimensional
compressor pressure rise. The tilde notation used by Greitzer [1] for nondimen-
sionalized quantities (e.g., me, Aﬁ’) is not used here, due to the appearance here
of only the nondimensional variables. Otherwise, the notation used above agrees
with that of Greitzer. The steady state compressor pressure rise characteristic is
denoted by Cj, in (4), while F' denotes the throttle pressure drop characteristic
(both nondimensionalized). Three parameters appear in Egs. (1)-(4): B, G and
7. The first, B, is proportional to rotor speed. Expressions for the parameters
B, G, and 7 in terms of physical system parameters are given in [1]. Note that
Eqgs. (1)-(3) are based on physical considerations and a simplified system repre-
sentation, while Eq. (4) is phenomenological and is meant to model the inherent
relaxation of compressor pressure rise to the steady state characteristic. Hence,
the value of the time constant 7 is to be obtained experimentally.

The compressor and throttle characteristics Css and F', respectively, are of
fundamental importance in the analysis of system (1)-(4). This is because these
characteristics are the source of the nonlinearity of Egs. (1)-(4). The steady
state compressor characteristic Cyy (for an axial flow compressor) is often mod-
eled as in Figure 1, in which a hysteresis loop appears. Note that for such a plot,
the nondimensional plenum pressure rise AP is not a single-valucd function of
the axial velocity parameter m,.. Note also that the plot contains two (hystere-
sis) branches which do not represent quasi-steady behavior, but rather indicate a
“jump” (fast transient) between the lower and upper main branches of the char-
acteristic. A quasi-steady characteristic may be obtained from that of Fig. 1 by
replacing the two “jump branches” in the compressor characteristic with a single
“transition branch” connecting the upper and lower branches of the characteristic,
and smoothly connecting the remaining upper and lower branches of the charac-
teristic. This is depicted in Figure 2 for the case in which the transition branch
1s positively sloped. With a positively sloped transition branch, the compressor
characteristic is single-valued. Were the transition branch negatively sloped, the
overall compressor characteristic would, at least for a range of values of mass flow
rate, be triple-valued. Even a single-valued compressor characteristic such as that
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depicted in Figure 2, however, can be consistent with the presence of a hysteresis
loop. Hysteresis would occur as the throttle is slightly closed and then reopened.

To facilitate computer simulation of the model, we shall in the following adopt
such a single-valued compressor characteristic. As for the throttle characteristic
F, a typical plot also appears in Figure 1. Note that this is a single-valued func-
tion giving the throttle pressure drop F' in terms of the throttle mass flow .
Moreover, the curve always has positive slope, and, for a variable area nozzle or
valve type throttle, with ambient static pressure at the throttle discharge plane,
we have the explicit representation

Az
F= (A—g)m% (5)

in terms of the flow-through compressor and throttle areas A, and A, respectively.
I1.2. Dynamic Behavior

Next we proceed to give a brief summary of the influence of the value of I3
on the dynamic behavior of Eqs. (1)-(4), as discussed by Greitzer [1],[2]. All
physical data used by Greitzer originated from an experimental three-stage axial
compressor. For each case of interest, the model (1)-(4) was simulated and the
results were compared with those obtained experimentally.

To understand the manner in which initial conditions for the simulation were
set up, we first investigate the conditions for equilibrium operation of Eqs. (1)-(4).
At an equilibrium point, we have

C=Cqe=AP=F (6)
and
Me = mr (7

Therefore, an equilibrium point of (1)-(4) occurs at the intersection of the com-
pressor and throttle characteristics, graphed relative to the independent variable
i (or, equivalently, rmp). This is the same as saying that the steady state oper-
ating point is determined by the requirements that (i) the mass flow through the
compressor and the throttle are the same, and (ii) the pressure rise through the
compressor equals the pressure drop through the throttle. Figure 1 depicts this
situation for a stable operating point near the peak of the steady state compressor
characteristic.

Each simulation and corresponding experiment reported by Greitzer [1],[2]
begins from an initial condition obtained by perturbing the throttle line slightly
to the left of its position in Figure 1, with the operating point initially near the
peak of the compressor characteristic. This is depicted in Figure 3. (Figure 4
depicts the effect of such a perturbation assuming a single-valued steady state
compressor characteristic of the type shown in Figure 2.) Such a perturbation of



the throttle line may result, for instance, from slightly closing the throttle (cf. Eq.
(5)). Depending on the values of system parameters, especially B, the system was
then observed to either converge to the equilibrium point on the lower branch of
the compressor characteristic (rotating stall), or to converge to a large amplitude
periodic motion (surge). In Figures 3 and 4, the equilibrium on the lower branch
of the compressor characteristic is denoted RSE, for rotating stall equilibrium.

The general dependence on B of the mode of stall encountered is now re-
viewed. For each of the following cases, we are concerned mainly with the trajec-
tory starting from the initial condition identified above, namely that at the peak
of the compressor characteristic, with the throttle line perturbed slightly to the
left of the peak of the compressor characteristic (as in Figures 3 and 4). The four
cases are referred to as Regimes 1,2,.3,4. Analytical and simulation evidence will
be given in Section IV for these behaviors.

Regime 1: Small B. For small values of B, the trajectory settles on the rotat-
ing stall equilibrium. The motion is “over-damped,” i.e., it doesn’t exhibit an
oscillatory component. (This is depicted in Fig. 5.)

Regime 2: Moderate B. At some point, although rotating stall is still the eventual
limit of the trajectory, the transient is no longer over-damped, but is oscillatory.

Regime 3: Large B. For larger values of B, the trajectory no longer seeks the
rotating stall equilibrium point, but rather converges to a large amplitude limit
cycle motion. This is known as surge. (This is depicted in Fig. 6.)

Regime 4: Very Large B. As B is increased further, the system still converges to a
large amplitude, surge oscillation, but the nature and frequency of this limit cycle
change drastically. Specifically, the limit cycle is now characterized by two time
scales: a slow time scale while the trajectory remains near (“hugs”) the compressor
characteristic, and a fast time scale for motion between the main (left and right)
compressor branches. (A figure illustrating this motion is given in Section IV.2.)

In the next section, the analytical model used in subsequent simulations is
given. This involves order reduction of the model (1)-(4) as well as specification
of the throttle and compressor characteristics.

ITI. Second Order Nonlinear Model

In this section, the surge and rotating stall instabilities and their dependence
on B are obtained as by-products of a general nonlinear dynamic study of Eqs.
(1)-(4). The first step is to re-draw the steady state compressor characteristic in
a way which facilitates the analysis.

I1I.1. Nonaxisymmetric Single-Valued Compressor
Characteristic

As noted above, the hysteresis portion of the steady state compressor char-
acteristic as it is typically drawn (see Fig. 1) contains a deficiency. Namely, it
includes two branches which represent fast, transient motions as opposed to steady
state behavior. Instead, we choose to employ a single-valued function as in Figure
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2. The particular characteristic is presented in Section IV.2 below, which contains
computer simulations illustrating the paper’s main results.

IT1.2. Second Order Reduced Model

The primary variables to the compressor user are mass flow (r2.) and delivery
pressure (AP) [1]. It is possible to approximate the fourth order compressor
model (1)-(4) by a second order model in these variables alone. Although this
approximation is not necessary for the results given below, it is useful in simplifying
computations. Two basic assumptions are needed to perform the model order
reduction: first, that the relaxation to the steady state compressor characteristic
implied by Eq. (4) occurs in a very short time (i.e., 7 is small), and second, that
the throttle inertial forces are negligible.

The first of these assumptions enables us to neglect Eq. (4) and replace C' in
Eq. (1) by Cs,. This is easily justified using Tikhonov’s Theorem from singular
perturbation theory, since 7 may be viewed as a singular perturbation parameter.
The second assumption implies

AP = F(mr), (8a)
and hence that mr is given by
mrp = F~'(AP) (Sh)

These facts imply that the primary variables m., AP, are governed approximately
by the system

drn, )

el B(Css(mnc) — AP) (9)
dAP 1. -1
— = (F)ihe = F(AP)) (10)

For the quadratic throttle characteristic (5), the system (9), (10) takes the form

dm,

— = B(Cs(iie) — AP) (11)
dAP A ,
S = ()i — ZE AP (12

Before investigating analytically the second order model (9), (10) (or (11),
(12)), we should discuss the equilibrium points of the system. Consider either a
hysteretic characteristic as in Fig. 1, or a single-valued characteristic as in Fig.
2. Depictions of an “equivalent” throttle line relating AP and i, appear in Figs.
1 and 2, along with the compressor characteristic. Equilibrium points are given
by the points of intersection of the compressor characteristic and the throttle line.
If the throttle line is moved to the left (closing the throttle), the rotating stall
equilibrium point appears, as shown in Figs. 3 and 4, respectively.
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IV. Bifurcations and Stall Phenomena
IV.1. Local analysis at rotating stall equilibrium point

Denoting by superscript 0 an equilibrium value of a state variable, and by
a prime differentiation with respect to the argument of a function, the Jacobian
matrix of the second order reduced model (11), (12) is given by

C.’ss(m%) —1
( B2 —0.5ApAZ B 2(APY)71/2 (13)

Singular perturbation results imply that as B — 0 the eigenvalues of the Jacobian
matrix are asymptotically given by

B(CL(#Y) — 252 (APY)?) + O(B?), (14a)
T
and
Ay |
— 1). 140
YW IINO TS (140)

Each of the two quantities is both real and negative. (The former is negative
because of the steepness of the throttle line, 1.e., A./Ar is large, and, concurrently,
Cl,(m°) is relatively small.) The negativity of the eigenvalues for small B is in
agreement with the behavior discussed for Regime 1 in Section I1.2 above, since it
implies overdamped convergence of nearby trajectories to the equilibrium. Nothing
can yet be said regarding the global behavior of trajectories.

As B increases, the asymptotic formulae (14a), (14b) suggest that the cigen-
values approach one another, meet, and break off in conjugate directions into the
complex plane. This can be checked with the aid of the characteristic polynomial
of the Jacobian matrix (13). It is more convenient to work with the following
polynomial, which is the characteristic polynomial of 1/B times the matrix of Eq.

(13):

Ar
54, B2 (AP 2

1 ApC!,(1m0)
- 1 _ 88 C 1
3\ " 3aap) s (1)

A ( — G4, (mg))A +

The calculations are a bit involved.
The conditions for a Hopf bifurcation to occur for a given value of B at a

known equilibrium point are, from C7,, that

A
2A.B2(APY)1/?
ArC, (M)
~ 24,(AP)1/2

—C!,(m2) =0, and (16a)

1 >0 (16D)
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Note that, since C! (1m?) is negative at the original stable operating point (at the
peak of the compressor characteristic), (16a) cannot be satisfied there. So a Hopf
bifurcation cannot occur at that equilibrium. However, conditions (16a), (16b)
can be satisfied at the rotating stall equilibrium point. Indeed, (16a) implies that
the corresponding value of B is

BC — /2 1
Hopf (QAC(APO)I/ZCQS(MQ)) ( 7)
From (5) and (6) it follows, however, that
P (1) = 25 iy
At
_ e (APC)/2 (18)
Ar
Together, (17) and (18) imply
1

Bient = (R )T 19

IV.2. Bifurcation sequence and post-instability behavior

In this section, the facts discussed above are pieced together to yield an overall
picture of the global dynamics of the system (1)-(4) as a function of the nondimen-
sional parameter B. The transition from over-damped to under-damped conver-
gence to the rotating stall equilibrium as B is raised has already been explained.
Also, we have seen that as B is increased further, the rotating stall equilibrium un-
dergoes a Hopf bifurcation and simultaneously loses its stability. The conclusions
we reach in this section are based on a combined use of analysis and simulation. In
the simulations, the steady-state compressor characteristic is modeled using a com-
plicated algebraic formula which need not be reproduced here. It suffices to note
that this formula achieves a characteristic curve which is a good approximation to
that reported by Greitzer [1],[2] for a specific three-stage compressor.

We make some brief remarks on the simulations and the manner in which they
are reported in the figures. The simulations were performed using the SIMNON
software package. The figures illustrating simulation results also include the SIM-
NON commands used to generate the simulations. In the SIMNON code, . and
AP were denoted by mcd and pd, respectively. The notation mcdr and pdr occurs
in the commands in figures generated by simultaneous simulations in both forward
and reverse time. These are the variables m. and AP, respectively, computed in
reverse time.

Generally, for small values of B, if the throttle line is perturbed so as to
intersect the compressor characteristic only at the rotating stall equilibrium, then
the latter equilibrium is the global attractor for the system. That is, every initial



condition converges eventually to a rotating stall operating condition. Figure 7
depicts a simulation for the approximate model we used for B = 0.15. This figure
illustrates the behavior just noted for small values of B. (This can be scen to
hold under general conditions by using a Liapunov function argument applied
to a one-dimensional reduced-order system obtained by viewing B as a singular
perturbation parameter. A simple quadratic Liapunov function in the (scalar)
state variable of the reduced model can be seen to suffice.)

As B is raised past a value By, two initially identical periodic solutions are
born, one stable and the other unstable, and envelope the compressor characteris-
tic. In the bifurcation literature, this is referred to alternatively as a cyclic fold
bifurcation or a saddle-node bifurcation of periodic solutions. This is illustrated
in Fig. 8, which depicts computer simulations of these periodic solutions for the
hypothesized compressor characteristic. The unstable oscillation is found by sim-
ulation in reverse time with a judicious choice of initial conditions. Note that
the unstable periodic solution lies within the stable one. We refer to the stable
periodic solution as the surge limit cycle (or simply surge), and to the unstable
periodic solution as the antisurge oscillation (or simply antisurge).

The antisurge oscillation forms the boundary of the domain of attraction
of the rotating stall equilibrium point.! Note that, thus far, the peak of the
compressor characteristic lies within the domain of attraction of the rotating stall
equilibrium-agreeing with Greitzer’s [1] simulation results (Regimes 1 and 2 of
Section I1.2 above). Thus, for these low values of B, rotating stall must prevail
as the steady state post-instability behavior. In addition, the unstable periodic
solution forms the finite part of the boundary of the domain of attraction of the
companion stable periodic solution.

As B is increased further, the amplitude of the antisurge oscillation decreases
steadily, until past a value By, the nominal equilibrium at the peak of the com-
pressor characteristic no longer lies within this periodic solution. Instead, it now
lies within the domain of attraction of the stable periodic solution, and so is at-
tracted to it. This is the initiation of surge (Regime 3 of Section I1.2 above). Fig.
9 gives results of a simulation showing, in particular, the shrinking of the unstable
periodic solution with increasing B. (In Fig. 9, B = 0.45.) Fig. 10 shows two
simulations for the perturbed system, both starting at the same initial condition
(the pre-stall equilibrium), but with slightly differing values of B. In one of the
simulations, B = 0.3757, while in the other, B = 0.3758. For the smaller value of
B, the rotating stall equilibrium is approached (trajectory (a) of Fig. 10). For the
larger value of B, the surge oscillation is approached (trajectory (b) of Fig. 10).
The simulation of Fig. 11 shows conclusively that this critical value of B, i.e., the
value at which rotating stall gives way to surge, is precisely the value for which
the antisurge oscillation passes through the initial condition.

As B is increased still further, the surge oscillation continues to envelope

1 This is true for the reduced second-order dynamic model. The implication for
the full-order model is that the antisurge oscillation lies on the boundary of the
domain of attraction.



10

the compressor characteristic. In contrast, the unstable periodic solution shrinks,
becoming vanishingly small, and finally collapses onto the rotating stall equilibrium
point at some value B;. Indeed,

— Rne¢
By = BHopf

In Fig. 12, which corresponds to B = 0.70, the unstable periodic solution is shown
by simulation to have reached a rather small amplitude. The Hopf bifurcation
occurring in the model under consideration is simply this merging of the now
small-amplitude antisurge oscillation with the rotating stall equilibrium point. For
B > Bj, the rotating stall equilibrium point is no longer stable, and the unstable
periodic solution no longer exists. The surge oscillation is now the global attractor
of the system. Regime 3 of Section I1.2 above is still in force.

We now proceed to prove the existence of this surge oscillation for very large
B, and in doing so determine its location and character. For large B, the surge
limit cycle is an instance of a relazation oscillation, very much akin to the van
der Pol oscillation. In this regime the oscillation is characterized by two widely
separated time scales. This was observed by Greitzer [1], and was referred to as
“Regime 4” in Section II1.2 above. The situation is depicted in Fig. 13, which is
purely illustrative. The proof below is closely related to a standard construction
of the van der Pol oscillation. See for instance Nayfeh [6].

In the following, we admit any throttle characteristic F' with positive slope.
Divide Eq. (9) by Eq. (10), to get

dinc  Cyy(thc) — AP
“IAP " o - F-Y(AP)

(20)

where € := B™2. If € = 0, then
AP = Cys(1he),

which states that solutions are relegated to the steady state compressor charac-
teristic. We shall assume that € is very small, but nonzero. Referring to Figure
13, consider a solution curve that starts at point (). Since Q is off of the com-
pressor characteristic, dme/dAP is approximately +oo up to @ where it hits the
compressor characteristic. Since drime/dAP is approximately +oo away from the
compressor characteristic, the solution curve tends to stay on this characteristic.
Also, from Eq. (10), and since point @1 lies to the right of the throttle line in Fig.
13, we will have that dAP/dt > 0 while the solution remains near the right portion
of the characteristic. This means that the trajectory will move away from @ up-
ward, until it reaches the vicinity of Q9. There, the solution jumps horizontally to
the left, since we will have dm¢/dAP approximately —oco. The solution then hits
the compressor characteristic at ()3 and again tends to remain on the characteris-
tic. Since @3 lies to the left of the throttle line, Eq. (10) implies that dAP/dt < 0
while the solution remains near the left portion of the characteristic. Hence the
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solution moves downward along this branch, until it arrives at the vicinity of point
(J4. There, it makes a horizontal rightward jump to Q5. The solution exhibits a
periodic clockwise motion thereafter, following the upper and lower branches of

the compressor characteristic, with the exception of the horizontal jumps from @,
to Q3 and from Q4 to Q5.

V. Conclusion

A bifurcation sequence which is useful in explaining the dependence of ob-
served stall behavior of axial flow compressors on the nondimensional parameter
B has been presented. The presence of a previously unknown global bifurcation
of a periodic solution pair has been detected and found to be of fundamental im-
portance in predicting the nature of post-instability compression system bchavior.
Specifically, an unstable antisurge oscillation has been found to be present for a
large range of values of the parameter, and the position of the initial condition
relative to this oscillation was found to be the decisive factor in determining post-
instability behavior.

Analysis of the limiting cases of the bifurcation sequence as well as computer
simulation have been employed in verifying its validity. Further simulations, not
reported here, indicate robustness of the conclusions to the compressor and throttle
characteristics, within certain limits. Specifically, the results appear to hold for
a large class of nonaxisymmetric compressor characteristics, but do not apply
for axisymmetric models. They are thus expected to be useful in the analysis,
interpretation of experimental data, and control design of axial flow compressors.
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AP __~ OPERATING POINT AP
COMPRESSOR
1.0 7 CHARACTERISTIC 1.0 ™
0.8 — 0.8 - ‘
;n'1 i 1 - n-1
0.4 0.8 c 64 08 C
FIGURE 5. SHOWING OVERDAMPED FIGURE 6. CONVERGENCE TO SURGE
CONVERGENCE TO ROTATING STALL OSCILLATION
SIMNON >init med:0.48 >init pd:1.22 >plot pd{(mcd)

COMMANDS: | >parb:0.15 >simu 0 100 >

1.6,
AP
1.4]
INITIAL
/CON DITION

0. " 0.25 ) 0.5 ! 0.75 j x'.mc

FIGURE 7. SIMULATION SHOWING CONVERGENCE
TO ROTATING STALL (B =0.15)




SIMNON >init mcd:0.24872 >init pd:0.72609 >plot pd(mcd)
COMMANDS: | >Par b:0.368 >init medr :0.43213  >init pdr:0.9506
*l >simu 0 20 >plot pdr(mecdr) s>simu >
1.6,
P SURGE OSCILLATION
AP |  (STABLE) ANTISURGE OSCILLATION
1.4] (UNSTABLE)

Fl

COMPRESSOR
CHARACTERISTIC

THROTTLE
CHARACTERISTIC

°. ) 0.25 ’ 0.5 ' 0.75 ' ll'mC

GURE 8. SIMULATIONS SHOWING BIRTH OF SURGE

AND ANTISURGE OSCILLATIONS (B = 0.368)

SIMNON >init med:0.23425 >init pd:0.58022 >plot pd(mcd)
COMMANDS: | >Par b:0.45 >init medr :0.30193  >init pdr:0.94693
| »>simu 0 20 splot pdr(medr) >simu >

1.6,
AP
1.4]

SURGE OSCILLATION
(STABLE)

ANTISURGE |OSCILLATION
(UNSTABLE)

0. j 0.25 ' 0.5 ' 0.75 ’ e

FIGURE 9. SIMULATIONS SHOWING STABILITY
DOMAINS AND OSCILLATIONS (B = 0.45)
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SIMNON >init mcd:0.48 >initpd:1.22  >plot pd(mcd)
COMMANDS: | >par b:0.3757 >simu 0 20 >par b:0.3758
| >simu010 >

1.6,

AP | INITIAL
1.4] /CONDITION
1.2}

0. ' .25 " 0.5 j .75 i 1'.mC
FIGURE 10. SIMULATION (a) YIELDS ROTATING

STALL (B =0.3757); SIMULATION (b) YIELDS
SURGE (B = 0.3758)

>init mcd:0.48 >init pd:1.22  >plot pd(mcd)
SIMNON >par b:0.3758 >simu 0 10 > init mcdr:0.48
COMMANDS: | ,initpdr:1.22 »>simu020 >

1.6,

AP |
1.4] ANTISURGE OSCILLATION

INITIAL CONDITION FOR
/ BOTH SIMULATIONS

.4

0. ' 0.25 ' 0.5 ) 0.75 ) 1'.mc
FIGURE 11. SIMULATIONS SHOWING COINCIDENCE OF
SURGE INITIATION AND ANTISURGE OSCILLATION

(B=0.3758)




SIMNON >init med:0.31542 >init pd:0.53375 >plot pd(mcd)
COMMANDS: | P& b:0.70 >init medr :0.41029 >init pdr:0.85673
*| >simu 0 20 >plot pdrimcdr) >simu >
1.6,
AP 1 SURGE OSCILLATION
1.4} (STABLE)
1.2]
1.
0.8
0.6 ANTISURGE | OSCILLATION
{(UNSTABLE)
0.4 .
0. 0.25 ' 0.5 j 0.75 ' 1. mC
FIGURE 12. SIMULATIONS SHOWING SHRINKIN

ANTISURGE OSCILLATION (B = 0.70)

=,;,c

FIGURE 13. RELAXATION OSCILLATION FOR
VERY LARGE B
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