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The ability to flexibly control or inhibit unwanted actions is critical for everyday 

behavior.  Lack of this capacity is characteristic of numerous psychiatric diseases 

including attention deficit hyperactivity disorder (ADHD).  My project is designed to 

study the neural underpinnings of response inhibition and to what extent these 

mechanisms are disrupted in animals with impaired impulse control.  I therefore recorded 

single neurons from dorsal striatum, orbitofrontal cortex, and medial prefrontal cortex 

from rats performing a novel rodent variant of the classic "stop signal" task used in 

clinical settings.  This task asks motivated rats to repeatedly produce simple actions to 

obtain rewards while needing to semi-occasionally inhibit an already initiated response.  

To take this a step further, I compared normal rats to rats prenatally exposed to nicotine 



 
 

in order to better understand the mechanism underlying inhibitory control.  Rats exposed 

to nicotine before birth show abnormal attention, poor inhibitory control, and brain 

deficits consistent with impairments seen in humans prenatally exposed to nicotine and 

those with ADHD.  

I found that dorsal striatum neurons tend to encode the direction of a response and 

the motor refinement necessary to guide behaviors within the task rather than playing a 

causal role in response inhibition.  However the orbitofrontal cortex, a direct afferent of 

dorsal striatum, possesses the capacity to inform the striatum of the correct action during 

response inhibition within the critical time window required to flexibly alter an initiated 

movement.  On the other hand, medial prefrontal cortex functions as a conflict “monitor” 

to broadly increase preparedness for flexible response inhibition by aggregating current 

and past conflict history.  Lastly, rat pups exposed to nicotine during gestation exhibit 

faster movement speeds and reduced capacity for inhibitory behavior.  Physiologically, 

prenatal nicotine exposure manifests in a hypoactive prefrontal cortex, diminished 

encoding of task parameters, and reduced capacity to maintain conflict information. 
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Chapter 1: Introduction 

The ability to flexibly control or inhibit unwanted actions is critical for everyday 

behavior.  Walking down a busy street is a dynamic process of constant action initiation 

and inhibition where individual actions are only loosely tied to the ultimate goal of 

reaching the end of the street.  Lack of inhibitory adaptability is characteristic of 

numerous psychiatric disorders including attention deficit hyperactivity disorder 

(ADHD), substance abuse, Tourette syndrome, pathological gambling, and obsessive-

compulsive disorder (3-21).  The current project is designed to study the neural 

underpinnings of how animals are able to suppress or inhibit a behavioral response and to 

what extent these mechanisms are disrupted in those with impaired impulse control.  

With a preponderance of ADHD diagnoses in today’s society, characterizing the 

underlying circuitry behind this and other disorders characterized by poor impulse control 

is paramount.   

The worldwide prevalence of ADHD has been estimated at 5.3% (22) and the 

disease has been associated with poor school performance, anxiety, aggression, and 

substance abuse as well as other impulsive disorders.  It has been suggested that 

suboptimal inhibitory capacity is a central tenet of various psychiatric symptoms 

including compulsivity, perseveration, obsessions, and attention deficits (23, 24).   In 

addition, those with marked behavioral disinhibition tend to possess poor cognitive 

control whereby conflicting circumstances do not lead to greater control over subsequent 

responses in the immediate future (25-28).  It is therefore critical to systematically 
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measure response inhibition behaviorally in order to infer the brain regions responsible 

for this behavior and whether/to what extent they are affected by disease states.   

Research has reported that within the brain, the striatum works as an input 

structure to the basal ganglia, a conglomerate of regions thought to arbitrate between 

initiating and inhibiting motor actions.  In order for the striatum to swiftly gather 

information on which action to proceed with, functioning upstream signals from the 

frontal cortex are necessary to flexibly inform the striatum (29, 30) whether a given 

behavioral response is applicable.  In fact, prefrontal regions have shown common BOLD 

activations across multiple tasks that measure impulsivity differently (31). 

The functions of the brain areas involved in response inhibition have been 

inferred using inactivation/pharmacological techniques, but the neural signals underlying 

inhibitory functions have yet to be fully characterized.  From studies using recording and 

imaging techniques, it is clear that orbitofrontal cortex (OFC), medial prefrontal cortex 

(mPFC), and medial dorsal striatum (mDS) are critical for executive control and response 

inhibition (Fig 1.1).  Though OFC and mPFC are neighboring structures, the literature 

shows distinct roles for these areas relating to reward and value processing.  As it pertains 

to response inhibition, the distinctions between mPFC and OFC are less clear.  Both of 

these frontal regions have been shown to be important for sufficient behavior in 

inhibitory tasks (although contradicting results have also been found) and both regions 

directly synapse onto dorsal striatum (32-34) and with each other (35, 36) with a 

presumed role of informing the brain of appropriate versus inappropriate action.  Further, 

damage to the dorsal striatum has been shown to diminish inhibitory control in reaction 
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time tasks as defined by greater premature responding (5, 37, 38) although replications of 

this result have proven elusive (39, 40). 

To gain an appreciation for the cortical and striatal nodes within the context of 

response inhibition, it is important to place them in context of both structure and function 

relative to their afferents and efferents.  Figure 1.1 depicts the established structural 

framework of the cortico-basal ganglia loops that comprise the majority of the regions 

currently thought to be important for active motor suppression.  The medial dorsal 

striatum (mDS) is the primary input structure to the basal ganglia, a collection of areas 

shown to be able to promote actions via monosynaptic connections (“the direct pathway”) 

from mDS to substantia nigra pars reticulata (SNr), or suppress actions via globus 

pallidus (GPe) to (subthalamic nucleus) STN to SNr (“the indirect pathway”)(41).  

Importantly, decreases in activity in the output structure of the basal ganglia (SNr) via 

direct inhibitory mDS to SNr connections removes the tonic inhibition SNr sends to 

motor outputs and promotes a movement.   In contrast, direct excitatory STN to SNr 

connections increases the tonic inhibition in SNr and pauses or refines movements (42, 

43).  It is because of this control that mDS has over the basal ganglia (and by extension, 

the motor system) that it has been implicated in response inhibition (5).  However, it has 

been known since the studies of Phineas Gage that inhibitory control can be diminished 

even with a healthy, intact basal ganglia system (44).  Therefore, cortical regions 

including lOFC (lateral orbitofrontal cortex) and mPFC have been hypothesized to “alert” 

the mDS via their independent afferents of a prompt change in external context in order 

for the basal ganglia to inhibit or redirect behavior.  Naturally, after a decision has been 

made and an action produced, portions of the motor outputs (particularly motor thalamus) 
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synapse back onto mDS and the cortex presumably to update these upstream regions 

regarding the action that was commenced.  This overall organization forms what are 

known as the cortico-basal ganglia-thalamo-cortical loops. 
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The first objective of my research was to resolve the role of single dorsal striatal 

cells in response inhibition via recording from these neurons while rats perform a novel 

rodent variant of the classic "stop signal" task typically used in clinical settings.  This 

task asks motivated rats to repeatedly produce simple actions to obtain fluid rewards 

while needing to semi-occasionally inhibit these responses.  A second goal of this 

research is to discriminate the functions of lOFC and mPFC by recording single cell data 

from each brain area during performance of the stop signal task.  Use of this task will 

allow me to address the void in cortico-striatal literature and propose a specific locus in 

the brain that may be impacted by diseases characterized by reduced response inhibition 

ability, such as addiction.  The cortico-basal ganglia-thalamo-cortical circuitry has been 

nicely mapped structurally (Fig. 1.1), but the functions and interactions of these brains 

regions pertaining to response inhibition have yet to be agreed upon.  To take this one 

step further, this work offers an opportunity to compare healthy control rats to rats 

prenatally exposed to nicotine in order to better understand the mechanism underlying 

impulse control.  Rats exposed to nicotine before birth show abnormal attention, poor 

inhibitory control, and brain deficits consistent with impairments seen in humans 

prenatally exposed to nicotine and those with ADHD.  I will test if inhibitory signaling in 

mPFC is affected by the exposure to nicotine by recording from the mPFC of these 

animals in the same stop signal task. 
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Chapter 2: Response inhibition and how it is investigated 

Response inhibition refers to the capacity to swiftly and flexibly suppress or alter 

behavior when new information suggests that an initiated action is no longer ideal.  

Uncovering the neurological basis underlying response inhibition deficits has been a goal 

of a subset of neuroscientists for years.  Approaches to this topic have included 

electroencephalographic recordings (45), fMRI scanning (46), clinical pre-existing brain 

lesion experiments (47, 48), and behavioral/drug testing (49, 50).  These methods have 

yielded overwhelming advances in the treatment of patients suffering from these 

disorders including the (generally) successful administration of pharmacological agents 

such as Ritalin, Adderall, and Prozac.  Despite these developments, the neural circuitry 

regulating behavioral inhibitory proficiency is understudied and not fully established. 

Due to inherent limitations of human neuroscience techniques, much of the basic 

research studying neural connections at the systems level is done in animals.  The use of 

animals in discerning the biological processes behind response inhibition deficits has 

supplied the field with invaluable data.  For decades, research groups have worked to 

establish the functions of numerous brain regions in inhibitory behavior using reversal 

tasks (51, 52) designed to test the flexibility of goal directed behavior, delay discounting 

tasks (53) used to measure impulsive decision making, and Go/NoGo tasks (54) thought 

to directly assess response suppression.  Additionally, establishing the role of individual 

basal ganglia regions in movement generating (Huntington’s) and movement suppressing 

(Parkinson’s) diseases (55) provided a subcortical framework that led to further 

exploration of the roles of striatal and cortical brain areas in response inhibition via in 

vivo neural recordings in monkeys performing a countermanding task (56, 57). 
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The aforementioned tasks have fundamental strengths but few of these paradigms 

address the rapid suppression of initiated actions while concurrently accounting for 

interactive effects of expected outcomes.  For example, inadequate reversal ability can be 

explained by the failure to update cue-outcome expectancies rather than a specific deficit 

in inhibiting an initially correct response.  To overcome this obstacle, researchers have 

used the “stop signal task” where subjects are asked to make speeded motor responses to 

simple cues in order to obtain rewards.  These speeded movements, referred to as “go” 

responses, are designed to be uncomplicated and completed with high accuracy.  On a 

minority of trials, the instructions are identical and “go” actions are commenced, but a 

“stop” cue, introduced after movement initiation, instructs the subject to inhibit the 

response in order to complete the trial successfully.  The ability of the subject to resist 

completing responses on these “stop” trials is a measure of flexible inhibitory capacity 

that cannot be evaluated using tasks where subjects are asked to simply refrain from 

action prior to initiation (e.g. Go/NoGo, 5-choice-serial-reaction-time task). 

To date, few of the experiments that have specifically tested behavioral restraint 

after action commencement (i.e. stop signal task) have done so while recording single 

cells from the brains of rodents.  The intention of my research was to create a response 

inhibition task suitable for in vivo recording in rats and to explore the contributions of a 

number of brain regions to this behavior; notably medial dorsal striatum (mDS), lateral 

OFC (lOFC), and medial prefrontal cortex (mPFC). 
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Chapter 3: My stop signal task and its behavioral measurements 

 There are many challenges associated with creating a response inhibition task 

suitable for in vivo single unit recording.  First, rats need to be trained to respond to a 

simple cue stimulus for reward while maintaining the ability to semi-accurately (>50%) 

inhibit that response.  This can be trying for a water deprived rat who is motivated to 

respond rapidly to obtain fluid. Additionally, single neurons in the cortex and striatum 

tend to bias firing to one direction over another (see Fig. 1.4A and below).  Therefore, it 

is necessary for responses toward both directions (contra- and ipsilateral to the recording 

electrode) be required in each session so that a neuron’s firing pattern is fully 

characterized.  Despite these difficulties, I found it appropriate to remain steadfast in 

these task necessities due to previously used paradigms in the literature not accounting 

for these variables.  After several arduous failed attempts at designing this task, the 

behavior on its final iteration was sufficient for measuring response inhibition.  The 

details of that task are as follows: 

Experimental subjects are male Long Evans rats acquired from Charles River 

Labs at weights between 175 and 200g.  Training and behavior was conducted in 

aluminum chambers approximately 18” on each side with downward sloping walls 

narrowing to an area of 12” x 12” at the bottom.  On one wall, a central nose port was 

located above two adjacent fluid wells.  Directional lights were located next to the fluid 

wells. House lights were located above the panel.  Task control was implemented via 

computer.  Port entry and licking were monitored by disruption of photobeams (Fig. 

1.2A).  
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The basic design of a trial is illustrated in figure 1.2A.  Each trial began by 

illumination of house lights that instructed the rat to nose poke into the central port.  Nose 

poking began a 1000ms pre-cue delay period during which the animal was required to 

fixate.  At the end of this delay, a directional light to the animal’s left or right was flashed 

for 100ms.  The trial was aborted if the rat exited the port at any time prior to offset of the 

directional cue light.  On 80% of trials, presentation of either the left or right light 

signaled the direction in which the fluid-deprived animal could respond in order to obtain 

sucrose reward in the fluid well below (GO trials).  The remaining 20% of trials began in 

the same manner, but simultaneous with the rat exiting the nose port, the light opposite to 

the location of the originally cued direction turned on and remained on until the 

behavioral response was made (STOP trials). On these STOP trials, rats were required to 

inhibit the movement signaled by the first light and respond in the direction of the second 

light which was illuminated concurrently with port exit.  STOP trials were randomly 

interleaved with GO trials.  After correct responses on each type of trial, rats were 

required to remain in the well for 800ms (pre-fluid delay) before reward delivery (10% 

sucrose solution).  Trials were presented in a pseudorandom sequence such that left and 

right trials were presented in equal numbers (+/- 1 over 250 trials).  The trial types are 

represented in figure 1.2B.  The value of the reward after each correct response, 

regardless of the trial type, was always the same (one drop of sucrose solution; ~75µl).  

All behavior is taken from sessions during which at least one cell was recorded.  Unless 

otherwise stated, all subsequent behavioral analyses will be taken from the sessions (n = 

468) performed by control rats (n = 24).  
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The low proportion of STOP trials relative to GO trials (20/80) induced a 

prepotency to respond swiftly to the first directional (light) cue.  Predictably, rats were 

more accurate on GO trials compared to STOP trials (Fig. 1.2C; t-test; p < 0.01) 

presumably due to the difficulty in inhibiting initiated responses.  In addition, rats were 

faster on GO trials (measured as latency between port exit and well entry) than STOP 

trials suggesting that they were not using a “wait-and-see” tactic to distinguish between 

STOP and GO trial types prior to responding (Fig. 1.2D; t-test; p < 0.01).  Slower 

latencies resulted in STOP trial performance consistent with a speed accuracy trade off.  

This is illustrated in figure 1.2F which plots average movement times (well entry minus 

port exit) on STOP trials against percentage of correct STOP trials for all recording 

sessions.  During sessions in which rats were slower, performance was better (r = 0.34; p 

< 0.01).  Compatible with this finding, movement times on STOP error trials were 

significantly faster than movement times on correctly performed STOP trials (Fig. 1.2D; 

t-test; p < 0.01). 

Combined, these results demonstrate that there is high conflict between two 

competing responses during STOP trials. That is, rats were planning and generating a 

movement prior to illumination of the STOP cue in response to the first cue light, and 

inhibition and redirection of the behavioral response was necessary to correctly perform 

STOP trials.  Intriguingly, the directional conflict induced by STOP trials was somewhat 

mitigated when the previous trial was also a STOP trial.  That is, rats were more accurate 

on STOP trials when the immediately preceding trial was a STOP trial (“sS” trial) rather 

than a GO trial (“gS” trial; Fig. 1.2E).  This suggests that when animals were less 

prepared for the upcoming conflict induced by a STOP trial (i.e. on gS trials), behavior 
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suffers.  Throughout the remainder of the document, the identity of the previous trial will 

be denoted in lowercase (‘g’ for GO; ‘s’ for STOP) while the identity of the current trial 

is represented by a capital letter (‘G’ for GO; ‘S’ for STOP).   

Prior research into the neural basis of inhibitory control of non-human subjects 

has utilized stop signal tasks with subtle variations.  The stop signal task that I piloted has 

a number of advantages over tasks used in the past.  For example, counter-balanced 

directions (Fig. 1.2B) in my task allow me to decipher the neuronal and behavioral 

differences between commencing/inhibiting responses to directions either contralateral or 

ipsilateral to the recording electrode which cannot be done in other tasks (58-60).  

Additionally, other tasks instruct animals to inhibit all responding (i.e. “freeze”) for a 

short period during stop trials (41, 60) which is both unnatural and further confounded 

with a delay to the ultimate reward, as well as effortful stagnation, upon correct stopping.  

Lastly, some tasks exhibit a lack of response homogeneity such that the speed and/or 

ultimate movement trajectory differs dramatically between stop and go trial types.  This 

forces these researchers to estimate the time necessary for an animal to inhibit a response 

(termed “stop signal reaction time”).  In theory, the estimation of the stop signal reaction 

time allows for the analysis of neuronal firing around a hypothetical behavioral threshold 

in order to determine whether a brain area can successfully encode response inhibition 

prior to behavioral stopping (57).   Due to the very similar response movements on GO 

and STOP trials in my task (e.g. a rightward response can result from either trial type, 

correct or incorrect), I am able calculate a more accurate measure of the time-point by 

which response inhibition in the brain needs to be recruited.  Specifically, I subtracted the 

movement latency on correct GO trials from the movement latency on correct STOP 
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trials, the remainder of which is the time the animal needs to engage any/all necessary 

neural machinery to successfully refrain from responding to the initial GO cue. 

In general rats have difficulty inhibiting responses, particularly when asked to 

rapidly arbitrate between conflicting decisions.  The behavioral results demonstrate that 

rats were planning and generating a movement prior to illumination of the STOP cue in 

response to the first directional light, and that inhibition and redirection of the behavioral 

response was necessary to correctly perform STOP trials.  Neural activity elicited on 

trials during which the movement had to be stopped and redirected will be compared to 

activity elicited on responses made in the same ultimate direction, which cannot be 

accomplished with more typical stop signal tasks that require subjects to either pause all 

movement (41) or redirect toward a centralized food cup (61).  This is important because 

the activity of neurons in many rodent brain areas including lOFC and mDS have been 

shown to fire more highly for one response direction over the other (i.e. “directionally 

selective”) (62-65).  Additionally, I will determine whether activity in single cells 

changes prior to, or after, my behavioral measure of time needed to inhibit responding on 

a STOP trial; SCRT (stop change reaction time).  In order to calculate these neuronal 

measures and compare them across brain regions, it was necessary to analyze each region 

identically.  These methodological details are presented below. 
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Chapter 4: Analyzing neuronal stop signal task data 

I collected neuronal data from three brain regions in separate groups of rats using 

the stop signal task described above.  To compare these regions in an unbiased way, I will 

analyze each region using the same calculations and organize them in individual chapters 

below.  Within each chapter, the results of the various analysis routines will be arranged 

in sub-headings.  These common analyses are detailed below but the intricate statistical 

methodologies are located in Chapter 10: Detailed methodology. 

In recording from single neurons while rats perform the stop signal task, I intend 

to analyze neuronal data by comparing firing patterns in both response directions 

(contralateral or ipsilateral relative to the recorded hemisphere) during both trial types 

(STOP vs. GO) at the time point in which the animal is making or inhibiting/redirecting 

its response (i.e. port exit to well entry; “response epoch”; Fig. 1.2A).  I hypothesize that 

neurons within individual brain regions will fit into one of three rigid possibilities, but I 

accept that cells will likely fire in a combination of patterns.  These three hypothetical 

firing characteristics are outlined in figure 1.3A-C where the larger diameter of a 

representative circle indicates higher firing. 
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Figure 1.3: Hypothesized firing characteristics. Firing of single neurons within each 

brain region will be analyzed primarily during the response epoch (port exit to well entry) 

to capture any inhibition/redirection of movement.  The size of the circle represents 

greater firing (spikes/s) during this period.  A) “Directional signal” patterns will appear as 

either greater firing in the response direction contralateral to the recording electrode (left) 

or greater firing ipsilateral to the recording electrode (middle) with no dissociable firing 

differences between GO and STOP trials.  B) Firing patterns consistent with a “conflicted 

directional signal” will emerge as either greater firing during contralateral movements 

(left) or ipsilateral movements (middle) on GO trials.  STOP trial activity will remain 

unchanged based on direction.  This lack of directional effect on STOP trials will reflect 

conflicted response information.  C) Firing consistent with the an “inhibitory signal” will 

manifest as greater firing on STOP trials compared with GO trials (left) or lower firing on 

STOP trials compared with GO trials (middle), without regard to response direction.  

Since activity in each of the investigated brain areas have been shown to be modulated by 

response direction - but not always the same direction - I segregated population activity 

into each individual cell’s preferred and nonpreferred response directions.  Preferred 

direction is defined as the response direction that elicited the strongest firing during the 

response epoch, averaged over correct STOP and GO trials (always referred to the 

ultimate response direction performed, not the successfully inhibited direction).  

Therefore, the three hypothesized categories under which cells could fall would be better 

interpreted using a directional preference precept (A-C right). 
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If a group of neurons strictly follows the “directional signal” hypothesis (Fig. 

1.3A), firing should not discriminate between STOP and GO trial types, but would vary 

by direction via firing more highly in either the contralateral direction (Fig. 1.3A left) or 

ipsilateral direction (Fig. 1.3A middle).  These firing attributes would suggest that a brain 

region is simply responsible for encoding response direction and not differences 

pertaining to response inhibition and/or redirection of an action.  If a group of neurons 

adheres to the “conflicted directional signal” hypothesis (Fig. 1.3B); activity should 

appear higher in the contralateral (Fig. 1.3B left) or ipsilateral direction (Fig. 1.3B 

middle) on GO trials whereas activity on STOP trials should not vary by direction.  This 

pattern would indicate that neurons are sensitive to the direction of responding on GO 

trials, but this firing would be “conflicted” as to the correct direction on STOP trials 

because one direction is initiated (in response to the GO cue) and the opposite direction 

needs to be programmed in a sufficiently swift manner (in response to the STOP cue).  

The last type of firing I would expect is an “inhibitory signal” (Fig. 1.3C).  This pattern is 

marked by a difference in firing between STOP and GO trials that does not vary by 

direction.  Neurons that fit this hypothesis would presumably communicate to 

downstream structures that inhibition is necessary during STOP trials regardless of 

direction, particularly if this trial type distinction in firing was apparent prior to the SCRT 

time-point.   Importantly, a single neuron may encode this “inhibitory signal” after the 

SCRT time-point.  Although this encoding may not be helpful for inhibiting the ongoing 

response on the current trial, the tracking or “monitoring” of the response just made can 

be useful for guiding subsequent behavior. 
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Since activity in each of the investigated brain areas has been shown to be 

modulated by response direction - but not always the same direction – below, I will 

segregate population activity into each cell’s preferred and nonpreferred response 

directions.  Preferred direction is defined as the movement direction that elicited the 

strongest firing during the response epoch, averaged over correct STOP and GO trials 

(always referred to the ultimate response direction performed, not the successfully 

inhibited direction).  Therefore, the three hypothesized categories under which cells could 

fall would be better interpreted using a directional preference precept (Fig. 1.3A-C right) 

where firing preference is determined individually for every cell. 

Figure 1.4 includes three single cells which exemplify the hypothesized patterns 

originally defined in figure 1.3.  Specifically, the “directional signal” pattern is reflected 

in the neuron depicted in figure 1.4A where activity is greater during the response in the 

contralateral direction but does not vary by the type of trial (STOP or GO).  Importantly, 

the contralateral direction would be defined as this individual cell’s “preferred” direction 

where responses to the ipsilateral direction would be the “nonpreferred” direction.  In the 

neuron presented in figure 1.4B, activity is substantially greater under GO trials in the 

contralateral direction relative to the ipsilateral direction.  However, activity on STOP 

trials does not vary by direction due to the nature of the task inducing a “conflicted 

directional signal” when one direction needs to be inhibited while the other commenced.  

Lastly, a cell providing an “inhibitory signal” fires at greater frequencies under STOP 

trials relative to activity on GO trials.  In this neuron, activity does not vary by the 

direction of the response. 
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Characterizing “increasing-” and “decreasing-” type cells:  For all analyses I 

will first divide neurons into whether they increased or decreased firing during the 

response epoch (port exit to well entry) relative to baseline (1s before trial onset; t-test; p 

< 0.05).  All subsequent analyses will be done on these individual populations. 

Population Activity:  I will quantify activity for both increasing- and decreasing-

type neurons by examining population activity.  For each chapter, I display population 

histograms that plot the average activity (spikes/s) over all neurons within a sub-

population (e.g. increasing-type neurons) aligned to an individual task event.  I am 

interested in discerning if/how a brain region is impacted by response inhibition, thus I 

will align population activity to port exit.  On GO trials, port exit is the beginning of the 

movement toward the fluid well and on STOP trials, this time-point is simultaneous with 

the onset of the STOP cue.  Average activity will be plotted individually for both 

directions (preferred and nonpreferred) on GO trials, STOP trials, and STOP errors.   

Stop Index: For each population of neurons I will compute a “stop index”, which 

quantifies the counts of neurons that fire differently on STOP versus GO trials.  The stop 

index is defined as the difference between firing on STOP trials and GO trials in the same 

direction during the “response epoch” (port exit to well entry) normalized by the sum of 

these firing rates ((STOP-GO)/(STOP+GO)).  Thus values above and below zero indicate 

higher and lower firing, respectively, on STOP trials versus GO trials.  This will be 

computed for every neuron and displayed as individual distributions for the preferred and 

nonpreferred directions.   
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Directional Index:  For each population of neurons I will compute a “directional 

index”, which quantifies the strength of directional tuning for both GO and STOP trials. 

This “directional index” takes the difference in firing rates between the preferred 

direction and nonpreferred direction normalized by the sum of these firing rates 

((preferred-nonpreferred)/(preferred+nonpreferred)).  This will be computed for every 

neuron and displayed as individual distributions for GO trials, STOP trials, and STOP 

errors. 

Sliding t-test analysis: Although the directional index is a powerful statistic that 

can determine the difference in responding between two spatially opposite locations 

during the entirety of a response, it does not have the temporal precision to determine at 

which time point a brain region distinguishes between two directions.  I therefore 

calculated the difference between the preferred and nonpreferred directions in 100ms 

epochs that slide every 10ms and added “tick marks” to the population histograms where 

this comparison was significantly different (t-test; p < 0.01).  Importantly, if the correct 

direction on STOP trials is significantly encoded prior to the SCRT in a population of 

neurons, these neurons may possess the temporal capacity to “fix” a conflicted directional 

signal in time to guide response inhibition behavior. 

Multiple regression analysis: It is well-documented that single neurons within a 

brain region are sensitive to different task parameters.  The beauty of the single cell 

recording technique is that this sensitivity can be analyzed at the level of individual 

neurons.  Therefore, I analyzed each neuron using a multiple regression analysis 

(equation in Chapter 10: Detailed methodology) that determines how many neurons were 

sensitive to the direction of the response, the speed of the response, or whether it was a 
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STOP or GO trial when variance in firing rate of the other two parameters was accounted 

for (partial r
2
). 

Modulation of conflict by identity of previous trial: The final analysis that will 

be completed across multiple brain regions is designed to test for sensitivity of firing 

patterns to the past and present conflict induced by the trial sequence.  Behaviorally, 

using multiple tasks, it has been shown that efficient performance on the current trial is 

dependent on the degree of conflict on the previous trial (66).  The theory suggests that 

on a non-conflict trial preceded by a conflict trial, the subject should exhibit slower 

response times and higher control than in situations where the non-conflict trial is 

preceded by a non-conflict trial.  Additionally, on a conflict trial preceded by a non-

conflict trial, the competing irrelevant response should have a larger impact on the 

ultimate response and therefore increase response latencies relative to when a conflict 

trial is preceded by a conflict trial.  These behavioral findings have been referred to as 

“conflict adaptation” or “Gratton effect” (67-70). 

My task is specifically designed to study the role of response inhibition on single 

cells via the presentation of a conflicting stimulus after initiation of a response.  

However, the swift and continuous manner in which rats completed trials in addition to 

the pseudo-random sequence of the trial types allows me to investigate the impact of 

immediate prior conflict on activity.  That is, the presence of a conflict trial (STOP trial) 

immediately preceding a STOP trial (sS trial) can impact preparation and accuracy 

relative to when a STOP trial is preceded by a simple GO trial (gS trial). 

In my task, animals exhibit behavior consistent with conflict adaptation such that 

a conflicting trial (in this task; STOP trial) is performed more accurately when the 
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preceding trial is also a conflict trial.  For instance, rats are more successful at STOP 

trials when they are preceded by STOP trials than GO trials (Fig. 1.2E).  This observed 

behavioral effect suggests that neurons may respond differently to STOP trials depending 

on the previous trial.  Therefore, population histograms will be reconstructed to dissociate 

STOP trials after GO trials (‘gS’) from STOP trials after STOP trials (‘sS’).  I will 

compare these trial types directly by taking the firing rate during the response epoch and 

calculating a “stop index” that subtracts firing on sS trials from firing on gS trials (gS-

sS).  Additionally, I will compare each of these STOP trial “types” to the average of all 

GO trials (gS-GO) and (sS-GO).  Since the previous trial may also have an effect on the 

strength of the directional signal, I also plan to recreate “directional indices” that subtract 

firing in the preferred direction from firing in the nonpreferred direction individually for 

GO trials, gS trials, and sS trials.  Lastly, to determine if the previous trial impacts firing 

on GO trials, I will replicate the previous analyses for current GO trials by comparing gG 

to sG trials. 
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Chapter 5: Medial dorsal striatal neurons represent direction-based response 

conflict 

 As mentioned Chapter 3, my task is specifically designed to induce an inhibitory 

mechanism by invoking directional conflict (i.e. the second light is spatially opposite the 

first).  I therefore chose to record single neurons from the medial dorsal striatum (mDS), 

a region known to be tightly correlated with response encoding.  As the major input 

structure to the basal ganglia mDS has been implicated in habitual, over-learned, and 

automatic responding (71-78), but recent work has also pointed to the mDS as being 

involved in executive functioning (79) including response inhibition (5, 37, 38). 

Pharmacological and anatomical studies have demonstrated that mDS is involved 

in response inhibition (5), but its exact role in this critical function remains elusive.  For 

example, during performance of a stop signal task in which rats had to suppress an 

ongoing movement in the minority of trials, rats showed reduced ability to inhibit 

responding after mDS lesions (5, 58).  In this task, rats were required in the large 

majority of trials (80%) to respond quickly to an instrumental stimulus (light).  On 20% 

of trials, rats were signaled by a tone to “stop” sometime between the initiation of the 

response and its final execution.  Stopping was easier when the stop cue (tone) sounded 

earlier as opposed to immediately before the instrumental response (lever press).  Rats 

with mDS lesions needed earlier warnings to be able to adequately inhibit movement as 

compared to controls suggesting a deficit in response inhibition.  Unfortunately, this 

result was tainted by the finding that rats were also slower on non-stop trials (i.e. “go” 

trials), making the pure response inhibition interpretation a difficult one.  
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Similarly intriguing results have been found in other tasks.  For example, in the 5-

choice-serial-reaction-time task, rats responded to a brief visual stimulus after a fixed or 

variable interval (e.g. ~5s).  Rats with dorsal striatum lesions were unable to refrain from 

action before the appropriate time (5, 37, 38).  Responses made prior to the end the delay 

period were considered premature errors and were more common in rats with dorsal 

striatum lesions.  Although this result suggests that response inhibition is dependent on 

dorsal striatum, others have failed to report premature responding after dorsal striatum 

interference during performance of similar tasks (39, 40).  

These variable results likely reflect distinct populations of neurons in mDS are 

performing different functions or that mDS is responsible for unrelated operations that 

happen to coincide with response inhibition on the tasks that have been implemented.  

Therefore, global destruction or non-specific inactivation of mDS is not a sufficient 

technique to understand the role of mDS in response inhibition.  This points to the need 

for a single unit recording study that examines the neural mechanism by which mDS 

promotes and suppresses behavior to determine what information is being encoded during 

performance of a stop signal task.  I therefore recorded from 437 individual mDS neurons 

(recording locations in figure 2.7C) from seven rats performing the stop signal task. 

In the following chapter, I will describe the mDS as a brain region that robustly 

encodes the direction of the intended response including the initial miscoding of direction 

during the early portion of STOP trials.  I will also expand on the relative insensitivity of 

mDS neurons to encode a pure “inhibitory signal” (Fig. 1.3C) and the strong occurrence 

of “direction signal” and “response conflict” firing.  Lastly, I will detail how firing in 
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mDS is largely impartial to prior conflict where firing tends to follow the mechanics of 

the response, not the conflict associated with it. 

In order to directly compare neural activity on GO trials and STOP trials, I first 

asked how many neurons increased or decreased firing during the movement toward the 

fluid well.  To do this I determined how many neurons fired more or less frequently (i.e. 

task responsive) during the “response epoch” (port exit to well entry) compared to 

baseline (1s epoch starting 2s prior to the trial initiation nose poke).  This response epoch 

captures any inhibitory/directional encoding while accounting for response time 

variability.  Of these 437 neurons, 122 (28%) and 164 (38%) significantly increased and 

decreased firing during the response epoch, respectively. 

Since most mDS cells were modulated by response direction - but not always the 

same direction - I segregated population activity into each cell’s preferred and 

nonpreferred response directions.  Preferred direction is defined as the movement 

direction that elicited the strongest firing during the response epoch, averaged over 

correct STOP and GO trials.  An example of such a cell is illustrated in figure 1.4A 

where activity increases after port exit and fired more strongly for one direction (Fig. 

1.4A; contralateral) over the other (Fig. 1.4A; ipsilateral).  

 

Increasing-type cells 

Population activity: Figure 2.1A and B illustrate the average activity over all 122 

increasing-type mDS cells over time (aligned to port exit, A, and reward well entry, B).  

Critically, on STOP trials, port exit is simultaneous with STOP cue onset.  The direction 
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specified by thick and thin lines always refers to the direction the animal responded to.  

Animals made responses on every trial shown.  For example, “go pref” trials (thick blue), 

“stop nonpref went pref” trials (thick red), and “stop pref went pref” trials (thick dashed 

red) all refer to trials where the animal ultimately responded to the preferred direction 

even though the cues were not identical (pref = preferred direction; nonpref = 

nonpreferred direction).   Notable time-points are indicated by vertical dashed lines; “GO 

cue” represents the average time the GO cue illuminated prior to port exit and “SCRT” 

represents the average stop change reaction time as described above.   Additionally, 

average movement times (port exit to well entry) for correct GO and STOP trials are 

marked as downward facing arrows (blue and red, respectively).  GO cue onset, SCRT, 

and movement times are variable and are therefore specific to the sessions during which 

the analyzed cells were taken.    
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Figure 2.1: Direction and trial type encoding of increasing-type mDS neurons.  A-B) 

Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for all 

mDS neurons that fired more strongly during the ‘response epoch’ (port exit to well 

entry) relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time 

necessary to inhibit a response (stop change reaction time; SCRT) is defined as the 

difference between STOP trial movement time and GO trial movement time.  SCRT is 

marked as the vertical dotted line labeled ‘SCRT’ at 133ms.  ‘GO cue’ and its associated 

vertical dashed line indicates the average onset of the GO cue as measured by the latency 

from port exit (-358ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and 

dashed lines refer to errant trials (incorrect direction).  Due to the heterogeneous direction 

specificity of individual cells, each cell was characterized as having a preferred direction 

and a nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Pink ticks refer to the temporally short period where the 

incorrect direction was significantly encoded (t-test; p < 0.01) on STOP trials.  Although 

each tick mark signifies statistical difference for a 100ms epoch, tick width is 10ms for 

the purpose of presentational detail.  Arrowheads denote the average movement time 

(well entry) during GO trials (blue arrowhead = 472ms) and STOP trials (red arrowhead 

= 605ms).  GO cue, SCRT, and movement times (arrowheads) are variable values based 

on the behavior of the animals in the analyzed sessions.  These values (except SCRT) are 

estimates with variance and cannot be treated as constants relative to port exit.  C) Stop 

indices for preferred (left) and nonpreferred (right) directions.  Stop indices are calculated 

by taking the activity during the response epoch from STOP trials, subtracting activity 

during the response epoch on GO trials, and dividing it by the sum of the two ((STOP-

GO/(STOP+GO)) in each direction for every cell.  Significant shifts from zero (as 

calculated by Wilcoxon) denote that neuronal activity is significantly different between 

STOP and GO trials in a given direction.  D) Directional index distributions defined as 

activity during the response epoch in the preferred direction minus activity during the 

response epoch in the nonpreferred direction divided by the sum ((preferred-

nonpreferred)/(preferred+nonpreferred)) in every cell.  These calculations are specific to 

GO trials (left), STOP trials (middle), and STOP errors (right).  Significant shifts from 

zero (as calculated by Wilcoxon) signify that activity is greater in one direction than the 

other at the neuronal level.  Asterisks in C and D indicate that two distributions are 

significantly different via Wilcoxon. 
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As defined by the analysis, activity in the preferred direction (Fig. 2.1A-B; thick 

lines) was stronger than activity in the nonpreferred direction (Fig. 2.1A-B; thin lines) 

during the response epoch.  On correct GO trials (blue), activity differentiated between 

the preferred (thick) and nonpreferred (thin) directions promptly as is shown by the blue 

ticks marks that represent significant differences between preferred and nonpreferred 

directional responses after comparing activity in 100ms that slid every 10ms (t-test; p < 

0.01).  Early differentiation of firing during responses in opposing directions is necessary 

to make speeded movements toward the correct fluid well.  In fact, this directionality on 

correct GO trials occurred shortly after average GO cue onset (Fig. 2.1; blue ticks).  On 

successful STOP trials (solid red lines), significant direction differentiation occurred later 

than GO trials (Fig. 2.1; red ticks).  Critically, the initial encoding of STOP direction was 

the incorrect direction (i.e. “direction miscoding”) as the neurons were beginning to 

bifurcate into the directions indicated by the GO cue.  This is shown explicitly in figure 

2.1A by the pink tick marks around the time of port exit.  It was not until after the SCRT 

where the correct direction was encoded on successful STOP trials.  This is critical 

because it suggests that even though activity on correct STOP trials rectified itself after 

encoding the wrong direction, the correct direction was not encoded until after the time-

point necessary for the system to recruit any inhibitory mechanisms.  Therefore, this 

brain region alone cannot be responsible for the prompt correction of behavior necessary 

for this task. 

When rats made errors on STOP trials (dashed red lines), neurons did not change 

activity patterns after port exit in response to the STOP cue and proceeded to more 

closely mirror correct GO trials (blue) than STOP trials (red) suggesting that revising the 
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direction trajectory on STOP trials is both necessary for the task and an important 

function of mDS.  Lastly, it is notable that the encoding of direction differed very little 

between GO and STOP trials once the response was completed.  This is shown in figure 

1.1B where activity is aligned to well entry.  Reward administration is not a confounding 

factor here as reward is delivered >800ms after well entry. 

Stop Index: To quantify trial type differences, I created an index that compares 

STOP trial activity to GO trial activity termed “stop index.”  This index is calculated by 

subtracting firing during GO trials from firing during STOP trials and dividing by the 

sum of the two ((STOP-GO)/(STOP+GO)) independently for each direction.  Average 

firing for each neuron in each type of trial is taken during the response epoch.  The 

distribution of stop indices in the preferred direction (Fig. 2.1C left) is significantly 

shifted in the negative direction (Wilcoxon; p < 0.05) which indicates that, at the 

population level, activity tends to be greater on GO trials than STOP trials.  The opposite 

is true in the nonpreferred direction (Fig. 2.1C right) where activity tends to be greater 

during STOP trials (Wilcoxon; p < 0.05).  These distributions are significantly different 

from one another (Wilcoxon; p < 0.01) which quantitatively demonstrates that mDS 

neurons encode similar movements differently depending on whether it was a STOP or 

GO trial. 

Directional Index: In order to further quantify the degree to which direction is 

encoded in mDS neurons for both STOP and GO trials I computed a directional index 

defined as the difference between firing in the preferred direction and firing in the 

nonpreferred direction (((preferred-nonpreferred) / (preferred+nonpreferred)); Fig. 2.1D) 

for both trial types during the response epoch.  This analysis allows me to ask if the 
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distribution of directional indices, and therefore the strength of the directional signal 

during the response, is different between the two trial types across the population of 

increasing-type neurons.  Although both correct GO and STOP trial direction indices 

were significantly shifted from zero (Fig. 2.1D left, middle; Wilcoxon; ps < 0.01), the 

directional index under GO trials was significantly greater than under STOP trials (Fig. 

2.1 left vs. middle; Wilcoxon; p < 0.01), demonstrating that direction encoding was 

attenuated under STOP trials.  This fits nicely with the “conflicted directional signal” 

hypothesis (Fig. 1.3B) as mDS neurons are modulated by response direction on GO trials, 

but this directional firing pattern is conflicted during STOP trials, thus the reduced 

directional index on STOP trials (Fig. 2.1D).   Lastly, although the directional index on 

STOP error trials (Fig. 2.1D right) is significantly shifted in the positive direction 

(Wilcoxon; p < 0.01) and is not statistically different from the directional index on 

correct STOP trials (Fig. 2.1D middle vs. right; Wilcoxon; p = 0.58), neurons are largely 

encoding the incorrect direction on STOP errors. 

This collection of mDS results support the “conflicted directional signal” 

hypothesis laid out in figure 1.3B, not the “inhibitory signal.”  One would expect that if 

mDS has a specialized role in response suppression as suggested by previous research 

(5), firing during STOP trials would emerge as a direction agnostic increase or decrease 

relative to GO trial firing as depicted in figures 1.3C and 1.4C.  Despite previous research 

implying a specific inhibitory role for mDS neurons, my neural data does not support this 

proclamation.  Instead, the firing features I have described signify a direction-based 

generation and redirection role for mDS that occurs under conflict (Fig. 1.3B). 
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Multiple regression analysis: From the previous results I conclude that average 

population activity of increasing-type mDS neurons is modulated during performance of 

the stop signal task but, of course, this analysis was done on the population as a whole 

and there may be a smaller population of single neurons that encode purely for response 

inhibition.  To assess task correlates at the single cell level I performed a multiple 

regression analysis (see Chapter 10: Detailed methodology).  This was done to determine 

the contribution of single cells to a specific portion of the task after variance for other 

portions was accounted for.  For example, the size of the top circle in figure 2.2 indicates 

the proportion of increasing-type mDS neurons that showed a significant partial r
2
 

statistic for the direction parameter (Fig 2.2; direction).  Sixty-five percent of increasing-

type mDS neurons (n = 79) exhibited a significant partial r
2
 for direction and of these 79 

neurons, 59 β-values were positive (greater firing for the contralateral direction) whereas 

20 β-values were negative (binomial sign test; p < 0.01) showing that firing in more mDS 

neurons favor the contralateral direction.  These neurons individually would more closely 

resemble the “directional signal” hypothesis laid out in figure 1.3A.  For the movement 

time parameter, 28% (n = 34) of neurons are significantly modulated (Fig. 2.2; movement 

time) where a higher proportion of β-values were negative (6 vs. 28; binomial sign test; p 

< 0.01).  Lastly, only 14 neurons (11%) are significantly modulated by trial type (Fig. 

2.2; trial type), the β-values of which were not proportionally different (9 vs. 5; binomial 

sign test; p = 0.21).  Therefore, when variance for movement speed and direction were 

parsed out, only 11% of mDS increasing-type neurons could fall into the “inhibitory 

signal” category. 
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Modulation of conflict by identity of previous trial: In figure 2.3A, I replotted 

the population histogram originally in figure 2.1A to now include correct STOP trials 

preceded by GO trials (Fig. 2.3A; red lines; ‘gS’) and correct STOP trials preceded by 

STOP trials (Fig. 2.3A; orange lines; ‘sS’) relative to all correct GO trials.  All other 

conventions remain unchanged.  Consistent with behavioral conflict adaptation, rats in 

my task were faster on correct STOP trials following STOP (i.e. conflict) trials relative to 

those that followed GO (i.e. no conflict) trials (Fig. 2.3A; orange vs. red arrowheads).  

Put simply, animals are faster and more accurate on STOP trials preceded by STOP trials 

because they have prepared for upcoming conflict and can more swiftly resolve it.   
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Figure 2.3:  Impact on neuronal encoding based on conflict induced by the previous 

trial in increasing-type mDS neurons.  A) Population histogram of mDS neurons that 

increased significantly above baseline.  Activity is aligned to port exit.  Blue lines refer to 

all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  Orange lines 

indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  Calculation of 

direction preference remained unchanged from figure 2.1.  Tick marks represent 100ms 

epochs where the preferred direction was significantly different from the nonpreferred 

direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials (orange).  Pink 

ticks represent windows where activity was significantly greater in the nonpreferred 

direction (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

indicate average movement times (port exit to well entry) for GO trials (blue; 471ms), gS 

trials (red; 626ms), and sS trials (598ms).  Note the longer movement times for gS trials 

relative to sS trials consistent with reduced preparation for conflict.  Vertical dashed lines 

mark the times of the stop change reaction time (SCRT; 133ms) and the average GO cue 

onset as measured as the latency from port exit (GO cue; -358ms) for the analyzed 

sessions.  B) Indices compare the difference in firing between the three trial types 

presented in A.  Leftmost distribution calculates the differences between gS and GO trials 

for each cell.  The middle distribution marks the difference between sS and GO trials.  

Rightmost distribution computes the difference between gS and sS trials.  C) Directional 

index distributions calculate the difference between the preferred and nonpreferred 

direction in each neuron during GO trials (left), gS trials (middle), and sS trials (right).  

D)  Population histogram of increasing-type mDS neurons is aligned to port exit.  All 

lines represent accurate GO trials that either followed a GO trial (‘gG’; dark blue) or 

followed a STOP trial (‘sG’; light blue).  Thick lines refer to the preferred direction and 

thin lines refer to the nonpreferred direction.  Tick marks denote the 100ms epochs where 

the preferred direction significantly differed from the nonpreferred direction (t-test; p < 

0.01) during gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the 

average movement times for gG trials (dark blue; 470ms) and sG trials (light blue; 

471ms).  E) Distribution calculates the difference between firing on gG versus sG trials.  

F) Directional index distributions calculate the difference between the preferred and 

nonpreferred direction in each neuron during gG trials (left) and sG trials (right).  

Activity for all distributions was taken during the response epoch and significant shifts 

from zero are determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct 

comparison between two distributions is significant (Wilcoxon; p < 0.05 corrected for 

multiple comparisons). 
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If one considers that inhibition/redirection on STOP trials is a conflicting 

response relative to a non-conflicting GO trial, it is possible to parse out the function of 

mDS neurons when preparation for response inhibition is high (after STOP trials; sS) 

versus when this preparation is low (after GO trials; gS).  The striking result is that on sS 

trials (Fig.2.3A; orange ticks), when preparation for stopping is highest, direction is not 

miscoded whereas direction is miscoded on gS trials (Fig. 2.3A; pink ticks).  

Additionally, the correct direction is encoded ~20ms later in gS trials relative to sS trials.  

However, significant directionality on both of these types of STOP trials occurred after 

the SCRT. 

In order to quantify differences between gS, sS, and GO trials, I calculated “stop” 

and directional indices similarly to previous figures.  Specifically for “stop indices”, I 

took firing during the response epoch for each trial averaged over the preferred and 

nonpreferred directions and calculated gS minus GO trials (Fig. 2.3B left), sS minus GO 

trials (Fig. 2.3B middle), and gS minus sS trials (Fig. 2.3B right).  None of these 

comparisons yielded significant results (Fig. 2.3B left, middle, right; Wilcoxon; ps > 

0.33).  However, when direction indices were calculated for GO, gS, and sS trials, each 

were significantly shifted positively (Fig. 2.3C left, middle, right; Wilcoxon; ps < 0.01).  

Interestingly, the directional index on GO trials differed from both gS trials (Fig. 2.3C 

left vs. middle; Wilcoxon; p < 0.01) and sS trials (Fig. 2.3C left vs. right; Wilcoxon; p < 

0.05) but direction indices between gS and sS trials did not differ (Fig. 2.3C middle vs. 

right; Wilcoxon; p = 0.13).  These results imply that mDS neurons encode the correct 

direction on STOP trials more weakly than GO trials (as previously demonstrated in Fig. 

2.1) but there is no appreciable difference during the response epoch between 
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directionality on STOP trials based on which trial type preceded it.  However, the 

preparation for a STOP trial induced by a preceding STOP trial (sS trials) prohibited the 

encoding of the direction cued by the GO cue (i.e. direction miscoding) and allowed for 

the resolution of directional conflict in a speedier manner. 

If the above effects seen in mDS increasing-type neurons were a result of the 

conflict induced by the previous trial and not simply the identity of the previous trial, the 

identity of the trial preceding a GO trial should not impact neuronal firing.  To measure 

this, I analyzed the difference between GO trials preceded by GO trials (Fig. 2.3D; dark 

blue lines; ‘gG’) and GO trials preceded by STOP trials (Fig. 2.3D; light blue lines; 

‘sG’).  The population histogram in figure 2.3D illustrates very little firing difference 

between gG and sG trials.  Additionally, the index comparing the average firing rate of 

gG and sG trials was not significantly shifted (Fig. 2.3E; Wilcoxon; p = 0.77) and 

although the direction indices for both types of trials are significantly positively shifted, 

they did not differ from one another (Fig. 2.3F left vs. right; Wilcoxon; p = 0.28).   

Summary: Increasing-type mDS neurons have a substantial bias toward the 

direction of the response made by the animal (not the one that cued it) such that the 

direction signal, early during STOP trials, is flipped until the animal correctly inhibits the 

incorrect direction and responds correctly.  These neurons vary their firing patterns based 

on the direction of the response as well as the speed of the response but added modulation 

by the type of trial (STOP vs. GO) is minimal.  Despite this propensity toward encoding 

the nature of the response, increasing-type mDS neurons are also sensitive to the conflict 

preceding STOP trials where the incorrect direction is not encoded and the correct 

direction is resolved earlier in the trial.  This sensitivity to conflict however is likely due 
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to the neurons encoding the faster and more accurate movements made when conflict is 

minimal.  Indeed, it has been suggested before that mDS is invariant to trial sequence, 

rather, it tracks the response being made even if that was response was in error (80).   

 

Decreasing-type cells 

Population activity: A large proportion (38%) of the recorded mDS cells can be 

characterized as “decreasing-type” cells.  That is, activity during the response epoch is 

significantly lower than the baseline firing rate.  These neurons (Fig. 2.4A,B) are 

presented and analyzed in the exact same manner as their increasing-type counterparts.  A 

cursory comparison of firing between decreasing- and increasing-type neurons reveals 

similar direction-based activity.  In these decreasing-type cells, the contrast between 

preferred and nonpreferred direction on GO trials (Fig. 2.4A; blue ticks) is significantly 

distinct near GO cue illumination and robustly different just before port exit.  On STOP 

trials (Fig. 2.4A; red ticks), even though there is no significant miscoding of direction, the 

correct direction is still not significantly discerned until after the SCRT.  Due to the 

increased activity on STOP trials compared to GO trials in both directions during the 

response (quantified below), one could argue that determining the correct direction 

during behavior is not an integral function of these neurons.  However, during STOP 

errors (Fig. 2.4A,B; dashed lines), activity tends to be higher for the direction the animal 

responded to rather than the direction instructed by the STOP cue.  In fact, activity during 

STOP error trials remains comparable to activity on correct GO trials throughout the 

response (Fig. 2.4B) when the ultimate response direction was the same (e.g. thick blue 

vs. thick dashed red).   
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Figure 2.4: Direction and trial type encoding of decreasing-type mDS neurons.  A-B) 

Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for all 

mDS neurons that fired less strongly during the ‘response epoch’ (port exit to well entry) 

relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time necessary to 

inhibit a response (stop change reaction time; SCRT) is defined as the difference between 

STOP trial movement time and GO trial movement time.  SCRT is marked as the vertical 

dotted line labeled ‘SCRT’ at 121ms.  ‘GO cue’ and its associated vertical dashed line 

indicates the average onset of the GO cue as measured by the latency from port exit (-

340ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and dashed lines 

refer to errant trials (incorrect direction).  Due to the heterogeneous direction specificity 

of individual cells, each cell was characterized as having a preferred direction and a 

nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

denote the average movement time (well entry) during GO trials (blue arrowhead = 

488ms) and STOP trials (red arrowhead = 608ms).  GO cue, SCRT, and movement times 

(arrowheads) are variable values based on the behavior of the animals in the analyzed 

sessions.  These values (except SCRT) are estimates with variance and cannot be treated 

as constants relative to port exit.  C) Stop indices for preferred (left) and nonpreferred 

(right) directions.  Stop indices are calculated by taking the activity during the response 

epoch from STOP trials, subtracting activity during the response epoch on GO trials, and 

dividing it by the sum of the two ((STOP-GO/(STOP+GO)) in each direction for every 

cell.  Significant shifts from zero (as calculated by Wilcoxon) denote that neuronal 

activity is significantly different between STOP and GO trials in a given direction.  D) 

Directional index distributions defined as activity during the response epoch in the 

preferred direction minus activity during the response epoch in the nonpreferred direction 

divided by the sum ((preferred-nonpreferred)/(preferred+nonpreferred)) in every cell.  

These calculations are specific to GO trials (left), STOP trials (middle), and STOP errors 

(right).  Significant shifts from zero (as calculated by Wilcoxon) signify that activity is 

greater in one direction than the other at the neuronal level.  Asterisks in C and D indicate 

that two distributions are significantly different via Wilcoxon.   
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Stop Index: To quantify the above proclamations, activity at the neuronal level 

tended to be higher on STOP trials than GO trials in the preferred direction (Fig. 2.4C 

left; Wilcoxon; p < 0.01) and although this was only a trend in the nonpreferred direction 

(Fig. 2.4D right; Wilcoxon; p = 0.06), the two distributions are not different (Fig. 2.4C 

left vs. right; Wilcoxon; p = 0.13).  Therefore, at the population level, there tends to be 

greater firing on STOP trials than GO trials regardless of direction. 

Directional Index: When comparing direction-based activity in decreasing-type 

neurons, I found that the distribution of directional indices was significantly shifted 

positively on both GO trials (Fig. 2.4D left; Wilcoxon; p < 0.01) and STOP trials (Fig. 

2.4D middle; Wilcoxon; p < 0.01) and the two distributions do not differ (Fig. 2.4E left 

vs. middle; Wilcoxon; p = 0.13).  Additionally, the directional index distribution for 

STOP error trials was not significantly shifted (Fig 2.4D right; Wilcoxon; p = 0.21) but 

also did not differ from the GO trial (Fig. 2.4D left vs. right; Wilcoxon; p = 0.06) or 

STOP trial distributions (Fig. 2.4D middle vs. right; Wilcoxon; p = 0.06).   

Although it appears that differential activity patterns are elicited under STOP 

trials relative to GO trials, the lack of direction specificity in the SCRT time window 

implies that this population cannot be the sufficient driving force for response inhibition.  

However, decreasing-type mDS neurons are likely important for refining a motor 

response due to the nearly identical firing patterns across trial types within a direction 

once the response is completed (Fig. 2.4B).  In this sense, if the STOP versus GO contrast 

cannot be explained by response inhibition, it can only be explained by the motor 

differences necessary to change a response on STOP trials.  Therefore, the best 

explanation for the increase in activity on correct STOP trials relative to the other trial 
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types is that decreasing-type mDS cells are tuning the response trajectory via projections 

to the indirect pathway known to pause or alter the kinetics of a movement. 

Multiple regression analysis: The average population activity described in the 

previous sub-section does not capture the nuances of signal cell variability so I therefore 

implemented the multiple regression procedure used previously in figure 2.2.  Of the 164 

decreasing-type neurons collected, 34% (n = 56) were significantly modulated by the 

direction of the response when variance accounted for by movement speed and trial type 

were regressed out (Fig. 2.5; direction).  Of these 56, equal numbers showed positive and 

negative β-values (33 vs. 23; binomial sign test; p = 0.11).  When this procedure was 

repeated for the movement time parameter, 28 neurons (17%) were significantly 

modulated, a greater proportion of which exhibited positive β-values meaning reduced 

firing for faster movement times (Fig. 2.5; movement time; 22 vs. 6; binomial sign test; p 

< 0.01).  Although a low total percentage of neurons were significantly modulated by trial 

type (9%; n = 15), a significant proportion of those fifteen had positive associated β-

values (Fig. 2.5; trial type; 12 vs. 3; binomial sign test; p < 0.05).   
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These results first demonstrate that a low percentage of mDS decreasing-type 

neurons are modulated by any of the three main task parameters relative to mDS 

increasing-type neurons (decreasing-type = 46%; increasing-type = 75%; χ
2
; p < 0.01).  

However, the decreasing-type mDS neurons that were modulated by individual 

parameters tended to vary by the direction, as well as the speed, of the response.  

Importantly, although the number of trial type specific neurons were low, significantly 

more showed higher firing on STOP trials (positive β-values) which fits with the greater 

activation of STOP trials in both directions at the population level (Fig. 2.4C). 

Modulation of conflict by identity of the previous trial: In pursuit of 

ascertaining the function of decreasing-type mDS neurons during conflict adaptation, I 

replotted these neurons where current STOP trials (Fig. 2.6A-C) and GO trials (Fig. 

2.6D-F) are respectively split by the identity of the previous trial.  Perusal of figure 2.6A 

shows that the correct direction on STOP trials is not statistically determined until after 

the SCRT, regardless of the previous trial type (Fig. 2.6A; orange ticks; red ticks).  

Quantitatively, neither the “stop index” is significantly shifted between gS and sS trials 

(Fig. 2.6B right; Wilcoxon; p = 0.63) nor is the direction signal between gS trials and sS 

trials significantly different (Fig. 2.6C middle vs. right; Wilcoxon; p = 0.17).  Therefore, 

despite a “preparedness” for response inhibition on sS trials (as indicated by the faster 

movement speeds relative to gS trials; Fig. 2.6A; red vs. orange arrowheads) the neurons 

largely do not reflect this behavioral change.   
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Figure 2.6:  Impact on neuronal encoding based on conflict induced by the previous 

trial in decreasing-type mDS neurons.  A) Population histogram of mDS neurons that 

decreased significantly below baseline.  Activity is aligned to port exit.  Blue lines refer 

to all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  Orange 

lines indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  Calculation of 

direction preference remained unchanged from figure 2.4.  Tick marks represent 100ms 

epochs where the preferred direction was significantly different from the nonpreferred 

direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials (orange).  

Although each tick mark signifies statistical difference for a 100ms epoch, tick width is 

10ms for the purpose of presentational detail.  Arrowheads indicate average movement 

times (port exit to well entry) for GO trials (blue; 491ms), gS trials (red; 620ms), and sS 

trials (608ms).  Note the longer movement times for gS trials relative to sS trials 

consistent with reduced preparation for conflict.  Vertical dashed lines mark the times of 

the stop change reaction time (SCRT; 121ms) and the average GO cue onset as measured 

as the latency from port exit (GO cue; -340ms) for the analyzed sessions.  B) Indices 

compare the difference in firing between the three trial types presented in A.  Leftmost 

distribution calculates the differences between gS and GO trials for each cell.  The 

middle distribution marks the difference between sS and GO trials.  Rightmost 

distribution computes the difference between gS and sS trials.  C) Directional index 

distributions calculate the difference between the preferred and nonpreferred direction in 

each neuron during GO trials (left), gS trials (middle), and sS trials (right).  D)  

Population histogram of increasing-type mDS neurons is aligned to port exit.  All lines 

represent accurate GO trials that either followed a GO trial (‘gG’; dark blue) or followed 

a STOP trial (‘sG’; light blue).  Thick lines refer to the preferred direction and thin lines 

refer to the nonpreferred direction.  Tick marks denote the 100ms epochs where the 

preferred direction significantly differed from the nonpreferred direction (t-test; p < 0.01) 

during gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the average 

movement times for gG trials (dark blue; 492ms) and sG trials (light blue; 487ms).  E) 

Distribution calculates the difference between firing on gG versus sG trials.  F) 

Directional index distributions calculate the difference between the preferred and 

nonpreferred direction in each neuron during gG trials (left) and sG trials (right).  

Activity for all distributions was taken during the response epoch and significant shifts 

from zero are determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct 

comparison between two distributions is significant (Wilcoxon; p < 0.05 corrected for 

multiple comparisons). 
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When the current trial was a GO trial, however, previous trial conflict minimally 

impacted firing on the current trial.  That is, activity during the response epoch tended to 

be higher on gG trials than sG trials at the neuronal level (Fig. 2.6E; Wilcoxon; p < 0.01) 

and the directional index distribution was significantly more positive in gG trials relative 

to sG trials (Fig. 2.6F; Wilcoxon; p < 0.05).  Although it is difficult to reconcile this 

firing difference in the context that it is the only comparison where the previous trial 

impacts firing on the current trial in mDS, I propose that the mDS decreasing-type 

activity is simply firing at a higher rate and with greater directional strength when 

animals are slower (Fig. 2.6D; dark blue vs. light blue arrowheads).  This explanation is 

consistent with the relatively large proportion of mDS decreasing-type neurons that 

exhibit a significant partial r
2
 for the movement time parameter and have a positive 

valence (greater firing for slower movement speeds; Fig. 2.5; movement time). 

Summary: Decreasing-type mDS cells show elevated firing on trials when the 

response is successfully inhibited/redirected (correct STOP trials) where activity is 

similar on trials where the initial response is commenced either correctly (GO trials) or in 

error (STOP errors).  Despite this, directional signaling on STOP trials becomes 

significant after the SCRT suggesting that it is unlikely that this population can signal an 

inhibition/redirection signal in enough time to promote stopping.  Therefore this 

population may play a role in informing downstream neurons of the direction of the 

terminal response as well as the necessity to change the course of action and/or to refine 

the motor response. 

Though these increasing- and decreasing-type neurons were recorded from the 

same brain region, in the same rats, and often on the same electrode, there are important 
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differences between these populations.  Firstly, increasing-type neurons are highly 

directional in the sense that they robustly encode the direction of the intended response 

prior to its ultimate execution, even when it is incorrect within a short temporal window 

(early direction miscoding on STOP trials).  This is the case to a lesser extent in 

decreasing-type cells.  Additionally, the direction of the response is resolved sooner 

under STOP trials with reduced conflict (sS trials) in increasing- but not decreasing-type 

neurons.  Accordingly, increasing-type mDS neurons have a large proportion of direction 

specific neurons (65%) relative to decreasing-type neurons (34%).  

 

Disparate waveform characteristics as a means to define increasing- and decreasing 

populations 

 As a means to disclose any cell-type (i.e. projection vs. local interneuron) 

differences between increasing- and decreasing-type cells, I have plotted the interspike 

interval (i.e. average duration between action potentials), baseline firing rate, and 

waveform peak width independently for each type (Fig. 2.7A,B).  Although there is no 

perfect way to classify neurons based on waveform shape or firing characteristics, and 

attempts to do so often lead to debate and controversy, here I simply ask if neurons that 

exhibit these different activity patterns might show differential characteristics often used 

to define the two main types of striatal neurons: fast-spiking interneurons (FSIs) and 

medium spiny neurons (MSNs) (77, 81-87). Additionally, these characteristics are plotted 

based on the significance of their regression parameter(s).  For clarity, FSIs should 

exhibit reduced inter-spike intervals and greater baseline firing rates relative to MSNs 

due to the greater functional and physiological capacity of FSIs to fire more frequently.  
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This concept extends to waveform peak width where FSI waveforms tend to be more 

condensed, that is, a reduced time from depolarization to repolarization. 
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Notably, the division in waveform parameters between increasing- and 

decreasing-type neurons was not entirely clear cut; there was substantial overlap in all 

three measures.  With that said, it appears from this analysis that, at minimum, a subset of 

neurons that exhibit different patterns fall into increasing- versus decreasing-type 

populations.  Both the interspike interval (Fig. 2.7A,B left) and peak width (Fig 2.7A,B 

right) are significantly greater for decreasing-type neurons suggesting that increasing-

type cells have a greater probability of being FSIs whereas decreasing-type cells have a 

greater likelihood of being MSNs that project downstream.  The neurons that are 

significantly modulated by a specific parameter in the task tend to be evenly distributed 

across the three measurements.  Despite any statistical differences among the recording 

measurements, the waveform shapes across all neurons are approximately identical (Fig. 

2.7A,B left; insets). 

 

Chapter Discussion 

Functions of mDS 

Few studies have examined neuronal activity in the context of response inhibition.  

Most of the work has been done in oculomotor countermanding tasks and/or have 

focused on frontal cortical regions (57, 88-91).  Here, I designed a novel task that allows 

me to examine neural activity when rats had to inhibit a response that occurred on the 

large majority of trials and redirect behavior toward the opposite location.  During 

performance of this task, rats were less accurate and slower to respond on STOP trials.  
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Slower movement speeds resulted from cancellation of an already initiated response (i.e. 

STOP cue was only signaled after response initiation). 

Pharmacological and lesion studies have implicated mDS in the control of 

behavior during performance of stop signal tasks.  Although rats with mDS lesions 

needed earlier warnings to be able to adequately inhibit movement as compared to 

controls, they were also slower on GO trials, suggesting that they not only had a deficit in 

response inhibition but also in general behavioral control (5).  More recently, it has been 

suggested that dopamine in mDS may act to balance response inhibition independent of 

behavioral activation.  Manipulation of striatal D1 and D2 receptors, commonly 

associated with neurons that give rise to the direct and indirect pathways, influenced the 

imposition and speed of inhibition during stop signal performance (59).  These results, 

combined with the electrophysiological results reported here, suggest than signaling of 

movement in mDS is complicated and that the ultimate output depends on the integration 

of several signals that promote or inhibit behavior as discussed below.   

 

Miscoding of direction and inhibition failure 

Given that the mDS is the area functionally closest to the motor system, it is 

unsurprising that mDS exhibits a large directional bias (preferred relative to nonpreferred 

direction) toward one direction (70% contralateral preferring cells).  As reviewed above, 

significant directional signaling on GO trials occurs early (i.e. before unpoke) and 

remains strong throughout the response in increasing-type mDS neurons (Fig. 2.1A; blue 

ticks).  Since directionality on GO trials becomes significantly distinct before port 
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unpoke, this provides heightened encoding of the incorrect direction on STOP trials 

(becomes significant at 30ms before unpoke; Fig. 2.1A; pink ticks).  Without sufficient 

correction (neuronally and behaviorally), the animal will continue to approach the 

incorrect direction on STOP trials as shown in the STOP error encoding.  After a short 

delay, mDS neurons discontinue encoding the wrong direction and, consistent with the 

aforementioned role of mDS in signaling the direction of the response on STOP trials, 

neurons are directionally distinct prior to fluid well entry (Fig. 2.1A; red ticks).  

Critically, the temporal delay in mDS neurons encoding the ultimately correct direction is 

too long for this brain region to have a causal impact on inhibiting the behavior.  

Specifically, the correct direction is signaled after the SCRT.  Therefore, mDS neurons 

appear to be tied to the response direction, but not the ability to inhibit the incorrect 

direction when necessary.  This suggests that when there was a miscoding of direction by 

these neurons, rats were unable to correctly inhibit responding. 

 On one hand, these neurons might be driving behavior through what has been 

described as the “direct” pathway in which activity from mDS directly modulates activity 

in substantia nigra pars reticulata (SNr), which is the main output structure in basal 

ganglia (42, 43, 55, 92-97)(Fig. 1.1).  Increased firing of mDS neurons would inhibit 

firing in these areas which would release downstream structures (e.g. superior colliculus 

and other motor outputs) from GABAergic inhibition to promote behavior (98, 99).  

On the other hand, these neurons might impact local circuits before influencing 

more motor-related downstream regions.  Many of these neurons shared characteristics 

common to interneurons, having shorter waveforms and lower inter-spike intervals (77, 

83)(Fig. 2.7A).  Further, their activity patterns were similar to what has been described 
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previously for interneurons in lateral parts of dorsal striatum, firing more strongly for 

contralateral action at the time of the choice (83).  Interneurons are thought to shape 

firing of MSNs in mDS through feed-forward inhibition (83, 87, 100).  Thus, activity of 

these neurons might also shape behavior by impacting local circuits that then project 

downstream.  Regardless of how these neurons ultimately impact behavior, their 

miscoding of direction was clearly related to failures in response inhibition. 

 

Inhibition of movement 

 Decreasing-type neurons in mDS appear to better serve an inhibitory function.  

Many of these neurons increased firing on correctly performed STOP trials when the rat 

had to inhibit and redirect its response.  However, very few of these neurons fell under 

the “inhibitory signal” hypothesis (Fig. 1.3C; significant partial r
2
 for trial type; Fig. 2.5; 

9%) and the correct direction was not significantly encoded until after the SCRT on 

STOP trials.  If these neurons are not causally contributing to the inhibition of a response, 

how can one explain the significant difference between STOP and GO trials in both 

directions (Fig. 2.4C left, right)?  Given the proximity of mDS to the motor system and 

the known function of mDS in coordinating the correct muscles necessary for a 

movement (78), I propose that these neurons are refining the newly initiated motor 

response on correct STOP trials.  Evidence for this inference lies in the observation that 

firing patterns are similar between successful GO trials (Fig. 2.4A; blue lines) and errant 

STOP trials (Fig. 2.4A; dashed red lines) and the comparable firing rates within a 

direction once the response was completed (Fig. 2.4B).  Thus, unlike the increasing-type 
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neurons, decreasing-type mDS neurons appear to inform downstream regions of dramatic 

changes in spatial response properties necessary for correct STOP trial performance.  

 Consistent with this hypothesis, these neurons shared firing and waveform 

characteristics that have been used to categorize neurons as MSNs.  MSNs are thought to 

project out of the striatum to impact behavior via direct and indirect pathways through 

basal ganglia (42, 43, 55, 92-97, 101-104).  Based on the relationship that these neurons 

have with movement speed and errant responses, I suspect that they must be part of the 

indirect pathway which projects to globus pallidus external (GPe) then to subthalamic 

nucleus (STN) before impacting SNr and motor outputs (Fig. 1.1).  Since GPe and STN 

are inhibitory and excitatory, respectively, excitation of mDS would increase activity in 

SNr, whereas inhibition (GABA) would reduce it.  Thus, increased activity in striatum 

would indirectly increase activity in SNr, which would subsequently inhibit downstream 

motor structures critical for controlling body movements in rats such as superior 

colliculus (98).  

 

Control of behavior 

 Patterns observed here, in mDS, resemble firing in primate oculomotor regions 

such as the frontal eye field (FEF) during performance of a countermanding task in which 

monkeys were signaled to make a saccade to the periphery by brief illumination of a 

visual stimulus (56, 57, 91, 105, 106).  During performance of this task, on 20% of trials, 

a stop signal (re-illumination of the fixation point) instructed the monkey to not make the 

instructed saccade and to remain fixating at a central location.   
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They found, as I have here, neurons related to generating and inhibiting behavior.  

Activity of many neurons was correlated with faster eye movements contralateral to the 

recording site.  Other neurons fired more strongly on stop trials when the monkey had to 

maintain fixation.  From these studies it has been suggested that generation of movement 

results from the activity of motor-related neurons reaching some activation threshold at 

which point a movement is generated.  The response that is made depends on what 

neurons cross threshold first.  This process has been described as a race between two (or 

more) competing movement signals (107).  In the oculomotor example, if the firing of 

neurons that generate eye movements crossed threshold before the competing signal to 

maintain fixation, the eye movement was erroneously generated.  Models such as the race 

model could explain the relationship between cells that promote responses and those that 

globally inhibit behavior in my task.  That is, if a cell reaches threshold before the cells 

that shut it down, then the response would be erroneously generated.   

In conclusion, I show activity in mDS is related to both the promotion and 

refinement of spatial responses.  Miscoding of directional information was correlated 

with poor performance.  Against this backdrop I can better address what happens in 

several mental disorders where the ability to inhibit behavior is impaired.  Deficits 

observed in certain disorders or after lesions might reflect abnormalities in one or both of 

the increasing- and decreasing-type populations.  However, as previously mentioned, my 

results do not support a causal function for mDS neurons to inhibit an action.  That is, an 

upstream region must provide a timely warning signal to mDS in order for mDS to alter 

its activity and reorient the animal toward the appropriate destination.  
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Chapter 6: An inhibitory hypothesis for lateral orbitofrontal neurons 

I have shown that mDS neurons are responsible for the encoding of direction 

and/or motor refinement.  Although the directional signal in increasing-type mDS 

neurons is initially miscoded, and ultimately weaker on STOP trials, accurate 

representations of direction do emerge.  It has been shown that optogenetic activation of 

dorsal striatal medium spiny neurons can alter basal ganglia firing and cause generation 

or suppression of movements/actions (108, 109).  While mDS and downstream basal 

ganglia regions are more closely tied to motor output, information from afferent cortical 

regions has been hypothesized to play a role in alerting mDS neurons of the necessity to 

cancel or redirect an ongoing movement within a short temporal window.  One candidate 

region for this function is lOFC based on its role in executive function (110-112). 

Research has suggested that OFC acts as a critical frontal structure that informs 

downstream regions of the need to suppress a prepotent behavior.  Evidence for this arose 

as damage to OFC was shown to promote disinhibition operationalized as perseveration 

during extinction tasks (113), reduced reversal ability (51, 52, 114-123), impulsive choice 

in both delay discounting (124) and stop tasks (125, 126), and impaired gambling 

behavior (127, 128).  Many of these studies suggest that OFC provides a type of 

inhibitory signal that overrides or dampens behavioral responding when such control is 

necessary for accurate performance.  Indeed, imaging studies have shown heightened 

BOLD signal generating from OFC on trials that require subjects to inhibit behavior (18, 

126, 129-131).  Based on its anatomical connections to mDS (30, 132) and the previous 

literature linking OFC with response inhibition, OFC appears to be a logical brain region 

to explore response inhibition preformed in my stop signal task. 
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Over the past decade, the theory that inhibitory function is causally linked to OFC 

has lost some ground due to data revealing that OFC lesioned animals can exhibit certain 

forms of inhibitory restraint as well as healthy control animals (53, 133-135).  For 

example, rats with OFC lesions can discontinue responding to stimuli that unpredictably 

lead to punishment during discrimination learning (123) or suddenly predict no reward 

during set-shifting (117, 136, 137).   

With the abundance of attention OFC has received during the past few decades, it 

comes as a surprise that there have been few recordings from OFC during performance of 

a task that independently probes response inhibition.  Most tasks vary both the need to 

inhibit behavior and aspects related to expected outcomes.  To address these issues I 

recorded from single lOFC neurons in my rodent variant of the stop signal task (1).   

I analyzed single cell recording data from 548 neurons in lOFC of five rats over 

113 sessions (recording locations in figure 3.7C).  Neural analyses will be identical to the 

previous mDS recording experiment.  Briefly, I found that lOFC increasing-type cells 

tend to signal the direction of the ultimate response and this signal was able to distinguish 

the correct direction on STOP trials prior to the SCRT placing lOFC in a position to 

guide spatial response behavior.  Additionally, the strength of this direction signal was 

significantly enhanced on STOP trials where preparedness was high (sS trials) providing 

a conflict adaptation signal useful for response inhibition.  Although there were many 

decreasing-type neurons, these cells appear to be driven mainly by the speed of 

responding (movement time) as opposed to flexible inhibitory signaling. 

As in the mDS section described above, to qualify activity over the increasing-

type neurons in lOFC, I constructed population histograms that represent the average 
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firing over time during the execution of a trial.  I found 209 neurons (38%) that 

significantly increased activity during the response epoch relative to baseline.   

 

Increasing-type Cells 

Population Activity: As described in previous literature, increasing-type neurons 

in rat lOFC are spatially selective (62, 63, 65), firing more strongly for movements made 

in one direction over another.  On correct GO trials (blue), activity differentiated between 

the preferred (thick) and nonpreferred (thin) directions before withdrawal from the nose 

port.  This can be observed via the tick marks in figure 3.1A that represent statistically 

significant (t-test; p < 0.01) directional activity (preferred vs. nonpreferred directions) in 

100ms windows that slide every 10ms.  This direction specificity on GO trials (blue 

ticks) shows that the correct direction was encoded between GO cue and port exit.  On 

correct STOP trials, the correct direction was encoded after the rat exited the nose-port as 

can be observed by the red tick marks.  On STOP trials, activity became directionally 

significant after the onset of the STOP cue and before the SCRT suggesting that these 

neurons can have a causal impact on response inhibition during STOP trials. 
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Figure 3.1: Direction and trial type encoding of increasing-type lOFC neurons.  A-B) 

Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for all 

lOFC neurons that fired more strongly during the ‘response epoch’ (port exit to well 

entry) relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time 

necessary to inhibit a response (stop change reaction time; SCRT) is defined as the 

difference between STOP trial movement time and GO trial movement time.  SCRT is 

marked as the vertical dotted line labeled ‘SCRT’ at 205ms.  ‘GO cue’ and its associated 

vertical dashed line indicates the average onset of the GO cue as measured by the latency 

from port exit (-339ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and 

dashed lines refer to errant trials (incorrect direction).  Due to the heterogeneous direction 

specificity of individual cells, each cell was characterized as having a preferred direction 

and a nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

denote the average movement time (well entry) during GO trials (blue arrowhead = 

558ms) and STOP trials (red arrowhead = 763ms).  GO cue, SCRT, and movement times 

(arrowheads) are variable values based on the behavior of the animals in the analyzed 

sessions.  These values (except SCRT) are estimates with variance and cannot be treated 

as constants relative to port exit.  C) Stop indices for preferred (left) and nonpreferred 

(right) directions.  Stop indices are calculated by taking the activity during the response 

epoch from STOP trials, subtracting activity during the response epoch on GO trials, and 

dividing it by the sum of the two ((STOP-GO/(STOP+GO)) in each direction for every 

cell.  Significant shifts from zero (as calculated by Wilcoxon) denote that neuronal 

activity is significantly different between STOP and GO trials in a given direction.  D) 

Directional index distributions defined as activity during the response epoch in the 

preferred direction minus activity during the response epoch in the nonpreferred direction 

divided by the sum ((preferred-nonpreferred)/(preferred+nonpreferred)) in every cell.  

These calculations are specific to GO trials (left), STOP trials (middle), and STOP errors 

(right).  Significant shifts from zero (as calculated by Wilcoxon) signify that activity is 

greater in one direction than the other at the neuronal level.  Asterisks in C and D indicate 

that two distributions are significantly different via Wilcoxon.   
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Stop index: Despite temporal differences in significant direction encoding 

between STOP and GO trials, activity throughout the response was not different between 

STOP and GO trials in either the preferred or nonpreferred direction (Fig. 3.1C left, right; 

Wilcoxon; ps > 0.35) and the two distributions were not different from one another (Fig. 

3.1C left vs. right; Wilcoxon; p = 0.80).   

Directional index: Although I observed behavioral evidence of response conflict 

on STOP trials and directional signals took longer to develop, the strength of the 

directional signal during the entire response epoch was not significantly weaker on STOP 

relative to GO trials.  This is illustrated in figure 3.1C left and middle which plot the 

distributions of directional indices for both correct GO and STOP trials during the 

response epoch.  The same analysis performed on data from mDS increasing-type 

neurons illustrated weaker directional signals on STOP trials (Fig 2.1D).  In lOFC, the 

directional index distribution for both GO and STOP trial types was shifted significantly 

above zero (Fig. 3.1D left, middle; Wilcoxon; ps < 0.01) but there was no difference 

between the two distributions (Fig. 3.1D left vs. middle; Wilcoxon; p = 0.84), suggesting 

that even though the directional signal took longer to develop under STOP trials, it was 

resolved before the completion of the response as is evident in the neural activity aligned 

to well entry in figure 3.1B.  On STOP error trials, the distribution of directional indices 

was significantly lower compared to both correct STOP trials (Fig. 3.1D middle vs. right; 

Wilcoxon; p < 0.05) and correct GO trials (Fig. 3.1D left vs. right; Wilcoxon; p < 0.05).  

Therefore, on STOP error trials (Fig. 3.1A,B; dashed lines), the directional signal during 

the response epoch is reduced implying that adequate encoding of direction in lOFC is 

necessary for correct performance. 
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Despite the bias in lOFC firing toward one response direction over another, the 

incorrect direction is never miscoded on STOP trials (Fig. 3.1A) as it was in mDS (Fig. 

2.1A; pink ticks).  Due to this absence, firing in lOFC increasing-type neurons was able 

to discern between the incorrect and newly correct response direction on STOP trials 

within the behavioral time window necessary for the brain to recruit inhibitory machinery 

(SCRT).  This is intriguing because it suggests that in addition to “inhibitory signaling” 

(Fig. 1.3C), “directional signal” categorized neurons (Fig. 1.3A) can be also be important 

for response inhibition because it is necessary to resolve the response conflict, an idea 

never previously proposed.   

Multiple regression analysis: Increasing-type lOFC neurons appear to be highly 

directional regardless of trial type but single cell variability is not captured when 

averaging neurons over population histograms.  Therefore to determine if neuronal firing 

correlates with movement speed, direction, and/or type of trial at the single-cell level, I 

performed the multiple regression procedure identical to the one used in the mDS 

analysis.  The size of the top circle in figure 3.2 indicates the proportion of increasing-

type lOFC cells that were significantly modulated by the direction of the response when 

variance for movement time and trial type parameters was accounted for (partial r
2
).  

Thirty seven percent of increasing-type neurons (n = 78) were significantly modulated by 

direction (Fig. 3.2; direction) and of these 78 neurons, 48 β-values of the direction 

parameter were negative (greater firing for the ipsilateral direction) whereas 30 were 

positive (binomial sign test; p = 0.05).  Forty-nine cells (23%) were significantly 

modulated by movement time (Fig. 3.2; movement time).  Of these 49, equal numbers 

showed positive and negative β-values for the movement time parameter (20 vs. 29; 
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binomial sign test; p = 0.25).  In 26 neurons, both the direction and movement speed 

parameters showed significant partial r
2
 values (Fig. 3.2; orange + brown).  Thus, 

consistent with the population analysis described in the previous sub-section, lOFC 

increasing-type neurons encoded both response direction and movement speed.  
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Clearly signals in lOFC are related to motor output and response direction.  

However, from these results it appears that lOFC does not encode a pure “inhibitory 

signal” which one might predict to be independent of response direction (138).  At the 

single cell level, 30 neurons (14%) showed significant partial r
2
 values in the regression 

procedure for the trial type variable (Fig. 3.2; trial type), but only 11 of those neurons, 

5% of the population of increasing-type neurons, showed a significant partial r
2
 

independent of significant modulation by direction and movement speed factors; a 

number not significantly different from chance (χ
2
 = 0.03.; p = 0.86).  The main caveat to 

these results is that the conclusions are based on activity throughout the entirety of the 

movement (response epoch).  mDS neurons, direct projection recipients of lOFC, are 

closer to the motor system and can arbitrate between the two response directions, but it 

did not have the capability to correct response directions prior to the SCRT.  lOFC 

neurons provide this temporally precise signal. 

Modulation of conflict by identity of the previous trial: Conflict adaptation, the 

phenomenon defined as the readiness to resolve conflict under recent conflicting 

conditions, has been found in a number of brain regions including anterior cingulate 

cortex (67), dorsolateral prefrontal cortex (139), and orbitofrontal cortex (69), all of 

which are cortical regions.  Because of this, minimal modulation based on the previous 

trial was expected in the sub-cortical mDS.  However, lOFC may provide a neural 

substrate for conflict adaptation.   
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Figure 3.3:  Impact on neuronal encoding based on conflict induced by the previous 

trial in increasing-type lOFC neurons.  A) Population histogram of lOFC neurons that 

increased significantly above baseline.  Activity is aligned to port exit.  Blue lines refer to 

all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  Orange lines 

indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  Calculation of 

direction preference remained unchanged from figure 3.1.  Tick marks represent 100ms 

epochs where the preferred direction was significantly different from the nonpreferred 

direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials (orange).  

Although each tick mark signifies statistical difference for a 100ms epoch, tick width is 

10ms for the purpose of presentational detail.  Arrowheads indicate average movement 

times (port exit to well entry) for GO trials (blue; 570ms), gS trials (red; 804ms), and sS 

trials (770ms).  Note the longer movement times for gS trials relative to sS trials 

consistent with reduced preparation for conflict.  Vertical dashed lines mark the times of 

the stop change reaction time (SCRT; 205ms) and the average GO cue onset as measured 

as the latency from port exit (GO cue; -339ms) for the analyzed sessions.  B) Indices 

compare the difference in firing between the three trial types presented in A.  Leftmost 

distribution calculates the differences between gS and GO trials for each cell.  The 

middle distribution marks the difference between sS and GO trials.  Rightmost 

distribution computes the difference between gS and sS trials.  C) Directional index 

distributions calculate the difference between the preferred and nonpreferred direction in 

each neuron during GO trials (left), gS trials (middle), and sS trials (right).  D)  

Population histogram of increasing-type mDS neurons is aligned to port exit.  All lines 

represent accurate GO trials that either followed a GO trial (‘gG’; dark blue) or followed 

a STOP trial (‘sG’; light blue).  Thick lines refer to the preferred direction and thin lines 

refer to the nonpreferred direction.  Tick marks denote the 100ms epochs where the 

preferred direction significantly differed from the nonpreferred direction (t-test; p < 0.01) 

during gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the average 

movement times for gG trials (dark blue; 568ms) and sG trials (light blue; 580ms).  E) 

Distribution calculates the difference between firing on gG versus sG trials.  F) 

Directional index distributions calculate the difference between the preferred and 

nonpreferred direction in each neuron during gG trials (left) and sG trials (right).  

Activity for all distributions was taken during the response epoch and significant shifts 

from zero are determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct 

comparison between two distributions is significant (Wilcoxon; p < 0.05 corrected for 

multiple comparisons). 
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So far I have shown that directional signals on STOP trials are fairly resilient to 

the competition between two conflicting responses through the entirety of the response, 

demonstrating the lOFC is accurately signaling the correct direction during response 

inhibition.  Here, I ask if directional tuning in lOFC might actually be enhanced during 

conflict adaption, when executive control is more engaged due to trial sequence.  To 

address this issue, I plotted average firing of increasing-type cells broken down by STOP 

trials that were preceded by either a GO (“gS”; Fig. 3.3A; red lines) or a STOP (“sS”; 

Fig. 3.3A; orange lines) trial.  Intriguingly, direction signals became significantly distinct 

prior to the SCRT only on sS trials (Fig. 3.3A; orange ticks).  When GO trials, gS trials, 

and sS trials were compared directly, none of the average distributions were significantly 

shifted or different from one another (Fig. 3.3B; Wilcoxon; ps > 0.10).  Quite strikingly 

however, direction signals on sS trials were larger than on gS trials.  This observation is 

statistically validated in figure 3.3C which shows that the distribution of direction indices 

was greater on sS trials relative to gS trials (Fig. 3.3C middle vs. right; Wilcoxon; p < 

0.01) and relative to directional signals on all correct GO trials (Fig. 3.3C left vs. right; 

Wilcoxon; p < 0.05).  

Importantly, this effect was dependent on the current trial being a STOP trial, 

suggesting that directional signals were enhanced only when it was needed to inhibit and 

redirect behavior.  This is illustrated in figure 3.3D-F which examines the impact of the 

previous trial on GO trials.  Neither direct gG versus sG comparisons nor directional 

signals on correct GO trials were significantly modulated by the identity of the previous 

trial (Fig 3.3E; Wilcoxon; p = 0.85; Fig 3.3F left vs. right; Wilcoxon; p = 0.36).  



70 
 

Summary: I found that activity in lOFC increasing-type neurons does not appear 

to carry a pure “inhibitory signal.”  Population firing in lOFC was not significantly 

stronger under STOP trials, nor were there a preponderance of single neurons that fired 

significantly more strongly on STOP over GO trials.  Instead I found that lOFC neurons 

exhibited directional tuning as previously reported (62, 63, 65), and that directional 

selectivity was enhanced by the need to suppress and redirect behavior during sequences 

of increased conflict resolution. This interpretation is broadly consistent with recent work 

in monkeys suggesting that OFC is involved in reconciling cognitive signals during 

conflict adaptation (69).   

All of this suggests that OFC is more involved in executive functions that control 

and enhance response selectivity when unwanted movements are suppressed and 

redirected.  I suspect that this signal is critical for resolving conflict observed in neural 

signals downstream of lOFC, such as mDS (1).  Dysfunction of these correlates can 

explain why interference of OFC function impairs response inhibition.  Although the 

most obvious interpretation is that OFC provides some sort of inhibition signal, my 

results suggest that lOFC plays an important role in conflict induced executive control 

(69).  Such a function might be critical for performance on several tasks that require 

inhibition and are impaired after OFC lesions, including reversal learning (140), delay 

discounting (124), extinction (141), delayed alternation (142) and devaluation (143).  

 

Decreasing-type cells 

Population Activity: Of the 548 neurons recorded in lOFC, 131 (24%) fired 

significantly less during the response epoch compared to baseline.   
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Figure 3.4: Direction and trial type encoding of decreasing-type lOFC neurons.  A-B) 

Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for all 

lOFC neurons that fired less strongly during the ‘response epoch’ (port exit to well entry) 

relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time necessary to 

inhibit a response (stop change reaction time; SCRT) is defined as the difference between 

STOP trial movement time and GO trial movement time.  SCRT is marked as the vertical 

dotted line labeled ‘SCRT’ at 204ms.  ‘GO cue’ and its associated vertical dashed line 

indicates the average onset of the GO cue as measured by the latency from port exit (-

341ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and dashed lines 

refer to errant trials (incorrect direction).  Due to the heterogeneous direction specificity 

of individual cells, each cell was characterized as having a preferred direction and a 

nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

denote the average movement time (well entry) during GO trials (blue arrowhead = 

569ms) and STOP trials (red arrowhead = 773ms).  GO cue, SCRT, and movement times 

(arrowheads) are variable values based on the behavior of the animals in the analyzed 

sessions.  These values (except SCRT) are estimates with variance and cannot be treated 

as constants relative to port exit.  C) Stop indices for preferred (left) and nonpreferred 

(right) directions.  Stop indices are calculated by taking the activity during the response 

epoch from STOP trials, subtracting activity during the response epoch on GO trials, and 

dividing it by the sum of the two ((STOP-GO/(STOP+GO)) in each direction for every 

cell.  Significant shifts from zero (as calculated by Wilcoxon) denote that neuronal 

activity is significantly different between STOP and GO trials in a given direction.  D) 

Directional index distributions defined as activity during the response epoch in the 

preferred direction minus activity during the response epoch in the nonpreferred direction 

divided by the sum ((preferred-nonpreferred)/(preferred+nonpreferred)) in every cell.  

These calculations are specific to GO trials (left), STOP trials (middle), and STOP errors 

(right).  Significant shifts from zero (as calculated by Wilcoxon) signify that activity is 

greater in one direction than the other at the neuronal level.  Asterisks in C and D indicate 

that two distributions are significantly different via Wilcoxon.   
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Population firing for decreasing-type neurons exhibited subtle modulation by 

response direction (i.e. preferred vs. nonpreferred) with little modulation by trial type 

(Fig. 3.4A,B; solid lines).  The stop index was not significantly shifted in either the 

direction.  The minimal directional effect is apparent when observing the tick marks in 

figure 3.4A which represent the significant difference (t-test; p < 0.01) between the 

preferred and nonpreferred directions during sliding 100ms epochs for correct GO trials 

(blue ticks) and correct STOP trials (red ticks).  Consistent with this observation, 

although directional index distributions for both preferred and nonpreferred directions 

are significantly shifted above zero for correct GO and STOP trial types (Fig. 3.4D left, 

middle; Wilcoxon; ps < 0.01), they are not significantly different from one another (Fig. 

3.4D left vs. middle; Wilcoxon; p = 0.84).  Thus, decreasing-type lOFC neurons appear to 

be sensitive to the direction of the action throughout the response regardless of trial type.  

To further support this assertion, I analyzed errant STOP trials and found that activity 

during these trials was not modulated by response direction as indicated by a non-

significant shift in the directional index distribution (Fig. 3.4D right; Wilcoxon; p = 

0.59).  Importantly, the direction distribution for STOP errors was significantly reduced 

relative to correct STOP trials (Fig. 3.4D middle vs. right; Wilcoxon; p < 0.05).  The lack 

of directionality on STOP errors suggests that when animals fail to inhibit and redirect 

their response, the activity involved in directional responding does not reliably 

distinguish between the two actions.   

Multiple regression analysis: In the multiple regression analysis, 31 neurons 

(24%) were significantly modulated by movement time (Fig. 3.5; movement time).  

Significantly more of these neurons (n = 25) showed positive β-values (i.e. greater firing 
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for slower movement) than negative β-values (n = 6; binomial sign test; p < 0.01).  

Twenty eight neurons (15%) were modulated by the direction parameter (Fig. 3.5; 

direction) and equal numbers exhibited positive and negative β-values (10 vs. 18; 

binomial sign test; p = 0.09).  Lastly, trial type yielded only five neurons (4%) that 

exhibited significant partial r
2
s (Fig. 3.5; trial type).  Thus, like lOFC increasing-type 

neurons, activity of decreasing-type cells was closely tied the direction and speed of 

behavior, rather than a direction unbiased signal to inhibit and redirect an action. 

  



75 
 

  



76 
 

Modulation of conflict by identity of the previous trial: I sought to determine 

whether direction signals in decreasing-type neurons, like increasing-type neurons, could 

provide a neural substrate for conflict adaptation.  To accomplish this, I replotted 

decreasing-type lOFC cells under the same conventions as figure 3.3.  Direct 

comparisons between GO trials, sS trials, and gS trials yielded no significant modulation 

by the type of trial (Fig. 3.6B; Wilcoxon; ps > 0.08).  Intriguingly, significant directional 

signaling on gS trials was sparse (Fig. 3.6A; red ticks) and nonexistent on sS trials (Fig. 

3.6A; no orange ticks).  However, when direction indices were calculated, each type of 

trial featured significant positive shifts (Fig. 3.6C; Wilcoxon; p < 0.05) and, whereas 

increasing-type lOFC cells showed increased direction strength on sS trials, decreasing-

type neurons show decreased direction strength (Fig. 3.6C left vs. right; Wilcoxon; p < 

0.05; Fig. 3.6C middle vs. right; Wilcoxon; p < 0.01).  Therefore, although 

counterintuitive, the direction of the response was reduced under circumstances where the 

animal was better prepared to inhibit a response.  The identity of the previous trial did not 

impact activity on current GO trials, however.  Figures 3.6D-F shows the lack of 

significant shift when gG and sG trials were compared directly (Fig. 3.6E; Wilcoxon; p = 

0.18) and figure 3.6F demonstrates the lack of directional difference between the two trial 

types (Wilcoxon; p = 0.41). 
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Figure 3.6:  Impact on neuronal encoding based on conflict induced by the previous 

trial in decreasing-type lOFC neurons.  A) Population histogram of lOFC neurons that 

decreased significantly below baseline.  Activity is aligned to port exit.  Blue lines refer 

to all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  Orange 

lines indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  Calculation of 

direction preference remained unchanged from figure 3.4.  Tick marks represent 100ms 

epochs where the preferred direction was significantly different from the nonpreferred 

direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials (orange).  

Although each tick mark signifies statistical difference for a 100ms epoch, tick width is 

10ms for the purpose of presentational detail.  Arrowheads indicate average movement 

times (port exit to well entry) for GO trials (blue; 608ms), gS trials (red; 791ms), and sS 

trials (756ms).  Note the longer movement times for gS trials relative to sS trials 

consistent with reduced preparation for conflict.  Vertical dashed lines mark the times of 

the stop change reaction time (SCRT; 204ms) and the average GO cue onset as measured 

as the latency from port exit (GO cue; -341ms) for the analyzed sessions.  B) Indices 

compare the difference in firing between the three trial types presented in A.  Leftmost 

distribution calculates the differences between gS and GO trials for each cell.  The 

middle distribution marks the difference between sS and GO trials.  Rightmost 

distribution computes the difference between gS and sS trials.  C) Directional index 

distributions calculate the difference between the preferred and nonpreferred direction in 

each neuron during GO trials (left), gS trials (middle), and sS trials (right).  D)  

Population histogram of increasing-type mDS neurons is aligned to port exit.  All lines 

represent accurate GO trials that either followed a GO trial (‘gG’; dark blue) or followed 

a STOP trial (‘sG’; light blue).  Thick lines refer to the preferred direction and thin lines 

refer to the nonpreferred direction.  Tick marks denote the 100ms epochs where the 

preferred direction significantly differed from the nonpreferred direction (t-test; p < 0.01) 

during gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the average 

movement times for gG trials (dark blue; 564ms) and sG trials (light blue; 579ms).  E) 

Distribution calculates the difference between firing on gG versus sG trials.  F) 

Directional index distributions calculate the difference between the preferred and 

nonpreferred direction in each neuron during gG trials (left) and sG trials (right).  

Activity for all distributions was taken during the response epoch and significant shifts 

from zero are determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct 

comparison between two distributions is significant (Wilcoxon; p < 0.05 corrected for 

multiple comparisons). 
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Summary: Decreasing-type neurons tend to be most sensitive to the speed of 

responding as well as the direction of the response similar to its increasing-type 

counterparts.  However, weak direction signaling across all trial types and the dearth of 

trial type specific neurons all but excludes this group of cells from playing a functional 

role in response inhibition.  Instead, decreasing-type lOFC neurons appear to play a 

complimentary role to increasing-type cells by providing a redundant refining signal. 

 

Disparate waveform characteristics as a means to define increasing- and decreasing 

populations in lOFC 

Many OFC recording studies do not independently analyze decreasing- and 

increasing-type neurons.  Some papers lump the two types together, some ignore 

decreasing-type cells, and some do not select cells based on differentiation from baseline 

at all.  I believe that other approaches can lead to skewed perspectives on the function of 

a brain region.  Theoretically a decreasing-type lOFC neuron has the capability to provide 

the identical code to recipient structures as increasing-type neurons given an intermediary 

inhibitory (GABAergic) neuron, an idea posited in (144).  However, given the necessity 

for speed in my task, an additional chemical synapse may limit the usefulness of the 

decreasing-type population in downstream structures including mDS.  Therefore, I 

measured the spiking properties separately for increasing- and decreasing-type lOFC 

populations in figures 3.7A-B.  Remarkably, despite different firing valence from 

baseline, the average inter-spike interval, baseline activity, and peak width between 

increasing- and decreasing-types varied very little.  Within populations, the significance 

of a cell in the regression procedure appeared to have minimal impact on its 
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electrophysiological properties.  It is worth reporting that increasing- and decreasing-type 

lOFC neurons were found to be spatially heterogeneous within the recording tracts, a 

finding consistent with previous recordings in lOFC (62, 145). 
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Chapter Discussion 

Research has suggested that orbitofrontal cortex (OFC) acts as a frontal area 

integral for inhibitory control.  Dysfunction in OFC has been critically implicated in 

many disorders that impact inhibitory control including addiction, Tourette syndrome, 

obsessive compulsive disorder (OCD), and attention deficit hyperactivity disorder (3-21, 

146, 147).  In fact, recent work has demonstrated that optogenetic stimulation of lateral 

OFC and its terminals in striatum can restore normal levels of response inhibition in a 

mouse model of compulsive behavior (148) and pharmacological manipulation of this 

brain area in rats has been suggested to disrupt stopping with striking parallels to 

observations made in inferior frontal cortex in humans (149).  Additionally, reductions of 

OFC activity have been observed when OCD-like symptoms were provoked 

experimentally (150). 

 Although this previous work suggests that OFC provides a type of inhibitory 

signal that can aid in response suppression, others have strongly refuted this theory 

arguing that rats with impaired OFC function can still perform a number of tasks that 

require response inhibition.  Furthermore, a barrage of single unit studies over the past 

few years have suggested that neural activity in OFC better reflects expectations about 

future outcomes critical for reward-guided decision-making tasks that do not necessarily 

involve response inhibition (151-155).  Decreased function after OFC lesions in tasks 

such as reversal and reinforcer devaluation can be parsimoniously explained by reward 

expectancy encoding rather than a decrement in the capacity to inhibit behavior. 

Considering the debate on OFC’s role in response inhibition, it comes as a 

surprise that no one has recorded from OFC in a task that requires response inhibition 
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independent from manipulations of expected outcomes.  I chose to examine neural 

correlates during performance of a stop signal task for several reasons.  First, stop signal 

performance is disrupted in a number of psychiatric disorders that are thought to impact 

function of the OFC circuit (5, 6, 8, 18, 146, 147).  Second, imaging studies clearly 

suggest higher firing on stop relative to go trials in OFC in several tasks including ones 

that require suppression of specific response types (e.g. left/right)(18, 126, 130).  The 

third reason I chose a stop signal task is that pharmacological studies suggest that OFC is 

critical for normal stop signal performance.  Lesions disrupt performance on stop signal 

tasks and administration of atomoxetine (ADHD drug) into OFC improves stop signal 

performance (61).  Although these studies do not “require” rats to redirect movement on 

STOP trials, rats do redirect their ongoing movement away from the habitual response 

directly to the food cup to receive reward.  From these studies it is clear that during 

performance of stop signal tasks, OFC is critical for inhibition of movement on stop trials 

and that when subjects successfully suppress behavior, activity in OFC appears to be 

elevated. 

The finding that BOLD signal is increased in OFC during response suppression 

can be interpreted in several different ways. On one hand, increased BOLD signal on stop 

relative to go trials might arise from neurons that signal the need for response inhibition.  

That is, single neurons in OFC elevate firing whenever subjects are required to suppress 

an ongoing movement.  On the other hand, increased BOLD signal may arise from 

neurons active in conjunction with planning different actions.  Similar to the argument 

originally posited by Nakamura and colleagues, on stop trials, there is simultaneous 

activation of neurons signaling the movement that needs to be stopped and the one 
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necessary for accurate performance (156).  Thus, the net activity of this population of 

neurons might increase during response inhibition because neurons that signal for 

opposing actions will be active simultaneously.   

My results are more consistent with the second explanation.  Overall I found that 

activity in lOFC does not appear to carry a pure “inhibitory signal.”  Population firing in 

lOFC was not significantly stronger under STOP trials, nor were there a preponderance of 

single neurons that fired significantly more strongly on STOP over GO trials.  Instead I 

found that lOFC neurons exhibited directional tuning as previously reported (62, 63, 65), 

and that directional selectivity was enhanced by the need to suppress and redirect 

behavior, especially during sequences of increased conflict resolution.  This interpretation 

is broadly consistent with recent work in monkeys suggesting that OFC is involved in 

reconciling cognitive signals during conflict adaptation (69). 

All of this suggests that OFC is more involved in executive functions that control 

and enhance response selectivity when unwanted movements are suppressed and 

redirected.  I suspect that this signal is critical for resolving conflict observed in neural 

signals downstream of OFC, such as mDS (1).  Dysfunction of these correlates can 

explain why interference of OFC function impairs response inhibition.  Although the 

most obvious interpretation is that OFC provides some sort of inhibition signal, my 

results suggest that OFC plays an important role in conflict induced executive control 

(69).  Such a function might be critical for performance on several tasks that require 

inhibition and are impaired after OFC lesions, including reversal learning (140), delay 

discounting (124), extinction (141), delayed alternation (142) and reinforcer devaluation 

(143).   
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Chapter 7: Medial prefrontal cortex and its role in conflict monitoring 

Experimental work has reported that interference of medial prefrontal cortex 

(mPFC) impairs performance on response inhibition tasks as measured by stop trial 

accuracy and premature responding during reaction time tasks (61, 157).  Taken together, 

this work points to mPFC as a critical player during response inhibition and suggests that 

reduced prefrontal activation/function in disorders such as ADHD drive behavioral 

impairments (158).  However, the current literature possesses no single unit studies that 

probe the role of mPFC in response inhibition via the stop signal task.  With the above 

data indicating that lOFC is a brain region responsible for timely signaling of the need to 

inhibit an action, I explored mPFC to determine its role in behavioral restraint.   

The mPFC is a region in both humans and rats that functions as an executive 

control center important for decision-making, learning, and memory (158) that is 

disrupted in many psychiatric disorders, including ADHD (159).  The circuit comprising 

the mPFC and mDS is important for premature/uncontrolled behavior as evidenced by a 

recent study where this network was disconnected in rats performing the 5-choice-serial-

reaction-time task.  After this perturbation, rats showed a persistent deficit characterized 

by a reduction in accuracy and speed in responding to a visual stimulus (160).  More 

specifically, inactivating mPFC via the GABA agonist muscimol has demonstrated that 

mPFC is crucial for inhibiting an already initiated response during the stop signal task 

(61). 

Despite suggestive evidence for the involvement of mPFC in successful inhibitory 

behavior, not all research has agreed with this notion (125).  This accumulation of mPFC 

data propounds the necessity of a single cell recording study in rats that are actively 
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attempting to suppress their actions.  To fill this void, and further pursue the frontal locus 

of response inhibition, I recorded from 636 mPFC neurons from eleven rats during 

performance of the stop signal task (recording locations in figure 4.7).  Briefly, I found 

that mPFC neurons are highly directional, the correct direction on STOP trials is not 

discerned prior to the SCRT, and the overall directional strength is not different between 

STOP and GO trials.  These characteristics preclude mPFC neurons from contributing to 

prompt response inhibition in the context of my task.  However, mPFC is sensitive to the 

degree of conflict in the immediate past, providing a “monitor” that tracks the degree of 

conflict recently experienced.  This is quite useful for a system since behavior is better 

controlled under difficult situations when preparation is high. 

Increasing-type Cells 

Population Activity: Of the 636 mPFC cells I recorded, 19% (n = 121) increased 

their firing during the response epoch (port exit until well entry) compared to baseline.  

As with the previously analyzed brain areas, mPFC is highly directional, firing more 

strongly for responses in one direction (Fig. 4.1A,B; thick lines; preferred) over the other 

(thin lines; nonpreferred).  Activity appears higher for STOP relative to GO trials for 

responses made in the preferred direction (Fig. 4.1A, B; thick red vs. thick blue).   
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Figure 4.1: Direction and trial type encoding of increasing-type mPFC neurons. A-B) 

Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for all 

mPFC neurons that fired more strongly during the ‘response epoch’ (port exit to well 

entry) relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time 

necessary to inhibit a response (stop change reaction time; SCRT) is defined as the 

difference between STOP trial movement time and GO trial movement time.  SCRT is 

marked as the vertical dotted line labeled ‘SCRT’ at 121ms.  ‘GO cue’ and its associated 

vertical dashed line indicates the average onset of the GO cue as measured by the latency 

from port exit (-423ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and 

dashed lines refer to errant trials (incorrect direction).  Due to the heterogeneous direction 

specificity of individual cells, each cell was characterized as having a preferred direction 

and a nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

denote the average movement time (well entry) during GO trials (blue arrowhead = 

610ms) and STOP trials (red arrowhead = 729ms).  GO cue, SCRT, and movement times 

(arrowheads) are variable values based on the behavior of the animals in the analyzed 

sessions.  These values (except SCRT) are estimates with variance and cannot be treated 

as constants relative to port exit.  C) Stop indices for preferred (left) and nonpreferred 

(right) directions.  Stop indices are calculated by taking the activity during the response 

epoch from STOP trials, subtracting activity during the response epoch on GO trials, and 

dividing it by the sum of the two ((STOP-GO/(STOP+GO)) in each direction for every 

cell.  Significant shifts from zero (as calculated by Wilcoxon) denote that neuronal 

activity is significantly different between STOP and GO trials in a given direction.  D) 

Directional index distributions defined as activity during the response epoch in the 

preferred direction minus activity during the response epoch in the nonpreferred direction 

divided by the sum ((preferred-nonpreferred)/(preferred+nonpreferred)) in every cell.  

These calculations are specific to GO trials (left), STOP trials (middle), and STOP errors 

(right).  Significant shifts from zero (as calculated by Wilcoxon) signify that activity is 

greater in one direction than the other at the neuronal level.  Asterisks in C and D indicate 

that two distributions are significantly different via Wilcoxon.   
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Stop index: To quantify differences between STOP and GO trials, I computed a 

stop index defined as the difference between STOP and GO trial activity (STOP-

GO/STOP+GO) in both directions for each neuron.  The distributions of these indices for 

preferred and nonpreferred directions are plotted in figure 4.1C. In these stop index plots, 

a shift in the positive direction indicates that neuronal firing was stronger for STOP 

relative to GO trials than the opposite effect (stronger firing for GO relative to STOP 

trials).  In the preferred direction and nonpreferred direction, the stop index was not 

significantly shifted from zero (Fig. 4.1C left; Wilcoxon; p = 0.90; Fig. 4.1C right; 

Wilcoxon; p = 0.84) and were not significantly different from one another (Fig. 4.1C left 

vs. right; Wilcoxon; p = 0.42).   

Directional index: As described previously, firing of neurons in mPFC is highly 

directional.  To further assess the directional encoding for each trial type I computed a 

directional index during the response epoch independently for STOP and GO trials.  In 

increasing-type mPFC cells, directional index distributions were shifted significantly 

above zero during both GO and STOP trials (Fig. 4.1D left, middle) but there was no 

significant difference between directionality of GO and STOP trials (Fig. 4.1D left vs. 

middle; Wilcoxon; p = 0.50). 

Directional responding implies that mPFC is involved in executive functions 

pertaining to the spatial location of the response.  If directional signals in mPFC are 

important for directing behavior, they should be attenuated on errors.  Inconsistent with 

this hypothesis, the distribution of direction indices was not significantly different on 

STOP errors compared to correct STOP trials, suggesting that the lack of substantial 

directional selectivity did not lead to errant responding.  Despite being the same strength 
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as correct STOP directional signals, the STOP error directional index distribution was 

still significantly positive suggesting that activity in mPFC better reflects the nature of 

the movement, not the sensory stimulus that triggered it.   

Lastly, the timing of the directional signaling in mPFC neurons further illuminates 

the function of these cells.  As a strategy to further assess this direction encoding as a 

function of time, I again used a sliding window analysis that, for STOP and GO trials 

independently, compares activity between the preferred and nonpreferred directions in 

100ms epochs which slid 10ms after each iteration.  Activity between the two directions 

on GO trials became significantly different (t-test; p < 0.01) around the time of port exit 

(Fig. 4.1A; blue ticks).  Direction differences on STOP trials (Fig. 4.1A; red ticks) did not 

become significantly different until after the SCRT which precludes these neurons from 

being used to inhibit/redirect ongoing actions.   

Multiple regression analysis: To complement the analyses above and the larger 

population effects, I have displayed the results of the multiple regression analysis done on 

each increasing-type cell in figure 4.2.  The model used was designed to determine if 

neuronal firing correlates significantly and uniquely with movement speed, direction, 

and/or type of trial at the single cell level.  The size of the top circle in figure 4.2 

indicates the proportion of increasing-type mPFC cells that were significantly modulated 

by the direction of the response when variance for the other two parameters was factored 

out (partial r
2
).  Forty five neurons (37%) were significantly modulated by direction and 

of these 45 neurons, 21 β-values of the direction parameter were positive (greater firing 

for the contralateral direction) whereas 24 were negative, values not different from 50/50 

split (binomial sign test; p = 0.76).  Thirty seven neurons (31%) were significantly and 
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uniquely correlated with movement time and of these 37, the number of negative β-values 

(greater firing for faster movement speeds) differed significantly from the number of 

positive β-values (Fig. 4.2; movement time; 9 vs. 28; binomial sign test; p < 0.01).  A 

substantial portion of the aforementioned neurons exhibited significant partial r
2
 values 

for both the direction and movement time parameters (Fig. 4.2; orange + brown; n = 16) 

highlighting the role of mPFC in functions regarding spatial response and movement 

latency.  A small proportion of increasing-type mPFC neurons featured significant partial 

r
2
 values for the trial type (STOP vs. GO) parameter (Fig. 4.2; trial type; n = 13; 11%).  

Of these 13 neurons, equal numbers showed higher firing for STOP trials over GO trials 

and vice versa (binomial sign test; p = 0.58).    
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Modulation of conflict by identity of previous trial: Even though increasing-

type mPFC neurons do not appear to serve a role in active inhibitory restraint, there is 

reason to believe that activity in mPFC may play a role in conflict adaptation.  mPFC and 

neighboring structures (anterior cingulate and lOFC) have been shown to be sensitive to 

choices on trials in the recent past (66-68, 161, 162), therefore I asked whether mPFC 

was modulated by the added conflict induced by the identity of the previous trial.  

Therefore, increasing-type mPFC neurons may play a role in monitoring conflict to 

broadly increase preparedness for flexible response inhibition by aggregating current and 

past conflict history. 
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Figure 4.3:  Impact on neuronal encoding based on conflict induced by the previous 

trial in increasing-type mPFC neurons.  A) Population histogram of mPFC neurons 

that increased significantly above baseline.  Activity is aligned to port exit.  Blue lines 

refer to all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  

Orange lines indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  

Calculation of direction preference remained unchanged from figure 4.1.  Tick marks 

represent 100ms epochs where the preferred direction was significantly different from the 

nonpreferred direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials 

(orange).  Although each tick mark signifies statistical difference for a 100ms epoch, tick 

width is 10ms for the purpose of presentational detail.  Arrowheads indicate average 

movement times (port exit to well entry) for GO trials (blue; 582ms), gS trials (red; 

697ms), and sS trials (698ms).  Vertical dashed lines mark the times of the stop change 

reaction time (SCRT; 119ms) and the average GO cue onset as measured as the latency 

from port exit (GO cue; -423ms) for the analyzed sessions.  B) Indices compare the 

difference in firing between the three trial types presented in A.  Leftmost distribution 

calculates the differences between gS and GO trials for each cell.  The middle 

distribution marks the difference between sS and GO trials.  Rightmost distribution 

computes the difference between gS and sS trials.  C) Directional index distributions 

calculate the difference between the preferred and nonpreferred direction in each neuron 

during GO trials (left), gS trials (middle), and sS trials (right).  D)  Population histogram 

of increasing-type mDS neurons is aligned to port exit.  All lines represent accurate GO 

trials that either followed a GO trial (‘gG’; dark blue) or followed a STOP trial (‘sG’; 

light blue).  Thick lines refer to the preferred direction and thin lines refer to the 

nonpreferred direction.  Tick marks denote the 100ms epochs where the preferred 

direction significantly differed from the nonpreferred direction (t-test; p < 0.01) during 

gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the average movement 

times for gG trials (dark blue; 608ms) and sG trials (light blue; 598ms).  E) Distribution 

calculates the difference between firing on gG versus sG trials.  F) Directional index 

distributions calculate the difference between the preferred and nonpreferred direction in 

each neuron during gG trials (left) and sG trials (right).  Activity for all distributions was 

taken during the 1s epoch following port exit and significant shifts from zero are 

determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct comparison between two 

distributions is significant (Wilcoxon; p < 0.05 corrected for multiple comparisons). 
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Figures 4.3A plots average activity on STOP trials when the previous trial was 

either a GO (gS, red) or STOP trial (sS, orange).  For reference, GO (low conflict) trials 

during these sessions are plotted in blue.  Interestingly, mPFC increasing-type neurons 

did not fire differently on STOP trials discriminated by the previous trial type during the 

response epoch.  However, it appears as though activity on gS trials differed from activity 

on sS and GO trials later in the response, therefore I extended the analysis epoch to 1s 

beginning at port exit to include post-response activity.  After this extension, direct firing 

comparisons between trial types showed significant differences for the gS relative to GO 

comparison (Fig. 4.3B left; Wilcoxon; p < 0.01) and the gS relative to sS comparison 

(Fig. 4.3B right; Wilcoxon; p < 0.05).  Interestingly, directional signals do not differ 

between trial types (Fig. 4.3C left vs. middle; Wilcoxon; p = 0.69; Fig. 4.4C left vs. right; 

Wilcoxon; p = 0.74; Fig. 4.4C middle vs. right; Wilcoxon; p = 0.95).   

There was no significant effect for the previous trial impacting activity on current 

GO trials.  That is, the direct comparison distribution between gG and sG trial types was 

not significantly shifted (Fig. 4.3E; Wilcoxon; p = 0.17) and the directional index 

distributions were not different from one another (Fig. 4.3F left vs. right; Wilcoxon; p = 

0.49).  This suggests that dissociable activity on gS relative to sS trials is due to the 

conflict induced by the current and previous trial, not a reflection of the simple identity of 

the preceding trial. 

Ultimately, while mPFC activity is not responsible for the flexible control of 

behavior necessary for timely response inhibition, its firing patterns reflect a temporally 

broader (one to two previous trials) memory of the conflict experienced in the recent past 

and can presumably recruit attentional resources to better control subsequent inhibitory 



97 
 

behavior.  It is important to note that this conflict monitoring signal need not arise during 

the response of a trial.  In fact, this signal is better suited for post-decision activity where 

the degree of conflict endured on the present trial can be integrated with prior conflict to 

inform the system to prepare more carefully for upcoming demands. 

 

Decreasing-type Cells 

Population activity: Decreasing-type cells (39%; n = 249) are plotted in figure 

4.4A,B.  A glimpse at these population histograms reveals a noticeable increase in STOP 

trial activity in the preferred direction (Fig. 4.4A,B; thick red) relative to GO trials in the 

preferred direction (Fig. 4.4A,B; thick blue).  The stop index in the preferred direction 

(Fig. 4.4C left; Wilcoxon; p < 0.01) substantiates this claim via a significantly positive 

shift.  Interestingly, although the stop index was not significantly shifted from zero in the 

nonpreferred direction (Fig. 4.4C right; Wilcoxon; p = 0.34), the nonpreferred stop index 

distribution did differ from the preferred stop index distribution (Fig. 4.4C left vs. right; 

Wilcoxon; p < 0.01).  This demonstrates that firing to response in the preferred direction 

varied by the type of trial.  Interestingly, the directional signal was significantly stronger 

on correct STOP trials relative to GO trials (Fig. 4.4D left vs. middle; Wilcoxon; p < 

0.01) which I have yet to observe in the previously analyzed brain regions.  When 

comparing the directional index on correct STOP trials to incorrect STOP trials, the 

direction strength was significantly weaker when rats made errors (Fig. 4.4D middle vs. 

right; Wilcoxon; p < 0.01).  Particularly in the preferred direction, activity on correct 

STOP trials tended to remain elevated related to correct GO trials even after the response 

had been completed (Fig. 4.4B; thick red vs. thick blue).  Lastly, the direction signal of 
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decreasing-type mPFC cells in temporal space occurred after port exit and prior to the 

SCRT for both GO trials (Fig. 4.4A; blue ticks) and STOP trials (Fig. 4.4A; red ticks).   

 

Figure 4.4: Direction and trial type encoding of decreasing-type mPFC neurons.  A-

B) Average firing rate (spikes/s) over time aligned on port exit (A) and well entry (B) for 

all mPFC neurons that fired less strongly during the ‘response epoch’ (port exit to well 

entry) relative to baseline (1s epoch beginning 2s prior to trial initiation).  The time 

necessary to inhibit a response (stop change reaction time; SCRT) is defined as the 

difference between STOP trial movement time and GO trial movement time.  SCRT is 

marked as the vertical dotted line labeled ‘SCRT’ at 141ms.  ‘GO cue’ and its associated 

vertical dashed line indicates the average onset of the GO cue as measured by the latency 

from port exit (-420ms).  Blue lines refer to GO trials, red lines refer to STOP trials, and 

dashed lines refer to errant trials (incorrect direction).  Due to the heterogeneous direction 

specificity of individual cells, each cell was characterized as having a preferred direction 

and a nonpreferred direction.  This preference was determined by asking which direction 

(contra- or ipsilateral to the recorded hemisphere) elicited the highest firing rate during 

the response epoch for each cell.  Therefore, as defined by the analysis, preferred 

direction (thick lines) is always higher than the nonpreferred direction (thin lines) during 

the response epoch.  Tick marks represent significant p-values in temporal space after 

preferred direction was compared to nonpreferred direction in the population for GO 

trials (blue ticks) and STOP trials (red ticks) in 100ms epochs that slid by 10ms after each 

iteration (t-test; p < 0.01).  Although each tick mark signifies statistical difference for a 

100ms epoch, tick width is 10ms for the purpose of presentational detail.  Arrowheads 

denote the average movement time (well entry) during GO trials (blue arrowhead = 

589ms) and STOP trials (red arrowhead = 730ms).  GO cue, SCRT, and movement times 

(arrowheads) are variable values based on the behavior of the animals in the analyzed 

sessions.  These values (except SCRT) are estimates with variance and cannot be treated 

as constants relative to port exit.  C) Stop indices for preferred (left) and nonpreferred 

(right) directions.  Stop indices are calculated by taking the activity during the 1s epoch 

beginning at port exit from STOP trials, subtracting activity during the 1s epoch 

beginning at port exit on GO trials, and dividing it by the sum of the two ((STOP-

GO/(STOP+GO)) in each direction for every cell.  Significant shifts from zero (as 

calculated by Wilcoxon) denote that neuronal activity is significantly different between 

STOP and GO trials in a given direction.  D) Directional index distributions defined as 

activity during the 1s epoch beginning at port exit in the preferred direction minus 

activity during the 1s epoch beginning at port exit in the nonpreferred direction divided 

by the sum ((preferred-nonpreferred)/(preferred+nonpreferred)) in every cell.  These 

calculations are specific to GO trials (left), STOP trials (middle), and STOP errors (right).  

Significant shifts from zero (as calculated by Wilcoxon) signify that activity is greater in 

one direction than the other at the neuronal level.  Asterisks in C and D indicate that two 

distributions are significantly different via Wilcoxon.   

  



99 
 

  



100 
 

Relative to either lOFC or mDS, the directional signal on STOP trials in 

decreasing-type mPFC neurons is both greater and significantly distinct earlier relative to 

GO trials.  This is an effect not seen in any of the previous populations of cells.  It may 

then be the case that mPFC decreasing-type cells promote the correct direction on STOP 

trials since a comparable directional signal is observed between trials with similar speeds 

and movement mechanics: GO trials and errant STOP trials.  However, a stronger 

directional signal on STOP trials does not fit with the “conflicted directional signal” 

hypothesis (Fig. 1.3B, 1.4B) where this signal should be weaker on STOP trials; instead it 

suggests that mPFC decreasing-type cells enhance directional encoding under conflict.  

Regardless, significant signaling of the correct direction early and strongly on STOP 

trials would provide an important mechanism useful for the flexible ability to alter 

behavior given new information. 

Multiple regression analysis: When I isolated the impact that direction, 

movement time, and trial type had on individual mPFC decreasing-type cells, I first 

found that 54 cells (22%) significantly varied by the direction of the response outside of 

variance accounted for by movement speed or type of trial (Fig. 4.5; direction).  

Approximately equal proportions of these 54 cells had associated positive and negative β-

values (28 vs. 26; binomial sign test; p = 0.89).  The movement time variable generated 

significant partial r
2
 values in 14% (n = 34) of cells (Fig. 4.5; movement time).  

Proportions of positive and negative β-values did not differ (22 vs. 12; binomial sign test; 

p = 0.12).  Only a low number of cells (n = 22; 9%) were statistically modulated by the 

type of trial and the same number of these neurons had associated positive β-values (Fig. 

4.5; trial type; 16 vs. 6; binomial sign test; p = 0.05).  Therefore, a meaningful sub-set of 
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decreasing-type mPFC cells fall within the “inhibitory signal” hypothesis (Fig. 1.3C) 

although the majority of these neurons resemble “directional signal” encoding (Fig. 

1.3A). 
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Modulation of conflict by identity of previous trial: As in figure 4.3A, the 

population histogram for decreasing-type mPFC cells were replotted to distinguish STOP 

trials by the preceding trial type (Fig. 4.6A).  When STOP trials discriminated by the 

previous trial type were compared to both GO trials and to each other (Fig. 4.6B), the 

only significant shift in the distributions came via the sS versus GO trial comparison (Fig. 

4.6B middle; Wilcoxon; p < 0.05).  When analyzing these two types of trials in figure 

4.6A, one notices a peculiar pattern on sS trials (orange lines).  Activity on these trials, in 

the preferred direction, diverges from the other trials in the preferred direction (thick red 

and blue lines), prior to port exit.  This pattern is existent to a diminished degree in the 

nonpreferred direction.  Despite this unique firing pattern, the directional signal is 

actually encoded later on sS trials (after the SCRT; Fig. 4.6A; orange ticks) relative to gS 

trials.  Even though the directional strength throughout the entirety of the response was 

not different between these two “types” of STOP trials (Fig. 4.6C middle vs. right; 

Wilcoxon; p = 0.75), the earlier encoding of the correct direction on gS trials clashes with 

the reduced movement times (and presumably less conflict) on sS trials.  No such 

comparable effect is found when comparing GO trials based on the identity of the 

previous trial (Fig. 4.6D).  The direct comparison distribution between gG and sG trial 

types was not significantly shifted (Fig. 4.6E; Wilcoxon; p = 0.75) and the directional 

index distributions are not different from one another (Fig. 4.6F left vs. right; Wilcoxon; 

p = 0.41). 
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Figure 4.6:  Impact on neuronal encoding based on conflict induced by the previous 

trial in decreasing-type mPFC neurons.  A) Population histogram of mPFC neurons 

that decreased significantly below baseline.  Activity is aligned to port exit.  Blue lines 

refer to all GO trials.  Red lines represent STOP trials preceded by GO trials (‘gS’).  

Orange lines indicate trials where a STOP trial is preceded by a STOP trial (‘sS’).  

Calculation of direction preference remained unchanged from figure 4.4.  Tick marks 

represent 100ms epochs where the preferred direction was significantly different from the 

nonpreferred direction (t-test; p < 0.01) for GO trials (blue), gS trials (red), and sS trials 

(orange).  Although each tick mark signifies statistical difference for a 100ms epoch, tick 

width is 10ms for the purpose of presentational detail.  Arrowheads indicate average 

movement times (port exit to well entry) for GO trials (blue; 596ms), gS trials (red; 

739ms), and sS trials (737ms).  Vertical dashed lines mark the times of the stop change 

reaction time (SCRT; 141ms) and the average GO cue onset as measured as the latency 

from port exit (GO cue; -420ms) for the analyzed sessions.  B) Indices compare the 

difference in firing between the three trial types presented in A.  Leftmost distribution 

calculates the differences between gS and GO trials for each cell.  The middle 

distribution marks the difference between sS and GO trials.  Rightmost distribution 

computes the difference between gS and sS trials.  C) Directional index distributions 

calculate the difference between the preferred and nonpreferred direction in each neuron 

during GO trials (left), gS trials (middle), and sS trials (right).  D)  Population histogram 

of increasing-type mDS neurons is aligned to port exit.  All lines represent accurate GO 

trials that either followed a GO trial (‘gG’; dark blue) or followed a STOP trial (‘sG’; 

light blue).  Thick lines refer to the preferred direction and thin lines refer to the 

nonpreferred direction.  Tick marks denote the 100ms epochs where the preferred 

direction significantly differed from the nonpreferred direction (t-test; p < 0.01) during 

gG trials (dark blue) and sG trials (light blue).  Arrowheads mark the average movement 

times for gG trials (dark blue; 597ms) and sG trials (light blue; 592ms).  E) Distribution 

calculates the difference between firing on gG versus sG trials.  F) Directional index 

distributions calculate the difference between the preferred and nonpreferred direction in 

each neuron during gG trials (left) and sG trials (right).  Activity for all distributions was 

taken during the 1s epoch beginning at port exit and significant shifts from zero are 

determined via Wilcoxon (p < 0.05).  Asterisks indicate a direct comparison between two 

distributions is significant (Wilcoxon; p < 0.05 corrected for multiple comparisons). 
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Disparate waveform characteristics as a means to define increasing- and decreasing 

populations: 

The difference in utility of mPFC increasing- and decreasing-type cells to the 

system may reside in the cell-types that characterize them.  To distinguish whether these 

two mPFC populations occupy unique neuron types, I plotted inter-spike intervals, 

baseline firing frequencies, and waveform peak width (Fig. 4.7; A,B).  There were no 

differences between increasing- decreasing-type neurons and effects appeared to be 

equally distributed across these electrophysiological properties. 
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Chapter Discussion 

In the previous chapter regarding the function of lOFC neurons, I considered 

lOFC to be a cortical candidate for correcting STOP trial direction signaling via afferent 

connections to mDS.  Increasing-type mPFC cells cannot be implicated in this function as 

activity does not show the time- or performance-sensitive flexibility in STOP trial 

directional signaling.  For instance, in these neurons, direction differentiation during 

STOP trials does not occur until after the SCRT and therefore, in the context of swift 

response correction on STOP trials, mPFC does not serve this purpose early enough in 

the trial to impact immediate responding.  The lack of temporal specificity for mPFC to 

control prompt behavior on trials that necessitate response inhibition does not mean that 

mPFC has no role in stop signal task behavior.  It has been shown that mPFC neurons are 

sensitive to task components on the previous trial (161) and I have found that mPFC is 

the only region I studied where activity is significantly stratified based on the amount of 

previous conflict.  The fact that this conflict signal appears later in the response suggests 

that instead of the mPFC guiding immediate behavior, it is tracking the prior conflict to 

ensure correct responding in the near future.   

On the other hand, decreasing-type mPFC cells can have a causal impact on 

behavior during the current trial as direction differentiation on STOP trials occurs prior to 

the SCRT.  Increased directional strength on STOP trials and a significant neuronal 

contrast between STOP and GO trials in the preferred direction offer further insight into 

the role of these neurons.  Interestingly, firing in these cells differs only when an initial 

response is inhibited (correct STOP trials; Fig. 4.6; solid red lines) in the sense that 

activity is similar when the initial response is produced either correctly (GO trials; Fig. 
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4.6; blue lines) or in error (STOP errors; Fig. 4.6; dashed red lines).  However, the 

resultant change in activity on correct STOP trials is a stronger directional signal relative 

to GO trials or STOP errors.  This effect does not fit with either the “inhibitory signal” 

(Fig. 1.3C) or “conflicted directional signal” (Fig. 1.3B) hypotheses.  Instead, these 

signals fit with what could be refer to as “enhanced directional signals” during difficult 

conflict trials (i.e. STOP trials).  Therefore, decreasing-type mPFC cells are more likely 

functioning to refine a response rather than signal response inhibition.  Further support 

for this notion comes from the analyses in figure 4.6 where early activity on sS trials (Fig. 

4.6A; orange lines) begins to change its trajectory prior to exiting the port in preparation 

for an upcoming STOP cue that was induced by a prior STOP trial. 

The two populations of mPFC neurons (increasing- and decreasing-type) provide 

evidence for dissociable functioning.  Increasing-type cells encode for the increased need 

for conflict resolution based on the recent conflict history and decreasing-type cells 

provide response refinement function useful for guiding a change in responding behavior.  

These two divergent populations may provide a context for inconsistent findings on 

various response inhibition tasks after mPFC interference.  For instance, perturbation of 

the rat prelimbic prefrontal cortex reveals stop signal reaction time deficits (61) and 

increased premature responses during performance of reaction time tasks (157, 163) 

while similar approaches yield conflicting results (125, 160, 164).  The lack of a conflict 

monitor (increasing-type cells) could explain behavioral deficits on the stop signal task 

after mPFC inactivation while the absence of a speeded response refinement signal 

(decreasing-type cells) can explain increased premature responding. 
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Chapter 8: The prenatal nicotine exposure model of rodent impulsivity suggests that 

normal firing in medial prefrontal cortex is necessary for inhibitory control 

Recording from three brain regions in healthy rats is a satisfactory approach for 

exploring the neural signals related to response inhibition.  But what happens to the brain 

while animals with diseases characterized by reduced inhibitory capacity attempt to 

control/inhibit their responses?  To answer this question, I recorded from the mPFC of 

rats who had been exposed to nicotine prenatally.  Prenatal exposure to nicotine (PNE) 

has been shown to increase the incidence of psychiatric disorders in offspring, including 

but not limited to, attention deficit hyperactivity disorder (ADHD), conduct disorder, and 

addiction (165-170), all of which are characterized by diminished executive control (166, 

167, 171, 172).  In rodents, the behavioral disturbances described after PNE and the 

benefits observed after methylphenidate (Ritalin) treatment, have pinpointed prenatal 

nicotine exposure as a valuable animal model to investigate mechanisms that underlie 

poor impulse control as defined by the inability to inhibit prepotent movement (173, 

174). 

Although it is clear that PNE disrupts many brain systems involved in executive 

control, it is unknown how or what neural correlates related to the control of behavior are 

disturbed.  It is known that dopaminergic and noradrenergic functions are affected by 

PNE (175-177), and that PNE alters morphology, volume, and dopamine turnover in 

mPFC (173, 174, 178-180), but it is still not understood how neural signals related to 

executive control mechanisms are affected.  Although neighboring structures have been 

explored (57, 88, 181), prior to the work done in the previous chapter, it was unclear how 

firing in mPFC is normally modulated during tasks that probe response inhibition.  This 



110 
 

is surprising considering the number of studies that have implicated mPFC in inhibitory 

control.  For instance, perturbation of the rat prelimbic prefrontal cortex reveals stop 

signal reaction time deficits (61) and increased premature responses during performance 

of reaction time tasks (157, 163).  However, similar approaches have yielded conflicting 

results (125, 160, 164).  Elucidating the relationship between mPFC activity and response 

selection during the need for elevated executive and inhibitory control would help me to 

better understand dysfunctions observed in psychiatric disorders that impair inhibitory 

restraint. 

To address this issue I recorded single mPFC cells from control and prenatal 

nicotine exposed (PNE) rats in my rodent variant of the stop signal task (methodology in 

Chapter 10: Detailed Methods).  Due to the tractability of the rat, experimental prenatal 

nicotine exposure may provide a valuable tool to investigate mechanisms disrupted in 

animal models of impaired executive function and impulse control.  It has been shown 

that mPFC is both affected by exposure to prenatal nicotine and is critical for normal 

performance on stop signal paradigms (61, 173, 174).  Briefly, I show that PNE makes 

rats faster and more impulsive on the stop signal task.  Additionally, PNE manifests in a 

hypoactive mPFC, diminished encoding of task parameters, and reduced capacity to 

maintain conflict information. 

 

Prenatal nicotine exposure impairs inhibitory control 

Full details of prenatal nicotine administration reside in Chapter 10: Detailed 

Methodology.  Briefly, in a subset of nulliparous female rats, nicotine was added to their 

only source of drinking water at a dose akin to a human habitual smoker while control 
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mothers were provided with unadulterated drinking water.  Nicotine exposed mothers in 

the present experiment consumed significantly less water than controls during pregnancy 

(98.89ml/kg/day; 131ml/kg/day; t-test; p < 0.01) and gained weight at a slower rate prior 

to pregnancy (0.21% gain per day; 0.68% gain per day; t-test; p < 0.01), characteristics 

that have been observed before by Schneider and colleagues (182).  Pregnancy duration 

and fluid consumption comparisons are detailed in table 5.1.  All pups were cross-

fostered to control mothers in order to isolate the effects of nicotine exposure prenatally 

and minimize unique rearing practices by nicotine exposed mothers.  Pups were not 

exposed to nicotine in any manner after birth.   
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Rats from both groups were trained prior to electrode surgery on my stop signal 

task.  Rats in both control and PNE groups exhibited significantly slower movement 

speeds (latency from port exit to well entry; Fig. 5.1A) and reduced accuracy on STOP 

trials compared to GO trials (Fig. 5.1B).  Slower latencies resulted in better STOP trial 

performance in both groups.  Like in the analyses for the previous brain regions, during 

sessions in which rats were slower on STOP trials, performance was better (i.e. 

correlation between movement speed and percent correct) demonstrating a speed-

accuracy tradeoff.  Consistent with this finding, incorrect STOP trial movement times 

were significantly faster than movement times on correctly performed STOP trials (Fig. 

5.1A; t-test; p < 0.05).  These results demonstrate that PNE rats were planning and 

generating a movement prior to illumination of the STOP cue, in response to illumination 

of the first cue light, and that inhibition and redirection of the behavioral response was 

necessary to correctly perform STOP trials.  
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Figure 5.1: Behavior and neuronal differences between control and PNE groups. A-

B) 
Session averaged movement times (ms) (A) and percent of correct responses (B).  Error 

bars indicate standard error of the mean.  Asterisks indicate group comparisons (t-test; p 

< 0.05).  C) Histogram represents the proportion of premature responses (withdraw from 

the nose-poke prior to GO light offset) for control and PNE rats per session.  Inset 

represents the average proportion of premature responses for control and PNE rats.  

Asterisk indicates significant mean difference (t-test; p < 0.05).  All behavior was taken 

from neural recording sessions. D) Percentage of cells that showed significantly greater 

(increasing-type) or less (decreasing-type) activity during the response epoch (unpoke to 

well entry) relative to baseline (1s epoch beginning 2s prior to nose-poke).  There were a 

total of 636 control cells and 558 PNE cells.  E) Percentage of cells per rat that were 

characterized as either increasing- or decreasing-type.  Error bars indicate standard error 

of the mean.  F-G) Average activity (spikes/s) across GO trials, STOP trials, and STOP 

errors ± SEM aligned on port exit for every increasing- (F) and decreasing-type (G) cell.  

As a temporally sensitive statistical comparison, the p-value for the t-test (black line) 

between control and PNE firing rates was taken from 100ms epochs that slid every 10ms 

and plotted in the graph below.  The gray horizontal line refers to the p-value 0.05. 
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When comparing control and PNE rats I found that PNE rats were significantly 

faster on all trial types (Fig. 5.1A; black vs. gray; t-test; p < 0.05).  Although the two 

groups did not differ significantly in accurate performance of GO trials, PNE rats made 

significantly more errors on STOP trials than control rats (Fig. 5.1B; black vs. gray; t-

test; p < 0.05).  Despite the difference in STOP trial movement speed and accuracy, the 

correlation between the two (speed/accuracy trade-off) was not altered between groups 

(control; r = 0.33; p < 0.01; PNE; r = 0.38; p < 0.01).  This consistency between groups 

suggests that PNE rats were not fundamentally disabled or physically impeded from 

performing the task.  Interestingly, PNE rats exhibited a greater proportion of premature 

responses (defined as leaving the nose port before offset of the first cue light) per session 

relative to control rats (Fig. 5.1C; t-test; p < 0.01).  I conclude that PNE limits the 

capacity for successful inhibitory control, but not overall ability to meet the physical 

demands of the task. 

 

Impact of prenatal nicotine exposure on population activity in mPFC 

I recorded 636 and 558 mPFC neurons from control and nicotine exposed rats, 

respectively. The recording locations are illustrated in figure 4.7C and 5.7C.  The 

neurons/sessions analyzed in the previous chapter serve as the control group here.  I first 

determined how many neurons in each group exhibited activity that was significantly 

modulated during the response epoch (port exit to well entry) relative to baseline (1s 

epoch beginning 2s prior to trial initiation; t-test; p < 0.05). 

In the control group, 19% (n = 121) and 39% (n = 249) of neurons significantly 

increased or decreased firing during the response epoch relative to baseline, respectively.  
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In the PNE group, 22% (n = 125) and 41% (n = 228) of neurons exhibited significant 

increases or decreases during the response epoch, respectively.  The proportion of 

increasing- and decreasing-type cells did not differ between groups (Fig. 5.1D; 

increasing-type; χ
2
; p = 0.17; decreasing-type; χ

2
; p = 0.59).  To provide evidence for 

homogeneity between rats within a group, I plotted the percentage of increasing- and 

decreasing-type neurons per rat.  The control group did not differ from the PNE group 

(Fig. 5.1E; increasing-type; Wilcoxon; p = 0.43; decreasing-type; Wilcoxon; p = 0.49).  

Even though the proportions of task-related neurons did not differ between groups, 

average activity in numerous task epochs was reduced across the population of 

increasing- and decreasing-type neurons.  This is illustrated by the mean firing rates 

(±SEM ribbons with sliding comparisons) in figures 5.1F and G, which plots the average 

firing (spikes/s) over time (aligned on port exit and averaged across trial types).  

Even though activity was reduced in the PNE group, the proportions of task-

modulated (i.e. increasing- or decreasing-type) did not change.  This is important because 

it shows that the hypoactivation as a result of PNE was present both during the execution 

of the task and when the rats were in a relative state of quiescence (baseline).  

Additionally, both of these populations can be compared across groups with minimal 

concern that PNE firing reductions alone omitted cells from further analysis.  

  

Multiple regression analysis of single-unit activity in mPFC 

Since single cells tended to be modulated by the direction of the response and/or 

type of trial (STOP vs. GO; as in Fig. 1.4), I determined if the counts of neurons 

exhibiting task-related effects were different between the two groups.  Specifically, I 
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performed the least-squares multiple regression approach described in Chapter 10: 

Detailed methods (identical to the model used in each of the previous chapters).  The 

model used was designed to determine if neuronal firing during the response correlates 

significantly and uniquely with movement speed, direction, and/or type of trial at the 

single-cell level as done in the previous chapters.   

 

 

 

 

 

 

 

 

Figure 5.2: Multiple regression results for all increasing- and decreasing-type mPFC 

neuron in the control and PNE groups. A-D) Results of the multiple regression 

procedure detailed in the Methods section for increasing- (A,C) and decreasing-type 

(B,D) cells in control (A,B) and PNE groups (C,D).  The size specifications of the Venn 

diagrams map onto the proportion of neurons within a population that survived the 

regression procedure (i.e. exhibited partial r
2
 values for at least one variable) relative to 

the other populations.  Circle sizes represent the relative proportions of neurons showing 

significant partial r
2
 values for the individual task parameters within a population.  Top 

circle encompasses the proportion of neurons that show significant partial r
2
 values for 

the direction parameter.  Conventions as above for the movement time (red circle) and 

trial type (blue circle) parameters.  Non-overlapping portions represent the counts (and 

percentages) of neurons with significant partial r
2
 values for one parameter.  Overlapping 

portions denote the number (and percentage) of single cells that exhibited significant 

partial r
2
 values for two (orange, green, purple) or all three (brown) parameters.  The 

table specifies the counts of neurons significant within a variable that have associated 

positive (“+”) or negative (“-”) β-values.  As specified by the model, positive β-values 

indicate greater firing for the contralateral direction (direction), greater firing for slower 

movement times (movement time), and greater firing for STOP over GO trials (trial 

type).  Asterisks indicate significantly more β-values for one valence within a parameter 

(binomial sign test; p < 0.05). 
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The results of the regression procedure for the control group (originally shown in 

figures 4.2 and 4.5) are replicated in figure 5.2 A and C.  The relative sizes of the Venn 

diagrams denote the proportions of task specific cells (significant partial r
2
 for at least one 

parameter) in each population.  In direct comparison to increasing-type control neurons, I 

examined increasing-type neurons in the PNE group (Fig. 5.2B).  Of these cells, 26% (n 

= 33) were significantly modulated by direction.  Twenty four of these 33 had associated 

positive β-values (greater firing in the contralateral direction) which is statistically greater 

than the number of neurons with associated negative β-values (Fig. 5.2B; direction; 24 

vs. 9; binomial sign test; p < 0.05).   Of the neurons that were significantly and uniquely 

correlated with movement speed (Fig. 5.2B; movement time; n = 15; 12%), an 

insignificant proportion featured positive β-values (Fig.5.2; movement time; 7 vs. 8; 

binominal sign test; p = 1).  Lastly, increasing-type neurons of PNE rats had 8 neurons 

that were modulated by the trial type parameter; of which, statistically more featured 

positive β-values than negative β-values (Fig. 5.2B; trial type; 8 vs. 0; binomial sign test; 

p < 0.01). 

 Figure 5.2C and D detail the relatively similar results of the regression procedure 

for control (B) and PNE (D) decreasing-type mPFC cells.  Eighteen percent (n = 43) of 

PNE decreasing-type cells exhibit significant partial r
2
 values for the direction parameter 

where more β-values were positive than negative (Fig. 5.2D; direction; 29 vs. 14; 

binominal sign test; p < 0.05).  Decreasing-type neurons in the PNE group showed 32 

(14%) neurons significantly modulated by the movement time parameter but the 

proportion of the two β-values did not differ (Fig. 5.2D; movement time; 21 vs. 11; 

binominal sign test; p = 0.11).  Lastly, the PNE group exhibited 17 (7%) significant 
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partial r
2
 values for type of trial and the featured β-values did not differ from a 50/50 split 

(Fig. 5.2D; trial type; 9 vs. 8; binomial sign test; p = 1). 

 To more simply compare the proportions of neurons significantly correlated with 

individual task parameters, I collapsed increasing- and decreasing-type cells in both 

groups individually and plotted them in figure 5.3.  The Venn diagrams featured in figure 

5.2 detail the overlap in significance of the three task parameters in individual cells; 

because of this, I categorized neurons in figure 5.3 where a single neuron can contribute 

to more than one group.  Specifically, the percentage of direction, movement time, and 

trial type neurons were compared between the control and PNE groups.  Significantly 

more neurons were modulated by each of the individual parameters in the control group 

relative to the PNE group (χ
2
; ps < 0.05).  Therefore, along with behavioral changes and 

hypoactivation, PNE reduced the selectivity of individual mPFC neurons to important 

portions of the task. 
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Activity in mPFC is correlated with behavioral performance 

The data described above demonstrates that both neural activity and performance 

were reduced in PNE rats.  Here I ask if the two are correlated.  Specifically, I determine 

via correlation whether average firing rates are correlated with behavioral measures of 

accuracy and movement speed between sessions. 
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For increasing-type cells, firing during the response epoch was positively 

correlated with percent correct.  That is, the greater the average firing rate during a 

session, the more accurate the animal was on that session.  The regression was significant 

for the control (Fig. 5.4A; r = 0.37; p < 0.01) but not the PNE group (Fig. 5.4B; r = 0.17; 

p = 0.07).  Further, these correlations were significantly different from one another (Fig. 

5.4A vs. B; t-test; p < 0.05).  The correlation between movement time and firing rate was 

significant for increasing-type cells only in the PNE group (Fig. 5.4D; r = 0.25; p < 0.01) 

but this correlation did not significantly differ from the control group (Fig. 5.4C vs. D; t-

test; p = 0.42).  However, for decreasing-type neurons, there was a positive correlation 

between movement time and firing rate, which was only significant in the control group 

(Fig. 5.4G; r = 0.29; p < 0.01) and was significantly different from the PNE group (Fig. 

5.4G vs. H; t-test; p < 0.01).  Finally, the correlation between firing rate and percent 

correct in decreasing-type cells was not significant in the control group (Fig. 5.4E; r = 

0.07, p = 0.24), but was significantly negatively correlated in the PNE group (Fig. 5.4F; r 

= -0.20; p < 0.01).  These correlations differed significantly (Fig. 5.4E vs. F; t-test; p < 

0.01).  Thus overall, when activity was high for increasing- and decreasing-type neurons, 

rats were better and slower, respectively.  These correlations were largely not present in 

PNE rats.  Furthermore, in sessions where decreasing-type neuronal activity was high, 

PNE rats tended to perform the task poorly.  Importantly, the correlation results above are 

not simply a product of mPFC hypoactivation as these effects are maintained in a sub-

selected population of firing-rate matched neurons between groups (data not shown). 
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Previous trial encoding and the ability to resolve conflict 

Both groups of animals were less accurate on STOP trials following GO trials 

(gS) compared to STOP trials following STOP trials (sS; Fig. 5.5E, t-test, p < 0.05); 

however this effect was amplified in PNE rats (t-test, p < 0.01).  This effect is 

presumably due to the heightened prepotency to respond to the first cue light induced by 

a previous GO trial which makes it more difficult for the rat to suppress the initial 

response on STOP trials.  This demonstrates that the competition or ‘conflict’ between 

the two opposing responses (GO vs. STOP) is highest on gS trials, and it is during these 

trials that PNE rats perform the worst.  It is well known that greater inhibitory control is 

necessary to overcome higher prepotency and frontal areas including mPFC (as supported 

by the previous chapter) are important for resolving conflict under these situations (66-

68, 162).  Next I ask if this encoding of previous conflict is disrupted by PNE.  
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Figure 5.5: Impact on neuronal encoding based on conflict induced by the previous 

trial in increasing-type control and PNE mPFC neurons. A-B) Population histograms 

of all mPFC neurons that increased significantly above baseline in control (A) and PNE 

(B) groups.  Activity is aligned to port exit.  Blue lines refer to all GO trials.  Red lines 

represent STOP trials preceded by GO trials (‘gS’).  Orange lines indicate trials where a 

STOP trial is preceded by a STOP trial (‘sS’).  Direction preference was determined in 

each cell by calculating the direction that elicited the greatest firing rate during the epoch 

from port exit to well entry (‘response epoch’).  Therefore, as defined by the analysis, the 

preferred direction (thick lines) is always higher than the nonpreferred direction (thin 

lines) during the response epoch.  The direction of STOP trials is always referred to the 

ultimate response the animal made.  The population histogram in A is a replication of 

figure 4.3A, but firing rate is not normalized in order to accentuate firing rate differences 

between control and PNE neurons. C-D) Indices compare the difference in firing between 

the three trial types presented in (A-B) for control (C) and PNE (D) groups.  Leftmost 

distribution calculates the differences between gS and GO trials divided by the sum for 

each cell.  The middle distribution marks the difference between sS and GO trials divided 

by the sum.  Rightmost distribution computes the difference between gS and sS trials 

divided by the sum.  Activity for all distributions was taken during the 1s epoch 

beginning at port exit in order to capture post decision activity and significant shifts from 

zero are determined via Wilcoxon (p < 0.05).  Distributions between groups are 

compared via Wilcoxon (p < 0.05).  E-F) Percent of correct responses (E) and movement 

latencies (F) per session for sS and gS trials.  Movement times are calculated as the 

latency from port exit to well entry.  Asterisks indicate significant mean differences (t-

test; p < 0.05). 
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Figures 5.5A and B plot average activity on STOP trials when the previous trial 

was either a GO trial (gS, red) or a STOP trial (sS, orange) for the control (Fig. 5.5A) and 

PNE (Fig. 5.5B) groups.  For reference, GO (low conflict) trials during these sessions are 

plotted in blue.  I have shown the effect of conflict monitoring in the control group 

previously in figure 4.3 but, in order to capture the reduction in firing rates in the PNE 

group, these population histograms are plotted using raw firing rates.  This does not 

impact the statistical analyses and therefore, the results of figure 5.5C are identical those 

in figure 4.3B.  Briefly, differences in firing between the three trials are quantified in 

figure 5.5C and D which compares the difference between higher and lower conflict trial 

types (i.e., gS-GO, sS-GO, and gS-sS) for each neuron during the 1s epoch beginning at 

port exit.  In the control group, the distribution comparing gS to GO (i.e., gS-GO) was 

significantly shifted in the positive direction (Fig. 5.5C left; Wilcoxon; p < 0.01), whereas 

this distribution in the PNE group was not significantly shifted (Fig. 5.5D left; Wilcoxon; 

p = 0.87).  When comparing activity on sS trials to GO trials, neither group exhibited a 

significantly shifted distribution (sS-GO; Fig. 5.5C,D middle; Wilcoxon; ps > 0.32).  

Importantly, direct comparison of gS and sS trials revealed a statistically shifted 

distribution in the control group (Fig. 5.5C; Wilcoxon; p < 0.01) which differed from the 

equivalent distribution in the PNE group (Fig. 5.5C right vs. D right; Wilcoxon; p < 

0.01).  Thus, when conflict was high, firing in mPFC tended to be significantly stronger 

in control but not PNE rats.  Importantly, this group difference is not simply a product of 

the identity of the previous trial because these differences were not observed between gG 

and sG trials (Fig. 5.6A-D).  That is, direct comparison of GO trials dissociated by the 
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previous trial type revealed no differences in either the control (Fig. 5.6A,C) or PNE (Fig. 

5.6B,D) groups. 
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Together, these results demonstrate that the mPFC in control animals was able to 

differentiate STOP trials based on the conflict induced by the preceding trial type and this 

neural correlate of conflict monitoring was disrupted in animals prenatally exposed to 

nicotine.  This could explain the marked behavioral deficits on gS trials relative to sS 

trials in the PNE group (Fig. 5.5E).  Importantly, this conflict monitoring effect is not 

simply due to mPFC hypoactivation in PNE rats.  In a group of sub-selected neurons 

matched for firing rate across groups, control neurons still capably differentiated between 

gS and sS trials (data not shown).   

 

Disparate waveform characteristics as a means to define increasing- and decreasing 

populations in mPFC 

As a means to electrophysiologically dissociate the morphology (type) of 

increasing- from decreasing-type cells, I plotted interspike intervals, baseline firing 

frequencies, and waveform peak width (Fig. 5.7; A,B).  There were no differences 

between increasing- decreasing-type PNE neurons and effects appeared to be equally 

distributed across these properties. 
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Chapter Discussion 

In summary, I show that PNE makes rats impulsive, disrupts neural signals related 

to response encoding and conflict monitoring, and reduces overall firing in mPFC.  

Further, I demonstrate that correlations between neuronal firing and performance 

(accuracy and movement speed) were altered after PNE.  

An underactive prefrontal cortex (i.e. “hypofrontality”) is commonly found in 

addiction, ADHD, and schizophrenia (183-188), all of which are psychiatric disorders 

characterized by diminished executive function.  Experimental work has reported that 

interference of mPFC impairs performance on response inhibition tasks as measured by 

stop trial accuracy and premature responding during reaction time tasks (61, 157).  Taken 

together, this work points to mPFC as a critical player during response inhibition and 

suggests that reduced prefrontal activation/function in disorders such as ADHD drive 

behavioral impairments (158). 

Consistent with this hypothesis, patients diagnosed with ADHD have been 

successfully treated with noradrenaline and dopamine (e.g. methylphenidate; 

atomoxetine) reuptake inhibitors (189-194) that have been shown to impact prefrontal 

cortex in both humans and rats.  For instance, in humans, atomoxetine administration 

increases inferior frontal activity in human participants (195) and methylphenidate 

reverses ADHD-associated hypofrontality (196).  In rats, atomoxetine administration 

increases the immediate early gene c-Fos in mPFC (197).  This all points to decreased 

prefrontal firing as a root of these and other psychiatric disorders that impair executive 

function.  Consistent with this hypothesis I show that firing in mPFC is reduced in PNE 

rats.  I further demonstrate reduced selectivity related to the direction of the response, the 
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speed of response, and the contrast between STOP and GO trials at the level of single 

units as well as an absence of correlations between firing and behavior output.  My 

results provide a mechanism by which these drugs might ameliorate behavior deficits. 

Specifically, these drugs are likely to improve function by increasing frontal activity and 

driving selectivity for executive functions including response inhibition and conflict 

monitoring.  

 Maternal smoking is a risk factor for many psychiatric disorders (166-169, 198-

204) and is still a common practice according to Substance Abuse & Mental Health 

Services which reported in 2012 that one in five women smoke during pregnancy.  In 

addition to being an important issue in its own right, prenatal nicotine exposure has 

gained considerable traction as a suitable model for impulsive behavior as seen in 

ADHD.  Exposing pregnant rodents to nicotine via drinking water produces offspring that 

bear striking resemblance to human ADHD both symptomatically and in treatment 

efficacy (182, 205-207).  This exposure has also been shown to have a genetic component 

in that pups of prenatally exposed pups also show behavioral impairments (208).  

Previous studies have shown that prenatal nicotine exposure via drinking water at the 

same dose used in the current study (0.06mg/ml) produces increased anticipatory 

responses on the 5-choice serial reaction time task in rats (174).  Similar results have 

been obtained in mice, where prenatal nicotine exposure via drinking water reduces 

cingulate cortex volume, reduces prefrontal dopamine turnover, and induces 

hyperactivity which was diminished by oral methylphenidate treatment (173).  Thus, 

there is a substantial and meaningful overlap between human ADHD research and the 

rodent prenatal nicotine model. 
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It is highly unlikely that my results can be explained by impairments outside the 

realm of disrupted brain areas involved in executive control.  As mentioned above, others 

have used the same method of nicotine administration, and shown impairment in the 5-

choice serial reaction time task (182).  Importantly, in that study, rats also performed a 

battery of sensorimotor tasks to assess different developmental milestones.  PNE rats did 

exhibit lower birth weights and delayed sensorimotor development, but differences were 

not apparent prior to testing in the 5-choice task that occurred around three months of 

age.  There were no significant differences in weight between PNE and control rats on the 

first day of my study (postnatal day 49).  In addition, PNE rats were actually faster over 

all trial types and performed similarly on GO trials compared to control rats.  Thus, as 

mentioned previously, it is unlikely that developmental problems beyond those related to 

executive and impulse control can account for the behavioral differences described here.  

I conclude that PNE reduces activity in mPFC, an area known to be critical for 

executive control including response inhibition.  Reduced activity in mPFC after PNE is 

correlated with poor impulse control and is likely to be directly related to elevated levels 

of drug seeking observed in ADHD and in rats that have chronically self-administered 

cocaine.  Like prenatal nicotine, prolonged cocaine self-administration leads to mPFC 

hypoactivation and increased drug seeking, both of which are rescued through 

optogenetic stimulation of prelimbic prefrontal cortex (209).  Together these results 

suggest that reduced firing in mPFC after exposure to prenatal nicotine might not only 

impair normal everyday executive control functions but increase one’s predisposition to 

addiction (210, 211).  Based on these findings and the existence of a positive correlation 

between firing and behavioral performance, this work implies that global increases in 
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mPFC firing may improve performance in animals during tasks that assess executive 

control and response inhibition.  
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Chapter 9: Comparison of areas and broad discussion 

Through the results presented above, I have described how single cells in multiple 

brain areas might produce inhibitory control based on the context of the literature’s 

current state.  Since mine are the first studies to record single cells in the cortico-striatal 

circuit during performance of a task that exclusively probes response inhibition, there is 

no precedent for how mPFC, lOFC, and mDS cells interact to produce sufficient 

inhibitory action.  Further, very few single unit studies record from different areas in the 

same task making direct comparisons difficult.  As has been previously shown, the two 

cortical regions that I recorded from (lOFC and mPFC) are connected monosynaptically 

with mDS neurons (32-34) and communicate directly with one another (35, 36).  I intend 

to detail the current prevailing theories on cortico-striatal function utilizing the 

established anatomical framework presented schematically in figure 1.1. 

The cortico-striatal circuitry that mediates executive function/behavior in the 

human is largely conserved in the rodent.  Although there are certainly cognitive 

behaviors that rats are not capable of, mediated by structures that rats do not possess, 

flexible response inhibition is a fundamental survival tactic for every mammal, 

particularly for smaller rodents under constant predation.  Additionally, various clinical 

tasks including ones used to probe response inhibition have been successfully translated 

for use in the rat and previous research has shown a remarkable consistency between 

species in reaction time distributions (212).  For these reasons, I propose that the invasive 

techniques used in the current rodent study can apply meaningfully to the state of human 

psychiatric research. 
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The cortex provides the majority of the input into the basal ganglia.  Areas such as 

mPFC, OFC, and various sensory/motor cortices synapse directly onto medium spiny 

projection neurons of the dorsal striatum which tends to arbitrate between actions via 

mono- (mDSSNr) or multi-synaptic (mDSGPiSTNSNr) connection to the 

output of the basal ganglia (SNr)(Fig. 1.1).  Noticeably, the two afferent pathways onto 

SNr neurons release neurotransmitters of opposite valences; whereas STN is excitatory 

via glutamatergic connections, direct mDS to SNr connections are GABAergic.  The 

importance of this is apparent after considering that SNr maintains tonic inhibition of 

motor outputs (superior colliculus, motor thalamus), the inhibition of which 

(disinhibition) allows for precise actions (42).  Therefore, the balance between 

GABAergic and glutamatergic inputs onto SNr promotes or suppresses responding.  The 

fact that this balance is largely mediated by the activity of dorsal striatum neurons makes 

mDS a logical brain region responsible for the initiation or inhibition of movement.  By 

extension, the top-down modulation of mDS via frontal inputs becomes equally important 

as the majority of executive functions are linked to the cortex.   

In the above chapters I describe the roles of mDS, lOFC, and mPFC individually 

and only hint at how their interactions can give rise to normal inhibitory functioning.  In 

the subsequent section I intend to detail the advances afforded to the literature by my 

recent findings.  Briefly, it appears as though mDS integrates all inputs into creating an 

appropriate motor response via its connections to the basal ganglia/motor system.  

Problematically, mDS alone cannot gather pertinent external information rapidly enough 

to pause, or redirect, an already programmed action.  However, neurons in lOFC can 

inform the mDS of the appropriate response direction within the SCRT behavioral 
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window and allow the suppression of the initiated action.  Interestingly, lOFC is also 

sensitive to previous conflict and can prepare the mDS of the necessary action based on 

recent response history.  Although mPFC may not play a role in redirecting responses on 

the current trial, it appears as though it can broadly increase preparedness for flexible 

response inhibition by aggregating current and past conflict history.   

In the next section, I better specify the interplay between the explored brain 

regions and compare their already reported results in figures 6.1-6.6 where individual 

properties are marked with letter symbols. 

The comparative roles of mDS, lOFC, and mPFC in the stop signal task: Increasing-

type 

 As a means to compare the functions of the explored brain regions, I begin by 

replicating the multiple regression results of the increasing-type neurons (Fig. 6.1) 

individually for mDS (A), lOFC (B), mPFC control neurons (C), and mPFC PNE neurons 

(D).  The size specifications of the Venn diagrams map onto the relative proportion of 

increasing-type neurons that survived the regression procedure (i.e. exhibited partial r
2
 

values for at least one variable).  Therefore, the first striking result is that more mDS 

neurons tend to encode task-related properties relative to the other populations.  In fact, 

this is by a fairly large margin (percentage of neurons; mDS = 75%; lOFC = 54%; mPFC 

control = 53%; mPFC PNE = 37%).  It is worth noting that the two healthy cortical 

regions (lOFC and mPFC) show comparable percentages of modulated neurons where 

PNE dramatically decreased the selectivity of these cells. 
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Figure 6.1: Comparison of multiple regression results in increasing-type cells across 

brain regions. A) A replication of figure 2.2 which displays the results of increasing-

type mDS cells. B) A replication of figure 3.2 which displays the results of increasing-

type lOFC cells. C) A replication of figure 4.2 which displays the results of increasing-

type mPFC cells in the control group. D) A replication of figure 5.2B which displays the 

results of increasing-type mPFC cells in the PNE group.  The relative size of each Venn 

diagram is proportional to the percentage of neurons in each population modulated by 

any of the three task parameters (e.g. mDS has the largest percentage).  The table 

specifies the counts of neurons significant within a variable that have associated positive 

(“+”) or negative (“-”) β-values.  As specified by the model, positive β-values indicate 

greater firing for the contralateral direction (direction), greater firing for slower 

movement times (movement time), and greater firing for STOP over GO trials (trial 

type).  Asterisks indicate significantly more β-values for one valence within a parameter 

(binomial sign test; p < 0.05). 
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The size of the individual circles within the Venn diagrams offer a rather accurate 

comparison of the relative sensitivity to individual tasks parameters between brain 

regions.  Given that the mDS is the area functionally closest to the motor system, it is 

unsurprising that mDS exhibits the greatest proportion of directionally specific neurons.  

In fact, 65% of increasing-type mDS cells are modulated by the direction of the response 

even after variance relegated to movement speed and the type of trial is accounted for.  

Additionally, of the healthy regions shown in A-C, mDS has the largest bias toward one 

direction; that is, significantly more neurons showed positive correlations (contralateral 

preferring; table; n = 59) than negative correlations (ipsilateral preferring; table; n = 20).  

These effects in mDS are in contrast to 37% of direction modulated cells in both lOFC 

and control mPFC while PNE diminished the direction encoding to 26%.  These effects 

were somewhat anticipated as mDS has been shown to promote responding and articulate 

which muscles are necessary for any given movement (41, 78).  However, it is somewhat 

surprising that greater than one third of healthy cortical neurons (lOFC, mPFC control) 

vary with regard to the direction of the response as lOFC and neighboring regions have 

been largely implicated in direction agnostic functions such as reward value, anticipatory 

control, and economic choice (213-216).  As alluded to in the lOFC chapter, collapsing 

across directions in the increasing-type lOFC population would have eliminated the 

response inhibition and conflict adaptation effects.  Therefore, the direction of responding 

in operant conditioning and decision-making paradigms should be examined more 

closely, particularly in regards to OFC function.  Lastly, the relative lack of direction 

encoding in mPFC after PNE suggests that the ability of single neurons to dissociate 

between two spatial directions is linked to performance in the stop signal task. 
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Firing specificity to the speed of responding (movement time) in single neurons 

largely overlaps with the direction of responding in each analyzed brain region (i.e. a 

large orange portion in each Venn diagram).  This suggests that the degree to which a 

neuron is modulated by the spatial attributes of an action is related to the modulation by 

the speed of an action on any given trial.  Intriguingly, approximately equal proportions 

of neurons across healthy brain regions significantly vary with the movement speed (Fig. 

6.1A-C; movement time; mDS = 28%; lOFC = 23%; mPFC control = 31%) whereas PNE 

diminishes the capacity for single neurons to encode the movement speed (Fig. 6.1D; 

movement time; 12%).  Additionally, only mDS and control mPFC neurons show a 

preponderance of single neurons that exhibit greater firing with faster movement times 

(negative β-values; Fig. 6.1; table) implying that regardless of other task variables, 

greater firing in mDS and mPFC results in faster movement speeds.  With regard to the 

effects of PNE on movement time encoding, the reduction in the ability of single neurons 

to control the speed of movement is clearly a contributing factor in inhibitory deficits in 

these animals. 

Although a large fraction of neurons in each increasing-type population tended to 

be related to the spatial and speed attributes of a response, relatively few exhibited a 

direction/speed unbiased encoding of the type of trial (STOP vs. GO) that one might 

expect from regions implicated in response inhibition (5).  Interestingly, the brain region 

displaying the largest percentage of trial type specific neurons was lOFC (Fig. 6.1B; trial 

type; 14%).  This is in comparison to mDS (11%), mPFC control (11%), and mPFC PNE 

(6%).  Admittedly, this difference between brain areas is not overwhelming, but the 

increasing-type population most closely associated with the ability to inhibit an ongoing 
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response in a temporally precise manner (Fig. 3.1) was lOFC.  As with the other 

parameters in the preceding paragraphs, PNE reduced the percentage of neurons within 

mPFC that differentiated STOP from GO trials and therefore, STOP trial accuracy was 

reduced. 

In the next section, using figure 6.2 as a guide, I intend to review the functions of 

healthy increasing-type mDS, lOFC, and mPFC populations in response inhibition and 

propose a collaborative mechanism for these regions to drive successful behavior in my 

task.  Comparing across increasing-type populations is not meant to suggest that 

increasing-type cells form a separate network from decreasing-type cells.  It is simply 

designed to be a comparative exercise between populations analyzed in the same manner. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparison of population firing in increasing-type cells across brain 

regions. Top) A replication of figure 2.1A which shows average firing of increasing-type 

mDS cells. Middle) A replication of figure 3.1A which shows average firing of 

increasing-type lOFC cells. Bottom) A replication of figure 4.1A which shows average 

firing of increasing-type mPFC cells. 

  



143 
 

 



144 
 

Figure 6.2 places the population of increasing-type histograms together for direct 

comparison where mDS is the top figure, lOFC is in the middle, and mPFC control is at 

the bottom.  The role of mDS increasing-type neurons in response inhibition appears to 

be one of habitual directional control.  From the previous section, I described a large 

portion of direction specific neurons in mDS; it is therefore unsurprising that the 

direction signal is robust on GO trials and becomes distinct just after average GO cue 

onset in mDS (Fig. 6.2a) but later in both lOFC (Fig. 6.2e) and mPFC (Fig. 6.2 bottom).  

Intriguingly, this directional response in mDS was so robust that firing on correct STOP 

trials initially miscoded the ultimate direction (Fig. 6.2b) whereas this was not the case in 

lOFC and mPFC.  This direction miscoding closer to the motor system (mDS) provides a 

signal that must be reconciled if the correct response is to be made in a timely manner.  

Importantly, this direction miscoding is not reconciled prior to the time-point necessary 

to recruit inhibitory machinery (SCRT) in mDS (Fig. 6.2c) or mPFC neurons (Fig. 6.2h), 

but it is reconciled in lOFC (Fig. 6.2f).  Therefore, the lOFC increasing-type population 

can provide the temporally precise signal of the correct response direction to rescue the 

incorrect response signaled by mDS.  The importance of this is accentuated in the context 

that on STOP errors, the incorrect direction is signaled throughout the response in mDS 

(Fig. 6.2d) and in lOFC and mPFC, the direction signal is weak and nondiscriminatory 

(Fig. 6.2g,i).  Activity of the increasing-type mPFC population during the response is 

mainly driven by the direction taken by the animal.  However, near the end of the 

response, mPFC exhibits greater firing on STOP trials relative to GO trials (Fig. 6.2i).  

This dissociation is late and likely not useful on the current trial but it appears to 

“monitor” which trial type was recently executed.  As discussed in the previous chapters, 
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this can be interpreted in many ways so to further understand this signal, I plotted STOP 

trials in figure 6.3 based on the identity of the immediately preceding trial type (STOP or 

GO). 

STOP trials inherently promote a directional conflict in the animals performing 

them due to the necessity to suppress an initiated response to a spatial location and 

redirect it to the opposite location.  However, a recent history (previous trial) of STOP 

trials reduces the conflict produced by STOP trials, an effect referred to as conflict 

adaptation or “Gratton effect.”  Therefore, when STOP trials occur with a preceding 

history of GO trials, conflict is at its highest.  In contrast, when a STOP trial had recently 

been performed, the conflict on the current STOP trial is easier to reconcile.  Lastly, there 

is no inherent conflict on GO trials as animals are simply producing movements toward a 

well-conditioned stimulus.  In increasing-type mDS neurons (Fig. 6.3 top), the miscoding 

of direction on high conflict STOP trials (gS) is exaggerated (Fig. 6.3a), but non-existent 

on lower conflict STOP trials (Fig. 6.3b).  While stronger in mDS neurons, this direction 

miscoding on gS trials is not observed in lOFC (Fig. 6.3 middle) or mPFC (Fig. 6.3 

bottom) even during high conflict.  Importantly, in mDS neurons, the correct direction on 

STOP trials is still not reconciled prior to the SCRT regardless of prior conflict (Fig. 

6.3c).  Increasing-type lOFC cells lose the ability to discriminate between directions on 

STOP trials prior to the SCRT when conflict is high (Fig. 6.3e), but this ability is 

maintained when conflict is lower (Fig. 6.3d).  In fact, lOFC neurons encode the correct 

direction even more strongly on lower conflict STOP trials than GO trials (Fig. 6.3f) 

which argues that preparedness for conflict induces accuracy on STOP trials.  This is not 

the case for increasing-type mPFC neurons.  Interestingly, the impact of prior conflict on 
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activity in mPFC cells is minimal when the animal is initiating its response (Fig. 6.3g) 

however, activity in both directions scales with the amount of conflict experienced on the 

current and previous trials once the decision on the current trial has been made (Fig. 

6.3h).  Therefore, mPFC has the ability to monitor the degree of conflict in the immediate 

past (current and previous trial) and inform the system to allocate requisite attentional 

resources for subsequent behavior.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Comparison of population firing based on prior conflict in increasing-

type cells across brain regions. Top) A replication of figure 2.3A which shows average 

firing of increasing-type mDS cells. Middle) A replication of figure 3.3A which shows 

average firing of increasing-type lOFC cells. Bottom) A replication of figure 4.3A which 

shows average firing of increasing-type mPFC cells. 
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One can reasonably presume that greater firing during the highest conflict STOP 

trials in mPFC (Fig. 6.3 bottom; red lines) can provide the preparation for lOFC to signal 

the correct direction early and strongly on the next trial (Fig. 6.3 middle; orange lines) 

which then eliminates direction miscoding in mDS neurons (Fig. 6.3b) and provides 

greater accuracy on STOP trials.  Given this framework, each node in this circuit is 

necessary for response inhibition in very different ways. 

The comparative roles of mDS, lOFC, and mPFC in the stop signal task: 

Decreasing-type 

Decreasing-type neurons are excluded from many single unit studies, but this is 

due to convenience rather than lack of importance.  Decreasing-type neurons do, 

however, have a reputation for being highly variable and difficult to interpret so one 

should exercise caution while attempting to infer functions of a brain area from these 

populations.  Regardless, given the large proportion of decreasing-type cells in each of 

the brain regions recorded from, I subjected decreasing-type cells to the identical 

analyses as above and review them in the current section. 

Figure 6.4: Comparison of multiple regression results in increasing-type cells across 

brain regions. A) A replication of figure 2.5 which displays the results of decreasing-

type mDS cells. B) A replication of figure 3.5 which displays the results of decreasing-

type lOFC cells. C) A replication of figure 4.5 which displays the results of decreasing-

type mPFC cells in the control group. D) A replication of figure 5.2D which displays the 

results of decreasing-type mPFC cells in the PNE group.  The relative size of each Venn 

diagram is proportional to the percentage of neurons in each population modulated by 

any of the three task paramters.  The table specifies the counts of neurons significant 

within a variable that have associated positive (“+”) or negative (“-”) β-values.  As 

specified by the model, positive β-values indicate greater firing for the contralateral 

direction (direction), greater firing for slower movement times (movement time), and 

greater firing for STOP over GO trials (trial type).  Asterisks indicate significantly more 

β-values for one valence within a parameter (binomial sign test; p < 0.05). 
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The multiple regression procedure is a powerful way to tease apart the functions 

of individual neurons by selectively including variance in firing rate to specific task 

parameters.  Decreasing-type cells, relative to increasing-type cells, tend to be selective 

to individual parts of the task to a lesser degree.  That is, the percentages of decreasing-

type neurons modulated by at least one task parameter are lower (Fig. 6.4; mDS = 46%; 

lOFC = 42%; mPFC control = 35%; mPFC PNE = 33%) when compared the increasing-

type cells.  Though these decreasing-type proportions of neurons are relatively similar, 

the region with the greatest percentage of modulated cells is mDS, similar to increasing-

type cells. 

Direction selectivity of individual decreasing-type neurons is highest in mDS 

where 34% of neurons are significantly correlated with response direction although 

oddly, the number of positive β-values is not different from negative β-values.  This is 

surprising for a region tied to motor output and suggests that its function may be less 

directionally biased.  The remaining brain regions show comparable direction-based 

firing (lOFC = 21%; mPFC control = 22%; mPFC PNE = 19%).  Interestingly, PNE 

induces fewer direction selective neurons but of those, significantly more show a 

contralateral bias (positive β-value) relative to an ipsilateral bias (negative β-values).  

However, this effect is almost significant in control mPFC neurons as well. 

The movement time variable produces interesting effects in the sense that a 

greater percentage of lOFC decreasing-type neurons are driven by the speed of 

responding relative to the other areas (Fig. 6.4; movement time; lOFC = 24%; mDS = 

17%; mPFC control = 14%; mPFC PNE = 14%).  It is fascinating that in mDS and lOFC, 

far larger counts of neurons fire more strongly during slower movement speeds (more 
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positive β-values) than faster movement speeds.  This implies that greater activity of 

these neurons when animals are making their response is tied to more carefully executed 

trials.    

When examining the proportion of neurons significantly activated during the 

contrast of STOP versus GO trials, there was a noticeably lower percentage of lOFC 

decreasing-type cells relative to the other regions (Fig. 6.4; trial type; lOFC = 4%; mDS = 

9%; mPFC control = 9%; mPFC PNE = 7%).   It can therefore be interpreted that lOFC 

decreasing-type cells are largely insensitive to whether a trial was a STOP or GO trial 

and further supports the aforementioned assertion that decreasing-type lOFC neurons 

play a role in modulating actions, possibly through local tuning of increasing-type cells.  

The low modulation of individual mPFC decreasing-type cells to the trial type parameter 

does not support an inhibitory function for this population but this does suggest that the 

strength of the directional signal (greater on STOP trials than GO trials in these neurons; 

Fig. 4.4) can be a powerful tool to measure activity in these neurons.  Analyses regarding 

the interactive effects with the direction of a response are often neglected in single unit 

recording studies and in imaging research. 

Overall, the proportions of decreasing-type cells that were modulated by 

individual task parameters were lower than their increasing-type counter-parts.  The 

standout results from the decreasing-type cells are the relatively high direction-correlated 

neurons in mDS, the low fraction of movement time and high fraction of trial type 

correlated neurons in lOFC, and the modest reduction of significant mPFC PNE cells 

relative to mPFC control cells across each task variable. 
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Figure 6.5 replicates the population histogram analyses of decreasing-type 

neurons originally completed for mDS (Fig. 6.5 top), lOFC (Fig. 6.5 middle), and mPFC 

control (Fig. 6.5 bottom).  Unlike increasing-type mDS neurons (Fig. 6.2a), decreasing-

type mDS cells encode the direction elicited by the GO cue inconsistently prior to port 

exit (Fig. 6.5a).  This effect is similar across each of the decreasing-type populations (Fig. 

6.5 middle, bottom).  However, the timing of the correct encoding of direction on STOP 

trials varies dramatically across the three populations.  That is, there is significant 

encoding of the correct direction on STOP trials before (mPFC; Fig. 6.5h), slightly after 

(mDS; 6.5b), and well after (OFC; Fig. 6.5f) the SCRT.  Because of this, mPFC 

decreasing-type cells appear to be useful for immediate redirecting of a response via 

informing the downstream mDS of the correct direction so that the appropriate movement 

can be programmed prior to an errant response.  Additionally, mPFC decreasing-type 

neurons exhibit greater directional signaling under correct STOP trials (Fig. 6.5g) and 

comparable firing between the two trial types of similar response times/mechanics (GO 

trials and STOP errors; Fig. 6.5i).  These mPFC results are in contrast to decreasing-type 

lOFC cells which only appear to minimally signal any direction-based response (Fig. 

6.5e) and a directional signal that does not distinguish between STOP and GO trials.  

Interestingly, mDS decreasing-type cells clearly do not play a directionally conflicting 

role similar to mDS increasing-type cells.  Instead, activity is similar during GO trials and 

STOP errors (Fig. 6.5c), and higher when a movement is inhibited/redirected (correct 

STOP trials; Fig. 6.5d).  Because the directional signal on correct STOP trials (Fig. 6.5b) 

is not resolved prior to the SCRT, I conclude that this population offers a motor 

refinement signal that appropriates the correct resources to change an initiated response 
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either by local striatal tuning, or projection to the indirect pathway (Fig. 1.1) which 

possesses the capacity to broadly inhibit a movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Comparison of population firing in decreasing-type cells across brain 

regions. Top) A replication of figure 2.4A which shows average firing of decreasing-

type mDS cells. Middle) A replication of figure 3.4A which shows average firing of 

decreasing-type lOFC cells. Bottom) A replication of figure 4.4A which shows average 

firing of decreasing-type mPFC cells. 
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To gain perspective on how prior conflict impacts firing across decreasing-type 

populations, I again replicated the population histograms for mDS (Fig. 6.6 top), lOFC 

(Fig. 6.6 middle), and mPFC control (Fig. 6.6 bottom).  Despite changes in firing in 

increasing-type cells regarding the degree of prior conflict, splitting STOP trials into the 

trial that preceded them in the decreasing-type populations altered firing very little.  For 

instance, the directional signal for both types of STOP trials (higher and lower conflict, 

gS and sS) became distinct after the SCRT in mDS (Fig. 6.6a) and lOFC (Fig. 6.6) while 

it became distinct around the SCRT in mPFC (Fig. 6.6d).  In fact, directional firing in 

decreasing-type lOFC neurons was so weak on sS trials that zero 100ms epochs were 

significant for the preferred over nonpreferred directions (i.e. no orange ticks).  Although 

previous conflict did not appear to impact decreasing-type firing, this lack of an effect 

actually solidifies the roles for these populations that I proposed previously.  For 

instance, in mDS decreasing-type cells, activity on both types of STOP trials does not 

vary from one another but does vary in reference to GO trials (Fig. 6.6b).  Therefore, a 

function of motor refinement holds in the sense that it is only when a motor response 

needs to be altered from its initial trajectory that activity changes in mDS decreasing-type 

cells.  Likewise, prior conflict does not drive firing in mPFC decreasing-type cells during 

the entirety of the response (Fig. 6.6e).  However, there is greater activity on sS trials 

prior to movement initiation that highlights the role of this population in refining a 

response.  That is, when the animal anticipates redirecting their behavior, activity is 

higher prior to movement initiation. 
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Figure 6.6: Comparison of population firing based on prior conflict in decreasing-

type cells across brain regions. Top) A replication of figure 2.6A which shows average 

firing of decreasing-type mDS cells. Middle) A replication of figure 3.6A which shows 

average firing of decreasing-type lOFC cells. Bottom) A replication of figure 4.6A which 

shows average firing of decreasing-type mPFC cells. 
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Summary: Placing the explored brain regions in functional context 

 With the wealth of structural and functional data that have been gathered 

regarding executive functions including response inhibition (Fig. 1.1), it comes as no 

surprise that frontal regions are likely providing functionally distinct, but comparably 

complex inputs to the basal ganglia where appropriate actions can be placed in context 

and acted upon in a swift manner.  The data that I have collected shows for the first time 

that lOFC directional signals exhibit the temporal precision to encode the correct 

response prior to inhibitory behavior that may fill the role in redirecting responding that 

mDS lacks.  Additionally, under a recent history of conflict, mPFC neurons can track the 

degree of experienced conflict and presumably recruit attentional resources that give rise 

to the behavioral conflict adaptation effect.  As a result, lOFC neurons can more reliably 

encode the correct direction and resolve the mitigated conflict in a faster manner.  Given 

that all mammals are designed to take maximal advantage of their surroundings in 

foraging and/or predator avoidance contexts, it is unsurprising that the gathering of neural 

resources during times of maximal conflict can produce more accurate behavior, 

particularly under changing circumstances. 

As described above, the impact that lOFC and mPFC ultimately have on behavior 

is via mDS.  That is, conflict adaptation and monitoring function might govern behavior 

by modulating directional signals in mDS. But how do these executive control signals in 

cortex develop in the first place?  Theories as to neurophysiological basis of this 

behavioral control vary, but two plausible ones stand out.  The first involves the linking 

of midbrain dopamine to reward and cognitive control.  Whereas dopamine phasically 

responses to reward related (217) or motivationally salient cues (92), tonic dopamine 
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release from the midbrain sustains motivation for a cognitive task (218).  Midbrain 

dopamine neurons project strongly to the cortex causing a range of resultant changes in 

firing from increasing signal-to-noise ratio (219) to sharpening cortical tuning (220).  It is 

therefore not unreasonable that top-down executive signals can impact behavior on the 

current trial in my task via connections to the basal ganglia while dopamine from the 

ventral tegmental area or substantia nigra pars compacta (neighbor of the SNr) updates 

the cortex based on recent responding to produce sufficient behavioral control.  The 

second theory involves the anterior cingulate cortex (ACC) as the hub of control 

processing over the rest of the prefrontal cortex.  Among numerous functions, ACC has 

been implicated in the updating of reward-based contingencies (221), triggering 

compensatory adjustments in cognitive control (222), conflict detection (223, 224), and 

conflict monitoring (225).  Due to this heterogeneity of cingulate function, it has been 

proposed that ACC can compute an “expected value of control” where resources are 

allocated to neighboring regions to produce appropriate behaviors given recent context 

(222).  This is supported by the loss of conflict adaptation following cingulotomy (224).   

Importantly, theories regarding the updating of control via dopamine and ACC are 

not mutually exclusive.  The updating signals from the dopamine system after 

performance on a given trial likely alter firing throughout the cortex including mPFC, 

lOFC, and ACC.  In fact, the error related negativity (ERN) deemed critical for the 

modification of performance has been hypothesized to be generated from changes in 

dopamine firing altering ACC activity (226).  Albeit a speculative interpretation, I 

hypothesize that mPFC, along with other neighboring structures including ACC, are able 

to calculate the degree of conflict recently experienced in my task based on updating 
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from dopaminergic signals.  This conflict information can then be used to appropriate 

cognitive resources to improve behavior under the most difficult circumstances. 
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Chapter 10: Detailed methodology 

Subjects:  Male Long-Evans rats were obtained at 175-200g from Charles River 

Labs.  Rats were tested at the University of Maryland in accordance with NIH and 

IACUC guidelines.  

Surgical procedures and histology: Surgical procedures followed guidelines for 

aseptic technique.   Electrodes were manufactured and implanted as in prior recording 

experiments (1, 2, 42, 221, 227-229).  Rats had a drivable bundle of ten 25µm diameter 

FeNiCr wires (Stablohm 675, California Fine Wire, Grover Beach, CA) chronically 

implanted in the left or right hemisphere dorsal to medial dorsal striatum (n = 8 rats; 

0.4mm posterior to bregma, 2.4mm left [n = 4] or right [n = 4] of the midline, and 3.5mm 

ventral to the brain surface), lateral OFC (n = 5 rats; 3mm anterior to bregma, 3.2mm left 

[n = 2] or right [n = 3] of the midline, and 4mm ventral to the brain surface) or medial 

PFC (n = 16 rats; 3.3mm anterior to bregma, 0.6mm left [n = 8] or right [n = 8] of the 

midline, and 2mm ventral to the brain surface).  Immediately prior to implantation, these 

wires were freshly cut with surgical scissors to extend ~1mm beyond the cannula and 

electroplated with platinum (H2PtCl6, Aldrich, Milwaukee, WI) to an impedance of 

~300kOhms.  Cephalexin (15mg/kg p.o.) was administered twice daily for two weeks 

post-operatively to prevent infection.   

Behavioral task:  Recording was conducted in aluminum chambers 

approximately 18” on each side with downward sloping walls narrowing to an area of 12” 

x 12” at the bottom.  On one wall, a central odor port was located above two adjacent 

fluid wells.  Directional lights were located next to the fluid wells. House lights were 
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located above the panel.  Task control was implemented via computer.  Port entry, 

licking, and well entry were monitored by disruption of photobeams.   

The basic design of a trial is illustrated in figure 1.1A,B.  Each trial began by 

illumination of house lights that instructed the rat to nose poke into the central port.  Nose 

poking initiated a 1000ms pre-cue delay period.  At the end of this delay, a directional 

light to the animal’s left or right was flashed for 100ms.  The trial was aborted if a rat 

exited the port at any time prior to offset of the directional cue light.  On 80% of trials, 

presentation of either the left or right light signaled the direction in which the animal 

could respond in order to obtain sucrose reward in the fluid well below.  On 20% of 

trials, simultaneous with the rat exiting the nose poke port, the light opposite to the 

location of the originally cued direction turned on and remained illuminated until the 

behavioral response was made.  These trials will be referred to as STOP trials and were 

randomly interleaved with GO trials.  Rats were required to stop the movement signaled 

by the first light and respond in the direction of the second light.  After correct responses, 

rats were required to remain in the fluid well for a variable period between 800 and 

1000ms (pre-fluid delay) before reward delivery (10% sucrose solution).  Trials were 

presented in a pseudorandom sequence such that left and right trials were presented in 

equal numbers (+/-1 over 250 trials).  The inter-trial interval (ITI) was a rigid 3 and 4s for 

correct and incorrect trials, respectively.  The time necessary to stop and redirect 

behavior (SCRT) on STOP trials was computed by the difference between movement 

times on correct STOP and GO trials.   

Single-unit recording:  Procedures were the same as described previously (42).  

Wires were screened for activity daily; if no activity was detected, the rat was removed, 
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and the electrode assembly was advanced 40 or 80µm.  Otherwise active wires were 

selected to be recorded, a session was conducted, and the electrode was advanced at the 

end of the session in order to gather new cells each session.  Neural activity was recorded 

using four identical Plexon Multichannel Acquisition Processor systems (Dallas, TX), 

interfaced with odor discrimination training chambers.  Signals from the electrode wires 

were amplified 20X by an op-amp headstage, located on the electrode array.  

Immediately outside the training chamber, the signals were passed through a differential 

pre-amplifier (Plexon Inc, PBX2/16sp-r-G50/16fp-G50) where single unit signals were 

amplified 50X and filtered at 150-9000 Hz.  The single unit signals were then sent to the 

Multichannel Acquisition Processor box, where they were further filtered at 250-8000 

Hz, digitized at 40 kHz and amplified at 1-32X.  Waveforms (>2.5:1 signal-to-noise) 

were extracted from active channels and recorded to disk by an associated workstation 

with event timestamps from the behavior computer.  Waveforms were not inverted before 

data analysis.  

Data analysis: Units were sorted using Offline Sorter software from Plexon Inc 

(Dallas, TX), using a template matching algorithm.  Sorted files were then processed in 

Neuroexplorer to extract unit timestamps and relevant event markers. These data were 

subsequently analyzed in Matlab (Natick, MA).  Baseline firing was taken during a 1s 

epoch starting 2s prior to trial initiation (nose-poke).  This baseline epoch was chosen as 

a period where rats are relatively stationary, yet prepared to initiate the upcoming trial.  

For the majority of the analyses, activity was examined during the period between nose 

poke exit and well entry (termed ‘response epoch’), while the movement was being made 

and/or cancelled.  Activity in population histograms was normalized by dividing by the 
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maximal firing rate of each neuron.  All statistical procedures were executed using raw 

firing rates.  Wilcoxon tests were used to measure significant shifts from zero in 

distribution plots (p < 0.05).  T-tests were used to measure within cell differences in 

firing rates and behavioral data where indicated (p < 0.05).  Significant direction 

signaling, as a function of time, was determined using a sliding window analysis.  For 

STOP and GO trials independently, activity between the preferred and nonpreferred 

directions was compared in 100ms epochs which slid 10ms after each iteration.  To 

complement these analyses I used least-squares multiple regression as a means to 

determine the number of cells where firing rate was significantly correlated with either 

the trial type (STOP/GO), movement time, and/or response direction parameters when 

variance for the two remaining factors was accounted for.  To achieve this, I ran the 

following multiple model for each individual cell: 

Y = β0 + β1MovementTime + β2TrialType + β3Direction  

where Y = firing rate (spikes/s) during the response epoch, MovementTime = 

latency between unpoke and well entry, Direction = coded as (-1 = ipsilateral) (1 = 

contralateral), and TrialType = coded as (-1 = GO) (1 = STOP).   

To determine the significance for each predictor as a function of firing rate during 

the response epoch, I computed the unique variance of each individual parameter and 

divided it by the variance unaccounted for when each respective parameter was not 

included in the model (partial r
2
).  Significance of each partial r

2
 was recorded along with 

the valence of the associated β-value.  Counts of positively and negatively correlated cells 

were compared via binomial sign test (p < 0.05).  For clarity, it was possible that a single 
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cell could show a significant partial r
2
 for all three parameters.  Each parameter was 

calculated in the same manner regardless of whether a neuron was an increasing- or 

decreasing-type cell.  Absolute value of the firing rate was never used. 

To capture activity that differentiated based on the previous trial, I examined 

firing on STOP and GO trials after either STOP or GO trials.  The analysis allows for 

examination of trials that had the most ‘conflict’ or competition between two responses 

(i.e. GO vs. STOP).  Abbreviations for trials that are differentiated by the trial type 

preceding it are labeled as lowercase (‘g’ or ‘s’; GO, STOP) which indicates the trial type 

before the trial marked by the uppercase letter (‘G’ or ‘S’; GO, STOP). Wilcoxon tests 

were used to measure significant shifts from zero in distribution plots (p < 0.05).   

Correlations between firing rate and behavioral measures (percent correct, 

movement time; Fig. 5.4) were calculated using Pearson’s r after averaging values within 

each session.  Correlation coefficients were determined to be statistically different via 

Student’s t-test after Fisher’s z-transformation for correlation coefficients. 

 

Prenatal nicotine exposure: Procedures were similar to those described by 

Schneider and colleagues (182).  In a subset (n = 5) of nulliparous female rats, nicotine 

was added to their only source of drinking water while the control mothers (n = 5) were 

provided with unadulterated drinking water.  Nicotine bitartrate (Sigma, St Louis, MO) 

was dissolved in water.  To acclimate the nicotine exposed dams to the taste of nicotine, 

the dosage was increased weekly over the course of three weeks (0.02mg/ml, 0.04mg/ml, 

and 0.06mg/ml).  The range of nicotine between 1 and 6mg/kg/day has been shown to 

produce plasma nicotine levels in the range of 10-50ng/ml in habitual smokers (230).  
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Additionally, experiments that have administered nicotine via drinking water at doses 

comparable to ours have found plasma nicotine levels between 21 and 60ng/ml (182, 

231).  The mothers I used consumed an average of 5.93mg/kg/day of nicotine during 

pregnancy, which is within the range shown to produce behavioral deficits in offspring 

without causing physical impairments (182, 231).  Nicotine exposed mothers in the 

present experiment consumed significantly less water than controls during pregnancy 

(98.89ml/kg/day; 131ml/kg/day; t-test; p < 0.01) and gained weight at a slower rate prior 

to pregnancy (0.21% gain per day; 0.68% gain per day; t-test; p < 0.01), characteristics 

that have been observed before by Schneider and colleagues (182).  Pregnancy duration 

and fluid consumption comparisons are detailed in table 5.1. 

All pups were cross-fostered to control mothers in order to isolate the effects of 

nicotine exposure prenatally and minimize unique rearing practices by nicotine exposed 

mothers.  Pups were not exposed to nicotine in any manner after birth.  Cross-fostering 

was performed on postnatal day 3 to ensure that any handling of pups by experimenters 

did not cause maternal rejection (173).  Pups from the same litter were cross-fostered to 

the same control dam.  As a result, all cross-fostering was successful and I obtained 39 

PNE pups (mean litter size = 13.0; sex ratio = 56.6) and 45 control pups (mean litter size 

= 12.3; sex ratio = 49.0) from three nicotine exposed mothers and four control mothers.  

The pups were weaned on postnatal day 21.  I used male pups in all recording 

experiments because PNE has been shown to have more dramatic behavioral effects on 

males than females and ADHD-like diagnoses are more prevalent in males (205, 207, 

232, 233).  Control and PNE pup weights were not significantly different from each other 

during first day of training (postnatal day 49; nicotine = 271g; control = 259g; t-test; p = 
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0.56).  Eight male pups per group were randomly selected from three control (dam C1, n 

= 3; dam C3, n = 2; dam C5, n = 3) and three nicotine exposed mothers (dam N3, n = 3; 

dam N4, n = 3; dam N5, n = 2) to undergo training and electrode surgery (see above). 
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