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Questions of domain-generality—the extent to which multiple cognitive functions 

are represented and processed in the same manner—are common topics of discussion in 

cognitive science, particularly within the realm of language.  In the present dissertation, I 

examine the domain-specificity of two processes in speech perception: category learning 

and rate adaptation.  With regard to category learning, I probed the acquisition of 

categories of German fricatives by English and German native speakers, finding a bias in 

both groups towards quicker acquisition of non-disjunctive categories than their 

disjunctive counterparts.  However, a study using an analogous continuum of non-speech 

sounds, in this case spectrally-rotated musical instrument sounds, did not show such a 

bias, suggesting that at least some attributes of the phonetic category learning process are 



 

 

unique to speech.  For rate adaptation, meanwhile, I first report a study examining rate 

adaptation in Modern Standard Arabic (MSA), where consonant length is a contrastive 

part of the phonology; that is, where words can be distinguished from one another by the 

length of the consonants that make them up.  I found that changing the rate of the 

beginning of a sentence can lead a consonant towards the end of the sentence to change in 

its perceived duration; a short consonant can sound like a long one, and a long consonant 

can sound like a short one.  An analogous experiment examined rate adaptation in event 

segmentation, where adaptation-like effects had not previously been explored, using 

recordings of an actor interacting with a touchscreen.  I found that the perception of 

actions can also be affected by the rate of previously-occurring actions.  Listeners adapt 

to the rate at the beginning of a series of actions when deciding what they saw last in that 

series of actions.  This suggests that rate adaptation follows similar lines across both 

domains.  All told, this dissertation leads to a picture of domain-specificity in which both 

domain-general and domain-specific processes can operate, with domain-specific 

processes can help scaffold the use of domain-general processing.  
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1 Domain-Specificity 

“Stell?  Or sparklin’?”  

It was the first day of my first conference outside the US, and I found myself 

across the table from a middle-aged Scottish woman pouring drinks for the conference-

goers.  I had gone up to her and asked for a glass of water.  But her question baffled me.  

“Stell?”  What’s “stell”?  I had asked her to repeat her request, and again she asked, even 

more insistently.  Well, “sparklin’” was a word that I at least could comprehend, so I 

asked for that.  I was given seltzer water and sent on my way. 

As I later realized, I was being asked whether I wanted tap water (i.e., still water) 

or seltzer water (i.e., sparkling water).  My failure to understand the woman likely 

stemmed from a variety of reasons, not in the least jet lag.  In the present dissertation, I 

consider two aspects of the interaction that likely helped contribute to the 

miscommunication.  I had problems with phonetic adaptation, in particular adapting to 

her Glaswegian dialect, with which I had had very little familiarity before traveling to 

Scotland.  Because of that fact, and the limited speech interaction I had with her before 

she asked what type of water I would prefer, I had not formed any impression of her or 

her dialect that would allow me to interpret what she was saying.  I also struggled with 

categorization.  The [ɪ] in her “still” was lowered enough that I placed it into my [ɛ] 

category, leading me to hear a non-word (“stell”) rather than a word that may have at 

least given me some hint of what she was asking (“still”). 

This dissertation probes both categorization and adaptation.  In particular, I 

examine questions of domain-specificity for both tasks.  Although the example above 

comes from the linguistic domain, categorization and adaptation are not unique to 
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language; they are found across a wide variety of domains in various forms.  For 

instance, if you see someone moving at you at a rapid speed, it might be important to 

know whether they are jogging or running (either at you or away from something).  That 

determination might be a good example of categorization, as you must decide whether the 

movement you are seeing is an example of a jog or a run.  It also provides a good 

example of adaptation, as it might be that you can judge the person’s motion in line with, 

say, the age of the person, or the person’s previous behavior (e.g., have they been 

maintaining the same pace for a long time?). 

For categorization, I look specifically at the acquisition of categories, and whether 

the processes of category learning used for phonetic categories are the same used to learn 

other, non-linguistic auditory categories.  For adaptation, rather than looking at accent 

adaptation (which led me astray in Glasgow), I focus on rate adaptation.  Just as speakers 

vary in their accent, they also vary in the rate of speech at which they talk.  Taking into 

account this variation can help to determine, say, where words stop and start in fluent 

speech.  I examine if rate adaptation also helps to explain how viewers determine where 

events stop and start within action sequences.  In doing this, I am exploring questions of 

domain-specificity; whether and which resources are shared between speech perception 

and other cognitive abilities. 

1.1 What is Domain-Specificity? 

Domain-specificity refers to the idea that an aspect of cognition has a particular 

mode of processing or representation that is unique, unshared with other abilities.  As will 

shortly be seen, defining “aspect of cognition” and “unique” can often be challenging, but 

the idea has been persistently debated.  In the present dissertation, I use “domain” to 
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mean an ecologically-relevant area of knowledge.  The “ecologically-relevant” caveat is 

important; although “parliamentary forms of government” is a domain of knowledge that 

can be highly relevant to modern society, it is unlikely that knowledge of the fact that 

Northern Ireland uses a single-transferable vote system for its Assembly elections has 

ever contributed to anyone’s evolutionary fitness.  I first outline general discussions of 

domain-specificity.  I use face perception as an example of a well-trod debate related to 

domain-specificity.  I next review the literature on domain-specificity in speech 

perception, the object of study in the present dissertation.  Finally, I give an overview of 

the dissertation proper. 

1.1.1 Why Be Domain-Specific? 

Before diving directly into the idea of domain-specificity in relevant fields, it is 

important to consider why it might be useful to have domain-specific processes at all.  

What good might domain-specificity do?  Certainly, one answer to that question is 

“none”.  For those who believe in domain-specificity, there are a few reasons given for 

why it might be useful.  They all stem from some version of the adage that “practice 

makes perfect”.  Consider the process of learning to drive a car.  At first, every action 

necessary for driving takes a great deal of effort and a great deal of attention.  Yet, over 

time, many of the skills that are necessary to drive a car become automatic, almost 

instinctive.  Yet it is clear that driving a car is not “ecologically-relevant”; car driving is 

probably not a domain, at least for the purposes of domain-specific processing.  And it is 

not all that frequent.  Although many people drive a car every day, it is usually not for 

hours at a time, nor incessantly throughout the day.  Processing speech, on the other 

hand, is something that happens often and repeatedly.  It is relevant for a great deal of 
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activities, including obtaining sustenance and finding a mate, both of the utmost 

importance in ecological terms.  Processing speech in a domain-specific fashion means 

devoting a discrete and self-contained chunk of cognitive resources towards speech 

perception.  That chunk is (or becomes) highly specialized, capable of processing only 

speech information.  Domain specialization would make the resources devoted to speech 

very fast at doing their job, as no other tasks would compete to use those resources, but it 

would also prevent those resources from being used for other tasks if they were lying 

dormant. 

The necessity of domain-specificity and innateness over domain-general learning 

has been formalized by using three arguments in favor of the idea of innate, domain-

specific processes (Cosmides & Tooby, 1994): 

1. Error: An error in one domain might be beneficial in another.  For 

example, a tendency to consort with kin is beneficial when it comes to 

altruism (helping kin helps genes that encourage that practice survive), 

while consorting with kin is not beneficial when selecting a mate (as 

inbreeding decreases fitness, over time). 

2. Lifetime Incidence: Many evolutionary advantageous behaviors will not 

relate to situations observable in all individuals’ lifetimes.  Many animals 

have instinctive behavior to flee from forest fires, for example, even 

though the likelihood that any one animal will experience a forest fire in 

its lifetime is quite low.  This knowledge of the danger of forest cannot be 

explained using domain-general learning mechanisms, as no single animal 
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will have enough information in its lifetime to flee, suggesting that innate 

knowledge may be necessary. 

3. Combinatorial Explosion: Relying on a domain-general mechanism 

means that every combination of every cue must be considered when 

determining a possible response to an environmental trigger.  Processing 

speech becomes impossible if all information present for every system 

(auditory, visual, olfactory…) is available to be used as well. 

The idea of domain-specificity has often been discussed in tandem with the idea 

of cognitive modules.  According to Fodor (1983), modules are cognitive domains in 

which information is processed quickly, automatically, and innately by way of a speicifc 

neural structure.  Modules process only certain types of information (domain-specificity), 

and this information is not subject to interference from other cognitive systems 

(encapsulation).  Fodor argued that only a limited number of cognitive systems (most of 

those peripheral – e.g., low levels of the visual system) could actually be described as 

“modular”, especially because only those systems could be described as encapsulated. 

However, this idea has been extended further in the form of a concept known as 

massive modularity.  For proponents of massive modularity, if a cognitive system takes 

in certain inputs and produces certain outputs that serve a particular purpose, it makes up 

a module (Frankenhuis & Ploeger, 2007; Pinker, 2005).  For instance, the question of 

whether any one task is speech-specific becomes a question of whether the processes at 

play within a speech perception task are shared with any other tasks, or whether a single 

module can accomplish both.  According to massive modularity, cognitive modules are 

present and used at almost every level of human cognition, ranging from the processing 
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of very simple visual patterns to language and moral reasoning (Sperber, 2001).  

Cognitive modules have been treated as the equivalent of, say, organs, having evolved for 

a certain, evolutionarily-required purpose (Tooby & Cosmides, 1990). 

Ironically, however, one of the fiercest critics of the idea of massive modularity is 

Fodor himself, as Fodor’s claims about what defined a “module” were much more 

formidable than those usually accepted by proponents of massive modularity.  As 

Carruthers (2005) put it, “it is obvious that by ‘module’ we can’t possibly mean ‘Fodor-

module’, if a thesis of massive mental modularity is to be even remotely plausible” (p. 6).  

As such, rather than discussing these concepts with relation to speech perception in terms 

of modularity per se, I focus more specifically on the concept of domain-specificity, 

something closer in many ways to the principles of massive modularity. 

1.1.2 Outside Language: Face Perception 

One area of study in which there has been vigorous debate about domain-

specificity is in the perception of faces.  Faces seem to be processed in a “special” way.  

For example, faces are processed holistically (as a unified chunk) rather than in a 

piecemeal fashion as other visual objects are (Farah, Wilson, Drain, & Tanaka, 1998).  

Humans are drawn to look at other human faces; in one study, even neonates as young as 

9 minutes old seem to prefer looking at faces over artificially-scrambled face-like images 

(Goren, Sarty, & Wu, 1975).  The developmental time course of the preference for faces 

indicates that 6-month-olds can distinguish both individual human faces and individual 

monkey faces; however, by 9 months of age, infants can no longer distinguish monkey 

faces, while preserving an adult-like ability to distinguish human ones (Pascalis, de Haan, 

& Nelson, 2002), although a 6-month-old-like ability to distinguish monkey faces can 
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persist with an appropriate training regimen (L. S. Scott & Monesson, 2009).  A failure to 

attend (or properly attend) to faces is often seen as a sign of clinical disorder, as in the 

case of people with an autism spectrum disorder, who do not show typical adults’ strong 

preference for looking at the eyes of actors in short film clips (Klin, Jones, Schultz, 

Volkmar, & Cohen, 2002). 

Face perception is intimately linked with the fusiform face area (FFA), a region in 

the right fusiform gyrus that shows persistent activation across a wide variety of face-

perception-linked tasks.  Activation in the FFA has been correlated, for example, with the 

perception of the face-vase illusion (see Figure 1, below), where the percept of the image 

switches back and forth between a vase (in white) or two faces gazing at each other (in 

black).  Greater FFA activation in one study was linked to periods in which the bistable 

illusion is seen as two faces rather than a single vase (Andrews, Schluppeck, Homfray, 

Matthews, & Blakemore, 2002).  Even infants as young as 4 to 6 months old show face-

selective regions in visual cortex, as assessed using fMRI study (Deen et al., 2017). 

 

Figure 1. The face-vase illusion 

Is face processing domain-specific, then?  It is certainly “special”, but none of the 

evidence cited above necessarily requires domain-specific processing.  After all, faces are 

visual objects that humans encounter on nearly a daily basis and that a serve special 
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importance, making it possible to imagine that the effects arise as a result of training.  

However, it is also true that the fact that there is a developmental trajectory to face 

perception does not rule out the idea that face perception is domain-specific. 

The side in favor of viewing face perception as domain-specific has largely been 

led by Nancy Kanwisher (Kanwisher, 2000).  Behaviorally, as was alluded to briefly, 

there seems to be something special and holistic about face processing (Farah et al., 

1998).  This can be seen fairly straightforwardly when comparing the processing of faces 

that are upside-down, which are very hard to tell apart, from faces that are right-side-up, 

which are quite easy to distinguish (Yin, 1969), a fact that is quite different from the vast 

majority of other visual objects.  This suggests that right-side-up faces are processed in a 

special way. 

Brain regions such as the FFA also provide evidence for domain-specificity.  

Functional regions in the FFA that respond more generally to faces over other objects 

also showed greater responses to faces on a battery of follow-up tasks, an idea that was 

argued to provide strong evidence for domain-specificity, with the FFA being the “hub” 

of face processing (Kanwisher, McDermott, & Chun, 1997).  Similar gradients were not 

observed for participants having to distinguish between other classes of objects, such as 

guitars, birds, flowers, or cars (Grill-Spector, Knouf, & Kanwisher, 2004); subtle 

manipulations of the visual properties of houses, for instance, do not lead to fMRI 

activation patterns that come at all close to those seen for faces (Yovel & Kanwisher, 

2004). 

A third source of evidence comes from the neuropsychological literature.  

Prosopagnosia, or face-blindness, refers to an inability to distinguish individual faces.  It 
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is strongly associated with lesions or malformations of the FFA (De Renzi, 1986).  

Prosopagnosia can be quite specific to human faces; indeed, one patient with 

prosopagnosia had no difficulties whatsoever after starting a new life as a farmer in 

recognizing and distinguishing sheep, despite difficulties in recognizing and 

distinguishing human faces (McNeil & Warrington, 1993).  This can be compared to 

patients with lesions elsewhere who have no problem distinguishing faces but have a hard 

time recognizing other objects or visual words (Moscovitch, Winocur, & Behrmann, 

1997).  These results suggest the presence of a double dissociation, as decrements in face 

recognition do not necessarily imply concomitant decreases in object recognition (and 

vice-versa). 

The main critics of the idea of domain-specificity in face processing have 

proposed instead that face perception is underlain by domain-general mechanisms 

responsible for expertise (Bukach, Gauthier, & Tarr, 2006).  The behavioral results that 

are said to suggest that faces are processed in a “special” way, and the privileged status of 

the FFA, are both said to derive from expertise.  The FFA, rather than being face-

specific, is instead seen as an “expertise area”.  Much of the evidence for domain-general 

processing comes from studies that have used novel objects referred to as greebles to 

probe the question.  Greebles are invented visual objects that share some of the 

complexity of faces, but are not readily perceived as face-like.  Novice greeble-watchers 

do not show any face-like perceptual effects when processing faces; for example, 

shuffling the different components of greebles does not affect their discrimination 

abilities.  However, given enough training (between 7 and 10 hours), now-expert greeble-

watchers show patterns of discrimination that resemble those found in face perception 
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studies (Gauthier & Tarr, 1997).  This is sometimes accompanied by activation of the 

FFA (Tarr & Gauthier, 2000).  People with an autism spectrum disorder show evidence 

of deficits in their ability to discriminate greebles that resemble those found in their 

perception of faces (Scherf, Behrmann, Minshew, & Luna, 2008).  The FFA also lights 

up when experts are discriminating between the objects of their expertise; for example, 

when bird-watchers are discriminating between individual birds, or when car experts are 

discriminating between individual cars (Gauthier, Skudlarski, Gore, & Anderson, 2000). 

Yet not all is rosy for the idea that face perception is domain-general.  The 

behavioral evidence, for example, is mixed at best; neither greebles nor cars (to car 

experts) nor cells (to cell biologists) show evidence for being processed in a holistic 

manner as strongly as faces are (McKone, Kanwisher, & Duchaine, 2007).  

Prosopagnosia seems to spare greeble learning, suggesting that damage to the brain areas 

that underpin face perception spares the acquisition of greeble expertise (Duchaine, 

Dingle, Butterworth, & Nakayama, 2004).  This has led some to propose a middle ground 

between the theories outlined above: the FFA starts with some pre-existing biases in 

favor of becoming face-specific, then, with sufficient experience over a number of years, 

gains the expertise necessary be considered a “domain-specific” area (Cohen Kadosh & 

Johnson, 2007).  I question the extent to which this is truly a middle ground, however.  

The full development of a domain-specific face processing ability could also rely on the 

(reasonable) expectation that enough experience be provided to result in its final form; in 

this case, it seems quite reasonable that (non-visually-impaired) adults would have plenty 

of experience with faces to allow face-specific areas to develop.  Overall, I find the 
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evidence in favor of domain-specificity in the face perception system to be fairly 

convincing. 

1.2 Domain-Specificity in Speech Perception 

The discussion of domain-specificity across cognitive domains has always been 

strongly linked to the study of language.  It is Chomsky’s initial explorations of language 

that are often credited as the first evidence for the necessity of a domain-specific learning 

mechanism in language, as Chomsky gave evidence that syntactic processing and 

acquisition demand mechanisms particular to the domain of language (L. A. Hirschfeld & 

Gelman, 1994).  Although most of Chomsky’s speculation about the domain-specific 

nature of language relate to syntactic processing, not the questions of speech perception 

largely focused on in the present project, there is no question that language is a common 

touchstone in this literature.  In the words of Alvin Liberman, who was probably the 

person most associated with a domain-specific view of speech understanding, the idea is 

that speech perception is “a distinctively phonetic process specifically adapted to the 

unique characteristics of the speech code” (Liberman, 1982, p. 152).  In the section 

below, I outline the literature related to this idea, including both arguments for and 

arguments against the idea of domain-specificity in speech perception, often cast in terms 

of the hypothesis that “speech is special”. 

1.2.1 Evidence for Domain-Specificity in Speech Perception 

The primary source of arguments in favor of the idea of domain-specificity in 

speech perception come from proponents of motor theories of speech perception.  Motor 

theories have long been associated with evidence in favor of speech-specific processes in 

auditory perception.  However, evidence is not limited to a single theoretical perspective, 
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as important as that perspective has been.  Other evidence comes from neuroimaging, 

neuropsychology, and developmental findings.  These are discussed below. 

1.2.1.1 Motor Theories of Speech Perception 

Motor theories of speech perception generally have taken a very strong view that 

speech is special.  Proponents of motor theories were among the first to appropriate the 

idea of a cognitive module in the sense suggested by Fodor to a non-peripheral cognitive 

domain.  Motor theories tend to eschew the acoustic signal as the fundamental correlate 

of categories, and to treat motor gestures as the underlying “fundamental”.  Instead of 

positing invariant acoustic features related to speech sounds, proponents of motor 

theories of speech perception instead favor invariant motor features, which have variable 

(but still predictable) acoustic correlates (Liberman, Cooper, Shankweiler, & Studdert-

Kennedy, 1967).  Speech is thereby special because the nature of the speech signal, as 

well as the complex relationships between production and perception that motor theorists 

claim are necessary to comprehend that signal, require speech-specific mechanisms 

(Liberman, 1982).  To comprehend speech using only principles of “a generally auditory 

sort” was described as “hardly conceivable” (Liberman, 1982, p. 151). 

How did such a view arise?  Very early research at Haskins Laboratories intended 

to create an auditory “alphabet” for use by the blind, comprised of an arbitrary sequence 

of non-linguistic sounds.  However, when played back for the people who the alphabet 

was designed to benefit, the alphabet was incomprehensible, despite the fact that it was 

being played at a speech-like tempo (Galantucci, Fowler, & Turvey, 2006).  This led the 

researchers at Haskins Labs to investigate the speech signal in greater detail.  What they 

found was that the speech signal is not like an alphabet at all; the acoustic features of the 
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sounds that speakers produce are variable.  In particular, sounds are coarticulated, with a 

particular speech sound (say, [p]) being produced differently depending on the adjacent 

sounds (Liberman, 1957; Liberman, Delattre, & Cooper, 1952).  Speakers anticipate the 

sound yet to come, while still showing delayed effects of the sounds recently produced.  

The modern understanding is that speech is highly redundant, with multiple overlapping 

cues to individual sounds that might occur several syllables away from where the sound 

is perceived.  For example, the distinction between [i] and [a] can be cued by vocalic 

differences multiple syllables in advance of that distinction (Grosvald, 2009). 

Such findings on their own, of course, would not necessarily demand a motor 

theory of speech perception.  After all, if coarticulation was accompanied by entirely 

predictable acoustic cues, listeners could simply learn the distributed acoustic signatures 

that correspond to each sound.  However, motor theorists have argued, the acoustic cues 

that accompany speech sounds are unpredictable without recourse to knowledge of the 

articulatory patterns of speech (Liberman, 1957; Liberman et al., 1967).  For example, the 

frequency transitions at the onset of vowels following [d] involve increases for front 

vowels (such as [i]) and decreases for back vowels (such as [u]), such that the formant 

transitions appear to “point at” a frequency of approximately 1800 Hz; however, this 

transition must not be complete (that is, it must not “touch” 1800 Hz) for the sound to be 

perceived as [d], which motor theorists believed reflected the motor gestures necessary in 

order to produce [d] (Delattre, Liberman, & Cooper, 1955). 

These findings inform the idea of speech’s special properties.  Over time, speech 

perception came to be seen as the outcome of speech-specific processing that is 

responsible for linking acoustic properties of the speech signal with invariant and 
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potentially innate articulatory specifications (Liberman & Mattingly, 1985, 1989).  In 

other words, speech perception is modular.  “Module” to Liberman was defined in 

Fodorian terms (Fodor, 1983), and is comparable to, say, bats’ specialized echolocation 

abilities.  The speech module was said to stand separately from non-speech-specific 

acoustic processing of factors such as pitch, timbre, and volume.  It was instead supposed 

to carve out and separate the information needed to understand speech from other 

information (Liberman & Mattingly, 1989). 

A phenomenon known as “duplex perception” provided evidence given to support 

the idea of speech-specificity.  In duplex perception paradigms, stops (or, to be more 

precise, the vowel transitions corresponding to different voiced stops) are presented 

binaurally; in one ear, listeners hear the first two formants, whereas, in a third, listeners 

hear the F3 transition (Mann & Liberman, 1983; Repp, Milburn, & Ashkenas, 1983).  

What percept results depends on the intensity of the F3 transition; if it is soft enough, 

only the a stop consonant is heard, while a louder F3 leads to the simultaneous perception 

of a stop and a whistle corresponding to the frequency of the F3 (Whalen & Liberman, 

1987).  The claim is that the fact that, because the F3 transition can be perceived either as 

belonging to the speech sound or as a “chirp” on its own (or both, simultaneously), it is 

being evaluated by two separate perceptual systems. 

Sine-wave speech provides another line of support for the idea that speech is 

special, although its implications are also somewhat troubling to motor theories.  Sine-

wave speech, as its name implies, is created by combining sinusoidal signals that 

approximate formant frequencies.  Without any cuing, sine-wave speech does not sound 

much like speech; it might sound a bit like whistling, or a “science fiction sound”.  
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Despite this, it has many of the time- and frequency-varying properties of speech, and 

given an appropriate prompt, listeners can successfully perceive words that are a part of 

the signal (Remez, Rubin, Pisoni, & Carrell, 1981).  Listeners can perceive and adjust to 

variation between talkers when listening to sine-wave speech, similar to the adjustments 

that are present for normal speech (Remez, Rubin, Nygaard, & Howell, 1987; Sheffert, 

Pisoni, Fellowes, & Remez, 2002).  The perception of sine-wave speech can be 

modulated on a trial-by-trial basis; it has been argued that listeners can both attend to 

sine-wave speech and attend to the individual sinusoids in the signal, depending on task 

demands (Remez, Pardo, Piorkowski, & Rubin, 2001).  These results generally indicate 

that, for sufficiently ambiguous signals, the processing of the signal as speech can be 

switched on and off, in line with the idea of speech-specific processing.  However, these 

findings are also challenging to accommodate within motor theoretic accounts of speech 

perception, as the impoverished nature of the sine-wave signal make articulatory gestures 

more challenging to perceive.  Indeed, these findings were used to advance a view that 

was auditory-based and domain-specific (Remez, 1989; Remez, Rubin, Berns, Pardo, & 

Lang, 1994). 

Motor theories came under increased skepticism in the 1990s and early 2000s, 

such that a review from 2006 by some of the most prominent contemporary motor 

theorists acknowledged that it had “few proponents within the field of speech perception” 

and that “many authors cite it primarily to offer critical commentary” (Galantucci et al., 

2006, p. 361).  Take duplex perception as an example.  Fowler and Rosenblum (1990) 

compared the duplex perception of F3 transitions in stops with the duplex perception of a 

slamming door.  Just as with speech sounds, the slamming door sound was split into two 
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parts, segregated by frequency, and played simultaneously with each part played to a 

different ear.  Listeners were taught to label the unmodified door-slamming sound as a 

“metal door”, the low-frequency portion of the door-slamming sound was a “wooden 

door”, and the high-frequency portion of the door-slamming sound as a “shaking sound”.  

The patterns observed often resembled those seen in speech (i.e., that the perception of 

the high-frequency portion of the signal was modulated by its intensity, but often fused 

with the percept in the other ear).  As it is highly unlikely that the sound of a door 

slamming would be processed by a speech perception system, a likelier explanation was 

that the processes that caused duplex perception in speech were identical to those used to 

process the door slamming sounds, and that, therefore, duplex perception cannot be used 

to justify speech specificity. 

Some authors have brought the motor perspective on speech perception further by 

arguing for a “direct realist” view of perception, where the perception of speech is said to 

directly arise out of the perception of motor gestures, with only the minimal possible 

recourse to the acoustic information being received.  This is affected by direct motor 

activation of speech sound production during the process of perception (Best, 1995; C. A. 

Fowler, 1986).  Interestingly, these theories, though directly building on motor theories, 

generally make the opposite claim as motor theories on whether speech is special.  

Instead, they claim that a very wide variety of sounds, not just speech, are processed 

through the use of the motor system.  Thus, speech is not special, and it is not special 

specifically because it, like most other perceptual abilities, is actually undergirded by 

systems of production (Willems & Hagoort, 2007; Worgan & Moore, 2010).  These 

theories have seen an upswing of late as a result of an interest in a class of neurons called 
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“mirror neurons”, which are said to have properties reminiscent of the direct realist 

approaches that coupled perception directly to production (Schwartz, Basirat, Ménard, & 

Sato, 2012).  Although the contributions of mirror neurons and the production system 

more generally to speech perception have been sharply questioned (Hickok, 2009; Lotto, 

Hickok, & Holt, 2009; S. K. Scott, McGettigan, & Eisner, 2009), there is no question that 

such findings have led to a resurgence in interest in motor theories of speech perception.  

Yet that interest is divorced from one of motor theory’s main tenants: speech is special.  

Speech perception is a part of a gestural perception that spans many domains. 

1.2.1.2 Neural Architecture for Speech Perception 

The neural architecture of speech perception is also brought in to support the idea 

of speech-specificity in speech perception.  The uncovering of speech-specialized brain 

regions has become somewhat of a cottage industry; many studies have uncovered 

evidence for “speech regions” in the brain (Price, 2012).  Depending on the study, neural 

activation to speech has been compared to, say, noise, tones, and reversed speech (Binder 

et al., 2000), to laughter and other environmental sounds (Meyer, Zysset, von Cramon, & 

Alter, 2005), and to stimuli parametrically varied according to several potentially relevant 

dimensions (Benson et al., 2001; Leaver & Rauschecker, 2010).  The regions uncovered 

have clustered in left temporal regions and left pars opercularis, a region that in its many 

forms (Broca’s Area, BA 44/45, left inferior frontal gyrus) has been repeatedly cited in 

neural studies of language (Price, 2012).  There is also a broad consensus that speech is 

processed along two separate streams, one ventral and one dorsal (Hickok & Poeppel, 

2007; S. K. Scott, Blank, Rosen, & Wise, 2000), a fact that has been tied into similar 
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pathways in auditory and visual perception in the animal literature (Petkov, Logothetis, & 

Obleser, 2009; Rauschecker & Scott, 2009). 

The uncovering of these speech-sensitive regions, however, has been greeted with 

some skepticism to the idea that these are relevant to the idea of speech being special 

(Price, Thierry, & Griffiths, 2005).  Consider the comparisons that are being run to 

establish whether the brain regions are activated: the hemodynamic response to speech is 

compared to the hemodynamic response to non-speech stimuli, whether cough or 

instrumental music or noise.  This means that any activation is by its nature relative, 

implying that the same regions might also be involved in processing the non-speech 

signals, but that they are simply less activated in one condition than another.  Functional 

MRI is by its nature spatially inexact.  Patterns of activation show brain regions measured 

in terms of cubic millimeters, which each contain many thousands of neurons.  Instead of 

showing speech specificity, the fMRI findings might instead reflect differential demands 

on pre-existing auditory resources. 

Better evidence for speech-specificity in the brain comes from 

neuropsychological studies.  Two conditions, pure word deafness and auditory agnosia, 

suggest the presence of the holy grail of neuropsychological evidence: the vaunted double 

dissociation.  A double dissociation arises when damage to one part of the brain 

(generally through stroke) leads to impaired functioning for a first behavior but not a 

second, while damage to a different part of the brain leads to impaired functioning for the 

second but not the first.  The idea is that the two behaviors cannot share common 

resources (or, at least, there must be some resources used by each process that are not 
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used by the other) if there are some parts of the brain that selectively respond to each 

function independently. 

For speech perception and auditory perception, the two neuropsychological 

disorders that doubly dissociate are pure word deafness and auditory agnosia (Poeppel, 

2001).  Pure word deafness refers to a neuropsychological condition in which patients 

with brain damage (generally in temporal cortex) are incapable of understanding speech, 

while maintaining all other auditory processing abilities (Auerbach, Allard, Naeser, 

Alexander, & Albert, 1982; E. M. Saffran, Marin, & Yeni-Komshian, 1976; Tanaka, 

Yamadori, & Mori, 1987).  It can be doubly-dissociated from auditory agnosia, where 

patients are generally unable to understand or recognize non-speech environmental 

sounds (e.g., keys jangling) but are able to comprehend speech without any problem 

(Fujii et al., 1990; Lambert, Eustache, Lechevalier, Rossa, & Viader, 1989; Spreen, 

Benton, & Fincham, 1965).  Auditory agnosias often progress from more severe 

conditions (Taniwaki, Tagawa, Sato, & Iino, 2000), and are accompanied by neural 

plasticity, such as changes in hemispheric specialization for language (Saygin, Leech, & 

Dick, 2010).  The presence of this double dissociation suggests that at least some of the 

neural resources necessary for speech are different from those used in other forms of 

auditory processing (but see Pinard, Chertkow, Black, & Peretz, 2002 for an alternative 

perspective on pure word deafness). 

1.2.1.3 Developmental Evidence for Domain-Specificity 

Developmental findings have also been used to justify the idea of speech-specific 

processing of speech information.  The idea is that if young enough infants show an 

ability to attend to and process speech information, this could indicate an innate 
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proclivity for speech perception that is unmatched by other types of auditory processing.  

One early study used a preferential looking paradigm to compare 4.5-month-old infants’ 

looking times to speech versus those to white noise and found that the 4.5-month-olds 

were more likely to look at a visual object linked to the speech sound than one 

corresponding to the white noise (Colombo & Bundy, 1981).  However, white noise 

makes a poor comparison to speech, as it lacks much of the acoustic complexity of 

speech.  Athena Vouloumanos and colleagues have recently rectified many of the issues 

identified in that and other studies of infants’ speech preferences.  Using a similar 

procedure, Vouloumanos and Werker (2004) found that infants as young as 2 months old 

preferred listening to natural speech more than listening to  sine-wave speech-like 

auditory signals.  This preference was later extended to neonates (just 1 to 4 days old) 

using a high-amplitude sucking paradigm (Vouloumanos & Werker, 2007).  Later 

experiments along these lines showed that infants at young as 6 months recognize that 

speech involves the communication of information (Vouloumanos, Martin, & Onishi, 

2014), and that the strength of this bias at 12 months of age can predict language 

outcomes at 18 months (Vouloumanos & Curtin, 2014), showing that the speech bias has 

practical implications as well. 

It is not just the case that infants are drawn to speech at a young age; they also 

show evidence for processing it in a way that sometimes resembles adults.  For example, 

they are capable of processing subphonemic detail in a way that resembles adult listeners.  

2-month-olds can differentiate variants (or allophones) of stop and liquid sounds that can 

be used to signal word boundaries (Hohne & Jusczyk, 1994).  3.5-month-olds apparently 

compensate for coarticulation and cue weighting in the perception of consonant voicing 
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and manner contrasts (J. L. Miller & Eimas, 1983).  3-month-olds can integrate 

information presented across two ears in order to perceive a sound as a [da] or a [ga], a 

fact that resembles the previous studies of duplex perception (Eimas & Miller, 1992). 

Infants also show perceptual constraints that resemble those present for adult 

speakers.  For example, consider the ability of 6-to-8-month-old infants being raised in an 

English-speaking environment to perceive categories of stops within a place continuum 

ranging from a bilabial to a retroflex voiced stop.  The infants could distinguish pairs of 

consonants that are treated as different categories in both Hindi and English (e.g., [b] and 

[d]) and Hindi alone (e.g., [d] and [ɖ], which are both treated as examples of [d] for 

English speakers), but could not differentiate pairs of consonants that are 

indistinguishable to speakers of both languages, such as tokens that would both be 

considered examples of [d] in English and [ɖ] in Hindi (Werker & Lalonde, 1988).  

Infants as young as 4.5 months show constraints on phonetic perception that resemble 

faithfulness and markedness constraints in Optimality Theory (Prince & Smolensky, 

2004), indicating a bias towards simpler and less variable sound sequences (Jusczyk, 

Smolensky, & Allocco, 2002).  In one particularly fascinating study, 6-month-old infants 

were unable to distinguish dental and retroflex stops (such as those used in Hindi) when 

they were given a flat teether that impaired their ability to control the movement of their 

tongue (Bruderer, Danielson, Kandhadai, & Werker, 2015), which contrasts with their 

ability to successfully discriminate when given a gummy teether that does not affect 

tongue movements.  This suggests that some degree of sound-to-motor correspondence is 

known by infants as young as 6 months old, as proper control of the tongue is necessary 

to differentially produce the dental and retroflex stops. 
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1.2.2 Evidence against Domain-Specificity 

Motor theories have been criticized since virtually their inception (Lane, 1965).  

For example, opponents of motor theories cite the complexity of routing through a 

separate motor representation rather than more directly focusing on the sound signal that 

is supposed to transmit articulatory detail.  In direct contrast to motor theories of speech 

perception, general auditory theories take almost the polar opposite view of phonetic 

perception.  Under general auditory theories, speech is, in fact, not a mode of processing 

that requires special abilities.  Instead, general auditory theories treat speech sound 

perception as a special instance of auditory processing.  Experiments that test general 

auditory theories often involve creating non-linguistic analogues to typical speech 

perception tasks, with the idea that the same pressures that are exerted on speech sound 

perception are also exerted on those analogues.  Many of the supposed linguistic effects 

from previous studies are found in other auditory domains (Diehl, Lotto, & Holt, 2004; 

Holt & Lotto, 2008).  Evidence for general auditory views generally comes from three 

sources: context effects on phonetic categorization, animal models of speech perception, 

and the role of expertise in phonetic categorization. 

1.2.2.1 Cross-Domain Context Effects 

The first line of evidence in favor of general auditory models takes some of the 

primary sources of evidence cited in favor of motor theories of speech perception and 

turns it on its head: coarticulation (Holt & Kluender, 2000).  Even without evidence from 

other sources, there was some speculation that coarticulatory effects could best be 

explained through acoustic models, not ones that depended on the gestural underpinnings 

that caused them (Massaro & Oden, 1980).  For example, the perception of the middle 
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vowel in CVC sequences is influenced much more strongly by coarticulation if the 

consonants within the sequence are both voiced than if they are both voiceless.  This 

arises even though the consonants involved require (roughly) analogous gestures; for 

instance, both [t] and [d] involve stopping the airflow entirely using the tip of the tongue.  

Under motor theories, this is puzzling; the same motor gestures should lead to similar 

coarticulatory effects.  Proponents of general auditory theories suggest instead that the 

differences between the voiceless and voiced consonants’ coarticulatory effects instead 

arise from the acoustic information that characterizes the consonants (Holt, Lotto, & 

Kluender, 2000).  However, the primary mode of attack against the idea of coarticulatory 

effects showing speech-specificity was along the lines of the same one used to challenge 

duplex perception (C. A. Fowler & Rosenblum, 1990); namely, by finding a non-speech 

analogue that could trigger effects that resembled those in speech. 

 One case study relates to consonantal sequences of a liquid (such as [l] or [ɹ]) 

followed by a voiced stop (ambiguous between [g] or [d]).  Both English and Japanese 

listeners alike are more likely to perceive the ambiguous stop as a [g] when the preceding 

syllable ends with [l] than when the preceding syllable ends with [ɹ] (Mann, 1986), a fact 

that is particularly remarkable because Japanese speakers cannot perceptually distinguish 

[l] and [ɹ].  For motor theories of speech perception, this results from the differing tongue 

gestures used to produce [l] and [ɹ], which have lawful relationships with the F3 values 

that typically signal the difference between [g] and [d].  Indeed, this was first treated as 

an excellent test case for motor theories.  However, under general auditory theories, such 

findings can be explained in terms of frequency contrast; the F3 frequency information 
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that distinguishes [l] from [ɹ] might also lead to differences in the perception of the F3 

frequency information that distinguishes [g] from [d].     

To test the frequency contrast account, proponents of general auditory theories 

have used pure tones to modulate phonetic boundaries.  Pure tones are often used for 

experiments along these lines because it is clear that they could not be seen as a part of 

any purely phonetic module.  Thus, the influence of pure tones on phonetic categories is 

taken as evidence that information outside the linguistic signal can influence speech 

perception.  Indeed, non-linguistic tones at frequencies at or around those characteristic 

of the F3 of [l] and [ɹ] also lead to “coarticulatory” effects on following stops; an [l]-like 

pitch leads to more [g] reports (Lotto & Kluender, 1998).  Long-term distributions of 

pure tones around [ɹ]- or [l]-like frequencies can also trigger similar coarticulation-like 

effects (Holt, 2005, 2006), regardless of the pitch immediately preceding the stop.  

Similar contingencies have been found for  the influence of the rate of non-linguistic 

tones on tokens ambiguous between [b] and [w] (Wade & Holt, 2005). 

Of course, this evidence has not gone unchallenged.  One of the most interesting 

pieces of evidence against this comes from Tamil, a Dravidian language spoken in South 

India.  Tamil has two liquids, [ɾ] and [ɭ], which are both perceived by English speakers as 

examples of [ɹ].  Acoustically, both resemble [ɹ] in their third formant frequencies.  In 

terms of the articulatory underpinnings of each sound, [ɾ] is produced with the tongue 

close to the front of the mouth, while [ɭ] is produced with a retroflex tongue tip, reversing 

the pattern found for English’s [ɹ] and [l].  According to motor theories of language, the 

difference in tongue gestures should lead to a reversal of the pattern found in English, 

with more [g] responses after [r] rather than after [ɭ].  According to general auditory 
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theories, meanwhile, [g] responses should be approximately equal across the two 

conditions, as the F3 frequencies are the same across each liquid.  Viswanathan, 

Magnuson, and Fowler (2010) found that the results much more closely tracked the 

predictions of motor theories of speech perception.  Strikingly, these effects were not 

found for any number of non-speech analogues of the Tamil sounds; non-speech tones 

with similar frequency information tended to lead listeners to report [g] at a rate similar 

to that of [ɹ], resembling the acoustic qualities of [ɹ], [ɾ], and [ɭ]. 

1.2.2.2 Animal Models of Speech Perception 

Another source of evidence cited in favor of general auditory theories of speech 

perception comes from the non-human animal literature.  If, as motor theories argue, 

speech perception is a uniquely human capability, born of innate knowledge of mappings 

between sounds and articulations, non-human animals (who would have no reason to 

have knowledge of human articulators) should not be able to perceive speech in a human-

like fashion.  At a broad level, it may be that such criticisms miss the point; it is rarely the 

case that the non-human animal studies of speech perception propose, say, a common 

mechanism to explain human and non-human animal perception of speech, such that the 

ability to perceive speech in a human-like fashion represents a homologous development 

(Trout, 2001).  Still, non-human animal studies of speech perception are ubiquitous in 

this literature.  Particularly important models have included the chinchilla (Chinchilla 

lanigera), the Japanese quail (Coturnix japonica), the budgerigar (Melopsittacus 

undulatus), and non-human primates (including chimpanzees and macaques). 

Chinchillas were some of the first animals to have their perception of human 

speech studied.  Their hearing acuity across frequencies is broadly similar to those of 
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humans, making them an excellent model animal to study aspects of human hearing (J. D. 

Miller, 1970).  Kuhl and Miller (1975) trained chinchillas to categorize stop continua that 

varied in voice onset time (VOT), with intermediate steps being heard as either a [t] or a 

[d], by using an avoidance condition procedure.  Under that procedure, the chinchillas 

were taught to rush to the opposite side of their cage from a water tube when they heard 

one of the endpoints on the continuum, or else a shock would be delivered.  After being 

trained to distinguish the [t] and [d] endpoints, the intermediate steps were played for the 

chinchillas.  The proportion of trials in which the chinchillas fled the water tube was 

treated as an index of how often they heard that sound as belonging to the trained 

category.  Chinchillas showed strikingly similar response patterns to humans asked to 

identify the exact same items along a continuum; as with humans, chinchillas 

categorically perceived the items, with stimuli having a VOT of less than 20ms being 

reliably categorized as a [d], stimuli having a VOT of more than 40ms being reliably 

categorized as a [t], and a sharp identification gradient intermediate between those values.  

Follow-up results indicated that the training could also extend to other stop categories, 

with training on [t] and [d] extending to both bilabial and velar stop categories, again in a 

way that strongly resembled native English speakers’ perception of the stops (Kuhl & 

Miller, 1978).  Recordings from chinchilla auditory nerves indicated that these findings 

may have stemmed in part from aspects of auditory nerve responses in response to 

auditory discontinuities, with a natural discontinuity in neural responses roughly aligning 

with the discontinuity present in perceptual responses (Sinex, McDonald, & Mott, 1991).   

Chinchillas also seemed to ignore phonetic detail that is used for speaker identification 

when distinguishing between [a] and [i] (Burdick & Miller, 1975). 
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Human-like performance has also been observed in avian models.  Songbird 

communication provides some of the best analogues to human vocal communication 

(Soha & Peters, 2015) as songbirds demonstrate evidence of vocal learning, the ability to 

learn and imitate non-innate vocalizations.  Songbirds are in fact one of the very few 

classes of animals that have this ability, along with bats, cetaceans (such as dolphins), 

parrots, and hummingbirds (Jarvis, 2004) and elephants (Poole, Tyack, Stoeger-Horwath, 

& Watwood, 2005).  Vocal learning is, of course, one of the hallmarks of human 

linguistic competence: humans are capable of learning new words, and even new 

languages, throughout the lifespan.  This makes songbird communication an alluring 

target for speech perception studies. 

Two of the most-studied songbird species with regard to speech perception are 

Japanese quail and budgerigars.  Like humans, budgerigars are affected by the rate of 

context syllables in distinguishing [b] and [w] (Dent, Brittan-Powell, Dooling, & Pierce, 

1997).  They parse VOT continua in a categorical fashion, with stimulus labeling roughly 

matching that for humans (Dooling, Okanoya, & Brown, 1989).  And they (but not zebra 

finches, another common bird model) use F3 to distinguish [ɹ] and [l] in categorical 

fashion (Dooling, Best, & Brown, 1995).  Studies of Japanese quail went even further by 

exploring the coarticulatory effects explored in detail above.  Japanese quail trained to 

peck at different keys when they heard [g] and [d] sounds were more likely to peck at the 

[g] key when an ambiguous stop was preceded by [l] than when it was preceded by [ɹ] 

(Lotto, Kluender, & Holt, 1997).  These results suggest that it is not just humans that 

show human-like categorical effects in perceiving speech sounds. 
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Interestingly, the speech perception capabilities of our close animal relatives, 

primates, remains relatively unexplored.  This may be in part because other primates are 

not vocal learners (Egnor & Hauser, 2004).  However, chimpanzee vocal tracts have very 

recently been described as capable of producing sounds that closely resemble human 

speech sounds (Fitch, de Boer, Mathur, & Ghazanfar, 2016), and the neural organization 

of at least primary auditory cortex when listening to speech appears to be similar to 

humans (Steinschneider, Nourski, & Fishman, 2013).  Studies of speech perception in 

non-human primates have been mixed in their findings.  Although macaques do not show 

similar patterns of categorization as English-speaking humans in distinguishing [ɹ] and 

[l], putting the boundary between each liquid category in a different location, they do 

combine cues to the liquid distinction in a way that approximates human abilities (Sinnott 

& Brown, 1997).  Those cue integration relationships do not hold, however, when 

considering differential cues to the perception of say versus stay (Sinnott & Saporita, 

2000).  Macaques are also worse than humans when extending their knowledge of trained 

sound categories (such as [b] and [d]) to new categories (Sinnott & Williamson, 1999), 

and do not integrate formant frequencies to categorize vowel sounds in a similar way to 

humans (Sinnott, Brown, Malik, & Kressley, 1997). 

1.2.2.3 Expertise 

A final source of evidence given in favor of general auditory theories of speech 

perception relates to the idea of category expertise in phonetic perception.  The idea is 

that, to the extent that people perceive speech sounds differently from other types of 

auditory perception, these differences follow mostly from the massive amounts of 

experience that humans have in hearing language, not from any abilities special to 
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language per se (Lotto, 2000).  This tracks closely many of the debates on innateness 

versus experience in face perception; general auditory theories take the same position as 

proponents of domain-general approaches to face perception (Tarr & Gauthier, 2000) in 

saying that erstwhile speech specialization is solely the result of expertise.  Some aspects 

of the categories that are learned may obey some naturally-occurring constraints in 

acoustic perception (Holt, Lotto, & Diehl, 2004), but even aspects of those constraints 

may require learning (Holt, Lotto, & Kluender, 2001). 

This has led proponents of general auditory theories to link speech sound 

categorization to questions of categorization in cognitive psychology more generally 

(Holt & Lotto, 2010), with the suggestion that learning processes within language should 

resemble those outside of language (Liu & Holt, 2011).  Interesting enough, these 

theories would also predict that language categorization might bleed back over into non-

linguistic tones.  There is some evidence that English and Japanese speakers differ in 

their ability to learn [ɹ]- and [l]-like non-speech sounds (Iverson, Wagner, & Rosen, 

2016).  Given the focus of the dissertation, the importance of learning and expertise in 

categorization will be returned to in much more detail in Section 2. 

1.2.3 Summary 

The results of the experiments summarized above leave the field of speech 

perception at an interesting point.  Despite rollicking debates historically, many of the 

theoretical perspectives with regard to speech perception seem to have converged on the 

idea that speech is not particularly special.  That is, speech perception is not separate 

from auditory perception.  The question debated is whether the fundamental units of 

speech perception are acoustic (Holt & Lotto, 2008) or gestural (Galantucci et al., 2006) 
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in nature; but there are not many advocates of the idea that, whatever those units may be, 

they are perceived or processed in a way that is different from other entities in the world.  

Yet speech must somehow be different from the rest; after all, speech is used as an input 

to broader language systems, such as syntax and semantics.  Neither the sound of jangling 

keys nor the motor gestures associated with jangling keys can become a part of a 

syntactic phrase (Poeppel, Idsardi, & van Wassenhove, 2008).  And the studies of infant 

speech perception, do convincingly paint a picture that infants can distinguish and attend 

to speech information to the exclusion of other, similar acoustic signals (Vouloumanos & 

Werker, 2007).  So are there any principles that are domain-specific in the processing of 

speech?  To the extent that there are, what are they, and where did they come from?  To 

the extent that abilities are shared, what elements are shared? 

1.3 The Present Dissertation 

The present project seeks to explore those questions in two domains: 

categorization and adaptation.  I hope to refine whether phonetic learning diverges from 

category learning more generally, as well as whether the principles that allow listeners in 

speech to adapt to speakers of different rates are also present when perceiving visual 

actions.  In doing so, this research will help to establish the extent to which speech is 

special.  The projects related to category learning below follow fairly conventional lines, 

bringing thoughts and ideas from the domain-general category-learning literature to bear 

on phonetic categories.  The projects related to adaptation, however, take a different tack; 

they ask instead to what extent the principles of phonetic adaptation and word 

segmentation can be applied to the visual event segmentation literature, which represents 

a novel directionality for most studies examining the domain-generality of phonetic 
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processing.  Given the split nature of the projects that make up this dissertation, it is split 

into two main sections. 

Section 2 centers on category learning.  Chapter 2.1 gives an overview of the 

category-learning literature, focusing on theories of category learning both outside and 

inside phonetics.  Chapter 2.2 reports the results of previous experiments probing 

phonetic category learning that I conducted while at the University of Maryland.  I 

uncovered a bias in phonetic category learning against the easy acquisition of disjunctive 

categories (i.e., categories that “skip around” in phonetic space), which does not much 

resemble proposals outside the speech literature.  Chapter 2.3 takes the methodologies I 

used to examine language and applies them to study the acquisition of non-linguistic 

categories, in particular categories of musical instruments. The biases present in the 

phonetic learning experiment are not present in the acquisition of musical instrument 

categories, suggesting that some aspects of phonetic category learning are domain-

specific. 

Section 3 focuses on rate adaptation in event segmentation.  In Chapter 3.1, I 

discuss the concept of adaptation, especially rate adaptation, in phonetics, as well as its 

consequences for word segmentation.  Chapter 3.2 includes a previous experiment of 

mine exploring rate adaptation in Arabic, which showed strong rate adaptation effects.  

Chapter 3.3 takes the rate adaptation literature within phonetics and applies the 

methodologies used there to the segmentation of visual events.  I find evidence for rate 

adaptation in event perception that I believe is the first of its kind and has striking 

similarities to rate adaptation in speech perception. 
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A final chapter, Chapter 4, provides conclusions and final discussion.  I advance 

the idea that both phonetic learning and phonetic adaptation might themselves form a 

single processing domain that requires “phonetic plasticity” that can help in both learning 

new speech sound categories and adapting to variation in old ones.  I talk about possible 

future studies of this idea, and other extensions to the present experiments.  Particular 

attention is paid to possible neural underpinnings of phonetic plasticity, as well as 

applications of that idea to disordered populations. 
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2 Category Learning 

2.1 Background 

What makes a mammal a mammal?  Is it something about fur?  Live birth?  Milk 

production?  Ear bones?  A certain type of jaw?  Modern scientific theories propose some 

specific definitions of “mammal”, but it does not take scientific training to recognize that 

mammals can be recognized as a group of disparate individual items that have properties 

that can be extended to new members of the group.  This makes “mammal” a good 

example of a category.  Categories involve individuals that are grouped together; 

however, critically, these are not set groups of individuals (as in, say, an individual 

family), but are labels that can be extended to new instances.  These labels have 

behavioral consequences.  In the context of experiments related to categorization (in the 

non-speech category learning literature, often artificial, lab-created categories of visual 

objects), these consequences might be as prosaic as which of two response buttons are 

pressed.  For categories in the real world, the effects can sometimes be of profound 

import; for an animal in the wild to miscategorize a predator as prey might be a fatal 

mistake.  Most, if not all, categories must be learned.  At the very least, the precise 

contours of what belongs in a certain category and what does not must be fleshed out, a 

problem referred to as category learning.  In the sections below, I discuss category 

learning theories inside and outside of language, with a special focus on different 

approaches to category learning and (especially) dual-system theories of category 

learning, a group of theories with growing influence outside of language and one being 

newly imported into the phonetic learning literature. 
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2.1.1 Non-Speech Category Learning 

The review of modern ideas about category learning below owes much to 

previous summaries.  The interested reader is particularly referred to reviews by 

Kruschke (2005, 2008), which, although slightly out of date, provide an excellent primer 

to some of the major schools of thought outlined below.  Theories of category learning 

can largely be differentiated by the answers they give to two questions.  First: how much 

abstraction is there when storing a category?  Are categories described in relatively 

sparse terms, or is every member of each category stored?  And, second, to the extent that 

there is abstraction, what is the nature of the abstraction? 

2.1.1.1 Prototype Models 

One early class of models was prototype models, which, for much of the 1970s, 

were ascendant in the category learning literature (Mervis & Rosch, 1981).  Prototype 

theories, unsurprisingly, relied on the construct of a prototype, or ideal category member, 

in order to categorize items.  Prototypes are generally assigned on a one-to-one basis, 

with each category having a single prototype.  Novel items are associated with a category 

based on a simple, linear computation of the similarity of the new item to the prototype 

representing each category (Reed, 1972).  For example, the category “mammal” might be 

defined by the most mammal-like mammal, something like a “dog”, while “bird” might 

be defined by the most bird-like bird, such as a “robin”.  A new, potentially ambiguous 

animal (such as a platypus) would be assigned to the “bird” or “mammal” categories 

based on how similar that animal was to the prototype of each category.  Platypuses 

would be ambiguously categorized because in some ways they resemble both dogs and 

robins. 
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Note that a prototype does not necessarily need to be a real item taken from a 

category; it can be an ideal member that may never have been witnessed by the learner.  

Indeed, items that are treated as prototypes are generally the quickest to be classified as 

belonging to their own category even when they are never directly witnessed (Homa, 

Cross, Cornell, Goldman, & Shwartz, 1973).  They are also most likely to be retained 

across experimental sessions spaced days apart from each other.  A delay of a week 

between training and testing, for example, was sufficient to lead to forgetting of 

individual memories of dot patterns, but not to the prototypes that those dot patterns were 

created from (Posner & Keele, 1970).  Besides dot patterns (Homa, Sterling, & Trepel, 

1981; Posner & Keele, 1968), prototype effects have also been observed for the perceived 

location of residence for invented biographies (Reed & Friedman, 1973) and semantic 

categories such as “fruit” (Rosch, 1975). 

Still, prototype theory has not remained a strong force in the category learning 

literature.  The reasons for this are fairly clear: prototype approaches to learning simply 

cannot accommodate the acquisition of certain types of categories.  Examples can be 

found in Figure 2.  Figure 2(a) and 2(b) show examples of categories that can easily be 

learned with prototypes.  Larger blue and red dots in Figure 2(a) and Figure 2(b) indicate 

the prototypes that represent an approximate average of the items in each category, while 

the dotted lines in the left two figures show the spaces in each diagram that would be 

closer to each prototype (and would, therefore, be categorized into each category).  In 

both cases, the prototypes can be found in the middle of the distribution of items 

belonging to each category.  As such, any reasonable distance metric will quickly and 

efficiently parcel the category learning space into the relevant categories being learned; 
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the mischaracterization of the category boundary in Figure 2(b) is solely the result of the 

particular instances generated here rather than any failing of the prototype theory itself.    

However, Figure 2(c) shows a quite different result.  In this case, the categories being 

learned form a bullseye, with the blue category being entirely surrounded by the red 

category.  In this case, the prototypes in question are almost directly right on top of each 

other.  This would lead the category space to either be divided cleanly in half, with a 

midpoint immediately between the two category prototypes, or to a complete failure to 

learn the categories, neither of which accurately matches human performance (Ashby & 

Gott, 1988; Ashby & Waldron, 1999).  With limited exceptions (Petrov, 2011), current 

studies of prototype theories have generally constrained the set of situations in which 

prototypes might be used; some have conjectured that prototypes are only used early the 

learning process (J. D. Smith & Minda, 1998), giving way to other learning systems later 

in learning. 

 

Figure 2. Hypothetical prototype category distributions 

2.1.1.2 Rule-Based/Decision-Bound Models 

Other early theories of category learning, building on the concept literature, often 

relied on explicit rules to differentiate categories.  This assumes a great deal of 

abstraction on the part of the learner, as categories are divorced from the individual 

instances being taught and are instead discussed in terms of stark, black-and-white rules.  

These rules often resembled, say, the definitions used for ecological classifications.  The 

(a)  (b)  (c)  
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category of “mammal” was traditionally described in terms of warm-bloodedness, 

hairiness, live birth, and milk production.  If an animal checked all four of those boxes, it 

was assigned to the category “mammal”.  But, of course, exceptions emerged; the 

platypus is hairy and produces milk, but also hatches from an egg.  Similar exceptions in 

other categories are also hard to accommodate under rule-based theories, which may have 

hastened their demise.  Strictly rule-based theories were quickly succeeded by decision-

bound models, wherein categories are described by boundary conditions1.  For 

“mammal”, modern approaches to ecological classification often take into account 

genetic similarity; one could imagine a definition of “mammal” that says a mammal is an 

organism that shares a certain proportion of its genetic code with already-existing 

members of that category.  Platypuses would then be sorted into the mammal group 

because they are located on the mammal side of that genetic boundary. 

Decision-bound models of category learning were primarily advanced in the late 

1980s and early 1990s.  Under decision-bound models, learners are attempting to 

determine the ideal boundary in perceptual space to separate multiple categories.  The 

boundaries need not necessarily be linear, although generally under decision-bound 

models the boundaries proposed are subject to processing constraints that discourage 

overly complex boundaries (Ashby & Gott, 1988; Ashby & Townsend, 1986).  Examples 

of distributions learnable by decision-bound theories of categorization are below in 

Figure 3.  The distribution of Figure 3(a) is trivial to learn using a decision-bound-based 

model; the boundary between the categories can be given simply by a line splitting items 

                                                 
1 Indeed, the similarities between these types of theories and their proponents that 

I largely use “rule-based” and “decision-bound” interchangeably throughout the 

dissertation. 
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in half according to their values in Dimension A.  Similarly, Figure 3(b) shows a solution 

to categorization that requires both Dimensions A and B; again, a simple line, this time 

combining information from both dimensions, is used.  Figure 3(c) shows the principal 

theoretical improvement of decision-bound theories over prototype ones: the ability to 

model non-linear and non-normal category boundaries.  Whereas prototype theories 

would generally posit two entirely overlapping prototypes, some decision-bound theories 

(Ashby & Waldron, 1999) are happy to separate the red and blue categories using the 

circular boundary shown in the figure. 

 

Figure 3. Hypothetical decision-bound category distributions 

Decision-bound models were not without their drawbacks.  Under many decision-

bound models, categorization is generally deterministic.  Participants classify items on 

one side of the boundary as solely belonging to one category, and items on the other side 

as belonging to another category.  At times, this may accurately reflect the end state of a 

category learning process, but it does not adequately explain the path of acquisition 

before that point, as learners will, presumably, be more uncertain about how to categorize 

items.  Even once categories are learned, it is likely that learners would still be hesitant 

about some aspects of categorization, particularly categorizing items close to a boundary.  

Decision-bound models largely lack a way to model this variability.  Vandierendonck 

(1995) proposed resolving this by having decision bounds compete for attentional 

(a)  (b)  (c)  
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resources, with uncertainty arising from the simultaneous consideration of multiple 

possible decision bounds.  The brittleness of decision-bound models with regard to 

unusual category structures, however, largely prevented their independent use; parts of 

these models were incorporated into later multiple-system models (see below). 

2.1.1.3 Exemplar Models 

The late 1980s also saw the rise of another set of category learning models: 

exemplar models.  Exemplar models see category learning as the result of memorization 

of specific instances.  Rather than incorporating abstraction in the form of a single 

category prototype or a category boundary, exemplar models eschew it entirely.  

Category membership is determined only by the similarity between a new item and 

previously observed items.  The categories of “mammal” and “bird” are defined not by 

abstract rules or prototypes, but instead by the memories one has of animals belonging to 

each group: all of the specific instances of dogs, cats, horses, and humans on one hand, 

and all of the specific instances of robins, penguins, emus, finches, and cardinals on the 

other hand.  Thus, a platypus might be sorted into the mammal or bird categories based 

on which group of animal instances best resemble the platypus. 

In a way, exemplar theories represent an extreme instance of some prototype 

theories.  While some prototype theories allowed for multiple prototypes per category, an 

exemplar theory of category learning resembles a prototype theory where the ratio of 

prototypes to items is one-to-one (Rosseel, 2002); that is, every item exerts a prototype-

like influence on categorization.  Although early reaction to exemplar theories was 

dismissive—they were described as “theoretically anomalous” by Mervis & Rosch (1981, 

p. 103)—exemplar theories came to dominate the field of category learning. 
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The cardinal principle of exemplar theories—that categorization is only based on 

observed examples of categories—emerged early.  Medin and Schaffer (1978) showed 

that exemplar-only theories of categorization applied just as well as, if not better than, 

prototype theories to explaining response patterns for simple shapes and schematic faces.  

Probably the most widely-used exemplar theory is the Generalized Context Model 

(GCM) of Nosofsky (1986).  According to the GCM, categorization is essentially a 

special class of item identification.  Categorization only requires summing across how 

closely a new item resembles previously identified ones, using the most similar items to 

that new item to make a hypothesis about the category of that new item.  This approach 

was later merged into a connectionist model known as ALCOVE (Kruschke, 1992; 

Nosofsky, Kruschke, & McKinley, 1992), which also incorporated information about 

attention on the part of the learner to different dimensions of the categories being learned.  

Later iterations have combined exemplars with the idea of a “random walk” (Nosofsky & 

Palmeri, 1997); that is, the outcome of a process of successive, iterated, random steps.  

Under this proposal, exemplars, when they are being used to determine the categorization 

of a novel item, do not have a fixed location in perceptual space.  Instead, they adopt a 

random walk, shifting either towards the new item or away from the new item in 

perceptual space.  When the exemplars walk into the novel item, they then contribute to 

the categorization of that item.  Categorization occurs after that item is pushed over a pre-

defined threshold of activation, once enough exemplars have made contact with the new 

item.  This and similar approaches (Lamberts, 2000) readily accommodate reaction time 

patterns in category learning experiments, as both the number of readily accessible 
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exemplars and the absence of competitors should lead the learner to respond more 

quickly. 

What was the pull of exemplar approaches over prototype and decision-bound 

ones?  The key is in the categories that are learnable under exemplar theories.  Both 

prototype and decision-bound models come freighted with theoretical assumptions about 

the structure of categories (Ashby & Waldron, 1999).  Prototype models, as outlined 

earlier, have significant drawbacks in learning non-linear categories.  Decision-bound 

models are capable of learning non-linear boundaries, but often struggled in the face of 

uncertainty or particularly complex structures.  Exemplar models have no such 

constraints.  Indeed, barring an inability to perceptually discriminate items, exemplar 

models can learn most any category (Ashby & Alfonso-Reese, 1995; McKinley & 

Nosofsky, 1995), which is a strong—and testable—empirical claim, as will be examined 

later in this dissertation.  And they can do so while accommodating some of the key 

theoretical insights of prototype and decision-bound theories (Medin & Schaffer, 1978).  

For example, MINERVA 2, an exemplar model, was shown to be capable of replicating 

some of the key findings related to category exemplars (Homa et al., 1973), such as the 

idea that category exemplars are “privileged” in processing and memory, because 

prototypes are often surrounded by numerous exemplars in memory.  Schematic 

examples of category learning in exemplar models are shown in Figure 4.  Each exemplar 

exerts a “pull” on the category space around it; areas shown in grey indicate regions 

where both red and blue items might influence the categorization of an item. 
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Figure 4. Hypothetical exemplar category distributions 

Exemplar theories are not without criticism.  Consider one of the erstwhile 

strengths of exemplar models, the idea that all categories are learnable, given enough 

training (Ashby & Alfonso-Reese, 1995).  Is this actually a tractable hypothesis?  

Listeners are constrained in their category learning, failing to learn some complex 

category structures even after many days of training (McKinley & Nosofsky, 1995) and 

preferring simple, linear category boundaries to more complex ones (Ashby, Waldron, 

Lee, & Berkman, 2001).  Exemplar models also find the learning of hierarchies to be 

quite challenging; for example, monotremes and primates are examples of mammals, and 

mammals are examples of animals.  Yet the fact that different stimulus dimensions play a 

role in determining category membership at each level of a hierarchy is challenging to 

accommodate under a theory that only depends on item memorization, as every level of 

the hierarchy must be memorized simultaneously, with different attributes of the stimuli 

weighted differently for each level (Lassaline & Murphy, 1998).  Finally, exemplar 

models of category learning rely strongly (perhaps even more strongly than other theories 

of category learning) on notions of similarity; yet how “similarity” is assessed in a model 

that only has access to individual memories, and how a learner selects which attributes of 

a stimulus can be used to calculate it, are both highly underspecified (Kruschke, 2005). 

(a)  (b)  (c)  
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2.1.1.4 Multiple-System Models 

With all three classes of model previously outlined showing some weaknesses, 

one might wonder whether any one system can explain category learning to a sufficient 

extent.  For one class of researchers, the answer is, clearly, “no”.  Multiple-systems 

theories emerged in the late 1990s as a significant competitor to exemplar theories, 

perhaps bolstered by claims about the mathematical interchangeability of exemplar, 

decision-bound, and prototype theories (Ashby & Maddox, 1993; Rosseel, 2002).  An 

example of this interchangeable nature was sketched at the beginning of the section on 

exemplar theories; an exemplar theory is equivalent to a prototype theory with a single 

prototype for every instance of a category.  As of this writing, it does not seem to be 

much of a stretch to describe multiple-system theories as being the most popular in the 

contemporary field.  Even some of the strongest proponents of exemplar models of 

categorization have begun to acknowledge the possibility of multiple systems of category 

learning, arguing that making use of many possible category learning models shows that 

there is “clear evidence that participants learn to categorize in more than one particular 

way” (Donkin, Newell, Kalish, Dunn, & Nosofsky, 2015, p. 945). 

The reasons for this shift are many, but two stand out.  First, inter-learner 

variability.  Many of the foundational models in the exemplar model literature were based 

on data aggregated across participants.  When investigating participants on an individual-

by-individual basis, some participants show much more rule-like behavior than would be 

predicted on the basis of exemplars alone (Kalish & Kruschke, 1997).  Changes between 

the use of exemplar-based learning and rule-based learning are strongly associated with 

different task demands and experimental contexts, which would be surprising if only a 
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single system determined learning (E. E. Smith, Patalano, & Jonides, 1998).  A second 

relates to category generalization.  Exemplar theories predict that exceptions to simple 

rules might have a strong effect on categorization, particularly if they are present in an 

environment relatively clear of other items.  Instead, participants almost entirely ignore 

those isolated exceptions, categorizing the vast majority of nearby items as belonging to 

the rule-described category (Erickson & Kruschke, 2002; E. E. Smith et al., 1998). 

If multiple systems are at work in category learning, then, what are their forms?  

Theoretically, any combination of the three systems described above could fit category 

learning behavior better than a single one of them.  However, to my knowledge, no 

theories have attempted to fuse all three approaches into a single theory, or to combine 

prototypes and decision bounds.  Although some models have combined exemplars and 

prototypes (Homa et al., 1981; Storms, De Boeck, & Ruts, 2001), detailed analysis of 

such approaches has in general found that the exemplar-prototype hybrids do not fit 

category learning data any better than models that include exemplars alone (Busemeyer, 

Dewey, & Medin, 1984). 

Most multiple system approaches, then, take a tack that combines an exemplar-

like system with a rule-like system.  Under RULEX (RULes and EXceptions; Nosofsky 

& Palmeri, 1998; Nosofsky, Palmeri, & McKinley, 1994), learners first attempt to sort 

items into categories according to simple, linear rules.  If this is not successful up to a 

certain prespecified proportion of trials, the rule-based system falls back first on a lower 

threshold of “success”, and finally on conjunctive rules (rules that require an “and” to 

spell out).  Meanwhile, once the accuracy of categorization reaches a certain level, the 

learner then seeks out exceptions to the rules that were learned, using an exemplar-like 
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process to assign items to those exceptions.  ACT-R (Anderson & Betz, 2001) combines 

the rule-learning system of RULEX with the exemplar-based system of the exemplar-

based random walk model (Nosofsky & Palmeri, 1997) within a connectionist framework 

that has been applied to other cognitive tasks.  Under ATRIUM (Attention To Rules and 

Instances in a Unified Model; Erickson & Kruschke, 1998, 2002), novel items are 

evaluated by both rule-based and exemplar-based modules to determine categorization; 

the reliance on each module is contingent on attentional modulation. 

The most successful dual-system model, COVIS (COmpetition between Verbal 

and Implicit Systems; Ashby, Alfonso-Reese, Turken, & Waldron, 1998), combines a 

familiar rule-based system with a second decision-bound system, albeit one that largely 

replicates exemplar-based learning.  Like in ATRIUM, the rule-based and similarity-

based systems compete to determine the response that is output by the category learning 

system.  The rule-based system makes explicit, verbalizable hypotheses about the 

categories being learned over the course of the experiment.  The similarity-based system, 

meanwhile, is not explicitly an exemplar one.  It is instead based on complex decision 

bounds that are not restricted in their shape or number (Ashby & Waldron, 1999) inspired 

by the firing of dopaminergic basal ganglia neurons.  According to COVIS, at the onset 

of learning, learners tend to rely more on their rule-based systems; over time, they fall 

back on their similarity-based system to assemble detailed category structures.  

Platypuses would first be assigned to “bird” or “mammal” based on abstract properties, 

but after further exposure a similar categorization decision would instead be resolved on 

the basis of similarity. 
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COVIS and similar multiple-system accounts of category learning are intriguing 

in part because of their interest in and reliance on neurobiological evidence, as well as 

their specific behavioral predictions.  For example, tasks that are said to require the rule-

based system are taxed by limits on the memory capacities required to make hypotheses 

about category membership (Waldron & Ashby, 2001).  Meanwhile, tasks that require the 

similarity-based system are easily thrown off by changes to feedback that throw off the 

dopaminergic reward circuitry that is said to underlie the memorization of the decision 

bounds that make up the similarity-based system (Ashby & Maddox, 2005; Maddox & 

Ashby, 2004).  Having two category learning systems that are set up in this way can lead 

to some unexpected predictions that have later accrued significant evidence.  For 

example, patients with Parkinson’s disease tend to show deficits in tasks related to 

similarity-based learning attributed to deficits in reward circuitry (Shohamy, Myers, 

Kalanithi, & Gluck, 2008).  Furthermore, non-human animals (in one particular case, 

rats) can outperform human on tasks that require exemplar-based learning due to their 

weak abilities with regard to rule-based learning when compared to humans 

(Vermaercke, Cop, Willems, D’Hooge, & Op de Beeck, 2014). 

This neurobiological specificity is likely one of the main reasons for the embrace 

of multiple-system theories.  Although exemplar-only approaches have been linked to 

some speculation about, say, the role of the hippocampus in category learning (Pickering, 

1997), these connections are much more tenuous than those proposed by multiple system 

theorists.  Indeed, multiple category learning systems appear to have been embraced 

wholesale by the cognitive neuroscience community, particularly bolstered by perceived 

connections to hypotheses about multiple memory systems (Poldrack & Foerde, 2008; 
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Seger & Miller, 2010; E. E. Smith & Grossman, 2008).  Some have gone as far as to say 

that “it is simply not possible to maintain a single-system approach to learning and 

memory if one takes neurobiology seriously” (Poldrack & Foerde, 2008, p. 203). 

Multiple system approaches have not been without their detractors.  Indeed, many 

studies used to promote COVIS, such as the one that suggested that dual task paradigms 

seem to tax categories that are best learned using the rule-based category learning system 

(Waldron & Ashby, 2001), have been followed by exemplar-only rebuttals (Nosofsky & 

Kruschke, 2002), and even multiple-system ripostes to the rebuttals (Ashby & Ell, 2002).  

Such back-and-forths have largely centered on small details of the decisions made during 

the modeling or the paradigm used to collect the data. 

Borrowing inspiration from broad-based criticisms of dual-system models in 

psychology (Keren & Schul, 2009), however, wider criticisms have been leveled against 

dual-system models (Newell, 2012; Newell, Dunn, & Kalish, 2011).  These broad 

criticisms have focused on two parts of the dual-system enterprise: first, the utility of the 

behavioral and neuropsychological dissociations used to support the idea of two systems, 

and, second, the relevance of neural findings to the proposed division of category 

learning into systems.  On the first front, Newell et al. (2011) convey skepticism about 

the utility of dissociations for determining the presence of non-shared neural or 

behavioral resources, even the vaunted “double dissociation” (neural or otherwise).  

Consider the dual-task paradigm briefly alluded to above.  In that paradigm, the 

simplicity of the category structure to be learned (simple vs. complex) is crossed with the 

task demands (single-task vs. dual-task).  The dual-task paradigm is much harder than the 

single-task one for the simple category structure, but the two tasks are not as strongly 
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differentiated in the complex task structure.  That is in line with a multiple-system 

paradigm in which the different category structures would be processed by different 

category learning systems.  But it is also in line with a single-system account in which 

performance in the complex condition is subject to some sort of floor effect; the task 

demand would simply not be able to make a difference when performance was already at 

a very low level. 

The second critique, that of the relevance of neural findings, relates to Marr's 

(1982) descriptive hierarchy.  According to Marr, problems in cognitive science can be 

described at three levels.  A computational description of a problem lays out what 

processes need to be executed and why those processes are important.  An algorithmic 

description details the representations that are necessary in order to carry out the process 

in question, as well as the transformations that are required in order to turn inputs into 

outputs.  And an implementational description describes the physical mechanism that 

carries out the algorithm.  In cognitive science, this is almost certainly something in the 

brain.  In fact, COVIS (Ashby et al., 1998) was originally formulated with each of these 

levels described.  However, Newell (Newell, 2012; Newell et al., 2011) argues that some 

of the arguments brought forth to support multiple-systems approaches inappropriately 

conflate the levels of description in Marr’s hierarchy, in particular by using neural 

metrics to inform the computational theory being advanced. 

Many of the same arguments regarding dissociations also apply to neural 

measures.  Associations between certain tasks and certain brain regions might easily 

reflect a single-system account of learning (as mediated by, say, difficulty).  Even over 

and above that, though, it is useful to consider to what extent neural measures should 



49 

 

inform computational theories of a problem.  The idea that multiple, distributed brain 

regions underlie category learning does not necessarily mean that multiple cognitive 

systems are at work.  Evidence for a split at the implementational level should not imply 

evidence for a split at the computational level.  These bigger-picture issues remain 

challenging for proponents of multiple systems. 

2.1.1.5 Rational Models  

A final class of models, often termed rational models, provides a more 

computationally-focused account of category learning.  Rational models attempt to 

summarize the ideal end-state of learning rather than the actual procedures that are 

implemented, as generally discussed by the models above (Tenenbaum, Griffiths, & 

Kemp, 2006).  For rational models of category learning, categorization is derived by 

combining information about the likelihood of seeing an object with a particular set of 

features given the category being probed with the prior probability of choosing a 

particular label (Sanborn, Griffiths, & Navarro, 2010).  For example, the mislabeling of 

platypuses may have resulted from the very low likelihood, given other mammals seen in 

the world, of seeing an egg-laying mammal.  Categorization is also affected by the prior 

probability.  A similar fuzzy, egg-laying animal being discovered in, say, New Zealand 

would also be unlikely to be labeled as a mammal (at least at first) because New Zealand 

does not have any native, ground-based mammals, thus making a zoologist’s prior 

likelihood of using the “mammal” label to refer to anything to be quite low. 

Using a rational approach to category learning has some interesting consequences.  

For example, both prototype and exemplar models can be tied in with rational 

approaches, with the differences between the models being described in terms of the 
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ways that the relevant probabilities are computed (Ashby & Alfonso-Reese, 1995).  That 

said, however, it is not common for rational models to be tied to the algorithmic level that 

many of the previously-outlined models operate at.  One early attempt to do this came 

from Anderson (1991), who implemented a system of cluster assignment intermediate 

between prototype and exemplar models as a way to model the probability of observed 

features given a single category.  However, the model was extremely complex, requiring 

the evaluation of hypotheses corresponding to the assignment of every exemplar to every 

possible combination of clusters; it also was strongly order-sensitive.  Later rational 

approaches attempted to rectify these issues by suggesting different ways to assign and 

update the predicted probabilities (Sanborn et al., 2010).  Although this dissertation is 

focused primarily on the algorithmic level, disambiguating between the predictions of the 

theories outlined in the previous sections, rational approaches can illuminate interesting 

corners of the present approach.  For example, speculation about “over-hypotheses”—

hypotheses about hypotheses, or constraints on the types of ideas that can be entertained 

about categories—can benefit from a hierarchical Bayesian approach to learning (Kemp, 

Perfors, & Tenenbaum, 2007). 

2.1.2 Speech Sound Categorization 

Categorization has been a problem often discussed in the realm of speech 

perception, given what has been termed the “invariance problem” in speech.  Speech is, 

by its nature, variable.  Speakers differ in age, gender, native speaker status, and dialect, 

all of which have consequences for the sounds they produce.  Even within a single 

speaker, speech sounds differ according to the adjoining speech sounds they are produced 

with (through coarticulation), to the prosodic context in which they are found, to the 
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emotional and physical state of the speaker, and to chance in line with noise in the speech 

production system.  Yet, despite all of those sources of variability, listeners are still 

capable of understanding the speech of a wide variety of speakers across a wide variety 

of contexts.  The question arises, then: how do listeners cope with the variability present 

in the signal, such that they place the tokens into the correct category?  Previous 

proposals along these lines have differed in terms of what attributes the perceptual system 

must incorporate in order to promote invariance. 

2.1.2.1 Rule-based Models 

Traditional linguistic approaches emphasize the merits of using “distinctive 

features” to differentiate phonetic segments.  Listeners are said to employ a set of 

(perhaps innate) features that align with certain important contrasts in the languages they 

use.  These features—or, at least, their auditory correlates—then allow listeners to 

abstract away from the tokens of individual sounds and understand the signal.  The 

ascription of features to sounds is generally said to follow along the lines of a boundary 

or rule; for example, a stop in English might be classified as “voiced” if it has a voice 

onset time (VOT) of 35ms or smaller, and “voiceless” if it falls above that boundary.  The 

idea of phonetic categories being the result of an orderly combination of distinctive 

features is at its peak in the International Phonetic Alphabet (Ladefoged & Halle, 1988), 

where, say, the [p] sound is described in terms of its values on three categorical 

dimensions: voicing (voiceless), place (alveolar), and manner (stop). 

Early evidence for the value of distinctive features came from studies of short-

term memory, in which participants who learned lists of monosyllables that shared 

certain distinctive features showed more confusion at recall than participants who learned 
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lists of monosyllables that did not share distinctive features, for both vowels (Wickelgren, 

1965) and consonants (Wickelgren, 1966).  Researchers have looked for consistent 

acoustic correlates of these distinctive features, seeking invariant cues for, for example, 

place of articulation (Stevens & Blumstein, 1978).  Invariance has been ascribed to 

various aspects of the speech signal.  One early explanation suggested “template-

matching” of the signal to particular distinctive features (Blumstein & Stevens, 1979).  

Other proposals have included constant ratios of certain acoustic parameters that 

distinguish consonant places of articulation under the umbrella of “locus equations” 

(Sussman, McCaffrey, & Matthews, 1991) and measures that discriminate between 

places of articulation according to the moments (i.e., measures of distribution, such as 

mean, skew, and kurtosis) of the distributions of consonants produced at each place 

(Forrest, Weismer, Milenkovic, & Dougall, 1988). 

Boundary-based theories of category learning have continued to see use in the 

phonetics literature.  The finding that Korean-speaking people hearing speech sounds 

along an alveolar stop continuum show no evidence for a specific, category-related 

magnetoencephalography (MEG) component when Russian-speaking people do, for 

example, has been credited to the presence of a category boundary for Russian speakers 

that is absent for Korean speakers (Kazanina, Phillips, & Idsardi, 2006).  Distinctive 

features have been used to create an abstract lexical representation of words that can 

interface with higher-level (e.g., syntactic) linguistic domains (Poeppel et al., 2008).  Yet 

many of the theories that use distinctive features assume that representations are 

boundary-based rather than directly testing that idea. 
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2.1.2.2 Prototype Models 

As in the general category learning domain, it has long been recognized that some 

instances of phonetic categories are “better” than others (J. L. Miller, Connine, Schermer, 

& Kluender, 1983).  Although items with large VOTs are generally characterized as 

voiceless, a stop with a 300ms VOT will be perceived to be a “worse” [p] more often 

than a stop with a 60ms VOT.  Listeners are perfectly happy to ascribe goodness ratings 

to phonetic categories.  As will be discussed in much greater detail in Section 2.3, these 

ratings are dependent on the rate of speech in a way that parallels shifts in category 

boundaries based on speech rate (J. L. Miller, 1994, 1997; Volaitis & Miller, 1992).  

They are also subject to other, parallel relationships with different acoustic cues to the 

presence of certain phonetic features.  The presence of [t] in the word stay, for example, 

is cued by both the duration of silence before the onset of the following vowel sound and 

first formant transition of that vowel.  Shifting the frequency of the F1 transition higher 

leads listeners to require a longer silence to perceive a single token as a “good” example 

of stay (Hodgson & Miller, 1996). 

The existence of perceptual distinctions between items within categories has led 

some to posit prototype theories of phonetic category learning.  Samuel (1982) found that 

repeatedly playing a prototypical [g] sound led to participants to later classify sounds 

ambiguous between [g] and [k] as a [k], indicating that prototypical [g] sounds were more 

likely than non-prototypical [g] sounds to influence participants’ later perception of 

ambiguity.  Borrowing explicitly from the prototype category learning literature (Mervis 

& Rosch, 1981), Samuel (1982) suggested that this implied categories were represented 

as single prototypes.  Later studies suggested that infants also made use of prototypical 
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representations, with category prototypes (as assessed by adults) leading to significantly 

broader generalization on the part of 6-month-olds (Grieser & Kuhl, 1989).  The latter 

effects were connected to a “perceptual magnet effect”, the idea that category prototypes 

have a special role in the organization of categories that is species-specific; for instance, 

the sorts of generalization findings present for adults and infants do not extend to 

monkeys (Kuhl, 1991).  Later modeling indicated that the reason for these findings may 

be in part because items near the category prototype were less discriminable than those 

further away (Iverson & Kuhl, 1995).  These findings collectively were taken to suggest 

that prototypical category members have a privileged status in speech perception, and 

that that privileged status is indicative of the way that phonetic categories are stored.  

However, these findings have been questioned.  Some of this has been 

methodological.  The setup of the perceptual magnet effect assumes that the non-

prototypical vowels used were still perceived as belonging to the vowel categories being 

tested, an assumption that was questioned in follow-up studies (Lively & Pisoni, 1997).  

More importantly, however, the idea that some phonetic category tokens can be perceived 

as better examples of that category than others (or even as “the best”) can be explained by 

models other than prototype categories of category learning.  Under exemplar theories of 

category learning, an item might be perceived as the prototypical instance of a category 

because it is surrounded by many exemplars belonging to that category (Lacerda, 1995).  

A good [g] is a good [g] because it is surrounded by many [g] tokens, not because it is 

somehow “special”.  Under rational models of phonetic category learning, the perceptual 

magnet effect is explained by a listener’s certainty about a speaker’s intended production 

(Feldman, Griffiths, & Morgan, 2009).  As discussed previously, even decision-bound 
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models could explain some of the patterns of category goodness ratings, given a degree 

of uncertainty about the location and type of boundary present in the signal 

(Vandierendonck, 1995).  The prototype models of categorization thus depend on what is 

essentially a non-sequitur; just because there are prototypical category members does not 

not mean that the categories are represented using prototypes. 

2.1.2.3 Exemplar Models 

Phonetic category learning has also been the home of exemplar-based theories.  

One particularly well-cited instance of an exemplar-based theory of phonetic perception 

is that of Pierrehumbert (2003).  Under Pierrehumbert’s (2003) model, speech sound 

categories are simply the collection of multiple memorized pairings of individual speech 

sound tokens (i.e., exemplars) and categories.  New items that are fed into the system are 

simply compared to previously observed ones.  The categories that the most similar 

previous items belong to are compared with one another, and the new item is paired with 

the category that has the most (and most similar) category connections.  Under exemplar-

based theories, “memory capacity is large…representations in memory are extremely 

detailed, and…[exemplars] include time and many other nonspeech properties” 

(Pierrehumbert, 2016, p. 10.4).  The [p] category, then, is defined by the many specific 

instances of the [p] sound that have been encountered on the part of a listener; distinctive 

features do not play a role in categorization.  These theories have been explicitly inspired 

by exemplar-only theories of category learning, especially the GCM (Nosofsky, 1986) 

and MINERVA (Hintzman, 1986; Homa et al., 1973). 

Much of this speculation arose from discussion of “speaker normalization”, the 

idea that listeners must find a way to rid the signal of, say, speaker-specific acoustic 
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properties that are not directly linguistically-relevant in order to process a signal.  Such 

speaker normalization is generally assumed by many theories of lexical access 

(McClelland & Elman, 1986), and can be seen as the output of rule-based and prototype-

based theories of phonetic categorization.  However, the idea of speaker normalization is 

not above criticism.  Items from word lists are better and more quickly recognized when 

both trained and tested using a single speaker, for example (Palmeri, Goldinger, & Pisoni, 

1993).  Such findings are expected under exemplar theories, in which all acoustic 

information, including that necessary to distinguish between speakers, is saved in 

memory.  Under these theories, even very small phonetic details describing the 

differences between sounds can be critical, as one’s recollection of these fine phonetic 

details may take critical importance in distinguishing between categories (Hawkins, 

2003).  Exemplar theories draw on a rich tradition of variation between speakers, dialects, 

and languages within the phonetics literature.  They have been used to explain why 

diachronic and synchronic sound change is often dependent on the lexical frequency of a 

word (Bybee, 2002) and why listeners are sensitive to within-category phonetic variation 

in lexical access (McMurray, Tanenhaus, Aslin, & Spivey, 2003). 

This represents a radical departure from the previously-described classes of 

theories, which all involve the assembly of abstract categories through defining 

properties.  The authors of such theories have not been shy about the strong departure of 

their hypotheses from previous orthodoxy.  Hawkins (2010), for example, analogized the 

perception of abstract categories in language to other “auditory illusions”.  Other 

exemplar-based theorists have argued “against formal phonology” (Port & Leary, 2005) 

or in favor of going “beyond phones and phonemes” (Port, 2007) due to the “quixotic” 
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nature of quests for individual units (Goldinger & Azuma, 2003).  These theories have 

also been applied towards ideas of lexical access, with exemplar-based theories arguing 

against abstract lexical forms entirely (Goldinger, 1998).  Such rhetoric, though, obscures 

the notion that a recognition of the proper importance of variability and speaker-

dependence does not necessarily require jettisoning the idea of abstract categories 

entirely.  One way to embrace variation without removing abstraction is to adopt a 

multiple-system model of phonetic learning. 

2.1.3 Multiple-system Models in Language 

Multiple-system models are also present in language.  Indeed, they have been 

proposed at a variety of levels of analysis; the acquisition of morphosyntax, lexical items, 

and phonetic categories have all been approached using multiple-system models.  

However, such efforts have usually been conducted in parallel, without cross-talk 

between the divisions nor frequent reference to dual-system models elsewhere.  Below, I 

sketch out some of the principal multiple-system theories of language learning, with 

reference to commonalities between them as well as shared properties with cognitive 

psychology theories of category learning described in Section 2.1.1.4.  It is important to 

note that these models do not always work along the same lines as ones of category 

learning.  It is unlikely that the “categories” being learned in morphosyntax are 

perceptual in nature, nor do the categories used in word learning always neatly reflect 

items that can be perceived.  Still, these models provide an informative model for how 

dual-system views of language might work.  And, in many ways, they show some 

intriguing similarities to newly-proposed dual-system models of phonetic category 

learning that will be subsequently discussed. 
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2.1.3.1 In morphosyntax 

Morphosyntax provides the most fully-realized example of a dual-system model 

within language.  Its origins can largely be traced to an influential critique (Pinker & 

Prince, 1988) of connectionist approaches to the acquisition of the English past tense 

(specifically, Rumelhart & McClelland, 1986).  Connectionist approaches to syntax bear 

many similarities to exemplar-only ones, particularly in their avoidance of abstract 

representations.  In their critique, Pinker and Prince (1988) pointed out numerous 

potential flaws in the connectionist implementation of past tense formation in English, 

especially related to instances in which the model ignores forms that traditionally are said 

to require knowledge of lexical representations (e.g., ring and wring being homophones 

with different past tenses, or the past tense of grandstand being grandstanded, not 

grandstood).  This critique was later parlayed into a dual-system model that explicitly 

distinguishes between rules that involve a productive generation process and words that 

require memorization.  Irregular verbs are past tense items that are memorized just like 

any other lexical item (Pinker, 1998; Pinker & Ullman, 2002).  This idea was later 

parlayed into a popular science book named, appropriately enough, Words and Rules 

(Pinker, 1999).  Although the main topic of discussion here was the English past tense, it 

was argued that this distinction could also apply to other languages and processes, such 

as pluralization in Hebrew (Berent, Pinker, & Shimron, 2002). 

Just as with category learning, evidence for dissociations between “word” and 

“rule” systems mounted (Lavric, Pizzagalli, Forstmeier, & Rippon, 2001).  Behaviorally, 

for example, irregular past tense forms show a great deal of variation in their 

acceptability ratings, while regular past tense forms show little systematic variation, 
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suggesting that the two classes of past tense verbs are underlain by two separate systems 

(Ullman, 1999).  Neuropsychologically, patients with declarative memory deficits (such 

as Alzheimer’s) produced more errors when producing irregular past tense forms than 

when producing regular ones, while patients with procedural memory deficits (such as 

Parkinson’s) showed the opposite pattern of errors (Ullman et al., 1997).  In an event-

related potential (ERP) design, ungrammatical, regular past tense verb forms yielded a 

left-lateralized anterior negativity (LAN) that did not show up for errors of irregular 

morphology (A. J. Newman, Ullman, Pancheva, Waligura, & Neville, 2007). 

Ullman and colleagues have used these dissociations to argue for a dual-system 

account of morphosyntactic learning (Ullman, 2004, 2016).  Under this account, they 

propose a distinction between aspects of grammatical competence that need to be 

explicitly memorized and aspects that require a rule.  These two systems are linked to 

declarative memory and procedural memory, respectively.  Declarative memory is 

associated with conscious recollection and explicit learning; procedural memory is linked 

to routinized sequence learning and implicit learning (Squire, 2009).  Rule-like 

grammatical acquisition in a first language, for instance, has been correlated with scores 

of procedural-memory-linked implicit learning, not declarative-memory-linked explicit 

learning (E. Kidd, 2012).  Other connections come from neuroimaging evidence.  During 

decisions about grammaticality over the course of artificial language learning, procedural 

learning regions, such as the basal ganglia, tend to be active when compared to other, 

non-grammatical decisions (Petersson, Folia, & Hagoort, 2012).  Explicit learning and 

implicit learning in an artificial language paradigm have been associated with different 

patterns of resting-state functional connectivity (Yang & Li, 2012). 



60 

 

Dual-system models of syntactic learning have additionally been applied to 

populations that often show language deficits, including second-language learners and 

those with language disorders (especially Specific Language Impairment, SLI).  

According to Ullman (2001), second-language acquisition is typically guided by 

declarative memory, in line with the typical bent of the adults learning the second 

language.  However, successful L2 acquisition depends on a switch of control over the 

learning process to the procedural memory system, which can start to instantiate rules, a 

switch that mirrors that proposed in non-linguistic category learning (Ashby et al., 1998).  

Second-language Spanish speakers, for example, might use their declarative system to 

memorize every verb conjugation, regardless of its regularity, while Spanish speakers 

might only memorize some forms (Bowden, Gelfand, Sanz, & Ullman, 2010).  The 

switch necessary to turn non-native speakers into native-like ones might be aided by 

implicit, immersion-like training (Morgan-Short, Sanz, Ullman, & Steinhauer, 2010; 

Morgan-Short, Steinhauer, Sanz, & Ullman, 2012). 

Language disorder can also provide a fruitful avenue of study, not in the least 

because it appears that declarative memory can be used as a “work-around” for people 

with a disorder who are processing language (Ullman & Pullman, 2015).  Although the 

use of the dual-system approach to syntactic processing has been tested briefly in the 

dyslexia literature (Hedenius et al., 2013), the primary application has been to studies of 

SLI, which Ullman and colleagues has argued stems primarily from a procedural memory 

deficit (Conti-Ramsden, Ullman, & Lum, 2015; Lum, Conti-Ramsden, Page, & Ullman, 

2012). 
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2.1.3.2 In word learning 

Although dual-system theories of morphosyntax are generally predicated on a 

split between “words” and “rules”, dual-system accounts have also been proposed solely 

within the domain of “words”, centering on word learning in particular.  Although, these 

theories are not explicitly tied to categorization, they provide an illustrative example of a 

two-system model of learning in language.  Unlike the procedural/declarative memory 

distinction used in morphosyntax, dual-system accounts of word learning (Davis & 

Gaskell, 2009; Lindsay & Gaskell, 2010) instead borrow from “complementary learning 

systems” accounts of recognition memory (Norman & O’Reilly, 2003) that divide 

recognition into two components, a hippocampal component and a neocortical 

component (though see Ripollés et al., 2014 for evidence that word learning may also 

depend on the basal ganglia).  Under dual-system accounts of word learning, learning is 

separated into two components: a hippocampal one, which rapidly familiarizes learners 

with new words, and a neocortical one, which helps stabilize and preserve the recently-

learned words, their meanings, and their relationships with similar words.  This is in 

some ways similar to distinction between “lexical configuration” and “lexical 

engagement” (Leach & Samuel, 2007), with “lexical configuration” referring to 

knowledge of, say, the meaning of a word and its spelling, and “lexical engagement” 

referring to real-time integration of the word in later processing (as in, say, lexical 

competition, or perceptual learning). 

Much of the behavioral evidence for dual-system models of word learning comes 

from studies of sleep consolidation.  It is well known that sleep promotes memory 

consolidation (Stickgold, 2005).  According to complementary learning systems 
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accounts, consolidation is necessary to promote the activity of the neocortical system in 

stabilizing a new word.  As such, dual-system theories of word learning predict that, 

while information about the form and meaning of a word might be gained quickly using 

the hippocampal system, its ability to compete with items in its lexical neighborhood 

(i.e., items that are similar to it phonetically) requires sleep.  Indeed, that is generally 

what is found across a variety of paradigms that have made use of lexical competition 

(Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; but see Lindsay & Gaskell, 2013).  

Novel words become more “word-like” over time.  For instance, real words lead to 

greater inhibition of their lexical neighbors when they share onset syllables; novel words 

only do so after sleep consolidation (Dumay & Gaskell, 2012).  This also translates over 

to eyetracking paradigms that assess real-time lexical competition (Magnuson, 

Tanenhaus, Aslin, & Dahan, 2003; Wang et al., 2016) and to affixes as well as words 

(Tamminen, Davis, Merkx, & Rastle, 2012).  7- to 12-year-old children also benefit from 

sleep consolidation, showing similar effects of competition as adults (Henderson, 

Weighall, Brown, & Gaskell, 2012).  On the other end of the spectrum, the age-related 

decrease in the duration and quality of sleep has been linked to deficits in word learning 

in older adults (Kurdziel, Mantua, & Spencer, 2016). 

The behavioral dissociations discussed above have been supplemented with 

neuropsychological study.  Lesions in the left medial temporal gyrus, an area associated 

with the neocortical word learning stream, have been strongly linked to deficits in the 

comprehension of single words (Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 

2004).  Meanwhile, damage specific to the hippocampus, as might occur after certain 

brain injuries during childhood (Vargha-Khadem et al., 1997) has also been linked to 
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word learning deficits, although continued neocortical connections can sometimes lead 

people with hippocampal damage to maintain some level of intact word learning (Gadian 

et al., 2000; Gardiner, Brandt, Baddeley, Vargha-Khadem, & Mishkin, 2008), perhaps 

due to continued neocortical connections.  Dual-system theories also show promise for 

illuminating other language disorders, and especially the treatment of those disorders, 

although such research is still in its infancy (Storkel, 2015). 

Adults without brain injuries also show patterns that suggest that two systems are 

at play.  One study using EEG found a distinction between explicit representations of 

word meaning, which developed quickly, and implicit representations, which took much 

more time (Batterink & Neville, 2011); the “explicit representations” could be connected 

to the hippocampal system of learning, while the “implicit representations” could be tied 

to the neocortical one.  In fMRI designs, hippocampal activation spikes at the beginning 

of a word learning paradigm and later trails off (Paulesu et al., 2009).  Meanwhile, 

activation in the neocortex to novel words does not become similar to that of real words 

for quite some time, though sleep consolidation seems to help the process along (Davis, 

Di Betta, Macdonald, & Gaskell, 2009; Orfanidou, Marslen-Wilson, & Davis, 2006). 

This approach is not without its skeptics.  Most of those skeptics insist that word 

learning is indeed extremely fast and automatic, citing both neural (Shtyrov, 2012; 

Shtyrov, Nikulin, & Pulvermuller, 2010) and behavioral (Kapnoula & McMurray, 2016; 

Kapnoula, Packard, Gupta, & McMurray, 2015) data.  Most notably for the present work, 

the dual-system account of word learning is not generally focused on the algorithms that 

go into word learning in a way that the syntactic or category learning literatures are.  
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Representations, whether abstract or word-specific, are not often discussed.  This sets 

dual-system accounts of word learning apart from the rest. 

2.1.3.3 In phonetics 

Given the importance of categorization for both category learning and for 

language, it is unsurprising that dual-system models of category learning have begun to 

be applied to the perception of phonetic categories (Chandrasekaran, Koslov, & Maddox, 

2014).  The primary approach has been to essentially borrow the dual-system approach in 

visual category learning to speech perception wholesale, complete with a frontal, rule-

based system and a basal-ganglia-dominated, similarity-based system trading off against 

each other.  As before, category learning tends to be dominated by the rule-based system 

early in the learning process, before control is largely passed to the similarity-based 

system.  Although this need not necessarily be the case—one dual-system model of 

phonotactic learning (Moreton, Pater, & Pertsova, 2017) involves a maximum entropy 

framework—it is the case that the dual-system theories of Chandrasekaran and Maddox 

are, at the moment, the most clearly elucidated. 

Many of the experiments assessing dual-system models of phonetic learning have 

used lexical tone learning from languages such as Mandarin Chinese to examine how 

listeners might use rule-based and similarity-based category learning systems to pick up 

speech sounds.  Chandrasekaran, Yi, and Maddox (2014) used native English speakers to 

examine the acquisition of Mandarin tone categories.  They found that listeners were 

faster to learn Mandarin tone categories under conditions that enhanced the exemplar-

based category learning system, including providing immediate and simple feedback 

during the experiment.  Computational modeling of the acquisition of Chinese tone 
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categories echoes the idea that similarity-based learning is particularly important to 

speech sound categories, with learners switching over to a similarity-based approach to 

learning Mandarin tones generally learning better than those who avoided doing so 

(Maddox & Chandrasekaran, 2014). 

Just as in the cognitive psychology literature, this has spurred interest in the 

language domain about the role of dopaminergic reward circuitry on speech sound 

learning (Lim, Fiez, & Holt, 2014).  This speculation has particularly focused on the 

basal ganglia, a subcortical structure that contains much of the dopamine-related circuitry 

in the brain, including regions that are impaired in classic dopamine-related disorders 

(e.g., Parkinson’s and Huntington’s disease).  The basal ganglia are said to be of crucial 

importance to the similarity-based category learning system, since it is dopamine that 

underpins the assimilation of feedback to the category learning situation.  People with 

basal ganglia-related disorders therefore are said to be impaired on their acquisition of 

categories that require the use of similarity-based learning (Shohamy et al., 2008).  fMRI 

studies of speech sound category learning echoed findings from the non-linguistic 

category learning literature with similarity-based learning associated with greater 

activation in the basal ganglia (Yi, Maddox, Mumford, & Chandrasekaran, 2016). 

Phonetic category learning has also been studied with a variety of other 

interesting populations.  Older adults, for example, have been shown to have deficits 

specifically related to the rule-based system of category learning, associated with deficits 

in working memory more generally (Maddox, Chandrasekaran, Smayda, & Yi, 2013).  

Musicians are generally faster at switching to a multidimensional learning strategy when 

learning new categories of speech sounds, perhaps indicating a greater flexibility in their 
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rule-based category learning systems than non-musicians (Smayda, Chandrasekaran, & 

Maddox, 2015).  Meanwhile, holders of a single nucleotide polymorphism (SNP) variant 

of the FOXP2 gene—a gene intimately associated with normal language functioning, 

with unrelated polymorphisms in this gene leading to massive and specific deficits in 

language functioning (Enard et al., 2002)—switched more quickly to a similarity-based 

learning strategy in the type of lexical tone learning task that was sketched briefly earlier, 

in which such a strategy is optimal (Chandrasekaran, Yi, Blanco, McGeary, & Maddox, 

2015), a finding perhaps related to earlier findings that the same polymorphism also 

seems to modulate frontal activation during a simple reading task (Pinel et al., 2012).  A 

dual-system approach can also be used to inform knowledge of what are typically said to 

be language-related disorders: people with dyslexia exhibit difficulty in non-linguistic 

auditory category learning in situations that are said to tax exemplar-based learning 

systems (Gabay & Holt, 2015). 

Some of the most striking pieces of evidence in support of dual-system models 

relate to the idea that phonetic category learning is most strongly associated with the 

similarity-based learning system.  This leads to some strongly counterintuitive 

predictions about individual differences in learning.  Children with better working 

memory scores found it more difficult than children with worse working memory scores 

to learn talker categories, perhaps because they are erroneously relying on a rule-based 

strategy for a task in which a similarity-based one is more appropriate (Levi, 2015).  

Conversely, people with elevated depressive symptoms are better at speech learning tasks 

than people with lower depressive symptoms, as their generally-elevated cognitive load 
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makes it less likely that they will use a rule-based strategy to learn new speech sounds 

(Maddox et al., 2014). 

2.1.4 Summary 

As should be clear, debates about the nature of category learning inside and 

outside of language often parallel each other.  For example, prototype theories had a brief 

period of popularity in both literatures before being eclipsed by other conceptions of 

categories.  Exemplar theories have received sustained attention for at least a couple of 

decades.  Yet there are some points of divergence.  Rule-based models continue to see 

use in the speech perception literature, despite their replacement with dual-system 

theories outside of language.  Yet in this, too, the speech perception literature appears to 

be following the trend of the cognitive psychology literature, echoing theories proposed 

in morphosyntax and in word learning. 

What do these findings imply for the debate about modularity?  Certainly, if the 

exact same systems underlie the acquisition of categories in all circumstances, category 

learning is not an area in which phonetic perception is modular.  This seems to be the 

solution favored by almost all proponents of exemplar-only phonetic learning (Hawkins, 

2010; Pierrehumbert, 2016; Port, 2007), although it should be noted that this does not 

need to be the case even under those views.  For example, learners may start with “pre-

programmed” speech-specific exemplars that influence their categorization of items at a 

young age, or the dimensions used for speech category learning could be speech-specific.  

Still, speech specificity may be more easily accommodated by a framework in which 

listeners form abstract categories, as in a rule-based system or a multiple-system models 

with rules.  Learners could, say, have speech-specific restrictions on the types of 
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hypotheses that could be entertained within the rule-based system.  Not many studies, 

though, have directly compared the acquisition of speech sound categories with the 

acquisition of other categories. 
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2.2 Speech Category Learning 

Based on the previous review, it is clear that phonetics is an interesting test case 

for theories of category learning.  Phonetic categories are multifaceted, complex, and 

extremely important for effective language functioning.  Previous attempts to bring non-

linguistic category-learning theories into the field have led to a richer understanding of 

language.  Yet there are also reasons to think that phonetic category learning might work 

differently from non-linguistic category learning.  Most theories of category learning 

were formulated in the visual domain, where learning may proceed along different lines.  

Both motor theories of speech perception (Liberman, 1982) and domain-specific auditory 

theories of speech perception (Remez, 1989) would suggest that phonetic objects are 

evaluated differently from other things in the world, including visual objects.  

Furthermore, despite the proliferation of speculation about different category-learning 

theories in the domain of phonetics, rigorous experimental tests of rival claims have not 

often been attempted. 

Along these lines, I created an experiment in which people learned German 

speech segment categories.  In particular, they learned categories of fricatives—speech 

sounds created by the partial obstruction of the airflow in the vocal tract such that it 

creates audible turbulence, or frication—that are used in German but not in English, the 

voiceless palatal fricative ([ç], found in ich, ‘I’) and the voiceless velar fricative ([x], 

found in ach, ‘but’).  The fricatives were associated with various colored squares, with 

the categories being learned changing from condition to condition based on which sounds 

are paired with which squares.  This allows for a very flexible design.  Below, I outline 

the results from two populations of interest when learning different speech sound 
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categories: native speakers of American English, who are relatively inexperienced with 

these fricatives, and native German speakers, who have had decades of experience. 

2.2.1 Experiment 1: Learning German Fricative Categories 

I was interested in how easy it would be for participants to learn categories within 

a continuum of fricative sounds in order to compare the theories of category learning 

outlined in the chapter above.  Learning categories of German fricatives is largely a 

departure from the prior linguistic experiences of American English speakers.  American 

English speakers generally do not have familiarity with such sounds in a productive 

linguistic context.  Although the velar fricative is present in some varieties of Scottish 

English and in some of the more common second languages spoken in the US (e.g., 

Spanish, Hebrew), the palatal fricative is much rarer, making the need to distinguish 

between the velar and palatal fricative to be an uncommon one for English speakers. 

That said, it is unlikely that the American English speakers were entirely naïve to 

the sounds that they were being trained on.  In fact, many of the native English-speaking 

listeners had learned languages that have the voiceless velar fricative as a part of their 

consonant inventory, such as Spanish or Hebrew, in an educational context.  Although 

this likely does not represent a strong input, it is possible that such training would 

influence the acquisition of categories in some respect.  One way to address such 

critiques is to examine a group of learners who would certainly have experience with the 

sounds in question: native German speakers.  Unlike English speakers, German speakers’ 

experience with the palatal and velar fricatives used here is, without question, 

meaningful, deep, and thorough.  If German speakers show the same patterns of learning, 

it would suggest that any findings in the present experiment cannot be the result of 



71 

 

English speakers’ sporadic exposure to the velar fricative alone.  On the other hand, any 

differences between German and English native speakers could reveal the effects of 

expertise on category learning with these stimuli. 

2.2.1.1 Participants 

68 participants were recruited at the University of Maryland, College Park.  

Participants were compensated either for class credit in introductory Linguistics or 

Hearing and Speech Sciences department classes or with financial compensation.  Data 

was excluded from 3 participants who had accrued more than incidental exposure to the 

German language, either through formal training or by living in a German-speaking 

country for at least a month; from 1 participant who was missing a demographics sheet; 

from 6 who were out of the target age range; and from 1 whose data file was corrupted.  

The participants remaining (n = 57) came from a typical undergraduate population (age 

M = 20.2, Range = 18-27, 34 female, 17 male, 6 not stated).  All participants self-

reported normal hearing and no history of speech or language disorder. 

63 native German-speaking participants were recruited at the University of 

Tübingen.  Participants were given €5 as payment for their participation in the task, and 

were generally recruited from linguistics-related listservs on campus or from previous 

participation in experiments within the linguistics department at the University of 

Tübingen.  Two participants were excluded due to technical issues during the experiment, 

leaving a total of 61 participants.  Of the 61 participants remaining—all young adults, 

aged between 19 and 34 (M = 23.7)—9 were male, 51 were female, and 1 did not indicate 

a gender.  All participants gave informed consent, which was conducted in German.  Data 
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collection was performed in line with German ethics standards, which do not require 

explicit ethics panel review for language-related experiments.   

2.2.1.2 Materials 

Both participant groups learned categories within a continuum of voiceless 

fricatives ranging from a voiceless palatal fricative [ç] to a voiceless velar fricative [x].  

To create the stimuli, materials from a previous study (Key, 2014) were used as a starting 

point for this continuum.  When given to me, the [x] and [ç] endpoints of the palatal-to-

velar continuum had been excised from tokens produced by a native speaker of German, 

selected from a variety of recordings of [ç] and [x] in nonword frames.  The tokens were 

judged to be representative of each category according to diagnostic acoustic features.  

The now-isolated tokens were cut at zero-crossings, with the longer token cut in size to 

match the length of the shorter token, and the peak intensities of each file were scaled to 

an identical 0.9 Pa.  I then linearly combined the spectral content of these natural tokens 

using Praat (Boersma & Weenink, 2001) to create a 10-step continuum, with intermediate 

points that entailed a linear combination of the acoustic noise that characterizes each 

fricative.  The steps were numbered from the palatal end of the continuum, with step 1 

defined as the most palatal item and step 10 as the most velar item, with each 

intermediate number indicating the precise titration of the two endpoints. 

In using these materials, it is clear that a level of validity was sacrificed.  Flat 

distributions with perfectly covarying cues are not typical for speech sound categories, 

particularly ones with only 10 items.  Studies of cue trading, for example, have shown 

that many, if not all, phonetic contrasts are signaled with a wide variety of cues, all 

capable of combining together in many different ways to yield a coherent percept (Repp, 
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1982).  The rich tradeoffs between these cues were not present in the present dataset.  

Additionally, of course, there is naturally more variability in the categories shown than 

can be accommodated with a flat distribution. 

In this case, however, linear combination means that whatever multiple cues that 

listeners use to perceive the differences in place between these two fricatives are 

completely and inextricably correlated.  This continuum therefore provides an avenue to 

measure the perception and acquisition of simple phonetic categories, akin to 

unidimensional voice onset time (VOT) continua used to examine the perception of 

word-initial voicing.  Certainly, it is unclear how a model that cannot explain 

categorization in a unidimensional setting with a small number of items would scale up to 

more complex multidimensional phonetic categories with more realistic numbers. 

2.2.1.3 Procedure 

A time-to-criterion paradigm was used to explore learning using these items.  

Participants were first given brief instructions, telling them that they would hear speech 

sounds and that they would be asked to pair them with colored squares using the 

keyboard in front of them.  They then heard a speech sound, 95ms long, from the 10-step 

continuum.  This sound was presented simultaneously with three colored squares: blue, 

yellow, and red.  Participants were given five seconds to pair the sound that they just 

heard with a square using one of three buttons on keyboard.  They then received feedback 

about their selection in line with the condition they had been assigned to, as described 

below, which appeared 250ms after the participant selected a square and stayed on the 

screen for one second.  The feedback took the form of a yellow “X” if the participant 

responded incorrectly or a green check mark if the participant responded correctly.  The 
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feedback was followed by a 500ms inter-stimulus interval (ISI).  The order of trials was 

randomized in blocks of 10 steps each, such that participants heard all 10 steps every 10 

trials (although with no predictable intra-block order).  The distribution of trials was thus 

uniform, on average, across the experiment.  Participants heard trials until one of two 

conditions was met: either 450 trials elapsed, or when the participant responded correctly 

to 90% of the last quasi-block (the last 10 unique items), which could span portions of the 

last two successive blocks.  This meant that participants had to correctly respond to a 

wide swath of items along the continuum in order to complete the experiment early. 

There were six conditions, assigned on a between-participant basis, with 

participant numbers in each condition approximately balanced for both participant 

groups.  These conditions differed in which responses were considered correct on each 

trial.  They are outlined below in Figure 5.  Each row represents a single condition, with 

each column denoting a single step (ranging from the most palatal at left to the most velar 

at right).  The boxes are colored in line with the correct response for each step in each 

continuum; for example, the correct answer for step 8 was yellow in the Neapolitan 

condition, red in the Sandwich condition, and blue in the Picket Fence condition.  Note 

that there was no attempt to counterbalance item-color associations across participants, as 

I had no a priori reason to think that listeners should prefer to assign one end of the 

continuum to any particular color, as, say, might occur with synesthesia.  Even for the 

five conditions in which only two responses were correct, all three possible responses 

were available. 
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Figure 5. Experiment 1 conditions 

The conditions differed in the numbers of possible categories and the number and 

composition of items assigned to each category.  In the Normal condition, items were 

assigned to categories on the basis of the categorization preferences of English and 

German-speaking listeners from Key (2014), with a single boundary between items 6 and 

7.  In the Shifted condition, the category boundary was moved to between items 3 and 4.  

In the Neapolitan condition, the category boundary of the Shifted condition was 

preserved, while a third category, with a boundary between items 7 and 8, was added.  In 

the Sandwich condition, the yellow stimuli from the Neapolitan condition were recoded 

as red, thus making the red category disjunctive (including items 1-3 and 8-10).  In the 

Picket Fence condition, the assignment of items to categories went back and forth across 

the continuum, with items 1, 2, 5, 6, 9, and 10 assigned to red and 3, 4, 7, and 8 assigned 

to blue.  Finally, in the Odd One Out condition, a boundary was placed between the red 

and blue categories between items 5 and 6 (near where the boundary was in the Normal 

condition), but with a single item on either side (items 3 and 8) being assigned to the 

category on the other side of the boundary (blue and red, respectively).  

Almost all theories of category learning make identical predictions about four of 

these categories, albeit for varied reasons.  Both the Picket Fence and Odd One Out 

conditions should be challenging.  It is very hard to imagine a simple decision bound that 
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can describe the category-learning parameters in both conditions, which each have many 

category boundaries.  Prototype theories would posit completely overlapping prototypes 

in the Picket Fence condition, given its symmetry, while in the Odd One Out condition 

the odd one out would be very close to the center of each condition’s prototype, meaning 

that that item should be frequently misclassified.  To the extent that the items are hard to 

tell apart from each other, an exemplar-based learning account would suggest that the 

conditions would lead to a great deal of guessing behavior on the part of the learners.  

Given that these category structures are hard to learn for both exemplar and decision-

bound theories, both systems in dual-systems models should struggle with learning. 

Meanwhile, two of these conditions should be quite simple to learn at least for 

English speakers if one assumes that listeners come in with no priors about the categories 

present in this dataset: the Normal and Shifted conditions.  Decision-bound theories 

predict that the single boundary in each condition should be easy to detect.  Prototype 

theories would assign a prototype exactly in the middle of each category distribution.  

Exemplar theories would have no problems distinguishing between the items in each 

category.  And both systems in dual-system models could easily learn the categories.  

However, in this case, it was of interest whether the biases present without training in 

Key’s (2014) experiment would persist in the present dataset, particularly for the native 

German speakers, who had extensive experience with this continuum.  This made the 

distinction between the Normal and Shifted conditions a noteworthy one. 

The most interesting conditions were the remaining two, the Neapolitan and 

Sandwich conditions.  Here, the theories make divergent predictions.  Under prototype 

theories of category learning, the Neapolitan condition should be easy, while the 
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Sandwich condition should be hard.  For the Neapolitan condition, prototypes would be 

found in the middle of each category, allowing for easy categorization of new items; in 

the Sandwich condition, meanwhile, the symmetrical nature of both categories would 

lead prototypes to be placed in the middle of the continuum for both categories, making 

learning challenging.  Under exemplar-only theories of category learning, meanwhile, 

both categories should be equivalently easy to learn.  The only difference between the 

conditions is in how stimulus steps 8 through 10 are categorized; as all else (including 

confusability between items) is held constant, there should be no difference in learning.  

The behavior of decision-bound models, meanwhile, depends on the treatment of the 

disjunctive red category according to these models.  This is a matter of some debate, 

covered in a great deal more detail in the discussion of the present experiment.  Some 

models do suggest that the disjunctive categories should be harder to learn than the non-

disjunctive Normal and Shifted categories.  The behavior of dual-system models depends 

on the decision-bound model that one adopts.  If disjunctive categories are harder to learn 

under the decision-bound criteria used in the model, this might make the categories 

harder to learn until control of category learning passes to the similarity-based system. 

2.2.1.4 Analysis 

Most analyses for category-learning studies include a metric of the proportion of 

trials correct over time, averaged across blocks.  Such experiments are based on multiple 

blocks, perhaps spaced across many sessions, with participants never quite approaching 

an optimal learning strategy (Nosofsky, 1986).  In the present study, most participants 

successfully learned categories within the allotted 450 trials, making averaging within 

blocks problematic. 
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One crude but surprisingly effective measure to compare conditions is to bin 

participants into one of three groups, based on how quickly they learned to pair the 

speech sounds to the colored squares.  In this case, learning was defined as giving a 

correct answer on 9 out of the most recent token of each of the 10 different items.  The 

time to this learning criterion could therefore range from 9 trials (if a participant 

answered the first nine trials of the experiment without a single error) to 450 trials.  “Fast 

learners” learned in less than 225 trials.  “Slow learners” took more than 225 trials to 

learn the pairings of speech sounds to colored squares.  “Non-learners” did not learn the 

pairings of speech sounds to colored squares in the 450 trials given to them.  The number 

of fast learners, slow learners, and non-learners could then be compared across 

conditions. 

A second analysis stream made use of generalized linear mixed models, as 

instantiated in the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2016).  Using 

mixed models meant that trial-by-trial patterns of learning over time could be broken 

down by condition, after factoring out differences in learning between individuals and 

between items.  Performance on each trial was coded as a binary response variable, with 

correct trials coded 1 and incorrect trials coded 0.  Condition (possible values Normal, 

Shifted, Neapolitan, Sandwich, Picket Fence, and Odd One Out, with Neapolitan as the 

reference level) and native language (English or German, with English as the reference 

level) was coded as a factor, while trial number was coded as a continuous variable (and 

rescaled to have values between -0.5 and 0.5 to aid in model convergence).  I included 

fixed effects of condition, trial number, and native language, as well as the interactions 

between them (both two-way and three-way), random intercepts by participant and by 
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item, and random slopes for trial number by participant (i.e., participants could vary in 

their individual learning abilities), and random slopes for condition by item (i.e., items 

could vary in how difficult they were between conditions).  As in previous studies 

(Chandrasekaran, Yi, et al., 2014; Scharinger, Henry, & Obleser, 2013), the interaction 

between trial number and condition was used as a proxy for different learning rates across 

conditions. 

This model was then used to compare performance between conditions using the 

lsmeans package (Lenth, 2016), which allows for Tukey-adjusted comparison of least-

squares means between factor levels.  In practical terms, this allows for post hoc 

comparisons of learning across each of the conditions, with the goal of illuminating 

meaningful contrasts highlighted above: between the Normal and Shifted conditions (to 

determine the power of the pre-existing bias towards categories split between steps 6 and 

7), the Normal and Odd One Out conditions (to check that the “easy” and “hard” 

conditions were truly separated from one another, and to what extent), and the Neapolitan 

and Sandwich conditions (to evaluate the split between disjunctive and non-disjunctive 

categories), as well as contrasts between participant groups. 

2.2.1.5 Results 

The results are presented in Figure 6.  Each section represents a single condition 

(labeled at left), divided into German- and English-speaking participants, with individual 

participants shown as a single circle within each combination of condition and native 

language.  Participants’ horizontal displacement along the graph shows the number of 

trials needed for that individual participant to learn the correct pairings of speech sounds 

to colored squares for that condition, with participants clustered along the vertical line at 
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far right being participants who failed to learn within 450 trials.  Vertical displacement 

from each condition line is meant to highlight the number of individual participants at 

each location and is not of itself informative.  Median trials to learn for each combination 

of participant group and condition is shown with a red “X”.  As can be seen from the 

graph, there is a stark difference between the first three conditions and the last three 

conditions.  Participants generally found the Normal, Shifted, and Neapolitan conditions 

much easier than the Sandwich, Picket Fence, and Odd One Out conditions.  By and 

large, participants were not strongly biased towards any particular category cross-over 

point, as they found the Normal and Shifted conditions approximately equally easy to 

learn.  With regard to the effects of the participants’ language background, the participant 

groups resembled each other in their performance on this task.  The categories that 

German speakers found relatively difficult were also the ones that English speakers found 

relatively difficult; conversely, the categories that German speakers found easier were 

also ones that English speakers had found easier.   
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Figure 6. Experiment 1 results by participant 

Clearly, of course, these results (as well as those of Chapter 2.3) do require a 

caveat related to the sample size.  A total of roughly 60 native-English-speaking and 

native-German-speaking participants implies approximately 20 participants total for each 

condition.  This is not a very large sample size, especially given the hypothesized 

presence of null effects between conditions.  At least some future studies will be run 

online, to help in participant recruitment, with all participants required to complete all 

450 trials (in order to provide more data across all participants).  Still, even with the data 

that was collected, some interesting inferences can be drawn. One way to examine this 
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dataset is to compare median times to learn across participant groups and conditions, and 

to divide participants into fast learners, slow learners, and non-learners.  Table 1 shows 

the outcome of these divisions, measured in terms of median time to learn (MTTL) for 

participants who learned within 450 trials, and by participant group.  Fast learners learned 

within 225 trials; slow learners took between 225 and 450 trials; and non-learners had not 

learned by the end of the experiment.  Note that the median times to learn (MTTL) within 

the table sometimes include a very small number of participants in certain combinations 

of participant groups and conditions (e.g., just two native English speakers in the Picket 

Fence condition); these values are shown merely for descriptive purposes. 

 

Condition Language MTTL 
Fast 

Learners 

Slow 

Learners 

Non-

Learners 

Normal 
English 23.5 10 0 0 

German 47.0 11 0 0 

Shifted 
English 69.5 9 1 0 

German 39.0 9 1 0 

Neapolitan 
English 64.0 9 0 0 

German 146.5 9 1 0 

Sandwich 
English 219.0 4 3 3 

German 252.5 3 5 2 

Picket Fence 
English 306.0 0 2 7 

German 327.0 1 4 5 

Odd One 

Out 

English 226.0 3 4 2 

German 243.0 1 3 6 
Table 1. Summary table for Experiment 1 

A series of rough approximations were made to examine differences in time to 

learn across conditions.  First, the conditions were broken into two groups, one including 

the Normal, Shifted, and Neapolitan conditions, and the other including the Sandwich, 

Picket Fence, and Odd One Out conditions.  The first group contained conditions without 

disjunctive categories; the second group contained conditions with disjunctive ones.  
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Next, individual participants were split into two groups, based on their time-to-criterion: 

fast learners, and a combined group made up of slow learners or non-learners.  This 

forms a 2 × 2 contingency table. 

Using Fisher’s exact test, it is readily apparent that English-speaking participants 

in the two condition groups differ in their likelihood to be a fast learner versus a slow 

learner or non-learner, ptwo-tailed = 1.04 × 10-8.  This is also true if one compares the 

likelihood to be a fast or slow learner versus being a non-learner, ptwo-tailed = 4.30 × 10-5.  

Indeed, regardless of where one puts the boundaries between fast learners, slow learners, 

and non-learners, there is no boundary condition such that there are more “faster 

learners” in the second set of category conditions than in the first set.  Just like with the 

English-speaking participants, the German-speaking participants were much more likely 

to be fast learners, or to learn at all, in the continuous category conditions than in the 

discontinuous category conditions.  For example, performing a Fisher’s exact test on 

participant counts when crossing category continuity with speed of learning (pitting fast 

learners against slow learners and non-learners) yields a p value of 4.57 × 10-10, while 

doing the same while breaking speed of learning up into learners (fast or slow) and non-

learners yields a p value of 7.67 × 10-5. 

These qualitative findings, however, are not the whole story.  Figure 7 shows 

Loess-smoothed plots of performance over time for the English (solid lines) and German 

(dashed lines) speakers in each condition.  Performance on the part of participants who 

finished early (before 450 trials) is interpolated with 90% accuracy in the graph above, 

leading to the flat level of performance in especially the Neapolitan and Normal 

conditions in the figure below.  
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Figure 7. Experiment 1 results, Loess-smoothed 

A detailed exploration of the results was undertaken using mixed models, through 

a combination of model comparison and post doc comparisons using the lsmeans package 

(Lenth, 2016).  First, the intermediate model described above (see model specifications in 

Table 2) was compared to models that lacked various combinations of the fixed effects 

and interactions in question.  The fixed effects of Condition use Neapolitan as the 

reference condition, while the fixed effects of native language use English as the 

reference condition.  The intermediate model fit better than a model that lacked fixed 

effects of condition and its interactions, χ2(20) = 115, p < .001; better than a model that 

lacked fixed effects of trial number and its interactions, χ2(12) = 163, p < .001; and better 

than a model that lacked fixed effects of native language and its interactions, χ2(12) = 

31.8, p = .001.  In other words, the condition a participant was assigned to and the native 

language of a participant both affected learning rates, and participants did successfully 

learn over time. 

 

Fixed Effect β SE z p 



85 

 

Intercept 5.68 1.88 3.01 .003 

Condition: Normal 0.180 3.35 .054 .96 

Condition: Odd One Out -5.27 1.99 -2.65 .008 

Condition: Picket Fence -5.96 1.89 -3.16 .002 

Condition: Sandwich -5.49 1.88 -2.92 .004 

Condition: Shifted -4.21 1.91 -2.21 .03 

Trial Number 12.3 4.25 2.91 .004 

NL: G -3.88 1.91 -2.04 .04 

TN × C: N -1.44 7.33 -0.20 .84 

TN × C: OOO -11.3 4.29 -2.64 .008 

TN × C: PF -11.7 4.26 -2.75 .006 

TN × C: Sa -11.2 4.27 -2.63 .009 

TN × C: Sh -10.4 4.31 -2.40 .02 

NL: G × C: N 4.46 3.64 1.23 .22 

NL: G × C: OOO 4.14 1.94 2.14 .03 

NL: G × C: PF 4.04 1.92 2.10 .04 

NL: G × C: Sa 3.94 1.93 2.04 .04 

NL: G × C: Sh 4.14 1.94 2.14 .03 

TN × NL: G -8.13 4.38 -1.85 .06 

NL: G × C: N × TN 10.7 8.07 1.33 .18 

NL: G × C: OOO × TN 8.69 4.46 1.95 .05 

NL: G × C: PF × TN 8.57 4.41 1.94 .05 

NL: G × C: Sa × TN 9.02 4.43 2.04 .04 

NL: G × C: Sh × TN 7.72 4.48 1.73 .08 
Table 2. The best-fitting model for Experiment 1 

 

Interactions with native language also had a significant impact on model fit.  

Comparing the intermediate model to one lacking the three-way interaction between 

condition, native language, and trial number and the two-way interaction between 

condition and native language to the intermediate model also yielded a significant 

decrease in model fit without the interactions, χ2(10) = 23.5, p = .009.  Some conditions 

had higher (or lower) baseline rates of learning for German speakers than English 

speakers.  Subtracting the two-way interaction between trial number and native language 

(and the three-way interaction) also hurt model fit, χ2(6) = 19.4, p = .004.  German 

speakers learned (slightly) slower than English speakers across conditions.  Even just 
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removing the three-way interaction also decreased model fit, χ2(5) = 17.4, p = .004.  

German speakers were particularly slow to learn the categories in certain conditions. 

Post-hoc comparisons were used to determine some contrasts of interest.  In 

particular, I was interested in whether any of the conditions differed in their difficulty 

between native speakers of English and native speakers of German.  I was also interested 

in contrasts between key conditions: between the Normal and Shifted conditions, Normal 

and Odd One Out conditions, and Neapolitan and Sandwich conditions.  In total, then, 

there were 12 contrasts of interest; the multivariate t adjustment was used to ensure that p 

values were adjusted appropriately for the number of comparisons. 

2.2.1.5.1 Normal vs. Shifted 

There was no significant difference for English speakers in the trial number effect 

between the Normal condition and the Shifted condition, z = 1.81, p = .49.  It was no 

harder for the English-speaking participants to learn the Normal condition than the 

Shifted condition (or vice-versa).  For the German speakers, meanwhile, there was a 

significant difference, z = 4.60, p < .001, with the Normal condition being significantly 

easier than the Shifted one.  This suggests that the bias that both English-speaking and 

German-speaking listeners demonstrated in Key’s (2014) exploration of German fricative 

contrasts was quite labile for English speakers, but more intractable for German speakers, 

as might be expected by the relative amounts of experience each group had.  At the same 

time, these results may have been driven primarily by the behavior of the two German-

speaking outliers in the Shifted condition. 
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2.2.1.5.2 Normal vs. Odd One Out 

Surprisingly, there was no significant difference for English speakers between the 

Normal and Odd One Out conditions in learning, z = 2.31, p = .18, despite having very 

different median times to learn.  This is unexpected under any category-learning theory.  

However, this may be due in part to the very small number of trials that most participants 

in the Normal condition needed to learn the pairings of sounds to colored squares or the 

variability present in learning within the Odd One Out condition.  This, in turn, increased 

the standard error estimates in the model for both conditions.  The model simply may not 

have been provided with sufficient data to uncover a significant difference.  The effect 

was significant for German speakers, z = 4.80, p < .001, implying that German speakers 

were hobbled by the presence of the outlier category members when learning these 

categories. 

2.2.1.5.3 Neapolitan vs. Sandwich 

The final comparison undertaken was between the Neapolitan and Sandwich 

conditions.  The prototype and some decision-bound theories of category learning on the 

one hand predict there to be a significant difference between these conditions; exemplar-

only and other decision-bound theories, on the other hand, largely predict that learning in 

these two conditions should be roughly the same.  In the end, a significant difference was 

found in learning between these two conditions for English speakers, z = 3.02, p = .02; 

the Neapolitan condition was much easier to learn than the Sandwich condition.  This 

was also true for German speakers, z = 4.12, p < .001.  This contrasts with the predictions 

of exemplar-only and certain decision-bound theories of learning. 
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2.2.1.5.4 English vs. German Participants 

Given the similarities between the English and German speakers in the key 

contrasts, what drove the significant differences between the participant groups, then?  

Visual inspection appears to show the Neapolitan condition being harder for German 

speakers than English ones.  However, direct comparisons showed no significant 

differences between the participant groups for any condition.  The Normal (z = -0.123, p 

= 1), Shifted (z = 0.719, p = 1), Neapolitan (z = 1.34, p = .29), Picket Fence (-0.0964, z = 

-0.499, p = 1), Sandwich (z = 0.328, p = 1), and Odd One Out (z = -0.859, p = .99) 

conditions showed no significant differences between the English speakers and the 

German speakers in their success over time.   
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2.2.1.5.5 Anti-Disjunctivity: Further Findings 

 

Figure 8. Experiment 1 Sandwich final section results 

Here, the behavior of non-learner participants seems particularly instructive.  

Figure 8 shows the responses for the participants in the Sandwich condition within the 

last 25% of trials in the experiment.  Each row corresponds to the behavior of a single 

participant, with 10 columns that correspond to the responses participants gave when they 

heard those last trials.  Each cell is coded in line with the proportion of responses from 

each category.  Cells that are entirely blue, red, and yellow indicate that participants 

responded 100% with that color category for that step within the last 10% of trials 

administered, while cells with intermediate colors represent combinations of responses.  

For example, purple cells represent some red and some blue responses for those steps 

towards the end of the experiment.  If participants are basing their responses only on 

exemplars, the ends of the continuum should be reddish, and the middle stimulus steps 

should be bluish, with some level of purple (reflecting both blue and red responses for a 
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certain point along the continuum) being likely around stimulus boundaries.  This is what 

is seen for participants 6, 38, and 103, for example. 

Yet there are also participants with quite different patterns of responses.  

Participant 13 had an almost linear grading from uniformly red on the velar end of the 

continuum to uniformly blue on the palatal end of the continuum.  Most strikingly, 

participants 10, 25, and 1010 continued pressing “yellow” for the velar end of the 

continuum until almost the very end.  They were so certain that there must be three 

categories within the continuum that they are giving a yellow response through to the end 

of the experiment even despite the fact that they are always told that such a response is 

wrong!  The responses of participant 25, in particular, show a clear categorical 

separation: Steps 1-5 as red, 7-10 as yellow, and 6 as blue, with some noise in responses.  

This largely contrasts with the predictions of exemplar-only accounts of category 

learning. 

2.2.2 Discussion 

Below, I flag two issues of particular interest that the results above highlight: first, 

the acquisition of disjunctive categories, and, second, the role of expertise in category 

learning. 

2.2.2.1 Disjunctive Categories in Exemplar-Only Models 

These results are challenging to accommodate using exemplar-based phonetic 

learning models, but for reasons that are somewhat counterintuitive: exemplar models are 

too good at fitting this dataset.  As discussed in the literature review for category 

learning, exemplar models are excellent learners; they are capable of learning any variety 

of categories, and, over time, they predict that categorization should be optimal (Ashby & 
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Alfonso-Reese, 1995).  Put another way, exemplar-only models “basically [predict] that 

given enough experience with training exemplars, participants’ response patterns should 

eventually approximate the underlying category descriptions” (McKinley & Nosofsky, 

1995, p. 145).  However, this clearly not always the case, as participants often show 

suboptimal behavior when learning new categories (Ashby et al., 2001).  That was the 

case here for the Sandwich, Odd One Out, and Picket Fence conditions.  Although the 

poor performance in the Odd One Out and Picket Fence conditions is explicable within 

an exemplar framework, it is challenging to incorporate the distinction between the 

Sandwich and Neapolitan categories using exemplar-only models. 

To explore why, consider the findings in light of the Generalized Context Model 

(GCM) of Nosofsky (1986), which is one of the most influential of the single-system 

exemplar-based models.  Nosofsky proposed that categorization was essentially reducible 

in its core to identification.  Sorting a new item into a category was the process of 

assessing the similarity of that new item to the previous items observed, then assigning 

the new item a category label based on the category labels of the most similar previous 

items.  The computational implementation of the GCM is fairly simple.  The distance 

between a current item and previous ones is computed using a Gaussian distance 

function.  This distance function is used to compute the weight that each item has towards 

categorizing the stimulus into any of the possible categories under consideration.  The 

category with the greatest summed weight then “wins”, and the new item is assigned to 

that category. 

In no case, then, does the category label of any particular item affect the difficulty 

of categorization.  The only determinant of difficulty is discriminability.  From exemplar-
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only views of phonetics, “the strength of the representation at a location on the map 

depends merely on the number and recency of the exemplars at that location” 

(Pierrehumbert, 2003, p. 132).  The more tokens, and the more recent the tokens, the 

stronger the discriminability.  If items are hard to discriminate, it will be hard to learn 

categories, as items that are far away from a new token are mistakenly brought to bear on 

its categorization.  If items are easy to discriminate, new tokens will be labeled accurately 

(or, at least, in line with the immediately adjacent exemplars).  This provides a perfectly 

cogent reason for why the Odd One Out and Picket Fence conditions were hard to learn.  

If items were not very discriminable, tokens from the “wrong” category would be 

erroneously sampled and contribute to incorrect categorization.  It does not take a 

particularly wide sampling of category tokens in either condition to pick up some wrong 

tokens. 

However, where the mechanisms of the GCM go afoul is when comparing the 

Neapolitan and Sandwich conditions.  The Neapolitan condition was quite easy for the 

English-speaking participants, while it was harder for the German-speaking ones.  The 

Sandwich condition was more challenging for both participant groups.  This occurred 

despite the fact that the boundaries between the categories were exactly the same in the 

two conditions.  That is, no matter where a novel item fell within the speech sound 

continuum, the distances to adjacent and non-adjacent categories were identical across 

the conditions; discriminability was not different between conditions.  The only thing that 

changed was the category label of one side of the continuum, and that was enough to 

entirely alter participants’ times to learn.  This was not merely a byproduct of the fact that 

participants in the Sandwich condition had to learn to ignore a possible response.  
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Participants in the Normal and Shifted conditions had to do the same thing, but generally 

had little problem learning the categories of colored squares. 

A more subtle point of note relates to the performance of participants who failed 

to learn the pairings of speech sounds to colored squares.  According to the GCM, there 

are essentially two possible outcomes for participants in conditions such as the Picket 

Fence condition: learning or guessing.  Participants will learn the categories under 

consideration if they are capable of discriminating nearby items on the continuum.  If 

they are not capable of discriminating adjacent items, however, participants will instead 

sample from a wider distribution of items.  In a condition such as Picket Fence, sampling 

from a wide distribution across the continuum leads to essentially equal numbers of blue 

and red category items being considered for each position along the continuum.  

Participants would therefore be approximately at chance in their responses.  But this is 

not the behavior that was observed even for participants who failed entirely.  Instead, 

many participants in the Picket Fence, Sandwich, and Odd One Out conditions showed 

response patterns that differed systematically from chance, as can be seen for the 

Sandwich condition in Figure 8. 

2.2.2.2 Disjunctive Categories in Decision-Bound/Multiple-System Models 

Other models of category learning seem to hold more promise.  One alternative to 

a single-system approach is to incorporate multiple learning systems into the model 

(Chandrasekaran, Yi, et al., 2014; Maddox & Chandrasekaran, 2014).  Under these 

theories, an explicit, rule-based system precedes an implicit, procedural-learning-based 

system.  This has the possibility of reversing many contemporary theories of phonetic 

category learning, where abstraction is generally said to follow and require memorization 
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of specific instances (Maye, Weiss, & Aslin, 2008; Maye, Werker, & Gerken, 2002; 

McMurray, Aslin, & Toscano, 2009), but has more in common with more recent 

approaches to phonetic category learning that incorporate neurobiological insights (E. B. 

Myers, 2014).  One of the benefits of a dual-system approach is that the findings spurred 

by exemplar-based approaches to phonetic category learning do not need to be discarded.  

If the explicit learning system shapes the tectonic plates that determine the rough 

alignment of categories to each other, implicit learning forms the processes of erosion 

and deposition that determine the precise contours of the category topography.  Both are 

necessary for a complete understanding of the human capacity for phonetic category 

learning. 

On the face of it, then, dual-system theories provide a ready way to explain the 

distinction found between the Neapolitan and Sandwich conditions: the categories in the 

Neapolitan condition are learned through the fast-acting rule-based system, while the 

categories in the Sandwich condition are learned through the slower-acting similarity-

based system.  This is complicated, though, by the characteristics of the rule-based 

system under many dual-system theories.  A priori, there is no particular reason why 

disjunctive rules (e.g., a category item is red if it is below step 4 or above step 7) would 

not be just as easy to learn as non-disjunctive rules.  Many dual-system proponents have 

suggested that disjunctive categories may sometimes be learned using the rule-based 

learning system, rather than the similarity-based one (Minda, Desroches, & Church, 

2008; Zeithamova & Maddox, 2006).  In one instance of this, for example, categories 

were defined in terms of the pitch of a non-linguistic tone and the orientation of a visual 

Gabor patch.  One category was defined as items either when the tone was high-pitched 
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and the orientation of the patch was vertical or when the tone was low-pitched and the 

orientation of the patch was horizontal.  This was treated as an example of rule-based 

disjunctive categorization because the dimensionality of the stimuli was such that 

information did not need to be integrated across the visual and auditory modalities; 

learners could combine separate information from sound and vision (Maddox, Filoteo, 

Hejl, & Ing, 2004).  As such, strategies on the part of learners that the authors described 

as “rule-based” led to approximately the same level of performance as strategies that 

could be described as “similarity-based” even though the categories that were being 

learned were clearly disjunctive. 

The dual-system theories discussed above, however, are not the only possibilities 

outside the realm of exemplar-only theories of category learning.  The RULes and 

EXceptions model (RULEX) provides another avenue of exploration (Nosofsky et al., 

1994).  In RULEX, categories are formed through a multi-stage process.  First, learners 

try to identify simple rules to characterize the categories being taught to them.  If those 

rules are categorically (or close-to-categorically) successful at characterizing the stimulus 

space, the rules are kept unaltered.  If they are entirely unsuccessful, the learners try 

instead to learn more complex rules (i.e., multidimensional ones) that involve interactions 

between categories.  And if the rules are moderately successful—say, successful 75% of 

the time—learners memorize exceptions to the rule, with the number and specificity of 

the exemplars depending on the learner’s memory constraints. 

Although RULEX was initially applied to a learning situation with just two 

categories, using items that varied in a binary fashion across four dimensions, its 

continuous-dimension update (Nosofsky & Palmeri, 1998) applies it to continuous 
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dimensions such as the ones explored here.  Still, although a model that uses rules and 

memorized exceptions to those rules could be useful to help describe this situation, even 

the continuous RULEX suffers from some key deficits.  For example, a model that could 

quickly and easily memorize exceptions for mostly-valid rule-based characterizations of 

categories would struggle to explain why the Odd One Out condition was so challenging 

for participants.  More dauntingly, though, the continuous RULEX also relies on pre-

specification of possible rule/exception pairings by hand. 

One way to incorporate some of the insights of RULEX into a computational 

framework is to take a Bayesian approach to category learning, an approach that is 

growing more and more common within cognitive science (Jacobs & Kruschke, 2011).  

Such ideas help make up the Rational Rules model of concept learning (Goodman, 

Tenenbaum, Feldman, & Griffiths, 2008).  In the Rational Rules system, hypotheses take 

the form of rules.  In learning scenarios that include non-disjunctive dimensions, these 

rules are formed from conjunctions or disjunctions of sets that describe parts of a 

particular dimension.  Participants make responses in line with the small number of 

hypotheses that they are entertaining at any one particular point about the categories that 

they learn, with a small probability of responding incorrectly.  Individual items also have 

the chance of being labeled as an outlier if they belong to a category unexpected by the 

rules currently under consideration. Simple rules are preferred to more-complicated ones 

due to a strong prior for simple rules.  Under Rational Rules, participants have strong 

priors towards simple categories, just like the ones here.  Learning more complex rules, 

including ones that require disjunctions or conjunctions, takes time.  Indeed, such 
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stipulations could be integrated into the rule-based system of dual-system models based 

on COVIS (Ashby et al., 1998) to produce similar biases against disjunctive rules. 

In sum, then, whether disjunctive categories should be any harder to learn than 

non-disjunctive ones under dual-system category models depends on the properties of the 

rule-based system in the model.  If the rule-based system is biased against disjunctive 

categories, as in RULEX, the Sandwich condition becomes harder than the Neapolitan 

condition because listeners must fall back on the memorization of exceptions or 

similarity-based decision bounds in order to learn the disjunctive category of the 

Sandwich condition.  If, on the other hand, the rule-based system is capable of learning 

disjunctive categories, there should be no reason for the qualitative split in learning times. 

2.2.2.3 Expertise in Category Learning: German and English Speakers 

Another key insight of this project is with regard to the importance of previous 

experience with relevant speech sound categories in phonetic category learning.  As 

mentioned previously, the English-speaking participants in this study had only limited 

second-language exposure to the sound categories in question; although they may have 

perceptually assimilated the sounds to similar English categories, their experience with 

the tokens in question was likely minimal.  The German speakers, meanwhile, had 

amassed decades of experience. 

The idea of reshaping pre-existing speech sound categories is one that is usually 

tied to perceptual learning of speech.  Perceptual learning, referring to changes in 

perception that stem from environmental input, has been most extensively studied in the 

visual perception literature (Goldstone, 1998).  However, it has also been repeatedly and 

convincingly demonstrated in speech perception experiments (Samuel & Kraljic, 2009), 
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with recently-played speech information determining later-occurring speech 

categorization.  In many perceptual learning studies, participants are presented with 

sounds acoustically intermediate between two different segments: for example, 

intermediate between an [f] and an [s] (Eisner & McQueen, 2005; Norris, McQueen, & 

Cutler, 2003), between an [s] and an [ʃ] (Kraljic & Samuel, 2005), or between a [d] and a 

[t] (Kraljic & Samuel, 2006).  These ambiguous sounds are placed in lexical contexts that 

disambiguate which category the sound belongs to.  For example, a sound ambiguous 

between [t] and a [d] (denoted [?]) is more likely to be perceived as a [d] in the context of 

[ɑvəkɑ?o] ‘avocado’ but more likely to be perceived as a [t] in the context of [lunə?ɪk] 

‘lunatic’ because neither ‘avocato’ nor ‘lunadic’ are words of English.  Sufficient training 

leads listeners to treat the formerly ambiguous segments as unambiguous even in the 

context of non-biasing lexical items (Norris et al., 2003).  Thus, when hearing a simple 

VCV non-word such as [a?a], listeners trained on [lunə?ɪk] will be more likely to hear 

[ata], while listeners trained on [ɑvəkɑ?o] will be more likely to hear [ada].  It is 

challenging for listeners to go back to hearing the items as ambiguous (Kraljic & Samuel, 

2005) so long as the original talker is producing the test items as well (Eisner & 

McQueen, 2005).  The perceptual learning that ensues can also be extended to similar but 

untrained lexical contrasts, such as other stop voicing contrasts for the [t] and [d] stimuli 

(Kraljic & Samuel, 2006). 

Perceptual learning experiments generally only examine how training can shift the 

boundaries of different native categories.  It is not clear to what extent perceptual 

learning studies can scale up to predict the acquisition of wholly (or even partially) novel 

categories within familiar phonetic spaces.  Adult learners may be put into this situation 
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when, say, learning three phonetic categories when their native language only has two.  

An example of this is with English-speaking adults learning three stop categories—

aspirated, unaspirated, and voiced—in a continuum they are accustomed to having just 

two, aspirated and unaspirated (Beach, Burnham, & Kitamura, 2001; Pisoni, Aslin, Percy, 

& Hennessy, 1982).  Adults come to these tasks with preconceptions about the sounds 

they have had exposure to; adults are, in many ways, language “experts”.  As such, the 

literature on category learning in experts may help inform the effects of native language 

expertise on speech sound learning. 

Expertise leads to a variety of changes in learning non-linguistic categories.  For 

example, chemistry students are increasingly likely to classify chemical reactions better 

in line with the underlying properties of the chemical reactions (for example, whether the 

reactions involved the creation of a precipitate) rather than some of their surface 

properties (for example, whether the reactions involved solids or liquids) as they gain 

experience in chemistry classes (Stains & Talanquer, 2008).  Tree experts (e.g., 

landscapers, parks maintenance workers) are more likely than undergraduates to use 

ecological properties of tree types (say, the distribution of tree types, or the susceptibility 

of certain tree types to disease) rather than pure taxonomy to try to determine whether a 

disease found originally in one type of tree might affect a different type (Proffitt, Coley, 

& Medin, 2000).  Similar results were obtained for commercial fishermen sorting fish 

into categories (Shafto & Coley, 2003). 

These findings and others like them have led to a proliferation of approaches to 

explaining the changes seen in category learning with expertise.  One review paper 

(Palmeri, Wong, & Gauthier, 2004) enumerated many of the theories of expertise in 
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category learning.  The accounts can roughly be sorted into one of two hypothesis 

classes.  Under one class, experts are better categorizers because they are in some way 

better at using stored exemplars.  This might be true because experts are using a 

similarity-based learning system more often (as in many dual-system models), because 

exemplars are better-tuned (i.e., new items lead fewer memories to be activated in 

determining categorization), or because perceptual noise is lower.  Under the second class 

of hypotheses about expertise in categorization, meanwhile, it is the dimensionality of the 

space being learned that changes with experience.  Examples of these changes include 

selectively attending to different perceptual dimensions in the category space; blurring 

distinctions between dimensions; and adding (or removing) entire dimensions by which 

categories can vary. 

Under the class of hypotheses related to expertise in which expertise sharpens 

exemplar representations, learning should be better nearly across the board, particularly, 

under dual-system approaches, for categories that rely on a similarity-based system of 

learning.  Why?  For similarity-based approaches to learning, the primary determinant of 

how easy categories are to learn is how easily distinguishable individual tokens are from 

each other.  New items are misclassified when speakers mistakenly activate tokens of the 

wrong category because either perceptual noise or a wide-tuned item activation could 

lead to errant activation of the wrong colored square category.  Being “experts” under 

these conceptions of expertise makes this errant activation increasingly unlikely, thereby 

making it easier to correctly assign items to categories. 

Under one of the set of theories in which expertise leads to reshaping of 

dimensionality in category learning, hypotheses are more challenging to construct.  This 
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is true because the dimensions over which speech sounds vary are manifold and poorly 

understood, meaning that changing those poorly understood categories becomes even 

harder to predict.  Changes in dimensionality could have made the categories easier to 

learn, if, say, items assigned to the same category in the experiment were perceived to be 

more similar to each other due to shifts in dimensional focus.  Alternatively, the 

categories could have been made more difficult because of perceptual warping of the 

acoustic space, as is hypothesized to underlie categorical perception according to some 

rational accounts of phonetic perception (Kronrod, Coppess, & Feldman, 2016).  

Not many effects of expertise surfaced in the present study.  Indeed, although the 

relative difficulty of the disjunctive conditions may have been different in some ways 

from those observed in English speakers, these differences were neither strong nor 

consistent nor significant when considered in isolation.  This suggests that the idea that 

category expertise involves the sharpening of exemplar representations seems to miss the 

mark for the German speakers here.  Under the GCM (Nosofsky, 1986), there is a scaling 

parameter that determines the range of exemplars that are activated during memory 

retrieval; sharpening this parameter is one way to actuate many of the exemplar-based 

effects of expertise described by Palmeri et al. (2004).  Simulations that I have performed 

have indicated that changes in this scaling parameter can lead participants to learn the 

Picket Fence and Odd One Out conditions more quickly.  Yet this is not the pattern 

observed; German-speaking participants, despite their orders of magnitude larger number 

of exemplars of each of these category items, do not behave any differently from English 

speakers in their mastery of the Picket Fence and Odd One Out conditions.  Indeed, the 

fact that none of the conditions were significantly different depending on the participant 
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group indicates that any perceptual warping that results from experience was relatively 

minor.  English and German speakers seemed to perceive the stimulus continuum in 

similar ways. 

2.2.2.4 Summary 

To summarize, I trained English speakers and German speakers to categorize a 

continuum of German fricatives by having them pair the items along the continuum with 

colored squares, which were used as stand-ins for category labels.  Each participant 

learned one of six conditions that differed in the assignment of items to categories.  What 

I found was that some categories were harder to learn than others.  Crucially, I found that 

disjunctive categories were generally harder to learn than non-disjunctive ones, even 

when the only difference between the categories was in the assignment of one set of 

items to a category label.  This is difficult to model using exemplar-only theories of 

category learning, both inside and outside language, but easier to accommodate under 

prototype theories and some dual-system theories of category learning.  English and 

German speakers were not very different from each other in their acquisition of 

categories.  This suggests that improvements in perceptual sensitivity do not distinguish 

German-speaking experts from English-speaking novices in their acquisition of these 

categories. 

However, these experiments do not directly get at the idea of modularity in speech 

perception.  Although models of category learning and category expertise provide useful 

guides to understanding the results here, these findings were obtained only within the 

domain of speech perception.  In the following chapter, I examine the acquisition of 

auditory categories outside the realm of language, in particular the acquisition of different 
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musical instrument categories.  Does the bias against disjunctivity hold even outside of 

language? 
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2.3 Non-Speech Category Learning 

What, then, is the connection between phonetic category learning and category 

learning more generally?  This question is a very relevant one to the question of whether 

speech is “special”.  In studying this, I evaluate the claims of Liu and Holt (2011) that the 

processes of learning speech sound categories resemble the processes of gaining expertise 

with non-speech categories.  At the same time, I use auditory materials, rather than, say, 

visual materials, to ensure that as much else as possible is held constant when assessing 

non-linguistic category learning, including modality.  Judging the similarity of visual 

items to auditorily-presented linguistic ones would be challenging indeed.  This comes 

with an additional benefit of probing auditory categories in greater detail; categories other 

than visual ones are very understudied in the non-linguistic category learning literature.  

To examine whether non-speech auditory category learning resembles phonetic category 

learning, I used non-linguistic categories as analogues to speech ones, with the goal of 

assessing whether non-linguistic categories are also subject to bias against disjunctive 

categories that was observed for both English and German speakers in the fricatives. 

2.3.1 Non-Speech Materials 

In order to examine the acquisition of rich and acoustically-complex non-

linguistic categories, I created a continuum of synthetic musical instrument sounds.  This 

was done using the Wind Instruments Synthesis Toolbox (Rocamora, López, & Jure, 

2009) and Praat (Boersma & Weenink, 2001).  The Wind Instruments Synthesis Toolbox 

was used to create two 500ms musical instrument notes, one synthesized from a trumpet 

template and one synthesized from a trombone template.  Both notes were synthesized 
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with identical fundamental frequencies and identical intensity properties; as such, the 

only thing distinguishing the two notes was their timbre. 

Next, the notes were spectrally rotated, a type of acoustic manipulation that 

redistributes information across frequencies in an acoustic signal.  Within a speech 

context, spectral rotation is often seen in neuroimaging studies, where it is used as a way 

to create a signal with much of the acoustic richness of speech but without the phonetic, 

syntactic, or semantic properties of speech itself (Peelle, Gross, & Davis, 2013; S. K. 

Scott et al., 2000).  Spectral rotation was used in an analogous sense here to construct 

synthetic “musical instruments” that have much of the rich acoustic signature of brass 

instruments but without a true connection to the instruments.  This renders them 

analogous to the German fricatives in the phonetic category learning experiments: 

acoustically complex and clearly “instrumental” but unfamiliar.  The trumpet and 

trombone sounds were spectrally rotated using two channels (split at 8000 Hz) to create 

two endpoints for my musical instrument continuum, which were labeled the “pettrum” 

and the “bonetrom”, respectively.  These tokens were peak scaled to ensure their 

intensities matched.  Next, Praat was used to linearly combine the two endpoints in order 

to make a 10-step continuum.  Just as with the speech stimuli used in the prior 

experiment, this was accomplished through use of spectral blending: each point along the 

continuum represented a linear combination of the two endpoint signals.  The pettrum 

end was arbitrarily labeled Step 1, while the bonetrom end was arbitrarily labeled Step 

10.  Step 8, then, to pick one arbitrarily, was primarily comprised of a bonetrom signal, 

but with some pettrum properties intermixed. 
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2.3.2 Experiment 2: Discriminability 

To make inferences from a direct comparison of the instrument and fricative 

materials, it was necessary to get a sense of the properties of the materials used.  After all, 

any differences that would be found between the acquisition of phonetic and instrument 

categories could either be the result of differences in the processing of items inside and 

outside of language (the main object of study in the present experiments) or simply due to 

differences in the acoustic properties of the stimuli.  Secondarily, I was interested in 

whether participants perceive both continua in a unidimensional fashion, as largely 

assumed in previous treatments of the fricative stimuli, or if they perceived them using 

multiple dimensions.  I used Amazon’s Mechanical Turk service to recruit participants 

for a simple study where participants made stimulus similarity judgments for stimulus 

pairs spanning the continua, described below. 

2.3.2.1 Participants 

27 participants were recruited from Amazon’s Mechanical Turk crowdsourcing 

database.  One participant was thrown out for experience with German, leaving 26 native 

English speakers (7 female, 19 male).  Although the participants generally skewed older 

than a typical undergraduate population (M = 34.7, Range = 25-47), none were old 

enough that high-frequency hearing loss would be expected.  Although headphone use 

was requested for the task, 3 participants reported using external or built-in speakers.  

Despite uncertainty about the precise qualities of the sound equipment that the 

participants used, previous studies using Mechanical Turk (Buxó-Lugo & Watson, 2016; 

Heffner, Newman, & Idsardi, 2017; Slote & Strand, 2016) have generally found 

Mechanical Turk to be an appropriate venue to run experiments related to phonetics. 
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2.3.2.2 Materials 

Participants heard two blocks of trials: one using the non-speech stimuli described 

above, and another using the fricative stimuli in previous category learning experiments.  

The order of each block was counterbalanced across participants. 

2.3.2.3 Procedure 

Participants heard two paired stimuli from one of the continua, back-to-back.  

With ten possible stimuli as both the first and second item, there were therefore 100 

possible pairs of stimuli per continuum.  Participants heard all 100 pairs exactly once, and 

were then asked to rank how similar the items within the pair were on a scale from 1 to 9. 

2.3.2.4 Analysis 

The similarity judgments for each participant were converted into difference 

scores, ranging from 0 (not different) to 8 (most different).  These difference scores were 

used to create a 10 × 10 symmetric data matrix for each participant, with each row and 

each column being a step within the continuum.  These symmetric data matrices were 

analyzed using the IDIOSCAL (Individual Differences in Orientation Scaling) 

functionality of the “smacof” package within R (Mair, De Leeuw, Borg, & Groenen, 

2016).  IDIOSCAL is a generalization of Individual Differences Scaling, INDSCAL 

(Carroll & Chang, 1970), which has been used extensively in the category learning 

literature; for example, in determining naïve listeners’ parcellation of Mandarin tone 

categories (Chandrasekaran, Sampath, & Wong, 2010) or to examine the effects of 

training on categorical perception (Livingston, Andrews, & Harnad, 1998). 

In INDSCAL and IDIOSCAL, dimensionality analysis requires multiple possible 

dimensionalities, n.  For each dimensionality, an n by 10 matrix is generated, showing the 
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coordinates of each stimulus step in an n-dimensional space.  Traditionally, the approach 

to determine the best number of effective dimensions is to calculate badness-of-fit 

measures for each n and to look for an “elbow”, a point at which additional possible 

dimensions do not lead to appreciable drops in badness ratings. 

2.3.2.5 Results 

Participants by and large perceived both continua as unidimensional.  Figure 9 

shows a scree plot with badness-of-fit values across different possible dimensionalities.  

Higher stress values indicate larger badness-of-fit.  The lines do not show a clear 

“elbow”; badness-of-fit decreases gradually across the possible dimensionalities for both 

continua.  Although the largest numeric difference across dimensionalities occurs 

between one and two dimensions (0.049 for the fricatives, 0.076 for the instruments), that 

difference is not particularly large nor much bigger than the next largest difference, 

between two and three dimensions (0.030 for the fricatives, 0.033 for the instruments).  I 

find no evidence to reject the unidimensional interpretation of the continuum. 

 

Figure 9. Badness-of-fit values in Experiment 2 
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To the extent that the stimulus similarity ratings did not conform to a 

unidimensional distribution, in fact, participants generally found the endpoints of the 

continuum to be more similar to each other than would be expected given a uniform 

progression from most to least similar items.  This was true to reasonably similar extents 

for the fricatives and the instruments sounds.  This can be seen in Figure 10, below, 

which shows the two-dimensional IDIOSCAL solution. 

 

 

Figure 10. Two-dimensional IDIOSCAL solution, Experiment 2 

The dimensions revealed in Figure 10 roughly correspond to the position in the 

stimulus along the continuum (Dimension 1) and to whether the stimuli are extreme 

members of the continuum or fall somewhere in the middle (Dimension 2).  To put it 

another way, Dimension 1 showed which category that naïve English speaking 

participants sorted the items into, while Dimension 2 showed the level of certainty that 

the participants had in that label (with higher values indicating increasing certainty).  As 

such, the “extremely palatal” items (steps 1-3) and the “extremely velar” items (steps 8-

10) are less distant from each other than one would expect based on stimulus step alone, 

as listeners were very certain about the categorization of both endpoints.  In general, the 
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items are classified similarly across the two conditions, with roughly equal distances 

from step to step across the two continua.  This suggests that comparing the two 

conditions is appropriate (although see the Discussion for additional speculation about 

this). 

2.3.3 Experiment 3: Learning Musical Instrument Categories 

Given that the continua appeared to be comparable, the next step was to actually 

test the category learning for the instrumental materials.  To do this, I used a paradigm 

essentially identical to that used for the fricative categories, with the only difference 

being in the materials used. 

2.3.3.1 Participants 

63 participants were enrolled in the experiment.  Of those, 8 participants were 

excluded from further analysis: 1 because of a missing demographics survey, 3 due to 

technical errors, and 4 due to a failure to follow directions (as indicated either by an 

unusual response strategy2 or 10 or more trials without a timely response).  That left 55 

participants with analyzable data (27 female, 28 male).  All participants were at least 18 

years of age (M = 20.5, Range = 18-29) and had no history of hearing impairments.  

Participants were recruited from the University of Maryland, College Park community for 

either course credit or a $10/hour compensation. 

2.3.3.2 Procedure 

The procedure used in this experiment was identical to the one used in 

Experiment 1.  First, participants heard one of the sounds from the instrument continuum.  

                                                 
2 This participant pressed every single key simultaneously on every single trial 

until corrected. 
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Next, they pressed a button corresponding to one of three colored squares along the 

continuum: blue (“J”), yellow (“K”), or red (“L”).  Finally, they received feedback on 

their selection, a green check if their response is correct, and a yellow “X” if their 

response is incorrect.  Participants were told to let the feedback they get on a trial-by-trial 

basis guide their responses.  The only difference in the procedure was that the 

instructions changed to tell participants they were learning to pair generic “sounds” with 

colored squares rather than “speech sounds” in particular. 

What differed from participant to participant is which of six conditions that 

people are assigned to, and, therefore, which responses are considered “correct” or 

“incorrect”.  The conditions used, which were identical to those used in Experiment 1, are 

illustrated in Figure 11.  Each colored square shows the correct response for each step in 

each condition.  For example, the correct response for Step 8 in the Normal, Shifted, and 

Picket Fence conditions is to press the button corresponding to “Blue”, while the correct 

response in the Sandwich and Odd One Out conditions is “Red” and the correct response 

in the Neapolitan condition is “Yellow”.  Again, all three responses were available to the 

participants across the conditions. 

 

Figure 11. Correct responses in Experiment 3 

The training was brought to a halt under two conditions.  First, participants were 

judged to have learned the pairings of sounds to squares if they got the most recent 
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appearance of 9 out of the 10 stimulus steps correct.  If this was achieved, the experiment 

ended immediately, and the number of trials that had elapsed was taken as a guide for 

how difficult the condition was to learn, with a greater number of trials indicating a more 

challenging condition.  Alternatively, the experiment ended after 450 trials, no matter 

what the participants’ responses were, as a way to keep the experiment from continuing 

endlessly. 

2.3.3.3 Analysis 

Two analyses were used to assess participants’ learning of the categories in 

question.  As before, one of those analyses comes from the number of trials necessary to 

learn the pairings of sounds to colored squares, which served as a time-to-criterion 

measure.  As in the phonetic category learning experiments, participants were divided 

into fast learners (less than 225 trials to learn), slow learners (more than 225 trials), and 

non-learners (no learning within 450 trials), and the number of participants in each group 

was compared across conditions. 

The second analysis involved model comparison using generalized linear mixed 

models (Bates et al., 2016).  This analysis included the data from the participants run 

using the fricative continuum, and started with a model that had a mixture of fixed and 

random effects, all with the goal of predicting trial-by-trial variation in accuracy (coded 

in a binary fashion, with 1 as a correct answer and 0 as an incorrect one).  The fixed 

effects included in the initial model were the condition (Normal, Shifted, Neapolitan, 

Sandwich, Picket Fence, and Odd One Out), continuum (Fricative and Instrumental), and 

the continuous factor of trial number (rescaled and zero-centered to range from -0.5 to 

0.5; trial number 225 was the 0 point).  As such, fast-learning participants generally only 
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had values of trial number that were below zero; only slow learners had trial number 

values that were greater than 0.  The random effects were intercepts by participant and by 

step and random slopes for trial number by participant (to model variation in learning 

behavior) and for condition by stimulus step (to model differences between items in 

learnability across the conditions).  This model was then compared to models with 

simpler fixed effects structures to determine significant fixed effects.  The best-fitting 

model was then used to compute post hoc measures of differences between conditions 

and between the fricative and instrumental stimuli using the lsmeans package (Lenth, 

2016).  

2.3.3.4 Results 

The results for this experiment are given below in Figure 12.  The number of trials 

needed to learn each condition (horizontal axis) in the musical instrument category 

learning experiment, graphed by condition and continuum (marked at left).  The data 

from the English-speaking participants in Experiment 1 is presented again here for 

comparison.  Each participant is shown as a grey circle, with red crosses showing the 

median time to learn for participants who successfully learned that particular condition.  

Participants clustered along the vertical line at the right did not successfully learn the 

pairings within 450 trials.  Vertical jitter away from the vertical lines is meant to make 

individual participants clear. 
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Figure 12. Experiment 3 results by participant 

At first glance, the results for this experiment resemble those found for phonetic 

categories: the Normal and Shifted conditions are easy to master, while the Picket Fence 

and Odd One Out categories are difficult.  However, a more detailed examination of the 

results yields a surprising finding: the distinction between the Neapolitan and Sandwich 

conditions shrank, quite strongly, for the non-speech categories.  This can perhaps be 

seen more clearly in Table 3, below, which compares English speakers learning fricatives 

to English speakers learning instruments in their median times to learn for each condition.  
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The results for the fricative continuum are for native English speakers only.  Again, the 

median times to learn are presented solely for the sake of description. 

 

 MTTL 

Fricatives Instruments 

Normal 23.5 44.5 

Shifted 69.5 45 

Neapolitan 64 56 

Sandwich 219 100 

Picket Fence 306 210 

Odd One Out 226 350 
Table 3. Experiment 3 result summary tables 

This change appeared to be largely dependent on the Sandwich condition.  That 

condition went from being learned most of the time for the fricative continuum (70%) to 

being learned all of the time for the instrument continuum (100%).  It also went from 

being learned quite slowly for the fricatives (a median of 219 trials to learn) to much 

more quickly for the instrument continuum (a median of 100 trials to learn).  The 

Sandwich condition now more closely resembles the Neapolitan condition; it is “easy” 

where it once was difficult. 
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Figure 13. Experiment 3 results, Loess-smoothed 

These effects are echoed by the mixed model analysis of the results.  Loess-

smoothed learning trajectories, with the proportion correct for participants who 

successfully learned the pairings of sounds to squares padded with a value of 0.9 through 

trial number 450, are depicted in Figure 13.  The best fitting model that was one that 

included all of the fixed effects in general, including both two-way and three-way 

interactions, which is described in detail in Table 4 (using the fricatives as the reference 

level for continuum and the Neapolitan condition as the reference level for the condition).  

Comparing the best-fitting model to one without the fixed effect of condition (and its 

interactions with other fixed factors) yielded a significant decrease in model fit without 

the condition, χ2(20) = 97.9, p < .001, indicating that some conditions had a higher 

baseline acceptance than others.  Removing trial number also significantly decreased 

model fit, χ2(12) = 129, p < .001; participants did learn over time.  And taking away the 

effects of continuum also made a difference in learning, χ2(12) = 29.9, p = .003; 

participants differed in their success depending on the continuum they were trying to 

learn. 
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All of the interactions in the best-fitting model also contributed a significant 

amount to the model fit.  Removing the interaction between the continuum and the trial 

number (and the three-way interaction) led to a significant decrease in model fit, χ2(6) = 

24.7, p < .001, indicating that there was a difference in the pace of learning according to 

the continuum.  Removing the interaction between the continuum and the condition (and 

the three-way interaction) also led to a decrease in model fit, χ2(10) = 28.7, p = .001, 

indicating that the different conditions had different baseline learning between each 

continuum.  And, finally, removing only the three-way interaction between continuum, 

condition, and trial number also led to a significant drop in model fit, χ2(5) = 24.5, p < 

.001, meaning that the differences in the rate of learning across conditions were 

contingent on the continuum.  That is, which conditions were easy to learn depended on 

the continuum of sounds being learned. 
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Fixed Effect β SE z p 

Intercept 5.34 1.21 4.40 <.001 

Condition: Normal 0.734 2.32 0.32 .75 

Condition: Shifted -3.51 1.31 -2.67 .008 

Condition: Sandwich -5.08 1.22 -4.16 <.001 

Condition: Picket Fence -5.62 1.23 -4.56 <.001 

Condition: Odd One Out -4.88 1.32 -3.70 <.001 

Trial Number 11.6 2.73 4.25 <.001 

Continuum: Instrumental -4.62 1.28 -3.60 <.001 

TN × Cnd: N -0.22 5.01 -0.044 .96 

TN × Cnd: Sh -8.73 2.92 -2.99 .003 

TN × Cnd: Sa -10.3 2.76 -3.72 <.001 

TN × Cnd: PF -11.0 2.77 -3.96 <.001 

TN × Cnd: OOO -10.5 2.77 -3.79 <.001 

Cont: I × Cnd: N 5.66 2.50 2.27 .02 

Cont: I × Cnd: Sh 6.51 1.64 3.97 <.001 

Cont: I × Cnd: Sa 5.03 1.33 3.78 <.001 

Cont: I × Cnd: PF 4.84 1.33 3.64 <.001 

Cont: I × Cnd: OOO 4.60 1.32 3.48 <.001 

TN × Cont: I -9.99 2.91 -3.43 <.001 

Cont: I × Cnd: N × TN 13.3 5.42 2.46 .01 

Cont: I × Cnd: Sh × TN 14.4 3.72 3.89 <.001 

Cont: I × Cnd: Sa × TN 10.8 3.02 3.60 <.001 

Cont: I × Cnd: PF × TN 10.5 2.99 3.51 <.001 

Cont: I × Cnd: OOO × TN 9.82 2.98 3.30 <.001 
Table 4. The best-fitting model for Experiment 3 

The lsmeans package was used to inspect differences between the conditions for 

the instrument continuum and differences between the fricative and instrument continua.  

In particular, three targeted tests were used to match those performed in the fricative 

continuum: a comparison between the Normal and Shifted conditions, a comparison 

between the Normal and Odd One Out conditions, and one between the Neapolitan and 

Sandwich conditions.  Additionally, post hoc tests were performed to compare learning in 

the instrument continuum with learning in the fricative continuum.  The multivariate t 

adjustment was applied to ensure that multiple comparisons reflected a truer measure of 

significance. 
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2.3.3.4.1 Normal vs. Shifted 

There was no a priori reason to expect the Normal and Shifted conditions to differ 

in the rate of learning for the musical instrument continuum.  And, indeed, that was the 

case; the lsmeans package indicated that the Normal and Shifted conditions did not differ 

in the rate of learning, z = 2.16, p = .23. 

2.3.3.4.2 Normal vs. Odd-One-Out 

In contrast to the fricative continuum for English speakers, the Normal vs. Odd 

One Out contrast for the instrumental continuum was significant.  Indeed, the Odd One 

Out condition was much harder than the Normal one, z = 4.77, p < .001.  Learning was a 

good deal slower for participants in the Odd One Out condition. 

2.3.3.4.3 Neapolitan vs. Sandwich 

Unlike for the fricatives, however, there was no difference between the Sandwich 

and Neapolitan conditions in learning for the instrumental continuum, z = 0.313, p = 1.  

The Sandwich condition was no slower (or, at least, not significantly slower) than the 

Neapolitan condition in the rate of learning for the fricative continuum.  Additionally, the 

participants who took longer in the Sandwich condition for the instruments were not 

performing similarly to the participants in the Sandwich condition for the fricatives.  

Figure 14 shows participants’ performance during the last 25% of trials in the Sandwich 

condition.  Each row corresponds to the behavior of a single participant, with 10 columns 

that correspond to the responses participants gave.  Each cell is coded in line with the 

proportion of responses from each category.  Cells that are entirely blue, red, and yellow 

indicate that participants responded 100% with that color category for that step within the 

last 10% of trials administered, while cells with intermediate colors represent 
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combinations of responses.  For example, purple cells represent some red and some blue 

responses for those steps towards the end of the experiment.  The white cell for 

participant ME22 indicates no responses for that stimulus step in the last 25% of trials.  

As can be seen, participants were only very rarely using the yellow button to respond, 

unlike for the fricatives, and most of the participants seemed to have little trouble 

positing a red category that was on both ends of the continuum. 

 

Figure 14. Experiment 3 Sandwich final section results 

 

2.3.3.4.4 Fricatives vs. Instruments 

  A cursory comparison of Figure 6 and Figure 12 suggests that there are no 

differences between the fricative and instrument continua in the rate of learning for the 

Normal and Shifted conditions (which are easy for both continua), nor for the Odd One 

Out and Picket Fence conditions (which are difficult for both continua).  And, indeed, 
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post hoc comparison of the fricative and instrumental continua shows that none of these 

comparisons reach significance: comparisons of the Normal, z = -0.370, p = 1, Shifted, z 

= -1.79, p = .46, Odd One Out, z = -0.010, p = 1, and Picket Fence, z = -0.625, p = 1, 

conditions show no differences in the time to learn according to the continuum. 

The results for the Sandwich and Neapolitan conditions are somewhat more 

surprising.  Although it may seem like the distinction between the instrumental and 

fricative stimuli is driven by the numerical difference in the Sandwich condition, such 

that the Sandwich condition is easier to learn in the instrumental continuum than the 

fricative continuum, this difference is not significant, z = -1.12, p = .91.  The main 

difference is in fact in the Neapolitan condition, where learning in the instrument 

continuum is slower than in the fricative continuum, z = 3.63, p = .003.  This is perhaps 

caused in part by the long tail of the Neapolitan condition for the instruments.  In contrast 

to the uniformly speedy learning of the Neapolitan condition for the fricatives, there were 

a few participants in the instrumental continuum who took more than 100 trails to learn to 

pair the instruments with the colored squares. 

2.3.4 Discussion 

To summarize, then, it appears to be the case that disjunctive categories were no 

harder to learn than non-disjunctive categories for the instrumental continuum.  The post 

hoc comparisons indicated that this failure to find a difference was largely the result of 

the Neapolitan condition challenging the participants more for the instruments than for 

the fricatives. 

These findings do not definitively rule out the existence of an anti-disjunctivity 

bias for the instrumental continuum.   There was a trend in the same direction that was 
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observed in Experiment 1: the Sandwich condition was slightly harder to learn than the 

Neapolitan one.  Although the difference between the Neapolitan and Sandwich 

conditions was not significant in Experiment 3, the small sample size of the groups in the 

present experiment suggests that power may also have been an issue; perhaps the 

analyses did not uncover an effect simply because the participant numbers were too 

small.  Of course, the fact that such an effect was uncovered using an identical sample 

size in Experiment 1 suggests that, at the very least, such an effect would be relatively 

weak for non-speech sounds when compared to speech sounds.  Yet even a weak effect 

would suggest that the bias against disjunctive categories observed in Experiment 1 is not 

specific to speech.  The implications of this work would then shift to why the bias against 

disjunctive categories was larger in speech than non-speech; which, though an interesting 

finding, would tamper down on some of the stronger theoretical issues of the present 

project.  Although exploring this possibility in greater detail is outside the scope of this 

paper, planned follow-up experiments involve running participants online (to increase the 

speed and ability of data collection) and requiring all participants to complete the same, 

large number of trials (to ensure that a large amount of data is collected for each 

participant), which should help address the sample size concerns in the present 

experiment. 

An alternative explanation for the failure to find an effect would implicate a 

performance ceiling.  As such, the failure to find an effect would stem from the 

participants in the Sandwich and Neapolitan conditions both reaching this ceiling.  

However, this seems unlikely, given that the performance in the Odd One Out and Picket 

Fence conditions was much poorer than either the Sandwich or the Neapolitan conditions, 
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and that the continua were quite closely matched to each other in terms of their 

perceptual properties. 

All told, however, I believe that the experiments in the present dissertation 

suggest that learners may be subject to different biases when learning speech sound 

categories from those that may exist for non-speech analogues.  The dataset is discussed 

below in terms of the theories of category learning sketched in the review chapter and the 

theories of domain-specificity in speech perception discussed in the introduction. 

2.3.4.1 Relevance to Theories of Category Learning 

2.3.4.1.1 Exemplar-Only 

The results of the present experiment are easier to integrate with exemplar-only 

theories of category learning than the results using the fricatives.  As expected, the 

Normal and Shifted conditions were easy for participants to learn; no participants took 

longer than 125 trials to achieve the learning criterion in those trials.  Conversely, the 

Odd One Out and Picket Fence conditions were very challenging, with few participants 

successfully acquiring the categories in either condition, let alone acquiring them quickly.  

And, finally, the Neapolitan and Sandwich conditions were equivalently difficult (i.e., not 

very challenging), in contrast to the results obtained for the fricative continuum, where 

there was a strong split between the two conditions.  The labels of the continuum 

endpoints for the instruments did not have a significant influence on the rate of learning.  

This is exactly in line with the predictions of exemplar-based category learning. 

Reconciling both the fricatives and the instruments, however, is more challenging.  

Under an exemplar-only system where identical learning systems are used inside and 

outside of language, it can be hard to explain why learners should be hobbled by 
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disjunctive categories in one domain that they have no problem learning in another, very 

similar one.  Indeed, performing both experiments, and finding this dissociation in one 

domain and not the other, rules out one tempting possible explanation: the idea that the 

Sandwich condition involves participants learning to ignore the yellow response key.  

Participants in the Sandwich condition for both the fricative and instrumental items had 

to ignore the yellow response key; but only for the fricatives did this trip them up. 

Using exemplar-only mechanisms to explain these results is not impossible, 

however.  One possible explanation relates to the previous experience that listeners had 

with the sounds in question.  The German-speaking participants in the previous 

experiments had extensive experience with the fricatives, while the English speakers 

often had at least sporadic experience with the sounds in question.  This was not true for 

the instrumental sounds used; as the bonetrom and pettrum sounds were created for this 

experiment, none of the participants came in with any exposure whatsoever.  This 

explanation, though, seems quite unlikely.  Despite the fact that both German and English 

speakers may have had some experience with the fricatives in general, it is also 

indisputable that the German speakers had orders of magnitude more experience with 

them.  Yet both participant groups showed the bias against disjunctivity in learning 

despite those differences.  Furthermore, it is the English speakers, not the German 

speakers, who had the largest difference between the Sandwich and Neapolitan 

conditions in the time it took them to reach the learning criterion; this would imply that 

having either too much experience (as with German speakers learning German fricatives) 

or too little experience (as with English speakers learning instrument sounds) would 
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shrink the difference between disjunctive categories and their non-disjunctive 

equivalents.  This is a possible outcome, but it does not seem likely. 

Another possible exemplar-based explanation for the differences between the 

disjunctive categories and the non-disjunctive categories relates to differences in the 

dimensionality of the stimuli.  To see why, consider the role of stimulus dimensions in 

learning under exemplar-based models.  Under most exemplar-only models of category 

learning, learners are not just acquiring the categories being introduced to them as a part 

of the experiment; they are also learning what weight to place on the different physical 

dimensions that distinguish the categories.  This can be seen in models such as ALCOVE, 

where flexible attentional weights drive participants’ reliance on different dimensions 

(Kruschke, 1992).  These attentional weights could, theoretically, be preset, or depend on 

the physical properties of the dimensions being sampled.  The attentional weights change 

the perceptual distance between two items, which, in turn, affects the rate of learning for 

those items.  Although this has little influence on unidimensional category learning, in 

situations for which there is evidence for multiple dimensions, differences between the 

attentional weights across those situations could lead to differences in the pace of 

learning. 

For the category learning experiments discussed here, then, such an argument 

depends on several premises.  One must discard the conclusion reached as a result of 

Experiment 2 that both stimulus continua are perceived in a unidimensional fashion, at 

least for the fricative items.  Furthermore, these multiple dimensions must be dissociable 

enough that participants can allocate different levels of attention to the ones that are 

relevant to the categories at hand.  One of these dimensions should be allocated the lion’s 
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share of attention at the beginning of the experiment, but that dimension should make it 

hard to distinguish between items, such that learning the disjunctive tokens would be 

impossible using that dimension only.  This would keep performance at the beginning of 

the experiment quite low, as it was with the Sandwich condition in both continua.  

Another dimension, meanwhile, must be capable of distinguishing the category endpoints 

from the middle of the continuum, and that dimension should be allocated less attention 

at the beginning of the experiment than others.  Over the course of the experiment, a shift 

in the allocation of attention to this second dimension would lead performance to 

improve, because the second dimension could lead to a correct demarcation of the 

continuum into two categories. 

If the dimensions shown in Figure 10 are dissociable, they provide an example of 

the type of setup that would be necessary for at least the instrumental items.  Recall that 

Figure 10 showed the results of a two-dimensional IDIOSCAL solution to untrained 

participants’ perception of the fricatives and instrumental sounds.  For both continua, 

Dimension 1 appears to relate to the physical properties of the sound stimuli, whether that 

is cues to the place of the fricatives or cues to the instrument identity for the instruments.  

Dimension 2, meanwhile, seems to relate to extremeness in both continua; stimuli with 

positive values on Dimension 2 are at the ends of each continuum, while stimuli with 

negative values are towards the middle. 

With these dimensions, it is possible to construct a situation in which an 

exemplar-only learning system takes longer to acquire the Sandwich condition than the 

Neapolitan one.  If the learner starts with a strong bias towards attending to Dimension 1, 

and Dimension 1 is insufficient to learn the categories in the experiment, learners should 
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find the beginning of the experiment hard.  Over time, then, they should shift their 

attention to Dimension 2, which provides a very simple way to distinguish red items (at 

the endpoints) from blue items (in the middle).  This will take time, but ultimately lead to 

learning.  The idea is that this strong bias towards attending to Dimension 1 could be 

present for fricatives but absent for the instruments. 

Some aspects of this idea are tempting.  It does not seem odd to suppose that the 

perceptual dimensions that are used to distinguish the fricatives from one another are 

different from those used to distinguish the musical instruments from each other.  

Further, it is reasonable to suppose that listeners may be biased towards weighting some 

of those dimensions stronger for the fricatives than for the instruments.  However, the full 

argument is not very tenable.  As discussed in greater deal above, Experiment 2 provides 

weak evidence, if any, that the category learning problem here is two dimensional.  More 

worryingly for exemplar-only theories, it is not clear why there would be a difference 

between the Neapolitan and Sandwich conditions in attentional weighting at the onset of 

learning that would drive participants in the Sandwich condition to reallocate attention 

while Neapolitan participants do not.  That is, if using only Dimension 1 to categorize 

items in the Sandwich condition is prevented by the inter-item confusability in that 

condition, there is no reason why using only Dimension 1 to categorize items in the 

Neapolitan condition would be any easier.  They are the same items with the same 

boundaries between them. 

Testing this idea would require additional knowledge about the dimensionality of 

the stimuli used here.  One could imagine, for example, performing a similarity judgment 

task similar to the one used in Experiment 2 both before and after category learning.  If 
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learning is driven by changes in dimensionality, participants’ similarity judgments should 

reflect the attentional shifts required to learn the disjunctive categories.  To sum up, 

taking an exemplar-only approach to explain a bias against disjunctive categories is 

challenging.  The most plausible recourse is to re-allocate attention from salient 

dimensions that prevent successful learning to less salient dimensions that allow for 

learning; however, such a pathway seems unlikely. 

2.3.4.1.2 Dual-System 

For dual-system models, meanwhile, the differences in learning between the 

continua are easier to accommodate.  It might be the case, for example, that the rule-

based category learning system has different properties for phonetic and non-phonetic 

stimuli such that it is constrained to positing non-disjunctive categories for speech in a 

way that it is not required to do for non-speech stimuli.  In other words, the “over-

hypotheses” of phonetic learning would be different from the “over-hypotheses” of non-

phonetic learning (Kemp et al., 2007).  Learners may be biased in this way because of the 

relative frequency of disjunctive categories in language versus disjunctive categories in 

music.  Disjunctive categories are rarely present in language, barring occasional 

counterexamples, as with allophones of /t/ and inter-individual variation in the 

pronunciation of /ɹ/ and /ʃ/.  They are much more frequent, though, in music, as 

categories such as “C” refer to a variety of widely scattered pitches, one per octave.  It 

would also be reasonable to propose that the similarity-based system is slower to activate 

for the fricative items than the instrument items, which would in turn lead to slower 

learning for the disjunctive categories. 
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Perhaps one of the biggest weaknesses of dual-system models is the sheer number 

of ways in which learning might differ between the fricatives and instruments.  Unlike in 

exemplar-only models, where essentially only two factors—the dimensionality of the 

stimuli being used, and the amount of noise in the perceptual system that can distinguish 

between items—can affect the acquisition of categories, the multiple systems that 

characterize dual-system models can vary in many ways within each system.  Honing in 

on any one explanation is challenging.  Distinguishing between, say, changes within a 

single system versus changes in the handoff of control from one system to another require 

follow-up studies that selectively disrupt the activity of each purported system (Maddox 

& Ashby, 2004).  Thus, while this pattern of results could be explained by a dual-system 

theory of category learning, the system would need to be of a type that discourages the 

acquisition of disjunctive categories in the rule-based system, as in RULEX (Nosofsky et 

al., 1994); and, curiously, that bias would need to manifest only for certain types of 

category learning contexts. 

2.3.4.2 Relevance to Domain-Specificity 

This study also has direct relevance to the idea of domain-specificity in speech 

perception.  The acquisition of phonetic categories seemed to be constrained in a way that 

the acquisition of non-linguistic categories was not.  This is relatively easy to 

accommodate under domain-specific theories of speech perception, where the process of 

acquiring new phonetic categories can have fundamentally different properties from the 

process of acquiring other acoustic categories.  However, without recourse to previous 

experiences with items similar to each continuum, it is more challenging to integrate with 



130 

 

domain-general theories of phonetic perception, which would predict just the opposite.  

Examples of each approach are sketched below. 

2.3.4.2.1 Domain-Specific Theories 

Motor theories of speech perception have little difficulty accommodating 

differences in learning between phonetic perception and other types of auditory 

perception.  Under motor theories, phonetic signals, once their “phonetic” nature is 

detected, are processed in a special way through the reconstruction of underlying motor 

gestures.  Other acoustic signals are processed separately.  Given that phonetic perception 

is domain-specific under motor theories, it is entirely possible to accommodate different 

learning processes within a domain from those outside of it. 

Indeed, a bias against disjunctive categories may fall out quite neatly from the 

predictions of motor theories.  If the underlying perceptual dimensions at work for speech 

sounds are motor, not perceptual, a dispreference for disjunctive categories makes some 

sense.  Motor gestures are often quantal (a lip motion or tongue gesture is made or not 

made), which should work against positing theories that involve two separate, 

disconnected motor gestures being a part of a single category.  However, there are some 

phonetic categories that could be reasonably proposed to be disjunctive in terms of motor 

actions, even just in American English.   [ɹ] can be produced using a huge variety of 

motor gestures, involving both the tongue tip and the back of the tongue (Guenther et al., 

1999; Westbury, Hashi, & Lindstrom, 1998).  [s] and [ʃ] are also produced with a variety 

of articulatory configurations, with individual participants showing only limited overlap 

between the categories in production but with between-participant overlap being 

substantial (R. S. Newman, Clouse, & Burnham, 2001).  As such, it is not clear whether 
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motor theories speak to the idea of disjunctive categories in speech, though they would of 

course easily accommodate differences between the speech and non-speech categories. 

Acoustic theories of speech processing that incorporate speech-specificity should 

also have few challenges accommodating this distinction.  As with motor theories, these 

theories propose that speech-like acoustic information is sent to a specialized acoustic 

module in order to enter into later linguistic computations (Poeppel et al., 2008).  If 

speech processing has a certain set of special, enumerated features that make it different 

from other types of perceptual processes, it is not hard to include a dispreference for 

disjunctive categories into that list. This becomes particularly relevant under theories that 

postulate abstract distinctive features.  Consider the distinction between palatal and velar 

fricatives used in the phonetic learning experiments in the previous chapter.  Under those 

theories, palatal and velar fricatives are distinguished from one another by the presence of 

different place features, such as [+/-high] and [+/-low].  One could split the fricatives 

from one another into separate categories by emphasizing the place features that divide 

them, or combine them into a single category by deemphasizing those same features.  

However, it is unclear how to posit a category that includes both the palatal and velar 

endpoints without including the items in between.  For example, consider the table of 

place distinctions and features in Table 5 below, where Distinctive Feature 1 (DF1) and 

Distinctive Feature 2 (DF2) characterize the difference between the palatal and velar 

fricatives, while intermediate items are characterized by the presence of positive values 

for both features. 
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 Palatal Intermediate Velar 

DF1 + + - 

DF2 - + + 
Table 5. A toy feature list 

In a distinctive features account of category learning, it is straightforward to learn 

three different categories along the continuum; the red category is defined as any items 

with [+DF1, -DF2], the yellow category as [-DF1, +DF2], and the blue category as 

[+DF1, +DF2].  But it is not possible to easily characterize the palatal and velar fricatives 

in a way that is distinguishable from the intermediate fricatives; the palatal and velar 

fricatives do not have any featural specifications that are unshared with the items in 

between them.  This is a relatively straightforward way to accommodate a bias against 

disjunctive categories for these stimuli. 

2.3.4.2.2 Domain-General Theories 

By contrast, theories that suggest phonetic perception abilities are shared with 

domain-general abilities struggle with the differences in learning uncovered here.  This is 

most straightforward for direct realism.  Under direct realism, both phonetic perception 

and non-linguistic perception result from the perception of the kinetic attributes of the 

objects producing the sound and the motor gestures necessary to create the sounds (C. 

Fowler, 1990).  For speech sounds, these are the motor gestures of speech production; for 

non-speech sounds, these are perhaps the motor actions necessary to make an object 

make sounds.  One’s perception of a saxophone playing, for example, may be enhanced 

by motor experience producing saxophone sounds (Rizzolatti & Sinigaglia, 2010).  

However, this leads to an odd conundrum for direct realist theories of perception: how 



133 

 

does one perceive sounds that one has not and indeed cannot produce using technology 

currently available, as with the artificial musical instrument continuum used for the 

present experiment?  No one has played a bonetrom or a pettrum, yet listeners have no 

problem categorizing tokens of each.  This, in combination with the differences observed 

in learning between the non-linguistic and phonetic categories, makes direct realism 

appear untenable. 

General auditory theories also struggle with a difference in learning between the 

two conditions.  Under those theories, speech perception is a subset of auditory 

perception more generally (Holt & Lotto, 2008).  None of the properties of phonetic 

perception should be unique to the domain of speech sounds.  However, the bias seen 

here, if taken at face value, seems to show a domain-specific constraint on learning that is 

not shared with another set of auditory categories.  However, a good deal more research 

needs to be done in order to conclusively decide this question one way or another.  

Although the bias against disjunctive phonetic categories has been replicated with other 

sets of stimuli besides the fricatives (in a set of experiments not reported here), only one 

set of non-linguistic auditory categories was used here.  It may be that there is something 

special about the musical instrument sounds that made the difference between disjunctive 

and non-disjunctive categories disappear.  And many of the objections that could be 

raised by exemplar-only researchers—that the participants in the fricative continuum may 

have had previous experience with the items in question, or that the fricative items and 

instrument items were not actually very comparable in structure at all—could also apply 

for general auditory researchers.   
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Of course, despite their differing experience with the fricatives used in the present 

experiment, it is certainly the case that English and German speakers alike have years of 

experience with phonetic categories in general, even if the English speakers do not have 

(much) experience with the sounds used in this experiment in particular.  The learners’ 

familiarity with speech sound categories may have led them to come into the present task 

with a prior expectation—perhaps some sort of over-hypothesis (Kemp et al., 2007)—

that speech sound categories should not be disjunctive.  Again, this seems challenging to 

accommodate under exemplar-only approaches to category learning, where such biases 

would need to be instantiated in terms of “baked-in” exemplars belonging to each 

category.  That said, this would significantly weaken the idea of domain-specificity 

within the present experiment, as the participants’ bias against disjunctive categories 

would result not from something special about speech but rather the typical domain-

general auditory refrain: experience. 

Such an idea rests on the premise that disjunctive categories are rare in speech.  

At first blush, this is a reasonable idea; it is hard to come up with many.  But there are 

some categories that may be considered “disjunctive”.  In American English, the category 

/t/ can be realized as [t] (a voiceless alveolar stop), [th] (an aspirated alveolar stop), [ɾ] (an 

alveolar flap), [tʔ] (a glottalized alveolar stop), and even [ʔ] (a glottal stop).  The 

aspirated and glottalized tokens are in some ways the most interesting ones, as they 

represent the endpoints of a unidimensional continuum of phonation ranging from a lax 

glottis (breathy voice for aspiration) to a tense glottis (creaky voice for glottalization).  

Thus, the /t/ category is disjunctive with regard to the dimension of phonation, as tokens 

with extreme values are all categorized as /t/, while intermediate values are characterized 
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as /d/.    So, despite their rarity, it is possible that disjunctive categories are present for the 

learners. 

One way to get at this question is to use a range of sounds that differ in their 

perceived “speech-like-ness”.  Clicks, for example, are consonants that are found 

productively and frequently in the languages of South Africa, but they are essentially 

absent in other languages.  Indeed, in languages like English, clicks are primarily used for 

paralinguistic purposes; the sound that is often represented as “tsk-tsk” in American 

English conventions is a dental click.  Studying the acquisition of categories in a less 

speech-like speech sound continuum, such as ones found in clicks, could provide a 

window on to what extent these constraints on disjunctive categories are true for every 

speech sound, even ones not perceived to be speech-like. 
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3 Adaptation 

3.1 Background 

Just as variability is important for understanding categorization, so too is it 

important for understanding adaptation.  Variation in the acoustic properties of speech 

from speaker to speaker likely does not lead listeners to posit entirely new phonetic 

categories for every new speaker that they run into.  A speech system with such a 

property would be forever in flux, preventing generalization; people would be incapable 

of picking up on repetitions across speakers.  Instead, listeners are capable of adapting to 

differences in other speakers without changing categories wholesale, picking up on the 

regularities present in their interlocutor’s speech to learn to appropriately categorize other 

tokens.  This is the process of adaptation, covered in detail in the current section. 

3.1.1 Speech Adaptation 

Adaptation can happen on many levels.  Variation can exist from speaker to 

speaker, but also from dialect to dialect, accent to accent, and even as the result of 

artificial manipulations (as with helium inhalation).  Listeners can track the source of 

variability—that is, whether the variation comes from an idiosyncratic pronunciation or a 

consistent feature of a dialect or accent—when processing speech (Kraljic, Brennan, & 

Samuel, 2008).  The recently-proposed ideal adapter model (Kleinschmidt & Jaeger, 

2015) is one way to describe how listeners might go about adapting to the speech of 

others.  According to the ideal adapter model, the processes responsible for phonetic 

adaptation depend on a listener tracking and selecting appropriate statistical distributions 

for phonetic categories that typify a particular speaker and that speaker’s environment. 

This knowledge about those distributions then allows the listener to assign prior 
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probabilities to the likelihood of certain individual speech tokens.  Here, I discuss speech 

adaptation to two sources of variation: differences in accents and dialects, and differences 

in rate. 

3.1.1.1 Accent Adaptation 

Accent adaptation is the most commonly studied facet of speech adaptation.  It is 

not much of a stretch to say that everyone has had an experience listening to the speech 

of someone speaking a different variety of one’s native language, whether those 

differences are the result of dialect or of having a different native language.  

Understanding the speech of someone with a different dialect or accent can sometimes be 

challenging, but, with some level of exposure, it becomes easier.  Below, I summarize 

some of the research into accent adaptation as a window into how and why adaptation 

happens in general.  I largely discuss accent and dialect adaptation interchangeably.  It is 

reasonable to think that the speech of non-native speakers of a language may differ in 

qualitative ways (or be processed in a qualitatively different way) from native speakers of 

a different variety of a language.  However, the boundaries between the two types of 

variation are underexplored, perhaps in part because the processing of non-native dialects 

has been relatively understudied (Floccia, Goslin, Girard, & Konopczynski, 2006).  It is 

also the case that there is substantial variation within the categories of “accent” and 

“dialect” in the ease of adaptation.  Some non-native speakers, for example, whether due 

to second language proficiency or idiosyncratic factors, are more comprehensible than 

others (Bent & Bradlow, 2003). 

Most research into accent adaptation has relied on one of two methodological 

approaches: using naturally-produced, accented speech, or creating (often through 
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artificial means) an artificial dialect or accent.  Bradlow and Bent (2008) serve as a good 

example of the naturalistic approach.  They played English sentences recorded by either a 

single or multiple native speakers of Mandarin Chinese to native English speakers, and 

examined how accurately the native English speakers transcribed the sentences over the 

course of the experiment.  Maye, Aslin, and Tanenhaus (2008) used an artificial accent.  

They used a speech synthesizer to create an artificial accent or dialect in which front 

vowels were systematically lowered; that is the [i] vowel (in “seat”) was pronounced as 

[ɪ] (“sit”), the [ɪ] vowel was pronounced as [ɛ] (“set”), the [ɛ] vowel was pronounced as 

[æ] (“sat”), and the [æ] vowel was pronounced as [a] (“sot”).  They then examined 

English speakers’ interpretation of the lexical status of words with those shifted vowels. 

Both study types have advantages and disadvantages.  Artificial dialects are very 

well-controlled, but may lack some of the validity of real examples of accents.  

Naturalistic examples, on the other hand, involve sacrificing the control of the items used, 

which in turn could lead to unexpected findings just as a result of the individual tokens 

used in the study.  That does not necessarily mean that studying systematicity in 

naturalistic experiments is impossible.  Exposure to Spanish-accented English has been 

used to probe whether certain segments or certain properties of vowels are more affected 

by adaptation than others (Sidaras, Alexander, & Nygaard, 2009).  But it is important to 

keep in mind the differences between the studies.  Adaptation can also be investigated 

using event-related potentials (ERPs).  The Phonological Mapping Negativity (PMN) is a 

negative-going ERP component that accompanies the presentation of words in accented 

speech and peaks between 250 and 300 ms after stimulus onset.  Interestingly, the 

strength of the PMN seems to differentiate accented speech and non-native dialects, with 
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PMN amplitudes increasing relative to unaccented baselines for non-native dialects but 

decreasing relative to the baseline for accented speech (Goslin, Duffy, & Floccia, 2012). 

The paradigms outlined above have led to a fairly well-rounded picture of the 

processes of accent adaptation.  In some respects, accent adaptation can happen very 

quickly (although it does not always do so).  Reaction times to probe words after the 

auditory presentation of a sentence show a return to a native-like baseline in as quickly as 

two to four sentences spoken by a non-native speaker (Clarke & Garrett, 2004).  The 

effects of adaptation depend on a listener’s familiarity with the variety being spoken; 

while London-based speakers of Standard English found Glaswegian English (an 

unfamiliar dialect) to be harder to understand in noise than their native Standard English, 

Glasgow-based speakers of Glaswegian English were not equally hobbled by Standard 

English, as they (and most residents of the United Kingdom) had significant exposure to 

Standard English (Adank, Evans, Stuart-Smith, & Scott, 2009).  Adaptation can spread 

across speaker groups; listeners who heard a variety of foreign-accented speakers (native 

speakers of Thai, Korean, Hindi, Romanian, and Mandarin) were more accurate in 

transcribing Slovakian-accented speech than those who were not exposed to foreign-

accented speech, despite not actually having had exposure to Slovakian-accented speech 

before testing (Baese-Berk, Bradlow, & Wright, 2013).  And adaptation seems to 

differentially affect comprehensibility (ease of processing) and intelligibility (ultimate 

understanding), with comprehensibility often taking much longer and being incomplete 

even while intelligibility reaches a native-like baseline (Floccia, Butler, Goslin, & Ellis, 

2009). 
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Accent adaptation is not limited to a typical young adult population; people of any 

age can come into contact with speakers who do not sound like others of their native 

dialect.  A few studies of accent adaptation have examined accent adaptation in older 

adults, with results being generally inconclusive (Cristia et al., 2012) and perhaps 

dependent on the cognitive abilities of the older adults (Janse & Adank, 2012).  Many 

more have assessed adaptation in infants and toddlers, where the strength of adaptation 

seems to be age-dependent.  Schmale and Seidl (2009) found that 9-month-olds found it 

difficult to pick out words that were produced successively by native English and 

Spanish-accented speakers of English or by multiple speakers of Spanish-accented 

English, while 13-month-olds were able to detect the similarities between the words 

despite the phonetic differences characterizing those speakers.  A study of American and 

Jamaican English found that 19-month-olds raised around American English speakers are 

capable of recognizing words in Jamaican English in a way that 15-month-olds are not 

(Best, Tyler, Gooding, Orlando, & Quann, 2009).  However, that study used only a 

limited exposure to Jamaican English to trigger adaptation on the part of the toddlers; 

exposing 15-month-olds to a longer story spoken in a non-native dialect led to successful 

adaptation in later testing (van Heugten & Johnson, 2014).  19-month-olds also show the 

ability to adapt to artificial accents when accessing lexical items (White & Aslin, 2011). 

These studies do not prove an inability to adapt to other accents or dialects on the 

part of any group.  Indeed, the fact that most of them only used a single talker with an 

accent or dialect means that in many of these studies the infants’ and toddlers’ inability to 

comprehend the speech of the novel talker may have been the result of factors 

idiosyncratic to that speaker’s speaking style, to the extent of differences between the 
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native and non-native speakers of the language, or in the tokens used to expose the 

children to the new speech variant.  It also may be the case that infants and toddlers are 

capable of adapting to accent variation in the comprehension of familiar words but not, 

say, when learning new words.  These are all factors that may influence the strength of 

accent adaptation. 

3.1.1.2 Rate Adaptation 

It is not just differences in accent or dialect that listeners must adapt to; variation 

exists across a wide range of acoustic properties.  Another frequent object of study in the 

adaptation literature is speech rate.  Some people speak at a faster rate than others, and 

these rate changes lead to systematic variation in the production of nearly every phonetic 

segment (Crystal & House, 1988).  Yet listeners are capable of comprehending speech 

compressed to as little as 45% of the original duration after a short period of adaptation 

(Dupoux & Green, 1997), indicating that speech perception can easily accommodate 

drastic variation in rate.  Still, uniform compression of speech leads to different effects on 

the acoustic signal from naturalistic variation in rate, particularly because in natural fast 

speech there is predictable variation between segments in, say, the extent to which they 

are compressed.  In the sections below, I review rate adaptation effects, using both 

naturalistic and artificial manipulation, in segmental perception and in word 

segmentation. 

3.1.1.2.1 Segmental Perception 

Speech rate adaptation has been shown to affect the perception of individual 

segments of speech.  Although occasional studies have investigated the influence of 

context rate on the perception of vowels (Verbrugge, Strange, Shankweiler, & Edman, 
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1976), most of this discussion has focused on the perception of consonant contrasts.  In 

many of these studies, the duration of adjacent syllables (or even segments within the 

same syllable) is taken as a proxy for rate, with relatively short syllables being associated 

with a fast rate and relatively long syllables being associated with a slow rate.  Rate 

adaptation has been observed for consonant voicing distinctions ([p] vs. [b], [t] vs. [d], 

etc.) and for consonant manner distinctions ([t] vs. [tʃ], [b] vs. [w], etc.), among others (J. 

L. Miller, 1981). 

[b] and [w], for instance, can both be signaled by similar vowel-initial formant 

transitions, with the difference between them driven by the perception of the duration of 

that transition.  Long formant transitions lead to the perception of a [w], while short 

transitions lead to the perception of a [b].  However, the perception of those transitions is 

also modulated by the duration of adjacent segments; relatively long adjacent segments 

lead to more frequent perception of [b], while relatively short adjacent segments lead to 

more frequent perception of [w] (J. L. Miller & Liberman, 1979).  In other words, speech 

rate is relative.  Speeding up one portion of an utterance leads other portions of the same 

signal to sound relatively slow by comparison; conversely, slowing down part of an 

utterance leads other parts of a signal to sound relatively fast.  Rate changes are also 

associated with changes to the internal structure of categories.  In voice onset time (VOT) 

continua, small VOTs are typically perceived as voiced (e.g., [b]), while long VOTs are 

typically perceived as voiceless (e.g., [p]).  However, monotonically increasing VOT can 

lead to interesting results: tokens that are still perceived as voiceless, but as bad examples 

of a voiceless category.  Which tokens are perceived as “good”, and which as “bad”, are 

also subject to context rate effects (J. L. Miller & Volaitis, 1989). 
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Some studies have found that these context effects on segments are surprisingly 

robust to other changes.  For example, in one study that used speeded responses to 

examine some aspects of moment-to-moment processing, listeners who were forced to 

give fast voicing judgments reliably behaved as if the syllables in question were short (J. 

L. Miller & Dexter, 1988).  This is a particularly interesting finding because listeners did 

not merely treat the syllables in question as having an indeterminate rate but as having a 

reliably fast rate, suggesting that some aspects of rate processing are obligatory even 

under amplified task demands. 

Rate information also seems to penetrate through signal discontinuities.  Consider 

a very simple word-initial consonant contrast, [bi] (“B”) versus [pi] (“P”).  Abruptly 

changing the fundamental frequency information of [i] does not affect its influence on the 

perception of syllable-initial voicing in the stop contrast, even when such a large change 

in fundamental frequency accompanies a shift in speaker identity in speech (Sawusch & 

Newman, 2000).  Even rate information from a different (perceived) location and 

different (perceived) talker from an attended speech stream affects the perception of 

ambiguous voicing, if only to a very small extent (R. S. Newman & Sawusch, 2009).  As 

mentioned in the introductory chapter, non-human animals also show human-like use of 

rate cues in voicing distinctions; the contrast between [b] and [w] is also influenced by 

the duration of the rest of the syllable for budgerigars (Dent et al., 1997) 

Such studies have seen some pushback.  Diehl, Souther, and Convis (1980) found 

that the rate effects are strongly context-dependent; for example, they found that using 

fundamental frequencies that resembled those produced by women led to adaptation 

effects in the opposite direction as those typically observed, although later studies that 
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have used female voices have largely not replicated this reversal.  There have also been 

criticisms of the stimulus parameters used in the perception studies involving VOT and 

vowel length.  In particular, it has been argued that the inverse relationship between VOT 

and vowel length usually deployed in experiments of rate adaptation are generally not 

found in production (Kessinger & Blumstein, 1998), while examination of the perceptual 

effects of naturalistic distributions shows very little effect of rate adaptation on 

perception (Shinn, Blumstein, & Jongman, 1985). 

In contrast to these studies of adjacent vowel durations, the perception of 

consonantal cues has only sporadically been linked to the perception of far-away (i.e., 

distal) rate cues.  As mentioned earlier, most of these studies use the duration of adjacent 

syllables or segments as a stand-in for rate.  Although it is the case that the duration of 

adjacent segments often correlates with the rate of the rest of a sentence, this is not 

always the case.  When both distal information and close-by (i.e., proximal) rate 

information are available, the perception of segmental contrasts seems to be more 

strongly driven by proximal information than by distal information.  Summerfield (1981) 

looked for the effects of distal timing information on contrasts in word-initial voicing and 

found almost no evidence for an influence of segmental timing information in segments 

other than the syllable immediately preceding the initial consonant voicing ambiguity.  

Although changes to the distal rate around a voicing ambiguity can drive changes in 

which items are considered to be the best examples of a category, they do not influence 

the number of items that are considered to be good examples of a category (Wayland, 

Miller, & Volaitis, 1994).  Subsequent researchers proposed the idea of a strict temporal 

window of approximately 400 ms within which timing information can influence a 
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segmental contrast (R. S. Newman & Sawusch, 1996).  Reports of successful distal 

adaptation effects on segmental perception have largely been confined to particular 

rhythmic contexts, where, for example, only sets of stressed syllables are lengthened (G. 

R. Kidd, 1989). 

3.1.1.2.2 Word Segmentation 

In typical orthographic conventions of English, spaces separate words.  There is 

no equally consistent cue for word boundaries in spoken language.  As with 

categorization, the problem of word segmentation—parsing discrete words within a 

continuous signal—has vexed speech perception researchers, who have tried to explain 

how listeners can segment speech despite the frequent acoustic ambiguities in the signal.  

These ambiguities are surprisingly abundant, as the frequency of word-segmentation-

related puns suggests.  Consider the sign in Figure 15.  The creator of the sign was 

certainly aware that the words “ovary action” and “overreaction” are different words.  In 

spoken language, the two parses are differentiated only by the acoustic properties of the 

speech sounds used and the context in which the sounds are found; the pun leverages 

these ambiguities for comic effect.  Rate adaptation affects the perception of ambiguous 

word boundaries in a way reminiscent of some of the stronger studies of segmental 

perception. 
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Figure 15. Sign from Women’s March on Washington, January 21, 2017 

In many models, word segmentation is a consequence, or perhaps even merely a 

side effect, of word recognition.  Under the initial version of the Cohort model (Marslen-

Wilson & Welsh, 1978), for example, words are recognized sequentially through parsing 

speech sounds one-by-one in the signal.  A word boundary is posited wherever a 

complete word can be formed from the string of phonemes being fed into the system.  

These theories contrast with others that reinforce the primacy of acoustic and 

probabilistic cues to word boundaries themselves rather than treating word segmentation 

as the consequence of word recognition.  Many more modern formulations of word 

segmentation models have involved combining the previous proposals related to the 

sequential nature word recognition to models that involve direct acoustic cues to word 

boundaries (Davis, Marslen-Wilson, & Gaskell, 2002). 

One of the most influential recent proposals was that of Mattys, White, and 

Melhorn (2005), who found evidence for a hierarchy of cues in word segmentation.  In an 

extensive set of studies, Mattys et al. (2005) compared top-down cues to word 

boundaries—for example, “lexicality”, a desire to parse strings in a way that leads to the 

perception of valid words of a target language—with bottom-up cues such as 

coarticulation or word stress.  Using a combination of priming and word monitoring 
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tasks, Mattys et al. (2005) found that top-down cues tended to dominate bottom-up cues 

when available.  The authors used their results to posit a hierarchy of word segmentation 

cues, with lexical ones being most important, acoustic/phonetic cues being secondary, 

and word stress cues being of tertiary importance.  Each less important cue was used only 

when higher-ranked cues were unavailable. 

As with studies of segment contrasts, one issue of interest in the domain of word 

segmentation has been the use of timing information to segment signals.  The timing and 

duration of acoustic events within the speech signal has been shown to be important 

across a variety of different phonetic domains.  Timing information may trade off with 

predictability in the speech signal to aid listeners in perceiving sentences (Turk & 

Shattuck-Hufnagel, 2014).  Indeed, as Mattys (1997) pointed out, many of the contrasts 

between the word segmentation theories discussed above critically hinge on the time 

course under which the material in the signal is processed.  That is, the theories can be 

differentiated by whether the information is integrated in a strictly linear fashion or 

whether there is some sort of “buffer” under within which word recognition may take 

place.  Timing seems to be intimately connected to the problem of word segmentation.  

Turk and Shattuck-Hufnagel (2000) examined the production of triads of lexical items 

with acoustic ambiguity to word segmentation—for example, tune acquire, tuna choir, 

and tune a choir—and found evidence for a panoply of word-segmentation-related effects 

on duration, including lengthening at the beginning of words and lengthening of stressed 

syllables, which could then be exploited by the listener in order to segment speech. 

This has led some researchers to begin exploring the influence of timing 

information—especially distal speech rate information—on the segmentation of words.  
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Dilley and McAuley (2008), for example, studied lexically ambiguous syllabic sequences 

such as chocolate lyric down town ship wreck, with the last four syllables capable of 

being parsed into downtown shipwreck and down township wreck.  For these syllables, 

the proximal context was considered to be the last three syllables (town ship wreck), 

while the distal context was defined as the immediately preceding syllable (down).  

Dilley and McAuley (2008) found that just by slowing the rate of the distal context, 

participants went from parsing the phrase as downtown shipwreck to parsing it as down 

township wreck, as the duration of down came to be perceived as sufficiently long to 

support its perception as an individual word. 

Although these distal rate adaptation effects were originally demonstrated in fairly 

artificial contexts, they have since been extended to more naturalistic ones.  Distal speech 

rate has been shown to affect the perception of acoustically ambiguous function words, 

such as or, her, and a.  In casual speech, these words are often produced as reduced; that 

is, short and acoustically indeterminate.  They are thus frequently subject to ambiguity in 

speech, including in the duration and location of word boundaries that set them off from 

the context (Pluymaekers, Ernestus, & Baayen, 2005).  For example, in the phrase The 

value went up after her rich neighbors, the word her, if realized as [ɚ] (‘er), can often 

blend in with the [ɚ] phone at the end of the word after.  This creates ambiguity to the 

existence of the word boundary signaling the word her; the listener needs to decide if 

there is a long enough [ɚ] to sustain the perception of two [ɚ] sounds between aft- and 

rich (and, thus, to segment the phrase as after her rich), or whether the [ɚ] is only long 

enough to sustain a single [ɚ] sound (and, thus, only capable of being segmented as after 

rich). 
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Dilley and Pitt (2010) studied sentence fragments with these ambiguities and 

other analogous ones, examining whether rate adaptation would affect the perception of 

these acoustically ambiguous regions within the sentences.  They defined the distal 

context as anything more than a syllable removed from the point of the function word 

ambiguity in the sentence.  In the case of the rich neighbors sentence, this was the value 

went up af- and -ich neighbors.  The proximal context was the critical region of the 

sentence: ter (her) r-.  They found that, just by changing the rate of speech within the 

distal context region, listeners’ perception of the critical word segmentation ambiguity 

changed.  In particular, slowing down the distal context led participants to perceive one 

less word boundary within the critical target region, perceiving after rich rather than after 

her rich.  The effect sizes were not small.  In unmodified versions of the sentence 

fragments, participants perceived the function word almost 80% of the time; with a 

slowed distal context (but without any manipulation of the proximal context whatsoever), 

however, this rate dropped to approximately 30%.  These results were later extended to 

show that the average speech rate across an entire experiment can also influence the 

perception of individual sentences within the experiment, with relatively slow 

experimental contexts leading listeners to perceive each individual distal context as 

slower, thus depressing function word report rates (Baese-Berk et al., 2014). 

These effects are appreciably stronger than other cues known to influence word 

segmentation.  In one set of studies, Heffner, Dilley, McAuley, and Pitt (2013) found that 

distal speech rate more strongly influenced word segmentation than did a set of cues 

known to induce the perception of word boundaries: changes in intensity and 

fundamental frequency around the erstwhile boundary and changes in the duration of the 
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ambiguous vowel in question.  Intriguingly, given the predictions of Mattys et al. (2005), 

distal speech rate has been shown to play a greater role than certain top-down cues as 

well.  In a study that examined ambiguous syllable sequences similar to those in Dilley 

and McAuley (2008), Dilley, Mattys, and Vinke (2010) found that the distal prosodic 

patterns induced within the context of the ambiguous syllabic sequences had stronger 

effects on segmentation than did semantic priming from the initial, unambiguous 

sequences.  Similarly, the same ambiguous sentences used in Dilley and Pitt (2010) also 

allowed for a comparison of the effects of distal rate to the grammatical structure of the 

critically ambiguous function words within the sentence.  Again, it appeared that distal 

speech rate proved a stronger cue to word segmentation than did the top-down cue of 

grammatical structure (Morrill, Baese-Berk, Heffner, & Dilley, 2015). 

As with accent adaptation, aging has also been studied for rate adaptation.  Older 

adults perceive timing information differently from younger ones (Craik & Hay, 1999).   

In general, older adults prefer events to be timed more slowly (McAuley, Jones, Holub, 

Johnston, & Miller, 2006).  In one study I performed earlier during my time at UMD, I 

examined whether older adults might systematically differ from younger adults in their 

use of distal speech rate cues to word segmentation.  Older adults, for example, tend to 

have problems understanding artificially compressed speech (Gordon-Salant & 

Fitzgibbons, 2001).  I expected older adults (aged 55-65 in this study) to use distal rate 

less than younger adults in resolving word segmentation ambiguities, and to compensate 

for this by using top-down cues more.  But that was not what was found.  Instead, older 

adults and younger adults used both cues to almost exactly the same extent.  This 

suggested that the differences that have been observed in the perception of speech rate 
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timing did not necessarily entail differences in the use of timing information for real-

world tasks.  Perhaps the older adults were able to exploit the relative contrasts between 

distal and proximal speech rates in a way that was identical to younger adults (Heffner, 

Newman, Dilley, & Idsardi, 2015). 

The general pattern, then, is for strong rate adaptation effects in segmentation 

contrasts, but weak rate adaptation effects for segmental contrasts.  However, the distal 

rate adaptation literatures differ in a considerable number of other ways, including in 

methodologies.  I recently performed an experiment that attempted to iron out all of these 

differences, using methods and contexts as similar to each other as possible when testing 

the differences between distal timing information use in segmentation and segments.  

After holding as much else as possible constant, I found that the support for rate 

adaptation effects depended strongly on the ambiguities being assessed as well as the 

definition of “distal” that was adopted.  Although segmentation ambiguities (such as 

Canadian oats versus Canadian notes, which differ in the location of the word 

segmentation boundary near the [n]) showed stronger evidence of distal adaptation 

effects than segmental ambiguities (such as Canadian coats versus Canadian goats, 

which differ in the voicing specifications of the word-initial consonant) for word-initial 

contrasts, adaptation effects were strong for word-final contrasts for both segmentation 

(bee knowledge vs. bean knowledge) and segments (beet knowledge vs. bead knowledge).  

Furthermore, adaptation effects were relatively weak when the definition of “distal” 

excluded information within 400ms of a potential word boundary, indicating that at least 

part of the differences observed between the studies were the result of differences in the 

definition of “distal”.  This was true both for participants at UMD and participants 
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recruited from Amazon’s Mechanical Turk crowdsourcing framework (Heffner et al., 

2017). 

3.1.2 Event Segmentation 

The idea that it is necessary to break a continuous stream of input into discrete 

chunks is not unique to speech perception; it is also seen in the domain of action 

perception (Zacks & Tversky, 2001).  Many of the same ambiguities that are faced by 

listeners perceiving sentences are also evident in visual perception.  Consider learning a 

new dance for the first time.  In order to learn the dance moves, it is necessary to segment 

the dance into a series of steps.  But the learner faces a conundrum: what actions should 

be considered one step rather than two?  The points at which one step begins and the next 

ends in fluid dance are just as opaque to the casual observer as the points at which words 

begin and end in fluent speech.  Except perhaps in an unusual pedagogical situation, there 

is no one on the sidelines holding up a flag to indicate when one step gives way to 

another.  The learner then must rely on context cues and her knowledge of the kinematics 

of bodies in order to assemble the dance into a series of steps.  The process of parsing 

actions into segments is known as event segmentation (Tversky & Zacks, 2013; Zacks & 

Swallow, 2007).  Although outside the scope of the present dissertation, the segmentation 

of action sequences into events has also been discussed in the semantics literature, as 

languages require that continuous actions are described in terms of discrete words 

(Bohnemeyer et al., 2007). 

Unlike the segmentation of speech, event segmentation has some terminological 

challenges; namely, there are many possible timescales that might represent a single 

“event”, while categories such as “segment”, “syllable”, “word’, “phrase”, “sentence”, 
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and so on have better-defined (if still sometimes ambiguous) boundaries.  To use the 

“learning a new dance” routine as an example, the entire episode of “dancing” might be 

perceived as an event when considered at the timescale of a day, but is too broad of a 

useful description when considered at the timescale of a single minute.   Quite a bit of 

research has focused on differentiating fine-grained versus coarse-grained perception of 

actions in segmentation (Newtson, 1973).  These experiments often involve participants 

watching a movie and pressing a button on a keyboard corresponding to a time at which 

they perceive one action ending and the next beginning.  Most modern examinations of 

event segmentation have suggested that events are structured hierarchically, in a way 

reminiscent of hierarchical prosodic structures (Shattuck-Hufnagel & Turk, 1996), with 

smaller, non-overlapping events combining piece-by-piece to make up larger ones 

(Tversky & Zacks, 2013; Zacks & Swallow, 2007; Zacks & Tversky, 2001). 

As with word segmentation (Mattys et al., 2005), event segmentation is the result 

of a combination of top-down and bottom-up cues.  Bottom-up cues to event 

segmentation include movement cues (Zacks, Kumar, Abrams, & Mehta, 2009), while 

top-down cues involve things like experimental instructions (i.e., telling people to focus 

on fine-grained or coarse timing information).  Event boundaries are sometimes 

associated with “breakpoints”, seemingly invariant points within even scrambled 

slideshows that exhibit a great deal of physical change from one moment to the next 

(Bridgette Martin Hard, Recchia, & Tversky, 2011).  They can also be prompted by the 

appearance of new objects in the visual scene (Tauzin, 2015).  People are capable of 

tailoring the cues they use for event segmentation according to the situation they are in; 
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for example, when perceiving social event boundaries, participants often focus on eye 

and face information (Boggia & Ristic, 2015). 

These types of information often trade off against each other.  The salience of 

bottom-up movement features is increased when participants are asked to segment events 

in a coarse-grain fashion, indicating that explicit top-down instructions can actually 

increase reliance on bottom-up cues (Zacks, 2004).  Meanwhile, an understanding that 

the actions being viewed do not serve a direct functional purpose (as in a religious ritual) 

encourages fine-grained event segmentation (Nielbo & Sørensen, 2011).  Even actions 

that are unfamiliar, played backwards to viewers, or visually inverted are often 

segmented in a way similar to how they are segmented with top-down knowledge, 

suggesting that top-down cues may be less effective in event segmentation than in word 

segmentation (Bridgette M Hard, Tversky, & Lang, 2006; Hemeren & Thill, 2011). 

Neural studies have also been used to examine event segmentation.  Event 

boundaries are also generally correlated with functional magnetic resonance imaging 

(fMRI) activation in frontal and occipital cortex, especially visual area MT (also known 

as V5), an area that is said to be associated with object motion (Zacks, Speer, Swallow, 

Braver, & Reynolds, 2007).  This activation is accompanied by additional activation in 

frontal and parietal regions when those actions are perceived to be meaningful, rather 

than ones that were generally opaque to viewers, as in actions taken in tai chi (Schubotz, 

Korb, Schiffer, Stadler, & von Cramon, 2012).  In the neuropsychological literature, 

traumatic brain injury (TBI) in a military population was associated with poorer  

processing and understanding of events, especially fine segmentation, when compared to 
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an unimpaired military population (Zacks, Kurby, Landazabal, Krueger, & Grafman, 

2016). 

One frequent topic of discussion in the event segmentation literature relates to the 

encoding and retrieval of events in memory.  The hierarchies that listeners  assemble 

when segmenting events show up again when asked to recall them later (Zacks & 

Tversky, 2001).  In one study, in which participants had to perform a recognition task 

after segmenting an ambiguous action, participants were more likely to recognize objects 

that were present at event boundaries (Swallow, Zacks, & Abrams, 2009).  By and large, 

it seems to be the case that memory representations, both short-term and long-term, are 

updated at event boundaries (Kurby & Zacks, 2008).  Event memory is much more 

strongly associated with event segmentation success than it is with domain-general 

memory-related abilities, such as working memory (Sargent et al., 2013).  Making event 

boundaries extremely salient—through a combination of a bell sound, the visual 

presentation of a large red arrow, and a brief pause in the action on the screen—also 

seems to enhance memory for a visual scene more than putting such cues in the middle of 

an event does (Gold, Zacks, & Flores, 2017).  Interestingly, older adults may be less 

hierarchical in their processing of events than younger adults, a fact that appears to be 

connected to their impaired event recall (Kurby & Zacks, 2011). 

Event segmentation is often tied to studies of narrative in movies and books.  

Written narratives often use elements such as temporal markers (“next week”, “the very 

next day”, etc.) to signal shifts within stories; these temporal markers lead to event 

segmentation, which in turn affect readers’ memory for elements of the story in question 

(Speer & Zacks, 2005).  This, in turn, is associated with a widely distributed array of 
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activations in fMRI, including medial temporal gyrus (Ezzyat & Davachi, 2011).  

Narratives in film have also been the object of study in the event segmentation literature.  

Many studies have examined the ways that narrative shifts and different types of cuts can 

lead to scenes being processed as separate events or as single actions (Cutting, 2014), 

with even discontinuities in space and time being insufficient to break action apart into 

separate events (Magliano & Zacks, 2011).  Many of the properties that lead viewers to 

posit an event boundary are correlated with the visual properties of the stimulus, without 

recourse to the top-down goals of the actors in the film (Cutting, Brunick, & Candan, 

2012). 

Only a handful of studies have explicitly looked at the effects of timing 

information at all, let alone adaptation, on event segmentation.  Some of these 

investigations have centered on long-scale time representations.  For example, actions 

that are weeks, months, or years in the future are often conceived of in ways that are 

more abstract and more goal-directed than actions that are perceived on shorter 

timescales (Trope & Liberman, 2003).  Other studies have investigated whether the 

temporal overlap of different events aids in their segmentation, with event endings 

seemingly being more powerful than the beginnings of other events in determining the 

timing of event boundaries (Lu, Harter, & Graesser, 2009).  Still, almost no studies have 

examined the role of duration information per se on event segmentation, nor the rate 

context surrounding an action, as I and others have done with speech perception (Dilley 

& Pitt, 2010; Heffner et al., 2013; Reinisch, Jesse, & McQueen, 2011). 

Interestingly, despite the paucity of studies related to the influence of duration on 

event segmentation, the effects of event segmentation on (perceived) duration have been 
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examined.  Faber and Gennari (2015) used animations of geometric shapes that varied in 

the number and composition (specifically, the between-event similarity) of the perceived 

events within the animation, as determined by item ratings.  They found that animations 

that were segmented into a larger number of actions, and animations in which the actions 

that occurred were seen as being dissimilar from one another, were perceived to last 

longer than animations with fewer or more similar actions, and took longer to mentally 

simulate.  Similar effects were found for studies of prospective duration, with estimates 

of the duration of future actions being predictable in part from the structure of the actions 

yet to come (Faber & Gennari, 2017). 

3.1.3 Event Segmentation and Word Segmentation: Parallels 

Given the similarities between the literatures above, the time may be right to 

attempt to find crossovers between word segmentation and event segmentation.  Such 

thoughts have been stated before.  Both word segmentation (Bion, Benavides-Varela, & 

Nespor, 2011) and music perception (Pearce, Müllensiefen, & Wiggins, 2010; Sridharan, 

Levitin, Chafe, Berger, & Menon, 2007) have been directly compared to event 

segmentation.   Peña, Bion, and Nespor (2011) examined the iambic-trochaic law, 

initially posited in the auditory realm, and applied it to event segmentation.  The iambic-

trochaic law refers to the observation that two consecutive events that differ in duration 

tend to be segmented with a short unit followed by a long unit, while consecutive events 

that differ in pitch or intensity tend to be segmented with a loud or high-pitched unit 

followed by a soft or low-pitched unit.  They found that similar principles are in effect for 

visual event segmentation as well; for example, events with a long final sub-component 

tend to be better remembered than ones with a short final sub-component. 
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Perhaps the best-researched analogue between the two types of segmentation has 

come from studies of transitional probabilities.  It has been claimed that recurring 

statistical patterns within action sequences lead to structure-building, with less-

predictable actions generally being perceived as the onset of a new event (Reynolds, 

Zacks, & Braver, 2007), just as less-predictable segments or syllables are frequently 

associated with word boundaries (J. R. Saffran, Aslin, & Newport, 1996).  This has led to 

investigations of the role of transitional probabilities and statistical learning in action 

perception.  Endress and Wood (2011) exposed participants to a series of animations 

formed from the concatenation of three separate action elements of the form AXB, with 

the A and B actions maintaining a recurrent and predictable relationship (i.e., the 

presentation of any particular action A always preceded the presentation of a single, 

different action B).  After a period of familiarization, the participants were then above 

chance at discriminating a sequence following the form AXB than one of the form BAX 

or XBA (Endress & Wood, 2011).  Statistical learning of common action sequences is 

also present for patterns of moving dots on a screen, with exposure to frequent patterns of 

motion during familiarization leading to later discrimination of those frequent patterns 

from ones that never appeared (Ongchoco, Uddenberg, & Chun, 2016). 

Other parallels come from the developmental literature.  Given the importance of 

segmentation to speech perception and to event perception, it is perhaps unsurprising that 

children quickly and effectively learn to segment the world.  This has been demonstrated 

both for speech and for events, but perhaps most robustly in speech perception.  Infants 

as young as seven-and-a-half months old can extract words from the context of a sentence 

and distinguish them from other words (Jusczyk & Aslin, 1995), and at the age of six 
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months use familiar words (e.g., mommy, their name) in order to learn where adjacent 

words begin and end (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005).  In a preferential 

looking paradigm, 8-month-old infants preferred to orient towards speech samples with 

pauses placed at phrasal boundaries over speech samples with pauses placed at non-

boundary locations (Hirsh-Pasek et al., 1987); later studies with 9-month-olds indicated 

that this preference persisted even with adult-directed and low-pass-filtered speech 

samples (Jusczyk et al., 1992).  Studies with 11-month-olds showed that this preference 

for pauses inserted at phrase boundaries also extended to the word level, with the 11- 

month-olds looking longer at utterances with pauses placed at word boundaries than 

utterances with pauses placed in the middle of words (J. Myers et al., 1996).  Infant word 

segmentation abilities are important.  12-month-olds with better word segmentation skills 

showed larger expressive vocabularies at 24 months (R. S. Newman, Ratner, Jusczyk, 

Jusczyk, & Dow, 2006), suggesting that successful segmentation at a young age has 

benefits later in development. 

It has been abundantly demonstrated that infants are able to use statistical 

regularities in syllable-to-syllable co-occurrence in order to segment words.  Consider the 

phrase happy baby.  Given the syllable [hæ] in happy, it is probably quite likely to be 

followed by the syllable [pi], as the word happy is a common one in child-directed 

speech.  However, the transitional probability of the syllable [bej] in baby given the 

previous syllable [pi] is much smaller than that of [pi] given [hæ], as the word happy can 

often be followed by a wide variety of possible words (e.g., birthday), many of which 

have different initial syllables.  Learning to take advantage of these cues is a process 

known as statistical learning, which eight-month-olds can do even within the context of a 
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short artificial language experiment (J. R. Saffran, Aslin, et al., 1996).  Statistical learning 

seems to be stronger when the voice used is speaking using infant-directed speech 

(Thiessen, Hill, & Saffran, 2005), and can quickly be exploited for the sake of learning 

new words (Graf Estes, Evans, Alibali, & Saffran, 2007). 

What other cues are infants and young children able to exploit in order to segment 

words?  Many of the experiments testing this have compared the strength of different 

acoustic cues to the statistical regularities in speech discussed just previously.  For nine-

month-olds, stress can affect word segmentation even more than statistical cues can 

(Mattys, Jusczyk, Luce, & Morgan, 1999; Thiessen & Saffran, 2003), and seems to be 

assimilated into infants’ lexical representations of individual words (Curtin, Mintz, & 

Christiansen, 2005), although evidence is more mixed at seven months of age (Curtin et 

al., 2005; Thiessen & Saffran, 2003).  Eight-month-olds can use coarticulation and stress 

more than statistical cues to segment speech (Johnson & Jusczyk, 2001).  Nine-month-

olds can exploit the different realizations of phonemes, depending on their position 

within a word (i.e., allophones, as in the aspirated [th] of top compared to the unaspirated 

[t] of stop), when provided in conjunction to other statistical cues, and by ten-and-a-half 

months can use them independently of statistical cues (Jusczyk, Hohne, & Bauman, 

1999). 

Infants and toddlers are also capable of segmenting the world around them into 

events.  Five-and-a-half month olds maintain memories of simple events more strongly 

than they did memories of individual faces or objects involved in doing the events across 

the course of a few hours and a few weeks (Bahrick, Gogate, & Ruiz, 2002).  As with 

speech, six- and eight-month-old infants are capable of segmenting individual actions 
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from an event stream, showing analogous segmentation abilities at a similar age (Hespos, 

Saylor, & Grossman, 2009).  These abilities index events specifically rather than just 

smaller chunks of the familiarization videos, as replaying inter-event transitions led to no 

increase in looking over a baseline (Hespos, Grossman, & Saylor, 2010; Hespos et al., 

2009).  Event boundary placement seems to be a skill that is fairly early to master.  Ten-

month-olds familiarized with a video of a simple action looked more to repetitions of that 

video with pauses located away from naturalistic event boundaries than repetitions with 

pauses located at an event boundary (Baldwin, Baird, Saylor, & Clark, 2001).  

Interestingly, the directionality of this effect is the opposite of that found for word 

boundaries in speech, as infants preferred listening to utterances with pauses at word and 

phrase boundaries rather than away from those boundaries as in event segmentation.  

Conversely, similarly-aged infants preferred scenes with non-linguistic acoustic tones 

playing in sync with event boundaries to ones with tones scattered randomly (Saylor, 

Baldwin, Baird, & LaBounty, 2007). 

As with the adult literature, the developmental literature has begun examining 

parallels between word segmentation and event segmentation.  Perhaps unsurprisingly, 

this has often taken the form of studies of statistical learning for event segmentation, with 

a few studies showing that infants are capable of using statistical information to parse a 

stream of actions into individual events (Baldwin, Andersson, Saffran, & Meyer, 2008; 

Roseberry, Richie, Hirsh-Pasek, Golinkoff, & Shipley, 2011; Stahl, Romberg, Roseberry, 

Golinkoff, & Hirsh-Pasek, 2014).  Across these studies, then, there are points of overlap 

in the age of acquisition of each of these domains of language.  These similarities in the 
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developmental trajectories of segmentation abilities suggest that other parallels may exist 

between segmentation both in and out of language. 

3.1.4 Summary 

Adaptation is a strong and pervasive object of study for speech perception.  

Although much of the focus in the speech adaptation literature has been on adaptation to 

accents and dialects, adaptation to rate has been another focus.  Despite traditional 

findings suggesting that the effects of rate adaptation are rather weak on the perception of 

individual segments, more recent research on rate adaptation in word segmentation has 

shown much stronger effects.  Outside of language, segmentation is also observed in the 

perception of individual events.  Event segmentation and word segmentation share 

several important properties, and a tiny but growing number of studies have started to 

investigate parallels between the domains, including in the use of statistical learning to 

event segmentation.  Yet the use of timing cues and the influence of rate adaptation on 

event segmentation is, to my knowledge, entirely unexplored.  In the chapters below, I 

investigate rate adaptation in speech perception (in particular, the perception of geminate, 

or doubled, consonants in Arabic) and in event perception (in particular, the perception of 

actions being performed on a touchscreen), exploring the extent to which rate adaptation 

can influence each modality. 
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3.2 Rate Adaptation in Speech 

Duration is not just important to segmentation; it influences the perception of a 

wide variety of phonetic phenomena.  The clearest example of this effect is seen through 

contrastive segment length.  In numerous languages, including Italian, Japanese, Finnish, 

and Arabic (the subject of the present investigation), words can be distinguished merely 

by the duration of single segments within them.  For example, in Italian, the words beve, 

‘he drinks’, and bevve, ‘he drank’, are differentiated only by the duration of the medial 

[v]3.  By contrast, although analogous situations can sometimes arise in English across 

word boundaries, consonant length alone does not distinguish individual lexical items. 

The presence or lack of distinguishable consonant length varies across languages. 

In languages that do contrast the length of consonants, there are typically two strongly-

overlapping cues that inform the perception of the consonants: the absolute length of the 

consonant, and the relative length of the consonant to the previous vowel.  Geminate 

consonants are, unsurprisingly, long in duration when compared to their singleton 

counterparts (Idemaru & Guion, 2008; Pind, 1995).  On top of that, though, consonant 

length often shows a robust cue-trading relationship with the length of the previous 

vowel, with longer consonants often being associated with shorter preceding vowels 

(Esposito & Di Benedetto, 1999).  Yet this particular relationship seems to be subject to 

some cross-linguistic variability, as seen with Japanese geminate consonants, for 

instance, which are said to often be preceded by longer vowels than singleton consonants 

(Kingston, Kawahara, Chambless, Mash, & Brenner-Alsop, 2009).  Despite the evidence 

                                                 
3 For purposes of the present experiment, long or geminate consonants will be 

transcribed as  [:], making the transcription of “he drank” [bev:e].  Short or singleton 

consonants will lack a [:].   
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for relative cue weighting in production, other authors have suggested that those cues 

may not translate over to perception (Hankamer, Lahiri, & Koreman, 1989).  At least for 

Japanese speakers, there is a great deal of variability between individuals in their use of 

absolute and relative duration in the perception of consonant length contrasts (Idemaru, 

Holt, & Seltman, 2012). 

Even in languages with segmental length contrasts, however, it is not solely from 

phonological or phonetic factors that the duration of segments can vary.  The length of 

the vowels that precede geminate consonants may also vary according to speech rate.  

Thus, listeners face a dilemma resolving this type of input: is a vowel before a consonant 

short because the speaker is talking rapidly, or is it short due to the following long 

consonant, as in the case of Italian and most languages with such contrasts?  Although 

relatively rare, studies investigating the perception of geminate consonants in Icelandic 

(Pind, 1995) and Italian (E. R. Pickett, Blumstein, & Burton, 1999) indicate that the 

perception of those consonants is strongly influenced by the length of adjacent syllables, 

not just vowels, which are often taken as a proxy of the adjacent or proximal rate context.  

As a result, a consonant with a constant duration might be perceived as either long (i.e., 

as a geminate) when preceded by a relatively short vowel or as short (i.e., as a singleton) 

when preceded by a relatively long vowel.  While the length of adjacent syllables can 

often show variation in line with speech rate, ratios of consonants to vowels stay 

relatively stable even in the face of rate changes (Idemaru & Guion-Anderson, 2010).  

These findings suggest that listeners can show rate adaptation effects even in the case of 

consonant length contrasts that are primarily cued by the same durational properties that 

signal rate changes. 



165 

 

Although the vast majority of the distal rate adaptation literature has taken place 

in the context of studies of English-speaking listeners’ perception of segmentation and 

segments, there have been a handful of studies that assessed distal rate adaptation in 

languages other than English.  These studies have primarily been performed in cases 

where the critical ambiguities involved segmentation or the all-or-nothing perception of 

individual segments rather than for differences in consonant length.  In one study using 

Dutch (Reinisch et al., 2011), for example, listeners heard sentences with phrases 

ambiguous to the location of a word boundary, such as eens (s)peer, ‘once spear/pear’.  

The pairs were ambiguous to whether two [s] sounds abutted the word boundary or 

whether there was just a single [s] found to one side of the boundary.  Similar to findings 

from English, the rate of speech more than a syllable removed from the potential word 

boundary influenced the perception of the word boundary, with a slower distal rate 

leading people to report the doubled [s] less often.  Russian speakers were less likely to 

report a grab bag of acoustically de-emphasized segments and syllables—including 

function words that were signaled only by the presence or location of a word boundary—

with a slower distal rate (Dilley, Morrill, & Banzina, 2013). While the distal rate effects 

varied from item to item and context to context, they were generally of a scale seen in 

studies of English word segmentation effects.  In the present study, I extend these 

previous results seen with regard to word segmentation to see the effects of rate 

adaptation effects on consonant length contrasts. 

3.2.1 Experiment 4: Rate Adaptation in Arabic 

Words in Modern Standard Arabic (MSA) may vary only in terms of the length of 

individual segments within a word. Words in MSA are composed of abstract roots and 
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word-patterns. Thus, a single root, such as DRS, may be incorporated to different word-

patterns, which carry the morphological information, leading to more than twenty-five 

different words.  Variation between two word-patterns employing the same root may be 

limited to the varying length of individual segments within the word.  The words darasa, 

‘he studied’, and darrasa, ‘he taught’, are differentiated only by the length of the medial 

[r] sound.  As can be seen just by the example of ‘studied’ versus ‘taught’, these length 

contrasts have urgent importance to the grammatical structure of Arabic; differences 

between closely related verb meanings, as well as between singular and plural nouns, are 

signaled through differences in consonant length. 

This makes Arabic an interesting case study, as future experiments could assess 

the relative importance of content-based cues to word identity and the rate cues to 

consonant length.  As with all languages that have contrasting length specifications, this 

distinction is strongly cued by the length of the consonant itself (Obrecht, 1965).  Arabic 

consonant length contrasts are also associated with cue trading relationships that 

resemble those in Italian and other languages.  Vowels that precede geminate consonants 

are relatively short compared to vowels that precede singleton consonants (F. Y. Al-

Tamimi, 2004; J. Al-Tamimi & Khattab, 2011).  Thus, adaptation is particularly 

important for Arabic speakers, as listeners must decide whether any particular vowel has 

a small duration because the vowel precedes a long consonant or because the listener is 

speaking at a quick rate4. In the present chapter, I investigate distal rate adaptation effects 

                                                 
4 Although outside the scope of the present investigation, Arabic also has 

contrastive vowel length, meaning that the vowel itself may also have a short or long 

specification. 
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on Arabic speakers’ perception of consonant length contrasts along the lines of my earlier 

experiments on distal rate effects in segmentation. 

3.2.1.1 Participants 

20 people participated in this experiment (16 female, 3 male, 1 not stated). All 

were at least 18 years old (M = 27.95, Range = 19-50) and had no history of speech or 

hearing disorders. All were native speakers of Arabic, primarily Peninsular Arabic, and 

were fluent speakers of Modern Standard Arabic, the standardized variety of Arabic used 

in writing and in mass media in the Arabic-speaking world. Participants were recruited 

either in the United States or Saudi Arabia by a native speaker of Arabic. They were 

compensated at either a $10/hour wage or local equivalent or refused payment. The 

experiment was performed in line with the guidelines of the University of Maryland, 

College Park Institutional Review Board (IRB). 

3.2.1.2 Materials 

30 sentence pairs were designed with a critical ambiguity in the length of a 

consonant signaling the presence of a definite clitic. In Arabic, the definite clitic is often 

transliterated as al, and is attached to the beginning of a noun or an adjective that it 

modifies; bayt, ‘a house’, becomes al-bayt, ‘the house’. However, two key processes can 

conspire to render its perception dependent only on the length of a critical consonant. 

First, the [l] of al undergoes complete assimilation to the following consonant if that 

consonant is coronal. For example, the definite form of the noun sayaraat, ‘car’, is as-

sayaraat, ‘the car’. This makes the length of the consonant phonetically long ([s:]). 

                                                 
5 Not all participants were comfortable giving their exact age and instead provided 

an approximate range of ages.  For these participants, the midpoint of the range was used 

as the age for purposes of computing the mean. 
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Second, when articulated after a word ending with a vowel, the a of al is usually elided as 

in the example ba’du as-sayaraat. When the word ba’du ([baʕdʕu]), ‘some’, precedes as-

sayaraat, ‘the car’, the a of as- is often elided. As such, then, in cases when the 

determiner clitic is preceded by a vowel-final word and attaches to a word starting with a 

coronal consonant, the only disambiguating element as to whether that determiner is 

present is whether the consonant the clitic attaches to is long. 

The sentence pairs that were created for this experiment differed only in the 

length of a consonant that signaled the presence of a determiner. To do this, 30 sentences 

were constructed that were identical up to the point of a critical consonant, then diverged 

with regard to the length of that consonant. The items that were recorded without an al 

will be referred to as “singleton” items, while the items with an al will be referred to as 

“geminate” items (see Figure 16 for examples of pairs).  The glosses marked (C) are the 

English translation of (A), while the items marked (B) are the word by word translation 

of the Arabic sentence for the purpose of reflecting word order in Arabic. Note that 

Arabic is read from right to left, with the (B) items created accordingly. Although later-

occurring grammatical and semantic information that disambiguated the length of the 

critical consonant was included to aid in the speakers’ pronunciation of the materials, this 

information was cut out of the sentence fragments that were played for the participants. 

60 filler sentences with no such ambiguities were also constructed, with those sentences 

being subject to truncation in a similar way to the experimental items. Four native Arabic 

speakers—two female speakers of Peninsular Najdi Arabic, and two male speakers of 

Egyptian Arabic—recorded the stimuli using MSA.  Items were selected to roughly 

balance the number of items used from each of the four speakers while also selecting 
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singleton and geminate items that had similar acoustic properties.  Although varieties of 

spoken Arabic in Saudi Arabia and Egypt do have some phonetic and phonological 

differences, all varieties of Arabic include the properties that make these items 

ambiguous, including vowel elision and complete coronal assimilation. 

 

Figure 16. Experiment 4 stimulus example 

The 30 items with the critical ambiguity had their distal speech rates modified. 

The “distal context” was defined as anything more than a syllable removed from the point 

of ambiguity, in line with numerous previous studies of these effects in word 

segmentation (Dilley & Pitt, 2010; Heffner et al., 2013). The “proximal context” was 

defined as everything within a single syllable of the word boundary. For these items, 

there were three possible context rates: Normal (with no change to the distal rate), Slow 

(with a distal context length set to 175% of the unmodified version), and Fast (with a 

distal context length set to 70% of the original duration). The rate of the filler items was 

also changed to be Normal, Slow, or Fast, but with rate manipulations that affected entire 

sentences rather than parts of the sentences. 
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3.2.1.3 Procedure 

The experiment used a 2 (Type: Singleton or Geminate) × 3 (Distal Rate: Normal, 

Slow, or Fast) design. Items were randomly assigned to one of six lists, where each item 

was assigned to one of the six combinations of Type and Distal Rate. For half of the lists, 

one item was inadvertently added to the list twice; the second iteration of that item was 

removed from further analysis. The order of all experimental and filler items was 

completely randomized for every participant, with the exception of two filler items used 

for practice at the beginning of the experiment.  All participants completed the study 

using the same computer and headphone, and were encouraged to ask questions before 

they start the experiment.  PsychoPy was used to run the items, and participants heard the 

sentences presented one-by-one and were asked to write down the sentences that they had 

heard. They were allowed to repeat an item up to five times before they wrote the 

sentence down. 

3.2.1.4 Analysis 

Participants’ transcriptions of each sentence were examined for the presence of 

the critical determiner clitic al. For a few items (less than 5%), it was indeterminate 

whether the participant had transcribed the determiner given transcription errors near the 

critical region.  These trials were not considered for subsequent analysis.  However, for 

the rest, the presence of the definite clitic was coded as either a 1 if the transcription 

contained the determiner or a 0 if the transcription did not.  Type was coded as a factor, 

while distal rate was coded as a continuous variable.  The scale factors expressing the 

duration of the distal duration with regard to the unmodified version of the clip were 

base-2 logarithmically scaled to give the numbers that each rate was coded as: the 
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Normal rate was coded as 0, the Slow rate as 0.807 (the base-2 logarithm of 1.75), and 

Fast as -0.515 (the base-2 logarithm of 0.70).  This preserved the fact that the three rates 

were not completely independent of each other; the slow rate was slower than the normal 

rate, which was in turn slower than the fast rate. Generalized linear mixed-effects models 

were then implemented in the lme4 package (Bates et al., 2016) to compare participants’ 

tendencies to transcribe the definite clitic across combinations of Type and Distal Rate. A 

model comparison procedure was used to first identify the most complex random effects 

structure supported by the data, with help from procedures instantiated within the 

RePsychLing package (Baayen, Bates, Kliegl, & Vasishth, 2015), and to second 

determine the fixed effects with a significant impact on participants’ transcriptions of the 

critical region (Bates, Kliegl, Vasishth, & Baayen, 2015). 

3.2.1.5 Results 

 

Figure 17. Experiment 4 results 
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A summary of the results in the experiment is found in Figure 17.  Figure 17 

illustrates the proportion of critical regions transcribed with a geminate response, by 

original item type (geminate or singleton) and distal rate (fast, normal, or slow).  Error 

bars are by-participant standard errors.  The item type (singular versus geminate) clearly 

affected the proportion of trials in which participants reported a geminate consonant.  

However, the slope of each line also indicated support for the idea of distal rate effects on 

the perception of the critical consonants as well. 

These subjective observations were confirmed by modeling.  The first step was to 

assess the ideal random effects structure for the dataset. To do this, an initial model was 

constructed that had all of the potential fixed and random effects included. The initial 

model included fixed effects of distal rate and type as well as the interaction between 

them, random intercepts by participant and by item, random slopes for distal rate by 

participant and item, and random intercepts for type by participant and item. No 

correlation parameters were included between random slopes (Bates et al., 2015).  Next, 

to find the maximum number of dimensions supported by the random variation in the 

data, a principal components analysis (PCA) was performed on the variance-covariance 

matrix of the model using the RePsychLing package in R (Baayen et al., 2015).  This 

PCA indicated that a maximum of three random components were supported by the 

variation in the data by item, but only one was supported by participant.  Comparing the 

initial model to an intermediate model with a full random structure by item but only 

random intercepts by participant showed no significant change in model fit from 

dropping the random slopes by participant, χ2(2) = 3.18, p = .20.  Thus, the intermediate 
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model, with random intercepts by participant and by item and random slopes for distal 

rate and type by item, appears to provide the most reliable set of random effects. 

This intermediate model, then, can be compared to models that lack different fixed 

effects in order to determine the significance of each of these effects.  Comparing the 

intermediate model to one lacking the fixed simple effect of type, as well as the fixed 

interaction between distal rate and type, would indicate whether type played a significant 

role in determining participants’ perception of the critical consonants.  And, indeed, there 

was a significant decrease in model fit with these fixed effects removed, χ2(2) = 66.0, p < 

.001.  Participants were much more likely to hear the critical consonant as a geminate if it 

was recorded with that intention, probably in line with the many other acoustic cues 

present that can indicate the presence of a geminate consonant (Idemaru & Guion, 2008).  

Comparing the intermediate model to one lacking distal rate (both the simple effect and 

the interaction with type) also yielded a significant difference, χ2(2) = 15.4, p < .001.  

Slowing the distal rate made people less likely to hear the critical consonant as a 

geminate.  However, comparing the intermediate model to a final model lacking the 

interaction term between distal rate and type – yet possessing the effects of distal rate and 

type independently of one another—showed no significant change in model fit without 

the interaction, χ2(1) = 0.267, p = .61.  The dataset, then, best supports this final model, 

one that includes distal rate and type as independent fixed factors.  Fixed model 

parameters are available in Table 6, with Geminate as the reference level for the type 

factor. 
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Factor(s) Estimate (b) z p 

Intercept 2.62 8.01 < .001 

Distal Rate -1.90 -3.59 < .001 

Type:Singleton -4.48 -10.6 < .001 
Table 6. The best-fitting model in Experiment 4 

 

3.2.2 Discussion 

The study described in this chapter tested the effects of distal rate adaptation on 

the perception of Modern Standard Arabic length contrasts.  I predicted that modifying 

the distal rate by speeding up the context around a singleton consonant in Arabic would 

lead that consonant to be perceived as a geminate.  Slowing down the context, on the 

other hand, around a geminate consonant in Arabic would lead that consonant to be 

perceived as a singleton.  The findings of the study supported the prediction completely.  

Fast contexts led singleton consonants to sound relatively long, and thus they were more 

likely to be perceived as geminates; slow contexts led the geminate consonant to sound 

relatively short, and thus to be perceived as singletons.  This extends findings related to 

distal rate adaptation to a new set of segmental contrasts used across a variety of 

languages. 

One particularly interesting aspect of the results is that they more closely match 

the literature on distal rate adaptation effects for word segmentation contrasts, not for 

segmental contrasts.  Examples of such contrasts in English include pairs such as 

Minneapolis sale and Minneapolis ale.  For these contrasts, distinguishing between the 

two possible ways to segment the phrase depends critically on the perception of the 
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length of the ambiguous [s] sound.  If the sound is long enough to be perceived as two 

instances of [s], the phrase is perceived as Minneapolis sale; if not, it is perceived as 

Minneapolis ale.  In each of these instances, context rate appears to strongly influence the 

perception of the length of this class of consonants (Heffner et al., 2017; J. M. Pickett & 

Decker, 1960; Reinisch et al., 2011).  This can be compared to studies of distal rate 

adaptation on segmental effects, where adaptation effects are said to be small to non-

existent (R. S. Newman & Sawusch, 1996; Summerfield, 1981). 

What could explain the difference between the studies of segmental perception 

and segmentation?  In Heffner et al. (2017), we considered four possible explanations.  

Two of these relied on a qualitative split between segments and segmentation, either in 

terms of how information is processed or in terms of how information is represented.  

The two other explanations related to more idiosyncratic differences between the 

previous studies in the literature, either in terms of what was considered to be “distal” 

rate context or in terms of the types of items that were used in the previous studies.  It is 

likely that at least some of the differences in effect sizes stem from differences in the 

region of speech that is described as “distal” between the segmental and segmentation 

literatures (Heffner et al., 2017).  We also judged it reasonable that some of the 

differences might also be explained by an overreliance in the segmental literature on 

word-initial voicing contrasts.  Almost every study looking at distal rate adaptation 

effects on segmental contrasts has examined word-initial voicing pairs such as 

Minneapolis pail and Minneapolis bail, which are not strongly affected by rate 

adaptation.  Nonetheless, when we looked at word-final voicing pairs such as beat 

knowledge and bead knowledge, those pairs were subject to distal rate adaptation effects, 
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ones of an approximately equal magnitude to the effects found in the segmentation 

literature. 

The present studies show another segmental contrast that can be affected by distal 

rate information: Arabic segmental length contrasts.  This provides further evidence in 

favor of the idea of experimental properties, not a qualitative split in processing or 

representation, underlying the distinction between segmental and segmentation contrasts.  

The difference in length studied here clearly falls in the domain of the segment in Arabic; 

yet it too is subject to distal rate adaptation effects similar to that of segmentation.  The 

vast majority of studies that fail to show distal rate adaptation effects are ones that have 

involved initial voicing contrasts.  In almost all other circumstances, listeners adapt to the 

rate of far-away information in speech processing.  This might occur because voice onset 

times (VOTs) are perhaps not as rate-dependent as originally thought; the VOTs alone, 

without recourse to the rate of the surrounding syllables, may provide sufficient 

information to distinguish between voiced and voiceless tokens (Nakai & Scobbie, 2016).  

Thus, listeners need more information to distinguish other potentially-ambiguous 

segmental contrasts, including the Arabic length contrast.  More generally, this reinforces 

the universality of rate adaptation in speech perception.  Listeners do adapt to rate 

information, and do so frequently, across languages and across contrasts.  Nonetheless, 

little is known about rate adaptation in other modalities, which I address next. 
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3.3 Rate Adaptation in Non-Speech 

Given previous findings related to speech rate and phonetic processing, I aimed to 

see whether similar results could be obtained for event perception, particularly event 

segmentation.  Most studies of event segmentation have relied on naturalistic designs, 

with unfamiliar real-world actions being the subject of experimental manipulation.  

Although this approach does have its benefits, particularly in its (relative) ecological 

validity, it is also more challenging to assess cause-and-effect with regard to individual 

cues to event segmentation.  As such, I created stimuli that are more analogous to the 

individually-constructed sentences of word segmentation experiments.  In particular, I 

used videos of touchpad interactions that were specially constructed to contain 

ambiguities in the number of interactions found at the end of an action sequence.  These 

touchpad stimuli were then artificially speeded up or slowed down in a manner analogous 

to studies examining the effects of distal speech rate on word segmentation.  This allowed 

me not only to see the effects of timing information on event perception but also whether 

those effects would resemble those found in speech perception. 

3.3.1 Experiment 5: Rate Adaptation for Event Perception 

3.3.1.1 Participants 

45 participants completed the experiment.  4 of those participants were excluded 

from further analysis: 1 because of a missing demographics survey, 2 due to technical 

errors, and 1 due to experimenter error.  That left 41 participants with analyzable data (15 

female, 26 male).  All participants were native speakers of English at least 18 years of 

age (M = 20.4, Range = 18-26) and had no history of uncorrectable vision impairments.  

Participants, recruited from the University of Maryland, College Park community, were 
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compensated with $5.  The experiment usually lasted around 30 minutes, although some 

participants took up to 45 minutes. 

3.3.1.2 Materials 

Participants saw a set of 63 experimental videos and 63 filler videos over the 

course of the experiment, selected from a larger set of videos based on the level of 

perceived ambiguity in the actions in pilot studies.  The videos were recorded using a 

fixed digital camera at 24 frames per second showing a single, seated actor interacting 

with a touchscreen device.  Each video showed a sequence of 7 or 8 actions: a tap, a 

press, a drag, a swipe, a double tap, a twist or rotate6, a pinch, or a spread.  The actor was 

instructed to perform these actions as naturally as possible, although some time pressure 

was used to ensure that the sequences were reasonably ambiguous.  The combination of 

framing, focus, and camera angle such that the movement of the actor’s fingers on the 

touchscreen was the primary cue available to determine the actions being performed.  For 

example, the actor’s head was not present in the frame, and the camera angle prevented 

the viewer from seeing what, if anything, was happening on the screen (which, in any 

case, was turned off for the duration of recording).  The duration of each video depended 

on the exact sequence of actions, but generally varied from 5 to 8 seconds in length. 

To examine the effects of rate adaptation on the perception of ambiguous events, 

nearly all experimental items ended in one of three possible sequences of actions: a drag 

action, a press action, or two tap actions.  The drag, press, or (two) tap actions could be 

                                                 
6 Due to experiment error, “twist” was used to describe this action during the 

instructions, while “rotate” was the labeled option given during the experiment.  

However, as this was a “filler” action that was used to pad the sequences with additional 

possible responses, it is not believed that the competing descriptors affected the final 

result. 
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ambiguous in their timing properties with a swipe action, a tap action, and a double tap 

action, respectively.  It was intended that the tap actions and drag actions would be 

ambiguous to their event segmentation (making it analogous to studies of word 

segmentation, with generally strong context rate effects), while the press action would be 

ambiguous to its identity (making it analogous to studies of segment identification, with 

generally weak rate adaptation effects).  The action sequences that ended with two taps 

could also been seen as ending in a single double tap.  Meanwhile, the drag action was 

intended to be preceded by a press, making the difference between press-and-drag and 

swipe also a matter of segmentation.  However, the properties of the actor’s productions 

prevented this possibility for press actions, as the “press” and “drag” actions were 

consistently produced as clearly separate actions, akin to putting a discrete pause between 

two words in speech.  As such, a number of fillers (about one third of the experimental 

items that ended with a “drag”) were converted into experimental items by cutting the last 

action out of the clip, leaving the previously penultimate “drag” action as the final action 

for the purposes of subsequent modifications.   

The clips were then rate-modified using free ffmpeg software package, which 

allows for fine control duration through either dropping or duplicating frames.  The 

critical actions were compressed in duration by setting their duration to be 33% of the 

original duration (i.e., dropping 2 of every 3 frames), which appeared in pilot testing to 

be approximately the point of maximum ambiguity with regard to the perception of each 

action.  This was meant to be analogous to the ambiguous items in the speech study; 

although they were not rate-modified in Chapter 3.2, there was good reason to believe 

they were at least somewhat ambiguous, whereas I could not be sure of that in the present 
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experiment.  It was easier to shorten the drag, press, and tap actions to make them appear 

to be their “fast” counterparts than vice-versa.  Filler actions ended with one of the other 

actions: twist, spread, pinch, swipe, or double tap. 

Besides the manipulation of the critical actions, experimental items also had the 

rate of the precursor actions within each action sequence modified.  This was meant to be 

analogous to the changes in speech rate that were used in Chapter 3.2.  The duration of all 

but the final action (for drag or press sequences) or all but the last two actions (for 

sequences that ended in two taps) was modified either by halving it (i.e., dropping every 

other frame) or doubling it (i.e., duplicating every frame).  This represents a more all-

encompassing definition of “context” than was adopted in Chapter 3.2, as the previous 

experiment did not involve the manipulation of the syllable immediately preceding and 

following the ambiguous consonants.  Filler items were modified by a single, uniform 

scaling factor across the entire action sequence through either doubling its duration, 

halving it, or leaving it unmodified. 

To ensure participants were attending to the entire sequence of actions, rather than 

just the final actions, a single, 300ms 440 Hz sine-wave tone was inserted somewhere in 

the clip.  For the experimental items, this tone always occurred at the end of the action 

sequence, just after the last action.  For the filler items, it could occur anywhere between 

the end of the second action and the final clip, although the distribution of tone 

placements was strongly biased towards the end of the sequence (with a peak at the 

second-to-last action) so as to not make the distinction between the experimental and 

filler items obvious. 
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3.3.1.3 Procedure 

The experiment used a 3 (precursor rate: slow, medium, and fast) × 3 (type: tap, 

drag, and press) design for the experimental items.  Participants were assigned to one of 

three lists, which were counterbalanced for the assignment of each item to each precursor 

rate.  Participants were seated in a sound booth for the duration of the experiment.  They 

were told that they were going to watch action sequences that were silent except for a 

single tone.  Their task was to select one of eight possible responses corresponding to the 

action that they saw immediately before the tone by pressing a button between 1 through 

8 on a keyboard.  The tones were played over Sennheiser M40fs headphones.  Before the 

experiment began, the participants were shown examples of each of the eight actions 

presented in isolation, and they were given plenty of opportunities to ask questions.  

During the experiment proper, trials (both experimental and filler items) were presented 

in random order, assigned on a participant-by-participant basis.  Each item repeated up to 

3 times before participants were expected to respond.  During participant responses, a 4 × 

2 grid was displayed on the screen that listed the possible responses and their associated 

keys. 

3.3.1.4 Analysis 

First, participant responses were coded for accuracy.  Tap trials were coded as 

accurate if the event reported was either a tap or a double tap (92% of trials); drag trials 

were coded as accurate if the event reported was a drag or a swipe (93%); and press trials 

were coded as accurate if the event reported was a press or a tap (93%).  All other 

responses were coded as inaccurate and discarded.  For the remaining trials, responses 

were coded as “long response” (and assigned a value of 1) if they were reported as 
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originally recorded, and as a “short response” (and assigned a value of 0) if the short 

analogue of each original event was reported (i.e., double tap for tap trials, swipe for drag 

trials, or tap for press trials).  Precursor rate was coded as -1 if the rate was fast, 0 if it 

was normal, and 1 if it was slow, in line with a logarithmic transform of the scale factors 

applied to the duration of each file.  For example, the slow clips involved doubling the 

duration of the original film (multiplying it by 2), and the base-2 logarithm of 2 is 1.0.  

As in Experiment 4, mixed models implemented in the lme4 package (Bates et al., 2016) 

and refined using the RePsychLing package (Baayen et al., 2015) within R (version 

3.3.1) were used to analyze the dataset.  Model comparison was used to first identify the 

most complex random effects structure in the data and then to determine the provenance 

of the fixed effects of precursor rate and type.  To aid in model comparison, the 

BOBYQA algorithm was used to create the mixed models. 

3.3.1.5 Results 

 

 

Figure 18. Experiment 5 results  
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Figure 18 shows the effects of precursor rate and item type on the likelihood that 

participants perceived a long action (whether a drag, a press, or two separate taps).  A 

value of -1 for the precursor rate represents a context with half of the duration of the 

unmodified version; a value of 1 represents a context with a doubled duration.  Two 

effects are obvious.  First, it is clear that the items used in the study were ambiguous to 

different extents.  For example, press items (with no precursor rate modification, only a 

modification of the rate of the critical event) were perceived as “press” events about 85% 

of the time, while drag items were perceived as “drag” events 60% of the time.  On top of 

that, however, the perception of long responses was rate-dependent, particularly for the 

“tap” actions; people were more likely to perceive the actions as short when the context 

was relatively long (i.e., slow). 

These impressions were confirmed using mixed models.  First, the random effects 

structure of the dataset was computed.  An initial model was created to serve as a point of 

comparison for subsequent analyses of random effects.  This model included random 

intercepts by participant (allowing participants to vary in their baseline propensity to 

indicate long responses) and random intercepts by item (allowing items to vary in their 

likelihood of being perceived as long), as well as random slopes for precursor rate by 

participant (i.e., participants varied in how affected by precursor rate they actually were) 

and by item (items were also allowed to vary in precursor rate effects), and for item type 

by participant (participants had different baseline levels of reporting long percepts across 

each item type).  As before, no correlation parameters were included between random 

slopes.  A PCA was performed on the variance-covariance matrix of the model in the 

RePsychLing package (Baayen et al., 2015).  This PCA indicated that the random 
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variation in the model indicated that all of the random components in the model were 

plausible to include, although model comparison was performed to determine the extent 

to which they truly contributed variation.  In the end, removing any of the three random 

slopes led to a significant decrease in model fit, with the smallest change in fit coming 

from the model that lacked the random slope of precursor rate by participant, χ2(1) = 

6.20, p = .01.  As such, the initial model was used as the point of comparison to 

determine the provenance of fixed effects. 

The effects of precursor rate and item type were first examined by comparing the 

initial model to models that lacked both the main effects of each factor and the interaction 

between precursor rate and item time.  This comparison between the initial model and the 

models lacking each individual effect was significant for both the model lacking effects 

of precursor rate, χ2(3) = 43.6 p < . 001, and one lacking effects of item type, χ2(4) = 

32.1, p < .001.  Significant variation in participant behavior could be explained by the 

fixed effects of precursor rate and context type when considered independently of each 

other.  Put another way, there were significant differences between item types and 

precursor rates in the likelihood that people saw the events being depicted as long.  

Additionally, comparing the initial model to one lacking solely the interaction between 

precursor rate and item type also yielded a significant effect, χ2(2) = 8.80, p = .01, 

indicating that some item types were more affected by precursor rate than others.  In 

particular, the “tap” items were more affected by rate than the “press” and “drag” actions.  

Table 7 shows the fixed model parameters for the best-fitting initial model, with “drag” 

actions as the reference level for the factor of item type. 
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Factor(s) Estimate (b) z p 

Intercept 0.556 1.59 .11 

Precursor Rate -0.666 -4.16 < .001 

Type:Press 1.82 4.00 < .001 

Type:Tap 0.0999 0.258 .80 

PR × T:P 0.224 0.990 .32 

PR × T:T -0.467 -2.22 .03 
Table 7. The best-fitting model in Experiment 5 

3.3.2 Discussion 

I set out to determine if rate adaptation effects resembling those in speech 

perception could also be found in the perception of events.  The answer from the present 

study is “yes”.  The perception of individual events is influenced by the rate that 

precursor events are seen to be performed at.  This appears to occur in much the same 

way as the perception of individual segments and individual words is affected by the 

speed that context words are heard to be produced at.  Slowing down the rate around two 

actions that are seen as taps without any modification can turn the perceived action into a 

double tap.  Slowing down the rate around an action that was originally produced as a 

drag can turn the perceived action into a swipe. 

Two aspects of these results should be highlighted.  First, although, as the 

literature review presaged, the initial thought was to examine just event segmentation, it 

is clear that rate adaptation effects also extended more generally to other aspects of event 

perception.  The difference between a swipe and a drag, at least for the instances of each 

action performed for this experiment, likely does not have to do with segmentation.  

Although studies of rate adaptation in the speech domain have found the strongest effects 

of adaptation on word segmentation (Dilley & McAuley, 2008; Dilley & Pitt, 2010), 

adaptation effects have also been found for word-final segments (Heffner et al., 2017).  
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Experiment 4 uncovered analogous effects with regard to the perceived length of Arabic 

consonants.  All of these effects are similar in nature to the non-segmentation-related 

event perception changes in the present experiment; rate adaptation changed the type of 

event perceived for some of the actions, not the number of events. 

Second, the rate adaptation effects here were not solely distal in nature.  I 

manipulated the duration of every event in the action sequence other than the critical one, 

rather than, say, only modifying non-adjacent actions within the sequence.  This makes 

the present findings less analogous to my previous studies of rate adaptation in speech.  

However, subsequent experiments can tease out the extent to which listeners use widely-

dispersed rate information in perceiving events. 

Third, the current study also does not address what timing information is being 

tracked in the context.  Previous studies in speech have found, for instance, that stressed 

syllables appear to have a privileged position in establishing rate expectations within a 

sentence (G. R. Kidd, 1989).  Figuring out the relevant units of event perception, on the 

other hand, is more challenging to assess, and awaits further study. 

3.3.2.1 Relevance to Event Perception 

This project advances research into event perception in a couple of directions.  

The first relates to the importance of rate to the perception of events, including to the 

identification and segmentation of different events.  Most studies of bottom-up cues to 

event boundaries have focused on attributes of event boundaries such as changes in the 

motion of objects in the visual frame (Zacks et al., 2009) or physical change across 

frames (Bridgette Martin Hard et al., 2011; Tauzin, 2015).  These cues can be considered 

equivalent to, say, frequency cues to segment identity or word boundaries in speech.  
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However, timing information is also important to speech; the length of segments can also 

influence where a word boundary is perceived (J. M. Pickett & Decker, 1960).  This 

experiment demonstrates that timing information is also critical to the perception of 

events, both in terms of segmentation (as with two taps versus a double tap event) and in 

terms of differentiation between different possible events (as with a swipe versus a drag 

event).  This observation suggests a new dimension of possible research in the event 

perception literature: time. 

However, it is not just raw timing that was manipulated in the present experiment.  

I also probed adaptation, the idea that listeners would adjust to the rate context of actions 

in order to perceive them.  This is why precursor rates were manipulated around 

ambiguous events.  In this case, the rate context modified was every action before an 

ambiguous event (or set of events); in contrast to Experiment 4, then, this was not strictly 

a distal modification, but also included timing information throughout the entire action 

sequence, up to the final, ambiguous action.  Still, this suggests that listeners adapt to the 

rate of action sequences in much the same way as they adapt to the rate of sentences, by 

comparing the duration of that action to the rate of surrounding information.  Thus, 

viewers adapt to the speed of various actors when deciding the final action that they saw.  

This also opens up additional research pathways, such as probing, say, perceptual 

learning of the rate that particular actors might perform actions at.  One could imagine 

that the speed of one person’s double tap is not the speed of the next.  Someone with 

arthritis, for example, might find quick movements painful, and a viewer’s knowledge of 

the consequences of this could shape their perception of the actions of someone with 

arthritis.  Could viewers learn those patterns? 
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3.3.2.2 Relevance to Domain-Specificity 

This line of research has clear relevance to questions of domain-specificity.  An 

effect observed in the speech domain was replicated in the domain of event perception.  

But what was shared between the domains, if anything?  The answer could still be 

“nothing”.  After all, observing an effect in one domain and a similar effect in another 

domain does not prove that the two effects are, underlyingly, one and the same.  Whale 

sharks and whales may look similar to each other, eat similar things, and live in similar 

locations, but one is a fish and the other is a mammal.  Similarly, the evolution of eyes in 

vertebrates and in cephalopods followed similar lines, leading to eyes that are remarkably 

similar in structure to each other.  Although these similarities reveal something 

interesting about optics and about evolution, it does not imply that, say, the shape of the 

eyes is programmed by identical genes or identical ontogenetic mechanisms.  Still, it may 

be informative to speculate about how rate adaptation in event perception might be 

related to rate adaptation in speech to consider how domain-specificity might be studied. 

One way in which event perception and speech perception might be linked would 

be through representational structure.  That is, there are fundamental commonalities 

between the representations of speech information and event information.  It is unlikely, 

although possible, that such commonalities would reflect shared structure; that is, where 

events and words are somehow represented in an identical level for some type of 

processing.  However, it is possible to conceive of a parallel structure between speech 

perception and event perception.  Although events at different time scales can be referred 

to as “fine-grained” or “coarse-grained” (Tversky & Zacks, 2013; Zacks & Swallow, 

2007), they are all referred to as “events” within the event perception literature.  But this 
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need not necessarily be the case.  For example, there might be a hierarchy of event 

structure that resembles that found in the representation of prosody, where segments 

make up syllables that make up feet that make up words, and so on (Shattuck-Hufnagel & 

Turk, 1996).  It might be helpful to develop a new vocabulary within event segmentation 

to describe analogous structural properties.  Here, speech provides an excellent source of 

predictions about the structure and form of these representations.  This single study alone 

does not provide nearly enough information to determine the likelihood of 

representational parallels, however. 

 Where this study can provide more-direct evidence about domain-specificity 

relates to the processes involved in understanding speech and in understanding events.  

As discussed in Chapter 1, this is one of the primary determinants of whether a process is 

considered “modular” in the sense of massive modularity.  Does the process of perceiving 

rate in events resemble that of perceiving rate in speech, as shown through the perception 

of different events in precursor-rate-modified action sequences?  The answer to that 

seems to be “yes”, at least within the bounds of the single experiment performed here.  

The duration of an event is perceived relative to its context, just as the duration of a word 

(or of a single segment) is perceived related to its context.  One could event imagine a 

domain-general timing mechanism that could, in some ways, approach the status of a 

“module”.  The perception of time is something that has clear evolutionary importance, 

and managing multiple different “timekeepers” for each independent function would be 

challenging indeed. 

Of course, analogous or similar processing does not automatically imply identical 

processing; to get closer to that conclusion would require additional experiments.  Within 
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event segmentation proper, such experiments could involve manipulating rate or other 

cues to event boundaries or event identity in a way analogous to the perception of rate.  

Indeed, one could even imagine cross-modal rate adaptation experiments.  If the 

processes underlying rate adaptation in events and in speech are really one and the same, 

it should be possible to change the perception of events by manipulating the rate of 

speech played before the events.  Such a possibility is alluring, and it accords well with, 

say, the influence of the rate of non-linguistic tones on the perception of segment identity, 

as studied by Holt and colleagues (Holt, 2005; Wade & Holt, 2005).  Still, it should also 

be noted that degraded speech and tonal analogues of speech do very little to affect the 

segmentation of ambiguous speech, suggesting that the effects may be more limited for 

segmentation (Pitt, Szostak, & Dilley, 2016).   

Another possible link between timing in the speech domain and timing in the 

event domain relates to a concept key to both domains: prediction.  Turk and Shattuck-

Hufnagel (2014) proposed that timing variation in speech largely exists in service of 

maintaining uniform levels of predictability across time.  Talkers speed up when 

producing predictable speech information, and slow down when producing surprising 

information.  This resembles in many ways approaches to modeling syntactic variation in 

speech production, where speakers attempt to maintain a uniform density for information 

by using syntactic constructions that modulate the rate of information being produced 

(Jaeger, 2010), with more informative portions of sentences being presented at a slower 

effective rate.  Predictability also comes into play in the perception of events.  For 

example, not only do viewers keep track of recurring patterns of events in the world 

around them, they often perceive boundaries in locations where these recurring 
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expectations are violated (Reynolds et al., 2007).  As such, it seems plausible to posit that 

rate adaptation effects in both domains are undergirded by a shared reliance on 

predictability when it comes to processing events.  Future experiments in both domains 

would be needed to probe these ideas.  For all of these eventualities, however, finding the 

preliminary evidence for domain-general adaptation abilities that was uncovered here 

provides a useful pathway to exploring each of these ideas in detail.  
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4 Review and Conclusions 

Before moving on to the implications of the studies in this dissertation, it may be 

helpful to review the ground already covered.  This dissertation began with a review of 

domain-specificity, focusing especially on the “speech-is-special” hypothesis, the idea 

that the mechanisms that are used to perceive speech are unique to speech processing 

alone.  I chose to examine this hypotheses with regard to two areas: category learning and 

rate adaptation.  Chapter 2.1 reviewed the literature on category learning inside and 

outside of language.  Chapter 2.2 described a study that assessed phonetic category 

learning, where evidence for a bias against disjunctive phonetic categories was 

uncovered.  In Chapter 2.3, I looked at an analogous category learning scenario with 

regard to musical instrument categories and found that the anti-disjunctivity bias was not 

present for at least one set of non-speech stimuli, which I took to be evidence of speech-

specificity in the types of categories that were more easily learnable (if not necessarily 

the mechanisms that were responsible for learning).  For rate adaptation, Chapter 3.1 

covered rate adaptation in speech perception, and introduced event perception (in 

particular, event segmentation) as one area in which rate adaptation might also play a 

role.  Chapter 3.2 described an experiment looking at rate adaptation effects in Arabic.  

And, finally, Chapter 3.3 examined rate adaptation in event perception, finding evidence 

for rate adaptation effects on the perception of events sharing many of the same 

properties of those uncovered for speech.  Although small methodological differences as 

well as the underexplored nature of the cues relevant to event segmentation prevent me 

from concluding with certainty that the processes responsible for adaptation in event 

perception are identical to those observed in speech, the experiment described in Chapter 
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3.3 at least provides a useful preliminary sketch of how the two domains might be 

bridged to make future examination of the idea possible. 

4.1 Domain-Specificity 

What relationship to the present experiments have with notions of domain-

specificity?  It may be important to consider the ways in which domain-specificity can be 

uncovered.  Domains may be distinguished from one another in terms of their 

representations; that is, whether the information in each domain is encoded and stored 

separately.  Or they may be distinguished from one another in terms of the processes that 

operate on those representations; that is, whether the underlying representations are 

manipulated in the same way and subject to the same operations, even if the precise 

inputs and outputs are quite different from one another.  Or both might be true; 

representations and processing streams can, but need not necessarily, pattern together. 

For instance, under general auditory theories of phonetic processing, speech 

sounds are represented in the same way as any other auditory object (Lotto, 2000).  

Because they are represented identically, it is challenging to build in ways for later 

processing streams to process speech sounds any differently from other auditory objects, 

save from top-down expectations coming from one’s knowledge of speech.  However, it 

is perfectly possible to imagine disparately-represented information processed using 

common mechanisms; although ovens take different raw ingredients and turn them into a 

variety of possible foods, the heating process is shared between all of them.  Similarly, a 

concept like “addition” operates across several possible sets, even if the representations 

being acted upon are quite different (e.g., imaginary versus real numbers).  It may be the 

case that different types of auditory categories are stored in different ways, but are 
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processed using identical mechanisms.  The present experiments both speak more to the 

processing side of the domain-specificity equation than the representational side, as the 

focus in the present experiment was on comparing learning and adaptation across 

experiments rather than, say, looking at cross-modal effects within a single experiment 

(or even within a single trial). 

The experiments assessing category learning could tell a few stories related to the 

domain-specificity of learning.  From the experiments described in Chapters 2.2 and 2.3, 

it appears that listeners do not come to the task of learning non-speech categories with the 

same biases as they come to the task of learning speech categories.  Disjunctive 

categories are harder to learn in the speech perception domain than in non-speech 

auditory categorization.  The dataset is entirely consistent with the idea that different 

processes are used to categorize speech sounds and non-speech sounds.  Perhaps non-

speech categories are processed in an exemplar-only way, while speech sound categories 

are learned using rules.  But the dataset is also consistent with the idea that identical 

processes might underpin category learning in both domains.  Learners may be storing 

exemplars of each category being learned and comparing new instances of each category 

to previous exemplars (although this seems unlikely, given the discussion at the end of 

Chapter 2.2), positing abstract categories represented by simple rules, or storing 

prototypical category members in exactly the same way across the domains. Despite 

identical learning processes, it may just be the case that the (identical) processes are 

influenced by the differing representations of speech and non-speech sounds. 

This can most clearly be illustrated through dual-system models of category 

learning.  If the composition of each system is different between speech sounds and non-
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speech sounds, or even if the composition is identical but the dimensions that are used to 

represent the categories are different between the domains, it might be that the rule-based 

system is used more in one domain and the similarity-based system is used more in the 

other, or that the similarity-based system takes less time to begin processing the sounds in 

one domain than the other.  Simply put, there are many ways that identical processing 

mechanisms can lead to different results between the two domains if those mechanisms 

have multiple states.  Of course, one of the clearest ways in which this could be true 

relates to the difference in expertise between speech sounds and musical instrument 

sounds.  Even English speakers likely had at least some passive exposure to the palatal 

and velar fricative categories, but almost certainly had none with spectrally-rotated 

musical instrument sounds.  Yet English and German speakers did not strongly differ 

from one another in their acquisition of German fricative categories suggests that 

expertise is not responsible for the differences between phonetic and musical instrument 

sound categories.  As such, assessing the provenance of the processes used to learn 

categories will require additional study. 

For rate adaptation, meanwhile, it is clear that the main contribution of the present 

experiments relates more to the processes at play for rate adaptation.  Despite their 

similarities on some levels which I described in some detail in Chapter 3.1, it seems fairly 

absurd to imagine events and (prosodic) words represented in the same way such that 

they would both be affected by rate adaptation.  Although it is interesting to imagine that 

the two domains would have parallel representations, that idea does not imply identical 

representations.  Instead, it seems far more likely that common processes undergird event 
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perception and speech perception.  Something about events is processed in the same way 

as something about speech that this commonality leads to rate adaptation effects. 

What could be shared, then, in that processing stream?  One idea would be a 

domain-general conception of time.  Time is of the utmost importance in understanding 

behavior; after all, without a conception of time, the idea of “contingency” becomes 

meaningless (Gallistel & King, 2010).  One could imagine that the perception of rate in 

events and speech is subject to a single, common timekeeper that tracks the relative rate 

of instances in the world (i.e., tracks whether tempo is speeding up or slowing down), 

rather than absolute rate (i.e., the raw tempo).  What instances would be considered 

“relevant” by this timekeeper to its rate tracking could be different from domain to 

domain.  For example, a unit like the syllable might be a relevant unit of timing for 

speech, while an analogously relevant unit for event perception would be an interesting 

object of follow-up studies.  Regardless of the relevant unit, however, the timekeeper 

would be computing the ratio of, say, single syllables to the running average of syllable 

durations. 

Given this idea, though, it is still somewhat challenging to explain the effects of 

the rate of non-linguistic pure tones on speech perception (Wade & Holt, 2005) without 

recourse to shared representations, as it is challenging to see why non-linguistic tones 

should be considered relevant points of comparison for phonetic sequences.  In the case 

of the non-linguistic tone experiments, the only information in the immediate context of 

the syllable is the stream of tones.  Perhaps the non-linguistic tones are coerced into 

representations that are then treated as relevant for the purpose of comparing the 

(inherently relative) length of the syllable.  Something similar seems to occur within 
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speech; the rate of speech spoken even by a clearly different talker (coming from a 

different location, with a different gender) can influence later-occurring speech (R. S. 

Newman & Sawusch, 2009). 

An alternative proposal is to focus on the role of prediction in both speech 

perception and event perception.  In both domains, boundaries are associated with local 

minima in terms of predictability (Reynolds et al., 2007; J. R. Saffran, Newport, & Aslin, 

1996).  However, it is more challenging under this proposal to imagine what a domain-

general “prediction” process would entail.  It is also unclear why both segment and event 

identification, not just segmentation, would be affected by rate adaptation. 

With all that in mind, it may be useful to end this section with more-general 

comments about domain-specificity.  Common processing streams in either or both 

domains are an interesting and appealing concept.  But even some amount of shared 

processing would not necessarily sideline any possibility of domain-specificity in either 

domain.  The preponderance of evidence from previous studies seems to put to rest of the 

idea of speech perception being an encapsulated Fodor-module.  To put it another way, 

the mechanisms of speech perception are not preprogrammed as if they resulted from an 

instruction manual, describing in detail exactly how different components fit together and 

leaving no room for adjustment.  But I think that it is premature to conclude just because 

there is no rigid instruction manual that domain-specific attributes are missing entirely. 

My view is to find more of a middle ground.  I see domain-specific attributes of 

perceptual processing as a scaffold that other learning is built upon.  For instance, biases 

in speech perception (such as the one here proposed to militate against non-disjunctive 

categories) could be remarkably useful for the learner if they help cut down on 
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improbable hypotheses about speech sounds.  The hypothesis space of speech sound 

categories, for instance, is limited by the functions of the speech apparatus.  Indeed, such 

biases could also be useful in other domains where learning needs to be equivalently 

quick or where there are similar constraints on possible category members.  Conversely, 

it might also be interesting to study the acquisition of discontinuous categories in sign 

language phonology, where the theoretical space of possible productions has different 

boundaries.  The idea of domain-specific attributes serving as a scaffold could better fuel 

further research on the topic of domain-specificity. 

4.2 Applications 

Besides its application to the theoretical issues considered above, the research 

discussed as a part of the present dissertation also lends itself to applications.  Below, I 

consider possible relevance to pedagogical, technological, and clinical applications. 

Learning categories—either linguistic or non-linguistic—requires practice.  

Natural categories are generally not as simple as those acquired in the lab; even ones as 

complex at the Picket Fence and Odd One Out conditions used in the present experiments 

involve a unidimensional category structure.  The type of category learning theory that 

one subscribes to can lead to different predictions about the best way to teach natural 

categories.  Under a single-system exemplar-only model of category learning, where 

category learning is a process strongly predicated on learning individual category 

instances, it makes sense that teaching people to differentiate individual items can help 

them acquire broader categories.  An example of this comes from the categorization of 

rock types.  Although rocks differ along many visual dimensions—color, grain size, 

banding, and so on—geologists classify them into one of three types (igneous, 
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metamorphic, and sedimentary) based on the properties of their formation.  This 

categorization is often taught in earth science classrooms.  Indeed, when giving 

individuals instruction about these higher-level categories of rocks, having learners 

simultaneously acquire both the labels of the higher-level categories and subtype-level 

labels (gneiss, breccia, obsidian, etc.) improved participants’ later categorization to a 

level greater than that inspired by the higher-level labels alone (Nosofsky, Sanders, 

Gerdom, Douglas, & McDaniel, 2017). 

The results in Chapter 2.2 suggest that exemplar-only accounts of category 

learning differ from the observed patterns of learning in that they predict that all of the 

categories being taught could (given enough exposure, and given successful enough 

discriminability between items) be learned.  This mismatch suggests that other learning 

pathways might be more fruitful for teaching speech-sound categories.  Dual-system 

accounts of category learning predict that learners should shift between different learning 

systems over the course of learning, with rule-based learning predominating at the 

beginning of learning and a later transition to similarity-based learning; perhaps those 

properties could be brought to bear in second language acquisition.  Instruction about 

learning novel speech sounds in a new language could begin with clear, rule-based 

descriptions of the sound categories in question, reinforced by detailed feedback and 

plenty of time to process the new information (attributes said to benefit the rule-based 

system), while later stages of training would involve a switch to quick, simple feedback 

that is more useful for the similarity-based system. 

Meanwhile, the technological implications of the rate adaptation experiments 

might also be particularly interesting.  Most operating systems that I know of have a tool 
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that looks something like the one depicted in Figure 19 buried somewhere in the 

specifications for the mouse input, where the user can set the duration between two 

successive clicks where the click is counted as a single action.  This is a crude sort of rate 

normalization.  The user has to specify the rate at which two actions must be produced at 

to be considered one.  This means that each user has to specify at a global level what rate 

the interface should expect successive taps or clicks would occur at without any ability to 

build in responsiveness to variability across time or across users in the rate of the actions 

being executed. 

 

Figure 19. A double-click sensitivity setting 

But what if this process were automated?  What if a computer could adapt to the 

rate that someone clicked at, typed at, or moved a mouse at?  Could that improve 

accessibility?  For example, young children sometimes struggle to perform complex 

mouse actions, such as clicking and dragging (Agudo, Sánchez, & Rico, 2010).  Clearly, 

this is an application that relates more to the production of motor gestures than the 

perception of them, but one can also imagine rate adaptation also being important for 

automated motion sensing interfaces, such as Microsoft’s Kinect.  If someone producing 

gestures is seen to be relatively slow (or relatively dynamic), and this fact is used to 

predict later actions on the part of the actor, this could improve the motion sensor’s 

ability to pick up on the actions being performed.  The parallels between Chapters 3.2 
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and 3.3 suggest that these processes, and the methods of adapting to them, could possibly 

be shared between the speech and visual domains. 

A final application of this research is clinical.  One of the advantages of dual-

system theories of category learning is their rich connections to neuropsychology.  If 

phonetic categories are acquired using much the same mechanisms as categories outside 

the speech realm, dual-system theories predict that the same neuropsychological deficits 

that lead to impaired non-speech category learning should also apply to phonetic category 

learning. 

According to dual-system theories, the basal ganglia are of particular importance 

to category learning (Lim et al., 2014).  One interesting and underexplored area of 

research, then, relates to the phonetic category learning abilities (and, indeed, the 

phonetic perception abilities more generally) of people with Parkinson’s disease, a 

disorder characterized by significant deterioration in the substantia nigra within the basal 

ganglia.  Although the language production of people with Parkinson’s has been a 

relatively frequent target of research (Illes, 1989; Illes, Metter, Hanson, & Iritani, 1988), 

perception is another matter.  To the extent that dual-system theories can inform phonetic 

category learning, then, people with Parkinson’s disease may show deficits in effective 

phonetic category learning.  This could make it harder for people with Parkinson’s 

disease to learn new speech sound categories; perhaps relatively rare with regard to the 

acquisition of entirely new languages, but more common with regard to contact with 

speakers of an unfamiliar dialect, or non-native speakers of a first language who have 

differences from native speakers in the categories being used.  Of course, this is 
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predicated on the idea that category learning and adaptation share common mechanisms, 

an idea highlighted in greater detail below. 

There is another population of interest with significant basal ganglia disturbances 

that is more typically associated with language: people who stutter.  People who stutter 

often differ from controls in the activity and functional connectivity of the basal ganglia 

during language production (Alm, 2004; Giraud et al., 2008; Watkins, Smith, Davis, & 

Howell, 2008).  Stuttering, then, should correlate with differences in both linguistic and 

non-linguistic category learning that result from deficits in the dopaminergic system.  In 

one study that is being conducted in collaboration with Soo-Eun Chang at the University 

of Michigan and Liz Wieland of Michigan State University, I am comparing children 

who stutter to children who do not stutter in their category learning abilities.  So far, 

children who stutter find rule-based categories particularly challenging to learn when 

compared to controls.  Interestingly, stuttering has also been associated with disturbances 

in the perception of rhythm, closely linked to the perception of rate (Wieland, McAuley, 

Dilley, & Chang, 2015), perhaps because the basal ganglia are also important for the 

perception of timing and rate information (Harrington, Haaland, & Hermanowicz, 1998).  

Could people who stutter also find rate adaptation more challenging than people who do 

not?  And what does it mean for rate perception to be co-localized with category learning 

more generally?  The implications of this are explored further below. 

4.3 Future Directions 

Besides applied dimensions, the research discussed in this dissertation also can be 

further advanced in terms of basic research.  I summarize some of the possible 

continuations below. 
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4.3.1 Category Learning 

In category learning, my research described in Chapters 2.2 and 2.3 suggests that 

there are differences between linguistic and non-linguistic categories in the types of 

categories that are easily learnable.  Disjunctive categories were more difficult to learn 

than their non-disjunctive counterparts in the fricative continuum, while disjunctive 

categories were no more difficult than their non-disjunctive counterparts in the musical 

instrument continuum.  But what are the limits of this bias?  Even German speakers, who 

have extensive experience with the back fricatives, did not show strikingly different 

patterns from English speakers when learning categories within the [ç]-[x] continuum.  

Does the anti-disjunctivity bias, then, reflect something unique to those fricatives, or 

would it be true for other speech sound categories?  Would English speakers show similar 

patterns even for speech sounds completely unlike those used phonetically in English, 

such as clicks?  Or, alternatively, is it musical instruments that are the odd categories out, 

rather than fricatives?  It is readily possible to think of disjunctive categories in music; 

notes of the scale are disjunctive insofar as a “C” is a “C” whether it is played at 261.6 

Hz, 130.8 Hz, or 4186 Hz.  Examining other non-linguistic sound categories, such as 

environmental sounds (keys jangling, animal sounds, etc.) could help examine this 

possibility.  Indeed, these experiments would naturally lend themselves to the sorts of 

cross-species experimentation that are frequently performed by proponents of general 

auditory theories of speech perception.  If songbirds show similar constraints on the 

acquisition of disjunctive categories to human, this suggests that it is likely not something 

unique to human representations of speech (or experience with speech) that leads to the 

bias against disjunctive categories within the fricative continuum. 
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A second future path of study would be to probe the predictions of different 

theories as to how people might learn these categories.  As discussed extensively in 

Chapter 2.2, exemplar-only views of category learning are not easily capable of 

explaining the anti-disjunctivity bias.  However, I hedged for a reason: it may be possible 

to do so given a relatively complex system of attentional focus and complex 

dimensionality within the stimuli.  Still, other category learning models may do a better 

job of accommodating the bias.  But which model to choose?  Certainly, dual-system 

models are promising; besides being the object of recent study in the field of speech 

perception (Maddox & Chandrasekaran, 2014), they also come with a prepackaged roster 

of diagnostic tests said to distinguish between the rule-based and similarity-based 

learning systems (Maddox & Ashby, 2004).  Yet dual-system models in the visual 

domain sometimes make the claim that rules in the rule-based system can be disjunctive 

in nature (Minda et al., 2008), which would sharply undercut my proposal that the 

difference between the two systems explains the difference between the disjunctive and 

non-disjunctive categories in the present experiment.  Careful experimentation could 

tease these different possibilities apart by, for example, determining perceived 

dimensionality before and after the acquisition of each type of phonetic category. 

Careful study of the dimensions of phonetic space could also aid in circling back 

to some of the parallel theoretical questions not covered in detail in this paper, such as the 

nature of phonetic representations (i.e., auditory or motor).  I make no claims about 

whether the categories being learned within the fricative continuum are disjunctive in 

terms of motor space or in terms of auditory space because, at least theoretically, the 

continuum used here confounded the auditory information in the fricatives with the motor 
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gestures that would have led to the intermediate fricative steps.  One could imagine using 

tokens that are disjunctive in auditory space but non-disjunctive in motor space (or vice-

versa) to study which of those categories are more difficult than the others.  The present 

experiments also only explored a putatively unidimensional category learning continuum.  

Phonetic categories are multidimensional in nature  Examining categories that are, say, 

disjunctive on one dimension and non-disjunctive on another could provide an intriguing 

path to assess the nature of these phonetic dimensions, as well as to push the boundaries 

of this anti-disjunctive bias. 

4.3.2 Rate Adaptation 

The opportunities are in some ways even more unbounded in segmentation.  Just 

the apparent use of rate adaptation for event perception alone provides a wide variety of 

possible future explorations.  The rate adaptation examined in the present experiment 

involved manipulating the rate of every action but the critical one.  Could rate adaptation 

be demonstrated using only a subset of the context; say, for example, an analogue of the 

distal context, as examined in Chapter 3.2?  Could listeners show perceptual learning, 

picking up the idea that a certain action tends to be executed more slowly for an actor?  

Could adaptation happen across actors, events, or even modalities?  Data that could start 

answering these questions could be provided using the current stimulus set alone, to say 

nothing about the studying these phenomena using a broader and more naturalistic set of 

actions besides just ones executed on a touchscreen. 

However, limiting exploration of the parallels of word segmentation and event 

segmentation to context rate is unwise.  Connections between event segmentation and 

word segmentation have only recently been put into the literature (Peña et al., 2011), and 



206 

 

there are numerous parallels between event perception and speech perception that remain 

to be explored.  For instance, the interplay between top-down and bottom-up cues is one 

that has been tentatively explored in event segmentation (Bridgette M Hard et al., 2006; 

Zacks, 2004).  One influential review of the literature on event segmentation still 

described “the detailed characterization of the relation between bottom-up and top-down 

processing in event segmentation as one important goal for future research” (Zacks & 

Swallow, 2007, p. 83).  This relationship is one that has been extensively explored in the 

word segmentation literature.  One might ask if the same sort of hierarchy of 

segmentation cues similar to that proposed by Mattys et al. (2005) for word segmentation 

might also be applicable to event segmentation, with top-down cues taking priority over 

bottom-up cues.  This awaits investigation of each of these classes of cues, both 

separately and in combination. 

4.3.3 Synthesis 

Throughout this dissertation, I have discussed category learning and rate 

adaptation in parallel to one another: parallel literature reviews, parallel previous 

experiments, and parallel applications of the experiments within the domain of language 

to problems outside of language.  I hope that I have succeeded in providing insight into 

questions of domain-specificity in both fields.  However, I believe there is more to the 

connection between learning and adaptation than just parallels.  After all, the human 

brain is plastic: it changes with experience, which allows behavior to vary in line with 

changing situational demands.  Both learning new sound categories in non-native 

languages (here referred to as “phonetic learning”) and adjusting native phonetic 

categories to accommodate differences from speakers of other dialects or accents (here, 
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“phonetic adaptation”) require brains to be plastic. Could it be that both phonetic learning 

and phonetic adaptation are supported by common mechanisms of plasticity?  

The idea of a common framework for phonetic learning and phonetic adaptation is 

driven by two motivating factors. First, a parsimonious approach to model building 

suggests that language learners will use the existing architectures available from their 

native language to learn new speech sounds. Thus, adaptation, traditionally situated 

within the first language capacity of the learner, could be used in order to acquire 

categories in the second language. Second, there are hints that some aspects of phonetic 

learning and phonetic adaptation are influenced by similar factors. For instance, sleep 

consolidation significantly improves both phonetic learning (Earle & Myers, 2015) and 

dialect adaptation (Fenn, Margoliash, & Nusbaum, 2013; Fenn, Nusbaum, & Margoliash, 

2003), which suggests that sleep consolidation may work on similar neural substrates for 

each task.  Unifying phonetic learning and phonetic adaptation could lead to a richer 

understanding of both phenomena, allowing for new connections between the theoretical 

tools used to explore each phenomenon independently as well as new hypotheses related 

to the neural architecture of phonetic plasticity.  Similar approaches have already been 

undertaken with regard to the representation of action sequences (Botvinick & Plaut, 

2004) and syntactic structures (Chang, Dell, & Bock, 2006; Dell & Chang, 2014; Jaeger 

& Snider, 2013).  

Under this notion, the same abilities that allow listeners to track statistical 

distributions in one’s native language also allow listeners to posit distributions for 

categories in other languages. This best resembles proposals by Toscano and others 

(Toscano & McMurray, 2010) that emphasize the importance of cue reliability in both the 
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acquisition and maintenance of phonetic categories. Dual-system models of phonetic 

learning may be able to provide that neural description for both phonetic learning 

(Chandrasekaran, Koslov, et al., 2014; Chandrasekaran, Yi, et al., 2014; Maddox & 

Chandrasekaran, 2014) and phonetic adaptation.  Several underexplored predictions fall 

out of this model. For example, one idea is that the variation in the properties of the rule-

based learning system (and corresponding frontal areas) does not contribute to 

meaningful variation in individual speech plasticity abilities. Another idea is that 

subcortical areas may exert meaningful influence on phonetic adaptation in addition to 

phonetic learning (Lim et al., 2014).  Such an idea, though, would take time, and a great 

deal of new research, to demonstrate. 

4.4 Closing Thoughts 

The present dissertation took an interdisciplinary approach to categorization and 

adaptation inside and outside speech perception.  Certainly, the virtues of an approach 

that applies principles from cognitive science theories to language science has become 

readily apparent to language scientists; witness, for example, Pierrehumbert’s (2003) 

wholesale adoption of Nosofsky’s (1986) theories of categorization into the speech 

literature.  These are efforts to be lauded.  But I also believe that language scientists 

equally have something to offer cognitive science more generally, even beyond simply an 

interesting set of topics to study, as important as that is.  Rather, language scientists have 

struggled with many of the important topics of cognitive science for years; issues such as 

categorization and adaptation come up again and again in language.  And this amassed 

knowledge base can be used to generate hypotheses relevant to many other cognitive 

domains.  It is time for language scientists to stop being bashful about this fact, and to 
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start broadcasting their knowledge to the broader scientific community.  To the extent 

that the present dissertation helps amplify this broadcast, I have succeeded in my goals. 
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