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Global biomass burning plays a significant role in regional and global climate change,

and spaceborne sensors offer the only practical way to monitor fire activity at these

scales. This dissertation primarily concerns the development, evaluation, and use of the

NASA Terra and Aqua MODIS instruments for fire monitoring. MODIS is the first

satellite sensor designed specifically for global monitoring of fires. An improved

operational fire detection algorithm was developed for the MODIS instrument. This

algorithm offers a sensitivity to small, cool fires and minimizes false alarm rates. To

support the accuracy assessment of the MODIS global fire product, an operational fire

detection algorithm was developed and evaluated for the ASTER instrument, which

provides higher resolution observations coincident with the Terra MODIS. The unique

data set of multi-year MODIS day and night fire observations was used to analyze the

global distribution of biomass burning using five different temporal metrics which



included, for the first time, mean fire radiative power, a measure of fire intensity. The

metrics show the planetary extent, seasonality, and interannual variability of fire.

Recognizing differences in fire activity between morning and afternoon overpasses, the

impact of the diurnal cycle of fire activity was addressed using seven years of fire data

from the VIRS sensor on-board the TRMM satellite. A strong diurnal cycle was found

in all regions, with the time of peak burning varying between approximately 13:00 and

18:30 local time. Given interest in area burned among atmospheric chemical transport

and carbon cycle modelers, a data set was developed utilizing the MODIS global fire

and vegetation cover products to estimate monthly burned area at 1-degree spatial

resolution. The methods, products and results presented in this thesis provide the

global change research and fire management communities with products for global fire

monitoring and are currently being used in the development of the next generation of

operational satellite fire monitoring systems.
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Chapter 1

Introduction

1.1 Research Goals and Objectives

The overarching theme of the research presented in this dissertation is the utilization,

analysis, and evaluation of MODIS active fire data for fire monitoring. The specific

objectives of this work were to:

1. Develop a robust MODIS active-fire detection algorithm that performs

reasonably well over the entire globe.

2. Develop a robust active-fire detection algorithm for the ASTER sensor which

will provide high resolution (30 m) fire maps suitable for validation of the

coarser resolution fire maps produced from Terra MODIS observations (and

potentially from VIRS and SEVIRI observations as well). ASTER fire maps also

provide useful information for regional fire studies.

3. Develop a global, coarse-resolution MODIS active-fire data set that addresses

many of the needs of the global modeling community.

1



4. Use the global data set to quantify the global spatial and temporal distributions of

fire activity as observed by the Terra and Aqua MODIS instruments.

5. Determine in which regions of the globe a diurnal fire cycle exists, and determine

the characteristics of the cycle (peak time, width of peak, etc.) within these

regions.

6. Examine the implications of a diurnal fire cycle for developing long-term records

of fire activity from current and future satellite sensors.

7. Explore methods for using the multi-year, global active fire data set to generate

global, spatially explicit estimates of burned area. An associated objective was to

gain further insight into the relationship between “fire pixels” observed while a

fire is actively burning, and the remaining post-fire burn scar.

1.2 Background

1.2.1 Fire and Global Change

For millenia, fire has been a pervasive agent of change acting upon the terrestrial

landscape. While fire originated as a strictly “natural” process, the phenomenon has

become decidedly anthropogenic in many parts of the world. On a global scale, the

overwhelming majority of fires are now initiated by humans as a tool for forest and

brush clearing, crop and pasture maintenance, fuel reduction, charcoal production,

cooking, hunting, heating, and occasionally, arson [Andreae, 1991, Malingreau and
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Grégoire, 1996]. A smaller number of natural fires (or “wildfires”) occur each year,

usually started by lightning.1

Fire has long been acknowledged as an important factor in human history, and has

for some time been recognized as an important ecological process which influences,

among other attributes of a community, species composition (both floral and faunal)

and plant productivity [Whelan, 1995]. The realization that fire plays a significant role

in regional and global climate change, however, has emerged comparatively recently

following the landmark study of Crutzen et al. [1979]. In the context of global change,

the role of the phenomenon is manifested through a host of different mechanisms; a

representative (but incomplete) list includes the following:

• Fire is an important process in the global carbon cycle – one that rapidly

transfers carbon stored in biomass to the atmosphere – and a major source of

trace gas and aerosol emissions [Crutzen et al., 1979, Crutzen and Andreae,

1990]. Among a host of other species, these trace gases include CO2, a

greenhouse gas that is thought to be the primary cause of the general warming of

the Earth’s atmosphere over the past century.

• Fire alters the albedo of the Earth’s surface through the removal of vegetation

and the deposition of ash and char. This directly effects soil temperature, which

in turn alters the rates of microbial respiration and evapotranspiration.

1Other natural ignition sources are rare but include volcanic activity and heat produced during micro-

bial decomposition of organic matter.
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• Particulate matter produced during combustion can affect cloud formation and

inhibit precipitation [Rosenfeld, 1999].

It is important to also recognize that changes in climate can affect changes in fire

regime, a combination of the type of fire which occurs in a given region (e.g.,

low-intensity surface or high-intensity crown), the frequency at which fires occur, and

the seasonality of burning. There is consequently the potential for substantial feedback

between fire and the environment.

1.2.2 Global Fire Data

The initial global biomass burning studies of trace-gas emissions by Crutzen et al.

[1979] and Seiler and Crutzen [1980] relied entirely on land-use, population, and

national statistics as a source of information about worldwide fire activity. Later fire

emissions studies improved this approach by using more timely statistics and

incorporating regional or land-cover-specific fire return intervals [e.g., Hao et al.,

1990], but remained beset by large uncertainties stemming from the paucity of timely

biomass burning information. The extent of this data void was further elucidated as

subsequent research revealed the broader impact of global biomass burning on

atmospheric chemistry, the radiation budget, and the hydrological and biogeochemical

cycles [Crutzen and Andreae, 1990, Penner et al., 1992]. By the early 1990’s, a clear

consensus on the need for better sources of global fire data had arisen.

Following the deployment of the first Advanced Very High Resolution Radiometer
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(AVHRR) on-board the TIROS-N satellite in 1978, Dozier [1981] and Matson and

Dozier [1981] showed that the middle-infrared channel of this sensor enabled the

detection of sub-pixel, high temperature sources, in particular fires, within its field of

view. A number of applied AVHRR fire-detection studies followed [e.g., Malingreau

et al., 1985, Muirhead and Cracknell, 1985, Flannigan and Vonder Haar, 1986, Matson

and Holben, 1987] and, in conjunction with the marked increase in the availability and

use of satellite data in land studies over the next decade, demonstrated the potential for

spaceborne sensors to supply large-scale information about biomass burning

[Malingreau, 1990, Justice et al., 1993].

As the development of remotely-sensed fire data sets progressed, emissions studies

began to use these data on a short term, regional basis [e.g., Kaufman et al., 1990,

Setzer and Pereira, 1991, Scholes et al., 1996]. The arrival of global (or near global),

multi-year fire data sets starting in the late 1990’s quickly led to the widespread

adoption of these data in atmospheric chemistry, fire, emissions, and carbon cycle

studies [e.g., Barbosa et al., 1999, Duncan et al., 2003, van der Werf et al., 2003, Heald

et al., 2003, Streets et al., 2003, Edwards et al., 2004, van der Werf et al., 2004]. One

advantage these data offer over inventories is that they capture interannual variability.2

As will be discussed in Section 1.2.4, however, some important issues and limitations

exist with respect to the use of remotely-sensed fire data. Consequently, considerable

2For some types of small fires, such as cooking and heating fires, inventories are 1) relatively accurate

and 2) the only source of information about such fires, and are unlikely to be replaced any time in the

foreseeable future.
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interest remains in producing consistent, reliable fire-related data sets from spaceborne

sensors, and in improving the quality and utility of these data sets.

1.2.3 Satellite-Based Fire Monitoring: Sensors and Data Sets

Spaceborne sensors now monitor the Earth continuously, and offer the only practical

way to monitor fire activity on a global scale. In addition to providing fire data for use

in long-term studies, these sensors provide synoptic snapshots of fire activity in

near-real time to support operational fire management.

To date, a number of large scale, multi-year fire data sets have been produced using

observations acquired by various satellite-based sensors. A summary of these sensors

and data sets is provided here and in Table 1.1, and will facilitate the subsequent

discussion of the issues entailed in using remotely-sensed fire data (Section 1.2.4), as

well as the discussion of the thesis organization in Section 1.3.

1.2.3.1 AVHRR

The Advanced Very High Resolution Radiometer (AVHRR) has been deployed on a

long series of operational NOAA satellites spanning well over two decades and

continuing to the present. The AVHRR was the first spaceborne instrument capable of

large-scale fire detection. As first shown by Dozier [1981] and Matson and Dozier

[1981], the 3.8 µm mid-infrared channel of this instrument is capable of detecting

active fires very much smaller than the nominal 1 km sensor footprint. Subsequent

refinements have produced a veritable zoo of fire detection algorithms for the AVHRR

6



[e.g., Kaufman et al., 1990, Lee and Tag, 1990, Setzer and Pereira, 1991, Langaas,

1993b, Kennedy et al., 1994, Eva and Flasse, 1996, Flasse and Ceccato, 1996, Justice

et al., 1996, Randriambelo et al., 1998, Giglio et al., 1999, Boles and Verbyla, 2000, Li

et al., 2000, Lasaponara et al., 2003, Soja et al., 2004]. While numerous regional

AVHRR fire data sets have been produced [e.g., Sukhinin et al., 2004], the sole

AVHRR active fire data set offering complete global coverage is the 18-month AVHRR

Global Fire Product [Stroppiana et al., 2000b], produced under the auspices of the

International Geosphere-Biosphere Programme.

1.2.3.2 GOES Imager

This scanning radiometer, simply referred to as Imager, is carried on-board two

Geostationary Operational Environmental Satellites (GOES) “parked” in geostationary

orbits to provide high temporal-frequency coverage of North and South America. The

nominal spatial resolution of the Imager channels useful for fire detection is 4 km. Fire

detection is performed using the method of Prins et al. [1998], an extension of earlier

work by Prins and Menzel [1992] using the coarser-resolution GOES Visible Infrared

Spin Scan Radiometer Atmospheric Sounder (VAS).

1.2.3.3 OLS

Multiple Operational Linescan System (OLS) instruments have been deployed

on-board a suite of Defense Meteorological Satellite Program (DMSP) satellites

occupying polar, sun-synchronous orbits. The OLS includes a high gain,
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visible/near-infrared channel which permits fires (and other light sources) to be

detected in nighttime imagery [Elvidge et al., 1996]. Under nighttime operating

conditions the nominal spatial resolution of this channel is either 1.7 or 4 km,

depending on whether or not the higher-resolution “fine” acquisition mode is in use

[Elvidge et al., 1996]. At any given time, four DMSP satellites are in operation.

1.2.3.4 ATSR-2 and AATSR

The second Along-Track Scanning Radiometer (ATSR-2), on-board the now defunct

ERS-2 spacecraft, was succeeded by the Advanced Along-Track Scanning Radiometer

(AATSR), on-board the ENVISAT satellite (with nearly identical orbital

characteristics). Both sensors have a nominal spatial resolution of 1 km. The low

saturation level of the mid-infrared channel on both sensors generally restricts fire

detection to nighttime imagery. The ATSR World Fire Atlas [Arino and Rosaz, 1999] is

currently the longest time series of global active fire data, spanning 1996 through the

present.

1.2.3.5 VIRS

The Visible and Infrared Scanner (VIRS) is carried on-board NASA’s Tropical Rainfall

Measuring Mission (TRMM) satellite. This five-channel radiometer has a nominal

spatial resolution of 2.5 km. TRMM is unique among other satellites used for fire

monitoring in that it occupies a precessing orbit that permits sampling of the diurnal
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cycle. Fire detection is performed using the method of Giglio et al. [2003b].3 The

archive of VIRS fire observations covers the time period from late December 1997

through the present.

1.2.3.6 MODIS

Two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are

carried on-board NASA’s Terra and Aqua satellites which occupy polar,

sun-synchronous orbits. MODIS is unique among current sensors in that is has

high-saturation 4 and 11 µm channels designed specifically for fire monitoring. The

nominal spatial resolution of the relevant MODIS fire channels is 1 km. A suite of

MODIS fire products is available [Justice et al., 2002], spanning the time period from

November 2000 through the present.

3An alternative VIRS fire data set by Ji and Stocker [2002] is also currently produced, but has been

shown to suffer from a very high incidence of false alarms along cloud edges and in areas of sun glint

[Giglio and Kendall, 2004]. Contamination from the resulting false fire pixels can be so severe as to

significantly misrepresent the seasonality of fire activity, as in Generoso et al. [2003].
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Table 1.1: Summary of sensors currently used for fire monitoring for which long-term
fire data sets have been produced. The “Day/Night Detection” column indicates whether
the sensor can be used for both daytime and nighttime (DN) fire detection, or nighttime
(N) fire detection only.

Spatial Day/Night
Sensor Satellite Orbit Resolution (km) Detection
AVHRR sun-synchronous polar 1.1 DN
GOES Imager geostationary 4 DN
OLS sun-synchronous polar 1.7 or 4 N
ATSR-2/AATSR sun-synchronous polar 1 N
VIRS precessing 2.5 DN
MODIS sun-synchronous polar 1 DN
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1.2.4 Satellite-Based Fire Monitoring: Issues

With such a strong reliance on satellite data, it is important to recognize and understand

a number of issues surrounding the use of these data. This is especially important in the

context of biomass burning since 1) there is at present a plethora of satellites and

sensors used for fire monitoring, and 2) very few of these systems were actually

designed with fires in mind, and consequently lack the specialized capabilities required

for unbiased fire monitoring. Among the most important issues are those in the

following list:

• To date, most sensors used for fire monitoring detect (and in some instances,

characterize) the flaming and smoldering regions of an actively burning fire.

These regions are generally much smaller and far more transient than the “burn

scars” that generally persist long after the active fire has finished burning. For

many applications, however, such as emissions modeling, it is necessary to know

the size of the burn scar. At present there is a paucity of such information.

• Due to limitations of the instrument and the detection algorithm, and obscuration

by clouds, smoke, and forest canopy, not every fire is detected. The envelope of

detectable fires (in terms of their size and temperature) is dependent upon

observation conditions and the particular instrument and detection algorithm

being used.

• Not every fire detection is real. The frequency at which these false alarms arise is
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dependent upon observation conditions and the particular instrument and

detection algorithm being used.

• The suite of satellites and sensors used for fire monitoring provide very different

spatial and temporal sampling strategies. This can lead to inconsistencies in the

respective fire data sets.

• The fire information currently provided by spaceborne sensors often does not

exactly match the fire information desired by the fire community.

While this list is not exhaustive, it captures the most important elements from the

perspective of long-term, global fire monitoring. For some applications the list would

likely be somewhat different. From the standpoint of real-time operational fire

management, for example, data latency would have a much higher priority than

assumed here.

1.3 Organization of the Thesis

This dissertation is organized into seven chapters, five of which are self contained. The

thesis is centered around the utilization, analysis, and evaluations of MODIS fire data,

addressing the issues discussed in the previous section.

Chapter 1 (this chapter) presents a brief overview of biomass burning and

satellite-based fire monitoring, and provides a context for the work presented in this

dissertation.
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Chapter 2 describes an operational fire detection algorithm developed for the

MODIS instruments to produce a new generation of active fire products. The algorithm,

which incorporates many refinements to earlier approaches, offers greater sensitivity to

smaller, cooler fires, as well as a lower false alarm rate under many conditions.4

Chapter 3 presents an operational fire detection algorithm developed for the

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

ASTER is a high resolution imaging radiometer co-resident with the MODIS

instrument on-board the Terra satellite. As such, high resolution ASTER fire masks

have become an important tool in the ongoing accuracy assessment (validation) of the

Terra MODIS active fire products generated using the algorithm developed in

Chapter 2. Since ASTER lacks channels in the mid-infrared, however, the resulting fire

detection algorithm is somewhat different than those developed for the sensors

mentioned in Section 1.2.3. An evaluation of the algorithm is also presented.

In Chapter 4 multi-year fire products developed using the algorithm developed in

Chapter 2 are analyzed. An analysis of the global distribution of biomass burning from

MODIS is presented using five different temporal metrics derived from five years of

data. As part of this analysis and for the first time, the global distribution of the fire

radiative power (FRP), a relatively new remotely sensed quantity first proposed by

Kaufman et al. [1998b] is presented. This chapter also contains a preliminary analysis

of the diurnal fire cycle – the systematic variation in fire activity with respect to time of

4This chapter is a slightly revised version of material published in Giglio et al. [2003a].
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day – based on three years of Terra and Aqua MODIS observations. The chapter

concludes with a brief investigation into the consistency of the fire time series recorded

by the two MODIS instruments.5

Recognizing the bias that can be introduced from differences in orbital sampling,

Chapter 5 presents a detailed look at the diurnal fire cycle in 15 different regions of the

tropics and subtropics. Knowledge of this cycle is critically important for interpreting

(and potentially correcting) any long-term time series of active fire observations.

There is large demand for additional fire information beyond that provided by

current active fire products. In particular, those concerned with trace gas emissions and

resource management require burned area [Kasischke and Penner, 2004]. Chapter 6

explores the use of the product described in Chapter 4 in combination with MODIS

vegetation data and fire-pixel cluster information to produce coarse resolution, spatially

and temporally-explicit global estimates of burned area.6

Finally, in Chapter 7, the implications of the results described in previous chapters

with respect to the production of a consistent, long term fire record from current and

future satellite sensors are summarized and future areas for research are identified.

The structure of the thesis is shown in Fig. 1.1.

5This chapter is an expanded version of a forthcoming paper by Giglio et al. [2006a].

6Together, this chapter and Appendix B are expanded versions of material recently published in Giglio

et al. [2006b].
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Chapter 2

A MODIS Fire Detection Algorithm

2.1 Introduction

As part of NASA’s Earth Observing System (EOS), the Moderate Resolution Imaging

Spectroradiometer (MODIS) is carried on both the Terra and Aqua satellites. The

MODIS instruments, which began collecting data in February 2000 (Terra) and June

2002 (Aqua), are being used to generate oceanic, atmospheric, and terrestrial data

products [Kaufman et al., 1998a, Masuoka et al., 1998]. Since launch, emphasis has

been given to characterizing instrument performance, determining and monitoring the

quality of the data products, and undertaking validation [Morisette et al., 2002]. Based

on this understanding, improvements have been made to all of the algorithms. The

MODIS active fire products fall within the suite of terrestrial products, and provide

information about actively burning fires, including their location and timing,

instantaneous radiative power, and smoldering ratio, presented at a selection of spatial

and temporal scales [Kaufman et al., 1998b, Justice et al., 2002]. A detection algorithm

which identifies the active fires within each MODIS swath forms the basis of these
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products.

Although the original MODIS fire detection algorithm of Kaufman et al. [1998b]

functioned reasonably well following several initial post-launch revisions collectively

known as “version 3” [Justice et al., 2002], two significant problems limited the overall

quality of the product. Firstly, persistent false detections occurred in some deserts and

sparsely vegetated land surfaces, particularly in northern Ethiopia, the Middle East, and

central India. Not unexpectedly, most of these were caused by the algorithm’s absolute

threshold tests. Secondly, relatively small (yet generally obvious) fires were frequently

not detected. In response to these problems, we have developed a replacement

version 4 contextual algorithm that offers superior sensitivity to smaller, cooler fires,

and yields fewer blatant false alarms. In this chapter we describe this algorithm.

2.2 Algorithm description

The improved detection algorithm is based on the original MODIS detection algorithm

[Kaufman et al., 1998b], heritage algorithms developed for the Advanced Very High

Resolution Radiometer (AVHRR) and the Visible and Infrared Scanner (VIRS) [Giglio

et al., 1999, 2003b], and experience with the first two years of high quality MODIS

data.

The algorithm uses brightness temperatures derived from the MODIS 4 µm and

11 µm channels, denoted by T4 and T11, respectively. The MODIS instrument has two

4 µm channels, numbered 21 and 22, both of which are used by the detection
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algorithm. Channel 21 saturates at nearly 500 K; channel 22 saturates at 331 K. Since

the low-saturation channel (22) is less noisy and has a smaller quantization error, T4 is

derived from this channel whenever possible. However, when channel 22 saturates or

has missing data, it is replaced with the high saturation channel to derive T4. T11 is

computed from the 11 µm channel (channel 31), which saturates at approximately

400 K for the Terra MODIS, and 340 K for the Aqua MODIS. The 12 µm channel

(channel 32) is used for cloud masking; brightness temperatures for this channel are

denoted by T12.

The 250 m resolution red and near-infrared channels, aggregated to 1 km, are used

to reject false alarms and mask clouds. These reflectances are denoted by ρ0.65 and

ρ0.86, respectively. The 500-m 2.1 µm band, also aggregated to 1 km, is used to reject

water-induced false alarms; the reflectance in this channel is denoted by ρ2.1. A

summary of all MODIS bands used in the algorithm is shown in Table 2.1.

Table 2.1: MODIS channels used in detection algorithm.

Central
Channel Wavelength
Number (µm) Purpose

1 0.65 Sun glint and coastal false alarm rejection; cloud
masking.

2 0.86 Bright surface, sun glint, and coastal false alarm re-
jection; cloud masking.

7 2.1 Sun glint and coastal false alarm rejection.
21 4.0 High-range channel for active fire detection.
22 4.0 Low-range channel for active fire detection.
31 11.0 Active fire detection, cloud masking.
32 12.0 Cloud masking.
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2.2.1 Cloud and water masking

Cloud detection was performed using a technique based on that used in the production

of the International Geosphere Biosphere Program (IGBP) AVHRR-derived Global

Fire Product Stroppiana et al. [2000b]. Daytime pixels are considered to be

cloud-obscured if the following condition is satisfied:

(ρ0.65+ρ0.86 > 0.9) or (T12 < 265 K) or (ρ0.65+ρ0.86 > 0.7 and T12 < 285 K)

Nighttime pixels are flagged as cloud if the single condition T12 < 265 K is satisfied.

These simple criteria were found to be adequate for identifying larger, cooler clouds,

but consistently missed small clouds and cloud edges. One advantage, however, is that

fire pixels were never observed to have been mistakenly flagged as cloud. As noted

previously [Seielstad et al., 2002, Justice et al., 2002], this problem has been

experienced with other cloud masking methods, including the MODIS cloud mask

product [Ackerman et al., 1998]. Recent improvements in the latter, however, may

allow use of the MODIS cloud mask product to be reincorporated into the fire product

during a future reprocessing.

Water pixels were identified using the 1 km pre-launch land/sea mask contained in

the MODIS geolocation product. Significant errors have been noted in this data set, and

an improved water mask is being developed by members of the MODIS Science Team.
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2.2.2 Detection algorithm components

The purpose of the detection algorithm is to identify pixels in which one or more fires

are actively burning at the time of the satellite overpass; such pixels are commonly

referred to as “fire pixels”. As with most other satellite-based fire detection algorithms,

our approach exploits the different response of middle-infrared and long-wave-infrared

bands to scenes containing hot sub-pixel targets [Dozier, 1981, Matson and Dozier,

1981]. In particular, the algorithm looks for a significant increase in radiance at 4 µm,

in both an absolute sense as well as relative to the observed 11 µm radiance. This

characteristic active-fire signature is the result of the enormous difference in 4 and

11 µm blackbody radiation emitted at combustion temperatures as described by the

Planck function.

The algorithm examines each pixel of the MODIS swath, and ultimately assigns it

to one of the following classes: missing data, cloud, water, non-fire, fire, or unknown.

Pixels lacking valid data are immediately classified as missing data and excluded from

further consideration. Cloud and water pixels are identified using the previously

described cloud and water masks, and are assigned to the classes cloud and water,

respectively. The fire detection algorithm considers only those land pixels that remain.

2.2.2.1 Identification of potential fire pixels

A preliminary classification is used to eliminate obvious non-fire pixels. Those pixels

that remain are considered in subsequent tests (described in the next sections) to
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determine if they do in fact contain an active fire.

A daytime pixel is identified as a potential fire pixel if T4 > 310 K, ∆T > 10 K,

and ρ0.86 < 0.3, where ∆T = T4 − T11. For nighttime pixels the reflective test is

omitted and the T4 threshold reduced to 305 K. Pixels failing these preliminary tests are

immediately classified as non-fire pixels.

There are two logical paths through which fire pixels can be identified. The first

consists of a simple absolute threshold test. This threshold must be set sufficiently high

so that it is triggered only by unambiguous fire pixels, i.e. those with very little chance

of being a false alarm. The second path consists of a series of contextual tests designed

to identify the majority of active fire pixels which are less obvious.

2.2.2.2 Absolute threshold test

The absolute threshold criterion remains identical to one employed in the original

algorithm [Kaufman et al., 1998b]:

T4 > 360 K (320 K at night). (2.1)

Despite the high daytime threshold, the utility of this test hinges upon adequate

sun-glint rejection, otherwise glint-induced false alarms can occur. This issue is

addressed in Section 2.2.2.6. Nighttime pixels are defined as those having a solar

zenith angle ≥ 85◦.
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2.2.2.3 Background characterization

In the next phase of the algorithm, which is performed regardless of the outcome of the

absolute threshold test, an attempt is made to use the neighboring pixels to estimate the

radiometric signal of the potential fire pixel in the absence of fire. Valid neighboring

pixels in a window centered on the potential fire pixel are identified and are used to

estimate a background value. Within this window, valid pixels are defined as those that

1) contain usable observations, 2) are located on land, 3) are not cloud-contaminated,

and 4) are not background fire pixels. Background fire pixels are in turn defined as

those having T4 > 325 K and ∆T > 20 K for daytime observations, or T4 > 310 K and

∆T > 10 K for nighttime observations.

The window starts as a 3× 3 pixel square ring around the potential fire pixel. Due to

the triangular along-scan response of the MODIS instrument [Kaufman et al., 1998b],

the two along-scan pixels adjacent to the potential fire pixel are deemed unreliable and

excluded from the background characterization. The ring is increased to a maximum of

21 × 21 pixels, as necessary, until at least 25% of the pixels within the window have

been deemed valid, and the number of valid pixels is at least eight. During this step, an

optimized nearest-neighbor search is used to correct for the “bowtie” effect, or overlap

between MODIS scans [Nishihama et al., 1997]. The 21 × 21 pixel maximum size,

though arbitrary, ensures that the background is sampled within ∼ 10 km of the

potential fire pixel, a scale found empirically to be appropriate for preventing false

alarms induced by an unrepresentative selection of background pixels.
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The number of valid pixels within the background window is denoted by Nv.

During the characterization process, counts are also made and noted of the number of

neighboring pixels rejected as background fires (Nf), and the number of neighboring

pixels excluded as water (Nw).

If a sufficient number of valid neighboring pixels can be identified, several

statistical measures are computed. These are: T 4 and δ4, the respective mean and mean

absolute deviation of T4 for the valid neighboring pixels; T 11 and δ11, the respective

mean and mean absolute deviation of T11 for the valid neighboring pixels; and ∆T and

δ∆T, the respective mean and mean absolute deviation of ∆T for the valid neighboring

pixels. The 4 µm brightness temperature mean and mean absolute deviation of those

neighboring pixels that were rejected as background fires are also computed, and are

denoted by T
′

4 and δ′4, respectively. These last two quantities will prove useful for

rejecting certain types of false alarms. As suggested by Giglio et al. [1999], we employ

the mean absolute deviation as a measure of dispersion, rather than the standard

deviation, since it is more resistant to outliers [Huber, 1981]. For contextual fire

detection algorithms this is highly desirable since contamination of the background

window by undetected clouds, water, fires, and other sources is not uncommon.

2.2.2.4 Contextual tests

If the background characterization was successful, a series of contextual threshold tests

are used to perform a relative fire detection. These look for the characteristic signature

of an active fire in which both the 4 µm brightness temperature (T4) and the 4 and
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11 µm brightness temperature difference (∆T ) depart substantially from that of the

non-fire background. Relative thresholds are adjusted based on the natural variability

of the background. The tests are:

∆T > ∆T + 3.5 δ∆T (2.2)

∆T > ∆T + 6 K (2.3)

T4 > T4 + 3 δ4 (2.4)

T11 > T 11 + δ11 − 4 K (2.5)

δ′4 > 5 K (2.6)

Of these conditions, the first three isolate fire pixels from the non-fire background. The

factor of 3.5 appearing in test (2.2) is larger than the corresponding factor of 3 in test

(2.4) to help adjust for partial correlation between the 4 and 11 µm observations.

Condition (2.5), which is restricted to daytime pixels, is primarily used to reject small

convective cloud pixels that can appear warm at 4 µm (due to reflected sunlight), yet

cool in the 11 µm thermal channel. It can also help reduce coastal false alarms that

sometimes occur when cooler water pixels are unknowingly included in the

background window. Any test based on δ11, however, risks rejecting very large fires

since these will increase the 11 µm background variability substantially. For example,

over a typical land surface δ11 ∼ 1 K, whereas for land pixels spanning a large forest

fire δ11 will routinely exceed 20 K. For this reason, test (2.6) will be employed to

disable test (2.5) when the background window appears to contain large fires. This

situation is recognized by an elevated value of δ ′4; the presence of background fire
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pixels (Section 2.2.2.3) increases this statistic considerably.

2.2.2.5 Tentative fire detection

We are now in the position to tentatively identify pixels containing active fires. For

nighttime fires this will in fact be an unambiguous, final identification. For daytime

pixels, three additional steps are used to help eliminate false alarms caused by

sun-glint, hot desert surfaces, and coasts or shorelines. These will be described in

subsequent sections.

A daytime pixel is tentatively classified as a fire pixel if:

{test (2.1) is true}

or

{tests (2.2) - (2.4) are true and [test (2.5) or test (2.6) is true]},

otherwise it is classified as non-fire.

A nighttime candidate fire pixel is definitively classified as fire if:

{test (2.1) is true}

or

{tests (2.2) - (2.4) are true},

otherwise it is classified as non-fire.

For those daytime and nighttime pixels for which the background characterization

failed, i.e. an insufficient number of valid neighboring pixels were identified, only test
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(2.1) is applied in this step. If not satisfied, the pixel is classified as unknown,

indicating that the algorithm was not able to unambiguously render a decision.

2.2.2.6 Sun glint rejection

Sun glint over small bodies of water, wet soil, cirrus cloud and, in rare instances, bare

soil can cause false alarms. Sun glint is rejected with a scheme based on that of Giglio

et al. [2003b], using the angle θg between vectors pointing in the surface-to-satellite

and specular reflection directions, where

cos θg = cos θv cos θs − sin θv sin θs cos φ. (2.7)

Here θv and θs are the view and solar zenith angles, respectively, and φ is the relative

azimuth angle. A count is made of adjacent water pixels, i.e. the number of water

pixels within the eight pixels surrounding the tentative fire pixel, and is denoted by

Naw. The following conditions are then evaluated:

θg < 2◦ (2.8)

θg < 8◦ and ρ0.65 > 0.1 and ρ0.86 > 0.2 and ρ2.1 > 0.12 (2.9)

θg < 12◦ and (Naw + Nw) > 0 (2.10)

If one or more of these conditions are satisfied, the fire pixel is rejected as sun glint and

classified as non-fire, otherwise it is classified as fire. Condition (2.8) rejects any fire

pixel within the most intense region of glint; detection under this extreme condition is

simply too unreliable as the specularly reflected sunlight can elevate T4 well above
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400 K, even over the land surface. Condition (2.9), which is less strict, looks for the

consistently elevated reflectances across multiple bands that are characteristic of sun

glint. Condition (2.10), which is less strict still, rejects fire pixels occurring near water

pixels as too risky a prospect in and near regions of sun glint.

2.2.2.7 Desert boundary rejection

Any surface feature that produces a sharp radiometric transition, or edge, can

potentially cause errors of omission or commission for any contextual detection

algorithm. In the case of the former, a fire located along a boundary may remain

undetected since the edge increases the background variability to the point that relative

tests incorporating this variability will fail. The latter case can arise when non-fire

pixels along the hotter (and/or more reflective) edge of a boundary are incorrectly

rejected as background fires during the background characterization phase. This

restricts the sample of valid background pixels to those within the cooler (and perhaps

darker) side of the boundary, which skews the background statistics toward cooler

values [Giglio et al., 1999, Martı́n et al., 1999]. In general, it is this second case,

namely an error of commission, or “false alarm” along a boundary between hotter and

cooler surfaces, that is a much more common problem for contextual fire detection

algorithms.

Earlier AVHRR-based contextual algorithms were generally far more susceptible to

this problem since they employed thresholds for rejecting background fire pixels that

were much lower [e.g., Flasse and Ceccato, 1996, Justice et al., 1996]. Flasse and
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Ceccato [1996], for example, rejected background pixels having T4 > 311 K and

∆T > 8 K, conditions which are frequently satisfied over ordinary land areas; two

examples include dry-season African savannas and most deserts. (For simplicity we

have used our 4 µm channel notation in this example, when in fact the corresponding

AVHRR channel has a central wavelength of 3.8 µm.) The background-fire rejection

thresholds employed in our MODIS algorithm are so high, however, that inadvertent

exclusion of non-fire background pixels is almost always restricted to desert areas. For

the present MODIS algorithm, therefore, we refer to the problem of eliminating this

type of false alarm as desert boundary rejection.

To reject false alarms along desert boundaries, one would like the algorithm to

identify those cases in which the rejected background fire pixels are ordinary land

pixels that happened to satisfy the somewhat arbitrary background-fire rejection

thresholds. In this situation, the 4 µm statistics T
′

4 and δ′4 become useful indicators.

Over typical daytime desert surfaces, T
′

4 ≈ 335 K and δ′4 ≈ 0.5 K. For a background

containing energetic fire pixels, however, δ ′4 will be much larger (40 K and higher is

routine), and T
′

4 will be somewhat larger, perhaps 350 K to 380 K. We therefore

incorporate several heuristic tests exploiting these trends as a means of rejecting
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daytime false alarms that can arise along desert boundaries. These are:

Nf > 0.1 Nv (2.11)

Nf ≥ 4 (2.12)

ρ0.86 > 0.15 (2.13)

T
′

4 < 345 K (2.14)

δ′4 < 3 K (2.15)

T4 < T
′

4 + 6 δ′4 (2.16)

If all conditions are satisfied, the fire pixel is rejected as a hot desert-boundary surface

and classified as non-fire, otherwise the pixel undergoes a final coastal false alarm test.

Conditions (2.11) and (2.12) restrict rejection to cases in which a significant number of

background pixels appear to contain background fires, a signature of desert boundary

false alarms. Condition (2.13) simply restricts the remaining tests to bright regions

characteristic of deserts. Test (2.16), which is satisfied only when a tentative fire pixel

stands out very strongly against the rejected background fire pixels, isn’t a false alarm

rejection test per se. Rather, it permits detection of gas flares, which are frequently

located in desert areas, that would otherwise be excluded due to the uniformity of the

landscape.

2.2.2.8 Coastal false alarm rejection

Given the contextual nature of the algorithm, it is important to accurately exclude water

and mixed water pixels during the background characterization phase. Such pixels are
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usually cooler than adjacent land pixels during the day. Unknowingly including a

sufficient number of water and mixed water pixels in the background window can

therefore depress T4 and cause a coastal false alarm. Also contributing to this

phenomenon is the fact that, compared to land, water pixels frequently have lower

values of ∆T due to differences in emissivity. Those water and mixed water pixels

contaminating the background can, therefore, decrease ∆T and increase the likelihood

that a false alarm will occur.

In many respects this is merely a special case of the edge problem discussed in the

previous section. For the present algorithm, however, such coastal false alarms can

occur almost anywhere and are usually not accompanied by the inadvertent rejection of

neighboring non-fire pixels described in the previous section. We therefore treat these

types of false alarms separately.

As indicated above, the current MODIS land/sea mask contains significant errors in

some areas. The bulk of these errors consist of a 1-5 km discrepancy along coast and

shoreline, and small rivers that are missed entirely. In some cases even much larger

water bodies are not masked accurately. An example from eastern Africa is shown in

Fig. 2.1; here hundreds of pixels are misclassified as land. We have therefore

incorporated additional tests to identify cases in which the background window is

contaminated with unmasked water pixels. We use a simple test based on the 0.86 and

2.1 µm reflectances, and the Normalized Difference Vegetation Index (NDVI) of the

valid background pixels, where NDVI = (ρ0.86 − ρ0.65)/(ρ0.86 + ρ0.65). This particular

combination was chosen to reduce the likelihood of confusing cloud shadows and burn
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scars, which also have low reflectances, with water.

Valid background pixels having ρ2.1 < 0.05 and ρ0.86 < 0.15 and an NDVI < 0 are

considered to be unmasked water pixels, i.e. water pixels incorrectly classified as land

in the MODIS land/sea mask. The number of such pixels is denoted as Nuw. If test

(2.1) is not satisfied, and Nuw > 0, the tentative fire pixel is rejected and classified as

non-fire, otherwise it is classified as fire. This test will periodically reject smaller valid

fires, but the much greater reduction in coastal false alarms generally make these errors

of omission tolerable on a global basis. Future planned improvements in the MODIS

land/sea mask may ultimately render these tests unnecessary.

2.2.3 Fire detection confidence

A measure of confidence for each detected fire pixel is now also produced based on the

approach of Giglio et al. [2003b]. The measure employs T4, Naw, the number of cloud

pixels adjacent to the fire pixel (Nac), and the standardized variables z4 and z∆T ,

defined as

z4 =
T4 − T4

δ4

(2.17)

z∆T =
∆T − ∆T

δ∆T

. (2.18)

These quantities represent the number of absolute deviations that T4 and T11 lie above

the background, and are analogous to the more commonly used Z-scores which are

calculated using the standard deviation [e.g., Devore, 1987]. We further employ a ramp
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Figure 2.1: Example of the (here incorrect) MODIS water mask (dotted region outlined
in white) superimposed on a 1-km aggregated 2.1 µm image of Lake Rukwa in western
Tanzania acquired 1 September 2001. The southern tip of Lake Tanganyika appears
on the left. Water appears black due to the extreme absorption at this wavelength, and
the actual lake boundaries are clearly evident. The image spans an area approximately
300 × 300 km in size.

function, defined as

S(x; α, β) =
























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0; x ≤ α

(x − α)/(β − α); α < x < β

1; x ≥ β

(2.19)

The confidence assigned to each fire pixel is composed of a combination of five

sub-confidences, labeled C1 to C5, each having a range of 0 (lowest confidence) to 1

32



(highest confidence). For daytime fire pixels these are defined as:

C1 = S(T4; 310 K, 340 K) (2.20)

C2 = S(z4; 2.5, 6) (2.21)

C3 = S(z∆T ; 3, 6) (2.22)

C4 = 1 − S(Nac; 0, 6) (2.23)

C5 = 1 − S(Naw; 0, 6) (2.24)

For C1, 310 K represents the minimum brightness temperature required for a pixel to be

considered a fire pixel (and is thus less obviously a fire), while, based on operational

experience, 340 K represents a typical value for a reasonably obvious fire. For C2,

z4 = 2.5 is the minimum value required of fire pixels by the detection algorithm,

whereas z4 = 6 represents a typical value (again based on operational experience) for

an unambiguous fire. A similar rationale applies to the definition of C3. C4 reduces the

detection confidence as the number of adjacent cloud pixels increases, accounting for

the fact that fire pixels detected along cloud edges are more likely to suffer from cloud

contamination, potentially triggering a false alarm via reflected sunlight. Finally, C5

reduces the confidence as the number of adjacent water pixels increases, reflecting the

greater likelihood that the detected fire pixel is instead a coastal false alarm.

Following Giglio et al. [2003b], the detection confidence C is then defined as the

geometric mean of the sub-confidences, i.e.

C = 5

√

C1C2C3C4C5 (2.25)

33



For nighttime fire pixels, the thresholds of C1 are altered appropriately so that

C1 = S(T4; 305 K, 320 K), (2.26)

and the cloud- and water-related sub-confidences are not considered. The nighttime

detection confidence is therefore simply the geometric mean of C1, C2, and C3.

2.3 Algorithm performance

To date, four principal methods have been used to assess algorithm performance and

evaluate the MODIS fire products. First, based on earlier work done by Dowty (1993)

and Giglio et al. [1999], simulated MODIS imagery was used to quantify algorithm

detection and false alarm rates under a wide range of environmental conditions within

different biomes. Second, fire maps generated from high resolution scenes acquired

with the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) have been compared to fires identified by the version 3 and version 4

algorithms. Third, the US Forest Service Fire Sciences Laboratory, which has

undertaken an independent validation of the MODIS fire product, has found good

correspondence between MODIS fire locations and fire perimeters measured by the

Forest Service. Finally, in a more qualitative approach, unambiguous fire pixels and

obvious false alarm sources were identified through visual inspection of MODIS

250 m, 500 m, and 1 km imagery, permitting the output from the original and improved

algorithms to be compared to “expert”-derived fire masks. Although this approach is,
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in general, greatly inferior to the more rigorous approaches mentioned above, it does

allow obvious problems to be diagnosed and corrected.

In Section 2.3.1, we will describe our simulation approach, and then discuss the

theoretical algorithm performance established by way of the simulation. In Section

2.3.2 we will briefly report on the recent results of Morisette et al. [2005a], who have

completed the first of many planned regional MODIS fire validation activities.

(Ultimately the MODIS fire products will be validated globally through this process.)

Finally, in Section 2.3.3, we will present two examples of obvious cases in which a

simple visual analysis and comparison is appropriate.

2.3.1 Simulated fire scenes

2.3.1.1 Method

Simulated 25 km × 25 km images of MODIS channels 21, 22, and 31 were generated

using MODIS-specific modifications of the method used by Giglio et al. [1999] in their

evaluation of several AVHRR active fire detection algorithms. The scenes depicted in

these images contained idealized fires of various sizes and temperatures in ten different

biomes (desert, tropical rainforest, tropical deciduous forest, tropical savanna,

temperate deciduous forest, temperate evergreen forest, temperate grassland, boreal

evergreen forest, boreal deciduous forest, and tundra). Each biome was characterized

by a range of seasonal average surface temperatures and seasonal average emissivities

at 1 km spatial resolution. Following Giglio et al. [1999], the 1 km grid cells of each
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25 km × 25 km scene were assigned individual 4 and 11 µm emissivities and a

temperature by drawing random samples from normal distributions. In this manner,

100 model surfaces were generated for each biome and season. The MODTRAN

atmospheric model (Berk et al., 1989) was used to calculate atmospheric transmission

and thermal contributions with an appropriate seasonal tropical, temperate,

mid-latitude, or sub-Arctic atmospheric model. A sensor view was then computed

taking into account the shape and overlap of the MODIS pixels that fitted inside the

25 km surface grid.

The fire detection algorithm was applied to the synthetic MODIS imagery and, by

repeating the process over a range of conditions, the algorithm’s performance was

characterized statistically in terms of probability of fire detection (Pd) and false alarm

(Pf). Both probabilities are functions of fire temperature and area, solar and viewing

geometry, visibility, season, and biome. The presence of fires in the background

window also affects Pd and Pf [Giglio et al., 1999].

None of the reflective channels (channels 1, 2, and 7) are currently modeled in the

simulation, so the tests involving these channels were omitted in the application of the

algorithm to the simulated data. Since these tests prevent highly reflective and coastal

pixels from being classified as fire, the effect of their omission was to potentially

overestimate both Pd and Pf . This approach nevertheless yields useful upper bounds

for both probabilities.
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2.3.1.2 Results

Because the probability of detection is so strongly dependent upon the temperature and

area of the fire being observed, Pd is summarized as a detection matrix in which fire

temperature and area form the rows and columns of the matrix. Such matrices are

shown graphically in Fig. 2.2.

Over all biomes considered, the size of the smallest flaming fire having at least a

50% chance of being detected under both ideal daytime and nighttime conditions was

∼ 100 m2. For the version 3 algorithm, this value was more than two times larger. We

define ideal conditions to mean that the fire is observed at or near nadir on a fairly

homogeneous surface, the background window contains no fires, and the scene is free

of clouds, heavy smoke, and sun glint. For nighttime cases in the coldest biomes, this

minimum area tended to be somewhat larger, typically by a factor of two, since the

“universal” thresholds used to identify potential fire pixels (Section 2.2.2.1) become

much less appropriate under these conditions. Purely smoldering fires generally had to

be 10 to 20 times larger to achieve a similar probability of detection.

For the improved algorithm, no false detections were observed under any

circumstances. This is in contrast to the version 3 algorithm, which produced false

alarms in daytime desert scenes at solar zenith angles below 20◦. As mentioned

previously, this difference is due to the fact that “risky” absolute threshold tests are not

employed in the new algorithm.

An interesting case is the daytime dry-season tropical savanna (Fig. 2.2d). Earlier
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work by Giglio et al. [1999] and Giglio et al. [2003b] showed that contextual

algorithms using data from either the AVHRR or the VIRS instruments have almost no

capability to detect fires at small or even moderate solar zenith angles, e.g. θs < 40◦.

For both instruments this is caused by the relatively low saturation (∼ 325 K) of their

mid-infrared channels; fires show little or no contrast against the hot, bright savanna

surface which can saturate the mid-infrared channel even in the absence of a fire. The

high saturation of the MODIS band 21, however, allows detection to proceed largely

unhampered.
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2.3.2 Validation using ASTER scenes

Recent work by Morisette et al. [2005a] used 18 high-resolution ASTER scenes to

validate the MODIS fire product in southern Africa. The ASTER instrument is carried

on-board the Terra satellite, allowing spatially and temporally coincident observations

to be acquired with those of the Terra MODIS. This is ideal for fire validation since

active fires can alter a scene significantly in a relatively short period of time (e.g.

minutes). Although this first investigation was limited to southern Africa, additional

work is ongoing to assess the MODIS fire product globally using a much larger

collection of ASTER scenes.

Using the ASTER 2.4 µm channel, which has a spatial resolution of 30 m,

Morisette et al. [2005a] were able to map the “true” distribution of active fires in each

scene. The 30 m pixels of the resulting ASTER fire masks were then assigned to those

MODIS pixels in which they fell; this was accomplished by performing a

nearest-neighbor search through all MODIS pixels overlapping the region viewed

within the particular ASTER scene. In this manner, ASTER fire masks were prepared

for a total of 66,761 MODIS pixels. The probability of detection was then related to the

absolute number of ASTER fire pixels (a proxy for instantaneous fire size) within a

MODIS pixel. The spatial heterogeneity of the ASTER fire pixels was considered as

well. The conditional number of ASTER fire pixels observed in a single MODIS pixel

varied from 1 to more than 300. Cases in which no ASTER fire pixels were observed in

the corresponding MODIS pixel were also included.
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For the time period that was considered (5 August - 6 October 2001), Morisette

et al. found that the minimum fire size to achieve Pd ≥ 0.5 was, in terms of number of

ASTER pixels, approximately 30. In contrast, the original detection algorithm required

a minimum of 48 ASTER fire pixels regardless of the statistical model. Using the

paired ASTER-MODIS data prepared by Morisette et al. [2005a], which were available

to us, we performed a subsequent analysis of each algorithm. With respect to false

alarms, the algorithms detected 4 (version 3) and 12 (version 4) fire pixels for which

the corresponding ASTER fire mask showed zero. We do not, however, consider these

to be true false alarms. In each case, ASTER fire pixels were present in at least one

adjacent along-scan or along-track MODIS pixel, suggesting that these apparent false

alarms might be caused by limitations in the 2 km rectangular model of the MODIS

pixel footprint employed by Morisette et al. In addition, Terra MODIS channel 21

exhibits residual instrument artifacts, including minor “blooming” near large or very

hot fires [Justice et al., 2002], which could induce false alarms in the immediate

vicinity of fires. A better instrument characterization is needed to quantify the extent of

these residual artifacts. A third possibility is that the algorithm is simply labeling hot,

adjacent, recently-burned patches as fires. The corresponding ASTER scenes showed

little or no signs of burn scars in these MODIS pixels, however, and we therefore view

this explanation as unlikely.
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2.3.3 Visual comparison

An example of the improved ability of the version 4 algorithm to detect small fires is

shown in Fig. 2.3. In this example from the northern part of the Democratic Republic

of the Congo, the version 4 algorithm detected more than twice the number of fire

pixels detected with version 3. A detailed visual analysis of the MODIS visible,

mid-infrared, and long wave infrared bands for this scene indicates that the hundreds of

additional fire pixels – most of which are accompanied by distinct smoke plumes – are

in fact true fires rather than false alarms.

As mentioned in Section 2.1, the original detection algorithm suffered from

persistent false detections in deserts and other sparsely vegetated land surfaces. An

example over Pakistan is shown in Fig. 2.4. Here the version 3 algorithm yielded

nearly 4800 false fire pixels. These pixels were deemed false based on an examination

of MODIS 250 m, 500 m, and 1 km imagery and the fact that the large cluster persisted

over long periods of time (e.g. weeks). All fire pixels were located in areas of sparsely

vegetated soil, and none of the fire pixels have sufficiently high 4 µm brightness

temperatures to definitively suggest that true fires might be present. In addition, the

top-of-atmosphere visible channel reflectances reveal a complete absence of smoke.

This suggests that the majority (if not the entirety) of the fire pixels within this scene

are indeed false alarms. The corresponding output from the version 4 algorithm, which

yielded no false detections, is shown for comparison. Although the difference in

algorithm output is enormous in this particular example, the average reduction in false
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alarm rate at the global scale is generally not this dramatic. Test runs using almost a

year of MODIS data indicated that the number of obvious false fire pixels generated

with the version 4 algorithm is generally 10 to 100 times smaller than the number

generated with version 3.
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Figure 2.3: Example of small fires detected by original (version 3) algorithm (top) and
version 4 algorithm described in this chapter (bottom) acquired over the northern portion
of the Democratic Republic of the Congo at 09:30 on 16 December 2000. Fire pixels
are shown in black, rivers in dark grey, clouds in light gray, and non-fire areas in white.
The original algorithm detected 267 fire pixels, whereas the new algorithm detected
568. The image spans a region approximately 400 km along each side. Note that for the
version 3 algorithm, shorelines were expanded to reduce coastal false alarms; this step
is unnecessary for the improved detection algorithm.
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Figure 2.4: Example of blatant false fire pixels detected by original (version 3) algorithm
(top) in Pakistan on 13 June 2001, 06:30 UTC. Version 4 algorithm output is shown in
the bottom figure. Fire pixels are shown in black, rivers in dark grey, clouds in light
gray, and non-fire areas in white. Version 3 algorithm detected 4759 false fire pixels;
version 4 algorithm detected zero. The image spans a region approximately 400 km
along each side.
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2.4 Conclusion

We have described an improved contextual active fire detection algorithm for the

MODIS instrument. This algorithm, known as version 4, offers considerable

improvement over previous versions. The version 4 algorithm is run as part of the

MODIS land forward processing stream, as well as within the MODIS Rapid Response

System (Justice et al., 2002b) It is also being run as part of the MODIS “Collection 4”

reprocessing stream to reprocess all MODIS data starting from March 2000, the

beginning of the Terra MODIS data archive. It should be noted that the Terra

instrument performance prior to November 2000 render the active fire data for this

period of limited utility. Consistent time series of fire data from MODIS should be

started no earlier than November 2000. The same version 4 algorithm applies to both

Terra and Aqua MODIS data.

Although additional algorithm enhancements may be made in the future based on

validation results or changes in instrument performance, the immediate focus must now

be given to improving the ancillary water mask used in the algorithm. This is currently

the greatest source of error in the version 4 product. Commission errors in the current

water mask cause some persistent false alarms along the banks of (and islands within)

some rivers. Improvements in the land-water mask derived either directly from

MODIS, for example by using the 250 m bands, or from an external data source, such

as the emerging data sets from the Shuttle Radar Topography Mission, can be

envisioned.
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Ongoing efforts are being made to assess the detection algorithm performance and

determine product accuracy under different conditions. For the Terra fire product,

validation with ASTER is actively being pursued and globally representative validation

is underway. Improvements are also being made to the fire simulation to model all

bands and add greater realism to the simulation data set. There is also a need to better

model some of the idiosyncrasies of the MODIS band 21 and 22 detectors.

Iterative improvements to the MODIS land algorithms, followed by strategic data

reprocessing will lead to the long term science quality data products needed for global

change research. During the first two years of MODIS data we have gained

considerable experience and understanding of the fire algorithm and the Terra MODIS

instrument performance, which has resulted in the significant improvements to the

algorithm presented in this chapter.
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Chapter 3

Active Fire Detection with the Advanced

Spaceborne Thermal Emission and Reflection

Radiometer

3.1 Introduction

At present a number of satellite-based active fire, or “hot spot”, data products are

available for operational and experimental use. The number of sensors from which

these data sets are derived has grown considerably over the past decade, and now

includes the Advanced Very High Resolution Radiometer (AVHRR), the Moderate

Resolution Imaging Spectroradiometer (MODIS), the Along-Track Scanning

Radiometer (ATSR) and Advanced Along-Track Scanning Radiometer (AATSR), the

Visible and Infrared Scanner (VIRS), the Geostationary Operational Environmental

Satellite (GOES) Imager, and the Operational Linescan System (OLS) [Arino and

Rosaz, 1999, Elvidge et al., 1996, Giglio et al., 2000, Justice et al., 1996, 2002, Prins
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et al., 2001, Stroppiana et al., 2000b] While a variety of intercomparisons between

satellite-based active fire data sets (or between the fire detection approach associated

with each) have been performed [Li et al., 2001, Ichoku et al., 2003], there has been

little rigorous product validation. The reason for this, of course, arises from the

dynamic nature of fire and the short time scales over which it interacts with, and moves

across, the landscape. Continued interest exists, therefore, in using high resolution

sensors on board aircraft or satellites to provide spatially and temporally coincident fire

imagery. The resulting fire “snapshots” could then be used to derive detailed,

instantaneous maps of fire extent (and perhaps properties) to support validation.

A high-resolution sensor beginning to facilitate fire validation is the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a 14-channel

imaging radiometer on board NASA’s Terra satellite. Since ASTER co-resides with the

Terra MODIS instrument, high resolution ASTER fire masks have become an

important tool in the ongoing validation of the 1-km Terra MODIS active fire products

initiated by Morisette et al. [2005a] and Morisette et al. [2005b]. Since manual

production of fire masks is time consuming, and simple fixed threshold methods do not

scale well (both spatially and temporally), a consistent, automated source of ASTER

fire masks is desirable. Here, we present a fire detection algorithm that uses ASTER

observations to provide binary “yes/no” fire masks at 30-m spatial resolution.

The use of ASTER fire masks for the validation of other fire monitoring sensors is

also possible provided the sensor resides on a satellite having at least an occasional

overpass coincident with Terra. Sensors meeting this criterion include the Tropical
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Rainfall Measuring Mission (TRMM) VIRS, the GOES Imager, and the Meteosat-8

Spinning Enhanced Visible and Infrared Imager (SEVIRI).

3.2 The ASTER Instrument

The ASTER is a 14-channel imaging radiometer with separate visible and near-infrared

(VNIR), short wave infrared (SWIR), and thermal infrared (TIR) optical subsystems

[Yamaguchi et al., 1998]. The individual subsystems contain four (VNIR), six (SWIR),

and five (TIR) spectral bands at 15, 30, and 90 m spatial resolution, respectively. The

ASTER band numbering and spectral locations are listed in Table 3.1. The VNIR and

SWIR bands have three and four individually-selectable gain settings, respectively,

referred to as high, normal, low-1, and low-2 (SWIR only). The imaging swath for all

bands spans 60 km. Due to various hardware, power, and data storage and download

rate constraints, ASTER does not continuously acquire data, but is instead operated on

a prioritized acquisition schedule [Yamaguchi et al., 1998].

3.3 Data

For this study we used 196 radiometrically calibrated and geometrically coregistered

Level 1B ASTER scenes acquired between early 2001 and late 2003 for algorithm

testing and evaluation. Scene locations and acquisition dates were selected based on

current knowledge of the global distribution of fire activity. The locations of all scenes
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Table 3.1: ASTER channel characteristics.

Band Central Spatial
Number Wavelength (µm) Resolution (m)

1 0.56 15
2 0.66 15

3N 0.82 15
3B 0.82 15
4 1.65 30
5 2.17 30
6 2.21 30
7 2.26 30
8 2.33 30
9 2.40 30
10 8.30 90
11 8.65 90
12 9.10 90
13 10.60 90
14 11.30 90

are shown in Fig. 3.1.

3.4 Fire Detection

3.4.1 Band Selection

Satellite-based fire detection has traditionally relied upon bands located near 4 µm to

exploit the high levels of black-body radiation emitted at typical fire temperatures in

this region of the electromagnetic spectrum. This region is, in fact, near-optimal for

satellite-based fire detection in daytime imagery. This can be seen by considering the

ratio R of black-body radiation emitted by a fire (Lfire) to the radiance of the ambient
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Figure 3.1: Locations of the 196 ASTER scenes used in this study.

non-fire land surface (Lland):

R = Lfire/Lland (3.1)

The land radiance is composed of reflected solar radiation and thermal black-body

radiation. For now we consider a simplified case of a Lambertian grey-body surface,

unit fire emissivity, and no atmosphere. With the Sun located directly overhead, the

ratio in Eq. (3.1) is given by

R(λ) =
B(λ, Tfire)

ρB(λ, Tsun)Ωsun/π + (1 − ρ)B(λ, Tland)
, (3.2)

where B(λ, T ) is the Planck function, ρ is the land surface reflectance, Tland is the land

surface temperature, and Ωsun is the solid angle subtended by the Sun. The Planck

function, which describes the spectral radiance emitted at wavelength λ by a
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black-body at temperature T , is given by

B(λ, T ) = c1λ
−5

[

exp
( c2

λT

)

− 1
]

−1

, (3.3)

where c1 and c2 are constants. In Fig. 3.2, the ratio R(λ) is shown for representative

flaming (∼1000 K) and smoldering (∼600 K) fires. Sensitivity peaks near 4 µm for

both cases.

Among the most egregious of the simplifications we have made is the assumption

of a grey body surface. In reality, of course, surface reflectance varies considerably

with wavelength, and the constant ρ appearing in Eq. (3.2) should be replaced with the

function ρ(λ). If we were to substitute the reflectance spectrum of most natural

terrestrial components into Eq. (3.2), the general shape of the curve in Fig. 3.2 would

still resemble that of the ideal case, and peak sensitivity would remain near 4 µm. In

contrast, including the atmosphere introduces severe constraints on band selection that

arise from the absorption characteristics of different atmospheric constituents

(Fig. 3.3). Water vapor absorption, for example, renders the spectral region from 5.5 to

7 µm completely useless for observing the terrestrial surface. Conveniently, an

atmospheric window exists between 3.6 and 4.1 µm, leaving a band located at

approximately 4 µm optimal for daytime fire detection. The locations of atmospheric

windows are indicated in Fig. 3.2 as the solid portions of the curves; the broken

portions indicate those spectral regions not usable for surface observation.

Since ASTER lacks a 4 µm band, the next best choice would normally be band 9

(2.40 µm). This was the band used by Morisette et al. [2005a] to validate the MODIS
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Figure 3.2: Ratio R of typical fire radiance to typical land surface radiance, as a function
of wavelength, for 1000 K flaming and 600 K smoldering fires. The solid portions of
both curves denote the locations of atmospheric windows. This is a highly idealized case
with the land surface assumed to be a grey body of 15% reflectance, and no atmospheric
extinction. Vertical dotted lines indicate locations of ASTER bands 3N, 8, 10, and 14.
Vertical dot-dashed line indicates location of MODIS middle infrared fire bands for
comparison.
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Figure 3.3: Upward atmospheric transmittance as function of wavelength, computed
using MODTRAN 4 atmospheric model for the U.S. 1976 standard atmosphere (rural
23 km visibility).
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fire product in southern Africa, where it was found to work well. Active fires were

detected within ASTER scenes by means of a fixed 6.33 W m−2 sr−1 µm−1 threshold

criterion applied to band 9 radiance imagery. The authors include a qualitative

discussion on the merits of using this particular band in the context of fire detection.

There are several issues, however, which complicate the use of band 9 for routine use.

In general, all of the ASTER SWIR bands, particularly band 9, can exhibit blooming

when “pushed” to the point of saturation, making it difficult to demarcate actual fire

front boundaries. Second, a small number of “dead” pixels having a digital count near

zero tend to occur along an edge (or sometimes within) clusters of saturated SWIR

pixels, and occurs most often in band 9. These issues were first noted by Morisette

et al. [2005a]. A third complication is that crosstalk from band 4 spills primarily into

bands 5 and 9. While the magnitude of this effect is small [Iwasaki et al., 2002], it is

possible that fire boundaries might bleed into neighboring non-fire pixels, particularly

near bodies of water. Finally, we observed that, for the ASTER scenes used in this

study, band 9 appears to be affected by a major signal bias when acquired at the lowest

gain setting (low-2). In terms of reflectance, the magnitude of this apparent bias varies

between 0.3 and 0.7. At present we do not know whether this problem is confined to

band 9, or affects all of the SWIR bands since, of the scenes used in this study, no other

bands were acquired at the low-2 gain setting.

Using Fig. 3.2 it might be argued that band 10 (8.30 µm) would actually be a

superior choice for detecting smoldering fires. While true for pixels that are

comparable in size to ASTER’s 30-m SWIR bands, the lower 90-m spatial resolution
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of the TIR bands leaves them significantly less sensitive to fires. A good example of

this may be found in Morisette et al. [2005a].

For the reasons discussed above we have selected band 8 (2.33 µm) as the most

useful for fire detection. Our approach for daytime scenes in fact uses two ASTER

bands, one of which is sensitive to the black-body radiation emitted by fires (band 8),

and another which is insensitive to such radiation but that provides a highly-correlated

reflectance over “normal” (non-fire) components of terrestrial scenes, which includes

soil, vegetation, clouds, and urban areas. The only viable candidate is band 3N

(0.82 µm) which, of the four VNIR bands, is the least susceptible to scattering by

smoke and other aerosols. Fig. 3.4 shows a false color band 1, band 3N, and band 8

image of an active fire in eastern Cambodia. In this color scheme active fires appear

bright red, burn scars appear brown, clouds appear white, and cloud shadows appear

black. In Fig. 3.5 we show the relationship between band 3N and band 8 reflectance for

the same scene. Several broad features are evident. First, there is a central cluster in

which the band 3N and band 8 reflectances are largely uncorrelated but well

constrained. This corresponds to vegetation, some soils, and burn scars. Next, there is

an elongated cluster in which the reflectances are very highly correlated, corresponding

to clouds and, to a lesser extent, brighter soils. The third, vertically oriented cluster

corresponds to pixels containing active fires. The apparent band 8 reflectance of these

pixels is anomalously high due to the substantial emissive SWIR contribution from

combustion. Overall, the reflectances of non-fire pixels are linearly related, and this

relationship is sufficiently strong that the ratio of band 8 reflectance to band 3N
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reflectance is nearly constant (Fig. 3.6). We will exploit this characteristic in

developing a daytime fire detection algorithm for ASTER. Nighttime scenes, being

devoid of reflected sunlight (barring a very small contribution from the Moon), are

much less ambiguous, and active fires can be identified with thresholds applied to

band 8 imagery.

Figure 3.4: False color ASTER image of an active fire in eastern Cambodia, acquired
15 January 2003, 03:31 UTC, with band 8 shown as red, band 3N shown as green, and
band 1 shown as blue. With this color scheme active fires appear bright red, burn scars
appear brown, clouds appear white, and cloud shadows appear black. Approximate
location of this fire is 13.2◦N, 107.7◦E. Image spans an area 12 km×12 km in size.
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Figure 3.5: Relationship between band 3N and band 8 top-of-atmosphere reflectance
for all pixels comprising the scene shown in Fig. 3.4. For this particular scene, band 8
saturates at a reflectance of about 0.64.

59



Figure 3.6: Ratio of ASTER band 8 and band 3N for scene in Fig. 3.4.
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3.4.2 Detection Algorithm

For daytime scenes we use top-of-atmosphere reflectances computed for ASTER

bands 3N and 8, denoted by ρ3 and ρ8, respectively. To produce compatible spatial

resolutions, band 3N pixels are aggregated to 30 m spatial resolution by averaging. For

nighttime scenes our approach requires the ASTER band 8 top-of-atmosphere radiance

(L8) only.

3.4.2.1 Daytime algorithm

In the following discussion we refer to the ratio (r) and the difference (∆ρ) of the

band 3N and band 8 reflectances, where r = ρ8/ρ3 and ∆ρ = ρ8 − ρ3.

Step 1: Mask obvious water pixels. Because our approach includes a contextual

component in which local spatial statistics are computed, it is desirable to exclude

water pixels during this process. Since ancillary water masks are currently unavailable

at the scale of an ASTER pixel, we apply a simple band 8 threshold test on a per-pixel

basis: all pixels for which ρ8 < 0.04 are flagged as water and are excluded from further

processing. While this value provided reasonably good identification of water pixels in

our test scenes, it may need to be adjusted regionally.

Step 2: Identify obvious fire pixels. Pixels for which r > 2 and ∆ρ > 0.2 are

considered to be obvious fire pixels and are immediately flagged as containing an

active fire.
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Step 3: Identify candidate fire pixels. Pixels for which r > 1 and ∆ρ > 0.1 that

were not flagged as obvious fire pixels in the previous step are flagged as candidate fire

pixels.

Step 4: Background characterization. Neighboring pixels in a square window

centered on the candidate fire pixel are used to estimate the mean non-fire

“background” values of the reflectance ratio and band 8 reflectance. Pixels identified as

obvious fire pixels in Step 2 are excluded from this window. Unlike the variable

background windows used in contextual algorithms developed for coarser resolution

(∼1-km) sensors [e.g., Flasse and Ceccato, 1996, Giglio et al., 1999], the size of the

background window is fixed at 61 × 61 pixels (1830 m × 1830 m) in size. This scale,

which was determined empirically, is reasonable given the much higher spatial

resolution of ASTER. For small and moderate size fires, the majority of the 30-m

pixels within a window of this size will be fire-free and usable for background

characterization. On the other hand, the problematic case of the background window

spanning a very large fire, and consequently leaving an insufficient number of non-fire

pixels available for background characterization, will virtually never occur: most pixels

within a very large fire will have already been identified as obvious fire pixels in Step 2,

thus obviating the need for background characterization to be performed.

Four statistics are computed for pixels within the background window: the mean

(r) and standard deviation (σr) of the reflectance ratio, and the mean (ρ8) and standard

deviation (σ8) of the band 8 reflectance.
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Step 5: Contextual tests. For all candidate fire pixels evaluate the conditions

r > r + max(3σr, 0.5) (3.4)

ρ8 > ρ8 + max(3σ8, 0.05) (3.5)

are evaluated, where max(u, v) denotes the larger of u and v. If both conditions are

satisfied, the pixel is flagged as containing an active fire. Condition (3.4) is used to

identify pixels exhibiting the anomalously high SWIR to VNIR ratio expected when an

active fire is present in an ASTER pixel. Condition (3.5) is used to identify pixels

having the anomalously high apparent SWIR reflectance caused by the presence of

fires. It also prevents false alarms in pixels having an exceptionally low near-infrared

reflectance but otherwise modest SWIR reflectance. This condition can occur, for

example, within shallow, silt-laden water bodies. The minimum difference thresholds

of 0.5 and 0.05 in (3.4) and (3.5), respectively, prevent false alarms in unusually

homogeneous regions.

3.4.2.2 Nighttime algorithm

The simplicity of nighttime scenes permit the use of a single band 8 radiance threshold.

Pixels for which L8 >1 Wm−2sr−1µm−1 are classified as fire pixels. This particular

threshold value is roughly a factor of ten larger than the typical nighttime land surface

radiance at 2.33 µm.
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3.4.3 Expected Performance

Although the daytime detection algorithm does not require saturation of band 8 to

detect a fire, saturation is nevertheless a useful criterion for gauging the approximate

fire detection capability of the instrument. As will be shown in Section 3.6, the

majority of detected fires saturate band 8. Figure 3.7 shows the minimum fire size that

will reach the band-8 saturation level of 10.55 Wm−2sr−1µm−1 (gain setting normal),

indicating that ASTER can in principle detect flaming fires ∼1 m2 in size, and

smoldering fires approximately 100 times larger.
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Figure 3.7: Minimum fire size required to saturate ASTER band 8 (at normal gain) as a
function of fire temperature under typical daytime conditions. A surface reflectance of
15% was assumed.
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3.5 Algorithm Evaluation

Of the 196 ASTER scenes used in this study, 96 were used for testing during algorithm

development and the remaining 100 were set aside for algorithm evaluation. The

evaluation scenes were partitioned into nine different regions (Africa, Asia, Australia,

India, Europe, Mexico, Russia, South America, and USA/Canada) and are listed in

Table 3.2.

For each evaluation scene, manually identified fire pixels were stored in an “expert”

fire mask. These masks were then compared to the fire masks generated by the

detection algorithm, allowing the construction of error matrices which summarized

algorithm performance for each region.1 The elements of the error matrix are shown in

Table 3.3.

1Error matrices are also referred to as contingency tables, truth tables, and confusion matrices in the

literature.
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Table 3.2: ASTER scenes used in algorithm evaluation.

Scene Acquistition Center Center
Number Date (UTC) Latitude (◦) Longitude (◦) Region

1 2003-01-30 11:04 9.6 -6.9 Africa
2 2003-01-30 11:05 5.9 -7.7
3 2003-01-31 10:07 13.8 8.9
4 2003-01-31 10:07 11.6 8.4
5 2003-01-31 10:09 6.8 7.4
6 2002-12-16 09:56 9.6 10.0
7 2002-12-16 09:56 9.1 9.9
8 2002-12-16 09:56 8.6 9.8
9 2002-12-16 09:56 8.0 9.7

10 2002-12-16 09:57 7.5 9.5
11 2003-09-01 08:51 -10.8 23.5
12 2003-09-03 08:40 -13.8 24.2
13 2003-09-03 08:42 -20.2 22.8
14 2003-09-05 08:29 -17.8 28.5
15 2003-09-05 08:29 -20.0 28.0
16 2003-01-26 08:21 -30.0 27.9
17 2003-01-26 08:22 -30.5 27.7
18 2003-01-26 08:22 -31.0 27.6
19 2002-11-26 08:53 -31.0 19.5
20 2003-01-06 03:37 12.8 105.4 Southeast Asia
21 2003-01-06 03:38 11.2 105.1
22 2003-01-06 03:38 10.6 105.0
23 2003-01-15 03:32 10.0 107.0
24 2003-01-06 03:38 10.1 104.8
25 2003-01-15 03:31 13.8 107.8
26 2003-01-15 03:31 13.2 107.7
27 2003-01-15 03:32 10.6 107.1
28 2003-01-24 03:25 13.2 109.2
29 2003-01-24 03:25 12.7 109.1
30 2003-05-07 01:59 -15.1 126.4 Australia
31 2003-05-07 02:00 -16.2 126.1
32 2004-09-30 02:01 -24.4 122.0
33 2004-10-03 00:51 -16.0 142.0
34 2000-09-23 00:15 -32.0 151.6
35 2002-10-22 00:08 -33.6 150.1
36 2002-10-31 00:02 -33.0 151.0
37 2002-12-18 00:01 -28.3 152.6
38 2001-12-27 02:05 -25.3 124.0

continued...
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Table 3.2: continued...

Scene Acquistition Center Center
Number Date (UTC) Latitude (◦) Longitude (◦) Region

39 2003-06-03 09:38 48.6 20.7 Europe
40 2005-09-03 09:43 48.4 20.7
41 2005-09-03 09:43 47.9 20.5
42 2002-02-15 09:45 48.3 21.2
43 2002-07-02 09:39 48.6 21.2
44 2002-09-20 11:21 36.1 -5.5
45 2002-09-09 11:38 44.2 -8.3
46 2002-09-09 11:38 42.6 -8.9
47 2002-09-24 10:55 41.7 0.3
48 2002-09-24 10:56 39.1 -0.5
49 2002-09-24 10:57 35.9 -1.4
50 2003-02-23 05:16 13.5 79.5 India
51 2003-02-23 05:16 13.0 79.4
52 2003-02-25 05:02 18.3 84.0
53 2003-03-04 05:11 9.1 81.1
54 2003-03-04 05:11 8.6 81.0
55 2003-03-04 05:11 8.0 80.9
56 2003-03-09 05:26 21.2 80.2
57 2003-03-09 05:26 20.2 80.0
58 2003-03-09 05:27 19.6 79.9
59 2003-03-09 05:27 19.1 79.7
60 2004-04-17 17:16 21.4 -98.4 Mexico
61 2004-04-20 17:45 29.4 -104.2
62 2004-05-08 17:35 19.1 -102.6
63 2004-05-12 17:12 16.1 -98.2
64 2004-05-14 16:59 16.6 -95.0
65 2004-05-14 16:59 16.1 -95.1
66 2004-05-18 16:33 19.8 -88.1
67 2004-05-25 16:40 17.1 -90.2
68 2004-05-25 16:41 16.6 -90.4
69 2004-05-27 16:28 15.5 -87.5
70 2002-04-26 05:49 52.4 82.7 Russia
71 2002-04-26 05:49 51.8 82.5
72 2002-05-09 02:01 50.7 136.0
73 2002-05-09 02:01 50.2 135.8
74 2002-07-23 03:18 63.2 126.5
75 2002-07-23 03:18 62.7 126.1
76 2002-07-23 03:18 62.2 125.6

continued...
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Table 3.2: continued...

Scene Acquistition Center Center
Number Date (UTC) Latitude (◦) Longitude (◦) Region

77 2002-07-23 03:19 60.6 124.4 Russia (cont.)
78 2002-08-01 03:12 63.7 124.7
79 2001-08-05 05:08 46.5 89.9
80 2004-02-07 14:41 3.7 -61.7 South America
81 2004-02-07 14:41 3.1 -61.8
82 2003-08-29 14:56 -9.8 -67.1
83 2003-10-08 14:05 -3.7 -54.9
84 2003-01-28 14:35 3.7 -60.6
85 2003-01-28 14:35 3.2 -60.7
86 2003-01-28 14:36 2.7 -60.8
87 2003-09-06 14:05 -6.4 -55.0
88 2003-09-20 14:19 -10.0 -59.9
89 2003-09-22 14:06 -6.4 -55.4
90 2004-06-21 21:05 64.9 -141.1 USA/Canada
91 2004-06-21 21:05 63.9 -142.0
92 2004-07-17 21:42 65.2 -148.1
93 2003-09-22 18:50 36.6 -118.0
94 2003-09-22 18:51 36.1 -118.1
95 2003-09-29 18:56 38.3 -119.4
96 2003-09-29 18:56 37.7 -119.6
97 2003-10-26 18:39 34.7 -117.1
98 2003-10-26 18:39 34.2 -117.2
99 2003-10-26 18:39 33.7 -117.4

100 2003-10-26 18:39 33.1 -117.5
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Table 3.3: Elements of error matrix used to calculate accuracy measures. The first
subscript denotes the class assigned to a pixel by the algorithm, and the second denotes
the class assigned by the expert.

Expert Class
Algorithm Class Fire Non-fire

Fire Mff Mfn

Non-fire Mnf Mnn

A common measure of accuracy known as the overall accuracy is simply the ratio

of the number of correctly classified pixels to the total number of pixels evaluated. In

terms of the elements of the error matrix, the overall accuracy A is given by

A =
Mff + Mnn

Mff + Mfn + Mnf + Mnn

. (3.6)

In the present work this metric is not particularly useful since the number of correctly

classified non-fire pixels (Mnn) will generally dwarf all other elements of the error

matrix. Eq. (3.6) will consequently nearly always uninformatively tell us that A ≈

100%. Of more utility here is the probability of detection (Pd) and the probability of

false alarm (Pf), where

Pd =
Mff

Mff + Mnf

. (3.7)

and

Pf =
Mfn

Mfn + Mnn

. (3.8)

The resulting probabilities computed using Eqs. (3.7) and (3.8) are presented in

Table 3.5.

In most regions, Pd varied between 0.8 and 0.9, with a somewhat lower probability
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in Mexico (Pd = 0.71). An unusually low probability of detection (Pd = 0.45) was

found for India. To help explain the poor performance in this region, we linked

adjacent fire pixels within each expert fire mask into independent clusters, where each

cluster was surrounded completely by either non-fire pixels or a scene edge. We next

computed the median size of all fire-pixel clusters within each region (Table 3.5), and

found that the smallest median cluster size occurred in India, where half of all fires

identified were three 30-m ASTER pixels or less in size. This suggests that the fires in

our Indian scenes are simply too small for reliable detection, a finding consistent with

the fact that small agricultural-waste fires are abundant in this region.

Probabilities of false alarm varied between 9×10−8 (India) and 2×10−5

(USA/Canada). For a typical ASTER scene of ∼5,000,000 30-m pixels, these extremes

correspond to between less than 1 and 100 false fire pixels per scene. More

representative intermediate false alarms rates (Pf ∼ 5×10−6) yield ∼25 false fire pixels

per scene. In an extension of our fire-pixel cluster analysis, we determined the fraction

of false fire pixels connected to clusters of true fire-pixel clusters, fcon, and show this

fraction in Table 3.5. In most regions the majority of false fire pixels were linked to

clusters of true fire pixels, suggesting that most false fire pixels occur along the

ambiguous fire boundaries.
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Table 3.4: Elements of error matrix for each region.

Region Scenes Mff Mnf Mfn Mnn

Africa 19 4816 845 217 82193491
Australia 9 14255 2846 255 39044478
South America 10 4172 616 175 42996551
Mexico 10 1631 684 8 42931999
Europe 11 1372 147 282 47401479
India 10 2070 2507 4 43240339
USA/Canada 11 35160 8415 765 47473810
Russia 10 13548 2311 172 43891622
Southeast Asia 10 921 92 94 43603099

Table 3.5: Regional accuracy measures for ASTER fire detection algorithm.

Median
Cluster

Region Pd Pf Size fcon

Africa 0.85 3×10−6 4.0 0.83
Australia 0.84 8×10−6 6.0 0.93
South America 0.87 4×10−6 4.0 0.92
Mexico 0.71 2×10−7 4.0 0.25
Europe 0.90 6×10−6 4.0 0.82
India 0.45 9×10−8 3.0 1.0
USA/Canada 0.81 2×10−5 5.0 0.64
Russia 0.85 4×10−6 5.0 0.92
Southeast Asia 0.91 2×10−6 3.5 0.76
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3.6 Fire Characterization

3.6.1 Instantaneous Fire Temperature and Area

A more extensive fire-product validation could be achieved if sub-pixel average fire

temperatures and instantaneous fire areas were estimated using ASTER observations.

Temperature and area statistics would also allow more realistic fire scenes to be used in

simulation-based approaches to fire validation [e.g., Dowty, 1996, Giglio et al., 1999,

2003b]. One approach is to use the bispectral method developed by Dozier [1981],

which permits the retrieval of the temperature and area of a sub-pixel fire within an

otherwise homogeneous pixel. Using slight modifications suggested by Giglio and

Kendall [2001], we may write the total radiance Li reaching the sensor in the i’th band

(i = 1, 2) as

Li = τi pBi(Tf) + (1 − p)Lb,i, (3.9)

where Tf is the fire temperature, and p is the relative fraction of the pixel containing the

fire. The factor τi is the band-averaged atmospheric transmittance

τi =

∫

∞

0
Si(λ) τi(λ) dλ

∫

∞

0
Si(λ) dλ

, (3.10)

where Si(λ) is the spectral response of the i’th channel, and Bi(Tf) is the

band-averaged Planck function:

Bi(Tf) =

∫

∞

0
Si(λ) B(λ, Tf) dλ
∫

∞

0
Si(λ) dλ

(3.11)

The quantities Lb,1 and Lb,2 are independent estimates of the radiance contributions

from the non-fire portion (or background) of the target pixel, usually taken as the
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radiances of a neighboring, non-fire pixel, or the average radiances of several

neighboring, non-fire pixels. Given these estimates, Eqs. (3.9) may be solved

numerically for p and Tf . An important assumption built into Eq. (3.9) is that the fire

radiates as a true black body, and thus has unit emissivity. The impact of a grey-body

fire fraction is considered by Giglio and Kendall [2001].

There are numerous well documented limitations of the bispectral approach for fire

characterization [e.g., Langaas, 1993b, Giglio and Kendall, 2001, Shephard and

Kennelly, 2003]. With respect to the ASTER instrument, there are several limitations

of particular significance. First, it is difficult to obtain a good estimate of the

background radiance (Lb,i) within a fire pixel since the non-fire fraction contains hot,

recently-burned areas having a unique temperature and area distribution not matched in

neighboring non-fire pixels. This is especially true at the scale of an ASTER pixel: fire

heterogeneity is more pronounced compared to sensors with &1 km spatial resolution

most often used for operational fire monitoring. Second, only a tiny fraction of ASTER

scenes have been acquired with even a subset of the SWIR bands in either of the low

gain modes, making saturation of these bands fairly common when observing fires.

Since the bispectral method cannot be applied when one or both bands saturate, one

might potentially appeal to “band hopping”, where the band-pair used to solve

Eq. (3.9) is independently chosen from the pool of unsaturated channels for each fire

pixel. However, except for the case of of homogeneous fires, solving Eq. (3.9) with

different band combinations can yield dramatically different solutions for p and Tf . As

discussed by Giglio and Justice [2003], this phenomenon arises because the bispectral
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method models fires as having a single, homogeneous temperature, when in fact they

have a more complicated temperature distribution. In general, a fire model should

allow at least a hotter flaming and a cooler smoldering component. While such models

have been used successfully with hyperspectral instruments [e.g., Green, 1996], a

two-fire-temperature model would require a minimum of four unsaturated ASTER

channels, a feat bordering on the miraculous for nearly all of the ASTER scenes that

have been acquired to date. Finally, band-to-band coregistration must meet fairly

stringent requirements for the retrieved fire parameters to be accurate for fires

occupying a small fraction of the pixel [Shephard and Kennelly, 2003]. A practical

method of reducing the impact of misregistration (at the cost of spatial resolution) is to

apply the bispectral method to clusters of adjacent fire pixels [Oertel et al., 2003],

where the radiances L1 and L2 in Eq. (3.9) become averages of all pixels within the

cluster.

To explore the potential of ASTER for fire characterization, we applied the

bispectral technique to two nighttime scenes of western Zambia acquired on

3 September 2003, 20:54 UTC. (Use of nighttime imagery provided significantly fewer

saturated pixels for processing.) We applied the technique to clusters of fire pixels, as

described above, with radiances from band 4 (1.65 µm) and band 9 (2.40 µm) to

achieve sufficient spectral separation. A total of 93 fire-pixel clusters were identified in

the two scenes. Of these, one cluster could not be processed due to saturation of the

2.40 µm band, 15 clusters yielded inconsistent equations for which no solution could

be found, and 11 clusters produced physically meaningless solutions (e.g., negative fire
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area). For an additional 28 clusters the 1.65 µm radiance was below the band-4 detector

quantization of 0.217 W m−2 sr−1 µm−1 (normal gain setting), effectively setting

L1 = 0 and preventing the solution of Eq. (3.9). The areas and mean fire temperatures

of the remaining 38 clusters are shown in Fig. 3.8. The results are not encouraging.

The majority of the retrieved fire temperatures are somewhat high for savanna fires,

which typically burn at ∼900 K. More problematic are the unrealistically small fire

areas, especially given that the retrieval was performed for clusters of fire pixels rather

than on a per-pixel basis. Assuming a 1-m wide fire front typical of savanna fires, these

results would unreasonably require that the most fronts be less than 1 m in length

(indeed, less than 10 cm in nearly one third of the cases!). It is most likely that these

results reflect a poor estimate of the 1.65 µm background radiance, which, for small

fires, can lead to substantial retrieval bias errors analogous to those reported by Giglio

and Kendall [2001] for the 4 and 11 µm band combination most often used for fire

monitoring. Based on these results, the prospect of producing fire temperature and area

statistics through the application of the bispectral technique to large number of ASTER

scenes seems unlikely. More detailed analyses are required to fully address this issue.

3.6.2 Fire Radiative Power

The MODIS active fire product includes an estimate of the fire radiative power (FRP)

emitted within each MODIS pixel [Kaufman et al., 1998b]. Among other applications,

the FRP, when integrated over time, can be used to estimate combusted biomass, and is
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Figure 3.8: Retrieved mean fire temperature versus retrieved fire area for 38 fire-pixel
clusters from two nighttime ASTER scenes of western Zambia.

thus a topic of current research for its potential in quantifying pyrogenic

greenhouse-gas emissions. Although some validation of the MODIS FRP has already

taken place [Wooster, 2002, Wooster et al., 2003], such cases are few in number and

not yet globally representative. There is interest, therefore, in validating the MODIS

FRP using comparatively large samples of ASTER fire scenes. Here we briefly

consider the feasibility of such a task.

The FRP for N different fire components within a pixel, each having its own

temperature and area, is defined as [Wooster et al., 2003]

FRP = Apixεσ

N
∑

i=1

piT
4
i , (3.12)

where pi is the fraction of the pixel occupied by the i’th fire component with
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temperature Ti, Apix is the area of the pixel, ε is the weighted mean emissivity of the

fire components, and σ is the Stefan-Boltzmann constant.

As shown by Wooster et al. [2003], the Planck function may be approximated over

a limited temperature range as

B(λ, T ) ≈ aT b, (3.13)

where a and b are empirical constants dependent upon both λ and the temperature

range of interest. For wavelengths near 4 µm, choosing b = 4 yields a good

approximation to the Planck function over a range of temperatures encompassing most

flaming and many smoldering vegetation fires. Wooster et al. [2003] subsequently

showed that this property could be exploited to estimate the FRP using a single

middle-infrared band via the relationship2

FRP ≈
Apixεσ

a εMIR

(L − Lb), (3.14)

where L is the 4 µm radiance of a fire pixel, Lb is an independent estimate of the

radiance contributed by the non-fire portion of the pixel, and εMIR is the

middle-infrared fire emissivity (usually assumed to be one).

For the bands available on ASTER, no useful approximation can be made over the

range of fire temperatures with b = 4 in Eq. (3.13), and it is not possible to derive an

analogous relationship in the form of Eq. (3.14) for ASTER. Our only recourse,

therefore, is to use the instantaneous fire temperature and sub-pixel area estimates

2Appendix A contains a detailed derivation of this result, and corrects several comparatively minor

errors in the process.
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obtained from Eq. (3.9) to calculate the FRP directly, i.e.,

FRP = ApixεσpTf . (3.15)

Use of Eq. (3.15) brings with it all of the limitations inherent in the bispectral

technique, and we consequently did not attempt to apply such an approach to the

ASTER scenes used in our analysis.

3.7 Conclusion

We have presented an automated fire detection algorithm for the ASTER sensor

capable of mapping actively burning fires at 30-m spatial resolution. For daytime

scenes, our approach uses band 8 (2.33 µm) and band 3N (0.82 µm) reflectance

imagery. The former is sensitive to black-body radiation emitted by fires, while the

latter is insensitive to such radiation but that provides a highly-correlated reflectance

over “normal” (non-fire) components of terrestrial scenes. For nighttime scenes a

simple 2.33- µm radiance threshold is applied.

Based on a statistical analysis of 100 ASTER scenes, we established omission and

commission error rates for nine different regions. In most regions, Pd varied between

0.8 and 0.9, with a somewhat lower probability in Mexico (Pd = 0.71). An unusually

low probability of detection (Pd = 0.45) was found for India, most likely because that

the fires in our Indian scenes are simply too small for reliable detection, a finding

consistent with the fact that small agricultural-waste fires are abundant in this region.

Probabilities of false alarm varied between 9×10−8 (India) and 2×10−5
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(USA/Canada). In most regions, the majority of false fire pixels were linked to clusters

of true fire pixels, suggesting that most false fire pixels occur along the ambiguous fire

boundaries.

Despite occasional difficulty precisely demarcating the boundaries of large fire

fronts due to saturation-induced pixel blooming, fire maps derived from ASTER are an

important tool for the validation of the Terra MODIS active fire products. Validation of

fire monitoring sensors on any satellite having at least an occasional overpass

coincident with Terra is also possible. This includes the TRMM VIRS and the

Meteosat-8 SEVIRI. Validation is perhaps the most important application of ASTER in

the context of fire monitoring as the sensor’s spatial coverage and revisit frequency

limit its utility for routine fire monitoring. Other applications include studies of the fine

structure of fire fronts, and the spatial structure of burn scars and the associated

combustion completeness.

Our preliminary attempt to retrieve sub-pixel temperature and area information by

applying Dozier’s bispectral method to nighttime ASTER scenes was relatively

unsuccessful. Retrieved temperatures and areas for savanna fires appeared to be too

high in temperature and much too low in area.
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Chapter 4

Global Distribution and Seasonality of Active

Fires as Observed with the Terra and Aqua

MODIS Sensors

4.1 Introduction

Biomass burning associated with human land-use activities, as well as naturally

occurring wildfire, has come to be recognized as having an important role in regional

and global climate change [Andreae, 1991]. More recently, biomass burning has been

found to affect weather on much shorter time scales [Rosenfeld, 1999] and has even

been implicated in the death of coral reefs [Abram et al., 2003]. With a more variable

and changing climate fire distributions and regimes are likely to change [Kasischke

et al., 1995, Weber and Flannigan, 1997]. There is consequently a considerable need

for long-term global fire information. At present the only practical way to monitor fire

activity at a continental or global scale is with sensors residing on terrestrial satellites
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(Justice and Korontzi, 2001).

The launch of NASA’s Terra satellite in late 1999 marked a significant step forward

in the ability to monitor fires from space. The satellite’s sensor payload includes the

Moderate Resolution Imaging Spectroradiometer (MODIS), an instrument having

1-km middle- and long-wave infrared bands designed specifically for the observation

of actively burning fires [Kaufman et al., 1998b]. In addition to offering enhanced fire

detection these bands permit, for example, low intensity surface fires to be

distinguished from higher intensity crown forest fires [Kaufman et al., 2003, Wooster

and Zhang, 2004]. The Terra satellite occupies a sun-synchronous polar orbit with local

equatorial crossing times of 10:30 (descending) and 22:30 (ascending). A second

MODIS instrument on NASA’s Aqua satellite, launched in mid-2002, provides an

additional pair of observations at 01:30 (descending) and 13:30 (ascending) local time.

After nearly six years of data collection, there is now a sufficiently long

observational record to begin meaningful time-series analyses of fire activity with

MODIS data. While some longer time-series fire data sets produced with other satellite

sensors are available, their application to the study of global fire activity is more

limited for various reasons. The combined Along Track Scanning Radiometer (ATSR)

and Advanced Along Track Scanning Radiometer (AATSR) World Fire Atlas [Arino

and Rosaz, 1999], for example, currently available from July 1996 through the present,

is composed exclusively of nighttime fire observations; this can skew the apparent

distribution of fire activity in those regions having a strong diurnal fire cycle. The

Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS)
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monthly fire product [Giglio et al., 2003b], which currently spans January 1998

through the present, is restricted to tropical and subtropical latitudes by the highly

inclined orbit of the TRMM satellite. Although fire data sets are routinely generated for

some regions using NOAA Advanced Very High Resolution Radiometer (AVHRR)

1-km data, global data sets are only available for a limited period [Stroppiana et al.,

2000b]. A further limitation common to these data sets arises from the fact that the

sensors from which they were derived were not intended for monitoring fires. As such,

their optical and radiometric specifications – most importantly, the levels at which the

bands useful for fire monitoring saturate – generally preclude fire characterization

beyond simply flagging the existence of one or more active fires within a pixel.

In this chapter, we examine global fire activity using observations made with the

MODIS instruments on board NASA’s Terra and Aqua satellites. As part of our

analysis we present, for the first time, a global picture of the middle-infrared fire

radiative power (FRP), a relatively new remotely sensed quantity proposed by

Kaufman et al. [1998b]. Our work complements earlier global fire studies based solely

on fire count information by Dwyer et al. [1999] and Dwyer et al. [2000a] using the

AVHRR Global Fire Product [Stroppiana et al., 2000b] from April 1992 through March

1993, and by Csiszar et al. [2005] who used the first two years of MODIS fire

observations. In Section 4.2 we describe the remotely sensed data used in this study,

and include a detailed description of the new MODIS Climate Modeling Grid (CMG)

active fire products. These summary products are generated from the full resolution,

orbital data to facilitate global analyses. Next, in Section 4.3, we describe the spatial
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and temporal metrics used to extract summary information from the time series of

MODIS fire observations. We then use the metrics to examine the global distribution of

biomass burning (Section 4.4), and perform a preliminary examination of the diurnal

fire cycle using combined Terra and Aqua MODIS observations (Section 4.5). In

Section 4.6, we quantify the extent to which the Terra and Aqua MODIS fire data

records are in agreement with respect to the seasonality of fire activity. Finally, in

Section 4.7, we examine the sensitivity of our results to seasonal and interannual

variations in cloud cover.

4.2 Data

4.2.1 MODIS Climate Modeling Grid (CMG) Fire Products

The MODIS Climate Modeling Grid (CMG) fire products have recently been

developed and are primarily intended to facilitate the incorporation of the MODIS

active fire data into global emissions and chemical transport models [Justice et al.,

2002]. Recent applications include work by Edwards et al. [2004, 2006] and Giglio

et al. [2006b]. Currently, the Terra and Aqua CMG fire products are generated on a

monthly basis at 0.5◦ spatial resolution to maintain compatibility with the AVHRR

Global Fire Product, and an earlier multi-year fire data set derived from TRMM VIRS

data [Giglio et al., 2003b]. Higher spatial and temporal resolution MODIS CMG fire

products (8 days, 0.25◦) are presently being generated on an experimental basis. In this
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study we used the Collection 4 Terra and Aqua MODIS monthly CMG fire product at

0.5◦ spatial resolution (“MOD14CMH” and “MYD14CMH”), from November 2000

(Terra) and July 2002 (Aqua) through October 2005. Here we briefly describe the

individual data layers of the current CMG fire product suite.

Overpass-corrected fire pixel counts. As discussed by Giglio et al. [2003b], the

traditional “gridded fire counts” obtained from polar orbiting satellites are biased at

high latitudes due to non-uniform spatial and temporal sampling. The total number of

fire pixels observed in each grid cell is therefore corrected for multiple satellite

overpasses and missing observations. This is accomplished by normalizing the raw fire

pixel counts by the expected equatorial coverage in a complete calendar month

containing no missing observations. The overpass-corrected fire pixel count in the grid

cell located at row i and column j, denoted as N ′

fire(i, j, t), is given by

N ′

fire(i, j, t) =
Nfire(i, j, t) Ndays(t) A(i) Neq

Ntotal(i, j, t) Aeq

(4.1)

where Nfire(i, j, t) is the number of active fire pixels detected in the grid cell over a

given calendar month indexed by t, Ntotal(i, j, t) is the total number of MODIS pixels

that fell within the grid cell during the calendar month, Ndays(t) is the number of days

in the calendar month, A(i) is the area of the grid cell (solely a function of i due to the

equal-angle grid used to composite pixels), Aeq is the area of a grid cell along the

Equator, and Neq is the expected number of MODIS pixels within a grid cell located

along the Equator during a full 24-h day of no missing observations. The value of this

last quantity was determined empirically using one year of observations from 2001.
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Mean cloud fraction. The average fraction of each grid cell obscured by cloud

during a given calendar month, f cloud, defined as

f cloud(i, j, t) =
Ncloud(i, j, t)

Ntotal(i, j, t)
(4.2)

where Ncloud(i, j, t) is the total number of cloud pixels within the grid cell during

calendar month t.

Cloud-and-overpass-corrected fire pixels. The number of fire pixels observed in

each grid cell, corrected for multiple satellite overpasses, missing observations, and

variable cloud cover. The cloud-and-overpass-corrected fire pixel count, denoted as

N ′

fire(i, j, t), is given by

N ′′

fire(i, j, t) =
N ′

fire(i, j, t)

1 − f cloud(i, j, t)
(4.3)

Grid cells for which the mean cloud fraction is 1 are assigned a cloud-and-overpass-

corrected fire pixel count of zero. This correction is based upon the assumption that the

number of fire pixels per unit area within both clear and cloud-obscured areas is

identical, an assumption which is not always reasonable [Eva and Lambin, 1998]. In

the future we will incorporate a more realistic cloud correction that distinguishes

between raining and non-raining clouds. Figure 4.1 illustrates the effects of the

overpass-correction and the cloud-and-overpass-correction for the July 2002 Terra

CMG product.

Mean fire radiative power. The mean fire radiative power (FRP) of all fire pixels in

each grid cell during a calendar month. The FRP retrieval [Kaufman et al., 1998b]

requires an estimate of the background, middle infrared non-fire radiance (or
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Figure 4.1: Zonal profile of fire-pixel counts from the July 2002 Terra CMG product
illustrating the typical effect of the overpass- and cloud-and-overpass corrections (bro-
ken lines) on the uncorrected (raw) fire-pixel counts (solid line). Boreal fire activity this
particular month was unusually high.

brightness temperature) in the immediate vicinity of the fire. This quantity, which is

computed as part of the background characterization phase of the fire detection

algorithm [Giglio et al., 2003a], is sometimes unavailable in the neighborhood of heavy

cloud cover, very large fires, and small islands or peninsulas. Fire pixels for which this

is the case are not included in the calculation of the mean. Fire pixels detected at scan

angles above 40◦ are also excluded as they are affected by a significant off-nadir bias.

The utility of the FRP for estimating combusted biomass was first proposed by

Kaufman et al. [1998b] and subsequently refined by Wooster et al. [2003]. In short, the

remotely sensed FRP is, to a good approximation, equivalent to the total radiative

86



power of the fire as described by the Stefan-Boltzmann law. By integrating the FRP

over the duration of a fire, one obtains the fire radiative energy (FRE). To the extent this

latter quantity is proportional to the total energy released during combustion, one can

calculate the mass of fuel consumed given the heat of combustion for that fuel. For

vegetation there is fortunately relatively little variation in the latter quantity, and a

constant value can usually be assumed everywhere [Johnson, 1992]. Although the

original goal in developing the FRP was to improve estimates of pyrogenic emissions,

the mean FRP can also provide useful information about fire behavior. This will be

discussed in Section 4.4.3.

Land cover statistics. For emissions modeling, land cover information is often used

to determine fuel loads and emission factors [e.g., Streets et al., 2003]. Within the

CMG product we have therefore included the mean percent tree cover, percent

herbaceous vegetation cover, and percent bare ground from the global MODIS

Vegetation Continuous Fields (VCF) products [Hansen et al., 2003] for all fire pixels

within each grid cell during a given calendar month.

Mean detection confidence. The mean detection confidence of all fire pixels

detected within each grid cell, included primarily for quality assurance. The detection

confidence, which varies between 0 and 100%, is a heuristic measure of the radiometric

contrast between a fire pixel and its immediate non-fire neighborhood, with extra

penalties imposed near potential false alarm sources such as cloud edges and coastline

[Giglio et al., 2003a].

Additional data layers. Additional layers containing simple counts of missing data,
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unknown and total pixels are included to assist quality assurance and simplify the

production of experimental high-level datasets.

In generating the above data layers, fire pixels associated with persistent static fire

sources were excluded. These were identified on a 1-km global grid as follows: any 1-

km grid cell in which fire pixels were detected on 50 or more unique calendar days per

year was deemed a persistent source not representing a vegetation fire. The locations of

such sources are shown in Figure 4.2. The majority represent static gas flares

associated with oil drilling. Though small in size, gas flares usually burn at

comparatively high temperatures, typically between 1000 K and 1900 K (SEPA, 2002),

and are readily detected by satellite sensors. They have been mapped extensively by

Elvidge et al. [1997] using the Defense Meteorological Satellite Program Operational

Linescan System, and occur primarily in North Africa, the Middle East, Gabon, Russia,

and Ukraine. Persistent fire pixels are also associated with active volcanoes and a

smaller number of unknown sources (possibly power stations) located within urban

areas. Sources in this last category may represent recurring false alarms near industrial

sites and are being investigated as part of our ongoing validation activities.

4.2.2 Agricultural Data

We used the Ramankutty and Foley [1998] version 1.1 global croplands data set, at 0.5◦

spatial resolution, to supply agricultural land-use distributions.
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Figure 4.2: Locations of persistent static fire sources identified using five years of
MODIS active fire observations, and subsequently filtered from the Terra and Aqua
MODIS CMG fire products.

4.3 Analysis Approach

Our analysis is similar to that used by Dwyer et al. [1999, 2000a] with the 21-month

AVHRR Global Fire Product [Stroppiana et al., 2000b]. We generated a

“climatological” Terra MODIS monthly data set by independently averaging the

overpass-corrected fire pixel counts for each calendar month from November 2000

through October 2005. We then extracted multiple spatial and temporal metrics from

this climatological data set, as well as the full monthly Terra time series. Within these

metrics we next identified patterns and trends, which we interpreted with respect to

different biophysical variables and current knowledge of regional burning practices.

Our goal was to describe and, in part, explain the global spatial and temporal

distribution of fire activity as observed by MODIS.
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4.3.1 Spatial Metrics

We calculated the average annual overpass-corrected fire pixel density for MODIS by

summing the average monthly overpass-corrected fire counts and dividing by grid cell

area. The latter step was necessary to compensate for the non-equal area of the

equal-angle grid cells used to bin the data. We also averaged the November

2000–October 2005 Terra MODIS monthly fire radiative power (FRP), weighted by the

number of overpass-corrected fire pixels for each month, to produce a climatological

map of mean annual FRP. Grid cells containing fewer than five fire pixels per year were

deemed as having little real signal and were excluded from the subsequent analysis.

4.3.2 Spatio-temporal Metrics

Global fire activity exhibits a strong seasonality that can be characterized using any

number of parameters in both the time and frequency domain. Here, we have selected

three different temporal metrics, computed independently for each grid cell, that are

intuitive and readily understood. First, we define the peak in fire activity as the calendar

month during which the maximum number of average monthly overpass- corrected fire

counts was detected. Second, we define the duration of the fire season as the number of

months during which the average monthly overpass-corrected fire counts was at least

10% of the average annual overpass-corrected fire counts. Third, we employ the

12-month lagged autocorrelation of the full five-year monthly time series to provide a

measure of the interannual variability and periodicity of fire activity. Grid cells having
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very similar annual cycles of fire activity will have a 12-month lagged autocorrelation

approaching +1, while those grid cells exhibiting significant interannual variability

have positive or negative values much closer to zero. (An autocorrelation approaching

-1 would indicate a significant biannual fire cycle. This might happen as a result of

specific agricultural practices, but is otherwise not expected.) We expect the 12-month

lagged autocorrelation to provide a combined measure of anthropogenic (versus

natural) fire activity and climatic constraints. Specifically, regions of high

anthropogenic fire activity and low interannual rainfall variability should exhibit a very

high temporal autocorrelation. Conversely, regions of low anthropogenic fire activity

and high interannual rainfall variability should exhibit a very low temporal

autocorrelation. The remaining cases, high anthropogenic fire activity/high rainfall

variability and low anthropogenic fire activity/low rainfall variability, should exhibit

moderately high and moderately low temporal autocorrelation, respectively.

4.4 Results

4.4.1 Fire Counts

The average annual overpass-corrected fire pixel density for the Terra MODIS is shown

in Figure 4.3a. The overall pattern is largely consistent with that found by Dwyer et al.

[2000b] using one year of the AVHRR Global Fire Product (GFP). There are some

substantial differences, however, in the distribution of areas containing little or no fire
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activity. With respect to those areas in which the MODIS fire product shows significant

fire activity while the GFP shows none, this is explained by the static desert mask used

in the production of the AVHRR data set. This mask was used to identify, a priori,

those regions in which fires should not occur and thereby remove false detections over

hot desert surfaces which are problematic for the GFP algorithm [Stroppiana et al.,

2000b]. Within some of these regions, however, fires do in fact occur, most notably in

northwest Australia. Possible explanations for the complimentary case in which the

GFP shows significant fire activity in locations where the MODIS fire product shows

little or no fire activity are most likely due to interannual variability and a much higher

incidence of false detections in the GFP [Giglio et al., 1999, Ichoku et al., 2003, Csiszar

et al., 2005]. With respect to the latter point, the GFP shows widespread burning across

the entire continental United States, for example, which does not actually occur.

The location of greatest annual fire activity occurs within the so-called Arc of

Deforestation in Brazil at approximately 13◦S, 55◦W. Barring static gas flares, the

density of fire pixels detected at this location is more than a factor of two higher than

anywhere else in the world. This is a region of intense land-cover conversion in which

rainforest is rapidly being transformed into pasture, with subsequent burning of the

forest slash and repeated burning for pasture maintenance.
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4.4.2 Seasonality

The peak month of Terra MODIS fire activity is shown in Figure 4.3b. At the global

scale, July, August, and September are the peak months of fire occurrence, with fires in

both the northern and southern hemispheres, while February is least often the month of

peak fire occurrence. The most striking feature is perhaps the six-month difference in

the timing of greatest fire activity in Africa north and south of the Equator, as a

consequence of the opposite phase in the timing of the African dry season in these

regions. Global patterns in the seasonality of fire counts have previously been

described by Dwyer et al. [1999], Dwyer et al. [2000b], van der Werf et al. [2003], and

Csiszar et al. [2005], and will not be repeated here, but it is worth reiterating that both

the peak month and the duration of the fire season are coupled to the seasonal cycle of

precipitation, particularly in the tropics. (Note that Dwyer et al. [1999, 2000b] used a

somewhat different criterion for identifying the “central time” of fire activity, namely

the calendar month during which 50% of the cumulative monthly fire pixels from April

1992 through March 1993 were detected.)

Fire season duration is shown in Figure 4.3c. Globally, the duration of the annual

fire season usually varies between 2 and 6 months and is, in the tropics, highly

constrained by the duration of the dry season. Exceptionally long fire seasons of ∼10

months occur in central and southern Brazil and the southeastern United States. A

similarly long fire season occurs in a small area in eastern Australia (approximately

28◦S, 149◦E) and might be associated with sugarcane residue burning that takes place
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throughout the comparatively long (∼8 month) harvesting season. An analysis at

higher spatial resolution is ultimately needed to verify this hypothesis. The duration of

the fire season at boreal latitudes is uniformly short at 1-3 months, and is constrained

by the seasonality of circulation patterns [Johnson, 1992].

The highest 12-month lagged temporal autocorrelation (Figure 4.4a) occurs in the

savannas of Africa, both in the sudanian and sahelian zones north of the Equator and in

central and southern Africa between 5◦S and 20◦S, reflecting the extremely periodic

seasonal cycle of fire activity in these regions, and also indicating that they experience

less interannual variability. This characteristically strong annual periodicity is caused

by a combination of widespread human-induced burning for land maintenance

purposes and low interannual variability in rainfall during the study period. The areas

to the north and south of these two regions respectively show decreasing annual

autocorrelation associated with greater interannual variability in rainfall and grass

(fuel) production. Other regions of very high temporal autocorrelation occur in the

tropics, e.g. Thailand, Cambodia and Laos in Southeast Asia, Mexico and Central

America, and the Llanos, Mato Grosso, and Brazilian Highlands of South America.

The small spot of high periodicity in northern India (31◦S, 75◦E) reflects seasonal

agricultural waste burning at the beginning and end of the growing season in May and

October.

Regions of significant interannual variability (and significantly less periodicity)

include the United States, southwest China, Siberia, Canada, and virtually the entire

Australian continent, reflecting the much more sporadic nature of fire in these
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locations. In both Siberia and boreal North America large fires occur in areas of

extensive forest cover, which require very long time periods for regrowth, making it

unusual for a given patch of vegetation to burn in successive years.
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Figure 4.3: Climatological fields derived from the first five years of Terra MODIS fire
observations (November 2000–October 2005). (a) Mean annual overpass-corrected fire
pixel density; (b) month of maximum climatological fire activity; (c) fire season length.
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Figure 4.4: Additional climatological fields derived from the first five years of Terra
MODIS fire observations (November 2000–October 2005). (a) 12-month lagged au-
tocorrelation of the overpass-corrected fire count time series within each grid cell; (b)
mean annual fire radiative power (FRP).
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4.4.3 Fire Radiative Power

The climatological fire radiative power for the Terra MODIS is shown in Figure 4.4b.

In general, low FRP (∼15 MW) tends to be associated with areas of extensive

cropland, regardless of location, reflecting the fact that agricultural fires are usually

controlled and remain small. In the tropics and much of the sub-tropics, low FRP is

also associated with more heavily forested areas, while higher FRP (∼40 MW) tends to

occur in grassland areas. In the absence of cutting trees and a subsequent drying

period, fuel moisture in tropical forests is usually too high to permit large (or intense)

fires; fires that do manage to burn are more likely to consist of cooler, smoldering

combustion. Lighter herbaceous fuels, however, dry out much more quickly and are

consumed via hotter flaming combustion. The hotter, flaming fires of the grasslands of

northern and western Australia show the largest area of high FRP. These fires are more

energetic than the savanna fires in Africa and Brazil. In boreal forests a very different

trend is observed. Here, very high FRP (∼80 MW) occurs in areas having greater tree

cover and less herbaceous vegetation, reflecting the very large fuel loads available in

boreal forest.

Several smaller-scale features stand out in the spatial distribution of the fire

radiative power. First, the band of anomalously high FRP (∼60 MW) in the Rio Negro

Province of Argentina is confined to a relatively narrow swath of xeromorphic

shrubland [Soares, 1990]. Second, the highest values of FRP (up to 600 MW) occur in

the boreal zones of Siberia, Canada, and Alaska. In these regions, which are
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predominantly forested, dry-weather fuel loads are extremely high, and the size of the

actively burning areas can grow to be very large. Higher radiative power is to be

expected from the more energetic crown fires in these regions, and the FRP could

potentially allow crown vs. surface fires to be distinguished remotely. Wooster and

Zhang [2004] used MODIS FRP to demonstrate that North American boreal forest fires

are dominated by crown fires, whereas Siberian forest fires are less intense and most

likely burn at the surface. We found a five-year mean FRP of 81.2 MW in boreal North

America vs. 53.7 MW in boreal Russia, a result consistent with their findings. Lastly,

the prominent latitudinal FRP gradient in Ukraine, Russia, and Kazakhstan very

closely matches the land cover transition from cropland to grassland. This pattern is

consistent with the corresponding latitudinal gradient in temporal autocorrelation seen

in Figure 4.4a.

The latitudinal distributions of mean fire pixel density and mean FRP in 5◦ zones

are shown in Figure 4.5. The most notable feature is the general increase in FRP with

increasing latitude, which is opposite the trend of higher fire pixel densities at lower

latitudes on either side of the Equator. Both trends are entirely consistent with the

general decrease in temporal autocorrelation towards higher latitudes. Taken as a

whole, the trends in all three quantities are indicative of a general shift from

more-controlled seasonal burning in the tropics and sub-tropics (with lower fuel loads),

to less-controlled episodic fires at higher latitudes (with higher fuel loads). A second

feature evident in Figure 4.5 is the asymmetry of zonal FRP with respect to the

Equator. This asymmetry arises from the different distributions of land and fire regimes
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within the northern and southern hemispheres, in particular the combination of the

relatively low FRP contributed by India and Southeast Asia with the relatively high

FRP contributed by Australia and Argentina.
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Figure 4.5: Mean density of overpass-corrected fire pixels (grey bars) and mean fire
radiative power (black line) within 5◦ latitude zones from the first five years of Terra
MODIS observations.

4.5 Diurnal Fire Cycle

The Terra and Aqua satellites lie in polar orbits with local equatorial crossing times of

10:30/22:30 and 01:30/13:30, respectively. This offers the opportunity to examine

different points of the diurnal fire cycle. Previous work by Prins and Menzel [1992],

Eva and Lambin [1998], Pack et al. [2000], Justice et al. [2002], and Giglio et al.
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[2003c] has shown that such a cycle exists in Africa, Brazil, and parts of Indonesia, but

both the extent and magnitude if this cycle have yet to be established over most of the

globe.

A separate analysis (not shown) revealed that the majority (∼90%) of Terra and

Aqua MODIS fire pixels in the tropics and subtropics were detected during the daytime

overpasses. Therefore, a comparison of all (i.e., both daytime and nighttime) Terra

MODIS fire pixels to all Aqua MODIS fire pixels primarily reflects a difference in the

diurnal fire cycle between mid-morning and early afternoon. To this end, we show the

fraction of all (Terra + Aqua) overpass-corrected fire pixels detected by the Aqua

MODIS instrument within each 0.5◦ grid cell in Figure 4.6. Based on this figure one

may, to first order, divide the globe into three classes: 1) areas of negligible morning

fire activity, with nearly 100% of all fire pixels detected by the Aqua MODIS; 2) areas

of predominantly early afternoon fire activity, with about 75% of all fire pixels detected

by the Aqua MODIS; and 3) areas where early afternoon and mid-morning fire activity

are about evenly matched. The first category tends to occur in the broadleaf forests of

West Africa, Central Africa, Borneo, and Brazil, and cropland in southeast Australia.

The second category occurs primarily in southern and sub-Saharan Africa (with

notable exceptions in Sudan and Ethiopia), Southeast Asia, Indonesia, southwest

Australian cropland, and a large crescent-shaped swath in eastern Brazil of

comparatively heterogeneous vegetation cover. The final category is found primarily in

northern and western Australia, central Eurasia, and the boreal forests of Siberia and

North America. Within this last category are fires that, once ignited, typically burn for

101



at least several days and up to many weeks.

A complication that we have touched on in the previous discussion is that the

MODIS instruments make multiple daytime and nighttime observations at high

latitudes each day since the Terra and Aqua satellites reside in sun-synchronous polar

orbits. This means that, at high latitudes, each instrument samples more than two local

times (one daytime plus one nighttime) of the diurnal cycle each day. (The extreme

case occurs at the poles with nearly 15 observations each day.) As a result, the local

time windows sampled at boreal latitudes by each of the MODIS instruments overlap,

and the ratio we show in Figure 4.6 is in fact not a consistent measure of the degree to

which a diurnal fire cycle might exist. At boreal latitudes the simple fire-count ratio can

potentially mute the apparent magnitude of the diurnal fire cycle due to the overlap in

local observation times. Nevertheless, Figure 4.6 does illustrate the minimum spatial

extent of regions having a pronounced diurnal fire cycle.

4.6 Terra/Aqua MODIS Comparison

4.6.1 Time series comparison

The previous analysis of the diurnal fire cycle raises the practical issue of the

consistency of the fire time series recorded by the two MODIS instruments. Clearly

there will be differences in the absolute numbers of fire pixels detected with each (cf.

Figure 4.6), but of equal concern are potential differences in the seasonality of fire
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Figure 4.6: Ratio of overpass-corrected Aqua fire pixel counts to total (Aqua + Terra)
overpass-corrected fire pixel counts from July 2002 through June 2005. Red and orange
colors indicate regions in which a significant diurnal fire cycle exists.

activity. To quantify the consistency in seasonality, we calculated the cross-correlation

of the Terra and Aqua overpass-corrected fire-pixel time series for each grid cell from

July 2002 through October 2005 (Figure 4.7). The cross-correlation is sensitive to

differences in the timing of fire activity (fire season length, location and number of

peaks), but relatively insensitive to differences in the magnitude of the time series.

In general, the cross-correlation of the two time series was high (∼0.9) in most

areas of the world, indicating that the two MODIS instruments generally show good

agreement with respect to the peak month of fire activity and the length of the fire

season. Exceptions occur in the Southeastern United States, Eastern South America,

Liberia, Central Africa, Eastern China, Borneo, and Southeast Australia. To help

understand these “anomalous” cases we examined the individual monthly time series in

spatial windows located within each region (Table 4.1). Six examples are shown in
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Figure 4.7: Cross correlation of Terra vs. Aqua overpass-corrected monthly fire pixel
counts from July 2002–October 2005.

Figure 4.8 (a-f). For comparison, we also show the time series for four regions having a

high cross correlation (Figure 4.8g–4.8j).

The largest discrepancies in seasonality uniformly occurred in the tropical

rainforests of Liberia, Borneo, Central Africa, and the Amazon Basin. Here, Aqua

yields fire seasons five to ten times longer than those derived from Terra observations

(Figures 4.8c and 4.8d). The time series as well as Figure 4.6 show that an extremely

strong diurnal fire cycle exists in tropical rainforest, rendering the Terra MODIS

virtually blind to fires in this ecosystem. To a slightly lesser extent this observation also

applies to the dry forests of Southeast Australia (Figure 4.8f). Southeast USA, Eastern

Argentina, and Eastern China (Figures 4.8a, 4.8b, and 4.8e, respectively) are

characterized by a relatively weak diurnal fire cycle and show some notable

discrepancies in the months during which peaks occurred. In these regions, the poorer

consistency of the Terra and Aqua time series likely stems from the more
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Table 4.1: Regions considered in Terra/Aqua time series comparison, with cross-
correlation coefficients for the overlapping portion of the time series (July 2002 – Octo-
ber 2005) shown in Figure 4.8.

Name Latitude Longitude BLAH
Southeast USA 27.5◦N - 33◦N 84◦W - 80.5◦W 0.77
Eastern Argentina 32◦N - 38.5◦N 64◦W - 58.5◦W 0.87
Liberia 4◦N - 7.5◦N 11◦W - 7◦W 0.26
Central Africa 3◦S - 1.5◦N 20.5◦E - 29◦E 0.61
Eastern China 28.5◦N - 32◦N 116◦E - 122◦E 0.62
Southeast Australia 34◦S - 38◦S 140◦E - 145.5◦E 0.54
Pacific Northwest USA 42◦N - 52◦N 125◦W - 115◦W 0.99
Southeast Russia 49◦N - 54◦N 110◦E - 135◦E 0.99
Southern Africa 6◦S - 14◦S 15◦E - 30◦E 0.98
Northern Australia 12◦S - 21◦S 126◦E - 137◦E 0.96

heterogeneous types of fires within each, including managed prescribed fires, burning

of agricultural waste, and arson. Each fire category is likely to follow different seasonal

and diurnal cycles. In combination, one would expect a less coherent time series that is

not necessarily consistent between the two platforms.

We note that the time series for Southeast Australia, Pacific Northwest USA, and

Southeast Russia (Figures 4.8f–4.8h) illustrate the importance of using long-term time

series to capture interannual variability in biomass burning. Climatologies based on

one or two years of active fire observations can greatly misrepresent “normal” levels of

fire activity over large areas of the globe. Indeed, nearly 40% of all fire-affected grid

cells in our five-year Terra MODIS fire climatology have a temporal autocorrelation

(Figure 2d) less than 0.1 (i.e., these cells exhibit very significant interannual

variability). We recognize that this fraction does not include grid cells for which even a

five-year time series is insufficient to capture the episodic fires characteristic of some
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regions (e.g., boreal forest).

In the above analysis, we have ascribed differences in the Terra and Aqua time

series to the different sampling of the diurnal fire cycle, but there are at least two

additional mechanisms by which differences can arise. First, the performance of the

detection algorithm, both in terms of the probability of detecting a fire as well as the

likelihood of yielding a false detection, is dependent upon environmental conditions

that vary with respect to time of day, including surface temperature and solar zenith

angle. Second, intrinsic differences in the Terra and Aqua MODIS instruments (or their

calibration) could potentially contribute to a difference in observed fire activity.

To estimate the magnitude of these effects relative to that of the diurnal fire cycle,

we examined the fire time series in three different regions containing high-temperature

sources that were not expected to show a significant diurnal cycle: the Kilauea volcano

on the southern-most island of Hawaii, and gas flares associated with oil fields in

southern Iraq and the Niger Delta. The July 2002 – December 2004 time series for

each region is shown in Figure 4.9. For Kilauea and the Niger Delta, the magnitude of

the discrepancies in the Terra and Aqua fire-pixel time series are well within the

uncertainties entailed by cloud obscuration. In southern Iraq, Terra fire counts are

consistently higher (≈16%) than those of Aqua. This is most likely caused by the

near-infrared minimum-reflectance test used in the detection algorithm, which is

preventing detection of some gas flares at the time of the Aqua overpass when the

top-of-atmosphere reflectance is slightly higher. While a 16% discrepancy is not

negligible, this case probably illustrates the effect at its largest due to the abundance of
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bright soil in this region.

4.6.2 FRP Comparison

We also compared the July 2002–October 2005 global distribution of mean FRP

derived from Aqua observations with that derived from Terra observations for the same

time period. The Aqua FRP distribution was very similar to that of Terra, but

approximately 10% larger in magnitude. This difference may be explained by Aqua’s

afternoon sampling of the diurnal fire cycle, at which time fires tend to be burning in

larger numbers and with greater intensity.
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Figure 4.8: Time series of Terra (solid line) and Aqua (dashed line) overpass-corrected
fire pixel counts for ten different regions. Top six panels (a-f) are from regions in which
the time series have a low cross-correlation, while bottom four panels (g-j) are from
regions in which the time series have a very high cross-correlation. Geographic bound-
aries of the different regions are listed in Table 4.1. The horizontal axis spans the time
period from January 2000 through January 2006 (1/00 = January 2000, 1/01 = January
2001, etc.).
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Figure 4.9: July 2002 – October 2005 time series of Terra (solid line) and Aqua (dashed
line) overpass-corrected fire pixel counts for three different regions containing per-
sistent, non-vegetation-fire hot spots. Top panel: Kilauea volcano, Hawaii (approx.
19.4◦N, 155.1◦W). Middle panel: gas flares in southern Iraq (approx. 30.5◦N, 47.4◦E).
Bottom panel: gas flares in oil fields of the Niger Delta, Nigeria (approx. 4.8◦N, 5.7◦E).
(Note that the time series shown here are shorter than those in Figure 4.8. This is because
we used a slightly older version of the CMG product, which did not have persistent hot
spots removed, for this part of the analysis. The overpass-corrected fire pixel counts
were otherwise identical.)
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4.7 Impact of Cloud Correction

As mentioned in Section 4.2.1, the additional cloud correction applied to the

overpass-corrected monthly fire pixel counts is based on the assumption that the

number of fire pixels per unit area within both clear and cloud-obscured areas is

identical. Beneath raining clouds this assumption is unreasonable, and the correction in

Equation 4.3 is likely to overestimate the true extent of fire activity. In the absence of a

correction for variable cloud cover, however, the monthly fire-count time series could

potentially contain significant artificial drops during periods of increased cloudiness.

To test the sensitivity of the results in Sections 4.4 and 4.6 to variations in cloud cover,

we repeated our analyses with overpass-corrected fire-pixel counts containing the

additional cloud correction (i.e., N ′′

fire vs. N ′

fire). At the 0.5◦ monthly spatial and

temporal scales used in this study, we found no significant differences in fire

seasonality (peak month and season length) following application of the cloud

correction. While the correction did noticeably increase the absolute number of fire

pixels in each grid cell (by about 20%), the relative distribution of fire activity was

essentially unchanged.

4.8 Conclusion

In this study we have used the 0.5◦ monthly Terra MODIS CMG fire product from

November 2000 through October 2005 to analyze the global distribution of biomass

burning. Using these data, we derived five different metrics characterizing different
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aspects of large-scale fire behavior. Among these metrics we considered the mean fire

radiative power (FRP) for the first time at a global scale. Low FRP was associated with

areas of extensive cropland regardless of location. In the tropics and much of the sub-

tropics, low FRP was also associated with more heavily forested areas, while higher

FRP was associated with areas having more herbaceous vegetation. In boreal regions

this trend was reversed, with higher FRP occurring in areas having more tree cover and

less herbaceous vegetation. Although not explored in the present work, the FRP is an

important potential link to producing pyrogenic emissions estimates.

At the global scale, July, August, and September are the peak months of fire

occurrence, with fires in both the northern and southern hemispheres, while February is

least often the month of peak fire occurrence. For every month there is fire activity

somewhere on the planet.

Globally, the duration of the annual fire season usually varies between 2 and 6

months and is, in the tropics, highly constrained by the duration of the dry season.

Exceptionally long fire seasons of ∼10 months occur in central and southern Brazil and

the southeastern United States. The duration of the fire season at boreal latitudes is

uniformly short at 1-3 months.

The lowest interannual variability, as indicated by the highest 12-month lagged

temporal autocorrelation, was observed in the savannas of Africa, both in the sudanian

and sahelian zones north of the Equator and in central and southern Africa between 5◦S

and 20◦S. This characteristically strong annual periodicity is caused by a combination

of widespread human-induced burning for land maintenance purposes and low

111



interannual variability in rainfall during the study period. Regions of significant

interannual variability (and significantly less periodicity) include the United States,

southwest China, Siberia, Canada, and most of Australia.

By combining three years of Terra and Aqua MODIS observations we were able to

identify regions having a pronounced diurnal fire cycle. We found that this cycle is

extremely strong, at least between the mid-morning and early afternoon Terra and

Aqua overpass, in the broadleaf forests of West Africa, Central Africa, Borneo, and

Brazil, and cropland in southeast Australia. In these regions virtually all fires are

detected exclusively during the afternoon Aqua overpass. The diurnal fire cycle was

weaker but still significant in southern and sub-Saharan Africa (with exceptions in

Sudan and Ethiopia), Southeast Asia, Indonesia, and parts of southwest Australia and

Brazil. The cycle appears to be insignificant in northern and western Australia, central

Eurasia, and the boreal forests of Siberia and North America, but of course we have

sampled only a few points on a curve that might change substantially between satellite

overpasses. Further work with data from the VIRS, on board the precessing TRMM

satellite, and the newer generation of geostationary satellites is desirable to more fully

understand this cycle. Implicit in any approach using satellite data is the need for a

better understanding of the fire monitoring capabilities of specific sensors which result

from the physical characteristics of the sensor itself, the fire detection (and

characterization) algorithms used with each sensor, and the orbital characteristics of the

satellite platform on which the sensor resides.

We examined the consistency of the fire time series recorded by the Terra and Aqua
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MODIS instruments and found that, in most areas, the month of peak burning and fire

season length observed by each were in good agreement. The largest discrepancies in

seasonality uniformly occurred in tropical rainforests, and are the result of an

extremely strong diurnal fire cycle that exists in this ecosystem.

The individual spatial and temporal metrics used in our analysis quantify different

aspects of fire behavior at the global scale. Together they can be used to quantitatively

monitor changes in fire behavior at a global scale . Additional insight could potentially

be afforded by combining these metrics into unique classes of distinct fire

characteristics. In many respects, the set of such classes would be the “satellite analog”

of the ecological concept of fire regime, a semi-quantitative summary of fire

seasonality, fire type (e.g. surface, crown), and fire return interval [Whelan, 1995]. The

satellite data record, in this case five years, is clearly too short to address the full range

of global fire return intervals. A more pragmatic application of such a classification

would be to stratify the land surface into regions of homogeneous fire behavior, and

thus simplify the parameterization of fire-related variables in global emissions,

transport, and biogeophysical models [e.g., Streets et al., 2003, Arellano et al., 2004].

Earlier attempts to identify satellite-based fire regimes have been made by Dwyer et al.

[1999] and Clerici et al. [2004]. using comparatively short records (= 1 yr) of fire

observations. Future work with the full MODIS time series, including the fire radiative

power, should contribute to these efforts.

While the MODIS CMG fire product provides useful information about the spatial

and temporal dynamics of global fire activity, the distribution of fire activity within
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different land cover types, and fire intensity (via the FRP), it is important to keep the

inherent limitations of this data set in mind. First, the fundamental unit of observation

– the “fire pixel” – doesn’t necessarily correspond to a single fire, but indicates instead

that one or more fires, or portions of larger fires, are contained within the pixel at the

time of the satellite overpass. Second, the data set captures only a subset of fires since

not every fire is detected, generally because of limitations in the instrument and

detection algorithm, obscuration by clouds, or the limited diurnal sampling afforded by

the satellite orbit. Third, the number of fire pixels observed within a grid cell is not

necessarily indicative of the total area burned within the grid cell. While it is not

uncommon to assume that burned area is proportional to counts of fire pixels, this can

lead to unreliable estimates of burned area [Eva and Lambin, 1998, Kasischke et al.,

2003]. Use of additional fire-pixel clustering information and ancillary vegetation data

can, however, improve the quality of such estimates (see Chapter 6).
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Chapter 5

Characterization of the Tropical Diurnal Fire

Cycle

5.1 Introduction

The demand for improved information on regional and global fire activity in the

context of land use and land cover change, ecosystem disturbance, climate modeling,

and natural hazards has generated considerable interest in obtaining reliable fire-related

information from spaceborne sensors. A number of satellite-based fire data sets have

consequently been produced over the past decade. These include the Advanced Very

High Resolution Radiometer (AVHRR) global fire product [Stroppiana et al., 2000b],

the Along-Track Scanning Radiometer (ATSR) nighttime fire product [Arino and

Rosaz, 1999], the Visible and Infrared Scanner (VIRS) monthly fire product [Giglio

et al., 2003b], the Moderate Resolution Imaging Spectroradiometer (MODIS) global

fire product [Justice et al., 2002], the Geostationary Operational Environmental

Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF ABBA) fire
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product [Prins et al., 1998], and the Defense Meteorological Satellite Program (DMSP)

Operational Linescan System (OLS) fire product [Elvidge et al., 1996]. An important

difference among these sensors is that each provides a different sampling of the diurnal

fire cycle, i.e. the variation in fire activity with respect to the local time of day. The

ATSR and OLS, for example, are restricted to nighttime fire detection, while the Terra

and Aqua MODIS instruments sample morning and early afternoon fires, respectively.

Any meaningful intercomparison of fire activity across sensors must take these

sampling differences into consideration. Similarly, any fusion of active fire

observations from multiple sensors requires consideration of the diurnal fire cycle.

Knowledge of the diurnal fire cycle should also help improve our understanding of

land use and land cover change. Different types of burning (agricultural waste,

lightning-induced, land use, prescribed burns, etc.) are thought to have different diurnal

fire signatures. A more utilitarian application would be to facilitate the use of historical

AVHRR active fire data sets. The local overpass time of each of the NOAA platforms

gradually drifted following their launch [Csiszar et al., 2003], and is likely to have

introduced significant biases in the long-term AVHRR fire record. Knowledge of the

diurnal fire cycle might allow the normalization of different AVHRR active fire data

sets to a consistent point in this cycle.

In this chapter, I characterize the diurnal fire cycle in the tropics and sub-tropics

using observations made with the Tropical Rainfall Measuring Mission (TRMM) VIRS

sensor, supplemented with fire data from the Terra MODIS instrument. In Section 5.2,

I briefly survey previous remote-sensing-based studies of the diurnal fire cycle.
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Section 5.3 contains a description of the input data used in this study. A brief

discussion of the sampling characteristics of the VIRS instrument is provided in

Section 5.4. In Section 5.5, I describe a methodology for extracting the diurnal fire

cycle, with an emphasis placed on bias sources and the mitigation of these biases.

Results are presented, on a regional basis, in Section 5.6. Finally, in Section 5.8, I

discuss the implications of these findings within the larger context of long-term global

fire monitoring.

5.2 Previous work

Both anecdotal evidence and regional satellite-based studies have established that a

diurnal burning cycle exists in Africa and South America. Primary examples include

the following.

(1) Prins and Menzel [1992] used observations from the Geostationary Operational

Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric

Sounder (VAS) to monitor biomass burning in South America. The VAS has two

channels of primary importance to fire detection: a 3.9 µm channel having 13.8 km ×

13.8 km spatial resolution, and an 11.2 µm channel having 6.9 km × 6.9 km spatial

resolution at the subsatellite point. The authors examined the diurnal variation in fire

activity as measured by the absolute number of fire pixels detected in VAS imagery

acquired on 14 August 1983 at 12:31, 15:31, 18:31, and 21:31 UTC, and note a strong

diurnal variation in detected fire pixels, with the maximum occurring at 15:31 UTC
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(12:31 local time) and the minimum at 21:31 UTC (18:31 local time).

(2) Langaas [1992] used a field study employing 26 foresters in The Gambia to

survey local fire activity at the four NOAA-9 and NOAA-11 overpass times (02:30,

08:30, 14:30, and 20:30 local time) each day over a two week period from 7-20 March

1988. The peak in number of active fires occurred at 14:30, with 8.5 times the number

of fires that were observed at the 02:30 minimum. Langaas also used NOAA-10 and

NOAA-11 AVHRR data acquired at 20:30 and 02:30, respectively, to identify active

fires in Senegal and The Gambia for eight dates in December 1989 and March 1990. He

reported that ∼2.7 times as many fire pixels were recorded during the 20:30 overpass.

(3) Cahoon et al. [1992] examined the temporal and spatial distribution of fires in

Africa during 1986 and 1987 with nighttime OLS data. They concluded, contrary to

their expectations, that a strong diurnal burning cycle did not exist because so many

fires were detected in the nighttime imagery. In a subsequent letter, Langaas [1993a]

questioned this conclusion based on earlier work using satellite imagery and field

observations [Langaas, 1992].

(4) Prins and Menzel [1994] used five days of GOES-7 VAS observations acquired

between 31 August and 7 September 1983 at 12:30, 15:30, and 18:30 UTC to examine

the diurnal fire cycle in South America. In addition to using the VAS to detect active

fires, Prins and Menzel estimated the average temperature and instantaneous sub-pixel

area within each fire pixel using the technique of Dozier [1981] and Matson and Dozier

[1981]. By summing these sub-pixel areas within each VAS image, Prins and Menzel

found the peak in total instantaneous fire area occurred at 15:30 UTC, corresponding to
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a local time of approximately 12:30. Note that each of the VAS images spanned more

than 30◦ degrees in longitude, meaning that the local solar time varied by more than

two hours across each image.

(5) Menzel and Prins [1996] used observations from the GOES-8 Imager to

quantify the diurnal fire cycle during the week of 5-11 September 1994. This

instrument, called simply Imager, was a successor to the VAS with an improved spatial

resolution of 4 km for both its 3.9 and 10.7 µm channels. Using observations spaced

three hours apart at 12:00, 15:00, 18:00, and 21:00 UTC, Menzel and Prins found the

peak of burning to occur at 18:00 UTC. The authors note that this result differs from

their earlier findings obtained with the lower-resolution GOES-7 VAS for the 1983

burning season [Prins and Menzel, 1994].

(6) Eva and Lambin [1998] examined the diurnal burning cycle in the Central

African Republic (CAR) using one month of AVHRR LAC data acquired between

22 December 1993 and 27 January 1994. The authors exploited the fact that the width

of the AVHRR swath caused significant overlap to occur between consecutive orbits,

allowing a portion of the diurnal cycle to be sampled. They considered two land cover

classes within CAR, open savanna and woodland/agriculture, and found that the peak

in burning took place in the early afternoon for both classes. Early morning fires were

confined to open savanna. The authors note that restricting fire observations to

nighttime satellite overpasses can severely underestimate fire activity, and that, within

their region of study, nighttime fires exhibit a different spatial distribution than daytime

fires.
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(7) Pack et al. [2000] used data from the constellation of geosynchronous Defense

Support Program (DSP) infrared surveillance satellites to monitor biomass burning in

southern Africa. These satellites, which were designed to detect rocket launches and

nuclear explosions, image almost the entire terrestrial surface at the astounding rate of

once every ten seconds. Using one day of observations acquired on 3 July 1992, Pack

et al. found a strong southern African diurnal fire cycle having a peak in total fire

intensity around 12:00 UTC, corresponding to 14:00 local time.

5.3 Data

We used the Giglio et al. [2003b] gridded daily VIRS fire product, which contains

information about individual VIRS swaths, on a daily basis, at 0.5◦ spatial resolution.

This information includes counts of fire pixels, cloud pixels, missing data pixels, etc.,

acquisition time, and fraction of the VIRS swath overlapping each grid cell for each

overpass. This data set spans more than eight continuous years from late December

1997 to December 2005. A matching data set consisting of 0.5◦ gridded daily VIRS

reflectance, brightness temperature, and sun angle statistics was prepared for the same

time period.

The source of MODIS fire data was the “Collection 4” 8-day Terra MODIS Climate

Modeling Grid (CMG) fire product having 0.5◦ spatial resolution (“MOD14C8H”). The

MOD14C8H archive of high quality data begins in November 2000. The 8-day product

provides sufficient temporal resolution for the present work while avoiding artifacts
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present in the daily MODIS time series arising from biases in viewing geometry.

Additional MODIS products were used as a source of information about global

land cover. The Level 3 MODIS Vegetation Continuous Fields (VCF) products

[Hansen et al., 2003] provided tree, herbaceous, and bare ground fractions at 500-m

spatial resolution. Land cover types based on the Hansen et al. [2000] classification

scheme were obtained from the Level 3, 96-day Land Cover product (“MOD12Q1”) at

1-km resolution [Friedl et al., 2002].

5.4 VIRS and MODIS sampling characteristics

5.4.1 VIRS

The TRMM satellite was originally placed in a 350-km circular precessing orbit to

permit observation of the well-documented diurnal rainfall cycle [e.g., Wallace, 1975,

Hamilton, 1981, Desbois et al., 1989]. The TRMM orbit, combined with the original

720 km VIRS swath, yields roughly two VIRS observations (spaced about 12 h apart)

every other day at equatorial latitudes, and two VIRS observations each day at

temperate latitudes. The pattern of the local overpass times is dependent on latitude.

Representative examples at three different locations are shown in Fig. 5.1. In August

2001 the TRMM orbit was boosted to 402.5 km, increasing the VIRS swath width to

830 km. This change did not significantly alter the general sampling trends described

for the pre-boost orbit.

121



5.4.2 MODIS

The polar orbiting, sun-synchronous Terra satellite provides daily MODIS overpasses

at 10:30 and 22:30 local time at each point along the Equator. MODIS fire observations

are used in this study to provide a time series of fire activity sampled at comparatively

fixed times within the diurnal fire cycle.

122



Equator (Pre-Boost)

0 15 30 45 60 75 90
Day

0

6

12

18

24

Lo
ca

l T
im

e

18oN

0 15 30 45 60 75 90
Day

0

6

12

18

24

Lo
ca

l T
im

e

36oN

0 15 30 45 60 75 90
Day

0

6

12

18

24

Lo
ca

l T
im

e

Figure 5.1: Local time of VIRS overpass during a three-month period (January-March
1998) at three different latitudes, prior to the TRMM orbit boost: Equator (top), 18◦N
(center), and 36◦N (bottom).
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5.5 Method

An obvious approach for detecting a diurnal fire cycle would be to count active fires in

VIRS imagery, and assign each fire pixel into the particular local hour bin during which

it was observed. After repeating this process over a specified time period to achieve a

larger statistical sample, one would have an estimate of the mean diurnal fire cycle. In

practice, however, one must take considerable care to avoid multiple error sources that

will contaminate diurnal cycles derived in this fashion. These include both systematic

and random error sources. The former category includes detection bias, false alarm

bias, cloud bias, and seasonal bias, and the latter category consists of sampling error.

5.5.1 Error sources

5.5.1.1 Detection bias

The probability of detecting a given fire varies with time of day. Most significantly, the

probability is greatly reduced when the Sun is directly, or almost directly, overhead in

some biomes [Giglio et al., 1999, 2003b]. Failure to account for this bias can cause

artificial “dips” in the resulting diurnal fire cycle located near local noon, the time of

day at which fire detection capability is usually at a minimum for the AVHRR and

VIRS instruments.
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5.5.1.2 False alarm bias

In addition to detecting fires, fire detection algorithms produce false alarms. The rate at

which these false alarms occur is a function of different environmental variables, many

of which are related to time of day. Although the exact rate is dependent upon the

particular algorithm and sensor, the general trend is that false alarms are more likely

over hot, reflective surfaces at small solar zenith angles [Giglio et al., 1999].

5.5.1.3 Cloud bias

The presence of thick clouds within a scene will prevent VIRS from imaging the actual

land surface. Those active fires obscured by clouds will therefore not be detected. The

amount of cloud cover itself exhibits a diurnal cycle [e.g., Desbois et al., 1989, Thiao

and Turpeinen, 1992], and the effect of this independent cycle should be considered

when extracting the diurnal fire cycle. Cloud bias is of course not restricted to the

VIRS, and in fact impacts any spaceborne optical sensor used for fire monitoring.

5.5.1.4 Sampling error and seasonal bias

Setting aside for a moment the fact that VIRS overpasses are irregularly spaced in time,

the average VIRS equatorial sampling rate is one sample per day. This corresponds to a

Nyquist critical frequency of νN = 0.5 cycles/day, which is below the 1-cycle/day

fundamental frequency of any periodic diurnal signal and all higher frequency

harmonics. This could introduce aliasing into diurnal cycles derived from VIRS

observations. However, if one can assume that the diurnal fire cycle does not change
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substantially over the course of the fire season, we can accumulate VIRS observations

over multiple satellite precession periods, thereby sampling different local hours of the

diurnal cycle at a much higher effective sampling rate. Indeed, such a sampling

strategy has been a common approach for exploiting observations from precessing

satellites [Salby and Callaghan, 1997] such as the Upper Atmospheric Research

Satellite (UARS) and the Earth Radiation Budget Satellite (ERBS).

There are, however, complications in using such an approach. First, the number of

samples for some of the local time “bins” (e.g., 1-hour intervals) might be very small or

even zero, thus failing to adequately sample the natural variability of the diurnal signal

[Salby and Callaghan, 1997]. To increase the number of observations available at each

local hour, it therefore becomes necessary to accumulate observations over a larger

number of precession periods, but this can introduce biases if the seasonal signal is not

stationary. Using an example in the context of the present work, those local hours that

happen to have been observed during time periods of greater seasonal fire activity will

be contaminated with a surplus of fires that are unrelated to the diurnal fire cycle.

Secondly, the spatial sampling of the VIRS instrument is also tightly coupled to the

orbital characteristics of the TRMM satellite, and care must be taken to avoid potential

biases arising from spatially inconsistent sampling. This issue was examined by Lin

et al. [2002] and Negri et al. [2002] for the Precipitation Radar (PR), TRMM

Microwave Imager (TMI), and VIRS sensors resident on the TRMM satellite.
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5.5.2 Overview

Characterization of the diurnal fire cycle with any satellite-based imaging sensor will,

by necessity, involve counting or averaging pixels within spatial patches, or regions, of

finite extent. In defining the locations and extent of these regions, several important,

and sometimes conflicting, constraints must be met. Recognition of these constraints is

especially important in the case of VIRS since its diurnal sampling characteristics,

which arise from the interplay of the precessing TRMM orbit and the ∼800 km VIRS

swath, operate independently of the spatial and temporal scales over which tropical fire

activity should be monitored to provide meaningful results. Ultimately a combination

of spatial and temporal averaging of VIRS observations will be necessary; the

constraints dictating the scales over which this averaging must be performed are

discussed in Section 5.5.3.

5.5.3 Selection of regions and time periods

The first constraint in the selection of spatial patches is that they must be sufficiently

large to accumulate valid statistical samples of fire observations during the time period

being considered. If the patches are made too small, sampling errors can become too

large because an insufficient number of observations are available. Within the present

study we simultaneously have the critical temporal requirement to adequately sample

the different local times of the diurnal cycle. This issue was examined by Lin et al.

[2002], who found that TRMM sampling of the seasonal-mean diurnal cycles of
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precipitation and outgoing long-wave radiation was inadequate with 2.25◦ × 2.25◦ grid

cells. By averaging over larger areas (assuming the diurnal cycle is fairly uniform), or

using longer time series of observations, however, the authors found that satisfactory

sampling could be achieved. Subsequent work by Negri et al. [2002] demonstrated that

sampling errors in diurnal rain-rate estimates derived from PR observations (and, to a

lesser extent, TMI observations) remained significant even in larger 5◦ grid cells

averaged over several years.

A second but conflicting constraint is that the extent of the spatial patches be kept

relatively small to allow regional differences in diurnal fire activity to be captured.

Large spatial patches can potentially lead to the oversight of important regional

differences by smearing together different regional diurnal cycles. In particular, one

should avoid encompassing multiple fire regimes within a region since differences in

the diurnal fire cycle are expected across different fire regimes [Eva and Lambin, 1998].

The above constraints were satisfied in two ways. First, in conjunction with global

land cover maps, climatological maps of five different spatial and temporal variables

derived from five years of Terra active fire observations Giglio et al. [2006a] were used

to stratify the tropics and sub-tropics into regions of comparatively homogeneous fire

behavior. These variables were available at 0.5◦ spatial resolution and consisted of:

mean annual fire-pixel density, calendar month of maximum fire activity, fire season

duration, one-year lagged temporal autocorrelation of fire counts, and mean fire

radiative power (FRP) within each 0.5◦ grid cell. Ultimately fifteen representative

regions in the tropics and sub-tropics were selected in this manner (Fig. 5.2).
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Summaries of the relevant land cover characteristics for each region are provided in

Table 5.1.

The second manner in which the above constraints were satisfied was by

accumulating observations from 86 months (7.2 years) of the current eight-year VIRS

data archive. Observations acquired during the first eleven months of operation

(December 1997 through October 1998) were excluded to prevent potential

contamination from anomalous diurnal cycles that might be associated with the strong

1997-1998 El-Niño Southern Oscillation event. To avoid potential seasonal bias

(Section 5.5.1.4), the 8-day Terra MODIS CMG fire product was used to demarcate an

approximately stationary subset of the fire season while accumulating observations

within each region. VIRS observations falling outside these periods of relative

stationarity were not included in the subsequent analysis.
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Figure 5.2: Regions for which the mean diurnal fire cycle was extracted in this study.

Table 5.1: Predominant Hansen et al. [2000] land cover types in which VIRS fire pixels
were detected for the 15 regions used in this study. For each region these are listed in
order of decreasing frequency.

Region Characteristics
Brazil: Rainforest Evergreen broadleaf forest.
Brazil: Deforestation Evergreen broadleaf forest, savannas.
Brazil: Cropland Croplands, savannas, woody savannas.
Eastern Sahel Savannas, woody savannas, grasslands.
Western Sahel Woody savannas, savannas.
Central Africa Evergreen broadleaf forest.
Southern Africa West Woody savannas, savannas, deciduous

broadleaf forest, evergreen broadleaf forest.
Southern Africa East Woody savannas, savannas.
South Africa Savannas, open shrublands, woody savannas,

croplands, grasslands.
India Woody savannas, croplands, evergreen

broadleaf forest.
Southeast Asia Evergreen broadleaf forest, croplands, woody

savannas, savannas.
Southern Borneo Evergreen broadleaf forest.
Northern Australia Woody savannas, savannas, open shrublands.
Eastern Australia Open shrublands, woody savannas.
Southeast USA Heterogeneous mixture of croplands, woody

savannas, mixed forests, deciduous broadleaf
forest, and evergreen broadleaf forest.
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5.5.4 Extraction of the diurnal cycle

As mentioned in Section 5.3, the basic observations from which the diurnal fire cycle

will be extracted are individual VIRS overpasses distributed into 0.5◦ grid cells. For the

observation of a grid cell at UTC time t and location (i, j), denote the number of fire

pixels within the grid cell as Nfire(i, j, t), the number of cloud pixels over land as

Ncloud(i, j, t), and the total number of land pixels as Nland(i, j, t). Next we define the

mean fire-pixel fraction f for individual observations:

f(i, j, t) = Nfire(i, j, t)/Nland(i, j, t). (5.1)

Individual grid-cell observations are assigned to the local hour bin τ , where τ is simply

the integer part of the local solar hour (τ = 0, 1, 2, . . . , 23). The subsequent discussion

will make use of the following regional pixel totals accumulated for each local hour

bin:

Fτ =
∑

i,j∈R

∑

t∈τ

Nfire(i, j, t) (5.2)

Cτ =
∑

i,j∈R

∑

t∈τ

Ncloud(i, j, t) (5.3)

Lτ =
∑

i,j∈R

∑

t∈τ

Nland(i, j, t). (5.4)

Here the notation i, j ∈ R indicates that the first summation is restricted to only those

grid cells comprising the R’th region, and the notation t ∈ τ indicates that the second

summation is to be restricted to those observations acquired at UTC time t which fall

within the τ ’th local hour bin. Although not explicitly indicated, observations are

selected from calendar dates spanning the fire season for each region, as discussed in

131



Section 5.5.3.

At this point it is straightforward to define the “naive” fraction of VIRS pixels

containing fires in each local hour bin, fτ , as the weighted average of fire pixel

fractions from individual grid cells:

fτ =

∑

i,j∈R

∑

t∈τ

Nland(i, j, t)f(i, j, t)

Lτ

=
Fτ

Lτ

. (5.5)

The weighting in Eq. (5.5) is needed to ensure that those observations overlapping a

larger fraction of the grid cell are given proportionally greater importance than

observations representative of only a small portion of the grid cell. The weighted

variance in fτ , which will be important in establishing uncertainties, is then given by

σ2
τ =

∑

i,j∈R

∑

t∈τ

Nland(i, j, t) [f(i, j, t) − fτ ]
2

Lτ − 1
. (5.6)

Were it reasonable to neglect the remaining bias sources discussed in Section 5.5.1

(cloud bias, detection bias, and false alarm bias), Eq. (5.5) would directly represent the

diurnal fire cycle. Such an assumption is generally not reasonable, however, at least not

for all three of these potential bias-error sources, hence it is necessary to explicitly

incorporate additional corrections into Eq. (5.5). We will denote the corrected form of

fτ as f ∗

τ .

To correct for cloud bias, we assume that the fraction of cloud-obscured pixels

containing a fire is the same as the fraction of cloud-free pixels in that were classified

as fire pixels. While this assumption is generally invalid over large heterogeneous areas

and arbitrary time periods, it is much more reasonable in this case since the regions
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used here are comparatively small and homogeneous, and the time periods are

restricted to each region’s fire season. To affect the cloud correction, fτ must be

divided by the fraction of pixels within each local hour bin that were unobscured by

cloud cover. This fraction is equivalent to the quantity 1 − MCFτ , where

MCFτ = Cτ/Lτ is the mean cloud fraction within each local hour bin. The MCF

represents the average probability that a VIRS observation will be obscured by cloud

cover during the region R fire season.

Depending on the specific sensor and fire detection algorithm employed, the need

to include corrections for detection bias and false alarm bias may be required. Here we

introduce two factors to perform these corrections. The first, Dτ , where Dτ ≥ 1,

corrects for detection bias by potentially increasing the apparent number of fire pixels

detected during local hour bin τ , compensating for the variation in fire detectability as

a function of local time. The second factor, Φτ , where Φτ ≤ 1, potentially decreases

the apparent number of fire pixels in local hour bin τ to compensate for potentially

higher false alarm rates near mid-day.

It will prove convenient at this point to introduce an additional factor of β which is

simply a normalization constant applied to all local times. This factor will simplify

matters later when f ∗

τ is cast in the form of a probability density function; it has no

effect on the relative distribution of fires detected in each local hour bin. The corrected

fraction of VIRS pixels containing one or more fires within the τ ’th local hour bin is
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then

f ∗

τ =
βDτΦτfτ

1 − MCFτ

. (5.7)

5.5.5 Detection and false alarm bias corrections

The approach described so far has included explicit procedures for avoiding seasonal

bias, minimizing sampling error, and correcting for diurnal variations in cloud cover. It

remains to develop explicit forms for the detection-related correction factors D and Φ.

5.5.5.1 Detection bias correction

In formulating a detection bias correction, one must consider the individual tests of the

detection algorithm. For the sake of brevity only the relevant portions of the algorithm

will be discussed here; a complete description can be found in Giglio et al. [2003b].

Among other quantities, the detection algorithm uses VIRS 3.8 µm (channel 3) and

10.8 µm (channel 4) top-of-atmosphere brightness temperatures, denoted by T3 and T4,

respectively, the difference T34 ≡ T3 − T4, and the top-of-atmosphere 1.6 µm

(channel 2) reflectance, denoted ρ2. The algorithm applies a series of fixed threshold

tests to each candidate fire pixel, followed by a series of relative threshold (or

“contextual”) tests. The relative thresholds are derived from statistics of neighboring

pixels within a small window centered about the candidate fire pixel. These statistics

include: T34B and δ34B, the respective mean and mean absolute deviation of T3 − T4 for

the neighboring (or “background”) pixels; and T4B and δ4B, the respective mean and

mean absolute deviation of T4 for the background pixels.
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For daytime scenes, a pixel is identified as a fire pixel (i.e., contains one or more

sub-pixel active fires) if the following conditions are satisfied:

T3 > 310 K (5.8)

T34 > 6 K (5.9)

ρ2 < 0.32 (5.10)

T34 > T34B + 3.5 δ34B (5.11)

T34 > T34B + 6 K (5.12)

T4 > T4B + δ4B − 1.5 K. (5.13)

If any condition is not satisfied, the pixel is classified as a non-fire pixel. In practice the

absolute threshold tests (5.8)–(5.10) are performed before the contextual tests

(5.11)–(5.13) to avoid needlessly computing the background statistics in the event the

simpler (and computationally much faster) threshold tests are not unanimously

satisfied.

The need for the detection bias qualitatively described in Section 5.5.1.1 arises

because certain situations render it impossible to satisfy some of the above tests, no

matter how large or intense a fire may be. This results in “blind spots” in which the

algorithm (or instrument) is completely incapable of detecting fires. The most critical

(and most frequent) mechanisms leading to this blindness are: 1) high channel 2

reflectance and 2) saturation of channel 3. In the context of the present study, it is

necessary to know the relative degree to which this blindness occurs with respect to the

time of day.
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To proceed, we will estimate the likelihood of one or more of the above tests failing

due to high reflectance or saturation. Of the three absolute threshold tests, only

conditions (5.9) and (5.10) can lead to total blindness. For test (5.9) this can occur

when T3 saturates at 321.2 K, a routine occurrence for pixels containing active fires. If

the surface is sufficiently warm during some period of the day, T4 will exceed 315.2 K

and it will become impossible to satisfy the 6 K minimum difference mandated by this

test. Due to directional and atmospheric effects, ρ2 also exhibits diurnal variation, with

the maximum reflectance usually occurring when the Sun is highest in the sky.

Consequently, test (5.10) will also fail at different rates throughout the day for

higher-reflectance candidate fire pixels. Using the statistical reflectance and brightness

temperature data set mentioned in Section 5.3, it is a simple matter to estimate the

frequency with which the threshold tests (5.9) and (5.10) prevent fire detection.

It remains to estimate the likelihood of the contextual tests hindering fire detection

as a result of channel 3 saturation. (Saturation of channel 4 is quite rare and makes no

significant contribution to detection bias.) In this respect it is tests (5.11) and (5.12)

that are important. Since the latter test is somewhat simpler to deal with, we will

consider it first. Contextual test (5.12) can equivalently be written as

T3 − T4 > T3B − T4B + 6 K. (5.14)

For most tropical fires the 11 µm brightness temperature (T4) is not significantly

elevated above that of the background; in the majority of cases T4 ≈ T4B + 1 K. To
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good approximation, therefore, the inequality in (5.14) may be written

T3 > T3B + 7 K. (5.15)

The “blind spot” of condition (5.15) comes about when T3 for the candidate fire pixel

reaches saturation at 321.2 K over a warm and/or bright daytime surface. Under these

conditions, T3B also reaches (or nearly reaches) saturation, so that T3 ≈ T3B, i.e. no

contrast exists between the fire pixel and the non-fire background, and inequality (5.15)

cannot be satisfied. Given saturation of channel 3 for a candidate fire pixel, contextual

test (5.12) will consequently always fail when

T3B ≥ 314.2 K. (5.16)

Applying a similar argument to the first contextual test (5.11), one finds that, given

saturation of channel 3 for a candidate fire pixel, the blind spot for this test arises when

T3B ≥ 320.2 K − 3.5 δ34B. (5.17)

In practice, δ34B only rarely exceeds 1.5 K (Fig. 5.3), and condition (5.17) effectively

becomes a redundant, weaker version of condition (5.16). This is particularly true in

hot, arid environments, where saturation of channel 3 occurs often, since abrupt

discontinuities in neither surface temperature nor surface emissivity (which would

generally arise from abrupt discontinuities in vegetation cover or soil type) are

common. A correction for the saturation-induced failure of contextual test (5.12),

therefore, will generally obviate the need for a separate correction for the

saturation-induced failure of contextual test (5.11).
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The correction factor can be written in terms of the conditional probabilities that

the relevant potential fire tests will unconditionally fail, given an observation that falls

within local time bin τ :

Dτ =
1

P (T4 ≤ 315.2 K; τ)
×

1

P (ρ2 < 0.32; τ)

×
1

1 − P (T3B ≥ 314.2 K, T3 saturated; τ)
. (5.18)

Nominally, the denominators of the three factors on the right hand side of Eq. (5.18)

will have a value of unity, and Dτ will have no effect on the corrected fire-pixel

fraction calculated via Eq. (5.7). As the surface becomes hotter and/or brighter, one or

more of the denominators will decrease, and Dτ will correspondingly boost the number

of fire pixels accumulated in the τ ’th local hour bin. An example detection bias

correction is shown for the western Sahel region in Fig. 5.4.

5.5.5.2 False-alarm bias correction

The correction factor Φτ is the fraction of fire pixels observed during each local hour

bin that are actually true fire pixels. Given independent estimates of P (fire|non-fire; τ),

the probability a non-fire clear land pixel will be falsely identified as a fire pixel during

local hour τ , the false-alarm bias correction factor can be written as

Φτ =
Fτ − P (fire|non-fire; τ)Lτ

Fτ

. (5.19)

While there is presently insufficient data to estimate Φτ on a time dependent, regional

basis, earlier results reported by Giglio et al. [2003b, Tables 2 and 3] based on
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Figure 5.3: Cumulative histograms of the background T3 − T4 mean absolute deviation
(δ34B) for sample of VIRS fire pixels detected between 1 July and 31 December 2005 in
three different regions. Vertical line indicates threshold below which the correction for
saturation- induced failure of contextual test (5.11) is encompassed by the correction for
saturation-induced failure of contextual test (5.12).
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Figure 5.4: Detection bias correction (Dτ ) as a function of local time (solid line) for the
western Sahel region. Contributions from channel-2 reflectance correction (dotted line),
T34 absolute threshold test correction (dashed line), and T34 contextual test correction
(dotted-dashed line) are also shown.
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representative VIRS imagery suggest average daytime and nighttime values of 0.96 and

0, respectively. False alarm bias is therefore not expected to be a significant source of

error, and we consequently set Φτ = 1 for all τ .
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5.5.6 Uncertainty in corrected diurnal fire-pixel fraction

The uncertainty in f ∗

τ calculated via Eq. (5.7) arises from statistical variability of the

uncorrected mean fire-pixel fraction (fτ ) and the mean cloud fraction (MCFτ ).

Assuming the errors in these quantities are independent, the uncertainty in the

corrected mean fire-pixel fraction, ∆f ∗

τ , is given by

∆f ∗

τ =

√

(

∂f ∗

τ

∂fτ

∆fτ

)2

+

(

∂f ∗

τ

∂MCFτ

∆MCFτ

)2

=
βDτΦτ

1 − MCFτ

√

∆f 2
τ +

(

fτ ∆MCFτ

1 − MCFτ

)2

. (5.20)

The uncertainties ∆fτ and ∆MCFτ were taken to be the standard deviation of the

mean of fτ and MCFτ , respectively.

5.6 Results

Mean diurnal fire cycles were extracted for each of the 15 regions using the procedure

described in Section 5.5 and are shown in Fig. 5.5. In all regions the diurnal cycle was

very prominent, with a maximum in the early- to late-afternoon and typically little or

no burning between midnight and approximately 08:00 local time. As expected, the

distribution of fire activity is generally skewed with a somewhat longer tail above the

peak as fires continue burning into the evening. In general, only a single peak in fire

activity was observed throughout the day. For the Eastern Sahel and Northern Australia

regions, however, a significant secondary morning peak in fire activity was observed. A

detailed analysis of the regional cycles will be deferred to Section 5.6.4.
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5.6.1 Diurnal probability density functions

As an aid to the subsequent analysis, it will prove useful to represent the discrete,

corrected, diurnal fire fraction f ∗

τ for each region as a continuous probability density

function (PDF), denoted p∗(t), which describes the probability of observing a

detectable fire as a function of local time t. (Note that this is a slight change from the

notation of Section 5.5.4, where t was used to denote UTC time.) The skewness and

overall structure of the cycles shown in Fig. 5.5 generally preclude use of the standard

distribution functions appropriate for circular data [e.g., Fisher, 1995]. Instead we

represent the diurnal fire PDF more generally as a Fourier series, i.e.,

p∗(t) = A0 +
12

∑

k=1

(Ak cos kωt + Bk sin kωt) (5.21)

where the fundamental diurnal period T = 24 h and ω = 2π/T ≈ 0.2618 rad h−1 is the

fundamental diurnal angular frequency. The coefficients Ak and Bk may be computed

from the discrete Fourier transform of the sequence obtained from Eq. (5.7). Since

p∗(t) is a probability density function it follows that

T
∫

0

p∗(t) dt = 1, (5.22)

which in turn dictates that A0 = 1/T . The value of the constant β is set when

computing the remaining coefficients Ak and Bk so as to arrange that p∗(t) will satisfy

Eq. (5.22) directly and eliminate the need to explicitly introduce an additional

normalization step (and additional coefficients) at this point.
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5.6.2 Summary distribution parameters

Having expressed the regional diurnal fire cycles as PDFs, summary distribution

parameters of potential interest may now be calculated. Perhaps most obviously this

would include the time of peak fire activity, tp, which was determined by a numerical

search of Eq. (5.21) in the interval [0, T ).

Another useful summary parameter is the median, or 50’th percentile, representing

the time of day by which 50% of all daily fires were detected during the previous 12

hours. For the circular PDF in Eq. (5.21), the median (t50) satisfies the relationship

t50
∫

t50−T/2

p∗(t) dt = 1/2. (5.23)

Evaluating the left hand side of Eq. (5.23) yields the transcendental equation

0 = πA0 − 1/2

+ ω−1

12
∑

k=1

k−1
[

1 − (−1)k
]

(Ak sin kωt50 − Bk cos kωt50) , (5.24)

which can be solved numerically for t50.

Then interquartile range (IQR) will be employed as a robust measure of the spread

of each diurnal PDF. More common measures include the standard deviation and the

full-width-at-half-maximum (FWHM), but complications arise in the interpretation of

the former with circular data [Fisher, 1995], and the latter becomes ambiguous in the

presence of multiple peaks and is potentially misleading for highly skewed

distributions.

By definition, IQR = t75 − t25, where t25 and t75 are the 25’th percentile (lower
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quartile) and 75’th percentile (upper quartile), respectively, of the PDF. The IQR is

readily interpretable in that 50% of the fires occurring each day will be active between

the times t25 and t75. The lower and upper quartiles can be defined in terms of the

median. By definition,
t50
∫

t25

p∗(t) dt = 1/4 (5.25)

and
t75
∫

t50

p∗(t) dt = 1/4. (5.26)

Evaluating the left hand sides of Eqs. (5.25) and (5.26) yields the equations

0 = A0(t50 − t25) − 1/4

+ ω−1

12
∑

k=1

k−1 (Ak sin kωt50 − Bk cos kωt50)

− ω−1

12
∑

k=1

k−1 (Ak sin kωt25 − Bk cos kωt25) (5.27)

and

0 = A0(t75 − t50) − 1/4

+ ω−1

12
∑

k=1

k−1 (Ak sin kωt75 − Bk cos kωt75)

− ω−1

12
∑

k=1

k−1 (Ak sin kωt50 − Bk cos kωt50) , (5.28)

which can also be solved numerically for t25 and t75, respectively.
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5.6.3 Uncertainties in distribution parameters

Uncertainties in tp, t50, and the upper and lower quartiles were estimated using a

Monte Carlo approach. For each region, 1000 random sequences of the corrected

diurnal fire-pixel fraction [Eq. (5.7)] were generated, where each point in a sequence

was drawn from a normal distribution having mean f ∗

τ and standard deviation ∆f ∗

τ . For

each random sequence, the PDF in Eq. (5.21) was refitted and new values of tp, t50, t25,

and t75 were calculated, yielding 1000 samples of each parameter. The standard

deviation of each collection of samples was then used as the 1-sigma uncertainty in the

corresponding parameter.

Since the uncertainties in the lower and upper quartiles are not independent (both

are defined in terms of the median t50, and the coefficients Ak and Bk), the uncertainty

in the IQR is estimated as

∆IQR = ∆t25 + ∆t75, (5.29)

where ∆t25 and ∆t75 are the respective 1-sigma uncertainties in the lower and upper

quartiles.

5.6.4 Regional diurnal fire cycles

The fitted diurnal fire cycles are shown in Fig. 5.5. Relevant parameters calculated

from the regional PDFs are listed in Table 5.2. In all regions, the peak burning time

varied between approximately 13:00 and 18:30, with fire activity peaking distinctly

earlier for the heavily-forested regions. The median time of fire activity spanned a
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similar range of values. The IQR, our measure of how “spread out” burning was

throughout the day, ranged from a minimum of 1.3 h in Central Africa to a maximum

of 5.5 h in Eastern Australia. In general, shorter periods of burning (i.e., smaller values

of the IQR) were associated with greater tree cover, and vice versa (Fig. 5.6), a trend

that is qualitatively consistent with the earlier findings of Eva and Lambin [1998]

regarding open savanna vs. woodland/agriculture fires in the Central African Republic

(Section 5.2). This phenomenon may be explained, at least in part, as follows. Within

the tropics, low fractional tree cover is indicative of high herbaceous cover (as opposed

to sub-tropical latitudes, for example, where low tree cover might instead reflect a

preponderance of bare ground). Herbaceous vegetation provides thinner, lighter fuels

that dry out comparatively quickly, and is more abundant in drier climatological zones,

allowing the fuel to remain dry for longer periods of time. Under these conditions, fire

ignition is physically possible at any time of day, and the resulting diurnal fire cycle is

dictated primarily by the diurnal cycle of human activity. The opposite extreme of very

high fractional tree cover corresponds to tropical rainforest, and here diurnal

meteorological conditions (primarily humidity) only permit ignition during a relatively

brief period of the day.

As noted earlier, the mean diurnal fire cycles derived for the Eastern Sahel and

Northern Australia regions show noticeable dips in daytime fire activity, leading to

prominent secondary peaks in their mean diurnal fire cycles. (While minor secondary

peaks do occur in several other regions [e.g., Brazilian cropland], the amplitude of

these peaks is generally smaller than the corresponding error bars.) It is unclear
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whether the dips reflect a true reduction in fire activity or an inadequacy in the

detection bias correction. Of the two scenarios, the latter is perhaps the more likely

since both dips occur when the detection bias correction reaches its maximum (cf.

Fig. 5.4). On the other hand, the diurnal fire intensity curves of Pack et al. [2000] for

southern Africa show similar mid-day drops, while Eva and Lambin [1998] show a

very substantial drop in CAR fire activity at ≈ 17:00 local time, followed by a

secondary peak. Use of geostationary satellite data should help resolve this issue.
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Figure 5.5: Diurnal fire cycles (p∗(t)) for the 15 regions considered in this study. The
probability density functions have been renormalized to a maximum value of one to
eliminate clutter arising from the disparate probability density scales along each ab-
scissa. The dashed vertical lines indicate, from left to right, the locations of the lower
quartile, median, and upper quartile of each PDF.
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Figure 5.6: Interquartile range (IQR) of the diurnal fire probability density function for
each region as a function of mean fractional tree cover. Linear least squares regression
(dotted line) yields a correlation coefficient of 0.81. The point marked with a “D” cor-
responds to the Brazilian deforestation region, and was not included in the regression
since the static tree cover map does not reflect the shift toward herbaceous vegetation
observed in this region from 1998 to 2005.
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Table 5.2: Summary parameters for the diurnal fire probability density functions derived
for each region. Peak and median local times are expressed as decimal hours (e.g., 13.6 h
= 13:36 local time).

Region Peak (h) Median (h) IQR (h)
Brazil: Rainforest 13.6 ± 0.1 13.9 ± 0.1 1.9 ± 0.2
Brazil: Deforestation 15.6 ± 0.2 15.64± 0.04 4.41± 0.06
Brazil: Cropland 18.4 ± 0.2 17.6 ± 0.1 5.2 ± 0.2
Southeast USA 14.0 ± 0.2 13.22± 0.05 3.41± 0.05
Eastern Sahel 15.92± 0.07 14.89± 0.04 5.00± 0.06
Western Sahel 15.34± 0.05 14.57± 0.03 3.18± 0.04
Central Africa 13.42± 0.06 13.21± 0.08 1.3 ± 0.2
Southern Africa West 14.9 ± 0.1 14.39± 0.02 2.79± 0.02
Southern Africa East 15.74± 0.05 15.19± 0.02 2.97± 0.05
South Africa 14.7 ± 0.2 14.38± 0.05 4.04± 0.09
Southeast Asia 15.0 ± 0.2 14.59± 0.04 2.89± 0.05
Southern Borneo 13.2 ± 0.5 14.47± 0.08 3.6 ± 0.1
Northern Australia 16.0 ± 0.3 15.38± 0.06 5.4 ± 0.1
Eastern Australia 17.7 ± 0.6 16.8 ± 0.2 5.5 ± 0.2
India 16.5 ± 0.2 16.30± 0.09 3.0 ± 0.2
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5.7 Implications for the AVHRR fire data record

While the archive of several of the currently-available active fire data sets now spans

more than a decade, interest has arisen in using the ∼25 year AVHRR data record to

extend the active-fire time series as far back as the early 1980s. Because the AVHRR

record is comprised of data collected with a series of AVHRR sensors on board

successive NOAA satellites, it is important to understand the effects of this lineage on

the consistency of the resulting time series.

Of relevance to the present work is the drift in the orbits of the afternoon NOAA

satellites, which changed the local overpass time by 3–6 hours depending on the

particular platform (Fig. 5.7a). This drifting consequently changed the diurnal

sampling quite significantly over the operational lifetime of each instrument. Csiszar

et al. [2003] examined the effect of the change in diurnal sampling on the radiometric

contrast between fires and the non-fire background in North America, and found that

spurious trends can potentially arise in the number of fires detected over non-forested

areas. An additional effect, not examined (but recognized) in that study, was the

different sampling of the diurnal fire cycle.

To gauge the magnitude of this effect on the consistency of the AVHRR data

record, I have applied three of the diurnal fire cycles shown in Fig. 5.5 to a synthetic

AVHRR time series composed of a constant number of fires detected each day. (A

realistic time series would include both seasonal and stochastic elements, but the results

of this analysis would not change were these refinements included.) Results are shown
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in the bottom three panels of Fig. 5.7. All three regions show major spurious trends in

the resulting record of fire activity, with the most extreme case occurring in the

Brazilian rainforest region, where the apparent number of fires varied by nearly a factor

of ten over the lifetime of the NOAA-14 AVHRR. To make matters worse, the trends in

different regions can move in entirely opposite directions, potentially superimposing

additional time-dependent, spatial inconsistencies on the long-term AVHRR fire record.
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Figure 5.7: Effect of NOAA satellite drift on the time series of active fire activity as ob-
served with consecutive AVHRR instruments. Top panel (a) shows the equator crossing
time for the successive NOAA-7, NOAA-9, NOAA-11, and NOAA-14 afternoon satel-
lites [Csiszar et al., 2003]. Lower panels show the resulting normalized time series of
active fire activity, given a constant number of fires burning each day and the diurnal fire
cycles obtained for the Brazilian rainforest (b), Western Sahel (c), and Eastern Australia
(d) regions.
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5.8 Conclusion

I have used seven years of TRMM VIRS fire observations to characterize the average

diurnal fire cycle in 15 regions of the tropics and sub-tropics. Bias errors in the

resulting diurnal cycles were either avoided or removed through a combination of

judicious region selection and the application of corrections to compensate for cloud

obscuration and time-dependent “blind spots” in the fire-detection capability of the

VIRS sensor. Supplementary data from the Moderate Resolution Imaging

Spectroradiometer (MODIS) on board NASA’s Terra satellite were used to aid this

process.

In all regions, the peak burning time varied between approximately 13:00 and

18:30, with fire activity peaking distinctly earlier for the heavily-forested regions. The

time period of the central 50% of total daily fire activity (i.e., the interquartile range)

varied from a minimum of 1.3 h in Central Africa to a maximum of 5.5 h in Eastern

Australia. In general, shorter periods of burning (i.e., smaller values of the IQR) were

associated with greater tree cover.

An analysis of the effect of the drift in the orbits of successive NOAA satellites on

the AVHRR active-fire data record showed that very large, spurious trends are to be

expected in the time series. It is clear that a diurnal sampling correction is essential in

any analysis of long-term active fire data sets produced from AVHRR observations.

Moreover, even the use of short-term, two-to-three-year AVHRR fire time series can be

problematic, especially if the time period under consideration spans a change in
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satellite.

Given the substantial effort involved in this work, it is reasonable to ask why one

shouldn’t rely exclusively on geostationary satellite sensors to investigate the diurnal

fire cycle. At present, such a position would entail several disadvantages. First, the

spatial resolution available from the current generation of geostationary satellites

(∼4 km) is lower than that available with the VIRS. This means that the GOES Imager,

for example, has a significantly lower sensitivity to smaller, cooler fires. Since fires are

generally smallest either when started or nearly extinguished, the widths of the peaks in

fire activity derived from this sensor may be systematically underestimated. Second,

although geostationary satellites provide coverage of an entire hemisphere, much of

this area is not useful due to the increase in distortion as one moves away from the

subsatellite point. This zonal decrease in spatial resolution means that a systematic

spatial bias is present in terms of the smallest (or coolest) fires that can be detected.

Finally, the current suite of operational geostationary satellites does not provide full

coverage of the land surface within the tropics and sub-tropics. In this respect the VIRS

sensor is therefore useful as an independent, complementary source of information

about diurnal fire activity.
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Chapter 6

Global Estimation of Burned Area using MODIS

Active Fire Observations

6.1 Introduction

Research over the past 25 years has led to increased recognition of the important role

biomass burning plays in the global carbon cycle and the production of trace gas and

aerosol emissions. Consequently, Earth-system modeling efforts now often include

fire-related information. In particular, there is a strong need for spatially and

temporally explicit estimates of the quantity of biomass consumed through combustion

[Scholes et al., 1996]. Typically such estimates are based on a simple relationship of

the form [e.g., Seiler and Crutzen, 1980, Hao et al., 1990, Pereira et al., 1999]

M = ABc, (6.1)

where M is the mass of vegetation combusted within a given time interval, A is the

area burned during the same time interval, B is the biomass density, and c is a factor

describing the completeness of combustion. Although all of the terms appearing on the
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right hand side of Eq. (6.1) are highly variable, burned area is particularly difficult to

estimate because of the potentially high spatial and interannual variability in this

quantity at continental to global scales. It is therefore especially important that

accurate, spatially explicit, multi-year estimates of burned area are available when

relying on a relationship having the form of Eq. (6.1). At present, however, there is a

dearth of such data. While a number of satellite-based global burned area products are

currently under development, specifically GLOBSCAR [Simon et al., 2004], GBA2000

[Tansey et al., 2004], and the MODIS burned area product [Justice et al., 2002, Roy

et al., 2002], none are yet available on a multi-year basis.

Unlike burned area data, long-term observations of active fires made with

spaceborne sensors are readily available. Representative multi-year examples include

the Along-Track Scanning Radiometer (ATSR) nighttime fire product [Arino and

Rosaz, 1999], the Visible and Infrared Scanner (VIRS) monthly fire product [Giglio

et al., 2003b], the Moderate Resolution Imaging Spectroradiometer (MODIS) global

fire product [Justice et al., 2002], and the Geostationary Operational Environmental

Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF ABBA) fire

product [Prins et al., 1998]. At their most basic level, active fire products contain

information about the location and timing of fires that are burning at the time of the

satellite overpass, usually in the form of swath-based fire masks or as lists of fire pixel

locations and dates. These observations are in turn often summarized at coarse spatial

resolutions (e.g., 0.5◦×0.5◦) over daily or monthly time periods, yielding data products

containing gridded counts of active fire pixels. Although these “fire count” products
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capture many aspects of the spatial distribution and seasonality of burning, it is difficult

to relate them to actual area burned due to inadequate temporal sampling, variability in

fuel conditions and cloud cover, differences in fire behavior, and issues related to

spatial resolution [Scholes et al., 1996, Eva and Lambin, 1998, Kasischke et al., 2003].

Despite these difficulties, the lack of long-term, spatially-explicit global burned

area data has meant that active fire observations must often be used as a proxy for area

burned [e.g., Setzer and Pereira, 1991, Scholes et al., 1996, Stroppiana et al., 2000a,

Potter et al., 2001, van der Werf et al., 2003, 2004, Langmann and Heil, 2004]. Perhaps

the most common approach has been to assume that the area burned is proportional to

simple counts of fire pixels, i.e.

A(i, t) = αNf(i, t), (6.2)

where A is the area burned within a particular spatial region labeled by the index i –

typically a grid cell – during a fixed time period labeled by the index t, Nf is the

number of fire pixels observed within the same region during the same time period, and

α is a constant representing the effective burned area per fire pixel.

The reported accuracies of the burned area estimates obtained with Eq. (6.2) vary

greatly and are dependent upon, among other things, the spatial scale at which the

relationship is applied. Eva and Lambin [1998] found almost no correlation between

AVHRR fire counts and burned area in the Central African Republic at a spatial

resolution of 15 km over a time interval of about one month. Randriambelo et al.

[1998], however, report a good qualitative agreement between one year of monthly

159



AVHRR fire counts and ground-based monthly burned area estimates for a study region

in Madagascar. Pereira et al. [1999] report a poor linear correlation (r=0.44) between

daytime AVHRR fire counts and burned area estimates in a 20◦ by 10◦ region

encompassing the Central African Republic over a 25-day time period. Kasischke et al.

[2003] examined the relationship between ATSR fire counts and area burned in Alaska

and Canada from 1997 to 2002, and in Russia during 1998. They reported significant

linear correlations between fire counts and burned area for Canada and Russia, but in

the former region found that the slope (i.e., the effective area burned per fire pixel) for

different years varied by up to a factor of about two. The authors caution against

scaling fire counts to area burned since rates of fire detection, cloud obscuration, and

fire spread are not constant across years.

Variations of Eq. (6.2) in which α assumes some spatial dependence have also been

explored. Scholes et al. [1996] were able to relate the area burned in southern Africa to

monthly 0.5◦ gridded AVHRR fire counts using ancillary Normalized Difference

Vegetation Index (NDVI) data such that α(i)=f [NDVI(i)], where f is a linearly

decreasing function of the mean annual NDVI in grid cell i. In other words, increasing

greenness reduces the effective burned area per fire pixel. Van der Werf et al. [2003]

related burned area to VIRS active fire counts using fractional tree cover at a spatial

resolution of 1◦ such that α(i)=f [T (i)], where f is a linearly decreasing function of

the mean fractional tree cover T in grid cell i. Here, increasing tree cover slows the fire

spread rate and reduces the effective burned area per fire pixel. The two approaches are

closely related since NDVI and tree cover are positively correlated.
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Active fire observations have also been used to spatially and temporally allocate

climatological inventories of combusted biomass and pyrogenic trace gas emissions

[Schultz, 2002, Duncan et al., 2003, Generoso et al., 2003, Heald et al., 2003, Streets

et al., 2003, Jaffe et al., 2004, Damoah et al., 2006]. These methods are fundamentally

related to Eq. (6.2) in that they assume the quantity of interest is proportional to counts

of fire pixels. While our interest here is confined to burned area, much of the

subsequent discussion is applicable to allocation-based approaches as well.

In this chapter, we present a method for calibrating active fire observations made

with the Terra MODIS sensor to produce global, coarse resolution estimates of burned

area on a monthly basis. Our approach draws upon two types of information: the

sensitivity of α to fractional tree and herbaceous cover (extending the approach used by

van der Werf et al., 2003), and the sensitivity of α to fire-pixel cluster size. These

components were combined using regression trees that were applied to large

geographic regions. In recognizing that production of accurate burned area maps

suitable for calibration is problematic in closed canopy tropical forest, particularly in

areas of active deforestation, we implement a subsequent refinement in which a

correction is applied to the burned area predicted with the regression trees using tree

cover data and a simple measure of fire persistence.

The uncertainties associated with any calibration approach are likely to be

comparatively large given the sampling issues mentioned above, but for some

applications may still be tolerable. Global models of the terrestrial carbon cycle, for

example, have only recently begun to include explicit treatment of fire as a disturbance
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factor [e.g., van der Werf et al., 2003]. We expressly do not claim that an active-fire

based method can provide a universal substitute for burned area maps generated via

direct observation of burn scars. Rather, in agreement with Schultz [2002], we suggest

that statistical coarse-resolution burned area estimates derived from MODIS active fire

observations can serve as a useful interim product until long-term burned area data sets

become available. Moreover, it may be possible to use an active-fire calibration

approach with functional sensors pre-dating MODIS, offering the possibility of

generating even longer-term global burned area data sets.

6.2 Data

6.2.1 Active fire data

We used the Collection 4, version 4 Terra MODIS monthly Climate Modeling Grid

(CMG) fire products at 0.5◦ spatial resolution (“MOD14CMH”), from January 2001

through December 2004. The gridded monthly overpass-corrected fire pixel counts

were summed to a 1◦ working spatial resolution for this study. The CMG product also

contains the mean percent tree cover (Tf), percent herbaceous vegetation cover (Hf),

and percent bare ground (Bf) from the global MODIS Vegetation Continuous Fields

(VCF) products [Hansen et al., 2003] for all fire pixels within each grid cell; we

averaged these to 1◦ spatial resolution as well. (We use the subscript “f” as a reminder

that Tf , Hf , and Bf are averages for fire pixels only, as opposed to averages over the
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entire land surface encompassed by the grid cell.)

Using the locations of individual Collection 4 MODIS fire pixels at the nominal

1-km MODIS resolution (available separately), we linked adjacent fire pixels within

each 1◦ grid cell into clusters on a monthly basis. For each grid cell we then computed

the monthly mean fire-pixel cluster size, which we denote as Cf . We hypothesized that

cluster-related information might improve the estimation of burned area based on the

empirical observation that larger clusters of MODIS fire pixels tend to be associated

with larger burn scars (Fig. 6.1).

Figure 6.1: Aqua MODIS 500-m false color imagery of northern India (left) on 23 Oc-
tober 2004 (08:20 UTC) and Yakutsk, Russia (right) on 19 August 2002 (03:00 UTC).
Outlines of 1-km active fire pixels are shown in red. With this band combination
(2.1 µm, near-infrared, red) dense vegetation appears green, heavy smoke appears light
blue, burn scars appear dark brown, water appears black, and non-cirrus clouds ap-
pear white. The scale (approximately 320×320 km) is identical in both images. Note
how larger Yakutsk burn scars are accompanied by large clusters of adjacent fire pixels,
while the small (but numerous) agricultural burns in India are characterized by much
smaller clusters of fire pixels and no visible burn scars. Images were produced within
the MODIS Rapid Response System and appear courtesy of Jacques Descloitres.
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6.2.2 Burned area data

Burned area maps were produced using a prototype algorithm that uses the 500-m

MODIS atmospherically-corrected Level 2G surface reflectance product [Vermote and

Justice, 2002], the MODIS Level 3 daily active fire products [Justice et al., 2002], and

the MODIS Level 3 96-day Land Cover Product [Friedl et al., 2002]. The algorithm,

which is described in Appendix B, identifies the date of burn, to the nearest day, for

pixels within individual MODIS Level 3 tiles [Wolfe et al., 1998] at 500-m spatial

resolution. Since these burn scar masks were to serve as truth for calibration of active

fire observations, we visually inspected each to ensure that no obvious omission or

commission errors were present. Often this required appealing to higher resolution

250-m MODIS imagery to verify the existence of smoke plumes and help resolve the

boundaries of ambiguous burn scars. Manual corrections were required in

approximately five tiles, usually to add a burn scar that was undetected due to persistent

cloud cover. At present, validation of our 500-m burned area maps has been limited to

Russia through comparison with maps generated manually from high resolution

Landsat imagery [Loboda and Csiszar, 2004]. Proper global validation would require

that a similar procedure be applied to representative sites over the entire globe. This is

a very substantial undertaking that has not yet been completed for any burned area

product.

Selected calendar months were processed for selected MODIS tiles, yielding a total

of 446 “tile-months” of burned area estimates between January 2001 and December
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2004 (Fig. 6.2). Tile locations were selected to provide a good sampling of worldwide

fire activity over multiple fire seasons, although erratic data availability ultimately

produced an uneven temporal sampling of the different tiles. The resulting burned area

maps were aggregated to 1◦ spatial resolution and monthly temporal resolution.
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Figure 6.2: Locations of MODIS calibration tiles used in this study. Numbers in each
10◦×10◦ tile indicate the number of months for which 500-m burned area masks were
produced for that tile.

While we believe that commission and omission errors in our 500-m burned area

maps are generally negligible compared to the statistical variability inherent in

modeling the relationship between burned area and active fire pixels with Eq. (6.2), we

recognize that the quality of these maps is substantially lower in the closed canopy

forests of South America and Equatorial Asia. A combination of three factors make

mapping of burned area problematic in this biome. First, surface burns are at least

partially obscured by the tree canopy, which can leave an insufficient post-burn,
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top-of-atmosphere radiometric signal with which to detect the burn. Second,

substantial spectral overlap can occur between cleared (but unburned) forest patches,

and patches that have been cleared and subsequently burned. Finally, persistent cloud

cover (∼1 month and longer) is common in rainforest, and this can lead to significant

errors of omission, particularly following vegetation regrowth. This issue will be

addressed further in Section 6.3.3.
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6.3 Method

6.3.1 Preliminary analysis

As part of a preliminary analysis we examined the relationship between monthly

corrected Terra fire pixel counts and area burned within 14 different regions (Fig. 6.3)

using the model in Eq. (6.2). Results obtained from least squares fits to this model are

summarized in Table 6.2. There is clearly strong regional variation in the effective area

per fire pixel (α), from a minimum of 0.29 km2/pixel in southern-hemisphere (SH)

South America to a maximum of 6.6 km2/pixel in Central Asia, which is a factor of

more than 20. We note that, with the exception of the SH South America region, the

correlation coefficients we obtained are substantially higher than those reported by

Boschetti et al. [2004] between ATSR fire counts and the GBA2000 and GLOBSCAR

burned area data sets for the year 2000. There are at least five possible reasons for our

higher correlation. First, our 1◦ grid cells are larger than the hexagonal grid cells used

by Boschetti et al. [2004] by about a factor of four at the Equator, and by a factor of two

at boreal latitudes. The correlation between many spatial quantities tends to improve

over larger areas [Curran and Atkinson, 2002, Fotheringham et al., 2002]. Second, with

the exception of Europe, the six geographic regions defined by Boschetti et al. [2004]

were much larger than the 14 geographic regions used in our study. Our results show

that α can vary by as much as a factor of nearly seven within these larger regions.

Third, the larger MODIS swath yields a higher temporal sampling rate, making it more

likely that MODIS will “fill in” large burned areas with active fire pixels, and leading to
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fewer small burned areas for which no active fire pixels were detected. (We will return

to the issue of temporal sampling in Section 6.7.) Fourth, the “fill-in” effect might

become more pronounced in those regions having a strong diurnal fire cycle since

fewer fires are likely to be burning at the time of the nighttime ATSR overpass. Finally,

smaller burns present in the 500-m MODIS burned area maps might not be identified in

the 1-km GBA2000 and GLOBSCAR data sets. This last factor contributes because,

for pixels of a given size, the minimum detectable size of an actively burning fire is

much smaller than the minimum detectable size of a burn scar (by a factor of ∼1000).

Mapping burn scars with larger pixels will therefore yield more cases in which small

clusters of active-fire pixels are not accompanied by an observable burn scar, and will

therefore reduce the correlation between the two variables (cf. Fig. 6.1, left panel).

Figure 6.3: Map of the 14 regions used in this study. Abbreviations are explained in
Table 6.1.
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Table 6.1: Regions used within this study. Abbreviations refer to those used in Fig. 6.3.

Abbr. Short Name Comments
BONA Boreal North America Alaska and Canada.
TENA Temperate North America Conterminous United States.
CEAM Central America Mexico and Central America.
NHSA Northern Hemisphere South America Division with SHSA is at the Equator.
SHSA Southern Hemisphere South America Division with NHSA is at the Equator.
EURO Europe Includes the Baltic States but exclud-

ing White Russia and the Ukraine.
MIDE Middle East Africa north of the Tropic of Cancer,

and the Middle East plus Afghanistan.
NHAF Northern Hemisphere Africa Africa between the Tropic of Cancer

and the Equator.
SHAF Southern Hemisphere Africa
BOAS Boreal Asia Russia, excluding area south of 55◦ N

between the Ukraine and Kazakhstan.
CEAS Central Asia Mongolia, China, Japan, and former

USSR except Russia.
SEAS Southeast Asia Asia east of Afghanistan and south of

China.
EQAS Equatorial Asia Malaysia, Indonesia, and Papua New

Guinea.
AUST Australia Includes New Zealand.

We repeated the above analysis with fire pixel counts having an additional

correction for cloud cover (data layers with and without this correction are present in

the MODIS CMG fire products). The resulting correlation coefficients were almost

uniformly lower, most likely because the cloud correction relies on assumptions that

are frequently not met and consequently has a tendency to overcorrect. We performed

the remainder of our investigation, therefore, with overpass-corrected fire pixel counts

lacking the additional cloud correction.
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Table 6.2: Correlation (r) between predicted and observed burned area within each
region for linear regression [Eq. (6.2)] and regression tree approaches. The slope of
the linear regression (α) and the total number of non-zero observations (N ) are also
shown. An observation consists of the corrected fire pixel counts, 500-m burned area,
mean VCF fraction for all fire pixels, and mean fire-pixel cluster size within a single
1◦ grid cell for a specific month. Observations having zero burned area and zero fire
pixels (“zero-zero” observations) were not included in the analysis and are not reflected
in the tabulated values of N . All correlations are highly significant with a probability
p�0.001.

Linear [Eq. (6.2)] Tree
Region α (km2/pixel) r N r
Boreal North America 1.4 0.69 1018 0.85
Temperate North America 0.84 0.94 982 0.98
Central America 0.43 0.73 301 0.85
NH South America 1.0 0.78 352 0.85
SH South America 0.29 0.35 4034 0.56
Europe 3.1 0.91 225 0.95
Middle East 0.40 0.34 215 0.78
NH Africa 5.2 0.86 910 0.90
SH Africa 2.9 0.60 1670 0.73
Boreal Asia 1.3 0.90 2104 0.94
Central Asia 6.6 0.85 282 0.92
South Asia 2.9 0.75 531 0.83
Equatorial Asia 0.49 0.71 192 0.78
Australia 3.4 0.82 5563 0.89
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We next examined the effect of tree cover on α. We partitioned the observations for

each region into 20% tree-cover intervals and fitted Eq. (6.2) separately to each of the

resulting subsets. Results for five regions are shown in Fig. 6.4. We found that in

savanna regions α decreased with increasing tree cover, although the slope of the

relationship varied substantially between different savanna regions. A similar analysis

revealed a comparable link between α and herbaceous cover, but with α increasing

with increased herbaceous cover. This is not surprising given that, in most fire

susceptible areas, woody-herbaceous gradients (rather than, say, woody-bare gradients)

are more often the norm. The variation in α with respect to bare cover was generally

much weaker except in Australia, where fires are common along gradients of bare and

herbaceous cover. In tropical forests (e.g., South America), there was no significant

relationship between α and tree cover, and in boreal forests α slightly increased with

increasing tree cover.

We also examined how α varied with respect to mean fire-pixel cluster size. We

partitioned the observations for each region into different ranges of mean cluster size

and fitted Eq. (6.2) to each of the resulting subsets. We found that, in general, the

effective burned area per fire pixel increased very rapidly as cluster size increased

(Fig. 6.5).
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Figure 6.4: Effective burned area per Terra MODIS fire pixel (α) as a function of mean
percent tree cover for six of the 14 regions considered in this study.
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Figure 6.5: Effective burned area per Terra MODIS fire pixel (α) as a function of mean
fire-pixel cluster size for five of the 14 regions considered in this study.

173



6.3.2 Regression tree approach

The analysis in the previous section shows that vegetation fraction (tree [Tf],

herbaceous [Hf], bare [Bf]) and fire cluster size (Cf) are important predictive variables

that should potentially appear in an empirical relationship linking active fire counts to

area burned. We may write such a relationship very generally as

A(i, t) = g[Tf(i, t), Hf(i, t), Bf(i, t), Cf(i, t), Nf(i, t)] (6.3)

where g is an unknown function. It is not obvious, however, what particular functional

form one should assume for g that will be optimal in every region. Based on a separate

exploratory analysis, we believe that a globally optimal function is likely to require an

unreasonably large number of free parameters. We therefore pursued the conceptually

simpler approach of expressing the relationship in Eq. (6.3) as a regression tree for

each region.

A regression tree is an alternative model for expressing a relationship between a

continuous dependent variable y and one or more predictive (or explanatory) variables

xi [Breiman et al., 1984]. The tree per se consists of a set of rules of the form “if x1<1

and x2<2 then y=3” which supply an appropriate value for y over the range of the xi.

These rules are constructed by partitioning (or splitting) observations along the xi into

two subsets in such a way as to maximize the reduction in an error metric (or

“deviance”). Following the split, the homogeneity of the resulting pair of subsets is

increased. This procedure is applied recursively to each subset until certain stopping

criteria are met (typically the number of remaining observations becomes too small, or
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the reduction in deviance becomes insignificant). The resulting binary tree consists of

splits (e.g., “if x1<1”), and leaves (or terminal nodes) in which the dependent variable

is assigned a value. Following tree construction, pruning is usually applied to eliminate

overfitting that would otherwise degrade the predictive ability of the tree. During this

process, terminal nodes having little predictive robustness are eliminated through the

use of a cost-complexity function [Breiman et al., 1984].

For this study we used a more flexible form of regression tree which models the

dependent variable using a linear regression in each terminal node [Breiman and

Meisel, 1976]. Trees built in this manner are usually smaller and are also often easier

to interpret. The particular linear model we used was simply that in Eq. (6.2). To help

ensure the resulting fit was robust, we required a minimum of 30 observations within

each terminal node. (By “observation” we are referring to the corrected fire pixel

counts, 500-m burned area, mean fire-pixel VCF fractions (tree, herbaceous, bare), and

mean fire-pixel cluster size within a single 1◦ grid cell for a single month.)

During tree construction, we permitted splitting on all five predictive variables

appearing in Eq. (6.3). These variables are clearly not independent given their

constraints (Tf+Hf+Bf=100%, Cf≤Nf), and that, within the tropics, larger fire clusters

tend to occur in regions having higher herbaceous cover. This multi-collinearity will

have no impact on the predictive ability of the regression trees that we derive, but it

does mean that the final choice of splitting variable will be more or less arbitrary in the

event two such variables yield comparable reductions in deviance following a trial

split. When interpreting the final trees, therefore, one should not attach too much
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significance to the fact that, say, tree cover was selected as the splitting variable rather

than herbaceous cover.

6.3.3 Tropical closed-canopy forest correction

As mentioned in Section 6.2.2, accurate mapping of burned areas within tropical

closed-canopy forest is extremely challenging. In brief, obscuration of the surface by

persistent cloud cover and the tree canopy can lead to significant errors of omission.

This problem is not unique to the MODIS instrument. A further complication occurs in

tropical areas undergoing deforestation: where fire is used in the deforestation process

(e.g., South America and Equatorial Asia), burning is usually preceded by mechanical

clearing and aggregation of the resulting slash. Consequently, despite the fact that a

relatively large area of forest has been cleared and burned, the spatial extent of the burn

scar per se is much smaller than the area cleared. Satellite-based maps of burn scars

under these conditions are therefore likely to systematically underestimate the effective

area burned and fuel consumed. To help rectify this in our burned area product, we

attempt to use information about fire persistence and tree cover to specify locations and

time periods within the tropics for which a fixed correction factor, κ, will be applied to

the burned area predicted via the regression trees. It may prove beneficial, in the future,

to vary κ as a function of fire persistence in these areas, but we lack sufficient data to

resolve this issue at present.

Our method of calculating fire persistence relied on the same subdivision of
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individual 1◦ grid cells into a fine grid of ∼1-km cells with which we identified

fire-pixel clusters (Section 6.2.1). For each 1-km cell, we counted the number of days

on which fires were detected during the particular month being processed. By

averaging the number of days for all 1-km cells affected by fire, we computed the mean

fire persistence (in days), denoted Pf , for each 1◦ grid cell on a monthly basis In

Fig. 6.6 we show the climatological average of the monthly means (weighted by the

number of fire pixels each month) from January 2001 through December 2004.

Perhaps most obvious is the high persistence in Boreal North America, Boreal Asia,

and the American Pacific Northwest, a consequence of the higher fuel loads and lower

fire spread rates in the forested areas of these regions. Smaller patches of higher

persistence are present in the Middle East region as well, where some residual gas-flare

contamination remains in our MODIS fire data. Of most interest here, however, is the

high persistence evident in areas of SH South America and Equatorial Asia in which

deforestation is actively occurring. In these regions of slash-and-burn conversion, fire

is a critical element of the deforestation process. It is also evident that high fire

persistence does not occur in deforestation hot spots, such as Central Africa, where

“slash-and-rot” conversion is commonplace [Achard et al., 1998].

Based on the previous discussion, it is relatively straightforward to identify grid

cells within tropical rainforest for which application of the correction factor is

appropriate; simple thresholds applied to tree cover and fire persistence, and restricted

to the appropriate tropical regions, will suffice. Selection of an explicit value for κ,

however, is more difficult. Although we lack the necessary data to adjust for cloud and
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canopy obscuration, we can at least use rough estimates to help correct for

deforestation bias. Field observations suggest that forest clearings are typically one to

ten times larger than the slash piles destined for burning, depending on whether the

slashing was performed manually or mechanically (Douglas Morton and Wilfrid

Schroeder, personal communication). We chose the geometric mean of these limits,

yielding κ≈3.2. This is probably a more reasonable choice than the larger arithmetic

mean as manual clearing is more prevalent in the tropics as a whole. In implementing

the correction, we identified those monthly grid cells within the tropics for which

Tf(i, t)≥50% and Pf(i, t)≥1.2 days. For tropical grid cells satisfying these conditions,

we multiplied the burned area predicted with the appropriate regression tree by κ.
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Figure 6.6: 2001–2004 mean monthly fire persistence computed from Terra MODIS
active fire observations.
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6.4 Results

6.4.1 Regional regression trees

Regression trees were grown and pruned for each region; representative examples of

the final result obtained for three of the fourteen regions are shown in Figs. 6.7

through 6.9. The number of terminal nodes in the final trees ranged from two (Europe

and Equatorial Asia) to nine (Australia and SH South America). This wide range in

size primarily reflects differences in the quantity of calibration data available for each

region, and secondarily as an indication of the regional complexity in the

burned-area/fire-count relationship.

Taking into consideration our previous discussion of the interpretation of regression

trees grown from correlated variables (Section 6.3.2), we note that, in agreement with

our preliminary analysis, both vegetation cover and fire-pixel cluster information play

an important predictive role in the estimation of burned area. Considering the splits in

all 14 regression trees together, 41 (68%) involved one of the three VCF variables,

while 17 (28%) occurred on the mean fire-pixel cluster size. A detailed analysis of the

final trees revealed that the reduction in deviance achieved by splitting on Cf was often

much larger than that achieved by splitting on tree and herbaceous cover, indicating

that the predictive utility of mean cluster size is not simply an artifact of its correlation

with the VCF variables in the tropics. Only two splits (3%) occurred on Nf , primarily

to deal with mild nonlinearities in the burned-area/fire-count relationship for SH Africa

and Australia.
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Figure 6.7: Regression tree constructed for Northern Hemisphere Africa with Terra
MODIS active fire data. Terminal nodes (leaves) are shown in boldface. The left fork is
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Figure 6.8: Same as in Fig. 6.7 but for Boreal North America.
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Figure 6.9: Same as in Fig. 6.7 but for Australia.
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Figure 6.10 shows plots of predicted versus observed burned area for each region;

the corresponding correlation coefficients are listed in Table 6.2. Regions showing the

greatest agreement between predicted and observed burned area were Boreal Asia

(r=0.94 with N=2104 observations), Central Asia (r=0.92, N=282), Europe (r=0.95,

N=225), and Temperate North America (r=0.98, N=982); for these cases the

predictions of area burned are comparatively accurate and precise. The region having

poorest agreement was SH South America (r=0.56, N=4034), where predicted values

of burned area suffer from large random and systematic errors. This is, at least in part,

probably a consequence of the lower quality in 500-m burned area maps available for

this region (Section 6.2.2). The remaining nine regions lie between these two extremes,

yielding comparatively accurate, but imprecise, estimates of monthly burned area.
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Figure 6.10: Scatter plots of burned area predicted by regional regression trees vs. “true”
burned area derived from 500-m burned area maps. Axes show area in km2.
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6.4.2 Uncertainties

Since we ultimately intend to use the regression trees to produce global monthly burned

area estimates for input into coarse resolution models, it is important that uncertainty

estimates be provided. A natural approach for quantifying these uncertainties would be

through prediction confidence intervals computed for the fit of Eq. (6.2) within each

terminal node of the regression tree. However, this approach is problematic in practice

since the variance in burned area is not constant but instead increases as one considers

larger burned areas. This behavior is characteristic of many physical variables and is

referred to as heteroskedasticity in the statistical literature [e.g., Mandel, 1984].

Heteroskedasticity violates the constant-variance assumption of ordinary least squares

fitting and, if ignored, may lead to inaccurate statistical error estimates for the fit.

Methods for dealing with heteroskedastic variables (weighted least squares,

nonlinear data transformation) increase the influence of low-variance observations on

the fit, while simultaneously decreasing the influence of high-variance observations.

For our purposes this is undesirable. While it is true that the observations of very small

burned areas have very low variability in an absolute sense (but very high variability in

a relative sense), it is also true that these points are usually of less interest to most

users. (An important exception is the burning of aggregated forest slash. As discussed

in Section 6.3.3, such fires can consume prodigious quantities of biomass yet leave a

very small burn scar.) In terms of emissions and land cover conversion, it is the

observations of larger burns (which have high absolute variability but low relative
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variability) that are generally most important. Compensating for heteroskedasticity will

therefore have the undesirable effect of assigning the greatest importance to the

observations of least interest to us; this will in turn introduce biases (usually

downward) in the predictions of large burned areas.

Given the above issues, we did not correct for heteroskedasticity when fitting

Eq. (6.2) but adopted an alternative approach for estimating the uncertainties in our

burned area estimates. For the fit of Eq. (6.2) within each terminal node of the

regression tree, we regressed the square of the residuals (i.e. the variance) against fire

pixel counts. The square root of the variance predicted by this supplementary fit then

provided a one-standard-deviation (“one-sigma”) uncertainty estimate for all future

predictions emanating from the terminal node.

6.5 Multi-Year burned area estimates

We applied the regional regression trees to the entire archive of high-quality Terra

MODIS data to produce a monthly global burned area data set spanning November

2000 through mid-2005. Using these data, we calculated the 2001–2004 mean monthly

area burned and the associated uncertainties (Fig. 6.11). In propagating the monthly

uncertainties we assumed they were random and independent, and hence added these in

quadrature. (Given the large systematic errors noted earlier for SH South America,

these estimates should be considered lower bounds in this region. The uncertainties in

mean annual burned area suggested by Fig. 6.11 therefore probably underestimate the
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true error.) In general, the absolute uncertainties for regions characterized by large

burned areas (&1000 km2/year) correspond to relative errors of 10% to 40%. In regions

characterized by relatively small burned areas (≤100 km2/year), the absolute

uncertainties typically correspond to much higher relative errors of 50% to 100%.

In Table 6.3 we show the annual area burned within each region for the years

2001–2004. The most extensive burning consistently occurred in northern hemisphere

(NH) Africa, with well over 106 km2 burned in this region each year. Over this

four-year period substantial interannual variability – here arbitrarily defined as having

at least one year of burned area varying by more than 50% of the four-year mean –

occurred in Boreal North America, Boreal Asia, Equatorial Asia, and Australia. The

interannual variability of burned area in NH Africa exceeded the annual area burned in

all other regions, except SH Africa and Australia, over all four years. Taken together,

the total area burned in northern- and southern-hemisphere Africa and Australia from

2001–2004 comprised 80% of the total area burned globally.
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Figure 6.11: 2001–2004 mean annual burned area derived from Terra MODIS active
fire observations (top), and accompanying one-sigma uncertainties (bottom), expressed
as the fraction of each grid cell that burns each year. One-sigma uncertainties were
obtained by adding our spatially-explicit, monthly uncertainty estimates (assumed to
be independent and random) in quadrature (Section 6.5). The estimation of monthly
uncertainties is described in Section 6.4.2.
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Table 6.3: 2001–2004 estimated annual area burned for the regions used in the study,
with the mean of the relative errors (MRE) for the individual years shown in the right-
most column.

Area Burned (×104 km2=Mha)
Region 2001 2002 2003 2004 MRE (%)
Boreal North America 0.4 2.6 2.3 4.0 8
Temperate North America 1.4 1.7 1.5 1.2 4
Central America 1.8 2.2 2.9 1.8 8
NH South America 4.4 3.6 4.8 3.8 6
SH South America 12.4 12.7 10.8 13.4 5
Europe 2.9 1.6 2.6 1.9 4
Middle East 0.6 0.5 0.4 0.4 8
NH Africa 153.2 135.2 125.5 129.8 2
SH Africa 84.0 82.4 79.6 75.3 3
Boreal Asia 6.3 9.3 14.5 4.9 3
Central Asia 16.5 26.7 17.1 18.9 4
Southeast Asia 10.8 10.2 8.4 16.1 7
Equatorial Asia 0.8 3.4 1.4 2.9 9
Australia 78.7 58.9 24.8 44.9 2
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6.6 Evaluation

Rigorous validation of our global burned area data set requires independent,

ground-truth quality maps of burn scars from representative locations over the entire

globe. At present there is a paucity of such data, especially data that encompasses the

monthly, 1◦ scale of our estimates. For example, global validation using direct

estimates of burned area from Landsat imagery is limited by high data volumes and

temporal discontinuities. A single Landsat scene provides coverage over an area

approximately 180 km by 180 km in size, spanning in entirety at most a single 1◦ grid

cell. When combined with the 16-day Landsat repeat cycle, it is difficult to

unambiguously assign burned area to a specific calendar month. A practical (but more

limited) alternative, which we describe here, is to compare our estimates of burned area

to existing independent inventories. Results are summarized by region.

6.6.1 Canada

We compared our burned area estimates to independent estimates compiled by the

Canadian Interagency Forest Fire Centre (CIFFC). These data are provided on a yearly

basis from 2001–2004 for nine Canadian provinces (British Columbia, Alberta,

Manitoba, Newfoundland and Labrador, Northwest Territories, Ontario, Quebec,

Saskatchewan, and the Yukon Territories). A plot of predicted versus CIFFC burned

area (Fig. 6.12) shows a very strong linear relationship (slope = 0.70, r=0.89,

p�0.001), with some degree of underestimation for very large burned areas. This bias
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might in part be explained by the fact that ground-based and aerial surveys often record

only the outermost perimeter of burn scars.
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Figure 6.12: Burned area predicted by regression tree each year for individual Canadian
provinces during 2001–2004, versus annual provincial totals compiled by the Canadian
Interagency Forest Fire Centre (http://www.ciffc.ca/). Error bars represent one-sigma
uncertainties in predicted values.

6.6.2 United States

We compared annual nationwide burned area statistics (including Alaska) compiled by

the National Interagency Fire Center (NIFC) for the years 2001–2004 (Fig. 6.13). The

two data sets are strongly linearly related (slope = 0.83, r=0.91, p=0.093), although

there is again a modest bias towards underestimation in large fire years. As with
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Canada, this bias might be partly explained by the manner in which large burns are

surveyed. Considering the NIFC statistics as truth, the mean absolute percent error

(MAPE) of our estimates is 13%.
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Figure 6.13: Total predicted burned area within the United States for the years
2001–2004 versus annual totals compiled by the National Interagency Fire Center
(http://www.nifc.gov/stats/index.html). Error bars represent one-sigma uncertainties in
predicted values.

6.6.3 Russia

We compared the total area burned in Russia for 2001 and 2002 to estimates produced

by Sukhinin et al. [2004] from satellite data (Table 6.4). For 2001, a year of somewhat

lower fire activity, our estimates were about 26% larger. For 2002 both totals agree to
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within a few tenths of a percent.

Table 6.4: Comparison of predicted annual area burned in Russia with estimates of
Sukhinin et al. [2004].

Area Burned (×104 km2=Mha)
Year This study Sukhinin et al. [2004]
2001 9.6 7.56
2002 12.1 12.1
2003 16.0 –
2004 6.9 –

6.6.4 World

Our estimates of the total global annual area burned calculated for the years 2001–2004

range from a low of 2.97 million km2 in 2003 to a high of 3.74 million km2 in 2001.

Although this does not qualify as an evaluation, we compared these results to the

GBA2000 and GLOBSCAR products available for the year 2000 (Table 6.5). Despite

the fact that we are comparing different years, our annual totals are only 0.3% to 27%

higher than the total obtained with GBA2000. They are, however, substantially above

the annual total obtained from GLOBSCAR, by a minimum of 51% and as much as

92%. Confining the comparison to November and December 2000, the only time

period during which all three data sets overlap, our total burned area (0.91 million km2)

is about 32% higher than that of GBA2000, and 144% higher than that of

GLOBSCAR. Thus, even if the 2002–2003 period corresponding to the weak El-Niño

Southern Oscillation is not considered, the global burnt area estimate derived here is

significantly higher than the GLOBSCAR estimate.
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Table 6.5: Comparison of global annual area burned obtained from the GBA2000
[Tansey et al., 2004] and GLOBSCAR [Simon et al., 2004] data sets, and estimated
using the calibration approach described in this chapter.

Area Burned
Source Year (×106 km2)
GBA2000 2000 2.93
GLOBSCAR 2000 1.94
This study 2001 3.74

2002 3.51
2003 2.97
2004 3.19

2001–2004 mean 3.35

GBA2000 Nov.–Dec. 2000 0.69
GLOBSCAR Nov.–Dec. 2000 0.37
This study Nov.–Dec. 2000 0.91

6.7 Application to other sensors

Clearly any active-fire calibration technique must be tuned to a specific sensor to

compensate for differences in the characteristics of the sensor (e.g., spatial resolution),

as well as the temporal sampling afforded by the platform on which the sensor resides.

The latter issue is especially relevant because an increase in the rate at which

“snapshots” of an active fire are made will generally increase the correspondence

between a map of cumulative fire pixels and the spatial extent of the burn scar. It is

instructive, therefore, to consider the effective temporal sampling rate of a particular

instrument in gauging its suitability for providing burned area estimates via active-fire

calibration. For a sensor on board a satellite having a polar or precessing orbit, a

convenient measure of this sampling frequency is the daily equatorial coverage,
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denoted ceq, which is simply the fraction of the Equator imaged by the sensor each day,

irrespective of exactly where along the Equator the imaging occurs. For a swath width

of w, this quantity is given by

ceq =
w

πRE sin γ

(

24 h

T

)

, (6.4)

where RE is the radius of the Earth, γ is the orbit inclination, and T is the orbital

period (in hours). Values of the daily equatorial coverage for the MODIS, VIRS, and

ATSR instruments (normalized to that of MODIS) are listed in Table 6.6. For the

ATSR we explicitly considered the effect of restricting observations to nighttime

overpasses, which halves the coverage predicted by Eq. (6.4), since the ATSR

nighttime fire product is restricted in this manner.

Comparing the VIRS and MODIS instruments, the former provides about 34% less

equatorial coverage; although the orbit inclination of the TRMM satellite on which

VIRS resides increases the coverage by a factor of about two, the VIRS swath is

narrower by a factor of about three. This suggests that a calibration-based technique

based on VIRS active fire data is likely to yield lower quality estimates of burned area

than for MODIS. More robust estimates are expected at higher subtropical latitudes

where the VIRS sampling frequency increases by about a factor of three [Giglio et al.,

2003c]. However, the coarser VIRS spatial resolution (2.5 km) will probably degrade

the quality of any calibration relationship involving cluster size, regardless of latitude,

since VIRS fire-pixel clusters, being composed of larger areal units, provide a narrower

range of unique values over which to discriminate different burned areas.
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A comparison between MODIS and ATSR is more straightforward since these

instruments have virtually identical spatial resolution. Given the narrower swath,

combined with the need to restrict fire observations to nighttime overpasses, the ATSR

provides nearly an order of magnitude fewer opportunities to record active fire activity

at the Equator. In the context of our calibration approach, this is equivalent to

discarding nearly 90% of the MODIS active fire pixels recorded in each grid cell each

month and repeating the calibration procedure. In addition, clusters of cumulative

ATSR fire pixels are also likely to be smaller and more fragmented since the time

interval between successive satellite overpasses is about ten times longer, thus reducing

the utility of cluster-related information as a splitting variable. The combination of

these factors is likely to yield larger uncertainties in estimates of burned area produced

by calibrating ATSR active fire observations. Nevertheless, the ATSR has been shown

to provide very useful estimates of the seasonal and interannual variability in burned

area [e.g., Schultz, 2002].

Table 6.6: Swath width (w), orbit inclination angle (γ), and temporal sampling fre-
quency (relative to that of the MODIS instruments) at the Equator for three sensors
on-board operational satellites.

Sensor w (km) γ (◦) Relative Sampling Frequency
MODIS1 2330 98 1
VIRS2 830 35 0.66
ATSR3 512 99 0.22 (day)

0.11 (night)

1 Values applicable to Terra and Aqua MODIS instruments.
2 Post August 2001 orbit boost.
3 Entries are also applicable to the Advanced ATSR (AATSR).
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6.8 Conclusion

We have presented a method for estimating monthly burned area globally at 1◦ spatial

resolution using Terra MODIS active fire observations and ancillary vegetation cover

information. Using regional regression trees, these data were calibrated to burned area

estimates derived from 500-m MODIS imagery based on the conventional assumption

that burned area is proportional to counts of fire pixels under specific conditions.

Traditionally, the constant of proportionality (α) has either been held fixed, or adjusted

based on a single vegetation-related parameter. Neither practice is satisfactory at a

global scale. We propose a more flexible approach in which α is permitted to vary as a

function of both tree and herbaceous vegetation cover (or alternatively bare ground

fraction), and the mean size of monthly cumulative fire-pixel clusters within each

1◦ grid cell. Though we found this to be usually unnecessary, we also allowed α to vary

with fire pixel counts to accommodate slight deviations from the assumption of

linearity. The exact form of the functional dependence of α on these predictive

variables was not specified a priori, but was constructed through recursive partitioning

and expressed in terms of the splits and leaves of a regression tree. In addition to their

considerable flexibility, regression trees offer the advantage of readily accommodating

additional explanatory variables on a trial basis.

Recognizing limits in our ability to measure burned area in closed canopy tropical

forests, we used information about monthly fire persistence and tree cover to identify

locations and time periods within the tropics requiring the application of a fixed
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correction factor to the burned area predictions obtained from the regression trees.

Regions showing good agreement between predicted and observed burned area

included Boreal Asia, Central Asia, Europe, and Temperate North America, where the

estimates produced by the regression trees were relatively accurate and precise. Poorest

agreement was found for SH South America, where predicted values of burned area are

both inaccurate and imprecise. The poor result obtained in this region is most likely a

consequence of multiple factors that include extremely persistent cloud cover and a

degradation in the quality of the 500-m burned area maps used for calibration.

Agreement in the nine remaining regions fall between these two extremes, yielding

comparatively accurate, but less precise, estimates of monthly burned area.

We used the regional regression trees to produce multi-year, global burned area

estimates on a monthly basis from the current archive of Terra MODIS active fire data.

Annual totals derived from these data showed good agreement with independent annual

estimates available for nine Canadian provinces, the continental United States, and

Russia. Using these data, we estimated the global annual burned area for the years

2001–2004 to vary between 2.97×106 and 3.74×106 km2, with the maximum

occurring in 2001. The most extensive burning consistently occurred in NH Africa,

with well over 106 km2 burned in this region each year. Over this four-year period

significant interannual variability occurred in Boreal North America, Boreal Asia,

Equatorial Asia, and Australia. Taken together, the total area burned in northern- and

southern-hemisphere Africa and Australia from 2001–2004 comprised 80% of the total

area burned globally.
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We reiterate that we are not promoting our regression-tree approach (or, indeed,

any active-fire calibration approach) as a substitute for burned area maps generated

from direct observations of burn scars. Rather, for some applications, statistical

coarse-resolution burned area estimates derived from MODIS active fire observations

can serve as a useful interim product until long-term burned area data sets become

available.
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Chapter 7

Conclusion

7.1 Summary of Research

The five individual studies presented in this dissertation, which center around the

utilization of MODIS data, address a range of issues related to the remote sensing of

fires using satellite-based sensors. In this final chapter, I will briefly review each study,

with an emphasis on the importance of the results obtained from this work for the

global modeling community.

In Chapter 2 an operational active-fire detection algorithm was presented for the

MODIS instrument on-board NASA’s Terra and Aqua satellites. MODIS has enabled,

for the first time, global daytime and nighttime fire monitoring in near real time, and

the compilation of a multi-year data record of fire activity. The algorithm, which

incorporates many refinements to earlier approaches, offers greater sensitivity to

smaller, cooler fires, as well as a lower false alarm rate under many conditions. Both

features are important in that they provide a more accurate picture of global fire

activity. As mentioned in Chapter 4, for example, the fire detection algorithm used to
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produce the AVHRR Global Fire Product (GFP) is particularly susceptible to false

alarms. Among other problems, the high false alarm rate makes it appear as though fire

activity is both frequent and uniformly likely across the entire continental United

States; this is extremely misleading and not at all representative of reality.

Validation of the MODIS active fire products requires coincident fire observations

of a higher spatial resolution. To this end, Chapter 3 presented an automated active-fire

detection algorithm for the high resolution ASTER instrument. Since ASTER lacks

channels in the mid-infrared portion of the electromagnetic spectrum, the algorithm

differs somewhat from the methods used with the coarser-resolution sensors

traditionally used for active fire monitoring. ASTER co-resides with the MODIS

sensor on-board the Terra satellite, and as such has become an important tool in the

ongoing validation of the Terra MODIS active fire products. The resulting 30-m

ASTER fire masks provide a significant step forward in that they enable large,

meaningful statistical samples to be employed in the evaluation of the MODIS (and

potentially VIRS and SEVIRI) active fire products.

In the work described in Chapter 4, MODIS fire data were distilled into a format

suited for global modeling studies, and these data were used to analyze the global

distribution of biomass burning using five different temporal metrics (fire pixel density,

peak fire month, fire season length, annual periodicity, and fire radiative power [FRP]).

Additionally, three years of Terra and Aqua MODIS observations were combined to

demonstrate that a strong diurnal fire cycle is prevalent at tropical and subtropical

latitudes. The consistency of the fire time series recorded by the two MODIS
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instruments was also considered; in most areas the month of peak burning and the

length of the fire season observed by each was found to be in good agreement. As

shown in this work, the MODIS CMG active fire products provide useful information

about the spatial and temporal dynamics of global fire activity, the distribution of fire

activity within different land cover types, and fire intensity. In particular, given the

current paucity of spatially-explicit, global burned area data, active fire products

continue to be the only source of information about the interannual variability of fire

activity at large spatial scales.

To understand the MODIS product more fully Chapter 5 presented a more detailed

look at the diurnal fire cycle in 15 different regions of the tropics and subtropics. Bias

errors in the resulting diurnal cycles were either avoided or removed through a

combination of judicious region selection and the application of corrections to

compensate for cloud obscuration and time-dependent “blind spots” in the

fire-detection capability of the VIRS sensor. A strong diurnal cycle was found in all

regions, with the time of peak burning varying between approximately 13:00 and 18:30

local time. An important finding of this work was that a correction for orbital drift is

absolutely critical when producing multi-year, active fire data records from the

AVHRR instruments residing on the NOAA satellites.

Finally, recognizing the limitations of active fires observations for representing

burned area, and the importance of burned area information for global change research,

Chapter 6 presented a method for estimating monthly burned area globally at 1◦ spatial

resolution using Terra MODIS data and ancillary vegetation cover information. Using
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regression trees constructed for 14 different global regions, MODIS active fire

observations were calibrated to burned area estimates derived from 500-m MODIS

imagery based on the assumption that burned area is proportional to counts of fire

pixels. Unlike earlier methods, the constant of proportionality was allowed to vary as a

function of tree and herbaceous vegetation cover, and the mean size of monthly

cumulative fire-pixel clusters. In areas undergoing active deforestation, a subsequent

correction was devised based on tree cover information and a simple measure of fire

persistence. The regional regression trees were used to produce global burned area

estimates on a monthly basis from the current archive of Terra MODIS active fire data

from November 2000–December 2005. At the time of this writing, this data set is the

only source of global, spatially-explicit burned area data available on a multi-year

basis. While not a universal substitute for burned area maps generated via direct

observation of burn scars, coarse-resolution burned area estimates derived from

MODIS active fire observations can serve as a useful interim product for global

emissions and carbon cycle models until long-term, directly-mapped burned area data

sets become available.

7.2 Implications of the Research

The MODIS fire data produced as part of this research (Chapters 2 and 4) have

advanced our knowledge of global biomass burning. At present these data are the only

multi-year, global fire data set to include daytime fire observations. The global MODIS
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fire product also provides, for the first time, a global picture of the FRP, a quantity

having, among other benefits, significant potential to improve estimates of pyrogenic

emissions. To date, MODIS fire data have been used to address scientific questions

[Clerici et al., 2004, Damoah et al., 2004, Edwards et al., 2004, Jaffe et al., 2004,

Edwards et al., 2006, Damoah et al., 2006, Giglio et al., 2006a,b, Mollicone et al.,

2006] as well as to support operational fire management via the MODIS Rapid

Response System and a suite of Direct Broadcast receiving stations. The research

presented in this thesis has also shown that MODIS active fire data can be used to

estimate burned area when combined with ancillary information on vegetation and

fire-pixel clusters. The interim burned area data set produced from this work has been

publicly available since December 2005 and has been used to study the interannual

variability of global biomass burning emissions by van der Werf et al. [2006].

The tropical and sub-tropical diurnal fire cycles found in this research (Chapter 5)

have important implications for all long-term active fire data records, in particular

those produced from the AVHRR and ATSR sensors. The Stroppiana et al. [2000b]

Global Fire Product, for example, was produced using 21 months of NOAA-11

AVHRR data from April 1992 to December 1993. During this time period, the

NOAA-11 Equator crossing time drifted from about 15:00 to 16:00 local time.

Although this 1-h shift seems small, for many regions it spans parts of the diurnal fire

cycle where the rate of change is very high. This can cause artificial changes in the

apparent number of AVHRR fire pixels recorded by the instrument (by up to 30%) over

the 21-month time period. The impact of these artifacts on the results reported in
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Dwyer et al. [1999, 2000a,b] is not known. Despite the stable orbit of the ENVISAT

satellite, the diurnal fire cycles reported here also have implications for the use of the

ATSR World Fire Atlas (WFA). The exclusive mapping of nighttime fires at about

22:30 local time is likely to distort the apparent relative amount of fire activity in

different regions. Further investigation, including an intercomparison of the WFA and

other fire products, is warranted.

The more rigorous derivation of the fire radiative power in a form suitable for a

remote-sensing retrieval (Appendix A) revealed a previously-unknown dependence on

sub-pixel fire fraction. While a preliminary analysis showed that this dependence could

be neglected for very small and very large fires, the implications for intermediate size

fires is not yet known and requires further investigation.

7.3 Future Directions

The global active fire product developed as part of this thesis provides the basis for

long term monitoring of global fire activity using the two MODIS instruments. There is

a need for the capabilities of these experimental satellites developed by NASA to

transition to an operational agency for continued long term monitoring. This is

currently planned through the Visible Infrared Imager/Radiometer Suite (VIIRS)

sensor scheduled to fly on a suite of satellites comprising the National Polar-orbiting

Operational Environmental Satellite System (NPOESS). The algorithm presented in

Chapter 2 now forms the basis for the environmental data record on fire being
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developed for the VIIRS instrument.

For the science community it is important that the data products are validated and

consistent over time. For validation of the fire products, the coincident ASTER and

MODIS data have provided a unique opportunity. In the coming months, there is a

need to apply the ASTER algorithm developed in Chapter 3 to a global sample of

scenes, thus achieving Stage 2 [Morisette et al., 2002] validation of the global product.

Similar coincident high resolution and moderate resolution sensors designed for fire

monitoring will be needed in the future. For consistency of fire observations it is

important to consider the diurnal cycle of fire activity, either by accounting for bias or

timing the overpass of future systems to observe near the peak. Results from this thesis

would indicate this would be between 13:00 and 18:30 local time. Although a global

network of geostationary satellites appears to hold considerable promise for capturing

the diurnal cycle, consideration must be given to the spatial consistency. A

micro-satellite constellation of polar orbiters designed specifically for fire monitoring

might provide an alternative approach.

The research presented in this thesis has shown that, in combination with ancillary

vegetation information, active fire data can be used to estimate burned area. While an

interim approach, it has the potential to capture small agricultural fires which, because

of their small size, often will not appear in forthcoming ∼1-km global burned area

products. In the future, a hybrid of active fire and burned area products may provide the

optimal combination for global fire monitoring.
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Appendix A

Retrieval of Fire Radiative Power

The MODIS active fire product includes an estimate of the fire radiative power (FRP),

a radiometric quantity related to fire intensity first proposed by Kaufman et al. [1998b],

within each MODIS pixel. Among other applications, the FRP can be integrated over

time to estimate combusted biomass, and is thus a topic of current research for its

potential in quantifying pyrogenic greenhouse-gas emissions.

The original approach for retrieving FRP was developed by Kaufman et al. [1998b],

who used simulated fire scenes to determine an empirical relationship expressing the

FRP in terms of 4-µm brightness temperatures measured with the primary MODIS fire

detection channels (bands 21 and 22). This approach was subsequently supplemented

with an analytical technique developed by Wooster et al. [2003]. In this Appendix, the

Wooster et al. approach is more rigorously derived, and several minor errors are

corrected in the process. Some important caveats are also noted.

The FRP for N different fire components within a pixel, each having its own
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temperature and area, is defined as [Wooster et al., 2003]

FRP = Apix ε σ
N

∑

i=1

piT
4
i , (A.1)

where pi is the fraction of the pixel occupied by the i’th fire component at temperature

Ti, Apix is the area of the pixel, ε is the weighted mean emissivity of the fire

components, and σ is the Stefan-Boltzmann constant. The fire fractions pi satisfy the

constraint that
N

∑

i=1

pi = 1 (A.2)

since in total they encompass the full spatial extent of the fire.

For operational satellite retrieval, the FRP must be cast in terms of radiometric

quantities that can be remotely sensed with spaceborne sensors. As will be seen, a

middle-infrared channel located near 4 µm uniquely permits a direct route to this goal.

Using the notation in Table A.1, the observed top-of-atmosphere, middle-infrared

radiance, L, for a pixel containing N black-body fire components and a Lambertian,

non-fire background is given by

L = τu

N
∑

i=1

piB(λ, Ti) + τu pb εb B(λ, Tb)

+ τu pb(1 − εb) [τd Isun cos φ + Iatm] /π

+ Latm, (A.3)

where Tb is the temperature of the non-fire background occupying a relative pixel

fraction of pb, where

pb = 1 −

N
∑

i=1

pi. (A.4)
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We assume that a neighboring, fire-free pixel (or pixels) can be used to estimate the

radiance of the non-fire fraction, and denote this radiance as Lb. Assuming identical

surface and atmospheric conditions in this pixel (or pixels), the observed

middle-infrared radiance for the fire-free pixel is

Lb = τu εb B(λ, Tb) + τu(1 − εb) [τd Isun cos φ + Iatm] /π + Latm. (A.5)

Using this result, Eq. (A.3) may then be written as

L = τu

N
∑

i=1

piB(λ, Ti) + pb Lb + (1 − pb)Latm. (A.6)

The term (1 − pb)Latm will always be small compared to at least one of the first two

terms in Eq. (A.6) and may therefore be neglected. Thus,

L ≈ τu

N
∑

i=1

piB(λ, Ti) + pb Lb. (A.7)

Table A.1: Notation for radiometric and other quantities.

Ti kinetic temperature of i’th fire component
pi fraction of pixel occupied by i’th fire component
Tb kinetic temperature of non-fire background
pb non-fire fraction of pixel
εb middle-infrared background emissivity
τu upward middle-infrared atmospheric transmittance

Latm upwelling mid-IR atmospheric radiance
φ solar zenith angle
τd downward mid-IR atmospheric transmittance (at angle φ)

Isun extraterrestrial mid-IR solar irradiance
Iatm diffuse downwelling atmospheric mid-IR irradiance

As shown by Wooster et al. [2003], the Planck function may be approximated over

a limited temperature range as

B(λ, T ) ≈ aT b, (A.8)
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where a and b are empirical constants dependent upon both λ and the temperature range

of interest. For wavelengths near 4 µm, choosing b = 4 yields a good approximation to

the Planck function over a range of temperatures encompassing most flaming and many

smoldering vegetation fires. Substituting this approximation into Eq. (A.7), we have

L ≈ a τu

N
∑

i=1

piT
4
i + pb Lb. (A.9)

Solving Eq. (A.9) for the summation over all fire components shows that

N
∑

i=1

piT
4
i ≈

L − pb Lb

a τu

. (A.10)

The fact that b = 4 is most serendipitous as it allows one to combine this result with the

original definition of the FRP. Substituting Eq. (A.10) into Eq. (A.1), we find that

FRP ≈
Apixεσ

aτu

(L − pb Lb) . (A.11)

Our final expression for the FRP [Eq. (A.11)] differs slightly from that of Wooster

et al. [2003], who reported that1

FRP ≈
Apixεσ

a εMIR

(L − Lb), (A.12)

where εMIR is the middle-infrared fire emissivity. The minor differences explained as

follows. The atmospheric transmittance τu does not appear in Eq. (A.12) because

Wooster et al. implicitly assumed that all radiances were atmospherically corrected;

here, we have not. For the ∼1-km sensors considered by Wooster et al., fires generally

occupy only a small fraction of a pixel and, consequently, pb ≈ 1, effectively bringing

1The original notation of Wooster et al. [2003] has been changed to match the notation used here.
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the two different results into better agreement. For very large fires, pb � 1, and

Eq. (A.12) will clearly overcompensate for the presence of a non-fire background in the

fire pixel. However, the degree of overcompensation is absolutely negligible since, for

such fires, L � Lb. This is fortunate because, in the absence of independent

information about fire size, there is really no way to estimate pb without appealing to

the problematic bispectral temperature and area retrieval discussed in Section 3.6.

The middle-infrared fire emissivity (εMIR) appearing in the denominator of

Eq. (A.12) is more problematic as it does not fully account for departures from the

assumption of black-body fire components. To account for such departures, one needs

to incorporate the middle-infrared fire emissivity as well as an additional reflected solar

component into Eq. (A.3), i.e.,

L = τu εMIR

N
∑

i=1

piB(λ, Ti) + τu pb εb B(λ, Tb)

+ τu [pb(1 − εb) + (1 − εMIR)(1 − pb)] [τd Isun cos φ + Iatm] /π

+ Latm, (A.13)

If we now substitute our independent estimate of the background (non-fire) radiance,

Lb, into Eq. (A.13), we find that

L = τu εMIR

N
∑

i=1

piB(λ, Ti) + pb Lb + (1 − pb)Latm

+ τu(1 − εMIR)(1 − pb) [τd Isun cos φ + Iatm] /π. (A.14)

This result is similar to Eq. (A.6), but contains the extra baggage of an additional term

accounting for sunlight reflected by the fire. Due to the variability of the factors within
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this term, it may not always be neglected, and consequently must propagate through the

steps shown above into the final expression for the FRP. Accurate retrieval of the FRP

for grey-body fire components may therefore require a relationship more complicated

than that suggested by Eq. (A.12).
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Appendix B

Burned Area Detection Algorithm

Burned area maps were produced using a prototype algorithm that uses the 500-m

MODIS atmospherically-corrected Level 2G surface reflectance product [Vermote and

Justice, 2002], the MODIS Level 3 daily active fire products [Justice et al., 2002], and

the MODIS Level 3 96-day Land Cover Product [Friedl et al., 2002]. The algorithm,

which is a major extension of an earlier method proposed by Roy et al. [1999], detects

persistent changes in a daily vegetation-index (VI) time series derived from MODIS

band 5 (1.2 µm) and band 7 (2.1 µm) surface reflectances, respectively denoted ρ5 and

ρ7, where

VI =
ρ5 − ρ7

ρ5 + ρ7

. (B.1)

This index shows a significant decrease following a burn, and provides somewhat

better discrimination of burned areas than the more commonly used Normalized Burn

Ratio (NBR), an index defined similarly but with Landsat Thematic Mapper (TM)

bands 4 (0.83 µm) and 7 (2.2 µm) [Miller and Yool, 2002].

The general detection approach is to first derive a summary map of persistent

change from the VI time series, and then use spatial and temporal active fire
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information to guide the statistical characterization of burn-related and non

burn-related change within the scene. This information is used to estimate probabilistic

thresholds suitable for classifying the scene into burned and unburned pixels. The

approach ultimately identifies the date of burn, to the nearest day, for pixels within

individual MODIS Level 3 tiles [Wolfe et al., 1998] at 500-m spatial resolution.

B.1 Composite change summary

The algorithm first examines the daily VI time series by considering observations

within two adjacent sliding temporal windows of duration W=10 days; these windows

are referred to as the candidate pre-burn and candidate post-burn windows,

respectively. Within the k’th candidate pre-burn window, the trimmed mean [VIpre(k)]

and trimmed standard deviation [σpre(k)] of all observations are computed. Statistics

for the k’th candidate post-burn window are similarly computed and denoted VIpost(k)

and σpost(k). The index k references the position within the daily time series on which

the sliding windows are aligned (incrementing k moves both windows forward in time

by one day). The time series of active fire observations for the pixel under

consideration is also examined, and the occurrence of any such pixels in the time series

is flagged.

A measure of temporal separability S(k), defined as

S(k) =
∆VI(k)

σpre(k) + σpost(k)
, (B.2)

where ∆VI(k)=VIpre(k)−VIpost(k), is evaluated for all k. For each pixel the
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maximum separability max(S(k))=S(kmax) is identified. The date associated with the

maximum change is the midpoint of the interval between the last observation in the

pre-burn window and the first observation in the post-burn window. The time series for

each pixel of the MODIS tile is processed, yielding composite images of ∆VI(kmax)

and VIpost(kmax), and a composite map of active fire pixels detected during the time

period being processed.

B.2 Identification of training samples

Having generated the composite imagery just described, a simple procedure is used to

extract representative burned and unburned samples within each land cover class l

present within the MODIS tile. To identify probable burned pixels, the composite

active fire map is morphologically eroded. This eliminates the smallest fire-pixel

clusters, which are less likely to be accompanied by a detectable burn scar

(cf. Fig. 6.1). Burned training samples of ∆VI(kmax) and VIpost(kmax) are drawn from

those pixels remaining in the eroded fire mask, and are partitioned by land cover class.

In a complementary manner, dilating the composite active fire map provides a mask of

pixels that are unlikely to have burned during the time period being processed, and

training samples of unburned pixels for each land cover class are thus identified. Here

more care is required since the active fire map will often greatly under-represent the

spatial extent of large burns, so the radius of the dilation kernel is increased in

proportion to the size of individual fire-pixel clusters. This is again consistent with the
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empirical observation that large burns tend to be accompanied by large clusters of

active fire pixels, and vice versa.

B.3 Classification of unambiguous burned and unburned

pixels

The training samples extracted in the previous step are now used to derive conservative

dynamic thresholds to classify unambiguous burned and unburned pixels. Pixels with

land cover class l for which ∆VI(kmax) is less than the upper quartile of ∆VI(kmax) for

all unburned training pixels in land cover class l are immediately labeled as unburned.

Pixels with land cover class l for which ∆VI(kmax) is greater than the upper quartile of

∆VI(kmax), and VIpost(kmax) is less than the lower quartile of VIpost(kmax) for all

burned training pixels in land cover class l are immediately classified as burned. Prior

to performing this step an initial separability test is performed for each land cover

class: if the distributions of ∆VI(kmax) for the burned and unburned training samples

show excessive overlap, all pixels within land cover class l are immediately classified

as unburned and the quartile tests are not performed.

This step typically provides a final classification for 60% to 80% of all image

pixels, resulting in a large reduction in the computational effort needed to process

pixels in the remainder of the scene.
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B.4 Classification of remaining pixels

Following the inital labeling of obvious burned and unburned pixels, one of two

different approaches are then used to label the remaining unclassified pixels depending

on the geographic region and time period being processed.

B.4.1 Region growing

In high-latitude regions having shorter MODIS revisit periods, and at lower latitudes

where the majority of the area burned is dominated by large burn scars (&100 km2),

region-growing is used to identify the remaining burned pixels within the MODIS tile

being processed. Clusters of active fire pixels derived from the composite active-fire

mask are used as seeds to iteratively “fill in” the surrounding burn scar. The values of

∆VI(kmax) and VIpost(kmax) for unclassified candidate pixels adjacent to a seed pixel

are compared to the statistical distributions derived from the burned and unburned

training samples. Bayes’ rule is applied to estimate a posteriori probabilities for the

candidate pixel and select the class to which it will be assigned. Additional temporal

constraints are applied based on the burn dates of the parent seeds. Pixels classified as

burned during the current iteration become seeds in the subsequent iteration. The

process continues until no new seeds are found.
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B.4.2 Contextual classification

In regions where the temporal sampling of active fires is less frequent, or relatively

small burns (<∼10 km2) are abundant, an alternate classification approach is required.

Region growing under these conditions will usually result in large omission errors

since many smaller burns will lack active-fire seed pixels, and a contextual classifier is

employed instead. In addition to using the spectral information available for the

training pixels and the entire scene, the contextual classifier exploits the fact that both

burned and unburned pixels tend to occur near pixels having the same burned or

unburned status. Here, a Markov Random Field (MRF), a standard approach for

modeling such spatial behavior, is employed. The MRF is defined by a probability

density function that encodes the likelihood that a pixel is burned based on the state of

its eight immediate neighbors. This information is incorporated with the spectral

information provided by ∆VI(kmax) and VIpost(kmax), and each pixel not classified

during step A.3 is assigned the class (burned or unburned) having the maximum a

posteriori (MAP) probability. Estimation of these probabilities is performed using the

iterated conditional modes (ICM) method described by Besag [1986]. ICM requires a

rough preliminary classification to initiate the iterative process, and for this a naive

Bayes classifier is used. The preliminary class assigned to each pixel within land cover

class l is that which has the highest a posteriori probability estimated using Bayes’ rule:

pl(B|∆VI, VIpost) =
pl(∆VI|B) pl(VIpost|B) pl(B)

pl(VI, ∆VIpost)
(B.3)

pl(U|∆VI, VIpost) =
pl(∆VI|U) pl(VIpost|U) pl(U)

pl(VI, ∆VIpost)
, (B.4)
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where “B” and “U” denote the classes burned and unburned, respectively. (Note that

the index kmax has been dropped in the above equations to reduce clutter.) Again

making use of information provided by active fire observations, the a priori probability

of a burned pixel pl(B) in land cover class l is estimated as the fraction of all pixels of

land cover class l within the scene in which an active fire was detected during the time

period being processed. From this pl(U)=1−pl(B).

B.5 Validation

At present, validation of the 500-m burned area maps has been limited to Russia

through comparison with maps generated manually from high resolution satellite

imagery [Loboda and Csiszar, 2004]. Using 20 Landsat scenes acquired between

17 August 2001 and 19 August 2002, Loboda and Csiszar found good agreement

between the burn scars mapped by the algorithm with those traced manually (Fig. B.1).

Validation efforts are currently being extended to Australia and South America.
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Figure B.1: Areas of 39 individual burn scars in Russia during 2001 and 2002 as mapped
by 500-m burned area detection algorithm versus ground truth derived manually from
Landsat imagery. The slope and intercept of the solid black regression line are 0.925
and 5.5 km2, respectively, with a correlation of 0.996.
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Appendix C

List of Acronyms

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ATSR Along-Track Scanning Radiometer
AATSR Advanced Along-Track Scanning Radiometer
AVHRR Advanced Very High Resolution Radiometer
CIFFC Canadian Interagency Forest Fire Centre
CAR Central African Republic
CMG Climate Modeling Grid
DMSP Defense Meteorological Satellite Program (satellite)
ERBS Earth Radiation Budget Satellite
FRE fire radiative energy
FRP fire radiative power
GFP Global Fire Product
GOES Geostationary Operational Environmental Satellite
IQR interquartile range
MCF mean cloud fraction
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
NH northern hemisphere
NIFC National Interagency Fire Center
OLS Operational Linescan System
PDF probability density function
SEVIRI Spinning Enhanced Visible and Infrared Imager
SH southern hemisphere
TRMM Tropical Rainfall Measuring Mission (satellite)
UARS Upper Atmospheric Research Satellite
VAS Visible Infrared Spin Scan Radiometer Atmospheric Sounder
VCF Vegetation Continuous Fields
VIRS Visible and Infrared Scanner
WF ABBA Wildfire Automated Biomass Burning Algorithm
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D. Stroppiana, P. A. Brivio, and J.-M. Grégoire. Modelling the impact of vegetation
fires, detected from NOAA-AVHRR data, on tropospheric chemistry in tropical
Africa. In J. L. Innes, M. Beniston, and M. M. Verstraete, editors, Biomass Burning
and its Inter-Relationships with the Climate System, pages 193–213. Kluwer
Academic Publishers, Dordrecht, 2000a.
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