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Conventional air conditioning (AC) systems have limited control of sensible 

cooling and latent cooling capacities; therefore additional energy-consuming devices, 

i.e. electric heaters, are often used to reheat the conditioned air in order to provide 

thermal comfort for the building occupants. Separate sensible and latent cooling 

(SSLC) AC systems are capable of providing better control of cooling at no extra 

overload in the form of energy input. Moreover, because of a higher coefficient of 

performance (COP) in the sensible cooling cycle, the SSLC technology reduces total 

energy input to vapor compression systems (VCS), and makes AC systems more 

energy efficient.  

This dissertation explores and compares two main methods for implementing 

the SSLC concept:  cycle options for SSLC systems and methods of indoor heat 

transfer.  One of these options consists of two independent VCS, and the other 

consists of one VCS removing sensible load only and one solid desiccant wheel (DW) 

regenerated with the waste heat from the VCS. The objectives of the system option 



 

study are to understand the reasons behind energy savings and explore the best 

possible configurations of SSLC systems in different summer outdoor conditions. The 

simulation results of the first kind of SSLC system show that the energy savings come 

from a reduced compressor power input of the sensible cycle. Under wide ranging 

ambient conditions, the amount of energy savings varies from 22% to 50% over 

conventional system energy input. However, such a system has limited independence 

of varying sensible to latent load ratio and the extra cost of an internal heat 

exchanger. The integration of VCS and DW overcomes these limitations.  An 

experimental setup was constructed in an environmental chamber to test the 

performance of the second kind of SSLC system using carbon dioxide as refrigerant. 

The experimental results show only a 7% improvement by using SSLC systems, and 

two negative factors hindering SSLC systems from achieving more energy savings 

were later identified.  As a result, the application of divided heat exchangers is 

proposed as a solution to address one of the issues. An optimal SSLC system, which 

incorporates the application of divided heat exchangers, an enthalpy wheel and other 

energy-saving methods, was modeled and demonstrated a doubling of the COP as 

compared to a conventional AC system. 

The second method crucial to implementing SSLC is a so called ―low ΔT 

indoor heat exchanger‖ which is being introduced as an improved sensible heat 

exchanger design for the successful implementation of SSLC system concept. Its 

capability of providing both radiative heat transfer and convective heat transfer leads 

to better thermal comfort to occupants. Compared to the baseline fan-coil unit, the 

low ΔT indoor heat exchanger creates better thermal comfort in terms of reducing 



 

temperature stratification from head to feet by 0.8 K and providing higher operative 

temperature at the foot level in winter. Numerical models were developed to simulate 

the operative temperature field created by the low ΔT indoor heat exchanger. The 

model had only an average deviation of 0.4 K compared to the experimental data. The 

air temperature simulation in the model was later replaced by the proper orthogonal 

decomposition (POD) method. The POD method provides simulation results almost 

identical to CFD simulation (maximum deviation of 0.1 K), and moreover reduces the 

computation time from 24 hours to only minutes. 

The major contributions in this dissertation are listed as follow: 

Exploration of energy saving potential of the SSLC systems:  

 Design, fabricated and tested an SSLC air conditioning system and compared 

its performance to a conventional system 

 Compared the performance of SSLC systems using two refrigerants, R-410A 

and CO2 

 Based on experimental results, established models to simulate SSLC systems 

o Simulated SSLC system performance under different ambient 

conditions 

o Optimized the vapor compression cycle operation under each ambient 

condition 

o Explored maximum energy saving options (configurations) of an 

SSLC system 

Thermal comfort study of the low ΔT heat exchanger: 



 

 Established a low ΔT heat exchanger test facility with sensors for operative 

temperature measurement 

 Compared the thermal comfort zone created by the baseline fan-coil unit 

and low ΔT heat exchanger system 

 Developed models to simulate the thermal comfort zone in an office setting   

o Simulate natural convection by a commercial CFD tool and obtain 

2D air temperature field in the conditioned space 

o Simulate radiation cooling (heating) and obtain 3D mean radiation 

temperature field in the conditioned space 

 Developed a reduced-order POD model to replace the CFD simulation of 

air temperature in the conditioned space and verify the POD model by 

comparing its results to the original CFD model 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction to the Separate Sensible and Latent Cooling Systems 

During operation of a conventional air-conditioning (AC) system, two kinds 

of cooling, i.e., sensible cooling and latent cooling are provided to a conditioned 

space. The sensible cooling is provided by supplying cold air to reduce the 

temperature of the conditioned space. The source creating the cold air is the 

evaporator which is filled with two-phase refrigerant to absorb heat. When the 

refrigerant temperature in the evaporator is below the dew point of the room air, it 

causes water vapor in moist air to condense on the evaporator and therefore reduces 

the humidity ratio of air. The drier air removes the latent load in the space. Figure 1 

shows a psychrometric process where point B refers to the dew point of room air and 

point D refers to supply air.  
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Figure 1: Psychrometric process of conventional AC operation. 

 
 

Figure 2: Psychrometric process of one kind of SSLC system (VCS + DW) 

There are two limitations related to the operation of conventional AC systems: 

 Reheat process reduces system COP 
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Theoretically, the process of supply air flowing through the evaporator 

follows the path that is composed of a horizontal sensible load removal part (point A 

to point B) and a latent load removal part along the100% relative humidity (RH) line 

from B to C. Usually, the temperature of point C is too low for thermal comfort, 

therefore a reheat process, typically adopted in commercial buildings, is added to 

increase the temperature of point C to the temperature of point D. The reheat process, 

usually carried out by electric heaters, requires extra energy input and increases the 

total net energy input. Hence, the reheat process reduces the COP.  

COP = 
useful refrigerating effect

net energy input
  (McQuinston, 2005) 

 Conventional AC systems lack the independent control of sensible and latent 

cooling 

  The reheat process in conventional systems is in fact caused by the lack of 

independent control of sensible and latent cooling. The path from point B to point C 

along the 100% RH line reveals that the amount of latent cooling and the amount of 

sensible cooling are co-dependent to each other and relevant to the slope of the 100% 

RH line. That is to say, removing a certain amount of water vapor requires an 

accompanying ratio of temperature reduction. Therefore, the more the latent cooling, 

the more likely leads to sensible over-cooling. Such a dependent relationship not only 

costs a reheat stage but also causes a control issue in a conventional AC systems’ 

operation. For example, when more people enter the room, extra latent cooling (the 

vertical blue arrow pointing downward) is required. The supply air point moves 

downwards to point C’. Meanwhile, an unnecessary amount of sensible cooling (the 
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horizontal blue arrow pointing leftward) has to be added to the room as well. This 

requires more reheat power input to increase temperature for thermal comfort and 

further reduces the COP.    

In order to overcome the two limitations of conventional systems, separate 

sensible and latent cooling (SSLC) systems are hereby proposed as a solution. Figure 

2 plots the psychrometric process of one kind of SSLC systems, which consists of one 

VCS and one solid desiccant wheel (DW). The VCS provides only sensible cooling 

(point A to point B) required by the conditioned space at both elevated air 

temperature leaving the evaporator (point B in Figure 2 vs. point C in Figure 1) and a 

higher air mass flow rate (MFR). The reason for a higher air MFR requirement is to 

compensate for the reduced enthalpy difference of air across the evaporator, and to 

maintain the capacity of sensible cooling. Since the VCS operates above the dew 

point temperature of air and cannot provide latent cooling, the DW is used to reduce 

the water vapor content in the part of the air leaving from the sensible evaporator. The 

part of the dry air from the DW mixes with the rest of the air from the evaporator and 

is delivered to the conditioned space (point D).  

DWs absorb water vapor in air and provide latent cooling; but they generate 

heat of adsorption during the process and increase the dry air temperature. 

Theoretically, the amount of latent cooling is equal to the amount of sensible heat 

generation. Hence the operation of DWs follows an isenthalpic line, which is from 

point B to point C in Figure 2.  

SSLC systems have two features during their operations: 
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 No reheat process is needed 

Since the VCS used in an SSLC system operates above the dew point 

temperature, the supply air temperature (see point D in Figure 2) is thermally 

comfortable enough to be sent to the conditioned room directly. No reheat is 

necessary in SSLC systems. 

 Independent control on sensible and latent cooling 

An SSLC system uses a VCS to provide sensible cooling. In consequence, any 

fluctuations of sensible cooling demand can be simply met by changing the capacity 

of the VCS. The control method to deal with the fluctuations of latent cooling 

demand is a little bit more complicated. Of course, the rotation speed of DW can be 

adjusted to meet the fluctuations of latent cooling demand within a certain range. Any 

latent cooling demand change beyond the reach of rotation speed adjustment can be 

met by either increasing the regeneration temperature or increasing the air MFR 

through a DW. It should be noted that although a DW is a stand-alone device 

providing latent cooling, any amount of the latent capacity change would theoretically 

lead to the same amount of change in sensible heat generation. Therefore, the VCS 

must increase the cooling capacity to cover the extra heat. However, such an increase 

will not lead to over-cooling because the VCS still operates above the dew point. 

1.2 Thermal Comfort of SSLC System 

To evaluate the performance of an air-conditioning system, thermal comfort is 

another important factor need to be considered besides energy consumptions. As an 
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example, in summer, people can reduce the energy consumption by raising the 

thermostat reading. However, there is an upper limit for most of people who refuse to 

raise the thermostat anymore.  According to the ASHRAE standard 55, thermal 

comfort is defined as the condition of mind which expresses satisfaction with the 

thermal environment and is assessed by subjective evaluation. Although the 

evaluation is subjective, there are several parameters that are considered to have 

significant impacts on the occupants. They are air temperature, mean radiation 

temperature, humidity ratio of air, air velocity, occupant’s metabolic rate and clothing 

insulation. The first four parameters are directly controlled by the AC unit in a 

conditioned space. To be more specific, it is the indoor unit of the AC unit that 

controls the air conditions. Therefore, in order to study the thermal comfort of the 

SSLC system, the research should be focused on the design of indoor unit, i.e., the 

sensible cycle evaporator.  

There are several issues regarding to the sensible evaporator design that need 

to be addressed in the thesis. How to solve the problem of large air side pressure 

drop? What is the thermal comfort condition of using sensible evaporators? The first 

question comes from the requirement of larger amount of air MFR through the 

sensible heat exchanger in order to compensate the smaller air enthalpy difference 

than that of a conventional system. To reduce the air side pressure drop, the frontal 

area of the sensible heat exchanger has to be larger than conventional heat exchanger 

so that the air velocity can be reduced. Some current products, such as chilled ceiling 

panels and heated floor systems, utilize large frontal area to provide sensible cooling 

and heating. The common characteristic of the two systems is that it has a low 
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temperature difference between the working fluid (refrigerant) and the indoor air. For 

example the chilled ceiling panels use cold water temperature typically of 16 – 18°C 

to keep the room air temperature at around 25°C. However, conventional evaporators 

use refrigerant temperature around 7 – 10°C to keep the same indoor condition. This 

dissertation introduces a new term called ―low ΔT heat exchanger‖ to describe the 

improved design of sensible heat exchanger such as chilled ceiling panels. Another 

benefit of using the low ΔT heat exchanger comes from its capability of providing 

radiative heat transfer to the occupants. This unique capability helps low ΔT heat 

exchanger control the mean radiation temperature (MRT). MRT, as mentioned above, 

is one of the factors affecting occupant’s thermal comfort, but it cannot be effectively 

controlled by convectional systems.  
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1.3 Literature Review 

1.3.1 Literature Review on SSLC Systems 

 

There exist different methods to achieve the separation of the sensible cooling 

and latent cooling. Ling et al. (2009) proposed the most straightforward method.  

Ling’s idea was to separate the two forms of cooling by two vapor compression 

systems. The first system removes sensible load only, while the second system 

removes both latent load and a small amount of sensible load. Under the standard 

ambient conditions (35°C, 44% relative humidity (RH)), the energy consumption of 

such an SSLC system was reduced by 30% compared with that of a conventional 

system, and the savings was reported to be up to 50% under the hot and dry condition 

(37°C, 15% RH). Although Ling’s separation method is straightforward, there are 

two problems need to be addressed.  First the sensible cycle cannot remove the entire 

sensible load in the system. There is always a small amount of sensible load 

associated with the process of latent load removal in the latent cycle. Because the 

energy savings of the SSLC system comes from the high-COP sensible cycle, an 

incomplete separation means such configuration is not the best option (Ling et al. 

2009). Second, an internal heat exchanger is required in the SSLC configuration to 

recover the cooling from the latent cycle, but the extra cost of the internal heat 

exchanger was not considered in the paper. More studies were focused on the 

application of using a vapor compression cycle for sensible load removal and 

solid/liquid desiccant equipment for latent load removal. Yadav (1995) investigated a 

hybrid system consisting of a liquid desiccant and a vapor compression system. The 

objective of the study was to find the best operating condition of such system, and the 
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conclusion was that either having a low sensible heat factor (SHF) condition or when 

the ambient humidity ratio was high. The SHF is defined as the ratio of sensible heat 

over the total heat load. Dai et al. (2001) studied the application of integrating a liquid 

desiccant device and a vapor compression cycle. The test was conducted under the 

AHRI standard 210/240 conditions (35°C, 44% RH, AHRI, 2008) and the cooling 

capacity was 5 kW. The coefficient of performance (COP) of the vapor compression 

cycle improved from 2.2 to 3.39 because of the assistance from the liquid desiccant. 

Ma et al. (2006) utilized a similar configuration to a larger scale application.  A green 

building demonstration project in Shanghai required a total 60 kW cooling capacity, 

and the latent cooling was provided by a liquid desiccant unit powered by waste heat 

from a heat pump. The sensible heat was removed by two 10 kW adsorption chillers 

powered by a 150 m
2
 solar collector and the heat pump powered by electricity. The 

performance of this complicated system was evaluated at two different SHFs, 0.7 and 

0.58, and the COP’s were 44.5% and 73.8%, respectively, higher than a conventional 

VCS. Other than the energy savings results, no economic analysis was conducted. 

Similar study was also conducted by Katejanekarn et al. (2008) in Thailand. Dhar and 

Singh (2001) simulated a hybrid system of a solid desiccant wheel (DW) and a vapor 

compression cycle. They demonstrated that the hybrid system had maximum energy 

savings under hot and dry weather. In hot and humid region, energy savings was still 

possible but the space latent load should be high. Depending on different desiccant 

materials, the temperatures of regeneration can vary between 50°C and above 100°C, 

therefore different heat sources are reported to drive desiccant devices. Jia et al. 

(2006) studied the performance of a solid DW using lithium chloride as the adsorbent. 
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The temperature required to regenerate the wheel was set to be 100°C, and one 

regeneration heater was used as a heat source. Ghali (2008) numerically simulated a 

hybrid system in the ambient conditions of Beirut. The main feature of this hybrid 

system was that the regenerative heat needed by the desiccant wheel was partly 

supplied by the condenser dissipated heat while the rest was supplied by an auxiliary 

gas heater. The hybrid air conditioning system was compared with a 23 kW vapor 

compression unit for a typical office in Beirut characterized by a high latent load. The 

size of the vapor compression subsystem was reduced to 15 kW at the peak load 

when the regeneration temperature was fixed at 75 °C. Also the sensible heat ratio of 

the combined hybrid system increased from 0.47 to 0.73. The paper also conducted a 

preliminary economic analysis. The annual running costs savings for the hybrid 

system was 418.39 USD for a gas cost price of 0.141 USD/kg. The payback period of 

the hybrid system was less than five years when the initial cost of the hybrid air 

conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life 

cycle, the life cycle savings of the hybrid air conditioning system were 

4,295.19 USD. Casas and Schmitz (2004) studied the integration of a DW and a 

cooling, heating, and power (CHP) unit. In their study, the waste heat from the CHP 

unit could be utilized for lithium chloride regeneration. However, the regeneration 

temperature was only in the range between 50°C and 60°C. The difference in 

regeneration temperatures in these works may be caused by different 

dehumidification requirements. Besides lithium chloride, silica gel is another widely 

accepted candidate for desiccant material, and its regeneration temperature is usually 

higher than 70°C (Neti, 2000). Different energy efficiency evaluation method was 
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also reported in literature. Exergy analysis of a solar driven hybrid system was 

investigated by Ahmed et al. (1998). They compared the performance of the hybrid 

system operated at different ambient conditions and different mass flow rates through 

the desiccant wheel. The conclusion was that the maximum irreversibility was 

generated at an ambient vapor pressure of 3.33 kPa and a desiccant mass flow rate of 

5 kg hr
-1

m
-2

. 

 

 

1.3.2 Literature Review on Thermal Comfort Standards 

 

In 2004, ASHRAE released the standard 55-2004, Thermal Environmental 

Conditions for Human Occupancy, to specify the combinations of indoor thermal 

environmental factors and personal factors that will produce thermal environmental 

conditions acceptable to a majority of the occupants within the space. A PMV index, 

predicted mean vote, is used to measure a large group of persons’ thermal sensation 

on a seven-level scale which uses +3 to be hot and -3 to be cold.  

 

 

 

Table 1 lists the detail definition of the PMV. The seven-level scale is usually 

enough to describe the thermal sensation in building applications, however higher 

numbers than 3 and lower numbers than -3 are also found in some literature to 

describe thermal sensation in extreme conditions, such as the cabin of a car parking in 

direct sunlight in summer for a long time.  
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Table 1: Thermal sensation based on PMV scale 

PMV scale Thermal sensation 

+3 hot 

+2 warm 

+1 slightly warm 

0 neutral 

-1 slightly cool 

-2 cool 

-3 cold 

 

Six primary factors, which are metabolic rate, clothing insulation, air 

temperature, radiant temperature, air speed and humidity, are included in the standard 

when defining conditions for thermal comfort.  Besides the primary factors, there are 

a number of other secondary factors affecting comfort in some circumstances.  Figure 

3 plots two thermal comfort zones on a psychrometric chart. Compared with other 

conventional psychrometric chart, the x-axis in the figure represents operative 

temperatures instead of dry-bulb temperatures. It is because the operative temperature 

takes both the dry-bulb temperature and the radiant temperature into consideration. 

The operative temperature can be calculated from Eq. (1). Two different thermal 

comfort zones are plotted for summer and winter because clothing insulation is 
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different. The boundaries of these two zones are determined by using Eq. (2) and Eq. 

(3), which calculate the maximum and minimum operative temperature ranges of the 

comfort zones. There is no unanimous agreement on what should be the low side 

comfort range of humidity, but ASHRAE suggests it should be higher than 2 gkg
-1

 

dry air. Air speeds greater than 0.2 ms
-1

 (40 ftmin
-1

) may be used to increase the 

upper operative temperature limit for the comfort zone in certain circumstances 

to=
hrtr̅+hcta

hr+hc
 

(1) 

 

  

 

Figure 3: ASHRAE thermal comfort zones for winter and summer 

Tmin,Icl= (Icl-0.5 clo)Tmin,1.0clo+(1.0clo-IclTmin,0.5clo /0.5 clo (2) 
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Tmax,Icl= (Icl-0.5 clo)Tmax,1.0clo+(1.0clo-Icl)Tmin,0.5clo /0.5 clo (3) 

 

 

  

where 

Tmax,Icl is the upper operative temperature limit for clothing insulation Icl 

Tmin,Icl is the lower operative temperature limit for clothing insulation Icl 

Icl is the thermal insulation of the clothing in question (clo) 

Besides ASHRAE Standard 55-2004, International Standards Organization 

(ISO) has also established a set of standards to address the thermal comfort issue. ISO 

standard 7730: 2005, Ergonomics of the thermal environment—Analytical 

determination and interpretation of thermal comfort using calculation of the PMV and 

PPD indices and local thermal comfort criteria, describes the PMV (Predicted Mean 

Vote) and PPD (Predicted Percentage Dissatisfied) indices and specifies acceptable 

conditions for thermal comfort. ISO 8996:2004, Ergonomics of the thermal 

environment—Determination of metabolic rate, describes six methods for estimating 

metabolic heat production, which are divided into three levels according to accuracy. 

ISO 9920:2007, Ergonomics of the thermal environment—Estimation of thermal 

insulation and water vapor resistance of a clothing ensemble, provides an extensive 

database of the thermal properties of clothing and garments. The properties are based 

upon measurements on heated manikins where basic (or intrinsic) thermal insulation 

is measured as well as vapor permeation properties of garments and ensembles.  

 

Since most vehicles have a HVAC system to control the thermal environment 

of the cabin, thermal comfort is also extensively studied by automotive thermal 

engineers. Compared to the building thermal load, 50 per cent of the automotive 
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thermal load is due to the solar heat gain (Shimizu et al. 1983). Radiative heat 

exchange can account for up to 70 per cent of the global sensible heat exchange 

between human and environment. However, the most significant difference between 

the field of building thermal comfort study and automotive thermal comfort is how to 

model the human body. For building thermal comfort modeling, Fanger (1967) 

proposed a single comfort equation to express thermal comfort of occupants exposed 

to constant conditions at constant metabolic rate for a long/sufficient period of time 

and such effort is  later included into ASHRAE and ISO standards. However, 

considering the fact that solar radiation always varies during driving, automotive 

thermal comfort should be categorized to a dynamic boundary condition problem. 

The other difference is the volume of the cabin is much smaller to a space in the 

building, which makes the air flow field in the cabin extremely non-uniform. For 

example, air velocity can be largest at the outlet of air vents but almost be zero at 

passengers’ backs due to the direct contact with the seat. Because of the non-

uniformity and transient nature of automotive thermal comfort problems, automotive 

engineers have been working on developing detailed human body models to address 

the transient and non-uniform nature of automotive thermal comfort. The operative 

temperature is usually replaced by equivalent temperature or other more advanced 

physiology model to better capture thermal sensation of passengers in the cabin. 

Figure 4 describes the flow chart of automotive thermal comfort evaluation. 
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Figure 4: Block diagram for evaluating the perception of human thermal comfort 

(Source: Walgama et al. 2006) 

 

Olesen et al. (1988) was among the first to develop a detail human body 

model for better physiology (skin temperature) measurement. Table 2 shows the 16-

segment manikin model as well as the surface areas results. The paper also studied 

five different clothing ensembles with the same total thermal insulation, but very 

different distributions of the insulation on the body in experiments with 16 sedentary 

subjects. The asymmetry was ranging from unclothed upper part to unclothed lower 

part of the body. Their experimental study provides a method for quantifying the non-

uniformity of a clothing ensemble and examines how it influences local thermal 

discomfort. 
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Table 2: Thermal manikin: main dimensions and skin areas of the 16 segments 

(Source: Olesen et al. (1988)) 

 

Tanabe et al. (1994) later added sensible and latent heat exchange between 

each part of the body and the environment. The 16-segment body used in the paper 

was a female manikin and the total surface area of the body was therefore smaller 

than Olesen’s model. In order to better address the thermal comfort of a person in a 

non-uniform condition such as car cabin, the paper used an equivalent temperature 

(teq), which was defined as the temperature of a uniform enclosure in which a thermal 

manikin with realistic skin surface temperatures would lose heat at the same rate as it 

would in the actual environment, to calculate PMV. The idea of equivalent 

temperature has been widely accepted in automotive thermal comfort calculation.  

Han et al. (2001) also used a 16-segment male manikin model and improved 

the model by dividing each segment into four body layers (core, muscle, fat and skin 

tissues) and a clothing layer. The improved model had the ability to predict local 

thermal comfort level of an occupant in a highly non-uniform thermal environment, 
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and formulated the thermal comfort as a function of air velocity, humidity, direct 

solar flux, as well as the level of activity and clothing type of each individual.  The 

author also emphasized the use of equivalent homogeneous temperature (EHT), 

which is similar to teq in Tanabe’s work, to quantify thermal comfort in the non-

homogeneous (non-uniform) area. Kaynakli et al (2005) used Olesen’s manikin 

model but was focused on thermal comfort of passengers during vehicle’s initial 

warm-up and cooling period. In early minutes of warm-up, heat loss from body to 

environment is very high due to low inside air and surface temperatures. The average 

skin temperature of the body and contact temperature of hand with steering wheel 

were reported to fall to 32°C and 17.5°C, respectively. The thermal sensation (TS) 

was recorded as low as - 4.5 which was in the range between very cold and painfully 

cold and became neutral in 12 minutes. Opposite to the warm-up period, the TS starts 

from a very high value of 8 due to large sensible heat exchange between body and 

high temperature cabin. It takes almost 30 minutes to reach TS neutral.  

Walgama et al. (2006) presented a comprehensive survey of research studies 

regarding automotive thermal comfort. The work was classified according to whether 

it is concerned with the passenger compartment environment or the condition of the 

passengers and their interaction with the compartment. The review included factors 

associated with passenger compartment conditions, such as flow field and 

temperature field, which affect the thermal comfort of the occupants. The evolution of 

thermal comfort models was reviewed. Also included were various computational and 

empirical models for predicting physiological response and the sensation of thermal 

comfort in the non-uniform transient environment of a vehicle.  



 

 19 

 

 

1.3.3 Literature Review on Natural Convection and Its Enhancement 

Natural convection refers to the motion of a flow is driven simply by the 

interaction of a difference in density in a gravitational field. The driving force of such 

density difference is a temperature difference, as in atmospheric and oceanic 

circulations, or in the air current arising from a cooling object. It may also be due to 

variation in composition or phase of a fluid, such as in most air rising. Natural 

convection is quite a different transport process compared with forced convection. 

The flow and temperature fields are invariably completely coupled and must be 

considered together. The flows are relatively weak, because the velocities are always 

relatively small and the inertial and viscous effects of momentum transport are 

usually of the same order.  

The basic equations of natural convection are continuity, momentum and energy 

equations, which are listed as Eq. (4) through Eq. (6) (Gebhart, 1971). The  ⃛ in the 

energy equation represents the source term over volume, and the Φ represents the 

dissipation term. 

  

 τ
+  ( V⃗⃗ )=0 

(4) 

 
DV⃗⃗ 

Dτ
= [

 V⃗⃗ 

 τ
+(V⃗⃗   )V⃗⃗ ]= g⃗ - p+  2V⃗⃗ +

 

3
 (  V⃗⃗ )  (5) 

 
De

Dτ
= [

 e

 τ
+(V⃗⃗   )e]=  k t+q   -p  V⃗⃗ + Φ 

(6) 

 

The complexity and coupling inherent in natural convection processes are 

apparent in this set of equations. Motion results because   is subject to change 
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according to temperature. The density term in equations can only be solved by 

considering the ―temperature‖ equation. The energy equation, in turn, inevitably 

involves velocity. Thus, the distributions of     ⃗⃗   and e in space (x, y, z), and perhaps 

also in time  , must be found simultaneously from these governing equations. 

In spite of the aforementioned complexity, governing equations are still useful 

to provide a great amount of information on natural convection problems. Most of the 

information comes from the simpler forms of the governing equations which are 

applicable in most physical circumstances. The most widely applied assumption is 

Boussinesq approximation. It assumes a linear density variation corresponding to 

temperature in the   ⃗  term (see Eq. (7)) and neglects the density variation in other 

places.  

 
 

- =  Δt=  (t-t )                                                                                    (7) 

where 

  is the density 

β is the thermal expansion coefficient 

t is the temperature 

 

Natural convection problems can be further classified as either external one 

(free convection) or internal one (natural convection). Ostrach (1964), Ede (1967) and 

Gebhart (1979) conducted comprehensive reviews on the first problem. The second 

problem is considerably more complex than external one. This is because at large 

Rayleigh numbers (see Eq. (8) for definition), classical boundary-layer theory yields 

the same simplifications for external problems that are so helpful in other fluid-flow 
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problems, i.e., the region exterior to the boundary layer is unaffected by the boundary 

layer. 

Ra=
g 

  
(Ts T )x

3 
(8) 

where 

Ra is the Rayleigh number 

g is the gravitational acceleration 

Ts is the surface temperature 

T∞ is the quiescent temperature 

ν is the kinematic viscosity 

α is the thermal diffusivity 

β is the thermal expansion coefficient 

x is the characteristic length 

 For confined natural convection, on the other hand, boundary layers form 

near the walls but the region exterior to them is enclosed by the boundary layers and 

forms a core region. Because the core is partially or fully encircled by the boundary 

layers, the core flow is not readily determined from the boundary conditions but 

depends on the boundary layer, which, in turn, is influenced by the core. The 

interactions between the boundary layer and core constitute a central problem that the 

flow pattern cannot be predicted a priori from the given boundary conditions and 

geometry. In fact the situation is even more intricate because it often appears that 

more than one global core flow is possible and flow sub-regions, such as cells and 

layers, may be imbedded in the core (Ostrach 1972, Ostrach 1982, Ostrach and 

Hantman 1981). Figure 5 shows one kind of widely studied enclosures. It is a square 
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enclosure with the side length of L. The upper and lower walls (ceiling and floor) are 

assumed to be well thermally insulated, and the left and right walls are at constant 

temperatures of Tc and Th, respectively. 

The stability of the natural convection problem is another widely discussed 

topic in literature. Taking the problem of a horizontal layer of fluid heated from 

below as an example, Schluter et al. (1965) pointed out that when a horizontal layer 

of fluid is heated from below, thermal expansion causes a density gradient opposite to 

the direction of gravity. In cases where the temperature gradient exceeds a certain 

critical value the static state of the fluid becomes unstable because the buoyancy force 

is sufficient to overcome the dissipative effects. The resulting cellular convective 

flow cannot be uniquely determined by the momentum equation and boundary 

conditions (Schluter et al. (1965)). Malkus and Veronis (1958) showed for special 

solutions that the degeneracy persists for finite amplitude solutions. They 

demonstrated that flows with rectangular or hexagonal cell pattern are finite 

amplitude solutions and that their number is infinite because the ratio of side lengths 

of a rectangular is a free parameter. Schluter et al. (1965) concluded that the 

instability of the hexagonal cell pattern was in a range between the critical Rayleigh 

number and a certain supercritical value. Beyond that, the rolls are stable. 
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Figure 5: A 2D enclosure with boundary conditions and dimensions for natural 

convection study 

Henkes and Hoogendoorn (1995) presented the governing equations, Eq. (9) 

through Eq. (14), for turbulent natural convection in an enclosure with 

simplifications. 

2D steady state continuity equation for incompressible flow is: 
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Momentum equations with Boussinesq assumption are: 
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Energy equation is: 
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Turbulent kinetic energy equation (k-ε model) is: 
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Turbulent dissipation equation (k-ε model) is: 

 
  

 x
+v

  

 y
=
 

 x
( +

 t

  
)
  

 x
 +

 

 y
( +

 t

  
) (

  

 y
)+,C 1(Pk+c 3Gk) c 2 - .

 

k
/ 

(14) 

 

with  

Pk= t *2 (
 u

 x
)
2

+2 (
 v

 y
)
2

+ (
 u

 y
+
 v

 x
)
2

+ 

 

 

 

Gk=-
 t

 T
g 

 T

 y
                     t=c 

k
2

 
 

 

 

de Vahl Davis (1968) was probably among the first who studied the natural 

convection problem in an enclosure, although he only considered the problem in two 

conditions and both of them were limited in the laminar region. One condition was 

natural convection in a square enclosure with the Rayleigh number of 2×10
5
 and the 

other was natural convection in a rectangular enclosure (aspect ratio of 5) with the 

Rayleigh number of 1.25×10
6
. 
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Cormack et al. (1974) extended the geometry of the enclosure to any small 

aspect ratio which was defined as the width of the enclosure should be at least 12 

times larger than the height. The walls of the enclosure were heated differentially. 

One analytic solution in terms of an asymptotic expression for the Nusselt number 

was presented in the study. The streamline profile was also plotted and it 

demonstrated that there were two regimes: a parallel flow in the core region and a 

second, non-parallel flow near the ends of the enclosure. 

Ostrach. (1988) provided a wide review on previous natural convection 

problem. It covered different geometries of enclosures including cylinders, 

rectangular enclosures of large aspect ratio and rectangular enclosures of small aspect 

ratio. As being pointed out in the conclusion, earlier research focused on searching 

analytical or experimental solutions. However, there was an ever-increasing 

proliferation of numerical solutions to such problems with more complications.   

Henkes and Hoogendoorn (1995) reported the outcomes of a workshop on 

turbulent natural convection in enclosures. The problem was defined as:  a 2D square 

enclosure whose side length is unit with hot left and cold right vertical walls and 

adiabatic horizontal walls. Air with Pr = 0.71, assuming a Boussinesq fluid, at Ra = 

5×10
10

. All the participants solved the problem by different CFD software packages. 

Their results were compared and numerical accuracies were reported against each 

other. 

Aounallah et al. (2005) used a commercial CFD software package, Fluent, to 

solve the similar problem as Henkes and Hoogendoorn but at a smaller Rayleigh 

number of 1.58×10
9
. Three different mesh grids, 100×100, 120×120 and 200×200, 
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were studied but no significant improvement of accuracy were reported by refining 

the grid.  K-ω SST model was adopted to solve the turbulent equations. Both 

temperature and stream function field were very similar to the results of Henkes and 

Hoogendoorn’s work. One of the paper’s contributions was development of a reduced 

order correlation of the heat flux at the hot wall in terms of the normalized Nusselt 

number. 

Besides 2D convection problems, Sigey et al. (2004) studied a three 

dimensional enclosure in the form of a rectangular enclosure containing a 

conventional heater built into one wall and having a window in the same wall. In this 

problem, the Rayleigh number was varied from 5×10
10

 to 5×10
11

. Temperature 

stratification was reported in the paper: The room was stratified into three regions, a 

cold upper region, a hot region in the confluence of the hot and cold streams and a 

warm lower region. The results also showed that the location of the heater, as well as 

the size of the window, has an important influence on the overall heat transfer 

through the room. 

Ogut. (2009) used water-based nanofuids as the working fluid in an inclined 

square enclosure. The enclosure was heated at a constant heat flux on the left wall and 

cooled on the right. The floor and ceiling were kept adiabatic. Five types of particles 

were taken into consideration: Cu, Ag, CuO, Al2O3, and TiO2. Polynomial differential 

quadrature (PDQ) method was applied to solve the governing Equations. A 

parametric study was performed for inclination angles from 0° to 90°. It was found 

that nano-particles increased the average heat transfer rate, and the largest 
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improvement (63.9%) came from using Ag at a concentration of 20% volume 

fraction.  

Instead of applying an adiabatic-wall assumption, a further effort was made to 

make the wall assumption more realistic. Liaqat and Baytas (2001) studied a square 

enclosure with constant wall temperature and finite conductive properties. The space 

was filled with a Bousinessq fluid with a Prandtl number of 7.0 containing a uniform 

volumetric heat source. Control volume method was applied and the SIMPLER 

algorithm (Patankar, 1980) was utilized to handle the pressure and velocity coupling 

of governing equations. Isotherms and streamlines (in normalized form) obtained 

from the study are plotted in 

Figure 6. 

 

 

Figure 6: Isotherms and streamlines for Ra = 10
7
, stainless steel walls  

(Source: Liaqat et.al (2001)) 

Sharma et al. (2007) added radiation into the natural convection problem. The 

conjugate turbulent natural convection problem was also defined in a rectangular 
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enclosure filled with air, and the walls were of finite thickness tw and finite 

conductivity kw. The floor of the enclosure was maintained at a constant temperature 

th, and its external surface was exposed to ambient temperature at tc. K-ε model was 

applied to solve the turbulent problem. A correlation, Eq. (16), was developed to 

predict the overall heat transfer rate in terms of the Nusselt number (see Eq. (15) for 

definition): 

Nu= 
hL

kf
                                                                                                             (15) 

  

       where 

        L is the characteristic length 

        kf is the thermal conductivity of the fluid 

        h is the convective heat transfer coefficient 

Nuc=0.152AR
0.267Ra0.34 (16) 

 

 

       where  

        AR is the aspect ratio varied from 0.5 to 2.0, and the Rayleigh number is from 

10
8
 to 10

12
. 

Bouali et al. (2005) also considered radiation and applied his model into an 

inclined rectangular enclosure. From the comparison shown in Figure 7, it was found 

that radiation improved the heat transfer in the enclosure. 
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Figure 7: Comparison of the Nusselt number in the enclosure with (right) and without 

radiation (Source: Bouali et al. (2005)) 

 

Ben-Nakhi and Chamkha (2007) added an inclined thin heated fin into the 

square enclosure (Figure 8). Surprisingly, rather than improving the heat transfer, the 

existence of the fin reduces the average Nusselt number. Two reasons were given: 

restraining natural convection and increasing heating surface. 

 

Figure 8: Schematic diagram and coordinate system for a square enclosure with 

inclined fin at the center of the hot wall (Source: Ben-Nakhi et al. (2007)) 

Cuckovic-Dzodzo (1999) complicated the enclosure problem by partitions 

which separated the enclosure into three parts. (Figure 9) 
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Figure 9: Schematic diagram of an enclosure with partition (Source: Cuckovic-

Dzodzo et al. (1999)) 

The isotherms and streamlines of the problem with the Rayleigh number of 2.6×10
5
 

were plotted as shown in Figure 10. 

 

Figure 10: Streamlines and isotherms of the partitioned enclosure (Left two are 

streamlines and the right one is isotherms) (Source: Cuckovic-Dzodzo et al. (1999)) 

 

Because natural convection has a lower heat exchange rate compared with 

forced convection, many researchers have been working on the exploration of natural 

convection enhancement methods. The addition of different configurations of fin and 

active oscillators are two most widely reported practices. Both practices aim to 

disturb the growth of thermal boundary layer and promote effective heat transfer. 
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 Frederick (2006) numerically studied the enhancement of natural convection 

by placing a thick vertical fin in the middle of a differentially heated cubical 

enclosure. He focused on investigating the variation of the Nusselt number with 

different Rayleigh numbers and thermal conductivity ratios. A main circulation and a 

flow restriction were observed but they were only significant at low Rayleigh 

numbers. A secondary circulation cell was reported at high thermal conductivity 

ratios. Long fins were found to be more effective in promoting heat transfer. Fujii 

(2007) studied the effect of the inclination angle of a finned surface to enhance 

natural convection. The fins were constructed on a 250 mm × 240 mm × 3 mm 

aluminum base plate. The angle of air flow through these fins changed from 30° to 

90°. It was concluded that the enhancement was most significant at 60°. At this angle, 

the convective heat transfer rate was 19% higher than that of a vertical finned surface. 

A correlation of the Nusselt number and inclination angle was also obtained. Instead 

of vertically placed fins, Dialameh (2008) investigated the fluid flow and heat transfer 

through horizontal rectangular thick fin arrays. The lengths of these fins are under 

50mm. Results showed that there were two types of flow depending on the ratio of 

height to length. If the ratio is smaller than 0.24, the air can only enter into the 

channel from fin end regions. However, the air flow can also enter into the middle 

parts of the fins if the ratio is greater than 0.24. With regards to the enhancement of 

natural convection, the natural convection heat transfer coefficient (HTC) increases 

with the fin spacing and the temperature difference, but decreases with the fin length. 

It was reported that the fin thickness and fin height did not affect the HTC 

considerably. Two correlations (Eq. (17) and Eq. (18)) were proposed to predict the 
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average Nusselt number of an array of fins based on the Rayleigh number, the ratio of 

fin height and fin length, the ratio of fin spacing and fin length and the ratio of fin 

height and fin thickness.  

Nus=0.625(Ra)
0.2382 .

H

L
/
0.3674

.
S

H
/
0.3303

.
H

t
/

-0.0504

   
for Ra < 1500 (17) 

Nus=0.5007(Ra)
0.2828 .

H

L
/
0.4468

.
S

H
/
0.3901

.
H

t
/

-0.083

   
for Ra > 1500 (18) 

 

Heindel et al. (1995) investigated the single phase natural convection 

enhancement by a discrete heat source with parallel plate fin arrays. Compared to 

unfinned conditions, the parallel plate fin arrays provided 24 and 15 times more heat 

flux for vertical and horizontal cavity orientation, respectively. Horizontal orientation 

was more favored because it generated nearly uniform heat transfer from the source. 

A porous medium model was also developed to simulate fluid flow and heat transfer 

from a dense array of parallel plate fins mounted to on wall of a vertical cavity. Fluid 

penetration and heat transfer was found to increase within the porous regions as the 

applied power (modified Rayleigh number) increased. Numerical predictions were in 

reasonable agreement with experimental results for the vertical orientation, with the 

Brinkman-Forchheimer-extended Darcy model following the data more closely than 

the Brinkman extended Darcy model. AlEssa et al. (2008) numerically examined the 

heat transfer enhancement from a horizontal rectangular fin embedded with triangular 

perforations under natural convection (see Figure 11). The fin’s heat dissipation rate 

was compared to that of an equivalent solid one. Several conclusions were drawn:  

i) The temperature drop along the perforated fin length is consistently larger 

than that on an equivalent non-perforated fin.  
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ii) For certain values of triangular dimensions, the perforated fin can enhance 

heat transfer. The magnitude of enhancement is proportional to the fin 

thickness and its thermal conductivity.   

iii) The extent of the heat dissipation rate enhancement for perforated fins is a 

complicated function of the fin dimensions, the perforation geometry and 

the fin thermophysical properties.  

iv) The gain in the heat dissipation rate for the perforated fin is a strong 

function of both the perforation diameter and lateral spacing. This function 

attains a maximum value at a given perforation diameter and spacing, 

which are called the optimum perforation dimension bo, and the optimum 

spacing Syo, respectively.  

v) The perforation of fins enhances the heat dissipation rates and at the same 

time decreases the expenditure for fin materials. 

 

Figure 11: Fin with equilateral triangular perforations to enhance natural convection 

(Source: AlEssa et al. (2008)) 
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Van Lear and Sparrow (2010) developed a numerical simulation code to study 

an active enhancement device for natural convection in the interfin spaces of a fin 

array (see Figure 12). A baseline solution for the non-enhanced situation revealed that 

the confinement created by the walls of adjacent fins and the base surface contributed 

to a drastic reduction of the HTC values compared with those for the standard vertical 

plate. Enhancement was achieved by alternately introducing and extracting air into 

and from the space. The frequency of introduction/extraction cycle was varied over 

values of 0, 10, 50 and 100 Hz. Even at a low oscillation frequency of 10 Hz, the 

interfin HTCs were significantly enhanced but not sufficiently to overcome the 

confinement effect. At 100 Hz, the enhancement gave rise to coefficient values that 

about 64 times greater than the unenhanced values. 

 

Figure 12: Schematic diagram of the physical system (Source: Van Lear and Sparrow 

(2010)) 
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Figure 13: Local cycle-averaged Nusselt number results for the surface of the fin 

facing the neighboring fin. Curve designation: (A) baseline, no oscillation, (B) 10 Hz, 

(C) 50 Hz and (D) 100 Hz. (Source: Van Lear and Sparrow (2010)) 

Tsuji et.al (2007) conducted an experimental study (Figure 14) on heat 

transfer enhancement for a turbulent natural convection boundary layer in air along a 

vertical flat plate by inserting a long flat plate in the span-wise direction (simple heat 

transfer promoter) and a short flat plate aligned in the span-wise direction (split heat 

transfer promoter) with clearance into the near-wall region of the boundary layer. For 

the simple heat promoter, the HTC increases by a peak value of approximately 37% 

in the downstream region of the promoter compared with those in the usual turbulent 

natural convection boundary layer. For the split heat transfer promoter, the 

enhancement was approximately 60% in the downstream region of the promoter. 
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Figure 14: Experimental apparatus, simple heat transfer promoter and split heat 

transfer promoters (Source: Tsuji et al. (2007)) 

 

Figure 15: Visualized fluid motions in the downstream region of a split heat transfer 

promoter (x-y plane, Nz = 5) (Source: Tsuji et al. (2007)) 
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Figure 16: Visualized fluid motions in the downstream region of a split heat transfer 

(y-z plane, Nz = 4) (Source: Tsuji et al. (2007)) 

 

 

 

1.3.4 Literature Review on View Factor Calculation 

 

As described in the previous chapter, thermal comfort can be valued in terms 

of operative temperature. Eq. (1) points out that the mean radiant temperature (MRT) 

should be evaluated as part of the effort to obtain operative temperature as well as air 

temperature.  

The MRT is a concept arising from the fact that the net exchange of radiant 

energy between two objects is approximately proportional to their temperature 

difference multiplied by their ability to emit and absorb heat (emissivity). MRT is 

simply the area weighted mean temperature of all the objects surrounding the body. 

This is valid as long as the absolute temperatures of objects in question are large 

compared to the temperature differences, allowing linearization of the Stefan-
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Boltzmann Law in the relevant temperature range. Technically, MRT is defined as the 

uniform temperature of a surrounding surface giving off blackbody radiation 

(emissivity e = 1) which results in the same radiation energy gain on a human body as 

the prevailing radiation fluxes which are usually very varied under open space 

conditions. Eq. (19) formulates the expression for the MRT, which is the summation 

of surface temperature multiplying by a view factor from a person to the surface. 

tr=∑Fp-itsi 
(19) 

 

 

where,    is the MRT,      is the view factor (angle factor, configuration factors, 

form factors or shape factors) from a person to surface i, and     is the surface 

temperature.  

The view factor in the Eq. (19) refers to the proportion of all that radiation 

which leaves person and strikes surface p. Figure 17 and Eq. (20) explain the 

calculation of the view factor between two infinitesimal surfaces, where dA1 and dA2 

are two infinitesimal surfaces, and s is the distance between the two surfaces. The 

angle between line s and the surfaces dA1 and dA2 are    and   , respectively.   
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Figure 17: Schematic diagram of view factor between two infinitesimal surfaces 

 

FdA1 dA2= ∬
cos 1cos 2

 s2
A1 A2

dA1dA2 
(20) 

 

 

 

Because of the double surface integral in the Eq.(20), analytical solutions of 

view factor between two finite surfaces can be difficult, or sometimes impossible to 

obtain, if the geometries of the surfaces are complicated such as spheres, cylinders. 

Dunkle (1963) calculated the view factors from the inner-wall of a room to an 

occupant who either stands or sits inside the room. In order to simplify the 

complicated surface integral of a human body, the body was treated as a sphere. The 

equivalent sphere radii of the standing occupant and the seated occupant are 

expressed by:  

R2=0.65+cos (0.715+0.52|cos |) (21) 

R2=1.365+(0.2+0.673sin )cos cos  (22) 

 

where α is the vertical angle from horizontal to point on surface, φ is the azimuth 

angle between direction faced and point on surface.  

dA1

dA2

s
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Eq. (21) refers to the radius of a standing person and Eq. (22) refers to the radius of a 

seated person. The two view factors which from a point on a wall to the two spheres 

are provided as below. Eq. (23) refers to the view factor of a standing person, and Eq. 

(24) refers to the one of a seated person.  

f=
R2D

(x2+y2+z2)
3
2

 
(23) 

 

f=
R2Dhω

1
3

30.8(x2+y2+z2)
3
2

 

(24) 

 

 

Feingold and Gupta (1970) found the analytical solution to evaluate the view 

factors from a sphere to a coaxial disk; from a sphere to an infinitesimal area lying in 

a plane which does not intersect the sphere; from a sphere to a segment of a coaxial 

disk, from a sphere to a coaxial rectangle; from a sphere to a coaxial right circular 

cylinder; from a sphere to a Polygon; from a sphere to a noncoaxial disk. Sabet and 

Chung (1987) proposed a general Equation to calculate the view factor from a sphere 

to any nonintersecting planar surfaces: 

F2-1=
d

2 
∫

f(x)

(x2+d
2√x2+,f(x)-2+d2)

dx
x2

x1

 
(25) 

 

where: 2 is the sphere surface; 1 is any nonintersecting planar surface; d is the 

distance of the center of the sphere to the plane; f(x) is a characteristic function 

depending on the shape of the planar surface.  
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1.3.5 Literature Review of Multi-mode Heat Transfer 

 

In the field of air-conditioning and refrigeration, the combination of radiative 

and natural convective heat transfer was first studied to investigate the performance 

of wire-and tube condensers of refrigerators. 

Tagliafico and Tanda (1997) investigated the air-side heat transfer from wire-

and-tube heat exchangers in the application of refrigeration. The radiation heat 

transfer between refrigerant and ambient air was modeled using a diffuse, gray-body 

network method. The natural convection part was modeled by a semi-empirical 

correlation. It was reported that the fractional contribution of convection to the 

combined-mode heat transfer was between 40% and 70% depending on the 

temperature difference and heat exchanger configuration (pitch-to-diameter ratio of 

the wires, pitch-to-diameter ratio of the tubes and normalized heat exchanger height). 

Nu=0.66 (
RaH

dt
)
0.25

*1- *1-0.45 (
dt

H
)
0.25

+ exp (-sw/ )  
(26) 

 

 

where 

  =  .
C1

H
/
0.4

sw
0.9st

-1.0
+ .

C1

H
/
0.8

0
C2

Tt-T 
1
0.5

sw
-1.5

st
-0.5

 

s1=
p
t
 dt

dt
;sw=

p
w
 dw

dw
;C1=28.2 m;C2=264 K 

Melo and Hermes (2009) proposed a more complicated correlation by considering 

more parameters, Eq. (27), and Table 3 describes the dimensionless used in the 

equation. 
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 0=5.68  1
0.6 2

 0 28 3
0.49 4

0.08 (27) 

Table 3: Dimensionless group and description in Eq. (27) (Source: Melo and Hermes 

(2009)) 

Dimensionless group Description 

 0=(hc+hr)/hr Combined heat transfer coefficient 

 1=Aw/(At+Aw) Heat transfer surface 

 2=(pt dt)/dt Tube spacing 

 3=(pw dw)/dt Wire spacing 

 4=(tavg tair)/tfilm buoyancy 

 

Bansal et al (2003) developed a model using FORTRAN 90 code and 

simulated the wire-and-tube condenser under different ambient conditions. The 

modeling results show that the dominant heat transfer mode for wire-and-tube 

condenser is by convection, which contributes up to 65% of the total heat transfer. 

Gupta et al (2008) improved Bansal’s model by considering the effects of aluminum 

tape to a hot-wall condenser. 

Rao et al. (2006) focused on a more fundamental study whose subject were 

only two fins in an enclosure (Figure 18). Alternating direction implicit (ADI) 

method was used to solve the governing equations. Isotherms and stream lines were 

obtained in the paper as well as the average Nusselt number and a fin effectiveness 

correlation. 
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Figure 18: (a) Physical model of two-fin enclosure. (b) Different surfaces in radiation 

enclosure (Source: Rao et al. (2006)) 

Kuznestov and Sheremet (2008) numerically studied the convective-radiative 

heat transfer in an enclosure having finite thickness heat-conducting walls and a 

heater at the bottom. Air (Pr = 0.7) was the fluid inside the enclosure, and the 

Grashof number in the problem was varied from 10
5
 to 10

7
. Isotherms and streamlines 

were obtained and the influence of some parameters, such as the Grashof number, the 

transient factor, the optical thickness and the heat conductivity ratio, on formation of 

thermo-hydrodynamic modes was analyzed. It was determined, that taking into 

account of the radiative heat transfer leads to the temperature increase in the gas 

cavity on the average of 11% at 0 <   <200. Talukdar (2004) studied the multi-mode 

heat transfer in a porous channel bounded by isothermal parallel plates. Chiu (2007) 

investigated the problem in rectangular ducts rotating about a parallel axis. Both Chiu 

et al. (2007) and Premachandran (2006) studied the problem in a horizontal channel.  
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Krishnan et al. (2004) conducted an experimental and semi-experimental 

investigation on steady-state natural convection and surface radiation between three 

parallel vertical plates with a hot plate in the middle and the other two unheated ones 

each side. The radiative heat transfer (in terms of Nusselt number) calculation was 

conducted by the radiosity-irradiation method, and the convective heat transfer (in 

terms of the Nusselt number) was obtained from an experiment featuring six plate 

spacing ranging from 12.66 to 52.2 mm and for an order of magnitude range of wall-

to ambient temperature difference. It was concluded that even at low temperature, 

310K, the significance of radiation heat transfer rate cannot be ignored. A correlation 

for the average convective Nusselt number was also developed at the range of 

2,370<Gr<872,700.  

 

1.4 Summary of Literature Review 

In the current study of SSLC systems, most papers use one vapor compression 

cycle for sensible cooling and a desiccant device for latent cooling. The desiccant 

device can be either a solid desiccant wheel or liquid desiccant. Due to the restriction 

of regeneration temperature, the desiccant device has to be reactivated either by waste 

heat from a CHP unit or an electric heater.   

ASHRAE standard 55 provides a complete guideline to evaluate the indoor 

thermal comfort conditions. The ASHRAE thermal comfort zone uses the operative 

temperature instead of air temperature as its measurement which implies the 

importance of MRT in the thermal comfort evaluation. In the automobile industry, the 

thermal comfort of car cabins has been widely discussed. Both experimental work 
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and numerical work are presented in the literature review. However, due to the 

unsymmetrical and extreme ambient conditions during the driving and the restricted 

cabin space, the thermal comfort model cannot be applied for large indoor space, such 

as office settings. 

For the simulation of natural convection in an enclosure, CFD simulation is so 

far the only feasible option for the large Rayleigh number case. Analytical solutions 

or asymptotic solutions are either restricted to apply for small enclosures or for 

special dimensions like infinite long enclosures.  

Through the literature review, the following areas are found to be worthy of 

further investigations. With the advance in material technology, solid desiccant wheel 

can now be regenerated at a lower temperature of around 50°C. This provides the 

opportunity of utilizing waste heat from the condenser to regenerate the desiccant 

wheel. Consequently, the new system can get rid of additional electric heaters or 

using waste heat from CHP units and therefore, further improves the COP of SSLC 

systems. It is necessary to study the characteristics of integration of VCS and 

condenser waste heat-driven DW. There is currently few literature related to thermal 

comfort analysis of SSLC systems or its sensible heat exchanger. The review of 

section 1.3.3 through 1.3.5 suggests that in order to simulate the operative 

temperature field created by the sensible heat exchanger, the air temperature can be 

obtained through CFD simulation and the MRT can be calculated analytically using 

view factor equations. It is also worthwhile to investigate any possible alternative 

method to save the computation cost of the CFD simulation of air temperature. 
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1.5 Research Objectives 

The proposed work focuses on two main areas: energy saving and thermal comfort 

analysis when separate sensible and latent cooling (SSLC) systems are employed.  

For the energy savings aspect, the related research includes: 

 Design an SSLC air conditioning system and compare its performance to a 

conventional system 

 Compare the performance of SSLC systems using two refrigerants, R-410A 

and CO2 

 Based on the experimental results, establish models to simulate SSLC systems 

o Simulate SSLC system performance under different ambient 

conditions 

o Optimize the vapor compression cycle operation under each ambient 

condition 

o Explore maximum energy saving options (configurations) of an SSLC 

system 

For the thermal comfort aspect, the following research was conducted: 

 Establish experimental facility for thermal comfort measurement in a 

conditioned space and use the facility to validate the simulation results by 

thermal comfort models 

 Establish a simulation tool to obtain thermal comfort zones in a space air-

conditioned by low ΔT heat exchangers 

o Simulate natural convection  and obtain air temperature field in the 

conditioned space 
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o Simulate radiation cooling (heating) and obtain mean radiation 

temperature field in the conditioned space 

o Predict "operative temperature" 
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Chapter 2: Energy Saving Analysis of SSLC Systems 
 

In Chapter 2, the energy saving potential of SSLC systems is investigated. 

Two different configurations of SSLC systems are discussed here. One SSLC system 

consists of two vapor compression cycles and the other one consists of one vapor 

compression cycle and one solid desiccant wheel. The first configuration is 

theoretically studied and simulated under different ambient conditions. The second 

configuration is studied both theoretically and experimentally because of its better 

performance. The technique of using divided HX is proposed to further improve the 

COP of SSLC systems. Finally, the SSLC-DW-enthalpy wheel (EW) configuration is 

introduced as the most energy saving SSLC system.   

2.1 SSLC Systems Using Two Vapor Compression Cycles 

2.1.1 System Description 

The SSLC systems discussed in this section are called 2VCC SSLC systems. 

They use one vapor compression cycle to handle the sensible cooling load and a 

second one to handle the latent cooling demand from indoor and outdoor air. A 

counter flow internal heat exchanger is also used in the system to utilize the cooling 

from the latent evaporator for pre-cooling of the incoming air. Two different 

configurations of 2VCC SSLC systems are shown in Figure 19. In the first 

configuration, the sensible and latent heat exchangers are arranged in series along the 

process air flow direction. Return air from the space is mixed with outdoor fresh air 

before flowing into the sensible evaporator. After it passes through the sensible 

evaporator, the air flow is divided into two streams. While one stream is sent to the 



 

 49 

 

reheat heat exchanger for pre-cooling and is processed through the latent evaporator, 

the other stream is bypassed.  The air stream exiting the latent evaporator is then 

reheated through the reheat heat exchanger. The air stream bypassing and the one 

passing through the reheat heat exchanger are both sent to the space as supply air. In 

the second configuration, the sensible and latent heat exchangers are arranged in 

parallel. The only difference between the serial and parallel configurations is that in 

the parallel configuration the return air stream is split into two streams before being 

mixed with outdoor fresh air, and passes through the sensible heat exchanger. 
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(a) Serial configuration 

 
(b) Parallel configuration 

Figure 19: Schematic diagram of the 2VCC SSLC system (showing only air loop) 
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2.1.2 System Modeling Approaches 

Engineering Equation Solver (EES) (F-chart software, 2009)
 
was used to 

model 2VCC SSLC systems. A conventional combined system was also simulated in 

the EES for comparison purpose. Assumptions used in the model are as follows: 

Air side: 

 Pressure drops and heat loss in the ducts and pipes are neglected. 

 Return air and outdoor fresh air are well mixed. 

 The air mixing process is adiabatic. 

 Temperature distribution and mass distribution in the space are uniform. 

 The ventilation air flow rates are the same in all systems. 

Refrigerant side:  

 Refrigerant: R-410A 

 Degree of subcooling: 5 K (Whitman et al., 2004) 

 Degree of superheating: 10 K (Whitman et al., 2004) 

 Isenthalpic expansion 

 Condenser pressure drop: 100 kPa (Casson et al., 2002) 

 Evaporator pressure drop: 50 kPa (Domanski et al., 2005) 

 Isentropic efficiency is calculated as a function of the pressure ratio 

(ASHRAE 2008):  
iso
=0.9-0.0467 PR (Hwang, 2004). 

 Volumetric efficiency is calculated as a function of the pressure ratio 

(ASHRAE 2008):  
vol
=1-0.04 PR (Hwang, 2004)  

 Compressor motor efficiency: 0.95 (ASHRAE, 2008) 

Initial Conditions: 
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 Outdoor air condition is set to 35°C, 44% relative humidity (RH) (ARI 

standard 210/240, 2006) 

 Outdoor air volume flow rate is set to be 0.9 m
3
s

-1
 (ANSI/ASHRAE standard 

62.1, 2004) 

 Space air condition is set to 27°C, 50% RH (ARI standard 210/240, 2006) 

 Space load is 100 kW. 

 Sensible heat factor (SHF) of the space is 0.7. 

 For the baseline system, the volume flow rate of air is set to be 5 m
3
s

-1
 based 

on the space load of 100 kW (ASHRAE standard 140, 2004) 

Ranges of conditions studied in the parametric study are:  

 Outdoor temperature: 15°C ~ 37°C 

 Outdoor humidity ratio: 5.8 gkg
-1

 dry air (15°C, 55% RH) ~ 28 gkg
-1

 dry air 

(37°C, 70% RH) 

 

2.1.3 Modeling Results 

Figure 20 shows the psychrometric processes of the two 2VCC SSLC systems 

(solid line) and the conventional reheat system (dotted line) in a psychrometric chart.   
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a) Psychrometric process of the serial SSLC configuration and the baseline system 

   
b) Psychrometric process of the parallel SSLC configuration 

 

Figure 20: Comparison of SSLC systems and baseline system in psychrometric chart 

 (2VCC SSLC system: 0: outdoor condition, 7: indoor condition, 1: mixing point, 2: 

after sensible HX, 3: after pre-cooling, 4: after latent HX, 5: after reheat, 6: supply 

air;  

Baseline system: 1’: mixing point, 2’: after pre-cooling, 3’: after evaporator, 4’: after 

reheat and supply air) 
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For the baseline system, in order to meet the cooling demand of the space, 

especially the dehumidification demand, which is 30 kW (from SHF = 0.7), air 

temperature exiting the evaporator is 12.8°C (from air flow rate 5 m
3
s

-1
), which is 

much lower than the dew point temperature 16.7°C. Based on the size of the 

evaporator used in the model, the evaporating temperature of the baseline system is 

6.0°C. Decreasing the temperature of the return air below the dew point temperature 

consumes much power in the vapor compression cycle. The COP of the baseline 

system is 3.9.  For the 2VCC SSLC system using serial configuration, the sensible 

heat load is removed separately at first. This is achieved by simply decreasing the 

return air temperature by 3°C. In this case, the air flow rate is increased to meet the 

total sensible load at a reduced temperature difference between the air and refrigerant. 

In order to do a fair comparison to the baseline system, the same air flow rate is used 

for the latent heat removal cycle of the SSLC. It is cooled down to approximately the 

same temperature as in the baseline system, which is 12.0°C. The power consumption 

of the SSLC system is 30% lower than the baseline system. The COP of the SSLC is 

5.45, which is 39% higher than that of the baseline system. For the SSLC system 

using parallel configuration, the sensible heat load is removed by decreasing the 

return air temperature by 3°C. The same air flow rate is used for the latent heat 

removal cycle of the SSLC as in the baseline system, and it is also cooled down to 

12.8°C. The COP of the SSLC system using parallel configuration is 5.50, which is 

41% higher than that of the baseline system.  The reasons behind these energy 

savings are described as follows. In the baseline system, the sensible cooling load is 

78.3 kW, which accounts for about 64% of the total load, which is 119.6 kW, 
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including the space load and the ventilation load. The vapor compression cycle 

consumes 20 kWe. It also accounts for 64% of the total power, which is 30.5 kWe, to 

meet the sensible cooling load. However, in the SSLC system, the refrigerant 

evaporating temperature of the sensible cycle is increased to 19.1°C due to the higher 

air temperature. The sensible cycle compressor pressure ratio is decreased from 2.93 

(baseline system) to 2.00 (SSLC system). The power consumption of the sensible 

cycle is reduced to 9.7 kWe, which means 10.3 kWe are saved as compared to the 

baseline system. For the latent cycle, both the baseline system and the SSLC system 

consume about the same power to remove the same amount of water vapor (16 gs
-1

) 

as expected. 

 In order to keep the size of heat exchangers (HX) (excluding the internal HX) 

the same as for the baseline system, the total UA values (see Eq. (28) for definition) 

of evaporators and condensers are both set to be 50 kW K
-1

, i.e., 

UAtotal=UAevap.+UAcond.=Constant  

UA= 
Q̇

ΔT
 

(28) 

  

where: 

 

Q̇ is the heat exchanger capacity in kW 

ΔT is the nominal temperature difference between refrigerant and air in K 

 

Since there are two evaporators in the SSLC system which are responsible for a 

higher UA value than the one in the baseline system, a higher condensing approach 

temperature is expected in the SSLC system. This results in a slight increase in the 

power consumption of the latent cycle. However, the SSLC system still consumes 8.6 
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kWe less power than the baseline because of the less power input to the sensible 

cycle. In the sensible cycle, higher isentropic efficiency is expected than the baseline 

because the pressure ratio is reduced from 2.93 to 2.00. Indeed, the isentropic 

efficiency is increased from 0.76 to 0.81. There are also other benefits resulting from 

the SSLC system. The total displacement volume of the two compressors in the SSLC 

system can be 25% smaller than that in the baseline system. However, it should be 

noted that the evaporator air flow rate is increased from 5 m
3
s

-1
 of the baseline to 15.9 

m
3
s

-1
 of the SSLC system. This is because the sensible cycle requires more air to meet 

the sensible cooling load with smaller air enthalpy difference than the baseline. This 

raises a question whether the increased power consumption of the fan motor will 

offset the power savings from compressors. This question is addressed in the 

following parametric studies. 

 

2.1.4 Parametric Studies 

 

Parametric studies were conducted in order to study charateristics of the 

2VCC SSLC system under different operating conditions. In the parametric studies, 

the air temperature leaving the sensible evaportor was varied from 19°C, which was 

close to the dew point temperature, to 25.5°C. As shown in Figure 21, the COP of the 

SSLC system increases with the increase of the air temperature leaving the sensible 

evaporator. However, the trade off is the higher air mass flow rate. Figure 21 also 

shows that the highest COP coincides with the highest air mass flow rate, which is 

almost five times as high as the baseline system.  
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Figure 21: COP and total air flow rate under different air temperature leaving sensible 

evaporator 

  
If both the COP benefit and the higher air mass flow rate disadvantage are 

considered, the temperature leaving the sensible evaporator can be set between 22°C 

(70% RH) and 24°C (60% RH). Since the higher temperature condition (24°C, 60% 

RH) shows a higher COP, that condition is selected for the rest of the study. The 

SSLC system shows different power saving potentials under different ambient 

conditions.  
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Figure 22: Power savings and ratio of sensible to latent load under different ambient 

relative humidities 

Figure 22 demonstrates the SSLC system’s power savings over the baseline under 

different ambient relative humidities. While the ambient temperature was set to be 

37°C, the relative humidity varied from 15% to 75%. The result demonstrates the 

feature of distributing the sensible and latent cooling load depending on the ambient 

condition. While the sensible load of the system was kept constant at 66 kW, the 

latent load varied from 38 kW to 88 kW. Therefore, the ratio of sensible load to latent 

load decreases with the increase of relative humidity, which is shown on the 

secondary y-axis. It is also observed that the power savings decreases when the 

ambient relative humidity increases. This is because more power is required from the 

latent cycle, which makes the savings from the sensible cycle less significant. 

However, even under the highest relative humidity condition, the power savings is 

over 15% as compared to the baseline system. 
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Figure 23: Power savings and ratio of sensible to latent load under different ambient 

temperatures 

  

 Figure 23 shows the power savings under different ambient temperatures. The 

ambient humidity ratio was set to be constant at 15 gkg
-1

 dry air, while the 

temperature varied from 25°C to 40°C. As shown in Figure 23, the ratio of the 

sensible to latent cooling load increases with the ambient temperature.  Meanwhile, 

the power savings remains almost constant. This trend indicates that the power 

savings of the system is greatly affected by the latent load of the system but is not 

much affected by the sensible load. Detailed discussion is provided in the later 

chapter. 
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Figure 24: Six different climate conditions plotted on the psychrometric chart 

  (Clockwise from the top right: hot and humid; standard; hot and dry; mild and dry; mild and humid; 

humid) 
 

To evaluate the performance of the SSLC system over a wide envelope of 

ambient conditions, the system performance was modeled under six different climatic 

conditions as shown on the psychrometric chart in Figure 24. The power savings over 

the baseline system was calculated for different climate conditions. The results are 

summarized in Table 4. The maximum power savings is achieved in cool and dry 

conditions, and the minimum in hot and humid conditions. It has been observed that 

under hot and humid conditions the power of the latent cycle accounts for 70% of the 

total power consumption and affects the total power savings of the SSLC system. 
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Table 4: Power savings under different climate conditions 

Zone Standard Mild and 

dry 

Mild and 

humid 

Hot and 

dry 

Hot and 

humid 

Humid 

Condition 35°C/44%

RH 

15°C/55%

RH 

20°C/100%

RH 

37°C/15%

RH 

37°C/70%

RH 

32°C/80%

RH 

Power savings 30% 50% 33% 32% 17% 22% 

 

2.1.5 Air Distribution Methods 

The duct design and fan power consumption calculation were compared for 

the baseline system and the SSLC system. In the baseline system, the total air side 

pressure loss in the system is around 285 Pa, including 100 Pa from the evaporator 

coil (calculated from the model below), 160 Pa from the duct and fittings and 25 Pa 

from the filters, etc. (ASHRAE, 2005). Therefore, the fan motor was chosen based on 

the necessary pressure lift of 285 Pa, and the volume flow rate was of 5 m
3
s

-1
. 

Compared with the baseline system, the SSLC system has several times higher air 

flow rate through the sensible heat exchanger depending on the choice of exit air 

temperature. A high air flow rate causes large pressure drop in the conventional 

multi-bank heat exchanger, which leads to high power consumption of the fan motor. 

The fan power requirement would partly offset the energy savings of the SSLC’s 

vapor compression cycle. Thus, the duct-fan arrangement used for the baseline air 

distribution is not suitable for an SSLC system. In order to maintain the fan power 

consumption as low as possible while providing a high air flow rate through the 

system (to keep the COP high), one possible solution is to minimize the pressure lift 

of the fan motor.  
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Figure 25: Air distribution method for the SSLC system 

 

Kopko (2002) presented a concept using an entire drop ceiling as the plenum 

to distribute a large air flow rate. The air in the plenum is transported slowly so that 

there is much smaller pressure drop than the typical duct design. In light of this, a 

propeller fan, which produces relatively high air flow rate at low pressure head, can 

be utilized. A new air distribution method consisting of the sensible heat exchanger(s) 

and the plenum is proposed for the SSLC system as shown in Figure 25. Detailed 

discussion on the heat exchanger design is provided in the later chapter. The sensible 

heat exchangers are arranged around the fans in the plenum. Air is taken from the 

bottom by propeller fans, flows through the heat exchangers and is distributed to the 

space through openings placed along the entire plenum. The sensible heat exchanger 

is designed to be one bank, increasing HX frontal area to minimize the frontal 

velocity. According to this new design, the fan can be chosen to provide high air flow 

rate, which is 15.9 m
3
s

-1
 (corresponding to 24°C exit temperature) and low pressure 
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lift of 62.5 Pa for the SSLC system. The pressure lift is determined by assuming 50 

Pa pressure drop from the evaporator and 12.5 Pa from the other parts in the system. 

Fan laws (ASHRAE, 2008) were used to compare the fan motor power consumptions 

of the two systems. The requirements of the two fans are listed in Table 5.  

Table 5:  Pressure lift and air flow rate requirements for fans used in the baseline and 

SSLC systems 

System configuration Pressure lift 

(Pa) 

Air flow rate at the given pressure lift 

(m
3
s

-1
) 

Baseline system    P2 = 285.0    Q2 = 5.0 

SSLC system  P1 = 62.5      Q1 = 15.9 

 

Eq. (29) shows the effect of changing fan size, pressure and density on volume 

airflow rate: 

 Q
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=Q

2
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(29) 

 

Eq. (30) shows the effect of changing fan size, pressure and density on rotation speed: 

N1=N2 (
D2

D1

) (
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P2
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)

1
2

 

(30) 

 

   

Eq. (31) shows the effect of changing fan size, pressure and density on power 

consumption: 

W1=W2 (
D1

D2

)
2

(
P1

P2
)

3
2
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1

)

1
2

 

(31) 
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By substituting Eq. (29) into Eq. (30) to cancel out the ratio of diameters, using the 

data in Table 5, and neglecting the density difference, the ratio of RPMs becomes Eq. 

(32): 

N1

N2

=(
Q
2

Q
1

)

1
2

(
P1

P2
)

3
4
=0.18 

(32) 

 

 

By substitute Eq. (29) and Eq. (32) to Eq. (31) and using the data in Table 5, we 

obtain the ratio of power consumptions: 

  
  

 (
  
  
)

 
 
(
  
  
)

 
 
      

(33) 

  

Eq. (33) shows that it is theoretically possible for a SSLC system to save 30% 

in fan motor power consumption from the baseline. The reason is that the rotation 

speed of the fan motor could be reduced in the SSLC system to only 18% of the one 

in baseline. By plugging in the data from Table 5 into Eq. (29), it was found that the 

fan diameter in the SSLC system was 2.6 times larger than that in the baseline 

system. 
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2.2 SSLC Systems Using One Vapor Compression Cycle and One Desiccant Wheel 

2.2.1 Experimental Setup 

 
Figure 26: Schematic diagram of the experimental setup for SSLC system test 

 

Figure 26 shows the schematic diagram of the experimental setup. The 

experimental setup consisted of a vapor compression system and two wind tunnels. In 

the vapor compression system, two pairs of compressors, evaporators, a condenser 

and a gas cooler were prepared for the R-410A and CO2 tests. The two variable-speed 

rotary compressors provided the same cooling capacity, which was set to be 3.5 kW. 

The two evaporators and condenser (gas cooler) were almost identical to each other, 

except that the tube thickness of the R-410A heat exchangers was much thinner than 

that of the CO2 heat exchangers (0.3 mm versus 1.0 mm). All the heat exchangers 

were made of copper tubes and aluminum fins. An electronic expansion valve was 

used to control the pressure ratio and mass flow rate of the refrigerants. The two wind 

tunnels were constructed by polypropylene boards in order to simulate an indoor 
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condition and an outdoor condition, respectively. The two operating conditions were 

chosen based on the AHRI standard 210/240 test condition (AHRI, 2008), which are 

27°C, 50% RH for the indoor condition and 35°C, 44% RH for the outdoor condition. 

The indoor tunnel was built in a closed loop, as no ventilation air was added to the 

inside air stream. The outdoor tunnel was a straight both-ends-open duct and built 

adjacently to the aforementioned closed loop. A 305 mm × 102 mm gap was cut 

between the two tunnels so that a 300 mm × 100 mm DW could fit inside of it. The 

DW, which was a cylindrical shape with honeycomb-shaped cells, slowly rotated as it 

continuously dehumidified the incoming process air-flow. Both the indoor and 

outdoor tunnels were separated into two sub-tunnels in the vicinity of the DW. The 

cooled air from the evaporator was divided into two parts. A large portion of it 

bypassed the DW, and assumed to be directly supplied to a space, while the rest 

moved through the DW. The distribution of the two air flows was decided based on 

the required latent capacity (0.7 kW). For the open duct, the same amount of airflow 

as used in the process duct was sent to regenerate the DW while the rest was directly 

exhausted out of the system.  

Table 6: Specifications of experimental components and instruments used in the 

SSLC test  

Component / instrument Specification 

closed loop air flow range up to 2,100 kg h
-1

, inverter controlled 

open duct air flow range up to 1,000 kg h
-1

, inverter controlled 

DW diameter: 300 mm, axial width: 100 mm 

rotation speed: 10-25 revolutions per hour (RPH) 

compressors (CO2) rotary compressor: 3.9 cm
3
  (displacement/revolution) 

(R-410A) rotary compressor: 13.2 cm
3
 

evaporators frontal area: 704 mm (H) x 699 mm (W) 

4 banks, 32 tubes/bank, 4 parallel circuitry 

fin pitch: 2.0 mm, fin thickness: 0.2mm 
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(CO2) tube outer diameter: 7.94 mm, thickness 0.80 mm, bare tube 

(R-410A) tube outer diameter: 7.94 mm, thickness 0.31 mm, bare 

tube 

condensers/gas coolers frontal area: 484 mm (H) x 622 mm (W) 

4 banks, 22 tubes/bank, 2 parallel circuitry 

fin pitch: 2.0 mm, fin thickness: 0.2 mm 

(CO2) tube diameter: 7.94 mm, thickness 0.80 mm, bare tube  

(R-410A) tube diameter: 7.94 mm, thickness 0.31 mm, bare tube 

nozzles   DW, size: 7.6 cm diameter, range: 280-660 kg h
-1

 

condenser/gas cooler, size: 12.7 cm diameter, range: 790-1,800 kg h
-1

 

evaporator, size: 17.8 cm diameter, range: 1,500-3,600 kg/h 

relative humidity sensors Duct mount-type (uncertainty: ±2% RH, range: 0-100% RH） 

thermocouples Type T (uncertainty: 0.5 K, range: -200 to 350 °C) 

pressure transducers Capacitive pressure transducer  (uncertainty: ±0.11 % FS, FS: 7 MPa 

and 21 MPa  

differential pressure 

transducer 

Capacitive differential pressure transducer (uncertainty: 1% FS, 

range: 0-250 Pa & 0-1,250 Pa) 

refrigerant mass flow meter Coriolis flow meter (uncertainty: 0.05%, reset range: 0-60 g s
-1

) 

power transducer AC watt transducer (uncertainty: 0.2% FS, range: 0-4 kWe) 

 

Table 6 lists the specifications of measure instruments and components used in the 

experiment.  

As described above, the temperature and humidity ratio of the indoor and 

outdoor conditions were decided based on the AHRI standard 210/240.  The outdoor 

condition was controlled by an environmental chamber, where the experimental setup 

including the outdoor unit, indoor loop and desiccant was installed. The indoor 

condition was controlled by the heater and humidifier listed in Figure 26. The 

sensible cooling capacity, latent capacity (which was provided by the DW) and the 

compressor power consumption were measured. The airflow rate passing through the 

DW was set to be 300 kg h
-1

 and 350 kg h
-1

 for the different regeneration 

temperatures of 55°C and 50 °C, respectively. The EOD dampers listed in Figure 26 

were used to control the distribution of air flows into sub-tunnels. The regeneration 
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temperature was set to be in the range of 45°C to 55°C, and the condenser (gas cooler) 

was the only heat source. The cooling capacity of the vapor compression system was 

set to be 3.5 kW, and the required latent capacity was 0.7 kW. 

 Charge optimizations were conducted for both refrigerants at the condition of 

maintaining air leaving the condenser (gas cooler) at 50°C and air leaving the 

evaporator at 20°C. Table 6 lists the specifications including the uncertainties of 

components and instruments in the tests. The detailed information of test conditions is 

included in Table 7. 

Table 7: Detailed test condition settings in the SSLC test 

Parameter Setting Description 

space cooling capacity 3.5 kW effective cooling capacity delivered by 

evaporator to space 

latent capacity 0.7 kW sensible heat factor (SHF)=0.8 

indoor condition 27°C, 50% RH fixed at the inlet of evaporator 

evaporator outlet temperature 18°C, 20°C, 22°C DW process side inlet temperature 

outdoor condition 35°C, 44% RH fixed at  the inlet of condenser/gas 

cooler 

condenser/gas cooler outlet 

temperature 

45°C, 50°C, 55°C DW regeneration side air temperature 

air flow rate through the DW 300 kg/h, 350 kg/h same air flow rate for both 

dehumidification and regeneration 

DW rotation speed 0 rph, 10 rph – 25 

rph 
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2.2.2 Test Results 

 
Figure 27: Pressure range of R-410A SSLC test  

(Different line colors represent different test conditions) 
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Figure 28: Temperature range of R-410A SSLC test 

(Different line colors represent different test conditions) 
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Figure 29: Pressure range of CO2 SSLC test 

(Different line colors represent different test conditions) 
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Figure 30: Temperature range of CO2 SSLC test 

(Different line colors represent different test conditions) 

 

 

The refrigerants’ pressure and temperature profiles in the tests were plotted 

from Figure 27 to Figure 30. The evaporating pressure and temperature changed with 

different supply air temperatures, which varied between 18°C and 22°C. At the same 

supply air temperature, several different vapor compression cycle conditions which 

delivered the same of amount of cooling were created by simultaneously adjusting the 

opening of the electronic expansion valve (EXV) and frequency of the variable speed 

compressor. The purpose of such adjustment was to find the maximum COP at the 
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the aforementioned ranges. Uncertainties of measured data were calculated based on 

instruments’ system error, which was listed in Table 6, and random error was taken 

from a standard deviation of a set of measured data.  

 
Figure 31: COP profile of R-410A SSLC tests with error bars (different clusters 

represent different test conditions) 
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Figure 32: COP profile of CO2 tests with error bars (different clusters represent 

different test conditions) 
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-1
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entire system was found to be independent from the vapor compression cycle, which 

is discussed in the following chapter.   

The general role of a DW in an SSLC system is to remove the latent load by 

absorbing water vapor from the process air and dumping it to regeneration air. The 

dehumidification performance of a DW is mostly affected by air frontal velocity, 

regeneration temperature and DW rotation speed (ASHRAE, 2008). To be more 

specifically, a high regeneration temperature, a low air frontal velocity and a fast-

rotating DW have a positive effect on dehumidifying a unit rate of air flow. In the 

tests, in order to maintain the same latent capacity, which was 0.7 kW, at different 

regeneration temperatures, different amounts of air were sent to the DW and the 

rotation speed of the DW were carefully adjusted. Based on these characteristics, it 

was concluded that, in an SSLC system, a DW can independently control latent load 

from a vapor compressor cycle. An improved dehumidification performance over a 

unit rate of air under a fixed latent capacity only brings the benefit of a reduced 

amount of air required by the DW. Alternatively, a reduced dehumidification 

performance can be compensated through providing a larger amount of air. 

Furthermore, operation of DWs has only a limited effect (heat of adsorption) on a 

vapor compression cycle. Most DW operates closely along an isenthalpic line, which 

makes such operation basically convert the same amount of latent cooling to sensible 

cooling. This means that as long as the latent capacity is fixed, no matter how the DW 

operates, for example, at different regeneration temperatures, the vapor compression 

cycle deals almost the same amount of sensible cooling. This made the further study 

of SSLC systems focus on comparing the performance of vapor compression cycle 
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only. The current DW, which had a diameter of 300 mm and an axial width of 100 

mm, was not able to deliver the required latent capacity at 45°C regeneration 

temperature. A larger diameter rotor is required so that a larger amount of air flow 

can be dried at the same unit rate of dehumidification performance. However, since 

the independent role of DW in the SSLC system, the vapor compression cycle was 

still tested in the condition of delivering 45°C regeneration temperature with the 

assumption that a larger diameter rotor had removed the required amount of latent 

capacity.   

Table 8: Operating conditions tested in the DW experiments 

 
 

 

Table 8 provides the DW’s rotation speed and air frontal velocity under different 

regeneration temperatures. 

From Figure 31 and Figure 32, it was found that the regeneration temperature 

and supply air temperature significantly affected the COP. The higher the 

regeneration temperature, the lower the COP; and the higher the supply air 

temperature, the higher the COP. Such a trend could be explained by the following: in 

order to obtain high regeneration temperature, the condensing pressure (high side 

pressure) of refrigerant had to rise. Such a rise led to two effects: an increased 

pressure ratio across the compressor and an increased temperature of refrigerant 

leaving the condenser (gas cooler). Both effects resulted in an increase in compressor 

power input. On the other hand, an increased air supply temperature raised the 

Treg (°C) Vfrontal (m/s) ω (rph) Qlat (kW)

55 2.11 15 0.7

50 2.46 25 0.7

45 N/A N/A N/A
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evaporating pressure of refrigerant, which reduced the pressure ratio across the 

compressor, and led to a reduction in compressor power input. The pressure and 

temperature profiles in Figure 27 through Figure 30 support the aforementioned 

statements by demonstrating wide ranges of high side pressure and evaporating 

pressure.   

A computer model was written in an EES platform to simulate the 

performance of vapor compression cycle using parameters such as compressor 

efficiency, DW dehumidification capacity, and UA values of heat exchangers.  The 

compressor module was written based on a three-efficiency method, and the three 

efficiencies were obtained from the tests. The heat exchanger modules were written in 

a multi-segment UA-LMTD method, with the UA values adjusted so that the 

refrigerant inlet and outlet conditions calculated from the model matched the 

experimental results. Performance of the baseline systems, which represented 

conventional air conditioning systems using evaporators to remove both latent and 

sensible loads, was calculated by the model based on the same UA values as the 

SSLC systems, which was used later for the COP comparison on the basis of the same 

sizes of heat exchangers. The compressors in the baseline systems had the same 

displacement volumes as those in the SSLC systems. The air flow rate through the 

evaporator and the evaporator outlet air temperature were calculated to meet the 

sensible and the latent capacities of the evaporator with the SSLC system capacity. 

Table 4 shows the comparison results calculated by the model. Since the experimental 

results demonstrated the low COP performance of vapor compression cycle at 55°C 
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regeneration temperature, the comparison focused only on the conditions of 50°C and 

45°C. 

Table 9: COP Comparison between Baseline and SSLC Systems 

refrigerant system 

evaporating 

temperature 

(°C) 

high side 

pressure 

(MPa) 

regeneration 

temperature 

(°C) 

COP 

(improvement) 

CO2 

Baseline 13.9 10.37 47.3 2.58 (100%) 

SSLC 
17.6 10.91 51.0 2.76 (107%) 

17.7 10.26 45.5 3.40 (132%) 

R-410A 

Baseline 14.3 3.16 47.3 3.64 (100%) 

SSLC 
18.3 3.42 50.7 3.89 (107%) 

18.5 3.03 45.7 4.89 (134%) 

 

Several observations can be made from Table 9. First of all, the baseline COP 

of the R-410A system was 41% higher than that of the CO2 baseline system, which 

again highlighted the low COP behavior of CO2 systems. Regarding the improvement 

from the application of SSLC technology, two refrigerants behave very similar to 

each other. When the regeneration temperature was around 50°C, the COP 

improvements of both refrigerants were 7%. When the regeneration temperature was 

around 45°C, the COP improvements were 32% for CO2 and 34% for R-410A, 

respectively. Although 45°C regeneration temperature would still be feasible to 

provide 0.7 kW latent capacity, if a larger DW was used, such improvement should 

rather be viewed as the best case scenario. The improvement of 50°C regeneration 

temperature was disappointingly low. While considering the fact that the error bar of 

COP was around 5%, the worst scenario of improvement would be only 2%. A 

further study is required to explore larger COP improvement potential of SSLC 

systems. 
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2.2.3 Exploration of Better SSLC Systems 

The previous chapter brought out the issue that the current SSLC system could 

not provide as much COP improvement over the baseline system as expected. Two 

factors have been identified to have a negative effect on the COP of SSLC systems. 

First, operation of a DW generates heat of adsorption (> 2,500 kJkg
-1

, Gao et al. 

2005), which varies according to desiccant material, but is usually higher than the 

heat of evaporation of water vapor (~ 2,500 kJkg
-1

). The difference of these two 

forms of heat added an additional heat load to the vapor compression cycle, which 

reduced the effective cooling from the vapor compression cycles. Test data indicated 

that the extra heat load was around 300 W, with the resulting effective cooling at 3.2 

kW and the COP of SSLC systems reduced by 8%. Second, in order to provide the 

regeneration temperature of 50°C, the airflow rate through the condenser (or gas 

cooler) needs to be reduced from 0.37 m
3
s

-1
 (baseline system) to 0.25 m

3
s

-1
. Such a 

reduction raised the condensing pressure (high side pressure) of both refrigerants. As 

described in Table 4, the high side pressure of CO2 increases from 10.37 MPa to 

10.91 MPa, and the condensing pressure of R-410A increases from 3.16 MPa to 3.42 

MPa. Excessive high side pressure increases the compressor input and in turn 

decreases the COP.  

The first negative factor is difficult to eliminate because it results from the 

inherent characteristic of desiccant material. However, the impact of the second factor 

could be minimized. We hereby propose the application of divided condensers (or gas 

coolers). Instead of heating the entire amount of air through a heat exchanger, 

(referred to in this dissertation as a condenser or gas cooler) to a required regeneration 
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temperature, divided heat exchangers use only one section (the first section) to 

provide hot air for DW regeneration, while the other sections (second section or third 

section) are used for heat rejection only, without meeting the temperature requirement 

for regeneration.  Therefore, the refrigerant high side pressure is restrained while the 

system is still able to effectively regenerate the DW. Furthermore, as a common 

practice to improve the performance of the CO2 cycle, the addition of a suction line 

heat exchanger helps reduce the refrigerant temperature at the gas cooler outlet. 

Therefore, its integration with the SSLC system was also investigated.  

 
Figure 33: The refrigeration cycle of the DW-assisted SSLC system with divided HXs 

Figure 33 describes the refrigeration cycle of the new SSLC system with 

divided heat exchangers (HXs). The condenser (gas cooler) in the vapor compression 

cycle was divided into two or three sections. The refrigerant that discharged from the 

compressor entered the first part of the condenser (or gas cooler), and then entered the 

second and third parts in sequence. The ambient air flowing to the first part of the 

heat exchanger was sent directly to the DW for regeneration. The ambient air or 

Evaporator

Compressor

1
st
. Condenser 

(1
st
. Gas cooler)

2
nd

. Condenser 

(2
nd

. Gas cooler)

3
rd

. Condenser 

(3
rd

. Gas cooler)

Expansion 

valve



 

 80 

 

exhaust air from the space served as a heat sink for the refrigerant in the second and 

third parts of the heat exchanger, after passing through the evaporative cooling 

process. The refrigerant leaving from the third part was sent to the expansion device. 

Some of the options listed below do not have the third part heat exchanger, which is 

shown in dashed rectangular box, so the refrigerant leaving the second part heat 

exchanger was sent to the expansion valve directly.  

 
Figure 34: New DW-assisted SSLC system option 1: evaporative cooling 
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Figure 35: New DW-assisted SSLC system option 2: evaporative cooling + fresh air 

Both Figure 34 and Figure 35 describe the DW-assisted SSLC systems. Option 1 is a 

zero-ventilation system, and the condensers (or gas coolers) was divided into two 

parts. Option 2 has the required amount of fresh air for the capacity, and the 

condensers (or gas coolers) were divided into 3 parts. Each part faced different air 

conditions, which varied from the ambient condition (35°C, 44% RH), ambient air 

condition after the evaporative cooling process (24.8°C, 100% RH) to the exhaust air 

from the space after the evaporative cooling process (19.5°C, 100% RH).  
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Figure 36: New DW-assisted SSLC system option 3: EW + evaporative cooling + 

fresh air 

 

Figure 36 shows the option with an added enthalpy wheel (EW) into the system. The 

heat and mass transfer between hot-and-humid ambient air and cool-and-dry indoor 

exhaust air helped recover both the sensible and latent cooling from the space.  

 
Figure 37: New DW-assisted SSLC system option 4: SW + evaporative cooling + 

DOS application 
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Figure 38: New DW-assisted SSLC system option 5: EW + evaporative cooling + 

DOS application 

 

Figure 37 and Figure 38 describe two new applications for such a configuration on a 

dedicated outdoor system (DOS). In the DOS, only fresh air is pre-conditioned to 

such a level that the temperature and humidity ratio are the same as those of the 

indoor air. Moreover, the application of the enthalpy wheel (EW) and the sensible 

wheel (SW) were compared to each other in order to find out which component is 

more suitable for the DOS. In the configuration of SW, one of the air streams was 

outside fresh air and the other was return air after the evaporative cooling process. 

Since there was only sensible heat transfer through the wheel, the evaporative cooling 

provided a large heat recovery potential without adding any water vapor to the fresh 

air stream. On the other hand, in the configuration of EW, no evaporative cooling 

process was added.   

 

 

Sensible 

evaporator

Supply air to 

the space

DW

Condensers

(Gas coolers)

Ambient air

Exhaust 

air

Ambient air through 

evaporative cooling

Fresh 

air

Return air from 

the space

EW

1

1

23

4

5 6 7



 

 84 

 

2.2.4 Improved System Modeling Approach 

EES was again used to model the vapor compression cycle and the DW. 

CoilDesigner (Jiang, 2006), an in-house heat exchanger simulation software package, 

replaced the previous multi-segment UA-LMTD method to model all the heat 

exchangers in the vapor compression cycle. The built-in optimization tool in EES was 

utilized to optimize the system COP. The detailed assumptions adopted for 

calculating the vapor compression cycle are listed as follows: 

The integration between EES and CoilDesigner: For each heat exchanger 

calculation, a database was created by a multiple-variable parametric study in the 

CoilDesigner. Specifically, the database of evaporator (evaporating pressure, inlet 

quality and mass flow rate) were selected as variables, and for the database of 

condenser (gas cooler) (condensing pressure (gas cooling pressure), inlet temperature, 

and mass flow rate) were selected as variables. Each database had 1,000 records. EES 

imported all the records and saved them in 3-dimension arrays. Linear interpolation 

method was applied to calculate the results from the database records.  

Optimization approach: The EES built-in optimization tool was used to maximize the 

system COP. Because of the nature of the system model, which was non-linear and 

the possible existence of multiple local maximums, the genetic method was applied 

for the optimization. The optimization function was defined as, 

Min f=-(COP of the system)             (34) 

  

s.t. :  

system capacity 3,800 W (SSLC system) or 1,820 W (DOS system)                                                        

Air discharge temperature off the 1st condenser (GC)  50°C                                                              
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The normalized objective function with penalty factor was demonstrated below, 

f=-
COP

baseline COP
+rp*(max .

-Qeva+3800(1820)

3800(1820)
 0/+max .

-tairoff+50

50
 0/ )      (35) 

 

where:            Baseline COP = 3, rp(penalty factor) = 1,000 

The following assumptions were made for modeling the vapor compression cycle: 

 System capacity: 3.5 kW (SSLC), 1.82 kW (DOS) (smaller capacity because it 

only conditions ventilation air flow) 

 Sensible heat factor: 0.7 

 Latent capacity: 1.0 kW 

 Outdoor/indoor air conditions: 35°C, 44% RH / 27°C, 50% RH 

 Refrigerant: R-410A and CO2 

 Regeneration temperature: 50°C 

 Regeneration air flow rate: 0.15 m
3
/s 

 Indoor air flow rate: 0.41 m
3
/s 

 Ventilation air flow rate or air flow rate of DOS system: 0.082 m
3
/s 

 Total air flow rate of condensers (gas coolers): 0.42 kg/s (volume flow rate 

varied in the condition with or without evaporative cooling)   

Compressor modeling: The compressor’s discharge temperature and power input 

were calculated from isentropic efficiency, compressor efficiency and volumetric 

efficiency. The three efficiencies were functions of pressure ratio, degree of 

superheating, and compressor frequency. Theoretical work input and the functions 

were obtained by regression analysis on experimental data. 
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ise
=f1(PR, Tsup)=

hdis,ise hsuc
hdis hsuc

 
(36) 

 
vol
=f2(PR,Tsup,compfreq)=

ṁ

RPM*disp* 
ref

 
(37) 

 
comp

=f3(theoretic work input)=
theoretic work

real work
 

(38) 

 

HX modeling: all the heat exchanger calculations were conducted in CoilDesigner. 

Expansion device modeling: The expansion process in the vapor compression cycle 

was treated as isenthalpic. 

hin=hout (39) 

                                                                                    

DW modeling: The DW was also modeled in the EES. The dehumidification 

performance was assumed to be a function of DW rotation speed, regeneration 

temperature, air velocity through the wheel and inlet humidity ratio in the 

regeneration side. The enthalpy of air in the process side off the DW was calculated 

as a function of DW rotation speed, regeneration temperature and air velocity. All the 

input data described above were from experimental data. 

 

WVR=f4(Treg,RPH,Vair ωregin) (40) 

hgain=f5(Treg,RPH, Vair)                       (41) 

                                

SW and EW modeling:  both of them were treated as counter-flow heat exchangers in 

modeling. A free heat exchanger software package (Heatex Select, 2009) was used to 

calculate the efficiencies of both wheels. For the SW, since the sensible heat was 
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transferred between two air streams, the sensible heat transfer efficiency was defined 

to be 0.85. For the EW, both sensible and latent heat were transferred between two air 

streams, and the efficiencies of temperature (sensible heat) transfer and humidity 

(water vapor) transfer were defined to be 0.82 and 0.65, respectively. 

 

2.2.5 Modeling Results and Discussion 

 

 

Figure 39: Psychrometric process of new SSLC system option 1 
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Figure 40: Psychrometric process of new SSLC system option 2 

 

 

 

 
 

 

Figure 41: Psychrometric process of DW-EW-assisted SSLC system (option 3) 
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Figure 42: Psychrometric process of DW-SW-assisted DOS system (option 4) 

 

 

 
 

 

 

Figure 43: Psychrometric process of DW-EW-assisted DOS system (option 5) 
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Figure 39 through Figure 43 demonstrate the psychrometric processes of the 

aforementioned options. Different line styles represent different air processes. In 

those figures, the bold numbers represent each air state point corresponding to ones in 

their respective schematic drawings.   

 
Figure 44: The system COP comparison of different SSLC options and baseline 

system 

 

In Figure 44, the system COPs of different options were compared with the 

convectional systems and DW-assisted SSLC system with single condenser (gas 

cooler).  The system COP was defined as the ratio of the space cooling capacity (3.5 

kW) to the compressor input. For conventional systems, the system COP could be 

considered same as the vapor compression cycle COP when neglecting heat load of 

fans, which is defined as the ratio of the evaporator air-side capacity to the 

compressor input. However, for the DW-assisted SSLC system, the vapor 

compression cycle provided an extra 300 W cooling to compensate for the difference 
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of heat of adsorption and heat of evaporation. After conducting the optimization, both 

the previous conventional systems and DW-assisted SSLC systems had slight 

improvements. In the conventional systems, the system COP of R-410A system 

improved from 3.6 to 3.7 and the system COP of CO2 system improved from 2.6 to 

2.7. For the SSLC systems with single condenser (gas cooler), R-410A system 

improved from 3.9 to 4.1 and CO2 system improved from 2.8 to 2.9.  

All these system COP results were plotted in Figure 44. In order to 

demonstrate the effect of the application of divided heat exchangers, the CO2 vapor 

compression cycles were plotted in the P-h diagram as shown in Figure 45.  

 
Figure 45: P-h diagram of CO2 DW-assisted SSLC systems 

(1’: compressor outlet, 2’: gas cooler outlet, 3’: expansion device outlet, 4’: evaporator outlet 
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The dotted cycle represents the DW-assisted SSLC system without gas cooler being 

divided, and the solid cycle represents the one with divided gas coolers. It clearly 

shows that the application of divided heat exchangers reduce the high side pressure 

and also reduce the approach temperature. In more detail, the divided gas coolers 

reduce the high side pressure from 10.4 MPa to 9.7 MPa, and the refrigerant 

temperature off the gas cooler is reduced from 42°C to 38°C. For the R-410A system, 

the pressure reduction is insignificant (3.46 MPa to 3.45 MPa); however, the 

condenser outlet temperature reduction is significant (from 40°C to 36 °C). The 

hollow legends in Figure 44 represent the case of option 1 without evaporative 

cooling in the second HX. It was found that the COP improved by 20% for the R-

410A system and 44% for the CO2 system.  It is also interesting to notice that when 

the evaporative cooling is applied to the second gas cooler (solid legends); the CO2 

system had a better COP than the R-410A system. The COP of the CO2 systems tends 

to decrease quickly under high ambient temperature conditions; however, the 

application of the evaporative cooling lowered the actual operating conditions of the 

system. Therefore, the COP improvements of the CO2 systems were larger than those 

of the R-410A systems. Option 2 divides the condensers (gas coolers) into three parts, 

and the evaporative cooling of return air provides the lowest possible temperature to 

further cool down the refrigerants. The COP had an extra 4.8% and 16.8% 

improvement for the R-410A and CO2 systems, respectively. Again, the CO2 system 

outperformed the R-410A system because the same reason explained above. The EW-

assisted SSLC system had the highest COP as shown in Figure 44. Application of the 

EW provided ―free‖ sensible and latent cooling, and reduced the sensible cooling 
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requirement of the vapor compression cycle from 3.8 kW to 2.7 kW. The heat 

exchangers were modeled in reduced sizes in proportion to the reduced capacity. The 

compressor power input was reduced to a minimum with this option. The system 

COP improvements were 68% and 73% for the CO2 and R-410A systems, 

respectively.  

 

Table 10: Optimization results of SW-DW-assisted SSLC system 

Refrigerant R-410A CO2 

Vapor compression cycle COP 5.09 3.64 

Cooling capacity of VCC (kW) 1.25 1.25 

Power input (kW) 0.24 0.34 

Regeneration temperature (°C) 48.21 48.19 

The ratio of heating to cooling 1.12 1.12 

Sensible wheel capacity (kW) 1.27 1.27 

System cooling capacity (kW) 1.82 1.82 

 

Table 10 lists the optimization results of the SW-DW-assisted DOS system. 

The vapor compression cycle COP is defined as the ratio of cooling provided by the 

VCC over the VCC power input. Unlike aforementioned system COP which adds the 

cooling effect from cooling recovery device, like EW or SW, the VCC COP only 

considers the cooling from VCC system. For both refrigerant systems, the most 

important information was that they could not provide enough heat (to reach 50°C) to 

regenerate the DW. The table shows the maximum regeneration temperatures are only 

around 48°C for the two systems. Since the SW did not provide any latent cooling, 

the DW had to deal with the entire latent load (1 kW). However, the vapor 

compression cycle had a reduced cooling capacity (from 1.8 kW to 1.25 kW), 

enhanced by the fact that the SW provided a sensible cooling. Compared with the 

required amount of heat to regenerate the DW (1.4 kW), the reduced cooling capacity 
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output from the vapor compression cycle was too small to maintain the COP at a high 

level while still rejecting enough heat to the ambient air. If the system was forced to 

deliver the required amount of heat to the DW, the system COP would be lower than 

the conventional system, rendering ineffective the point of using the separate sensible 

and latent cooling technology. The EW-DW-assisted system, on the other hand, 

worked well.  

 

 

Table 11: Optimization results of EW-DW-assisted SSLC system 

Refrigerant  R-410A CO2 

Vapor compression cycle COP 5.80 4.54 

Cooling capacity of VCC (kW) 0.80 0.81 

Power input (kWe) 0.14 0.18 

Regeneration temperature (°C) 50.06 50.01 

The ratio of heating to cooling 0.95 0.95 

Enthalpy wheel capacity (kW) 1.32 1.32 

Latent capacity of EW (kW) 0.65 0.65 

System cooling capacity (kW) 1.82 1.82 

 

 

Table 11 lists the optimization results of such a system. The EW provided 

both the sensible and latent cooling to the system, helping to reduce both the cooling 

load of the vapor compression cycle and the amount of heat required to regenerate the 

DW. When comparing the cases of using an EW against using a SW, it was found 

that the ratio of heating to cooling could serve as a measure to determine whether or 

not the configuration was suitable for the DW-assisted SSLC system. If the ratio was 

greater than 1, meaning the heat requirement of the regeneration is greater than the 
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cooling output of the vapor compression cycle; such a configuration would not be 

suitable because the regeneration heat from the cooling system is not large enough. 
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Chapter 3: Experimental Assessment for the Low ΔT Heat 

Exchangers 
 

3.1 Chilled Ceilin  Panels  Heated Floor Systems and the Low ΔT Heat Exchan er  

In order to assess the thermal comfort provided by the SSLC system, it is 

necessary to focus the study onto its indoor heat exchanger. The previous study shows 

that one of the major design challenges for the indoor heat exchangers is larger air-

side pressure drop than that of conventional ones. It is because the air flow rate 

through the sensible heat exchangers has to be typically 3 to 4 times higher than that 

that through conventional systems in order to compensate the reduced air enthalpy 

difference across the heat exchanger. As a solution to this challenge, the indoor heat 

exchangers are designed to have a larger frontal area; so that the air velocity can be 

reduced. The larger frontal area has another advantage. It makes the radiative heat 

transfer between the heat exchanger and occupants more significant than that of 

conventional systems. Such heat transfer helps to adjust the mean radiant temperature 

(MRT), and hence provides better thermal comfort. In some European and Asian 

countries, the idea has been applied to products like chilled ceiling panels (cooling) 

and heated floor systems (heating).  

 

Chilled ceiling panels are typically suspended on the ceiling or plenum which 

refers to a drop ceiling. The panels consist of one or multiple serpentine-shaped tubes 

fixed on metal sheets. The tubes can be made of copper because of a better heat 

conductance so that the heat from the tube can be better transferred to the sheet. 

However they are more often made of PEX, cross-linked polyethylene, for the easy 
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handling and lower cost. The metal sheet is typically made of aluminum. Paint may 

be applied on the surface for a better emissivity. The working fluid flowing inside the 

tubes is water which is in the temperature range from 14°C to 18°C. Since 

condensation should be avoided, the fluid temperature has to be 1 or 2 K higher than 

the dew point. Therefore, for the entire air-conditioning application, certain latent 

load removal system has to be installed such as desiccant wheels. Riffat et. al. (2004) 

provides a detailed review on the origination, development and current state of the 

chilled ceiling panels.  

 

The heated floor system instead provides hot water inside the tubes which are 

embedded under floors. The two papers from Bean et al. (2010a, 2010b) offer a 

review of the development of heated floor systems in both Asia and Europe. It is 

widely accepted that both the chilled ceiling panels and heated floor systems have the 

benefits of low energy consumption and better thermal comfort.    

However, there are drawbacks to these two systems. First of all, as restricted 

by the motion of buoyancy airflow, chilled ceiling panel cannot effectively provide 

heating while heated floor system cannot effectively provide cooling. Therefore, each 

system cannot replace the other with the same function. Second, especially for the 

heated floor systems, the installation requires an entire overhaul of the floor in order 

to embed the system. Such overhaul work is almost impossible without affecting the 

residents. Therefore, the systems are generally limited to be installed for new houses. 

However, considering the fact that in the US, the number of retrofitting old houses is 
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at least three times more than that of building new homes, it is obvious that the 

market for these two systems are low. 

 

The idea of low ΔT heat exchanger is proposed hereby in order to address the 

above two drawbacks. The low ΔT refers to the small temperature difference between 

indoor air and refrigerant, i.e., in winter the low ΔT heat exchanger uses hot fluid of 

temperature just several degrees higher than room air temperature to provide heating; 

and in summer it uses cold fluid of temperature just several degrees lower than room 

air temperature to provide cooling.  The structure of the heat exchanger is similar to 

chilled ceiling panels. It consists of serpentine tubes and metal sheets. However, 

unlike the installation of a chilled ceiling panel which has to be suspended on the 

ceiling, the low ΔT heat exchanger can be hung on the wall. It also has a large frontal 

area that can cover as much as the entire wall or even multiple walls so it can 

effectively provide radiative heat transfer as well as convective heat transfer. Since 

the heat exchanger can be installed on the wall, the temperature difference between 

the heat exchanger wall and the opposite wall will drive a ring-shape air motion due 

to natural convection. Hence, there is no restriction for it to provide both heating and 

cooling. Moreover, the installation of heat exchanger against the wall is much more 

convenient. It does not require any overhaul to the existing structure of the house. The 

convenience makes it possible to apply the low ΔT heat exchangers and low 

temperature lift heat pump systems onto retrofit market.  

 

In order to test the performance of the low ΔT heat exchangers and to prove 

the potential for better thermal comfort, a series of experiments have been conducted. 
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The experiments started with the fabrication of operative temperature sensor, 

followed by a baseline system test, and finally the test of low ΔT heat exchangers. 

3.2 Sensors for Operative Temperature Measurement 

3.2.1 A Simplified Operative Temperature Calculation 

 

According to Eq. (1), the operative temperature is defined as the heat transfer 

coefficient - weighted arithmetic mean between air temperature and (MRT). 

However, the direct measurement of either radiative heat transfer coefficient or 

convective heat transfer coefficient is cumbersome; hence proper simplifications to 

the equation have to be made. Table 12 lists a simplified calculation method by 

ASHRAE standards 55 (ASHRAE 2004). It is assumed that (1) convective heat 

transfer coefficient depends on air velocity; (2) when the velocity is small, the 

convective heat transfer coefficient is comparable to the radiative heat transfer 

coefficient. 

Table 12: Operative temperature calculation (based on ASHRAE 2004) 

Air speed v < 0.2 m/s 0.2   v  0.6 m/s v>0.6 m/s 

Correlation top=0.5Tair+0.5MRT top=0.6Tair+0.4MRT top=0.7Tair+0.3MRT 
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3.2.2 Operative Temperature Sensors 

 

The operative temperature (OT) is measured with self-built sensors. The 

sensors are designed according to the ISO standard 7726 (ISO 7726:1998), which 

provides a guideline for OT sensor’s design. Each one consists of a resistive 

temperature sensor (RTD), which has an uncertainty of  0.15 K, inserted into the 

center of a hollow aluminum sphere. The sphere of 0.152 m in diameter was welded 

from two halves and polished on the outer surface. Multiple layers of black paint 

having an emissivity of 0.95 were then uniformly applied on the polished surface. 

The emissivity of 0.95 is selected because it is close to the emissivity of a human 

body. Figure 46 and Figure 47 are the pictures of the RTD sensor and the assembled 

operative temperature sensor, respectively.  

 

Figure 46: Picture of RTD sensor 
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Figure 47: Picture of assembled operative temperature sensor 

The four assembled operative temperature sensors were later attached to a 

vertically-placed pole at different heights. Figure 48 provides detailed positions of the 

four sensors. The selection of the different positions is based on the height of an 

ordinary person so that different sensors can record the operative temperature from 

the feet to the head. The RTD sensors are calibrated at both 0°C and 100°C. Figure 49 

plots the operative temperature readings of four sensors in one day. OT 1 is located at 

1.7 m, OT 2 is located at 1.1 m, and OT 3 and OT 4 are located at 0.6 m and 0.1 m, 

respectively. Because the average temperatures of exterior wall (21.9°C) and floor 

(23.6°C) is much colder than air temperature in the room (25.1°C), it resulted in 

lower MRT. Therefore, the OT sensor readings are lower than air temperature. Since 

OT 1 has the largest view factor to the exterior wall, followed by OT 2, consequently, 

the OT sensors readings are low. OT 3 has the least view factors to the exterior wall 

and floor, therefore the reading is highest. In Figure 50, the uncertainties of the 

sensors (error bars) are applied to the average values of data in Figure 49. Both 
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systematic error and random error were considered in the uncertainty analysis. The 

highest uncertainty,  0.36 K, came from OT 1, and the lowest uncertainty,  0.30 K, 

came from OT 3.  

 

 

 

 
Figure 48: Positions of four operative temperature sensors 

 

 
Figure 49: OT sensors readings in one day 
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Figure 50: Uncertainty analysis of operative temperature sensors 
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3.3 Low ΔT Heat Exchan er Test Facility 

3.3.1 The Hot Water Supply Loop 

Figure 51 describes the hot water supply loop for the low ΔT HX test facility. 

A tank made of polypropylene panels is used as a reservoir for hot water. The water 

inside the loop is circulated by a Grundfos
®
 circulator pump. The pump, having a 205 

W power input, is capable of delivering 1.77 l s
-1

 water flow rate at zero pressure lift 

or 90 kPa pressure lift at zero flow rate. A 1,500 W electric heater was installed in the 

loop to reheat the water. The heater came with an analog manual temperature control 

dial but was later replaced with a solid state relay to achieve a better on and off 

control. The relay itself is controlled by the PID module of the data acquisition 

system. The components were connected together by PEX tubes. 

 

Three T-type thermocouples (systematic error of   0.5 K) were installed at 

different locations to obtain an energy balance between the heater output and the 

heating capacity of the low ΔT heat exchangers. The detailed positions of these 

thermocouples are marked in the Figure 51. The water mass flow rate in the loop was 

measured by a MicroMotion
®
 Coriolis mass flow meter. The mass flow meter was re-

calibrated to a range of 25 to 100 g/s for a better accuracy of 2.5% reading. Finally, 

the water flow rate was adjusted through a needle valve to achieve the capacity 

control of the heat exchangers.  
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Figure 51: Schematic diagram of low ΔT HX test facility 

 

 

3.3.2 The Assembly of Low ΔT Heat Exchanger Panels 

 

Two low ΔT heat exchanger panels (which are called comfort panels in the 

catalog) were purchased from Uponor
®
.  The heat exchangers consist of 60 aluminum 

sheets and PEX tubes of a total length of 75 m. Each sheet has a smooth back-side, 

but its front-side is divided into small channels so that the PEX tube can be clipped 

into channels in a serpentine shape. The dimension of each sheet is 1.22 m by 0.089 

m. 34 sheets were combined together to make one heat exchanger, while the rest 26 

sheets were combined together to form another one. Insulation foams were taped to 

fill the gaps between channels in order to prevent conduction loss (see Figure 52). 

The total frontal area of the two heat exchangers is 6.52 m
2
. According to the 

Uponor
®
 catalog (Uponor, 2010), it should be able to provide up to 658 W 

cooling/heating. The capacity was determined by a maximum capacity output of 101 
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W/m
2
 at 11 K temperature difference. The amount of cooling/ heating is sufficient to 

cover the heating/cooling load in the test office (Koepke 2011).  

 

Figure 52: Low ΔT HX’s sheet and tube 

To minimize the heat loss from the back, insulation foams of fiberglass were 

applied to the backside of the sheet. The applied foam has a thickness of 3.8 cm and a 

thermal conductivity of 0.042 W(m K)
-1

 (see Figure 53). 

 

Figure 53: Insulation for the backside panel of low ΔT HX 
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Due to the restriction of office layout, the heat exchanger can only be installed 

on the north wall opposite to the window. The heat exchangers were assembled 

together by aluminum frames. The frame was made of 80/20
®
 aluminum profiles with 

a side length of the square cross section of 0.0381 m. The total frame size per panel is 

1.6 m   2.44 m. They were connected together by aluminum angles. Figure 54 is the 

picture of the final installation of low ΔT heat exchangers inside the test office. 

 

 

Figure 54: Installed panels in the test office 

 

3.3.3 Room Selection 

 

Among various criteria, the most important one for room selection is that its 

dimension should be as close as possible to that of the CFD model (3 m by 3 m). The 

CFD modeling will be discussed in detail in the following chapter. Based on this 

criterion, an office on the first floor of Potomac Building at College Park, MD 

campus was selected. The office is 2.95 m from north to south, 4.25 m from west to 
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east and 3.2 m in height. It has one frequent occupant, a desk, a chair, two cabinets, 

one PC, two monitors and two fluorescent ceiling lights. Table 13 shows the 

breakdown of components included in the load calculation. Figure 56 and Figure 57 

demonstrate the results of load calculation for winter and summer, respectively. 

 

 

Figure 55: Sketch of the office under low ΔT study 

 

Table 13: Load calculation components 

Load Components Summer Winter 

Exterior walls Heat gain Heat loss 

Exterior windows Heat gain Heat loss 

Interior walls Heat gain Heat loss 

Lighting Heat gain Heat gain 

Electronic appliances Heat gain Heat gain 

Occupants Heat gain Heat gain 

Ventilation  Heat gain Heat loss 
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Figure 56: Heating load analysis of the test office 

 

 

 

Figure 57: Cooling load analysis of the test office 
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3.4 Low ΔT Heat Exchan er Experiments Results 

3.4.1 Baseline System Experiment Results 

The objective of conducting a baseline system test is to evaluate the thermal 

comfort (in terms of operative temperature) of the space provided by convectional 

fan-coil unit in winter or window-type AC unit in summer. It is also the purpose of 

the baseline system to be served as a comparison to the later low ΔT heat exchanger 

system test. Due to the season restriction, only heating test has been conducted. 

 

One weekend was randomly picked from January and February of 2011 to 

perform the baseline test. The test lasted for 60 hours. The four OT sensors were 

placed in the center of the office. A relative humidity sensor was also attached to the 

pole which holds OT sensors, and it was placed at the height of 0.6 m.  Four 

aluminum tape-shielded thermocouples (accuracy of   0.5 K) were located at the 

center of the heater, air outlet of the heater, window and outside of the office. The 

purpose of shielding the thermocouples is to minimize the impact from direct solar 

radiation.  

 

Figure 58 demonstrates the operative temperatures recorded by the four OT 

sensors. It is clear to find that the operative temperature readings are stratified. This is 

due to the air temperature stratification caused by the buoyancy force. The fluctuation 

of the readings mainly comes from the change of exterior wall temperature. This 

statement can be supported by the fact that the trend of fluctuation of each OT sensor 
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is almost identical to each other. Hence, the fluctuation must have come from the 

same source. 

There are two temperature peaks in Figure 58 (in red circles) worthy of a 

further investigation. It was found that the two peaks happened approximately at the 

same time in two consecutive days. The peaks are probably because during one time 

in a day, the direct solar radiation reaches one or all spheres (depending on the 

cloudiness) through the window. This assumption was further supported by Figure 

59. It is clear that the two peaks of window surface temperature are coincident in time 

with the peaks in Figure 58. 

 

Figure 58: Operative temperature measurement in the baseline test 
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Figure 59: Window surface temperature variation during the baseline test 

 

The hot water to the convectional fan-coil unit comes from the campus central 

heating system. Its temperature is around 80°C. The heater is located 0.4 m away 

from the floor. A strong stratification of air temperature was anticipated due to the 

buoyance force. The strong stratification should also be reflected on the operative 

temperature measurement. Figure 60 plots the average operative temperature readings 

of each OT sensor during the test day. The average operative temperatures of OT 

sensors are 23.0°C, 22.6°C, 21.5°C and 19.9°C, respectively. The maximum 

temperature difference of 3.24 K is between OT 1 (1.7 m high) and OT 4 (0.1 m). It 

represents the fact that when using the conventional fan-coil unit, occupants are 

subject to cold feet and warm head with the temperature difference over 3 K. 

According to the ASHRAE standard 55, this should be considered as uncomfortable. 

Generally speaking, people feel thermally comfortable when the feet are warmer than 
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the head. Moreover, the temperature stratification between the head and the feet 

should not exceed 3 K.  

 

Figure 60: Thermal comfort analysis of the baseline test: operative temperature 

stratification 

 

The other problem from the use of conventional fan-coil units in winter is the 

temperature at lower body, especially the feet, can be too low. Figure 61 overlays the 

60-hour operative temperature data onto a psychrometric chart. The blue quadrilateral 

in the psychrometric chart is the simplified ASHRAE thermal comfort zone. Most of 

the OT 4 data falls out of the comfort zone to its left side. It means that occupants 

may suffer too low temperature around their feet area, although the other parts of 

body are subject to comfortable temperatures.  
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Figure 61: Thermal comfort analysis of the baseline test: operative temperatures in 

the comfort zone 

 

In summary, the conventional fan-coil unit with hot water temperature of 

80°C is able to provide enough heating capacity to cover the office load. However, in 

terms of thermal comfort, occupants can still suffer from too large temperature 

difference between the feet and the head, and the feet area temperature is lower than 

required by ASHRAE comfort zone.    
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3.4.2 Low ΔT Heat Exchanger Experiment Results 

The experiment of low ΔT heat exchanger was conducted after the baseline 

test. In order to eliminate the effect from the fan-coil unit, both the supply water valve 

and fan were shut off during the test. The objectives of the experiment are to evaluate 

the general performance of the low ΔT heat exchangers and its hot water supply loop, 

to study the thermal comfort created by the low ΔT heat exchanger and to provide 

experimental data for the future validation of simulation codes.  

 

The experiment started with filling distilled water into the water tank. The 

usage of distilled water is to reduce the possibility of fouling inside the tubes and 

HXs. The water pump was then turned on to fill water into the water loop system and 

the heat exchangers. Since the manufacturer’s catalog (Uponor, 2010) suggests a 

minimum water flow rate to be 62 gs
-1

 (1 GPM), the pump was adjusted for a water 

flow rate of 78.5 gs
-1

 (1.25 GPM). The water flow rates during the entire test were 

plotted in Figure 62. The water temperature was set to be 35 °C, which is 

approximately 10 K above the space air temperature. Compared to the baseline 

system having a hot water temperature of 80°C, the ΔT between hot fluid and air 

temperature was reduced by around 45 K. The thermocouples located at the heater 

inlet and outlet recorded the temperature readings which are plotted in Figure 63. The 

heater capacity can then be calculated based on the water flow rate and the 

temperature difference across the heater (see Eq. (42)). Without any heat loss, the 

heater capacity should be the same as the low ΔT heat exchangers (see Eq. (43) for 

HX capacity calculation). The two capacities were plotted against each other in 
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Figure 64. The average capacities of the heater and the HXs are 527 W and 546 W, 

respectively. It results in an average deviation of only 3.7%. The small deviation 

reflects good measurement accuracy.  

Q
heater

=ṁ cp (theater out theater inlet) (42) 

Q
heater

=ṁ cp (tHX inlet tHX outlet) (43) 

 

 

Figure 62: Water flow rate variation during the low ΔT HX 
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Figure 63: Heater inlet and outlet temperatures’ variations 

 

Figure 64: Comparison of measured heating capacities of heater and HX 
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It is then important to study the thermal comfort created by the low ΔT heat 

exchangers. In Figure 65, the average operative temperatures of each sensor during 

the 60-hour test period were plotted against the sensors’ heights. The highest sensor 

(OT 1) has an average temperature of 24.3°C, while the lowest sensor (OT 4) has an 

average temperature of 22.3°C. Compared with the results of the baseline test, the 

average operative temperature readings from OT 1 and OT 4 was found to increase by 

2.4 K and 1.3 K, respectively. The reason behind the increase is the elevated surface 

temperature. The north wall of the office had an average surface temperature of 

23.2°C during the baseline test, while it increased to 35°C during the low ΔT HX test. 

The increased surface temperature increased the MRT of all OT sensors; therefore the 

operative temperature readings were increased. Since OT 4 sensor had the lowest air 

temperature reading due to the buoyancy force, the increased MRT had the largest 

effect on its increase of operative temperature. Consequently, the temperature 

difference between occupants’ head (OT 1) and feet (OT 4) was reduced to 2.0 K. 

This demonstrates a better thermal comfort in terms of a reduced head-to-feet 

temperature stratification.  
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Figure 65: Thermal comfort analysis of the low ΔT HX test: Operative temperature 

stratification 

 

 

Figure 66: Thermal comfort analysis of low ΔT HXs: operative temperatures in the 

comfort zone 
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Figure 66 overlays the entire OT sensors readings on the psychrometric chart. 

The blue quadrilateral represents a simplified thermal comfort zone according to the 

ASHRAE standard 55. Almost all measured points fall into the thermal comfort zone. 

The higher surface temperature of north wall increased the operative temperature 

reading of the OT 4 from the baseline test. Hence, the second issue of the baseline 

test, too low temperature of OT4, has been addressed.  
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Chapter 4: Modeling the Operative Temperature Field in an 

Office Setting 

4.1 The Objectives of Operative Temperature Field Modeling 

The experimental test demonstrates encouraging results when using the low 

ΔT heat exchanger in terms of obtaining better thermal comfort than the baseline fan-

coil unit. However, there are several questions still unanswered. First of all, both 

systems show the temperature stratification with respect to the height. However, the 

test data provides only several data point. How to get a complete picture of 

temperature stratification elsewhere inside the room? Second, the operative 

temperature sensor measures only operative temperature, but how MRT affects the 

operative temperature in detail? Finally, how to extrapolate the results to other 

conditions? 

 

In order to answer all the above questions and make further investigation on 

the low ΔT heat exchangers, the simulation of operative temperature field created by 

low ΔT heat exchangers must be conducted.  It should focus on the simulation of 

operative temperature and velocity profiles created by the low ΔT heat exchangers in 

the air-conditioned space.  

 

The objectives of the modeling are to achieve a complete understanding of the 

thermal comfort zone created by low ΔT heat exchangers from solving the physical 

governing equations; to expand the database of low ΔT heat exchanger’s operation 

from experimental test. 
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The OT modeling started from the MRT calculation, followed by the 

modeling of air temperature and velocity inside a square enclosure and finally the 

combination of MRT and air temperature to obtain the operative temperature.   
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4.2 The Calculation of Mean Radiation Temperature (MRT)  

To calculate the operative temperature, the MRT has to be obtained besides 

the air temperature. The MRT can be calculated as: 

tr=∑Fp-itsi 
(44) 

 

Where: Fp-i is the angle factor (view factor) from a person to surface i;     is the 

surface temperature of surface i. From the above equation, it is clear that in order to 

get the MRT, we have to calculate the view factor from all solid surfaces, i.e., walls, 

floor, ceiling, to the person (occupant). 

 

 Moreover, from Eq. (44), one can get a better interpretation of MRT as a view 

factor- weighted average surface temperature. The view factor is mainly affected by 

the distance between the interested point and the surface, and the size of the surface. 

The following discussion within the section focuses on the model of the MRT 

temperature calculation, the view factor calculation and finally the MRT calculation 

results 
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4.2.1 Model Description 

Figure 67 describes the radiation model adopted in the study. The room is 

assumed to be 3 m by 3 m by 3 m with four walls (front wall is not shown), a ceiling 

and a floor. The left wall has an indoor heat exchanger, and it is assumed that the heat 

exchanger make the entire wall be at a constant temperature. The dimension of the 

MRT model matches the model of the CFD simulation of air temperature, which will 

be discussed later in the chapter.  The right wall has a window facing south whose 

area is smaller than the wall. The window has a higher temperature than the rest of 

the wall because of the solar radiation. The four walls, i.e., the frontal wall, the back 

wall, the left wall and the right wall, are assumed to have uniform temperatures. It 

was through the later literature review (Rohan et al., 2010) that an additional surface 

has to be added to the model. There is a heated-up area on the floor receiving the 

solar radiation through the window. The temperature of the area can be higher than 

the rest of the floor, and the size and temperature of the area vary depending on the 

solar altitude angle and azimuth angle. Figure 68 describes the detail of the sun light 

area calculation. For simplification, the person in the room is simplified to be a 

sphere. Dunkle (1963) defined the equivalent sphere radius of both a standing person 

and a sitting person. However, since the sphere’s radius is infinitesimal compared 

with the room dimension, the radius is neglected in the model. The sphere is free to 

be moved anywhere inside the room because there are actually no restrictions for 

occupant’s activity inside the room. The most important function of the model is to 

output the MRT of the sphere inside the room. 
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Figure 67: Adopted radiation model setup 
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Figure 68: Calculation of sun light area (where   and   are the solar altitude angle 

and azimuth angle, respectively) (Source: Rohan et al., 2010) 
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In order to obtain the mean radiation temperature anywhere in the room, we 

have to first obtain the view factor between the sphere (representing occupant’s 

activity area) inside the room and all the eight surfaces. The calculation of view 

factors started with the one between two infinitesimal areas, and then integrated the 

result to obtain the one between a sphere and a wall surface.  

 

The detailed steps are as follows: first, use Eq. (45) to calculate the view angle 

between two infinitesimal areas of the sphere and wall (see Figure 69). Then, 

integrate the two infinitesimal areas to the entire sphere and a quarter of the wall as in 

Eq. (46) (see Figure 70).  

 
Figure 69:  Calculation of view factor between two infinitesimal areas 

 

F1-2= ∬
cos 1cos 2

 s2
dA1dA2

A1A2

 
(45) 

 

Where  1    are the angle of line s to surface dA1 and dA2, respectively. 

 

 

 

 

 

d
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d
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s 
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Figure 70: View factor from a sphere to a non-intersected rectangular area 

     ∫
  

(    )√       
 

    

    

 
(46) 

  

where.B1=
b
 

d
 B2=

q 

d
, =

c

d
 (Sabet and Chung, 1987) 

 

From Eq. (46), the view factor between a sphere and the entire wall can be 

calculated by summing up four view factors which are from the sphere to each 

quarter-wall. With different d and rectangular dimensions, one can calculate view 

factors from anywhere inside the room to all the walls. 
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4.3 Calculation of Air Temperature inside an Enclosure  

4.3.1 Model Description 

 

Based on the literature review and previous radiation model, the enclosure 

model for natural convection calculation is defined as a square space with the left 

wall having a uniform temperature of Tc and a right wall having uniform temperature 

of Th. Both the floor and ceiling are assumed to be adiabatic. The governing equations, 

which are Eq. (47) to Eq. (49), and boundary conditions: 

Continuity equation:  

  u⃗ =0 (47) 

Momentum equation: 

 
 u⃗ 

 t
+  u⃗   u⃗ =- P+ gj  (T-Tc)+  

2u⃗  (48) 

 

Energy equation: 

 cp
 T

 t
+ cpu⃗   T=κ 

2T 
(49) 

  

Boundary conditions: 

At the top and bottom walls of the cavity 

                                    u=v=0                                                                                

                                     T
 n⃗⃗ 
=0                                                  

     At the left wall 

                                   u=v=0                                                                                 

                                   T=TC                                                                                        

     At the right wall 
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                                 u=v=0                                                                                   

                                 T=TH                                                                                        

 

Figure 71: Boundary conditions and dimensions of the adopted natural convection 

model 

 

 

In Figure 71, x and y are used to represent the horizontal and vertical direction, 

respectively. The side length of the square is L. The bottom left corner has the 

coordinate of (-
L

2
 -

L

2
), while the top right corner has the coordinate of (

L

2
 
L

2
).   
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4.3.2 CFD Simulation 

 

For the airflow inside the square enclosure, its Rayleigh number reaches 

    when the dimension of the square is over 1 m by 1 m. Therefore, the flow should 

be considered as turbulent flow. The previous literature review proves difficult to 

analytically solve such problem. Hence, a commercial CFD software package, Fluent 

(ANSYS, Inc., 2006), was chosen to model the natural convection inside square 

enclosure. Figure 72 shows the mesh generated by Gambit (ANSYS, Inc., 2011).  The 

grid has 150 by 150 quad meshes with enhanced mesh density in the boundary layer 

to capture the complicated flow characteristics. To be specific, the boundary layer has 

the first row of 1 mm and the growth of 1.15, i.e., the entire depth of the boundary 

layer is 20 mm. The mesh is proved to be sufficient to solve the square of 1 m by 1 m 

case. The turbulence model used in the model is k-ω SST model. Figure 73 is the 

screenshot of the viscous model GUI in Fluent. The isotherms and streamlines are 

plotted in Figure 74 and Figure 75. The model was later expanded to be a 3 m by 3 m 

square space. It is because the new dimension is much closer to the actual size of a 

room. The original mesh structure did not lead to a convergent solution. The reason is 

that an increased space dimension increases the size of a cell as well; therefore, the 

cell cannot capture the characteristics of the boundary layer. As a solution, the mesh 

was refined (see Figure 76). The new mesh provides a converged solution as plotted 

in Figure 77 and Figure 78. 
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Figure 72: 1st generation of mesh generated by Gambit

®
 

 

 
 

Figure 73: Screenshot of viscous model GUI in Fluent
®
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Figure 74: Isotherms of air in the enclosure (1 m by 1 m) 

 

 
Figure 75: Streamlines of air in the enclosure (1 m by 1 m) 
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Figure 76: 2nd generation of mesh generated by Gambit
®

 

 

 
Figure 77: Streamlines of air in the enclosure (3 m by 3 m) 
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Figure 78: Isotherms of air in the enclosure (3 m by 3 m) 
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4.3.3 Linear Curve Fit for CFD Results 

 

It can be found from Figure 78 that the temperature profile of bulk air in the 

enclosure can be simplified as a function of y axis (the opposite of g⃗  direction) only. 

The temperature of air close to the side walls has a rapid temperature change, so 

different correlations have to be used to predict the air temperature near the cold wall 

and hot wall. Eqs. (50) through (52) are the correlations used to calculate the air 

temperatures inside the room.  More specifically, Eq. (50) is used to calculate the bulk 

air temperature in the room (-1.48<y<1.48), and Eqs. (51) and (52) are used to 

calculate air temperature near the cold wall and the hot wall, respectively.  Figure 79 

through Figure 81 demonstrate the comparisons between temperatures calculated 

from CFD and curve fitting. 

T (in K)= 3.02 h+300.51 (50) 

T (in K)= -0.38 h6+0.61 h5+1.39 h4-0.69 h3-0.92 h2+1.99 h+298.57   (51) 

T (in K)   0 34 h6
 + 0.97 h

5
+0.49 h

4
 - 1.58 h

3
 + 

                    0.0048 h2 + 1.67 h + 304.4                                                                                                 

(52) 
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Figure 79: Comparison of temperature readings from CFD and curve fitting (bulk air 

region) 

 

 

 

 
Figure 80: Comparison of temperature readings from CFD and curve fitting (close-to-

cold wall region) 
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Figure 81: Comparison of temperature readings from CFD and curve fitting (close-to-

hot wall region) 

 

 

4.3.4 Calculation of Operative Temperature 

Sections 4.3.2 and 4.3.3 describe the calculation of the MRT temperature and 

the air temperature in the space. Based on the previous literature review, under most 

cases, an operative temperature is the arithmetic mean of the MRT temperature and 

air temperature. EES (EES, 2009) is used to simulate the operative temperature 

profile. The model assumptions are listed as follows: 

 An eight-surface radiation model 

 Air temperature are calculated by correlations Eqs. (50) through (52). 

 Tcoldwall=20°C 

 Twindow=35°C 

 Tsunlight area=35°C 
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 The rest of walls have the same temperature of 27°C 

 Figure 82 through Figure 84 show the results of operative temperature in bulk region, 

near the cold wall and the hot wall. The bulk air flow region is from 0.02 m away 

from the cold wall to 0.02 m away from the hot wall. The cold wall region and hot 

wall region refer to the area within 0.02 m to the walls. 

 

 
 

 
Figure 82: Simulated operative temperature of air in the bulk flow region 
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Figure 83: Simulated operative temperature of air near the cold wall 

 

 

 
Figure 84: Simulated operative temperature of air near the hot wall 
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4.3.5 Validation for Operative Temperature Simulation  

The simulation results from the operative temperature model were compared 

with the experimental data. During the test, the operative sensors were placed at the 

center of the roughly 3 m by 3 m floor; therefore, the model input was adjusted 

according to the experiments. The model was validated for two different operating 

conditions, i.e., with the low ΔT heat exchangers on and with the low ΔT heat 

exchangers off.  

 

When the low ΔT heat exchanger was off, the baseline system was also off. 

The ambient temperature was around 23°C. Surface temperatures and air 

temperatures recorded from the experiment were used as the inputs to the model. The 

readings from the operative temperature sensors were used to compare with the model 

outputs. 
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Figure 85: Comparison between OT simulation results and experimental data (low ΔT 

HX off) 

In Figure 85, the average deviation of operative temperature between the 

simulation and experiment is 0.7 K. The largest deviation comes from OT 3 (0.6 m 

high), while the smallest deviation comes from OT 2 (1.1 m high). There are two 

reasons caused the deviations. First, the MRT simulation is based on the eight-surface 

model, however, in the real office setting, there are extra surfaces affecting the 

operative sensor’s reading. 

 The desk blocks part of the solar radiation from the window to the low height 

sensors  

 The cabinet against the north wall and east wall may have different 

temperatures than the wall temperatures 

 The fluorescent light bulbs emit radiation which affects at least OT sensor 1 
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Second, the air temperature used in this simulation is taken from a two point 

measurement data. There are no curve fitting correlations available (necessary) for the 

conditions that low ΔT heat exchanger is off. Therefore, the air temperatures for the 

four sensors had to refer to the two thermal couples which locate at 0.1 m and 1.0 m 

off the floor.  

 

The first factor will be addressed in the future work by developing a detailed 

room-specified MRT calculation model. The new model should be able to import data 

from computer aided design software which contains the entire room layout. Hence, it 

can obtain all the possible surface temperatures and view factors. The second factor’s 

impact is supposed to be minimized when the low ΔT HX is on since air temperatures 

from curve fitting correlations are available.  
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Figure 86: Comparison between OT simulation results and experimental data (low ΔT 

HX on) 

 

Figure 86 shows the comparison results of operative temperature between 

simulation and experiments when the low ΔT heat exchanger is on. The profile of 

operative temperature was greatly affected by the air temperature stratification. It is 

clear that the deviations are reduced as compared to the previous one. The average 

deviation decreases from 0.70 K to 0.39 K due to better air temperature simulation. 

The lowest sensor, OT 4, has the largest deviation of 0.60 K while the highest sensor, 

OT 1, has the smallest deviation of only 0.01 K. This can be explained as the lowest 

sensor has the largest penalty from using simple eight-surface model. In the model, 

the OT 4 was assumed to be entirely subject to the cold exterior wall, however, in 

experiment there was a desk between the sensor and the wall. The desk blocked the 

radiative heat transfer from the desk to the cold wall and therefore the operative 

temperature obtained from the experiment is higher than the one from the simulation. 
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On the other hand, there was nothing between the highest sensor, OT 1, and the 

exterior wall. The eight-surface model fully captured the real condition of OT 1, and 

consequently the deviation was minimized. 

 

In summary, the model provides reasonable accuracy to calculate the 

operative temperature. To be specific, when the low ΔT heat exchanger was off, the 

average deviation between the modeling results and experimental results were 0.7 K. 

When the low ΔT heat exchanger was on, the average deviation was reduced to only 

0.4 K. The air temperature correlations obtained from CFD simulation were applied 

when the heat exchanger was on and helped reduce the deviation. The eight-surface 

radiation model was proved to be adequate to predict MRT for sensors located at 

higher position. For those sensors whose radiative heat transfer was blocked by 

furniture, the model failed to provide a good prediction. Future work on room-

specific MRT calculation model is necessary for a better simulation. 

 

Although the curve fitting correlations from the CFD simulation provides 

good results for air temperature calculation, the computational cost for the CFD 

simulation is expensive. It took a computer with Duo Core 2.66 GHz CPU and 2 G 

RAM over 24 hours to obtain the isotherms and streamlines based on one set of wall 

temperatures, such as a hot wall temperature of 35°C and a cold wall of 20°C. Every 

change of boundary conditions requires a run of CFD simulation. Besides high 

computation cost, another problem rising from using the correlations is that large 

deviation may exist locally. The isotherms in Figure 78 show a clear linear trend in 
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the middle part, but it is very difficult to characterize the trend at close wall region. 

Moreover, any correlations from linear curve fitting lack physical interpretation to the 

problem itself.  

 

The next chapter focuses on developing a new reduced-order modeling 

method to calculate the air temperature profile in a square. The method should not 

only save computational cost, but also provide physical interpretation and better 

accuracy to the solutions. 
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Chapter 5: A Reduced-order Simulation Method for Air 

Temperature Calculation 
 

5.1 Introduction on the POD Method 

 

Although the simple linear curve fitting which saved computation time was 

able to capture the general trend of the air temperature field, the method’s physical 

mechanisms is incomplete and lacks predictive capability (Rambo J., 2006). 

Therefore, it is useful to develop a new simulation method that requires less 

computation time compared to CFD simulation and has the capability to make 

prediction of temperature field in different settings.  

 

The proper orthogonal decomposition (POD) was chosen as the reduced-order 

simulation to replace the above linear curve fitting. The POD method was first 

introduced by John Lumley (Berkooz et al. 1993). In other disciplines the same 

method was called as Karhunen-Loève decomposition or principal components 

analysis. It has several advantages as pointed out by Berkooz et al. (1993). (1) It is 

statistically based-extracting data from experiments and simulations. (2) Its analytical 

foundations supply a clear understanding of its capabilities and limitations. (3) It 

permits the extraction of the results. 

 

In short, the method seeks to decompose a large degree of freedom system 

into a series of expansion: 
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v(x,t)=∑ ai(t) i(x)

m

i=1

 
(53) 

  

 

where  v can be any studied variables, such as velocity, temperature, etc.  

              is a family of modal basis of v.  

            a is the coefficient for the expansion, usually a function of time.  

 

The search for good bases is the first step of constructing the expansion. A 

good set of bases makes the expansion efficient in terms of using as less number of   

as possible. In order to make the basis to be optimal, it is equally the problem of 

finding a set of basis that is ―most similar‖ to v. This can be explained from Figure 

87. Assuming u is the vector to be decomposed, while  
1
,  

2
 and  

3
 are the different 

candidates of POD basis  . Neither  
1
 or  

2
 can represent u unless additional bases 

were introduced to offset their horizontal components. For  
3
, it is most similar to u 

in the sense that no additional basis is necessary. Only a coefficient is needed to 

adjust the magnitude of  
3
 to match u.    
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Figure 87: Indication of the search for the optimum basis of u 

 

 

Thus, it is the same problem as to solve the following equations and to find φ: 

max
 (v, ) 

2

( , )
=
〈 (v, ) 2〉

( , )
 

(54) 

 

The parentheses in the equation represent inner products. When the v and   are in the 

same direction the inner product of the two reaches maximum. If those two are 

perpendicular to each other, the inner product reduces to zero. 

 In some literatures, it is also common to use the following expression. One of the 

advantages to use this expression is to produce normalized basis: 

max〈 (v, ) 2〉- (| |2-1) ( 55) 
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It is essential to have a restriction on the normalization in this extreme calculation. In 

Figure 87,  
3
 is the worst basis of the three, however, without the normalization, it 

still can be the maximum of inner product due to its large magnitude. 

 

For simplicity, several steps of extreme computing are skipped. For those who 

are interested in them, please refer to the spectral theory (Riesz et al., 1990). 

It turns out that the base functions (φ) are the eigenfunctions of the integral equation 

(Hung and Tran, 1999): 

∫C(x,x ) (x )dx =   (x) 
(56) 

where the kernel C is given by: 

 

C(x,x )=
1

N
∑ vi(x)vi
N
i=1 (x )                                                                                    (57) 

 

 

Therefore, in short, the search for POD bases can be divided into two steps: 

construction of the kernel C and calculation of eigenvectors of the C. 

Before we start to apply the POD to our air temperature simulation, there are two 

questions remain unanswered. How to guarantee that the series of expansion cover 

the entire span of  ? How to prove that the series of expansion is the optimal one?                                                   

 

Completeness 

By observing the kernel C, it is clear that the matrix is non-negative. 

Therefore, all the eigenvalues must be non-zero, i.e.,  i 0. Those eigenvectors 

corresponding to zero eigenvalues do not contribute to the entire kinetic energy of the 

space. The entire system space is hence reduced to be only formed by eigenvectors 
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corresponding to eigenvalues. There is no piece of information of u missing from the 

process. More detailed explanation can be obtained from the propositions 2.1 and 2.2 

in Berkooz et al. (1991). 

 

Optimality 

The POD basis set is optimal for modeling or reconstructing v. Proposition 2.3 

in Berkooz et al. (1993) was considered as the basis to the claim. 

Proposition 2.3: Let v(x,t) be an ensemble member square integrable on Ω for almost 

every t and * 
i
  i+ be the POD orthonormal basis set with associated eigenvalues. Let 

v(x,t)=∑ ai(t) i(x)
i

 (58) 

 

be the decomposition with respect to this basis, where equality is almost everywhere. 

Let * 
i
+ be an arbitrary orthonormal set such that 

v(x,t)=∑ bi(t) i
(x)

i
 (59) 

 

Then the following hold: 

1. 〈ai(t)aj
*(t)〉= ij i, i.e. the POD coefficients are uncorrelated. 

2. For every n we have ∑ 〈ai(t)ai
*(t)〉=∑  i

n
i

n
i  ∑ 〈bi(t)bi

*
(t)〉n

i  

This implies that, among all linear decompositions, this is the most efficient in 

the sense that, for a given number of modes the projection on the subspace used for 

modeling will contain the most kinetic energy possible in an average sense. In 

additional, the time series of the coefficient ai(t) are uncorrelated. 
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5.2 Application of the POD Method on the Natural Convection in an Enclosure 

For the current problem, in order to obtain the POD modes for the air 

temperature field, matrix C should be calculated first as listed in Eq. (57). However it 

is impossible to obtain the expression of v in any mathematic form. The only 

available source of v is the numerical calculation results from CFD. Therefore, a 

technique called ―snapshot‖ was applied to form the matrix C by utilizing the existing 

CFD simulation results. Nine sets of temperature fields and velocity fields were 

chosen to form the snapshot. The difference between each snapshot is the different 

Rayleigh numbers (see Eq. (8)), and they were created by changing the gravitational 

acceleration in each case.  

 

Figure 88: Isotherms of CFD snapshots (Ra   10
6
) 
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Figure 89: Streamlines of CFD snapshots (Ra ~ 10
6
) 

 

 

Figure 90: Isotherms of CFD snapshots (Ra ~ 10
7
) 
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Figure 91: Streamlines of CFD snapshots (Ra ~ 10
7
) 

 

 

Figure 92: Isotherms of CFD snapshots (Ra ~ 10
8
) 
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Figure 93: Streamlines of CFD snapshots (Ra ~ 10
8
) 

 

 

Figure 94: Isotherms of CFD snapshots (Ra ~ 10
9
) 
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Figure 95: Streamlines of CFD snapshots (Ra ~ 10
9
) 

Figure 88 through Figure 95 present the isotherms (temperature) and 

streamlines (velocity) of four different Raleigh number cases. The range of Raleigh 

number varies from 10
6
 to 10

9
. With the increase of the Raleigh number, the 

maximum velocity of the air motion increased from 1.1 10
-3

 m/s to 1.1 10
-2

 m/s. 

From the figures of streamlines, it can be found that the maximum streamline is 

always located in the middle of the enclosure (For x and y velocities, it can be found 

from  

Table 14 and Table 15 that the maximum velocities are located around the 

corners and close-to-wall region). Several rings representing air circulation motion 

exist in the enclosure, and the streamlines of each ring reduces from the most inner 

core to the most outer core. For the air temperature, in the lower Rayleigh number 

case, the laminar thermal boundary layer is thicker than the one in higher Rayleigh 

number case. This is due to an increased air velocity near the wall region in the high 
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Rayleigh number case. The motion of air is therefore intensified and breaks the 

thermal boundary layer near the wall. The same reason also helps to reduce the size of 

vortex-shaped temperature profile near the floor and ceiling in the high Rayleigh 

number case. 

The resolution of the previous CFD output was ~75,000 cells. It had to be 

downgraded so that the dimension of the kernel matrix is within the capability of 

most software available for eigenvalue calculation. The new resolution was adjusted 

to be 15 times 15 (225 cells) based on the consideration of balancing between 

computational time and accuracy. Each temperature field represents a different 

Rayleigh number 

In order to simplify the later eigenvalue calculation, each set of snapshots, i.e., 

temperature snapshots, u-velocity snapshots and v-velocity snapshots, was averaged 

at first. Then deviations from the mean value, called fluctuation terms, were sent to 

the POD calculation. For example, 

Ti  (1,1)=Ti  (1,1) 
1

9
∑Ti  (1,1)

9

i=1

 

(60) 

  

Where (1, 1) is the coordinates of the cell, i is the i
th

 snapshot. 

 

 

 

 

Table 14 through Table 16 are examples of the fluctuation terms matrices. 
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Table 14: Fluctuation terms of u-velocity snapshot 

 

Table 15: Fluctuation terms of v-velocity snapshot 

 

 

Table 16: Fluctuation terms of temperature snapshot 

 

 

The matrix C was then formed by using the following equation: 

0.00155 0.00003 0.00003 0.00005 0.00005 0.00005 0.00002 -0.00005 0.00002 0.00021 0.00036 0.00023 -0.00169 0.00155 -0.00362

0.00653 0.00013 0.00011 0.00014 0.00017 0.00012 0.00001 -0.00018 0.00004 0.00084 0.00110 -0.00120 -0.00176 0.00262 -0.00912

0.00904 0.00003 0.00006 0.00006 0.00008 0.00009 0.00002 -0.00009 -0.00015 0.00021 0.00071 -0.00064 -0.00059 0.00090 -0.00998

0.01093 0.00004 0.00005 0.00004 0.00004 0.00003 0.00004 0.00002 -0.00009 -0.00006 0.00002 0.00002 -0.00019 -0.00028 -0.01119

0.01274 0.00000 0.00001 0.00002 0.00004 0.00004 0.00003 0.00001 0.00001 -0.00003 -0.00009 -0.00011 0.00007 -0.00048 -0.01273

0.01427 -0.00001 -0.00002 -0.00002 -0.00001 0.00001 0.00003 0.00003 0.00001 -0.00001 -0.00002 -0.00004 0.00001 -0.00036 -0.01424

0.01522 0.00000 -0.00001 -0.00001 0.00000 -0.00001 -0.00001 0.00002 0.00004 0.00003 0.00003 0.00002 -0.00002 -0.00024 -0.01547

0.01555 0.00008 -0.00002 -0.00003 -0.00003 -0.00002 -0.00001 -0.00001 -0.00001 0.00001 0.00004 0.00004 0.00003 -0.00006 -0.01611

0.01501 0.00025 0.00002 -0.00001 0.00000 0.00000 -0.00001 -0.00002 -0.00001 -0.00001 -0.00002 -0.00002 -0.00001 -0.00001 -0.01587

0.01385 0.00036 0.00000 0.00007 0.00004 0.00001 -0.00001 -0.00002 -0.00001 0.00001 0.00003 0.00003 0.00002 -0.00002 -0.01504

0.01239 0.00052 -0.00004 0.00011 0.00006 0.00001 -0.00001 -0.00001 -0.00002 -0.00002 -0.00002 -0.00002 -0.00001 0.00000 -0.01358

0.01093 0.00037 0.00012 -0.00004 -0.00004 0.00005 0.00001 -0.00002 -0.00005 -0.00005 -0.00004 -0.00003 -0.00002 -0.00001 -0.01184

0.01003 -0.00112 0.00093 0.00046 -0.00071 -0.00018 0.00012 0.00007 -0.00005 -0.00011 -0.00010 -0.00007 -0.00004 -0.00002 -0.00982

0.00941 -0.00246 0.00213 0.00097 -0.00122 -0.00083 0.00011 0.00021 0.00002 -0.00014 -0.00018 -0.00014 -0.00012 -0.00013 -0.00738

0.00404 -0.00160 0.00171 -0.00020 -0.00045 -0.00020 0.00001 0.00006 0.00000 -0.00005 -0.00005 -0.00004 -0.00003 -0.00004 -0.00195

-2.716 0.024 0.041 0.043 0.049 0.055 0.060 0.058 0.055 0.092 0.171 0.234 0.176 -0.122 0.033

-2.644 0.180 0.205 0.214 0.239 0.268 0.270 0.212 0.107 0.175 0.545 0.638 -0.075 -0.366 -0.331

-2.561 0.295 0.299 0.290 0.293 0.321 0.354 0.340 0.256 0.172 0.411 0.630 0.184 0.061 -0.344

-2.515 0.191 0.192 0.182 0.171 0.159 0.158 0.170 0.181 0.161 0.117 0.183 0.162 0.109 -0.424

-2.412 0.076 0.079 0.080 0.080 0.078 0.073 0.069 0.069 0.078 0.078 0.052 0.035 0.103 -0.501

-2.272 0.021 0.016 0.017 0.020 0.024 0.027 0.028 0.027 0.026 0.030 0.036 0.012 0.029 -0.549

-2.124 -0.036 -0.040 -0.041 -0.043 -0.046 -0.047 -0.047 -0.046 -0.047 -0.047 -0.043 -0.042 -0.042 -0.633

-1.912 0.005 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.001 0.001 0.003 0.002 0.003 -0.005 -0.664

-1.699 0.015 0.014 0.015 0.019 0.020 0.020 0.020 0.020 0.018 0.015 0.012 0.014 0.010 -0.734

-1.505 -0.008 0.017 -0.001 0.008 0.012 0.011 0.012 0.014 0.018 0.023 0.026 0.029 0.021 -0.815

-1.321 -0.066 -0.015 -0.043 -0.063 -0.062 -0.055 -0.056 -0.061 -0.068 -0.072 -0.069 -0.073 -0.076 -0.950

-1.138 -0.117 -0.204 -0.222 -0.137 -0.178 -0.199 -0.189 -0.178 -0.178 -0.189 -0.186 -0.208 -0.213 -1.128

-0.998 -0.034 -0.217 -0.625 -0.390 -0.160 -0.251 -0.329 -0.337 -0.304 -0.276 -0.249 -0.275 -0.281 -1.255

-0.942 0.365 -0.007 -0.677 -0.542 -0.162 -0.106 -0.224 -0.280 -0.273 -0.245 -0.198 -0.205 -0.192 -1.274

-0.666 0.117 -0.200 -0.266 -0.187 -0.108 -0.073 -0.076 -0.078 -0.072 -0.065 -0.046 -0.052 -0.044 -1.105

0.00147 0.00154 0.00165 0.00175 0.00190 0.00203 0.00212 0.00208 0.00201 0.00239 0.00323 0.00397 0.00246 0.00079 0.00378

0.00097 0.00088 0.00083 0.00077 0.00073 0.00073 0.00069 0.00067 0.00060 0.00028 0.00017 -0.00002 0.00027 0.00184 0.00000

0.00076 0.00081 0.00080 0.00076 0.00065 0.00056 0.00060 0.00075 0.00085 0.00050 -0.00044 -0.00023 0.00123 -0.00001 0.00017

0.00068 0.00085 0.00085 0.00085 0.00086 0.00085 0.00081 0.00080 0.00086 0.00094 0.00075 0.00041 0.00092 0.00060 0.00038

0.00061 0.00084 0.00081 0.00075 0.00070 0.00070 0.00071 0.00071 0.00070 0.00070 0.00074 0.00071 0.00072 0.00085 0.00034

0.00049 0.00076 0.00079 0.00078 0.00077 0.00071 0.00066 0.00066 0.00069 0.00072 0.00078 0.00082 0.00091 0.00088 0.00036

0.00029 0.00049 0.00045 0.00045 0.00045 0.00048 0.00050 0.00049 0.00047 0.00049 0.00053 0.00052 0.00060 0.00066 0.00024

0.00003 0.00008 0.00016 0.00017 0.00018 0.00017 0.00012 0.00008 0.00003 -0.00006 -0.00014 -0.00015 -0.00014 -0.00008 0.00000

-0.00025 -0.00067 -0.00065 -0.00060 -0.00058 -0.00056 -0.00052 -0.00050 -0.00048 -0.00040 -0.00032 -0.00028 -0.00035 -0.00044 -0.00022

-0.00041 -0.00092 -0.00094 -0.00087 -0.00080 -0.00078 -0.00077 -0.00076 -0.00078 -0.00082 -0.00088 -0.00086 -0.00089 -0.00082 -0.00039

-0.00046 -0.00071 -0.00063 -0.00070 -0.00073 -0.00072 -0.00072 -0.00073 -0.00073 -0.00074 -0.00077 -0.00076 -0.00080 -0.00081 -0.00047

-0.00048 -0.00070 -0.00079 -0.00041 -0.00070 -0.00088 -0.00079 -0.00073 -0.00074 -0.00080 -0.00084 -0.00082 -0.00091 -0.00092 -0.00050

-0.00023 -0.00026 -0.00119 0.00012 0.00042 -0.00051 -0.00081 -0.00066 -0.00053 -0.00050 -0.00058 -0.00064 -0.00072 -0.00078 -0.00051

-0.00015 -0.00162 -0.00025 0.00003 -0.00015 -0.00035 -0.00070 -0.00074 -0.00073 -0.00076 -0.00075 -0.00077 -0.00083 -0.00088 -0.00061

-0.00462 -0.00076 -0.00252 -0.00411 -0.00325 -0.00232 -0.00197 -0.00207 -0.00212 -0.00203 -0.00189 -0.00167 -0.00164 -0.00155 -0.00121
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Cij 
1

nt
(Ti

  Tj
 )
Ω

 
(61) 

 

where: nt is the number of snapshots  

( , ) is the inner product. 

 

Table 17 through Table 19 are the results of kernel matrices of velocities and 

temperature. Each kernel matrix is symmetric which can be derived from Eq. (62) 

Cij 
1

nt
(Ti

  Tj
 )
Ω
=
1

nt
(Tj

  Ti
 )
Ω
 Cji 

(62) 

 

Table 17: Kernel matrix of u-velocity 

 

 

Table 18: Kernel matrix of v-velocity 

 

 

2.90E-05 2.50E-05 1.92E-05 1.62E-05 9.50E-06 -5.97E-06 -1.99E-05 -2.39E-05 -4.91E-05

2.50E-05 2.31E-05 1.82E-05 1.57E-05 8.35E-06 -5.75E-06 -1.84E-05 -2.21E-05 -4.42E-05

1.92E-05 1.82E-05 1.77E-05 1.55E-05 6.76E-06 -4.91E-06 -1.60E-05 -1.98E-05 -3.66E-05

1.62E-05 1.57E-05 1.55E-05 1.65E-05 6.99E-06 -4.53E-06 -1.49E-05 -1.81E-05 -3.34E-05

9.50E-06 8.35E-06 6.76E-06 6.99E-06 6.57E-06 -2.09E-06 -7.99E-06 -9.59E-06 -1.85E-05

-5.97E-06 -5.75E-06 -4.91E-06 -4.53E-06 -2.09E-06 3.54E-06 4.73E-06 4.46E-06 1.05E-05

-1.99E-05 -1.84E-05 -1.60E-05 -1.49E-05 -7.99E-06 4.73E-06 1.77E-05 2.05E-05 3.43E-05

-2.39E-05 -2.21E-05 -1.98E-05 -1.81E-05 -9.59E-06 4.46E-06 2.05E-05 2.77E-05 4.09E-05

-4.91E-05 -4.42E-05 -3.66E-05 -3.34E-05 -1.85E-05 1.05E-05 3.43E-05 4.09E-05 9.62E-05

4.63E-04 4.63E-04 3.59E-04 2.21E-04 9.00E-05 -1.23E-04 -3.43E-04 -4.22E-04 -7.09E-04

4.63E-04 4.63E-04 3.59E-04 2.21E-04 9.00E-05 -1.23E-04 -3.43E-04 -4.22E-04 -7.09E-04

3.59E-04 3.59E-04 2.91E-04 1.86E-04 7.67E-05 -9.83E-05 -2.74E-04 -3.39E-04 -5.60E-04

2.21E-04 2.21E-04 1.86E-04 1.26E-04 5.14E-05 -6.30E-05 -1.75E-04 -2.15E-04 -3.52E-04

9.00E-05 9.00E-05 7.67E-05 5.14E-05 3.63E-05 -2.27E-05 -7.61E-05 -9.66E-05 -1.49E-04

-1.23E-04 -1.23E-04 -9.83E-05 -6.30E-05 -2.27E-05 3.54E-05 9.25E-05 1.12E-04 1.90E-04

-3.43E-04 -3.43E-04 -2.74E-04 -1.75E-04 -7.61E-05 9.25E-05 2.62E-04 3.24E-04 5.32E-04

-4.22E-04 -4.22E-04 -3.39E-04 -2.15E-04 -9.66E-05 1.12E-04 3.24E-04 4.04E-04 6.55E-04

-7.09E-04 -7.09E-04 -5.60E-04 -3.52E-04 -1.49E-04 1.90E-04 5.32E-04 6.55E-04 1.10E-03
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Table 19: Kernel matrix of temperature 

 

 

Matlab
® 

(MathWorks, Inc, 2008)
 
was used to calculate the eigenvalues of the 

kernel matrix C. The built-in singular value decomposition (SVD) function was 

applied to return the eigenvalues and the corresponding eigenvectors. The 

eigenvectors are in fact the POD bases according to Eq. (56). The eigenvalues in each 

plot are sorted from high to low. As previously mentioned, when the eigenvalue 

becomes zero, it has no impact on the system anymore. All three eigenvalue spectrum 

figures show that the eigenvalues approach zero within the first nine ones. It proves 

that nine snapshots are enough in terms of capturing most of the system kinetic 

energy. 
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Figure 96: Eigenvalue spectrum of temperature snapshots 

 

 
Figure 97: Eigenvalue spectrum of u-velocity snapshots 
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Figure 98: Eigenvalue spectrum of v-velocity snapshots 
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5.3 Introduction on the Galerkin Projection Method 

The proper orthogonal decomposition provides the POD basis from the 

snapshots method. The next step is to find the coefficients in the expansion (Eq. (53)). 

A method called Galerkin projection is considered to be a standard approach to obtain 

the coefficients of the POD basis. The approach is to project the governing equations 

on the modal subspace and then solve the governing equations, usually in the form of 

ODE equations, to obtain the coefficients.  

 

Consider the governing equations for the natural convection problem (Park 

and Jung, 2000): 

x=
x*

dx
, y=

y*

dy
,t=

κt*

dy
2
,v=

dyv
*

κ
,T=

T* Tcold
*

Thot
*  Tcold

*
 P =

dy
2
P*

 κ2
 

(63) 

 

Eq. (63) defines the dimensionless quantities used in the following governing 

equations (Eq. (64) through Eq. (66)), where superscript asterisk is used to denote 

dimensional quantities. 

  v=0 (64) 

 v

 t
+v  v=- P+Pr 2v+RaPrTj                                                                   (65) 

 T

 t
+u⃗   T=

1

 cp
 2T                                                                                                 (66) 

where: v,T represent the velocity and temperature,  

            Pr is the Prandtl number  

            Ra is the Rayleigh number. 

The projection can be defined as the following: 
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∫   (
 v

 t
+v  v+ P-Pr 2v-RaPrTj

Ω
)dx=0                                               (67) 

 

Assuming 

v= ∑ an(t) (n)(x,y)

NT

n=1

 

(68) 

T=∑ bn(t) (n)(x,y)

NT

n=1

 

(69) 

 

 

to be the expansion of velocity and temperature field, where   and φ are POD modes 

of velocity and temperature  

an and bnare the coefficients need to be determined by using Galerkin Projections. 

 

After applying the projection, the above continuity, momentum and energy 

equations become the following forms (The continuity and momentum equations are 

combined into one equation) (Park and Jung 2000): 

M
j

da
j

dt
+∑∑ a

l
a
m
Q

jlm

NM

m=1

NM

l=1

+Pr∑H
jl
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l
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jl
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(70) 

N
j
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j

dt
+∑∑ a

l
b

m
R

jlm

NT

m=1

NM

l=1

+∑L
jl
b

l

NT
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=0 

(71) 

 

 

where:  

Mj=∫ (j) 

Ω

 (j)dΩ 
(72) 

Q
jlm

=∫ (j) 

Ω

( (j)   (m))dΩ 
(73) 

Hjl=∫ (  (j))
Ω

:(  (l))
T
dΩ 

(74) 
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Sjl=∫  
(l)

Ω

 (j)
v dΩ 

(75) 

Nj=∫  
(j)
2

Ω

dΩ 
(76) 

Rjlm=∫ ( (l)   (m)
) 

(j)
Ω

dΩ 
(77) 

Ljl=∫   
(l)
   

(j)
Ω

dΩ 
(78) 

  

                                                

The left-hand side terms in Eq. (72) through Eq. (78) can be obtained by 

taking the gradient and inner product operations of the POD basis, φ and  . 

Therefore, the Galerkin projection has been simplified to solve two sets of ODE 

functions (Eq. (70) and Eq.(71) ). There are two sets of unknowns (an(t), bn(t)), and 

two sets of ODE equations. The problem is closed. Matlab was used to solve the two 

sets of equations. 

 

 



 

 166 

 

5.4 POD Simulation Results and Validations 

Since the air temperature is more important in terms of obtaining operative 

temperature, the POD simulation results will be focused on reporting the temperature 

profile. Eq. (79) can be used to construct the temperature field. T is the matrix of 

average temperature in different snapshots. bi  is the coefficient obtained from 

Galerkin projection. T PODi  is the matrix of the i
th

 POD basis developed based on 

fluctuation items. 

TPOD=T+∑ bi T
 
PODi

NT

i=1

 

(79) 

 

 

Figure 99 plots the average temperature matrix from nine snapshots. Compared to 

other CFD simulation results, it captures the major trend of temperature profile. The 

temperature close to the wall region has much better accuracy than using the linear 

curve fitting correlations. 
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Figure 99: The matrix of average temperature 

 

 

Figure 100: Temperature POD mode #1 
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Figure 101: Temperature POD mode #2 

 

 

Figure 102: Temperature POD mode #3 
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Figure 100 through Figure 102 are the matrices of the first three eigenvectors plotted 

in the dimension of the 3 m by 3 m space. The eigenvectors are demonstrated in the 

form of contours of the fluctuation temperatures.  

 

In order to verify the correctness of the POD simulations, two case of POD 

calculation results were compared to those from CFD simulation. Case 1 is solving 

for air temperature inside a 3 m by 3 m square enclosure when the Rayleigh number 

is 10
6
. Case 2 is solving for the same problem when the Rayleigh number is 10

9
. 

 

 

Figure 103: Comparison of POD calculation and CFD simulation (Ra = 10
6
) 
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Figure 104: Comparison of POD calculation and CFD simulation (Ra = 10
9
) 

Figure 103 and Figure 104 demonstrate the comparison results. The 3 m by 3 

m enclosure was divided into 225 cells. The x-axis represents the 225 cells. For 

example, the top left cell is number 1, the rightmost cell of the top row is number 15, 

and the right bottom cell is number 225. The temperature results in each cell were 

compared to those from CFD simulation.  Both POD cases show good agreement to 

the CFD simulations. In case one, the maximum deviation is only 0.04 K, while in 

case 2, the maximum deviation is around 0.1 K. It demonstrates that the POD 

calculation provides enough accuracy compared with CFD calculation. Considering 

the fact that it takes only several minutes for the Matlab codes to solve all the ODE 

functions and output the results, the benefit of using POD is very clear. However, the 

fast speed depends on the existence of snapshots. The first preparation of snapshots 

may take a week, and then POD calculation can solve any problem within the range 

of snapshots. 
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The air temperature calculated from the POD method was then combined with 

the MRT simulation results to obtain simulated operative temperatures. Figure 105 

demonstrates the comparison of OTs calculated from POD modeling and those from 

experiments. Since the POD simulation results are very close to the CFD simulation, 

the comparison shares the same general trend as that shown in Figure 86. The largest 

discrepancy (1.1 K) between simulation and experiments comes from OT 3, and the 

smallest discrepancy (0.1 K) comes from OT 4. The detailed discussion of the 

comparison has been conducted in 4.3.5. 

 

 

Figure 105: Comparison of POD simulated OT and experimental results 
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Chapter 6: Summary and Conclusions 

6.1 SSLC System Using Two Vapor Compression Cycles 

The SSLC system using R-410A as its working fluid has been theoretically 

investigated. Under the ARI standard ambient condition for air-conditioning 

application (35°C, 44% RH), a 30% energy savings was calculated for the SSLC 

system as compared to the conventional air-conditioning system. It was also found 

that the energy savings of the SSLC system varied depending upon ambient 

conditions. The hot and dry climate tends to have the maximum energy savings 

potential. The total displacement volumes of the compressors in the SSLC system 

were estimated to be 25% smaller than that in the baseline system. In order to address 

the larger air flow rate requirement in the SSLC system, a new air distribution method 

with a single-bank evaporator design was proposed to replace the conventional 

designs. The simple estimation using fan laws demonstrated that the SSLC system 

could reduce the fan motor power by 30% as compared to the baseline system. In 

order to compare the heat exchanger cost, in-house HX design software was used to 

optimally design the heat exchangers of the SSLC system and to estimate its total heat 

transfer area. The design shows that the heat exchangers of the SSLC system can 

have 13% smaller total heat transfer area than that of the baseline. This design 

example means that the SSLC system can save energy without increasing heat 

exchanger and compressor cost. 

However, such a system has still limited independence of varying sensible to 

latent load ratio and the extra cost of an internal heat exchanger. 
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6.2 SSLC System Using One Vapor Compression Cycle and Desiccant Wheel 

An experimental facility for SSLC system using one VCS and one solid DW 

was constructed. The experimental results of the SSLC system with a single 

condenser (gas cooler) demonstrated a limited COP improvement, which was 7% for 

both R-410A and CO2 systems, when the DW regeneration temperature was set at 

50°C. Although bigger improvement was recorded at the 45°C regeneration 

temperature case, which were 32% for CO2 and 34% for R-410A, such improvement 

could not be provided by the DW. Two challenges, heat of adsorption and excessive 

high side pressures, were identified as the reasons for the reduction of the COP of the 

SSLC systems. To address the second issue, the idea of dividing condensers (or gas 

coolers) resulted in a reduced high side pressure and a reduced refrigerant outlet 

temperature. This led to the COP improvement of 20% and 44% for R-410A and CO2 

systems, respectively. Simulation results show that the additional evaporative cooling 

further improves the system performance. The CO2 system had more benefits from 

using the evaporative cooling than the R-410A system, which was supported by a 

16.8% COP improvement for the CO2 system as compared to a 4.8% COP 

improvement for the R-410A system. The reason for the CO2 system outperforming 

R-410Awas that the operating condition of the gas cooler (condenser) was shifted to a 

lower inlet air temperature that was more favorable to CO2 refrigerant. The DW-

assisted SSLC technology also could be adopted for the DOS system. Application of 

both SW and EW in addition to the dividing heat exchanger and the evaporative 

cooling was investigated. It was concluded that the SW was not suitable for the DW-

assisted SSLC systems. This was because the SW lowered the heat generation from 
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the vapor compression cycle, making it hard to match the hot air requirement for the 

regeneration of the DW. On the other hand, the EW performed well because it not 

only lowered the cooling requirement of the vapor compression cycle, but also 

lowered the heat requirement for DW regeneration. The ratio of heating to cooling 

could be used as a measure to determine the feasibility of different configurations of a 

DW-assisted SSLC system. 
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6.3 The low ΔT heat exchan er test 

A low ΔT heat exchanger test facility has been developed in a CEEE office. 

Four operative temperature sensors were built and applied in the test for measuring 

the thermal comfort created by both the baseline fan-coil unit and the low ΔT heat 

exchangers. The baseline fan-coil unit had a hot water temperature of 80°C. The unit 

created 3.24 K temperature difference between occupants head and feet which should 

be considered as uncomfortable. Although the hot water temperature was high, the 

temperature at occupant’s feet was still out of the thermal comfort zone.  

On the other hand, the low ΔT heat exchanger had a hot water temperature of 

only 35°C. The additional radiative heat transfer from the heat exchanger helped 

create a much better thermally comfortable environment. The temperature difference 

between occupant’s head and ankle was reduced to only 2.0 K. Moreover, almost all 

the operative temperature measured during the test fell in the ASHRAE thermal 

comfort zone. 

The experimental results prove the statement that low ΔT heat exchanger is 

able to provide better thermal comfort for the given conditions with a much lower 

temperature difference between air and hot fluid.  
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6.4 Modeling the operative temperature field in an office setting 

The operative temperature field in a 3 m by 3 m by 3 m office setting was 

simulated. The model was able to calculate both the MRT and air temperature 

everywhere in the office. It provided reasonable accuracy compared with the 

experimental data. Specifically, when the low ΔT heat exchanger was off, the average 

deviation between modeling results and experimental results was 0.7 K. When the 

low ΔT heat exchanger was on, the average deviation was reduced to only 0.4 K. The 

air temperature correlations obtained from CFD simulation were applied to the case 

when the heat exchanger was on and they helped to reduce the deviation. The eight-

surface radiation model was proved to be adequate to predict MRT for sensors 

located at higher positions. For those sensors whose radiative heat transfer was 

blocked by the furniture, the model failed to provide a good prediction. Future work 

on more room-specific MRT calculation model is necessary for a better simulation. 

 

Although the curve fitting correlations from the CFD simulation provides 

good results for air temperature calculation, the computational cost for the CFD 

simulation is expensive. It takes a computer with Duo Core 2.66 GHz CPU and 2 G 

RAM over 24 hours to obtain the isotherms and streamlines based on one set of wall 

temperatures, such as a hot wall temperature of 35°C and a cold wall of 20°C. Every 

change of boundary conditions requires a run of CFD simulation. Besides high 

computation cost, another problem arising from using the correlations is that large 

deviations may exist locally such as in close proximity to the wall. A method with 



 

 177 

 

more sophisticated techniques other than the curve fitting correlation while less 

computational intensive is required to address the above issues. 
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6.5 A Reduced-order Simulation Method for Air Temperature Calculation 

A reduced-order simulation method, called proper orthogonal decomposition 

(POD), was applied to replace the air temperature by using curve fitting correlations. 

The objective is to calculate the air temperature in the form of a series of expansion. 

Snapshots from CFD simulation results were created one time in the beginning of the 

calculation, and POD was used to find the optimal bases to the expansion. Galerkin 

projection was then applied to project governing equations onto the bases and to 

obtain the coefficients for the bases by solving ODE equations.  Two cases of air 

temperature in a cubic enclosure problem with different Rayleigh numbers were 

solved by the POD method and their results were compared to direct CFD 

simulations. The maximum deviation for the lower Rayleigh number case was only 

0.04 K and the one for higher Rayleigh number case was around 0.1 K. 

 The POD method not only provides higher accuracy results than using curve 

fitting correlations, but also saves computational time of the problem from around 24 

hours by CFD simulation to only minutes of ODE equations solving.  
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Chapter 7: List of major contributions and future work 
 

7.1 List of major contributions 

A study on SSLC systems and their major component, the low ΔT heat 

exchanger, is presented in this dissertation and it provides a comprehensive 

understanding on the energy saving potential and thermal comfort of such systems. 

The detailed contributions are listed as follows: 

Exploration of energy saving potential of the SSLC systems:  

 Designed, fabricated and tested an SSLC air conditioning system and 

compared its performance to a conventional system 

 Compared the performance of SSLC systems using two refrigerants, R-410A 

and CO2 

 Based on experimental results, established models to simulate SSLC systems 

o Simulated SSLC system performance under different ambient 

conditions 

o Optimized the vapor compression cycle operation under each ambient 

condition 

o Explored maximum energy saving options (configurations) of an 

SSLC system 

Thermal comfort study of the low ΔT heat exchanger: 

 Established a low ΔT heat exchanger test facility with sensors for operative 

temperature measurement 

 Compared the thermal comfort zone created by the baseline fan-coil unit 

and low ΔT heat exchanger system 
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 Developed a software tool to simulate the thermal comfort zone in an office 

setting   

o Simulate natural convection by a commercial CFD tool and obtain 

2D air temperature field in the conditioned space 

o Simulate radiation cooling (heating) and obtain 3D mean radiation 

temperature field in the conditioned space 

 Developed a reduced-order POD model to replace the CFD simulation of 

air temperature in the conditioned space and verify the POD model by 

comparing its results to the original CFD model 
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7.3 Future work 

While this dissertation provides a comprehensive study on the understanding 

of the energy saving potential of SSLC system and thermal comfort created by low 

ΔT heat exchangers, the following items of research could be of significant use in the 

near future.  

 

 To establish a closer link between the low ΔT heat exchanger simulation and 

thermal comfort prediction. The current work simplifies the heat exchanger as a 

constant wall temperature boundary condition to the thermal comfort simulation. 

Therefore, the next phase research should focus on simulating the heat exchanger 

using a more sophisticated model like the segment-by segment method. A more 

sophisticated heat exchanger model helps to provide the user with more direct 

information, such as how to design the tube length, tube pitch, etc., of heat exchanger 

based on specified thermal comfort requirements 

 To test the low ΔT heat exchanger’s performance in cooling mode. The 

current experiments of low ΔT heat exchanger were conducted in winter for heating, 

therefore the next phase of experiments would be to compare the thermal comfort 

zone created by the window-type AC unit and the low ΔT heat exchanger  

 To add furniture (desk, cabinets) and lights into mean radiation temperature 

calculation model 

 To expand the CFD simulation of air temperature in an enclosure from 2- 

dimension to 3-dimension 

 To expand the usage of the POD method to different room geometries and 

different boundary condition inputs. The current work for the POD simulation code 
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restricts the room size to be 3 m by 3 m and the wall temperature difference to be 15 

K. For other geometries and temperature differences, the entire database of snapshot 

needs to be rebuilt. It would be extremely helpful to explore an extrapolate method to 

expand the boundary condition inputs of POD method to more general cases. 
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