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The experience dependent plasticity of stimulus selectivity, including ocular dominance 

plasticity, is highest during a postnatal critical period. The developmental constraint on this 

plasticity is thought to underlie the inability to recover from amblyopia in adults, which 

has generated interest in understanding the mechanisms for the initiation and termination 

of the critical period. Previously, it had been shown dark exposure initiated in adulthood 

(P90) reactivates robust ocular dominance plasticity in the visual cortex. In this thesis, I 

showed dark exposure initiated earlier (P45-55) in postnatal development does not 

facilitate rapid ocular dominance plasticity, demonstrating the presence of a refractory 

period for the regulation of synaptic plasticity by visual deprivation.  

Using an anesthetic other than barbiturate revealed that ocular dominance plasticity 

persists much later in postnatal development (up to ~ P55), which can be inhibited by 

diazepam, a positive allosteric modulator of ligand bound GABAARs, suggesting a 



  

regulatory mechanism that is upstream of inhibitory synaptic transmission. To test this, I 

used NARP and NRG1-ErbB4 to manipulate excitation onto FS (PV) INs, a major subtype 

of inhibitory neurons which exert powerful perisomatic inhibition onto principal neurons 

in the visual cortex. NARP is an activity dependent pentraxin which has been shown to 

accumulate AMPARs onto FS (PV) INs. Transgenic deletion of NARP decreases the 

number of excitatory synaptic inputs onto FS (PV) INs and reduces net excitatory synaptic 

drive onto FS (PV) INs. Accordingly, the visual cortex of NARP -/- mice is hyperexcitable 

and unable to express ocular dominance plasticity, although many aspects of visual 

function are normal. NRG1 is an activity dependent neutrophic factor which is proposed 

to promote excitability and excitatory synaptogenesis onto FS (PV) INs. Pharmacological 

manipulation of the NRG1-ErbB4 pathway can regulates the excitability of FS and RS 

neurons in visual cortex, and promotes or inhibits the expression of ocular dominance 

plasticity, depending on the state of maturation of cortical circuitry. Importantly, 

manipulations of the excitability of FS and RS neurons into the permissive range can enable 

the expression of ocular dominance plasticity, at any age, which holds promise to future 

treatment of clinical disorders such as amblyopia.  
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Chapter 1: Introduction 

1.1   The critical period for ocular dominance plasticity 

Humans, together with other animals such as non-human primates, cats and rodents, have 

binocular vision, in which an object in central visual space is processed by both eyes together.  

With binocular vision, images perceived by two eyes can generate precise depth perception.  

However, the size of the binocular visual field is determined by the position of the eyes. Humans, 

with the two eyes positioned at the front of their heads, have approximate 190 degrees of horizontal 

visual field, in which about 120 degrees is binocular. Rodents, in contrast, with their two eyes 

positioned laterally, have a broader horizontal visual field but only the central 30 degrees is 

binocular (Gordon and Stryker, 1996).  

 

Although binocular neurons receive inputs from both eyes, most binocular neurons have a 

preference for stimulation from one eye.  The pioneering work of Hubel and Wiesel demonstrated 

binocular neurons in the cat visual cortex prefer stimulation from the contralateral eye, and this 

ocular preference is experience-dependent (Hubel and Wiesel, 1962). For example, monocular 

deprivation of the contralateral, dominant eye for 3 months from eye opening, shifts the preference 

of the majority of the principal neurons in the primary visual cortex towards the ipsilateral eye 

(Hubel and Wiesel, 1963). As ocular preference of principal neurons in the layer IV of feline and 

primate binocular visual cortex are grouped into eye-specific columns, early monocular 

deprivation also shrinks the area of the ocular dominance columns receiving input from the 

deprived eye (Shatz and Stryker, 1978; Hubel et al., 1977). Importantly, the physiological and 

anatomical response to monocular deprivation is the strongest during a postnatal critical period. 
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Thus, the plasticity of ocular dominance provides a sensitive assay of the level of plasticity 

available to circuitry in the binocular region of primary visual cortex.  

 

Ocular dominance plasticity has been examined in many species including ferrets (Issa et 

al., 1999), rodents (Gordon and Stryker, 1996), non-human primates (Hubel et al., 1977) and 

humans (Braddick & Atkinson, 2011). Recently a lot of researchers have focused their attention 

onto rodent visual cortex, because of the similarities in the visual system organization between 

rodents and other mammals. For example, the spatial organization of the receptive field of simple 

cells in rodent visual cortex are identical to cats and monkeys, indicating the mechanisms for 

development and plasticity at single cell level are similar (Niell and Stryker, 2008). In rodents, 

90% of the retinal ganglion cell axons decussate at optic chiasm and innervate the contralateral 

dLGN, and 10% project to the binocular core of the ipsilateral dLGN, whose projection neurons 

innervate layer IV neurons in binocular visual cortex (V1b). The preference for contralateral eye 

stimulation in binocular neurons in rodents is high (CBI=0.69, Gordon and Stryker, 1996), due in 

part to two fold greater contralateral eye inputs than ipsilateral inputs from dLGN to cortex 

(Coleman et al., 2009).  

 

In juvenile rodents (P21-35), a brief monocular deprivation (3 day MD) induces a rapid 

depression of the strength of the pathway serving the deprived eye, which shares many 

characteristics with homosynaptic LTD (long term depression, Yoon et al., 2009).  Prolongation 

of the MD to 5 days reveals a slow potentiation of the strength of the pathway serving the 

nondeprived eye (>= 5 days, Frenkel & Bear, 2004), which has been proposed to be mediated by 
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either homosynaptic LTP (long term potentiation, Cho et al., 2009) and/or homeostatic synaptic 

scaling (Kaneko et al., 2008). In adult rodents (~P90), a brief MD is insufficient to induce ocular 

dominance shift (Sawtell et al., 2003), one of many demonstrations of the existence of critical 

period for ocular dominance plasticity in the rodent.  

 

  

1.2   Ocular dominance plasticity and amblyopia 

The restriction of synaptic plasticity over development has important implications for the treatment 

of amblyopia in the clinic. Amblyopia has been estimated to affect 1-5% in population (Webber 

and Wood, 2005) and results from unequal visual input across the two eyes. Strabismic amblyopia 

is caused by the misalignment of the two eyes, which can be treated by patching the strong eye to 

encourage the use of the amblyopic eye. Anisometropic amblyopia is caused by unequal refractive 

error across the two eyes, which can be treated with a refractory correction of the abnormal eye. 

Deprivation amblyopia is caused by an obstruction of vision in one eye, such as that caused by a 

congenital cataract, which can be treated with an early removal of the cataract. However, the 

chances of success are greatly reduced if the cataract is removed after ~ 6 months of age (Mitchell 

and MacKinnon, 2002), which suggests there is a critical period for the treatment of amblyopia. 

One line of reasoning is that the developmental constraint on receptive field plasticity constrains 

the ability to recover from amblyopia with age. 

 

Nonetheless, some methods for treating amblyopia in adults or older children have had 

modest success. For example, visual perceptual learning (VPL), repetitive performance of a visual 
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recognition/discrimination task can improve visual recognition (Polat et al., 2004). Playing virtual 

reality computer games that requires the combined processes of different images perceived by each 

eye simultaneously can also improve the binocularity in the amblyopic patient (Waddingham et 

al., 2006). Repetitive transcranial magnetic stimulation (TMS) may temporarily improve contrast 

sensitivity and spatial resolution in the affected eye of amblyopic adults (Benjamin et al., 2008). 

However, visual improvements may be temporary following TMS or are restricted to familiar 

visual stimuli for VPL.  

  

1.3   Regulation and reactivation of the critical period 

Perisomatic inhibition exerts powerful spatial and temporal control of the postsynaptic spiking of 

principal neurons, which promotes Hebbian mechanisms of synaptic plasticity (Pouille and 

Scanziani, 2001; Goldberg et al., 2008). Therefore, the regulation of the critical period for ocular 

dominance plasticity is likely to be sensitive to maturation of inhibitory circuitry over development 

(Fagiolini and Hensch, 2000). For example, knocking out GAD65, the synaptic isoform of the 

GABA synthetic enzyme glutamic acid decarboxylase (GAD), prolongs the duration of evoked 

neuronal spiking trains, and prevents the initiation of the critical period, unless inhibitory output 

is enhanced with the allosteric GABAAR modulator diazepam (Hensch et al., 1998). 

 

Similarly, manipulation of inhibitory output can reopen the critical period in adults.  Direct 

reduction of GABAergic transmission with the GAD inhibitor 3-mercaptopropionic acid (MPA), 

restored ocular dominance plasticity in adult rodents (Harazouv et al., 2010). The reduction of 

extracellular GABA concentration and GAD65 expression observed following food restriction in 
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adult rodents is correlated with enhanced ocular dominance plasticity (Spolidoro et al., 2011). 

Similarly, genetic deletion of Lynx1, an endogenous prototoxin that binds to nAchRs and co-

localizes with parvalbumin positive GABAergic interneurons enhances rapid ocular dominance 

plasticity which can be suppressed with diazepam (Morishita et al., 2010). Finally, we have 

previously demonstrated 10 days of dark exposure in adults decreases the ratio of the main 

ionotropic inhibitory receptor to excitatory receptor (GABAAR / GluR2) ratio, and restores the 

developmental changes in specific subunits of the NMDA subtype of glutamate receptor NR2B to 

NR2A (Quinlan et al., 1999), and reactivates ocular dominance plasticity (He et al., 2006). 

Together this suggests that manipulation of inhibitory output can reopen the critical period in adult 

visual cortex.  However, we will present an alternative to this model in Chapter 3.  

 

The regulation of extracellular matrix (ECM), a complex of proteoglycans (including 

heparan sulfate PG and chondroitin sulfate PG) and fibrous proteins (including collagen and 

elastin) formed in the interstitial space (Haylock-Jacobs et al., 2011), has also been implicated as 

a key component in the regulation of the critical period for ocular dominance plasticity.  ECM 

molecules form a condensed perineuronal net (PNN) around the soma and proximal dendrites of 

neurons, which build up over development, and reach adult level around P70 in the rat visual cortex 

(Pizzorusso et al., 2002). PNNs are particularly dense around parvalbumin interneurons (Balmer 

et al., 2009), and the maturation and distribution of PNNs, as well as the developmental constraint 

on ocular dominance plasticity, are attenuated by dark rearing rats from birth (Pizzorusso et al., 

2002; Gianfranceschi et al., 2003). The mature ECM may limit plasticity by inhibiting axonal 

sprouting and regeneration after injury (Mckeon et al., 1995). ECM can also modulate synaptic 

plasticity by limiting lateral diffusion of cell surface molecules (such as AMPAR, Frischknecht et 
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al., 2009). Indeed, MMP9, an ECM-digesting protease, regulates lateral diffusion of NMDAR and 

synaptic potentiation (Michaluk et al., 2009; Wang et al., 2008). Importantly, pharmacological 

blockade of MMP activity does not affect the depression of deprived eye responses following long-

term MD, but inhibits non-deprived eye potentiation (Spolidoro et al., 2012).  

 

In addition, the first success in the reactivation of ocular dominance plasticity in adult 

rodent (>P100) was achieved by degradation of ECM by chondroitinase (Pizzurosso et al., 2002). 

Environmental enrichment (rodents are reared in a more stimulating environment with ladders, 

tunnels and running wheels), which restores ocular dominance plasticity in adults, is accompanied 

by ECM degradation and reversed with enhancing inhibitory output by diazepam (Sale et al., 

2007).  Transgenic reversal of a developmental change in the prevalence of two different types of 

chondroitin sulfate proteoglycans (4S/6S CSPGs) in adult visual cortex reduces PNN density, 

prevents the maturation of membrane potential and spiking width of fast-spiking neurons, resulting 

in an increase of the cortical excitability and retention of robust ocular dominance plasticity 

(Miyata et al., 2012). Since the PNNs are more densely located around FS (PV) INs, this also 

suggests that PNNs may influence the input onto FS (PV) INs in the regulation of the critical period 

for ocular dominance plasticity.  

  

1.4   The role that FS (PV) INs plays in the regulation of ocular dominance plasticity and 

orientation tuning 

A specific group of GABAergic interneurons, the fast-spiking parvalbumin-positive interneurons 

(FS (PV) INs), are the most abundant interneurons in the mouse neocortex (Xu et al., 2010), and 
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have been implicated in the developmental regulation of synaptic plasticity. The high frequency 

output (8-200 Hz) is responsible for the generation of gamma oscillations (Cardin et al., 2009), 

which facilitates sensory processing and learning by amplifying signals and reducing noise in 

pyramidal cells (Sohal et al., 2009). FS (PV) INs form multiple electrical and chemical synaptic 

connections with other FS (PV) INs (Deans et al., 2001), which allows for generation of 

synchronized inhibition to local excitatory neurons. FS (PV) INs innervate the somata of pyramidal 

cells (perisomatic inhibition), and therefore are ideally located to exert powerful temporal and 

spatial control of the spiking output of principal neurons (Pouille and Scanziani, 2001; Goldberg 

et al., 2008; Kulman et al., 2010). As FS (PV) INs mediate feed-forward inhibition, they also 

truncate the duration of spike trains without impacting the initial EPSPs (Vida et al., 2006). Such 

truncation of spike train duration will likely impact spike timing mechanisms of synaptic plasticity, 

and have been previously implicated in the regulation of the critical period (Kuhlman et al., 2010; 

Fagiolini and Hensch 2000).   

 

Indeed, enhancing GABAergic inhibition by diazepam can induce a precocious critical 

period in pre-critical period wild type mice (P15-21; Fagiolini et al., 2004). As diazepam is not 

specific for GABAAR subunits, using transgenic mice Fagiolini et al. (2004) showed that the 

absence of 1, but not 2,3, blocks a precocious critical period with diazepam, implicating the 

1-containing GABAARs in mediating the response to diazepam. As 1 GABAAR subunits 

preferentially enrich at somatic synapses receiving inputs from FS (PV) INs (Klausberger et al., 

2002), this indicates FS (PV) INs may play a special role in the timing of the critical period for 

ocular dominance plasticity. In addition, 1 day monocular deprivation reduces spontaneous and 

evoked EPSCs frequency onto FS (PV) INs only in juvenile visual cortex, indicating the 
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importance of this microcircuit during the early phase of ocular dominance shift (Kuhlman et al., 

2013).  

 

Of course, ocular preference is not the only stimulus selectivity in the visual cortex. In the 

rodent primary visual cortex, ~60% of the principal neurons are orientation selective (the neuron 

has a strong preference for visual stimuli of a specific orientation). Hubel and Wiesel proposed a 

feed-forward model to explain the orientation tuning of the simple cells: a simple cell in the 

primary visual cortex receives feed-forward excitation from dLGN relay cells whose receptive 

field is aligned in parallel with the simple cell’s preferred orientation. Another model was proposed 

later claiming that intracortical inhibition sharpens or even creates orientation tuning (Blakemore 

and Tobin, 1972). For many years, there has been a long-lasting debate between these two models. 

Controversy in the field continues in that recently, Lee et al. (2012) showed that optogenetic 

activation of FS (PV) INs sharpened orientation tuning and improved perceptual discrimination, 

while Atallah et al. (2012) used similar methods to show that manipulating FS (PV) INs activity 

only modestly affected the tuning properties. Although not a primary focus of my work, I will 

show that manipulations of spiking output from FS (PV) INs did not affect orientation tuning. 

 

In this thesis, I will use multiple in vivo recording techniques, in rodents of different 

genotypes and with different visual experience, to study the regulation of critical period for ocular 

dominance plasticity. Although dark exposure can reopen the critical period in adult animals, it is 

not known if the visual system is sensitive to DE at all ages, a question I will ask in Chapter 2. In 

Chapter 3 and 4 I will test hypothesis that the timing of the critical period is determined by the 
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strength of excitation onto FS (PV) INs, via NARP (an activity dependent pentraxin which has 

been shown to accumulate AMPARs onto FS (PV) INs, Chapter 3) and via Neuregulin 1 (an 

activity dependent neutrophic factor which is proposed to promote excitability and excitatory 

synaptogenesis onto FS (PV) INs, Chapter 4). Together this work will support a new model in 

which excitation onto FS (PV) INs is a primary locus for the regulation of the timing of the critical 

period. 
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Chapter 2: A refractory period for rejuvenating GABAergic 

synaptic transmission and ocular dominance plasticity with visual 

deprivation 

Published in Journal of Neuroscience 

Huang S, Gu Y, Quinlan EM, Kirkwood A. J Neurosci. 2010 Dec 8;30(49):16636-42. 

My contribution: all in vivo experiments 

 

2.1  Introduction 

In juveniles, brief monocular deprivation (MD) rapidly shifts the ocular dominance of binocular 

neurons away from the deprived eye. Over the course of postnatal development, brief monocular 

deprivation becomes increasingly ineffective. Maturation of perisomatic inhibition mediated by 

fast-spiking parvalbumin-positive interneurons is believed to constrain Hebbian plasticity at 

excitatory synapses in the visual cortex, and inhibit rapid ocular dominance plasticity (Kirkwood 

et al., 1995; Huang et al., 1999; Rozas et al., 2001; Jiang et al., 2005; Di Cristo et al., 2007). 

 

In the rodent primary visual cortex, the number of perisomatic GABAergic synapses onto 

individual pyramidal neurons increases approximately threefold between eye opening [postnatal 

day 15 (P15)] and puberty (P35) (Huang et al., 1999; Morales et al., 2002; Chattopadhyaya et al., 

2004). During this time, inhibitory synapses are transited from an immature state with high release 

probability but prone to depletion, to a mature state with a low release probability and increased 

fidelity of transmission (Jiang et al., 2010). The functional maturation of inhibitory synaptic 

transmission, mediated by an endocannabinoid-dependent long-term synaptic depression 

[inhibitory long-term depression (iLTD)] is complete by P35. 
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Acceleration of the maturation of inhibition induces a precocious critical period for ocular 

dominance plasticity (Huang et al., 1999; Di Cristo et al., 2007). Similarly, dark rearing decelerates 

the maturation of GABAergic circuits (Morales et al., 2002; Chattopadhyaya et al., 2004; Di Cristo 

et al., 2007; Jiang et al., 2007, 2010; Kreczko et al., 2009) and the developmental constraint on 

ocular dominance plasticity (Cynader, 1983; Mower and Christen, 1985; Fagiolini et al., 1994; 

Guire et al., 1999). However, dark exposure (DE) or suppression of GABA synthesis at P35 does 

not reduce the number or strength of inhibitory synapses (Morales et al., 2002; Chattopadhyaya et 

al., 2007; Jiang et al., 2007). This predicts that the developmental constraint on rapid ocular 

dominance plasticity would be equally irreversible. 

 

Nonetheless, several interventions have been shown to reactivate rapid ocular dominance 

plasticity in adulthood and implicate the down-regulation of intra-cortical inhibition in this process 

(Pizzorusso et al., 2002; He et al., 2006; Sale et al., 2007; Maya Vetencourt et al., 2008). Indeed, 

reactivation of ocular dominance plasticity in adults is induced by a GABAA receptor antagonist 

(Harauzov et al., 2010) and reversed by enhancing GABAAergic inhibition with a benzodiazepine 

(Sale et al., 2007; Maya Vetencourt et al., 2008). This work supports the view that inhibitory 

synaptic transmission imposes limitations on ocular dominance plasticity in adults. However, it is 

at odds with the view that the developmental maturation of inhibition is irreversible. 

 

We addressed this discrepancy by examining GABAergic synaptic transmission after dark 

exposure, a potent and noninvasive intervention that reactivates ocular dominance plasticity in 

adults (He et al., 2006, 2007). Dark exposure initiated in adulthood rejuvenated inhibitory synaptic 
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transmission, resulting in a visual cortex with immature characteristics including robust 

endocannabinoid-dependent iLTD and rapid ocular dominance plasticity. Surprisingly, dark 

exposure initiated earlier in development did not stimulate the re-expression of iLTD or facilitate 

ocular dominance plasticity, demonstrating a refractory period for the rejuvenation of inhibition 

by visual deprivation. 

 

2.2   Materials and Methods 

2.2.1   Animals 

Long–Evans rats were raised on a 12 h light/dark cycle, with food and water available ad libitum. 

Subjects were moved into a dark room at the indicated age (± 2 days), in which case care was 

provided under infrared illumination. All procedures conform to the guidelines of the U.S. 

Department of Health and Human Services and the Institutional Animal Care and Use Committees 

of Johns Hopkins University and University of Maryland. 

 

2.2.2   Slice electrophysiology 

Visual cortical slices (300 μm) were prepared as described (Kirkwood and Bear, 1994) in ice-cold 

dissection buffer containing (in mM): 212.7 sucrose, 5 KCl, 1.25 NaH2PO4, 10 MgCl2, 0.5 CaCl2, 

26 NaHCO3, 10 dextrose, bubbled with 95% O2/ 5% CO2 (pH 7.4). Slices were transferred to 

normal artificial cerebrospinal fluid (ACSF) for at least one hour prior to recording. Normal ACSF 

was similar to the dissection buffer except that sucrose was replaced by 124 mM NaCl, MgCl2 was 

lowered to 1 mM, and CaCl2 was raised to 2 mM. 
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Visualized whole-cell voltage-clamp recordings were made from layer II/III pyramidal 

neurons with glass pipettes filled with intracellular solution (in mM: CsCl 140, CaCl2 0.2, NaCl 8, 

EGTA 2, NaGTP 0.5, MgATP 4, and HEPES 10, pH 7.2). Only cells with membrane potentials < 

-65 mV, series resistance < 20 MΩ, and input resistance > 100 MΩ were included. Cells were 

excluded if input resistance changed >15% over the experiment. Data were filtered at 5 kHz and 

digitized at 10 kHz using Igor Pro (Wave Metrics Inc., Lake Oswego, Oregon). Synaptic currents 

were recorded at -60 mV in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 

and 100 μM 2-amino-5-phosphonovaleric acid (APV), and evoked every 20 sec by stimulation of 

layer IV with 0.2 ms pulses delivered in pairs (inter-stimulus interval: i.s.i.= 100 msec) to compute 

paired-pulse depression (PPD=1-p2/p1, where p1 and p2 are the amplitude of the response to the 

first and second stimulation, respectively). Stimulation was delivered through concentric bipolar 

stimulating electrodes (FHC, Bowdoin, ME) with intensity adjusted to evoke 100-300 pA 

responses. Synaptic strength was quantified as the IPSC amplitude. 10 min of stable baseline (< 

10% change) was required before any experimental manipulation. iLTD was induced with theta 

burst stimulation (TBS), consisting of 4 theta burst epochs delivered at 0.1 Hz. Each TBS epoch 

consisted of 10 trains of 4 pulses (100 Hz) delivered at 5 Hz. Statistical significance was assessed 

with one-tailed, unpaired t-test or two-way ANOVA followed by Tukey HSD post hoc analysis. 

 

2.2.3   Monocular deprivation 

Animals were anesthetized with ketamine/xylazine (50 mg/10 mg/kg, i.p.). The margins of the 

upper and lower lids of one eye were trimmed and sutured together. The animals were returned to 

their home cages for 3 days and disqualified in the event of suture opening or infection. 
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2.2.4   Visually evoked potentials 

VEPs were recorded from the surface or layer IV of binocular visual cortex (V1b; ~ 7 mm posterior 

to Bregma and 4 mm lateral to the midline) with tungsten microelectrodes (0.5MΩ) relative to a 

ground screw in the frontal bone. V1b was exposed through a hole (~ 4mm diameter) in the skull 

following urethane anesthesia (1.4 mg/kg, i.p.). Electrode placement on the binocular region of V1 

was confirmed by capturing a VEP in response to stimulation of the ipsilateral eye. Visual stimuli 

were full screen horizontal square wave gratings of 0.04 cycles degree−1 reversing at 1 Hz, with 

96.28% maximal contrast and 40 cd/m2 luminosity, presented on a computer monitor 25 cm from 

eyes, in a darkened room. The amplitude of the primary positive (surface) or negative (layer IV) 

component of the VEP (~ 150 ms latency) was used to assess the cortical response to visual 

stimulation. VEPs were amplified (1000X), filtered (0.5 - 60Hz band pass digital filter), and 

averaged (100 repetitions) in synchrony with the stimulus using OpenEX software. Statistical 

significance was assessed with two-way ANOVA followed by Tukey HSD post hoc analysis. 

 

2.2.5   Drug solutions 

For systemic injections, diazepam and WIN 55212-2 {(R)-(+)-[2,3-Dihydro-5-methyl-3-(4-

morpholinylmethyl)pyrrolo(1,2,3-de)-1,4-benzoxazin-6-yl]-1-napthalenylmethanone} were 

dissolved in 10% Tween 80, 20% DMSO and 70% saline to a final concentration of 1 mg/ml. 

Subjects received diazepam (1X/day 15 mg/kg diazepam) and WIN (2X/day 5 mg/kg) for 3 days 

via intraperitoneal injections. For in vitro experiments, stock solutions of AM251 [1-(2,4-

dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidy)pyrazole-3-carboxamide] or WIN 
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were dissolved in DMSO and diluted in ACSF to the final concentration immediately before use. 

AM251, diazepam and WIN were purchased from Tocris. CNQX, APV, Tween 80 and DMSO 

were purchased from Sigma. 

 

2.3   Results 

2.3.1   A refractory period for the rejuvenation of GABAergic transmission 

We recently described an endocannabinoid-mediated long-term depression of inhibitory synaptic 

transmission (iLTD) in layer II/III neurons in the visual cortex that is comparable with iLTD 

described in other brain regions (Chevaleyre et al., 2006; McBain and Kauer, 2009; Jiang et al., 

2010). Cortical iLTD is robust in juveniles, but absent in subjects older than P35. Importantly, 

dark exposure initiated at P35 does not stimulate re-expression of iLTD (Jiang et al., 2010). 

However, dark exposure in much older subjects can reactivate ocular dominance plasticity (He et 

al., 2006, 2007), which prompted us to reexamine the effect of visual deprivation on synaptic 

plasticity at inhibitory synapses. 

 

Pharmacologically isolated IPSCs were evoked in layer II/III pyramidal neurons by 

stimulating layer IV in slices of rat primary visual cortex, a configuration shown to recruit inputs 

mediated by fast-spiking interneurons (Jiang et al., 2010). iLTD was induced with TBS. We 

confirmed that iLTD was absent at P45 and that 10 d of dark exposure initiated at P35 did not 

stimulate iLTD re-expression [DE, 96.0 ± 3.7% of baseline 30 min after TBS; normal reared (NR), 

94.0 ± 3.4%] (Fig. 2-1A). However, if dark exposure was initiated in much older subjects (P90), 

robust iLTD could be subsequently induced by TBS (DE, 72.9 ± 6.4%; NR, 98.3 ± 4.7%) (Fig. 2-
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1B). In juveniles, iLTD requires the activation of type 1 endocannabinoid receptors (CB1Rs) and 

results in a decrease in paired-pulse depression. Similarly, the iLTD that was observed after dark 

exposure at P90 was blocked by the CB1R antagonist AM251 and was accompanied by a reduction 

in paired-pulse depression (Fig. 2-1 C,D).  

 

Figure 2-1. 10d DE cannot reactivate iLTD at P35 and the iLTD reactivated by dark exposure at P90 

is endocannabinoid-dependent. (A, B) IPSC amplitudes recorded in layer II/III pyramidal neurons 

following TBS (arrow) delivered to layer IV. Absence of iLTD in response to TBS in slices prepared from 

normal-reared (NR) P45 (open circles, A) and P100 visual cortex (open circles, B). Ten days of dark 

exposure initiated at P90 (filled circles, B) but not P35 (filled circles, A) reactivated significant iLTD. 

*p<0.01 one tail t-test at 30 mins post TBS. (C) IPSC amplitudes recorded in layer II/III pyramidal neurons 

following TBS (arrow) delivered to layer IV. AM251 (filled circles) inhibits the iLTD reactivated by dark 

exposure at P90 (open circles). (D) Average paired pulse depression (PPD = 1-the response to second 

pulse/response to first pulse) recorded before and after TBS in P90 normal reared (NR) and P90 dark-

exposed (DE) rats. *p<0.05 one tail t-test.  
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To further explore the unexpected interaction between visual deprivation and age, we 

examined the effects of 10 d of dark exposure initiated at ages ranging from P21 to P90 on the 

magnitude of iLTD and paired-pulse depression. Dark exposure enhanced iLTD if initiated at P21 

(iLTD, 22.4 ± 5.3% depression from baseline), when cortical inhibitory circuitry is immature 

(Huang et al., 1999; Morales et al., 2002; Chattopadhyaya et al., 2004), but had little effect if 

initiated at P35–P49 (4.0 ± 3.7, 1.0 ± 6.6%). Nevertheless, dark exposure enabled robust iLTD if 

initiated at P70–P90 (18.5 ± 6.2, 28.7 ± 6.5%) (Fig. 2-2 A). The U-shaped relationship between 

age at initiation of DE and magnitude of iLTD contrasts with the uniformly small iLTD evoked in 

NR age-matched P31–P100 controls (Fig. 2-2 A). A parallel U-shaped relationship exists between 

the age at initiation of dark exposure and the magnitude of paired-pulse depression (Fig. 2-2 B). 

The loss of iLTD observed over development is accompanied by a reduction in CB1R levels and 

a loss of response to CB1R activation (Jiang et al., 2010). We therefore asked whether adult dark 

exposure reversed these processes. We found that dark exposure initiated at P90, but not P45, 

restored the sensitivity of the IPSC to depression by the CB1R agonist WIN (10 μm, 10 min; DE 

P45: 92.7 ± 7.1%; NR P45: 98.0 ± 6.6%) (Fig. 2-2 C) (DE P90: 57.4 ± 5.1%; NR P90: 88.7 ± 

4.7%) (Fig. 2-2 D).  
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Figure 2-2. A refractory period for the rejuvenation of inhibition in the visual cortex by 10 days of 

dark exposure. (A) The magnitude of iLTD as a function of the age of initiation of dark exposure (filled 

circles) compared to age-matched normal-reared controls (open circles). Two way ANOVA (F7,97=3.534, 

p=0.002), *p<0.05 in Tukey HSD post hoc. (B) The magnitude of paired pulse depression as a function of 

the age of initiation of dark exposure (filled circles) compared to age-matched normal-reared controls (open 

circles). Two way ANOVA (F7,80=2.9193, p=0.009), *p<0.05 in Tukey HSD post hoc. (C, D) Dark exposure 

at P90 (C) but not P35 (D) restored the sensitivity of the IPSC to depression by the CB1R agonist WIN 

(grey box). *p<0.001, one tail t-test at 30 mins post TBS. The numbers in parenthesis = number of subjects, 

number of slices. 

 

 

Similarly, quantitative PCR confirmed that DE at P90, but not P45 induced in a significant 

increase in the level of CB1R mRNA in the visual cortex (Fig. 2-3). Thus, dark exposure 

rejuvenates many aspects of inhibitory synaptic transmission but is only effective if initiated before 

or after a refractory period. 
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Figure 2-3. Increase in CB1R mRNA in the visual cortex following dark exposure at P90. CB1R 

mRNA levels were normalized to average within-experiment control (white histogram) run in parallel QT-

PCR reactions. CB1R mRNA level from P90 frontal cortex (FCtx) was normalized to average P90 NR 

visual cortex run in parallel QT-PCR reactions. *p<0.05 one-tail t-test. 

 

The anatomical and functional maturation of inhibition can be decelerated by dark rearing 

from birth but is unaffected by dark exposure initiated at P35 (Morales et al., 2002; 

Chattopadhyaya et al., 2007; Jiang et al., 2007). We therefore tracked changes in the maximal 

evoked IPSC to ask whether the density of functional inhibitory synapses onto individual 

pyramidal neurons could be regulated by visual experience in adulthood (Choi et al., 2002; 

Morales et al., 2002; Goldberg et al., 2005). Dark exposure initiated at P35–P38 did not decrease 

IPSC magnitude (DE: 4.32 ± 0.27 nA; NR: 4.22 ± 0.32 nA) (Fig. 2-4 A) or the input/output 

relationship across a range of stimulus intensities (5–100 mA; two-way ANOVA, F(1,225) = 0.71, 

p = 0.79). In contrast, dark exposure initiated at P90–P93 induced a significant decrease in the 

maximal IPSC amplitude (DE: 2.97 ± 0.37 nA; NR: 4.53 ± 0.36 nA) (Fig. 2-4 B) and a reduction 

in the input/out relationship (two-way ANOVA, F(1,145) = 12.59, p = 0.0013). Together, this 
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demonstrates a parallel refractory period for the rejuvenation of many aspects of inhibitory 

synaptic transmission, including endocannabinoid-dependent synaptic depression, regulation of 

presynaptic neurotransmitter release, and functional connectivity.    

 
 

Figure 2-4. Refractory period for the reduction of maximal IPSC amplitude in the visual cortex by 

10 days of dark exposure. IPSC amplitudes evoked by a range of stimulus intensities (5 - 100 A) recorded 

in layer II/III pyramidal neurons from slices of visual cortex following 10 days of dark exposure (DE, filled 

circles) and age-matched normal-reared controls (NR, open circles). Ten days of dark exposure initiated at 

P90 (B), but not P35 (A), reduced the maximal IPSC evoked in response to layer IV stimulation. *Two way 

ANOVA F1,145=12.59, p=0.0013. Numbers in parentheses indicate the number of rats, number of slices. 

 

2.3.2   A refractory period for the reactivation of ocular dominance plasticity 

The maturation of perisomatic inhibition is widely believed to constrain Hebbian synaptic 

plasticity at excitatory synapses in the visual cortex and consequently reduce rapid ocular 

dominance plasticity (Kirkwood et al., 1995; Huang et al., 1999; Rozas et al., 2001; Di Cristo et 

al., 2007). Dark exposure initiated in adulthood induces a reactivation of juvenile-like ocular 

dominance plasticity (He et al., 2006, 2007). We therefore used VEPs in response to high contrast 

gratings (0.04 cycles/degree reversing at 1 Hz) to ask whether there is a refractory period for the 

reactivation of ocular dominance plasticity by dark exposure. The rodent visual system has a 

contralateral bias, resulting in twofold larger VEP amplitudes in response to stimulation of the 
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contralateral eye relative to the ipsilateral eye (VEP average ± SEM: 2.33 ± 0.22; n = 4) (Fig. 2-5 

A, gray bar). Brief monocular deprivation induces a significant shift in ocular dominance if 

initiated before P65 (VEP amplitude C/I average ± SEM: P38, 0.96 ± 0.04; P45, 1.03 ± 0.05; P55, 

0.93 ± 0.18; P65, 1.94 ± 0.05; P100, 2.33 ± 0.22) (Fig. 2-5 A). The decrease in the VEP 

contralateral bias was mediated by a decrease in the deprived-eye VEP and an increase in the 

nondeprived-eye VEP (shown for P45 subjects in Fig. 2-7 C,D). However, when brief monocular 

deprivation is preceded by 10 d of DE, a significant shift in ocular dominance was observed in all 

ages up to P100 (DE P38, 0.74 ± 0.06; DE P45, 1.00 ± 0.04; DE P55, 1.15 ± 0.07; DE P65, 0.89 

± 0.08; DE P100, 0.86 ± 0.08) (Fig. 2-5 A). To separate the effects of dark exposure from baseline 

ocular dominance plasticity, we normalized the VEP amplitudes from dark-exposed subjects to 

age-matched normal-reared controls. A U-shape is observed in the relationship between the age at 

initiation of dark exposure and the deprived-eye depression and the nondeprived-eye potentiation 

induced by monocular deprivation (Fig. 2-5 B). Thus, dark exposure enhances ocular dominance 

plasticity but is only effective if initiated before or after a refractory period.    

 

Figure 2-5. Refractory period for the reactivation of ocular dominance plasticity by 10 days of dark 

exposure (A) Contralateral bias (VEP amplitude C/I) following monocular deprivation as a function of the 

age at initiation of 10 days of dark exposure (filled circles) compared to age-matched normal reared controls 
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(open circles). VEPs were recorded from the surface of the binocular region of the right visual cortex 

following 3 days of left eye deprivation; two way ANOVA (F4,40=25.22, p<0.0001). (B) Normalization of 

DE VEP amplitudes to age-matched, normal reared controls. The refractory period is seen in the response 

of the deprived eye (filled circles) and non-deprived eye (open circles) to monocular deprivation. Two way 

ANOVA (F4,40=55.4, p<0.0001). *p<0.05 versus age-matched NR in Tukey HSD post hoc. Gray boxes 

indicate normal range of VEP C/I. 

 

2.3.3   Endocannabinoid-mediated regulation of inhibitory synapse maturation and ocular 

dominance plasticity 

We hypothesized that the rejuvenation GABAergic circuits was necessary for the reactivation of 

ocular dominance plasticity in adults. Therefore, we used two complementary methods to ask 

whether enhancement of GABAergic inhibition would reduce the reactivation of ocular dominance 

plasticity by dark exposure at P90. In the juvenile visual system, activation of CB1 receptors with 

the agonist WIN accelerates the maturation of GABAergic inhibition (Jiang et al., 2010). To ask 

whether the rejuvenation of GABAergic inhibition by dark exposure at P90 is reversed by CB1R 

activation, we administered WIN during the last 3 d of a 10 d period of dark exposure (two times 

per day for 3 d; 5 mg/kg, i.p.). Administration of WIN resulted in a loss of iLTD (WIN: 95.5 ± 

7.0% of baseline; vehicle: 75.6 ± 5.11%) (Fig. 2-6 A) and an increase in the maximal IPSC 

amplitude in P90 DE subjects (WIN: 3.08 ± 0.20 nA; vehicle: 2.40 ± 0.22 nA) (Fig. 2-6 B), 

suggesting that WIN stimulated the maturation of GABAergic inhibition. Similarly, the 

reactivation of ocular dominance plasticity by dark exposure at P90 was significantly reduced by 

systemic injection of WIN (two times per day for 3 d; 5 mg/kg, i.p.). Importantly, enhancement of 

GABAAR currents with diazepam (one time per day, 15 mg/kg, i.p.) for the last 3 d of dark 

exposure completely blocked the reactivation of ocular dominance plasticity at P100 (layer IV 

VEP amplitude C/I: P90 no MD, 2.06 ± 0.26; P90 MD, 2.41 ± 0.20; P90 DE plus Veh, 1.11 ± 0.05; 

P90 DE plus WIN, 1.67 ± 0.13, p = 0.0072 vs MD plus DE plus Veh; P90 DE plus DZ, 2.04 ± 
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0.04, p < 0.0001 vs MD plus DE plus Veh in Tukey's HSD post hoc) (Fig. 2-6 C). WIN 

significantly reduced and diazepam completely eliminated the decrease in deprived-eye VEP and 

the increase in nondeprived-eye VEP induced by monocular deprivation in P90 DE subjects, and 

these changes were equally reflected in VEPs recorded from layer IV and the surface of the 

binocular region of the primary visual cortex (Fig. 2-7 A,B). 

 

Figure 2-6. Systemic administration of the CB1R agonist WIN (open circles) but not vehicle (filled 

circles) reverses the effect of adult dark exposure (A-B) IPSC amplitudes in layer II/III pyramidal 

neurons following TBS (arrow) delivered to layer IV. (A) WIN reversed the iLTD typically observed in 

dark-exposed P90 subjects, * p=0.031, one-tail t-test (B) WIN reversed the decrease in IPSC amplitude 

typically observed in dark-exposed, P90 subjects, *p=0.028, one tail t-test. (C) Inset: P90 experimental 

design. The ocular dominance plasticity reactivated by dark exposure at P90 is attenuated by diazepam and 

WIN. (One way ANOVA (F4,24=12.212, p<0.0001). (D) Inset: P45 experimental design. The ocular 

dominance plasticity present in P45 NR subjects is inhibited by diazepam, but unaffected by dark exposure 

or WIN. (One way ANOVA (F4,21=30.42, p<0.0001). *p<0.05 versus age-matched NR in Tukey HSD post 
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hoc. VEPs were recorded from layer IV of the binocular region of the right visual cortex following 3 days 

of left eye deprivation. 

 

This suggests that an immature state of inhibitory synaptic transmission, induced by dark 

exposure in adults, permits the reactivation of ocular dominance plasticity. Curiously, however, 

we observed significant ocular dominance plasticity at P55, despite the evidence that perisomatic 

inhibition is mature at this age (Kirkwood et al., 1995; Hensch et al., 1998; Huang et al., 1999; 

Rozas et al., 2001; Di Cristo et al., 2007; Jiang et al., 2010). To ask whether the persistence of 

ocular dominance plasticity was due to submaximal inhibition, GABAAR currents were enhanced 

with diazepam. Systemic diazepam (one time per day for 3 d; 15 mg/kg, i.p.; initiated at P53) 

inhibited ocular dominance plasticity in P55 subjects. As expected, neither dark exposure or WIN 

administration (two times per day for 3 d; 5 mg/kg, i.p.; during the last 3 d of dark exposure) 

regulated ocular dominance plasticity at this age (layer IV VEP amplitude C/I P45 no MD, 1.96 ± 

0.18; P45 MD, 1.00 ± 0.05; P45 DE plus Veh, 1.12 ± 0.11; P45 DE plus WIN, 0.94 ± 0.14; P45 

DZ, 2.03 ± 0.03) (Fig. 2-6 D). Diazepam, but not dark exposure or WIN, inhibited the decrease in 

deprived-eye VEP and the increase in nondeprived-eye VEP induced by monocular deprivation in 

P45 subjects, which was equally reflected in VEPs recorded from layer IV and the surface of the 

binocular region of the primary visual cortex (Fig. 2-7 C,D). This suggests that, at P55, inhibitory 

circuitry has developed both functionally and anatomically but is not maximally recruited by visual 

experience. 
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Figure 2-7. Parallel regulation of adult ocular dominance plasticity by the CB1R agonist WIN and 

diazepam revealed by layer IV and surface VEPs (A,B) VEPs recorded from layer IV (A) and the surface 

of the binocular visual cortex (B). The deprived eye depression (closed circles) and non-deprived eye 

potentiation (open circles) induced by monocular deprivation in P90 DE subjects are significantly reduced 

by WIN and completely eliminated by diazepam (DZ; One way ANOVA (F4,24=16.91, p<0.0001). Inset: 

Representative VEP waveforms recorded from layer IV (A) and the surface (B) of the contralateral 

binocular visual cortex in response to stimulation of the deprived and non-deprived eyes. (C,D) VEPs 

recorded from layer IV (C) and the surface of the binocular visual cortex (D). The deprived eye depression 

and the non-deprived eye potentiation induced by monocular deprivation in P45 subjects are inhibited by 
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diazepam, but unaffected by dark exposure or WIN (One way ANOVA (F4,21=10.75, p=0.0003). Inset: 

Representative VEP waveforms recorded from layer IV (C) and the surface (D) of the contralateral 

binocular visual cortex in response to stimulation of the deprived and non-deprived eyes. Scale bars: 

horizontal 50ms, vertical 50μV. *p<0.05 versus age-matched control contralateral eye, #p<0.05 versus age-

matched control ipsilateral eye in Tukey HSD post hoc. 

 

2.4   Discussion 

Dark exposure initiated in adulthood reactivates robust ocular dominance plasticity in the 

mammalian visual cortex. Here, we show that a critical step in the reactivation of ocular dominance 

plasticity in adults is the rejuvenation of inhibitory synaptic transmission, resulting in a decrease 

in functional inhibitory synaptic density, a decrease in paired-pulse depression, and a re-expression 

of endocannabinoid-dependent iLTD. Pharmacological acceleration of the maturation of 

inhibition, through activation of CB1Rs, reverses the re-expression of iLTD and the reactivation 

of ocular dominance plasticity in dark-exposed adults. However, dark exposure initiated earlier in 

postnatal development does not rejuvenate inhibitory synaptic transmission or facilitate rapid 

ocular dominance plasticity, demonstrating the presence of a refractory period for the regulation 

of synaptic plasticity by visual deprivation. The refractory period for the rejuvenation of inhibitory 

synaptic transmission demonstrates the existence of constraints on the regulation of synaptic 

function by visual deprivation. In addition, it suggests that the efficacy of therapeutic interventions 

used to promote ocular dominance plasticity may increase with age. 

 

An important outstanding issue is the location of the synapses that underlie the ocular 

dominance plasticity observed in dark-exposed adults. Several lines of evidence implicate a role 

of layer II/III circuits in the reactivation of ocular dominance plasticity. The activation of CB1Rs, 

which has been implicated in the plasticity of neuronal circuits in cortical layer III, but not layer 

IV (Crozier et al., 2007; Liu et al., 2008; Li et al., 2009; Yoon et al., 2009), significantly reduces 
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the reactivation of ocular dominance plasticity by dark exposure in adults. Similarly, pyramidal 

neurons in layer III, which receive substantial excitation from thalamic afferents, exhibit a 

rejuvenation of inhibitory synaptic transmission after dark exposure in adulthood. Importantly, 

excitatory synapses onto layer II/III pyramidal neurons retain the capacity to express Hebbian 

plasticity in adulthood (Jiang et al., 2007), but induction is constrained by GABAergic inhibition 

(Kirkwood and Bear, 1995; Jang et al., 2009). Together, this suggests that the reduction of 

inhibition onto layer II/III pyramidal contributes to the reactivation of ocular dominance plasticity 

by dark exposure. 

 

2.4.1   The rejuvenation of inhibitory synaptic transmission 

The experience-dependent maturation of inhibition was previously thought to be irreversible, as 

visual deprivation during postnatal development retards rather than reverses the developmental 

progression at inhibitory synapses (Morales et al., 2002; Chattopadhyaya et al., 2004; Di Cristo et 

al., 2007; Jiang et al., 2007). However, here we show that dark exposure in adulthood rejuvenates 

inhibitory circuits. Immature inhibition, characterized by sparse synapses with a high density of 

presynaptic CB1Rs and a high probability of GABA release, is seen in the visual cortex of 

juveniles and dark-exposed adults. Postnatal visual experience stimulates the maturation of 

inhibition through an endocannabinoid-dependent long-term depression of GABA release. In 

contrast, mature inhibition is characterized by dense synapses that no longer express CB1Rs and 

have a low probability of GABA release (Jiang et al., 2010). 

 

The mechanism by which dark exposure induces the rejuvenation of inhibitory synaptic 

transmission and the reactivation of ocular dominance plasticity in adults is not yet known. In 
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response to the reduction in synaptic activity induced by dark exposure, preexisting inhibitory 

synapses in the adult visual cortex may revert to a more immature phenotype, accompanied by an 

increase in CB1R expression and an increase in presynaptic release probability. Alternatively, dark 

exposure may increase the turnover of GABAergic terminals by promoting the degradation of 

factors that restrict axonal outgrowth, such as myelin-derived signaling molecules (McGee et al., 

2005) or chondroitin sulfate proteoglycans (Pizzorusso et al., 2002). Interestingly, a significant 

increase in the condensation of extracellular matrix components into perineuronal nets occurs 

between P45 and P65 (Pizzorusso et al., 2002), which may impart increased resistance to 

experience-dependent degradation of a restrictive extracellular environment and contribute to the 

refractory period. 

 
 

2.4.2   The role of inhibition in the developmental constraint of ocular dominance plasticity 

The late maturation of inhibitory circuitry relative to excitatory circuitry creates a window in 

postnatal development that is permissive for experience-dependent synaptic plasticity in the visual 

system. Perisomatic inhibition mediated by fast spiking interneurons exerts a powerful influence 

on the excitability and plasticity of postsynaptic targets. Although a threshold level of inhibition 

is necessary to initiate the critical period for ocular dominance plasticity early in postnatal 

development (Hensch et al., 1998; Huang et al., 1999), a subsequent increase in the strength of 

perisomatic inhibition has been implicated in the constraint of ocular dominance plasticity later in 

development (Kirkwood et al., 1995; Rozas et al., 2001; Di Cristo et al., 2007). However, here we 

show that ocular dominance plasticity is robust after postnatal day 35, the time point at which 

perisomatic inhibition reaches maturity in the rodent cortex (Huang et al., 1999; Rozas et al., 2001; 
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Morales et al., 2002; Chattopadhyaya et al., 2004). A similar persistence of rapid ocular dominance 

plasticity beyond the expected age of the maturation of inhibition has been observed in cats and 

mice (Mower and Guo, 2001; Pham et al., 2004; Lehmann and Löwel, 2008). Interestingly, ocular 

dominance plasticity at P45 could be inhibited by enhancing GABAA receptor function with 

diazepam, but not by accelerating the maturation of inhibitory synaptic transmission with the 

CB1R agonist WIN. This suggests that, at P45, inhibitory synapses are present and mature, but 

ocular dominance plasticity persists because activity at inhibitory synapses is not maximally 

recruited by visual experience at this age. 
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Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. Neuron. 2013 Jul 

24;79(2):335-46.  

My contribution: all in vivo experiments 

 

3.1   Introduction 

Understanding the processes that initiate and terminate critical periods for receptive field plasticity 

is a subject of intense investigation. The initiation of the critical period for ocular dominance 

plasticity is widely believed to be triggered by the maturation of inhibitory synapses targeting the 

somata of principal neurons in the visual cortex (Hensch et al., 1998; Huang et al., 1999; Di Cristo 

et al., 2007). Increased perisomatic inhibition would reduce excitability in principal neurons, 

enabling mechanisms of activity-dependent synaptic plasticity to discriminate between inputs from 

the two eyes (Jiang et al., 2007; Toyoizumi and Miller, 2009; Kuhlman et al., 2010). The activation 

of inhibitory GABA receptors would also limit activity at NMDA receptors and restrict subsequent 

induction of synaptic plasticity at excitatory synapses onto principal neurons (Kirkwood and Bear, 

1994; Rozas et al., 2001; Artola and Singer, 1987; Jang et al., 2009). 

The evidence supporting the idea that maturation of inhibition determines the timing of the 

critical period is based on experimental manipulations of inhibitory output. For example, 

promotion of the early maturation of inhibitory synapses onto principal neurons induces a 

precocious initiation of the critical period (Huang et al., 1999; Di Cristo et al., 2007; Sugiyama et 

al., 2008). Similarly, premature expression of ocular dominance plasticity is enabled by 
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enhancement of inhibitory output with diazepam, a positive allosteric modulator of ligand-bound 

GABAA receptors (Seighart, 1995; Fagiolini and Hensch, 2000). Conversely, direct or indirect 

reduction of the strength of inhibitory output restores ocular dominance plasticity in post-critical 

period adults (He et al., 2006; Sale et al., 2007; Harazouv et al., 2010). However, recent evidence 

suggests a disconnection between the maturation of inhibitory output and the termination of the 

critical period for ocular dominance plasticity (Huang et al., 2010). The maturation of perisomatic 

inhibition, characterized by a plateau in inhibitory synaptic density, IPSC amplitudes and the loss 

of endocannabinoid-dependent iLTD, reaches adult levels ~ postnatal day 35 (P35) in the rodent 

visual cortex (Morales et al., 2002; Huang et al., 1999; Di Cristo et al., 2007; Jiang et al., 2010). 

Nonetheless, robust juvenile-like ocular dominance plasticity persists beyond P35 (Sawtell et al., 

2003; Fischer et al., 2007; Heimel et al., 2007; Lehmann and Lowel, 2008; Sato and Stryker, 2008).  

Importantly, enhancing inhibitory output with diazepam blocks ocular dominance plasticity in late 

postnatal development (Huang et al., 2010). This suggests that inhibitory synapses are functional 

at this age, but are not efficiently recruited by visual experience. 

The possibility that the recruitment of inhibitory circuitry might control the timing of the 

critical period for ocular dominance plasticity prompted us to examine the regulation of excitatory 

inputs onto interneurons in the visual cortex. We focused specifically on the recruitment of 

inhibition mediated by FS (PV) INs, which mediate the majority of perisomatic inhibition, and 

therefore exert powerful control of neuronal spiking output. We studied mice lacking the gene for 

NARP (neuronal activity-regulated pentraxin a.k.a. NP2) an immediate early gene that is rapidly 

expressed in the visual cortex in response to light exposure following dark adaptation (Tsui et al., 

1996). NARP is a calcium-dependent lectin that is secreted by pyramidal neurons, and accumulates 

at excitatory synapses onto FS (PV) INs where it forms an AMPAR-binding complex with NP1 
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and NPR (O’Brien et al., 1999; Xu et al., 2003; Chang et al., 2010). NARP accumulation onto FS 

(PV) INs is inhibited by degradation of the proteoglycans of the perineuronal net (Chang et al., 

2010), a manipulation previously shown to enhance ocular dominance plasticity in adults 

(Pizzorusso et al., 2002; 2006). Importantly, NARP -/- mice are unable to scale EPSCs onto FS 

(PV) INs in response to changes in synaptic activity (Chang et al., 2010), demonstrating the 

importance of NARP in activity-dependent plasticity at these synapses. 

NARP -/- mice therefore provide a unique opportunity to examine how excitatory drive onto 

FS (PV) INs contributes to the timing of the critical period for ocular dominance plasticity. We 

found that NARP -/- mice have a reduction in the number of excitatory synaptic inputs onto FS 

(PV) INs, while inhibitory synapses onto pyramidal neurons are unchanged. The reduction in 

excitatory drive onto FS (PV) INs renders the visual cortex of NARP -/- mice hyper-excitable, and 

unable to express ocular dominance plasticity. Nonetheless, other forms of synaptic plasticity, 

which are prominent in the pre-critical stage of development, are normal in NARP -/- mice. 

Importantly, ocular dominance plasticity can be triggered at any age in NARP -/- mice by enhancing 

inhibitory output with diazepam. Thus the ability to recruit inhibition, rather than the strength of 

inhibitory synapses, plays a central role in the initiation of the critical period for ocular dominance 

plasticity. 

 

3.2   Materials and methods 

3.2.1   Animals 

Wild-type and NARP−/− mice (Bjartmar et al., 2006) were of C57BL/6, 129/SVJII mixed genetic 



 

 

33 

 

background. All subjects were raised on a 12 hr light/dark cycle, with food and water available ad 

libitum. All procedures conform to the guidelines of the U.S. Department of Health and Human 

Services and the Institutional Animal Care and Use Committees of the University of Maryland and 

Johns Hopkins University. Monocular deprivation was performed under ketamine/xylazine 

anesthesia (50 mg/10 mg/kg, i.p.). The margins of the upper and lower lids of one eye were 

trimmed and sutured together. The animals were returned to their home cages and disqualified in 

the event of suture opening or infection. 

3.2.2   In vitro electrophysiology 

Visual cortical slices (300 μm) were prepared as described (Huang et al., 2010) in ice-cold 

dissection buffer containing 212.7 mM sucrose, 5 mM KCl, 1.25 mM NaH2PO4, 10 mM MgCl2, 

0.5 mM CaCl2, 26 mM NaHCO3, 10 mM dextrose, bubbled with 95% O2/5% CO2 (pH 7.4). Slices 

were transferred to normal artificial cerebrospinal fluid (ACSF) for at least 1 hr prior to recording. 

Normal ACSF was similar to the dissection buffer except that sucrose was replaced by 124 mM 

NaCl, MgCl2 was lowered to 1 mM, and CaCl2 was raised to 2 mM. 

Visualized dual whole-cell voltage-clamp recordings were made from pairs of FS (PV) INs 

and pyramidal neurons with glass pipettes filled with 130 mM K-gluconate, 0.2 mM CaCl2, 8 mM 

NaCl, 2 mM EGTA, 0.5 mM NaGTP, 4 mM MgATP, and 10 mM HEPES (pH 7.2). Only cells 

with membrane potentials <−65 mV, series resistance <20 MW, input resistance >100 MW (with 

<15% variation over the experiment) were studied. Data were filtered at 5 kHz and digitized at 10 

kHz using Igor Pro (Wave Metrics). uEPSCs were recorded in voltage clamp in the FS (PV) INs 

at −70 mV and evoked by suprathreshold somatic current injection (2 ms) in presynaptic pyramidal 

neurons. uIPSCs were recorded in voltage clamp in pyramidal neurons at 0 mV and evoked by 
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suprathreshold somatic current injection (2 ms) in presynaptic FS (PV) INs (Jiang et al., 2010). At 

least 20 responses evoked at 0.1 Hz with paired pulse stimulation (interstimulus interval: 50 ms 

for Pyr→FS [PV] IN pairs; 100 ms for FS [PV] IN→Pyr pairs) were used to confirm a synaptic 

connection and to compute the amplitudes of the unitary responses. 

Mean variance analysis was performed on responses evoked by 15 stimulus trains (5 or 10 

stimuli at 50 Hz) delivered at 20 s intervals. The uEPSC amplitude was measured for each stimulus, 

and the mean (I) and variance (Var) were plotted against each other. Synaptic parameters including 

number of release sites (N) and quantal size (q) were obtained by fitting the data to the parabola: 

Var = qI − I2/N as previously described (Scheuss and Neher, 2001). We considered only those 

cases in which the R2 value of the fit was >0.5. 

3.2.3   In vivo electrophysiology 

In vivo electrophysiology was performed under isoflurane anesthesia (∼1.5% in 100% O2 via 

modified nose cone). The dura covering binocular visual cortex was exposed through a hole (∼3 

mm diameter) in the skull. The exposed brain was kept moist with artificial cerebral spinal fluid 

(ACSF), and the room humidity was supplemented (ZD300Y0, Zenith). Subjects were retained in 

a stereotaxic device in a darkened room (without visual stimulation) between measurements. Body 

temperature was maintained at 37°C via circulating water heating pad (T/PUMP; Gaymar 

Industries), monitored with a rectal probe (BAT-12; Sensortek). A broad-band signal was collected 

from the lateral aspect (binocular region) of the primary visual cortex (site of largest ipsilateral eye 

VEP, typically 3.3 mm lateral to the intersection of lambda and the midline), with a tungsten 

microelectrode (0.5 MΩ) relative to a ground screw in the frontal bone (Figure S3). Laminar 

placement of the electrode was confirmed by time to VEP peak and the shape of the VEP 
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waveform: layer II/III, ∼250 μm below the pia + primary positive peak, time-to-peak ∼130 ms 

(average ± SEM 131.76 ± 5.88 ms, n = 7); layer IV, ∼450 μm below the pia + primary negative 

peak, time-to-peak ∼105 ms (107.38 ± 3.17 ms, n = 6). A 50 Hz low pass filter was used to isolate 

VEPs in response to 1 Hz reversals of full screen 100% contrast gratings (0.04 cycles/degree and 

40 cd/m2 luminosity) presented on a computer monitor 25 cm from eyes. To estimate spatial 

acuity, the VEP amplitude was plotted against the spatial frequency of the visual stimulus (0.04–

0.6 cycles/degree), and the linear regression was extrapolated to zero VEP amplitude. To estimate 

contrast sensitivity, the VEP amplitude was plotted against the contrast of the visual stimulus 

(20%–100%). VEPs were averaged in synchrony with the visual stimulus using OpenEX software 

(TDT). 

A 700–7 kHz band-pass filter was used to isolate multiunit activity, which was sorted into 

single units based on waveform shape and principal component analysis (OpenEx software; TDT). 

Spontaneous firing rates were measured over 100 s in response to blank screen. Evoked spiking 

rates were measured in response to visual stimulus in preferred orientation (from nine orientations 

ranging from 0° (vertical) to 180°). Duration of evoked single unit activity was determined by 

comparison with 50 ms prestimulus baseline. Orientation selectivity index = (response evoked by 

preferred – orthogonal orientation)/(preferred + orthogonal orientation). Orientation tuning was 

determined by plotting spiking activity against stimulus orientation from −90° to 90° from 

preferred orientation. Single unit activity was assigned to cortical lamina based on shape of VEP 

waveform. 

Plasticity of VEP amplitude induced by repetitive visual stimulation was assessed under 

continuous isoflurane anesthesia (∼1.5% in 100% O2). Sixty minutes after recording baseline 
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VEPs (evoked by 100 reversals of 0.04 cycles/degree; 100% contrast vertical and horizontal 

gratings; reversing at 1 Hz), high-frequency visual stimulation (5–10 Hz reversals of same 

gratings; 1,000 reversals) was delivered at a single orientation (vertical). Sixty minutes after 

delivery of high-frequency visual stimulation, VEPs were acquired with baseline stimulation (1 

Hz) in response to vertical and horizontal gratings. Low-frequency visual stimulation (1 Hz 

reversals of same gratings; 1,000 reversals) was delivered at a single orientation (vertical). Twelve 

hours, 15 hr, and 18 hr after delivery of low-frequency visual stimulation, VEPs were acquired 

with baseline stimulation (1 Hz) in response to vertical and horizontal gratings. 

3.2.4   Drugs 

Diazepam (Sigma) was dissolved in 10% Tween 80, 20% DMSO, and 70% saline to a final 

concentration of 2 mg/ml. Spiking rates in diazepam are reported 45 min after administration. 

 

3.3   Results 

3.3.1   Reduced excitatory drive onto FS (PV) INs in NARP -/- mice. 

To ask how the absence of NARP impacted excitatory synaptic drive onto inhibitory interneurons, 

we crossed NARP -/- mice with G42 mice, which express GFP in fast spiking, parvalbumin positive 

interneurons (FS (PV) INs; Jiang et al., 2010). Unitary excitatory postsynaptic currents (uEPSCs) 

were recorded pairs of pyramidal (Pyr) and FS (PV) interneurons from layer II/III in slices of 

visual cortex prepared from three week old (postnatal day 21 – 25) NARP -/- and age-matched wild 

type mice (Fig 3-1A, B). In the absence of NARP, the probability of connectivity between any 

Pyr->FS (PV) IN pair was significantly reduced (connection probability average ± SEM: NARP-/- 
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0.47±0.06, n = 9 mice, 72 pairs; WT 0.73±0.06, n=12, 52; p= 0.0007, Fisher exact test; Fig 3-1D). 

However, in connected pairs, the uEPSC amplitude was normal (NARP-/- 82.2±16.3 pA, n = 9, 33; 

WT 72.0±13.0%, n=10, 35; p=0.62, t-test; Fig 3-1B, E). Importantly, the absence of NARP did 

not affect connectivity from FS (PV) INs onto pyramidal cells (Fig 3-1G-L). No differences were 

detected between wild type and NARP-/- mice in either the probably of connectivity (p=0.20; Fig 

3-1J), the amplitude of the unitary IPSC evoked by direct depolarization of the FS (PV) IN 

(p=0.69; Fig 3-1K) or the paired pulse response ratio (p=0.83; Fig 3-1L). Thus, the absence of 

NARP specifically reduced the connectivity from pyramidal neurons onto FS (PV) INs, while the 

connectivity from FS (PV) IN onto pyramidal neurons was unimpaired. 
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Figure 3-1. Altered Connectivity between Layer II/III Pyramidal Neurons and FS (PV) INs in the 

Visual Cortex of NARP−/− Mice (A–F) uEPSCs in FS (PV) IN (green) evoked by action potentials in a 

nearby pyramidal neuron (gray). (A) Experimental schematics. (B) Average of all responses recorded in 

connected Pyr→FS (PV) IN pairs (20 responses/pair) from P21–P25 NARP−/− (red) and age-matched wild-

type mice (black). Top: action potentials in pyramidal neurons; bottom: uEPSCs in FS (PV) INs. Scale bar 

represents 50 mV, 50 pA, 10 ms. (C) Average uEPSC evoked with paired pulse stimulation, normalized to 

first uEPSC (NARP−/−, red; WT, black). Effects of NARP deletion on the probability of finding (D) a 
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connected pair, (E) the uEPSC amplitude, and (F) the paired pulse-response ratio. (G–L) uIPSCs in 

pyramidal neuron (gray) evoked by action potentials in a nearby FS (PV) IN (green). (G) Experimental 

schematics. (H) Average of all responses recorded in connected FS (PV) IN→Pyr neuron pairs (20 

responses/pair). Top: action potentials in FS (PV) INs; bottom: uIPSCs in pyramidal neurons. Scale bar 

represents 40 mV, 40 pA, 10 ms. (I) Average uIPSC evoked with paired pulse stimulation, normalized to 

first uIPSC (NARP−/−, red; WT, black). Effects of NARP deletion on the probability of finding (J) a 

connected pair, (K) the uIPSC amplitude, and (L) the paired-pulse response ratio. The number of mice and 

cell pairs is presented in each bar. ∗p < 0.01, t test. 

 

As a first estimation of neurotransmitter release probability, we examined the paired-pulse 

response ratio (PPR) of the uEPSCs in Pyr->FS (PV) IN pairs.  We found that the PPR was 

decreased in NARP -/- mice (NARP-/- 0.80±0.04, n = 4, 17; WT 0.99±0.05, n=10, 35; p= 0.007, t-

test; Fig 3-1C, F), suggesting that the excitatory synapses that persist may have enhanced 

presynaptic function. This prompted us to ask if the absence of NARP affects quantal parameters 

such as quantal size (Q), the number of presynaptic release sites (N) and the presynaptic release 

probability (P) at the remaining Pyr ->FS (PV) IN synapses. To obtain these parameters, we 

performed a mean- variance analysis of the uEPSC evoked by 50 Hz trains of 5 or 10 action 

potentials in the pyramidal neuron, as described (Fig 3-2A; Scheuss et al 2001; Huang et al 2010). 

This analysis allows quantal parameters (N, P, Q) to be estimated from the parabola fit to the 

relationship between mean and variance of the uEPSCs within the train (Fig 3-2B, see methods). 

We first tested the validity of this approach by increasing extracellular [Ca2+] from 2 mM to 4 mM. 

As expected, this resulted in an increase in the magnitude of the uEPSC (paired t-test: p=0.008, 

n=6 pairs) that was associated with an increase in release probability (p<0.001), but no change in 

quantal size (p=0.307) or the number of release sites (p=0.426). Alternatively, the addition of a 

low dose of the glutamate receptor antagonist kynurenic acid (200 mM) resulted in a decrease the 

magnitude of the uEPSC (paired t-test: p=0.039; n=6 pairs) that was associated with a decrease 

quantal size (p=0.008), but no change in release probability (p=0.807) or the number of release 
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sites (p=0.722; Fig 3-3). Application of the mean-variance approach to Pyr->FS (PV) IN uEPSCs 

in NARP -/- mice (postnatal day 21- 25) revealed a decrease in the number of presynaptic release 

sites (N; NARP-/- 11.8±2.0, n = 7,15; WT 31.5±7.1, n=5, 205; p=0.016, t-test; Fig 3-2C) associated 

with an increase in presynaptic release probability (P; NARP-/- 0.66±0.05, n = 7,15; WT 0.46±0.06, 

n=5, 20; p=0.010, t-test; Fig 2D), but no change in quantal size (Q: NARP-/- 18.2±2.4, n = 7.15; 

WT 14.2±2.3, n=5, 20; p=0.231, t-test; Fig 3-2E). Together, this demonstrates a net reduction in 

the excitatory drive onto FS (PV) INs in the visual cortex of NARP-/- mice. 

 

Figure 3-2. NARP Deletion Reduces the Number of Release Sites and Increases the Release 

Probability at Pyr to FS (PV) IN Connections (A) Representative experiment illustrating the estimation 

of synaptic parameters through a mean variance analysis of uEPSCs evoked by 50 Hz trains (of 10 pulses). 

Fifteen consecutive trials (gray) are superimposed, along with averaged response (black). Scale bars 

represent 200 mV, 200 pA, 20 ms. Expanded uEPSCs, indicated by arrows, were evoked by the second and 

fifth pulse of the trains. (B) The relationship between mean uEPSC amplitude and variance for each of the 

ten uEPSCs within the train was fitted with a parabola. (C–E) Synaptic parameters estimated from the 

parabolic fit in NARP−/− (red) and WT mice (black) include (C) the number of release sites, (D) the release 

probability, and (E) the quantal size. The number of mice and cell pairs is presented in each bar. ∗p < 0.01, 

t test. 
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Figure 3-3. Validation of the mean variance analysis for determination of unitary EPSC synaptic 

parameters.  (A) Representative experiment illustrating the estimation of synaptic parameters with a mean 

variance analysis of uEPSCs evoked by 50 Hz trains (5 pulses). Superimposed traces are 15 consecutive 

trials (thin lines), along with averaged response (thick lines) recorded in 2 mM Ca2+ (black) and 4 mM Ca2+ 

(red). Scale bars: 80 mV, 100 pA, 20 msec. The increase in external Ca2+ increased the uEPSC magnitude 

(B), but did not change the mean-variance relationship (C). Scale bars in B: 50 pA, 10 msec. (D)-(G). 

Summary of the effect of Ca2+ on the uEPSC magnitude (D), the number of release sites (E), the release 

probability (F) and the quantal size (G) in 2 mM Ca2+ (black) and 4 mM Ca2+ (red). (H)-(K) Summary of 

the effect of kynurenic acid on the uEPSC magnitude (H), the number of release sites (I), the release 

probability (J) and the quantal size (K) before (black) and after kynurenic acid (200 mM). * p < 0.02, paired 

t-test. 
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To ask how the reduction in excitatory input from proximal pyramidal neurons onto FS 

(PV) INs impacts total functional excitatory input or inhibitory output, we examined the maximal, 

extracellularly-evoked IPSC in pyramidal neurons (eIPSC; Fig 3-4 A-C), and the maximal 

extracellularly-evoked EPSC in FS (PV) IN (eEPSC; Fig 3-4 D-F). This allows an estimation of 

the combined strength of all available inputs, which we have previously used to characterize 

developmental changes in the strength of inhibition onto pyramidal neurons (Huang et al., 1999; 

Morales et al., 2002; Jiang et al., 2007; Huang et al., 2010). In these experiments, the stimulating 

electrode was placed in layer IV, which effectively recruits horizontal inputs onto layer II/III 

neurons (Morales et al., 2002). These experiments were performed at postnatal day 35 (± 2 days), 

when the maturation of inhibitory output is complete in wild types. In pyramidal neurons we 

observed a similar input/output relationship for the eIPSC in NARP-/- and wild type mice (one way 

ANOVA, F1, 335= 0.16, p=0.689; Fig 3-4B) and similar amplitude of the maximal eIPSC (NARP-/- 

5.4±0.4 pA, n = 3, 15; WT 5.2±0.4, n=3, 15; p=0.5, t-test; Fig 3-4C). In contrast, the input/output 

relationship for the eEPSC was significantly different in NARP -/- and wild type mice (one way 

ANOVA, F1, 299=10.93, p=0.0011; Fig 3-4E), and the amplitude of the maximal eEPSC was 

significantly reduced (NARP-/- 3.35±0.12 pA, n = 3, 24; WT 2.76±0.17, n=3, 24; p=0.010, t-test; 

Fig 3-4F). Thus the absence of NARP decreased the strength of total excitatory drive onto FS (PV) 

INs, without affecting the strength of inhibitory output evoked by depolarization of FS (PV) INs. 
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Figure 3-4. Normal Inhibitory Input onto Pyramidal Cells but Reduced Excitatory Input onto FS 

(PV) INs in NARP−/− Mice (A–C) Extracellularly evoked IPSCs (eIPSCs) recorded in pyramidal neurons 

are normal in P35 NARP−/− mice. (A) Pharmacologically-isolated eIPSCs were recorded in layer II/III 

pyramidal neurons, evoked by extracellular stimulation of the underlying layer IV. (B) Input-output 

relationship for eIPSCs in NARP−/− (red) and WT controls (black). (C) Maximal IPSC computed by 

averaging eIPSC amplitudes evoked by the three largest stimulus intensities. (D–F) Extracellularly evoked 

EPSCs (eEPSCs) recorded in FS (PV) INs are reduced in P35 NARP−/− mice. (D) Pharmacologically 

isolated eEPSCs were recorded in layer II/III FS (PV) INs, evoked by extracellular stimulation of the 

underlying layer IV. (E) Input-output relationship for eEPSCs in NARP−/− (red) and WT controls (black). 

(F) Maximal EPSC computed by averaging eEPSC amplitudes evoked by the three largest stimulus 

intensities. Number of mice and neurons in parentheses in (B) and (E). ∗p < 0.02; t test. 

 

3.3.2   Hyper-excitable visual cortex in NARP -/- mice 

We predicted that the decrease in excitatory drive from pyramidal neurons to FS (PV) INs in NARP 

-/- mice would reduce the ability to recruit fast perisomatic inhibition and increase overall cortical 

excitability. To test this hypothesis, we examined single unit spiking output in the binocular region 

of the primary visual cortex of P28 mice in vivo. In NARP -/- mice, visually-evoked activity of 
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neurons in layer II/III (response to 1 Hz reversals of 0.04 cycles/degree; 100% contrast gratings; 

presented at preferred orientation) had a larger average spike rate (median evoked activity ± SEM 

(spikes/second): WT 2.45±0.32, n=6,16; NARP -/- 4.32±0.34, n=6,21, Fig 3-5D) an earlier time to 

peak (average time to peak ± SEM (msecs): WT 132±6, n=6,16; NARP -/- 117±7, n=6,21; WT + 

DZ 153±4, n=6,25; NARP -/- + DZ, 139±4, n=6,17, one way ANOVA, F3,57=8.449, p<0.001; Fig 

3-5E) and a longer duration (average msecs ± SEM: WT 76±5, n=6,16; NARP -/- 101±6, n=6,21; 

WT + DZ 54±3, n=6,25; NARP -/- + DZ 78±5, n=6,17; one way ANOVA, F3,57=32.370, p<0.001; 

Fig 3-5F) than wild types.  To ask if enhancing inhibitory output could reverse this cortical hyper-

excitability, we administered diazepam, a positive allosteric modulator of ligand-bound GABAA 

receptors (Sieghart, 1995). Acute diazepam (15 mg/kg, i.p.) significantly reduced the average spike 

rate, the time to peak and the response duration of visually-evoked activity in NARP -/- and wild 

type mice (evoked: WT + DZ 1.16±0.13, n=6,25; NARP -/- + DZ 2.98±0.40, n=6,17, Kruskal-

Wallis test, H(3)=37.812, p<0.001, Fig 4D; spontaneous: WT + DZ 0.44±0.06, n=6,25, NARP -/- 

+ DZ 0.87±0.09, n=6,17, Kruskal-Wallis test, H(3)=28.980, p<0.001). In all cases we observed 

parallel changes in spontaneous and evoked neuronal firing rates, resulting in no net change in 

signal to noise ratio (evoked activity / (evoked activity + spontaneous activity) average ± SEM: 

WT 0.74±0.03, n=6,16; NARP -/- 0.75±0.03, n=6,21; WT + DZ 0.74±0.03, n=6,25; NARP -/- + DZ 

0.80±0.03, n=6,17; Kruskal-Wallis test, H(3)=2.201, p=0.532). Similar enhancement of visually-

evoked and spontaneous activity was observed in neurons from layer IV of NARP -/- mice (Fig 3-

6), indicating widespread hyper-excitability in the primary visual cortex of NARP -/- mice. 
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Figure 3-5. Enhanced Neuronal Excitability in Layer II/III of NARP−/− Visual Cortex (A) 

Representative raster plots of neuronal activity acquired in layer II/III of P28 visual cortex of wild-type, 

NARP−/−, wild-type + diazepam, and NARP−/− + diazepam mice. In each case, activity is shown in response 

to 100 presentation of visual stimulus in preferred orientation (1 Hz reversals of 0.04 cycles/degree; 100% 

contrast gratings, starting at time 0). (B) Poststimulus time histograms of average evoked activity of wild-

type and NARP−/− mice in response to visual stimulus in preferred orientation. Kruskal-Wallis test, H = 

9.366, p = 0.002. (C) Poststimulus time histograms of average-evoked activity of wild-type + diazepam and 

NARP−/− + diazepam in response to visual stimulus in preferred orientation. Kruskal-Wallis test, H = 21.01, 

p < 0.001. (D) Median-evoked activity from layer II/III of P28 visual cortex. Kruskal-Wallis test, H(3) = 

37.812, p < 0.001, ∗p < 0.05 Mann-Whitney post hoc versus wild-type controls. (E) Time-to-peak-evoked 

activity from layer II/III of P28 visual cortex. One-way ANOVA (F3,57 = 8.449, p < 0.001), ∗p < 0.05 

Bonferroni post hoc versus wild-type controls. (F) Spike train duration from layer II/III of P28 visual cortex. 

One-way ANOVA (F3,57 = 32.370, p < 0.001), ∗p < 0.05 Bonferroni post hoc versus wild-type controls. 
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Figure 3-6. Enhanced neuronal excitability in layer IV of NARP-/- visual cortex. (A) Representative 

raster plots of neuronal activity acquired in layer IV of P28 visual cortex of wild type, NARP-/-, wild type 

+ diazepam and NARP-/- + diazepam mice.  In each case, activity is shown in response to visual stimulus 

in preferred orientation (1 Hz reversals of 0.04 cycles/degree; 100% contrast gratings, starting a time 0).  

(B) Post-stimulus time histograms of average evoked activity of wild type (black) and NARP-/- (red) mice 

in response to visual stimulus in preferred orientation. n = (subjects, neurons), Kruskal-Wallis test, H = 

7.24, p = 0.007. (C) Post-stimulus time histograms of average evoked activity of wild type + diazepam 

(green) and NARP-/- + diazepam (blue) mice in response to visual stimulus in preferred orientation.  n = 

(subjects, neurons), Kruskal-Wallis test, H = 7.643, p = 0.006. (D) Median (+/- S.E.M.) visually-evoked 

activity recorded in layer IV of P28 mice. Kruskal-Wallis test, H(3) = 31.533, p < 0.001, * p < 0.05 Mann-

Whitney post hoc versus wild type controls.  (E) Average (+/- S.E.M.) time to peak of visually-evoked 

activity recorded in layer IV of P28 mice. One way ANOVA F(3,75) = 12.267, p < 0.001, * p < 0.05 

Bonferroni's post hoc versus wild type controls. (F) Average (+/- S.E.M.) spike train duration recorded in 

layer IV of P28 mice. One way ANOVA F(3,75) = 21.505, p < 0.001, * p < 0.05 Bonferroni's post hoc 

versus wild type controls. 

 

3.3.3   Normal vision in NARP -/- mice 
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We used visually evoked potentials (VEPs) to ask if the absence of NARP and the resulting 

increase in cortical excitability, impacted visual acuity or visual cortical plasticity. Visual acuity 

was estimated by extrapolating the linear regression of the VEP amplitude versus the spatial 

frequency of the visual stimulus (range from 0.04 – 0.6 cycles/degree) to 0 mV (Porciatti et al., 

1999). In these experiments, we used VEPs recorded from the surface of the binocular visual 

cortex, to focus on synaptic potentials generated in superficial laminae (Katzner et al., 2009). We 

found that juvenile (P30) NARP -/- mice had an estimated spatial acuity of 0.48±0.04 cycles/degree 

(average ± SEM, n=5), which was indistinguishable from age-matched wild type controls 

(0.49±0.02 cycles/degree, n=5; p=0.86, t-test; Fig 3-7A). Manipulation of the visual stimulus from 

20 to 100% contrast revealed similar contrast sensitivity in NARP -/- and wild type vision (Two 

way repeated measures ANOVA, F1, 6 = 0.003, p=0.955; Fig 3-7B). 

 

Figure 3-7. Normal Vision in NARP−/− Mice (A) Comparable spatial acuity in NARP−/− mice and age-

matched (P30) wild-types. Spatial acuity is extrapolated from the linear regression of VEP amplitude versus 

spatial frequency of the visual stimulus. (B) Comparable contrast sensitivity in NARP−/− mice and age-

matched (P30) wild-types. 
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To ask if the absence of NARP disrupts the organization of the visual cortex, we quantified 

ocular preference and retinotopy over the medio-lateral extension of V1.  To examine ocular 

preference, we calculated the ratio of VEP amplitudes in response to separate stimulation of the 

contralateral and ipsilateral eye (Fig 3-8).  In both wild type and NARP -/- mice, recordings medial 

to the binocular region of the primary visual cortex revealed responses to contralateral eye 

stimulation only, as expected of monocular visual cortex.  Recordings from a narrow area, ranging 

from ~ 3.0 – 3.5 mm lateral to the intersection of lambda and bregma, revealed responses to visual 

stimulation of both eyes, as expected of binocular visual cortex.  Recordings lateral to the binocular 

region of the primary visual cortex revealed a loss of contralateral preference, as expected for the 

lateral medial region of secondary visual cortex (Rossi et al., 2001). Retinotopy was also similar 

in wild type and NARP -/- mice.  The area of visual space resulting in the largest VEP amplitude 

moved along the visual field azimuth, from contralateral visual field to the meridian as the 

recording site was moved laterally across the binocular region of the primary visual cortex, and 

reversed toward the contralateral visual cortex as the recording site moved laterally from the 

binocular region of the primary visual cortex into LM (Fig 3-8D).  The orientation selectivity and 

orientation tuning of NARP -/- mice was also similar to wild types (Fig 3-9). Thus many aspects of 

visual system organization and function are normal in NARP -/- mice. 
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Figure 3-8. Normal ocularity and retinotopy in NARP-/- mice. Representative VEPs in response to 

stimulation of the contralateral (C) and ipsilateral (I) eye recorded at multiple sites along the medio-lateral 

aspect of visual cortex in a wild type (A) and NARP-/- mouse (B). Recording site ~ 2.8 mm lateral to 

intersection of lambda ( and midline (blue), is near the V1b/V1m border (WT, C/I = 3.64, ipsilateral VEP 

14 V; NARP-/-, C/I = 5.65, ipsilateral VEP 26 V).  The recording site yielding the largest ipsilateral VEP, 

typically 3.3 mm lateral to lambda (green) was used for comparison of contralateral bias across genotypes 

(WT, C/I = 2.46, ipsilateral VEP 69 V; NARP-/-, C/I = 2.17, ipsilateral VEP 60 V). Recording site ~3.8 

mm lateral to lambda (red) is near the V1b/LM border (WT C/I = 1.24, ipsilateral VEP 17 V; NARP-/- C/I 

= 0.98, ipsilateral VEP 22 V). Scale bars in (A) and (B): 50 ms, 50 V. (C) Similar distribution of ocular 

preference along the medio-lateral dimension of the visual cortex in wild type (black) and NARP-/- (red) 

mice. VEP C/I: WT, 2.5 mm, 5.61±1.36, 3.0 mm, 2.85±0.51, 3.3 mm, 2.26±0.28, 3.5 mm, 1.91±0.54, 4.0 

mm, 1.25±0.01, n=3 subjects; NARP-/-, 2.5 mm, 5.37±1.72, 3.0 mm, 2.69±0.38, 3.3 mm, 2.12±0.04; 3.5 

mm, 2.22±0.16, 4.0 mm, 1.16±0.21, n=3 subjects. Two way ANOVA, F(1,4) = 0.2805, p = 0.886. (D)  

Similar retinotopic organization in the visual cortex of wild type (black) and NARP-/- (red) mice.  VEP 

responses to windowed visual stimuli (10 degrees; horizontal gratings reversing at 1Hz) at different visual 

field azimuths (from -10 to +20 degrees from visual meridian) at 3 recording sites (3.3 mm, 3.5 mm and 

3.7 mm lateral to midline) in wild type and NARP-/- mice. n = 4 subjects. VEP amplitudes are normalized 

to the maximal VEP recorded at that site, and the relationship between amplitude and visual field azimuth 

was fitted with a second-order polynomial (dotted line). Two-way ANOVA, 3.3 mm, F(1,1) = 0.2576, p = 

0.62; 3.5 mm, F(1,1) = 0.1528, p = 0.7; 3.7 mm, F(1,1) = 0.1984, p = 0.66. 
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The binocular primary visual cortex of rodent has a contralateral bias that depends on early 

binocular visual experience (McCurry et al., 2010).  To ask if NARP -/- mice retained normal 

experience-dependent regulation of VEP contralateral bias, we examined VEP contralateral bias 

at the site in binocular visual cortex that yielded the largest ipsilateral eye VEP (typically 3.3 mm 

Figure 3-9. Normal orientation 

selectivity and orientation tuning in 

NARP-/- mice. (A) Similar 

orientation selectivity of visually-

evoked unit activity in wild type 

(black) and NARP-/- (red) mice. 

Orientation selectivity index = 

(response evoked by visual stimulus 

in preferred orientation - orthogonal 

orientation) / (pref + ortho). n = 

(subjects, neurons), KS test: D = 

0.2525, p = 0.1899. (B) Similar 

orientation tuning width of neurons in 

layer II/III of binocular visual cortex 

in wild type (black) and NARP-/- (red) 

mice. The preferred orientations are 

aligned at 0 degrees. n = (subjects, 

neurons). Inset:  orientation tuning 

normalized by maximal responses in 

each genotype. (C) Similar 

orientation tuning width of neurons in 

layer IV of binocular visual cortex in 

wild type (black) and NARP-/- (red) 

mice. The preferred orientations are 

aligned at 0 degrees. n = (subjects, 

neurons). Inset:  orientation tuning 

normalized by maximal responses in 

each genotype.  
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lateral to the intersection of lambda and bregma).  Dark-rearing from birth to postnatal day 30 

(P30) prevented the expression of the VEP contralateral bias in both genotypes. Similarly, bringing 

dark-reared subjects (at P30) into a normal lighted environment (3 days) increased the contralateral 

bias to the normal range (VEP amplitude contralateral eye/ipsilateral eye, average ± SEM: wild 

type DR 1.26±0.03, n=4; DR+L 2.05±0.03, n=4; one way ANOVA, F2,10=273.61, p<0.001, Fig 3-

10A; NARP -/- DR 1.29±0.02, n=6; DR+L 2.12±0.04, n=6; one way ANOVA, F2,14=72.947, 

p<0.001, Fig 3-10B). In both NARP -/- and wild type mice, the experience-dependent regulation 

of VEP contralateral bias was mediated by changes in the amplitude of the contralateral eye VEP 

(Fig 3-10 C-D). Thus the expression of a form of synaptic plasticity that is dependent on early 

visual experience is intact in NARP -/- mice. 
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Figure 3-10. Normal experience-dependent regulation of VEP contralateral bias in NARP-/- mice. (A) 

Two-fold VEP contralateral bias in P30 wild-types (CON). Dark rearing (DR) from birth to P30 

significantly inhibits the experience-dependent expression of VEP contralateral bias. Exposing dark-reared 

subjects to 3 days of normal lighted environment (DR + L) at P28 increases the VEP contralateral bias to 

the normal range (gray horizontal bar). One-way ANOVA (F2,10 = 273.61, p < 0.001). (B) VEP contralateral 

bias is normal in P30 NARP−/− mice (CON). Dark rearing (DR) from birth to P30 significantly inhibits the 

experience-dependent expression of VEP contralateral bias. Exposing dark-reared subjects to 3 days of light 

(DR + L) at P28 increases VEP contralateral bias to the normal range (gray horizontal bar). One-way 

ANOVA (F2,14 = 72.947, p < 0.001); ∗p < 0.01 Bonferroni post hoc versus control. Inset: representative 

VEP waveforms. Scale bars represent 50 ms, 50 μV. (C) Two-fold larger VEP amplitudes in response to 

stimulation of the contralateral eye (black) versus ipsilateral eye (red) in P30 wild type controls (CON, n = 

5). Dark-rearing from birth (DR, n = 4) inhibited the experience-dependent enhancement of the contralateral 

eye VEP. Exposure to normal lighted environment after dark-rearing (DR + L, n = 4) stimulated an increase 

in the contralateral eye VEP. One way ANOVA F(2,10) = 4.793, p < 0.05; * p < 0.05 Bonferroni’s post hoc 

versus WT CON. (D) Normal, two-fold larger VEP amplitude in response to stimulation of the contralateral 

eye (green) versus ipsilateral eye (blue) in P30 NARP-/- controls (CON, n = 5). Dark-rearing from birth 

(DR, n = 6) inhibited the experience-dependent enhancement of the contralateral eye VEP. Exposure to 

normal lighted environment after dark-rearing (DR + L, n = 6) stimulated an increase in the contralateral 

eye VEP. One way ANOVA F(2,10) = 14.875, p < 0.001; * p < 0.05 Bonferroni’s post hoc versus NARP-

/- CON. 

 

3.3.4   Absence of ocular dominance plasticity in NARP -/- mice 

To ask how the absence of NARP affects ocular dominance plasticity, we examined the response 

to brief (3 days) and prolonged (7 days) monocular deprivation (MD) on the VEP contralateral 

bias initiated at P25, the peak of the critical period (Fagiolini et al., 1994; Gordon and Stryker, 

1996; Fagiolini and Hensch, 2000). As expected, both brief and prolonged monocular deprivation 

of the dominant contralateral eye significantly decreased the VEP contralateral bias in juvenile 

wild type mice (VEP amplitude contralateral eye/ipsilateral eye average ± SEM: no MD 2.19±0.03, 

n=5; 3d MD 1.32±0.05, n=4; 7d MD 1.18±0.04, n=5; Fig 3-11). In contrast, no shift in ocular 

dominance was observed in juvenile NARP -/- mice following either brief or prolonged monocular 

deprivation (no MD 2.16±0.10, n=5; 3d MD 1.91±0.07, n=6; 7d MD 1.92±0.07, n=6).  

Importantly, enhancing inhibitory output with diazepam (15 mg/kg, 1x/day) enabled ocular 

dominance plasticity in juvenile NARP -/- mice (5d MD+DZ 1.09±0.08, n=5).  No shift in ocular 
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dominance was observed following diazepam alone (VEP amplitude contralateral eye/ipsilateral 

eye, average ± SEM: NARP -/- + DZ no MD, 2.08±0.11, n=3, t-test versus NARP -/- no MD, 

p=0.61). 

 

Figure 3-11. Absence of Ocular Dominance Plasticity in Juvenile NARP−/− Mice Brief (3 days) and 

prolonged (7 days) monocular deprivation of the dominant, contralateral eye induced a significant decrease 

in the VEP contralateral bias in juvenile (P25) wild-type, but not NARP−/− mice. Diazepam (DZ, for 5 days 

initiated at P25) enabled ocular dominance plasticity in NARP−/− mice. One-way ANOVA (F6,29 = 51.187, 

p < 0.001); ∗p < 0.05 Bonferroni post hoc versus WT no MD control. Normal VEP contralateral bias is 

depicted by gray horizontal bar. Inset: representative VEP waveforms. C, contralateral eye; I, ipsilateral 

eye. Scale bars represent horizontal 50 ms, vertical 50 μV. 

 

Ocular dominance plasticity persists into adulthood in wild type mice (Sawtell et al., 2003; 

Sato and Stryker, 2008) and may utilize mechanisms distinct from those recruited by monocular 

deprivation earlier in development (Pham et al., 2004; Fischer et al., 2007; Ranson et al., 2012). 

To ask if adult NARP -/- mice could express ocular dominance plasticity, we examined the response 

to monocular deprivation for 7 days beginning at P90 (Fig 3-12).  However this manipulation did 
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not induce a shift in ocular dominance in NARP -/- mice (VEP amplitude contralateral 

eye/ipsilateral eye average ± SEM: adult NARP -/- no MD 2.15±0.13, n=5; 7d MD 1.93±0.09, 

n=7). To confirm the absence of ocular dominance plasticity in NARP -/- mice, we examined the 

VEP contralateral bias after chronic monocular deprivation (80 days beginning at P21). 

Surprisingly, the normal ocular dominance of NARP -/- mice persisted following chronic 

monocular deprivation (VEP amplitude contralateral eye/ipsilateral eye average ± SEM: cMD 

2.00±0.11, n=5). Increasing inhibitory output with diazepam for the last 5 days of chronic 

monocular deprivation enabled an ocular dominance shift in adult NARP -/- mice (15 mg/kg, i.p.; 

cMD + DZ 1.17±0.10, n=6; Fig 3-12). As expected, adult wild type mice expressed a significant 

shift in contralateral bias in response to prolonged (7 days) and chronic (80 days) monocular 

deprivation (VEP amplitude contralateral eye/ipsilateral eye average ± SEM: adult WT no MD 

2.04±0.20, n=5; 7d MD 1.14±0.13, n=5; cMD 0.99±0.17, n=3), which was unaffected by diazepam 

in adulthood (cMD + DZ 0.98±0.09, n=4). Thus, in the absence of NARP, the visual system is 

unable to respond to monocular deprivation, despite functional inhibitory output. 
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Figure 3-12. Absence of Ocular Dominance Plasticity in Adult NARP−/− Mice Prolonged monocular 

deprivation (7 days) of the dominant, contralateral eye initiated in adulthood (P90) and chronic monocular 

deprivation (from P21–P100) induced a significant decrease in the VEP contralateral bias in adult wild-

type, but not NARP−/− mice. Diazepam (DZ, during the last 5 days of chronic MD) enabled ocular 

dominance plasticity in chronically deprived NARP−/− mice, but does not change the ocular dominance shift 

in wild-type mice. One-way ANOVA (F7,32 = 18.706, p < 0.001); ∗p < 0.05 Bonferroni post hoc versus WT 

no MD. Normal VEP contralateral bias is depicted by gray horizontal bar. Inset: representative VEP 

waveforms. C, contralateral eye; I, ipsilateral eye. Scale bars represent 50 ms, 50 μV. 

 

3.3.5   Differential response of NARP -/- mice to low frequency versus high frequency visual 

stimulation 

Although NARP -/- mice do not express ocular dominance plasticity, other forms of experience- 

dependent synaptic plasticity, such as the plasticity of the VEP contralateral bias, remain intact 

(Fig 3-10). To further explore the range of deficits in synaptic plasticity in NARP -/- mice, we 

examined the response to repetitive visual stimulation, previously shown to induce robust changes 

in VEP amplitudes in vivo (Sawtell et al., 2003; Frenkel et al., 2006; Ross et al., 2008; Cooke and 

Bear, 2010; Beste et al., 2011). High frequency visual stimulation (10 Hz reversals of 0.04 

cycles/degree, 100% contrast, vertical gratings) induced a rapid enhancement of the VEP 

amplitude in P30 NARP -/- and wild type mice (VEP amplitude 60 mins post-stimulation 

normalized to pre-stimulation: WT 1.48±0.12, n=5; NARP -/- 1.41±0.06, n=5; two way ANOVA, 

F1,1=0.316, p=0.584; Fig 3-13A). The enhancement in VEP amplitude was dependent on the 

temporal frequency of the visual stimulation, as visual stimulation at an intermediate temporal 

frequency (5 Hz) did not affect VEP amplitudes in either genotype (VEP amplitude 60 mins post-

stimulation normalized to pre-stimulation: WT 1.00±0.03, n=3; NARP -/- 0.97±0.10, n=3). The 

increase in VEP amplitude induced by 10 Hz visual stimulation was specific for the orientation of 

the visual stimulus, as no VEP enhancement was observed in response to a rotated grating (10 Hz: 
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WT 0.96±0.05, n=5; NARP -/- 0.94±0.06, n=5; 5 Hz: WT 0.94±0.03, n=3; NARP -/- 0.97±0.08, 

n=3; two way ANOVA, F1,1=0.002, p=0.968; Fig 3-13B).  In contrast,, low frequency visual 

stimulation (1 Hz reversals of 0.04 cycles/degree, 100% contrast vertical gratings) induced a 

slowly emerging increase in VEP amplitude in wild type mice (VEP amplitude post/pre 

stimulation: 12h 0.98±0.14; 15h 1.32±0.12; 18h 1.45±0.08; n=5), that was inhibited by diazepam 

(12h 0.91±0.01; 15h 0.91±0.04; 18h 1.13±0.01; n=5, two way ANOVA with repeated measures, 

F1,8=18.288, p=0.003; *p<0.01 versus wild type control; Fig 3-13C). As previously reported, the 

enhancement of VEP amplitude was selective for the orientation of the visual stimulus, as no 

increase in VEP amplitude was observed in response to a rotated grating (12h 0.88±0.12; 15h 

0.99±0.04; 18h 0.94±0.06, n=5; Fig 3-13D; Cooke and Bear, 2010). However, the slow, stimulus-

selective response plasticity was absent in NARP -/- mice (12h 0.82±0.12; 15h 0.93±0.11; 18h 

1.01±0.06; n=5; Fig 8E), but could be enabled by diazepam (12h 1.14±0.06; 15h 1.53±0.12; 18h 

1.55±0.13; n=5, two way ANOVA with repeated measures, F1,8=12.247, p=0.008; *p<0.01 versus 

NARP -/- control; Fig 3-13E). The response enhancement evoked in the presence of diazepam was 

selective for the orientation of the familiar visual stimulus (12h 0.68±0.06; 15h 0.79±0.05; 18h 

0.99±0.02; n=5; Fig 3-13F). Thus, the absence of NARP completely eliminates the expression of 



 

 

57 

 

several essential form of experience-dependent synaptic plasticity, while other aspects of circuit 

function and plasticity remain unchanged. 

 

Figure 3-13. Differential Response of NARP−/− Mice to Low- versus High-Frequency Visual 

Stimulation (A) High-frequency visual stimulation (10 Hz reversals of 0.04 cycle/degree 100% contrast 

vertical gratings) induced a rapid increase in VEP amplitude in P30 wild-type and NARP−/− mice, but 5 Hz 

reversals were ineffective ∗p < 0.05 t test versus prestimulation baseline. (B) Enhancement of VEP 

amplitude following high-frequency visual stimulation did not transfer to a visual stimulus of a novel 

orientation. (C) Low-frequency visual stimulation (1 Hz reversals of 0.04 cycle/degree 100% contrast 
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vertical gratings) induced a slow increase in VEP amplitude in P30 wild-type mice (black symbols), which 

was inhibited by diazepam (15 mg/kg, i.p.; 30 min prior to stimulation; green symbols). Two-way repeated-

measures ANOVA (F1,8 = 18.288, p = 0.003); ∗p < 0.01 Bonferroni post hoc versus prestimulation. (D) 

Enhancement of VEP amplitudes following low-frequency visual stimulation did not transfer to a visual 

stimulus of a novel orientation. (E) Low-frequency visual stimulation (1 Hz reversals of 0.04 cycle/degree 

100% contrast vertical gratings) did not change VEP amplitudes in P30 NARP−/− mice (red symbols). 

Administration of diazepam (30 min prior to stimulation), enabled the enhancement of VEP amplitudes by 

low-frequency visual stimulation (blue symbols; 15 mg/kg, i.p.). Two-way repeated-measures ANOVA 

(F1,8 = 12.247, p = 0.008); ∗p < 0.01 Bonferroni post hoc versus prestimulation. (F) The enhancement of 

VEP amplitudes in NARP−/− mice by low-frequency visual stimulation enabled by diazepam did not transfer 

to a visual stimulus of a novel orientation. 

 

3.4   Discussion  

Transgenic deletion of NARP allowed us to demonstrate that the strength of excitatory drive onto 

FS (PV) INs plays a central role in the initiation of the critical period for ocular dominance 

plasticity. Transgenic deletion of the immediate early gene NARP decreases the number of 

excitatory synaptic connections onto FS (PV) INs, thereby decreasing net excitatory drive onto 

neurons that mediate the majority of perisomatic inhibition. Importantly, net inhibitory drive from 

FS (PV) INs is unchanged in NARP-/- mice. Nonetheless, the visual cortex of NARP -/- mice is 

hyper-excitable, and unable to express several cardinal forms of synaptic plasticity, including 

ocular dominance plasticity, which are typically robust during an early postnatal critical period. 

Pharmacological reduction of the hyper-excitability in NARP -/- mice compensates for the deficit 

in the recruitment of inhibition, and allows the expression of ocular dominance plasticity.  We 

propose that NARP-dependent recruitment of inhibition from FS (PV) INs is necessary to ensure 

the precision of pyramidal cell activity necessary to engage these forms of synaptic plasticity 

(Jiang et al., 2007; Toyoizumi and Miller, 2009; Kuhlman et al., 2010). The NARP-dependent 

enhancement of excitatory drive onto FS (PV) INs is therefore an important, novel locus for the 

regulation of the critical period for ocular dominance plasticity. 
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3.4.1   Role of NARP in initiation of the critical period 

NARP is selectively enriched at excitatory synapses onto FS (PV) INs (Chang et al., 2010), the 

fast-spiking basket cells which mediate rapid feed-forward and feed-back inhibition onto neuronal 

somata (Kawaguchi and Kubota, 1997; Ascoli et al., 2008). Perisomatic inhibition from FS (PV) 

INs is therefore ideally located to exert powerful temporal and spatial control of the spiking output 

of principal neurons (Pouille and Scanziani, 2001; Goldberg et al., 2008; Kulman et al., 2010). 

Indeed, it has been proposed that a supra-threshold level of perisomatic inhibition is necessary to 

promote the synaptic plasticity between principal neurons that initiates the critical period for ocular 

dominance plasticity (Huang et al., 1999; Di Cristo et al., 2007). Alternatively, plasticity at 

synapses that mediate feedback inhibition onto principal neurons in the visual cortex has been 

proposed to mediate the shift in ocular dominance induced by monocular deprivation (Maffei et 

al., 2006). Changes in interneuron excitability and ocularity have been reported in response to 

monocular deprivation (Yazaki-Sugiyama et al., 2009; Gandhi et al., 2008; Kameyama et al., 

2010). Our work suggests for the first time that a critical step in the initiation of the critical period 

is the recruitment of inhibition through NARP-dependent enhancement of excitatory drive onto 

FS (PV) INs. The deficit in the ability to recruit inhibition prevents the induction of ocular 

dominance plasticity in NARP -/- mice, despite the presence of normal perisomatic inhibition. 

Importantly, sensory experience has been shown to strengthen excitation from thalamic afferents 

onto feed-forward inhibitory interneurons in layer IV of rodent barrel cortex (Chittajallu and Isaac, 

2010), and in the visual cortex, these inputs are remodeled by monocular deprivation (Kuhlman et 

al., 2011). 

3.4.2   Absence of critical period plasticity in NARP -/- mice 
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Monocular deprivation prior to the initiation of the critical period (~ P18 in rodents) is ineffective, 

demonstrating that a developmental change in visual cortical circuitry is necessary to initiate ocular 

dominance plasticity. In the absence of NARP, the visual system is retained in a hyper-excitable 

state that is reminiscent of this pre-critical period.  The method that we used to assess ocular 

dominance plasticity, examination of the contralateral bias of VEPs evoked by simple visual 

stimuli, has a lower threshold for the detection of changes induced by MD than other methods, 

such as change in visual acuity (Prusky and Douglas, 2003; Heimel et al., 2007). In addition, our 

VEP recordings were performed in superficial layers of the visual cortex, where ocular dominance 

plasticity is expressed long into postnatal development in wild types (Fischer et al., 2007; Heimel 

et al., 2007; Lehmann and Lowel, 2008; Sato and Stryker, 2008).  Despite this, we saw no evidence 

for a shift in ocular dominance in NARP -/- mice, including in response to monocular deprivation 

of unusually long duration (> ten weeks). This suggests that the visual system cannot compensate 

for the absence of NARP, and is unable to recruit the inhibition necessary to enable ocular 

dominance plasticity. We cannot rule out the possibility that monocular deprivation in NARP -/- 

mice induces changes in the strength of synapses outside the recording radius of our electrode.  

3.4.3   Visual function and pre-critical period plasticity are normal in NARP -/- mice 

Previous work has identified an important role for neuronal pentraxins in the refinement of 

retinogeniculate synapses in the dLGN (Bjartmar et al., 2006).  The ipsilateral eye input to the 

dLGN of NARP -/- (a.k.a. NP2), was slightly expanded at P10 compared to age matched WTs, but 

this expansion was mild compared to NP1/2 double KO mice. Despite the initial deficit in the 

refinement of retinogeniculate synapses, the binocular inputs to the dLGN of P30 NP1/2 KO mice 

become more segregated by P30.  In our experiments, the single deletion of NARP (NP2) did not 
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disrupt the macro-organization of V1.  Indeed, the anatomical boundaries between V1b and V1m 

and LM were similar in wild type and NARP -/- mice, and no differences were observed in 

retinotopy within V1b or the distribution of ocular preference along the medio-lateral aspect of the 

primary visual cortex.  Although other aspects of visual system organization not tested here may 

be disrupted in NARP -/- mice, our results clearly demonstrate that many aspects of visual cortex 

organization are unimpaired despite the deficit in the recruitment of inhibition.  In addition, many 

aspects of visual function that mature before or during the critical period, including contralateral 

bias, spatial acuity and contrast sensitivity, were normal in NARP-/- mice (Huang et al., 1999; 

Prusky and Douglas, 2004; Heimel et al., 2007). The absence of a change in visual acuity was not 

unexpected, as the parallel increase in evoked and spontaneous single unit activity in NARP -/- 

visual cortex mice predicts that visual detection thresholds would remain unchanged.  Similarly, 

other transgenic manipulations that induce hyper-excitability in the visual cortex (i.e. GAD 65 -/-; 

Hensch et al., 1998) have normal retinotopy and orientation selectivity, while manipulations that 

decrease inhibition in the visual cortex (i.e., dark-exposure, environmental enrichment) are not 

accompanied by a loss of spatial acuity (He et al., 2007; Sale et al., 2007). 

Interestingly, not all forms of experience-dependent synaptic plasticity are absent in NARP 

-/- mice.  NARP -/- mice retain the ability to express experience-dependent enhancement of the VEP 

contralateral bias, which is dependent on early binocular visual experience and reflects the 

complement of thalamocortical projections serving each eye (McCurry et al., 2010; Coleman et 

al., 2009).  In addition, NARP -/- mice retain the ability to express experience-dependent 

enhancement of VEP amplitudes in response to high frequency (10 Hz) visual stimulation.  Normal 

long term potentiation (in response to 100 Hz stimulation) and long term depression (in response 

to 3 Hz stimulation) of the hippocampal Schaffer collateral pathway also persists in hippocampus 
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of double (NP1 and NP2) knockout mice (Bjartmar et al., 2006).  This suggests that these forms 

of synaptic plasticity do not require gating by fast inhibition or can be engaged by a lower level of 

inhibitory output. Brief monocular deprivation during the critical period induces a rapid depression 

of synapses serving the deprived eye and a slow strengthening of synapses serving the non-

deprived eye (Sawtell et al., 2003; Frenkel and Bear, 2004; Tagawa et al., 2005; Sato and Stryker, 

2008). Importantly, despite the persistence of some forms of experience-dependent synaptic 

potentiation, we did not observe a strengthening of non-deprived eye synapses, even following 

unusually long durations of monocular deprivation.  The potentiation of the inputs serving the non-

deprived eye may be constrained in NARP -/- mice by the absence of deprived eye depression, 

which has been proposed to be required to first lower the threshold for strengthening of synapses 

serving the non-deprived eye (Smith et al., 2010).  

3.4.4   Unique phenotype of NARP -/- mouse 

There are important differences in the phenotype of the NARP -/- mouse from other transgenic 

models with deficits in ocular dominance plasticity. Transgenic manipulations that impair synaptic 

plasticity at excitatory synapses onto pyramidal neurons, such as deletion of the activity-regulated 

cytoskeletal protein arc, block the expression of ocular dominance plasticity along with a wide 

range of other forms of homeostatic and hebbian plasticity (McCurry et al., 2010). On the other 

hand, transgenic manipulations that result in hyper-excitability of the visual cortex, such as 

deletion of the synaptic isoform of the GABA synthetic enzyme GAD65, impair both GABAergic 

synaptic transmission (Choi et al., 2002) and the response to brief monocular deprivation (Hensch 

et al., 1998). Nonetheless, slightly longer durations of monocular deprivation can reliably induce 

ocular dominance shift in the visual system of GAD 65 -/- mice (Fagiolini and Hensch, 2000). 
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Ocular dominance plasticity is absent in NARP -/- mice, even in response to prolonged duration of 

monocular deprivation, suggesting that the visual cortex is unable to compensate for the absence 

of NARP.  Nonetheless, several forms of experience-dependent synaptic plasticity, such as 

plasticity of the VEP contralateral bias and the response to high frequency visual stimulation, are 

retained. The unique phenotype of the NARP -/- mouse underscores the importance of the 

recruitment of fast inhibition, via regulation of excitatory drive onto FS (PV) INs, in the induction 

of fundamental forms of experience-dependent synaptic plasticity in the mammalian visual cortex.   
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Chapter 4: Regulation of cortical excitability and ocular dominance 

plasticity via NRG1-ErbB4 signaling 

Manuscript in preparation. 

My contribution: all experiments 

 

4.1   Introduction 

The developmental constraint on ocular dominance plasticity is thought to underlie the inability to 

recover from amblyopia in adults. Understanding the mechanisms for the initiation and termination 

of the critical period for ocular dominance plasticity may lead to insights in potential treatments 

for amblyopia. The temporal regulation of the critical period for ocular dominance plasticity was 

previously thought to be dependent on the strength of inhibition onto the somata of principal 

neurons in the visual cortex (Huang et al., 1999; Fagiolini and Hensch, 2000; Di Cristo et al., 

2007). However, ocular dominance plasticity, in the absence of barbiturate anesthesia, exists far 

beyond the maturation of perisomatic inhibition (~ postnatal day 35 in rodents) (Pham et al., 2004; 

Huang et al., 2010).  Importantly, ocular dominance plasticity during the later critical period can 

also be inhibited by benzodiazepines, a positive allosteric modulators of ligand bound GABAARs.  

Together this suggests that a late critical period exists in which perisomatic inhibition is mature, 

but activity in GABAergic interneurons is not fully recruited by visual experience (Pham et al., 

2004; Gu et al., 2013).  

 

Indeed, we recently used transgenic deletion of the immediate early gene NARP to 

demonstrate the importance of maturation of excitatory drive onto FS (PV) INs in the initiation of 

the critical period.  NARP is a soluble protein that is synthesized by pyramidal neurons and 
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released by activity (Tsui et al., 1996).  NARP is highly enriched at excitatory synapses onto FS 

(PV) INs, where it forms a complex with the transmembrane proteins NR1 and NPR (Xu et al., 

2003).  NARP binds to the lectin binding site of chondroitin sulfate proteoglycans (CSPG; Tsui et 

al., 1996), and thereby tethers membrane surface AMPARs to the extracellular matrix. In the 

absence of NARP, hippocampal synapses lose the ability to bidirectionally scale synaptic strength 

in response to prolonged increase or decrease in activity (Chang et al., 2010).  Importantly, in the 

absence of NARP, the connection probability between pyramidal neurons and FS (PV) INs is 

significantly reduced, resulting in a hyper-excitable cortex (Gu et al., 2013).  This hyper-

excitability prevents the expression of ocular dominance plasticity, even in response to chronic (> 

100 days) monocular deprivation. Reducing neuronal excitability with diazepam, a positive 

allosteric modulator of ligand bound GABAARs, enabled expression of ocular dominance 

plasticity in the NARP -/- mouse. This identified excitatory synaptic drive onto FS (PV) INs as an 

important locus for the regulation of the critical period.   

 

The strength of excitatory drive onto FS (PV) INs is also regulated by monocular 

deprivation.  Indeed, 1 day monocular deprivation in juvenile mice rapidly reduces the frequency 

of spontaneous and evoked EPSCs onto FS (PV) INs in visual cortex, suggesting that reduction in 

excitatory drive onto FS (PV) INs is an early step in the changes in circuitry underlying ocular 

dominance shift (Kuhlman et al., 2013). Brief MD in juvenile (P27-28) rats induces an ocular 

dominance shift in spiking output from both excitatory and inhibitory neurons in superficial layers 

of V1b, but the shift is more pronounced in inhibitory neurons in older subjects with prolonged 

MD (P60, Kameyama et al., 2010). We sought to manipulate excitability of FS (PV) INs, to test 

the hypothesis that manipulating the excitability of FS (PV) INs can maintain the cortical 
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excitability in a permissive range for the expression of ocular dominance plasticity. This work 

focused on the NRG1-ErbB4 signaling pathway, as pharmacological tools exist that can cross the 

blood-brain barrier, and therefore may be generalizable to an amblyopic population. 

 

NRG1 is a neurotrophic factors that is either synthesized as a membrane anchored 

precursor, which is released into the synaptic cleft via cleavage by BACE1 (Savonenko et al., 

2008) or neuropsin (Tamura et al., 2012), or synthesized without a transmembrane domain and 

directly secreted into the extracellular space (Falls, 2003). The processing and release of NRG1 is 

up-regulated in response to neuronal activity (Ozaki et al., 2004; Mei and Xiong 2008). 

Accumulating evidence suggests that the primary cellular targets of NRG1 is excitation onto FS 

(PV) INs, as the cognate receptor ErbB4, the only NRG1 receptor with active tyrosine kinase 

activity, is enriched in fast-spiking parvalbumin-positive interneurons (Lai and Lemke, 1991; Yau 

et al., 2003; Abe et al., 2011; Vullhorst et al., 2009).  

 

Indeed, acute application of NRG1 in cortical slices from P28 rodents increases the 

excitability of FS (PV) INs and decreases excitability of principal neurons.  Acute application of 

NRG1 induces tyrosine phosphorylation, and subsequent reduction in voltage threshold of the 

Kv1.1 channel, resulting in increased spiking frequency of FS (PV) INs (Li et al., 2011). These 

acute effects of NRG1 on FS (PV) INs were not blocked by pharmacological inhibition of synaptic 

input, indicating direct non-synaptic enhancement of excitability.  In contrast the decrease in 

spiking frequency of pyramidal neurons induced by acute NRG1 is blocked by picrotoxin, 

indicating indirect suppression of pyramidal neuron excitability via enhanced inhibition.  Deletion 

of ErbB4 in FS (PV) INs reduces the susceptibility to pentyl and pilocarpine-induced seizures, and 
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ErbB4 expression is reduced in human epileptogenic tissue (Li et al., 2011), suggesting that NRG1-

ErbB4 signaling influences circuit excitability, by regulating the excitation onto interneurons. 

 

Prolonged NRG1 treatment also influences neuronal excitability, but through a different 

mechanism.  Prolonged NRG1 treatment of low density cortical neuron in culture increases both 

the number and size of PSD-95 puncta and the frequency and amplitude of miniature EPSCs 

(mEPSCs) in GABAergic interneurons, suggesting that prolonged NRG1 stimulates the formation 

of new synapses and strengthens existing synapses (Ting et al., 2011).  Prolonged NRG1 increases 

the tyrosine phosphorylation of PSD-95, which reduces the degradation of this important scaffold 

protein.  The enhanced stability would result in an increase in PSD-95 concentration, and enhanced 

synaptic strength by increasing binding sites for synaptic transmembrane AMPA regulatory 

proteins (TARPs; Dakoji et al., 2003).  Additionally, a tyrosine kinase cascade initiated by NRG1 

binding to ErbB4 could activate ERK (Liu et al., 2007) and PI3K pathways (Law et al., 2012), 

which target subunits of the AMPAR to promote trans-synaptic insertion, priming, and discourage 

endocytosis (Qin et al., 2005; Lee et al., 2003). ERK and PI3K pathways can also activate the 

dendritic translation factors which promote the synthesis of synaptic receptors and scaffolding 

proteins, and maintain the long-lasting modification of the synapses (Derkach et al., 2007; 

Cammalleri et al., 2003). Indeed, cortical GABAergic neurons treated with NRG1 exhibited a 

significant increase in surface GluR1 immunoreactivity at putative synaptic sites on dendrites (Abe 

et al., 2011). The recruitment and stabilization of AMPARs is an important step involved in many 

aspects of functional maturation and activity-dependent strengthening of these synapses 

(McMahon and Diaz, 2011; Ting et al., 2011). Similarly, a function blocking peptide (Ecto-ErbB4) 
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reduces the number and size of excitatory synapses onto FS (PV) INs, implicating a role of 

endogenous NRG1 in basal synapse formation (Ting et al., 2011).   

 

Importantly, the effects of prolonged NRG1 on synapse formation and strengthening are 

specific to excitatory synapses onto GABAergic INs (Ting et al., 2011). Indeed, postnatal deletion 

of ErbB4 decreases mEPSC frequencies on FS (PV) INs, without changes mIPSC frequencies 

(versus P40 WT controls; Yang et al., 2013). Importantly, previous reports of effects of NRG1-

ErbB4 on plasticity of excitatory synapses onto principal neurons, including the suppression of 

LTP and enhancement of NMDAR currents, have been proven to be indirect, due to the regulation 

of the strength of convergent inhibition onto principal neurons (Pitcher, 2011).   

 

In this chapter, we use NRG1, a recombinant polypeptide containing the EGF domain of 

β-type Neuregulin 1, and PD 158780, a tyrosine kinase inhibitor with high specificity for ErbB4 

(IC50=52nM) to bidirectionally regulate the output of FS (PV) IN and regular spiking (presumptive 

excitatory; RS) neurons. I show that I can use these manipulation to maintain cortical excitability 

in a permissive range for the expression of ocular dominance plasticity.  

 

4.2   Materials and methods 

4.2.1   Animals 

Wild type (WT) and NARP -/- mice (Bjartmar et al., 2006) were of C57BL/6, 129/SVJII mixed 

genetic background. All subjects were raised on a 12 h light/dark cycle, with food and water 

available ad libitum. All procedures conform to the guidelines of the U.S. Department of Health 

and Human Services and the Institutional Animal Care and Use Committees of the University of 
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Maryland.  Monocular deprivation (MD) was performed under ketamine/xylazine anesthesia (50 

mg/10 mg/kg, i.p.). The margins of the upper and lower lids of one eye were trimmed and sutured 

together. The animals were returned to their home cages and disqualified in the event of suture 

opening or infection. For dark exposure (DE), animals were kept in a complete darkened room; 

care was made with infrared goggles.  

 

4.2.2   In vivo electrophysiology 

In vivo electrophysiology was performed under isoflurane anesthesia (~1.5% in 100% O2 via 

modified nose cone). The dura covering binocular visual cortex was exposed through a hole (~ 3 

mm diameter) in the skull. The exposed brain was kept moist with artificial cerebral spinal fluid 

(ACSF (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 26 NaHCO3, 10 dextrose, 

bubbled with 95% O2/ 5% CO2 (pH 7.4)), and the room humidity was supplemented (ZD300Y0, 

Zenith). Subjects were retained in a stereotax in a darkened room (without visual stimulation) 

between measurements. Body temperature was maintained at 37 degrees C via circulating water 

heating pad (T/PUMP, Gaymar Industries Inc.), monitored with a rectal probe (BAT-12, Sensortek 

Inc.).  A broad-band signal was collected from the lateral aspect (binocular region) of the primary 

visual cortex (site of largest ipsilateral eye VEP, typically 3 mm lateral to the intersection of 

lambda and the midline), with a tungsten microelectrode (0.5 MΩ) relative to a ground screw in 

the frontal bone. 50 Hz low pass filter was used to isolate VEPs in response to 1 Hz reversals of 

full screen 100% contrast gratings (0.04 cycles/degree and 40 cd/m2 luminosity) presented on a 

computer monitor 25 cm from eyes. VEPs were averaged in synchrony with the visual stimulus 

using OpenEX software (TDT). 
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700-7k Hz band pass filter was used to isolate multi-unit activity, which was sorted into 

single-units based on waveform shape and principal component analysis (OpenEx software; TDT). 

The individual waveform samples were aligned by most negative point, and normalized amplitudes 

from -1 to 1. Units were then classified as fast or regular spiking based on parameters of the 

averaged waveforms (Niell and Stryker, 2008). Two parameters were used for discrimination: the 

height of the positive peak relative to the initial negative trough, and the slope of the waveform 

0.5 ms after the initial trough. Two linearly separable clusters were found, corresponding to 

narrow-spiking (putative inhibitory, fast-spiking) and broad-spiking (putative excitatory, regular-

spiking) neurons. Spontaneous firing rates were measured over 100 seconds in response to blank 

screen. Evoked spiking rates were measured in response to visual stimulus in preferred orientation 

(from 9 orientations ranging from 0 degrees (vertical) to 180 degrees). Orientation tuning was 

determined by plotting spiking activity against stimulus orientation from -90 to 90 degrees from 

preferred orientation.  

 

4.2.3   Drug solutions 

PD 158780 (Tocris) was dissolved in 10% Tween 80, 20% DMSO and 70% saline to a final 

concentration of 2 mg/ml. NRG1 (R&D systems) was dissolved in 100% saline to a final 

concentration of 10 ng/ml.  

 

4.3   Results 
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4.3.1   Regulation of neuronal excitability and inhibition of ocular dominance plasticity 

during the critical period with NRG1 

The strength of excitatory drive onto FS (PV) INs has been proposed to be critical in recruitment 

of inhibition necessary for the expression of ocular dominance plasticity. To ask if manipulations 

of NRG1-ErbB4 signaling pathway can be used to manipulate the spiking output of FS and RS 

neurons and subsequent ocular dominance plasticity, we administrated NRG1 peptide (10 ng/kg, 

i.p., twice a day for 3 days) to wild type mice at the peak of the critical period (P30), and recorded 

spontaneous and visually-evoked single unit activity.  Systemic delivery of NRG1 did not affect 

the peak/trough ratio (RS neurons average ± SEM;  WT juveniles:  0.78±0.17, WT juveniles + 

NRG1 0.87±0.21; FS neurons; WT juveniles:  0.59±0.12, WT juveniles + NRG1 0.61±0.07; Fig. 

4-1A left) or the end slope of single unit waveforms (RS neurons average ± SEM;  WT juveniles 

0.0004±0.006, WT juveniles  + NRG1 0.011±0.004; FS: WT juveniles -0.074±0.008, WT 

juveniles + NRG1 -0.072±0.008; Fig. 4-1A middle).  Indeed, single unit waveforms sorted into 

two distinct clusters based on these two parameters, representing regular spiking units (putative 

excitatory neurons, green Fig. 4-1A, right) and fast spiking units (putative parvalbumin-positive 

inhibitory neurons, blue Fig. 4-1A, right). 

 

However, NRG1 treatment induced an increase in visually evoked (left) and spontaneous (right) 

firing rates in FS (PV) INs (spikes/s, blue; visually-evoked, WT juveniles: 6.58±0.35, WT 

juveniles + NRG1: 7.67±0.46; spontaneous, WT juveniles:  2.15±0.17, WT juveniles + NRG1: 

2.56±0.19; Fig 4-1B), and a corresponding decrease in visually evoked (left) and spontaneous 

(right) firing rates in RS neurons (spikes/s, green; visually-evoked, WT juveniles: 2.39±0.21, WT 

juveniles + NRG1 1.30±0.14; spontaneous, WT juveniles: 0.99±0.13, WT juveniles + NRG1 

0.44±0.07; Fig. 4-1B). This is consistent with the previously description of NRG1 in strengthening 

excitation onto FS (PV) INs (Ting et al., 2011). However, the changes in neuronal excitability 

resulting from NRG1 administration did not affect the orientation tuning of RS or FS neurons in 

primary visual cortex (Fig. 4-2).  This is consistent with our previous work showing that changes 

in neuronal excitability resulting from genetic ablation of NARP, an AMPAR-binding protein that 
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is enriched at excitatory synapses on FS (PV) INs, does not change the orientation tuning of 

neurons in primary visual cortex (Gu et al., 2013).  

 

The increase in output from FS (PV) INs and the subsequent decrease in output from RS 

neurons at the closure of the critical period is expected to drive cortical excitability down from 

permissive range necessary to express ocular dominance plasticity.  To address this question, we 

explored the response to 3 days of monocular deprivation (MD) following NRG1 administration.  

At this age, 3 days of MD induced a robust shift in neuronal responses away from the deprived 

eye, revealed as a decrease in the ocular dominance index (red; ODI =(Contralateral Eye VEP – 

Ipsilateral Eye VEP)/(C+I)) relative to non-MDed controls (blue).  However, NRG1 

administration concurrent with 3 days MD inhibited the response to 3 days of MD (green; 

*H(2)=11.94, p<0.01, Kruskal-Wallis test; Fig. 4-1C). This demonstrates that systemic 

administration of NRG1 during the critical period reduces cortical excitability and inhibits 

subsequent ocular dominance plasticity. 
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Figure 4-1. Regulation of spiking output and inhibition of ocular dominance plasticity in juvenile 

(P30) wild type mice with NRG1. (A) NRG1 has no effect on spiking waveform parameters of both RS 

and FS. Left, average peak / trough ratio of RS (green) and FS (blue) waveforms with or without NRG1 

treatment in juvenile (P30) wild type mice. Middle, average end slope of RS and FS waveforms with or 
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without NRG1 treatment in juvenile (P30) wild type mice. Right, plotting unit waveform end slope against 

peak / trough ratio, each spot represent one single unit, green spot represent RS, blue spot represent FS. 

Insert, spike waveforms normalized by amplitude from -1 to 1, green traces represent RS, blue traces 

represent FS. (B) NRG1 decreased evoked and spontaneous firing rates of RS (green closed diamond) and 

increased evoked and spontaneous firing rates of FS (blue open diamond) in juvenile wild type mice. Upper, 

representative PSTH for RS and FS with or without NRG1 treatment. Down left, evoked spiking, right, 

spontaneous spiking. *one-tail unpaired t-test, p<0.05. Lines connect averages. (C) Cumulative distribution 

of ocular dominance index (ODI) of VEP amplitudes recorded from juvenile wild type mice. 3 day MD 

decreased VEP ODI, which was reversed by NRG1. *Kruskal-Wallis test, H(2)=11.94, p<0.01. Left, 

representative contralateral and ipsilateral VEP waveform in no MD (top), 3 day MD (middle) and NRG1+3 

day MD (bottom) wild type mice.  

 

Figure 4-2. Orientation tuning of RS and FS are not affected by PD 158780 and NRG1 

administration.  (A) Similar orientation tuning curves for RS in the visual cortex of wild type adults (blue), 

WT with ErbB4 inhibitor PD 158780 (green) and WT with NRG1 (red). The preferred orientations are 

aligned at 0 degrees. Inset:  orientation tuning normalized by maximal responses in each group. (B) Similar 

orientation tuning curves for FS in the visual cortex of wild type adults (blue), WT with PD 158780 (green) 

and WT with NRG1 (red). The preferred orientations are aligned at 0 degrees. Inset:  orientation tuning 

normalized by maximal responses in each group.  
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4.3.2   Regulation of neuronal excitability and ocular dominance plasticity in NARP -/- mice 

and dark exposed wild type adult mice with NRG1  

We have previously shown that the visual cortex of NARP -/- mice does not express ocular 

dominance plasticity at any age, even in response to prolonged occlusion (Gu et al., 2013).  Indeed, 

NARP -/- mice display a decrease in visually evoked (left) and spontaneous (right) firing rates in 

FS (PV) INs (spikes/s, blue; visually-evoked, WT: 7.52±0.34, NARP-/-: 5.57±0.16; spontaneous, 

WT: 2.34±0.06, NARP-/-: 1.82±0.11; Fig. 4-3), and a corresponding increase in visually-evoked 

(left) and spontaneous (right) firing rates in RS neurons (spikes/s, green; visually-evoked, WT: 

2.38±0.20, NARP-/-: 4.34±0.27; spontaneous, WT: 0.39±0.07, NARP-/- 1.82±0.17; Fig. 4-3). 

 

Figure 4-3. Regulation of spiking output by knocking out NARP. (A) Increased evoked firing rates of 

RS (green closed diamond) and decreased evoked firing rates of FS (blue open diamond) in NARP -/- 

mice compared to wild type mice. *one-tail unpaired t-test, p<0.05. (B) Increased spontaneous firing rates 

of RS (green closed diamond) and decreased spontaneous firing rates of FS (blue open diamond) in 

NARP -/- mice compared to wild type mice. *one-tail unpaired t-test, p<0.05.  

 

This phenotype is consistent with our previous observation of a reduction in connection 

probability and excitatory drive onto FS (PV) INs in the NARP -/- visual cortex (Gu et al., 2013). 

To ask if the regulation of neuronal excitability via NRG1 could reverse the hyper-excitability in 

the visual cortex of NARP -/- mice, we administrated NRG1 peptide to NARP -/- mice. Systemic 

delivery of NRG1 to NARP -/- mice did not affect the peak/trough ratio (Fig. 4-4A top) or the end 

slope (Fig. 4-4A bottom) of single unit waveforms from RS or FS neurons.  However, the visually-
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evoked firing rates of FS (PV) INs were increased (spikes/s, NARP -/- 5.57±0.16, NARP -/- + NRG1 

6.43±0.30; Fig. 4-4B, blue) and RS neurons were decreased (spikes/s, NARP -/- 4.34±0.27, NARP 

-/- + NRG1 3.09±0.20; Fig 4-4B, green) following NRG1 treatment.  Spontaneous firing rates were 

similarly increased in FS (PV) INs and decreased in RS neurons (spikes/s, FS:  NARP -/- 1.82±0.11, 

NARP -/- + NRG1 2.14±0.07; RS: NARP -/- 1.82±0.17, NARP -/- + NRG1 0.91±0.08, not shown). 

 

The increase in output from FS (PV) INs and the decrease in output from RS neurons 

following NRG1 administration might be expected to drive cortical excitability in NARP -/- mice 

down into the permissive range for ocular dominance plasticity.  Indeed, 3 days of MD, which is 

normally ineffective in NARP -/- mice (red MD, blue no MD NARP -/-), induced a robust shift in 

ocular dominance when administered concurrently with NRG1 (green; *H(2)=18.38, p<0.001; 

Kruskal-Wallis test; Fig. 4-4C). Thus cortical excitability and subsequent ocular dominance 

plasticity can be rescued in NARP -/- mice with NRG1. 

 

We have previously demonstrated that the developmental reduction in cortical excitability 

and loss of ocular dominance plasticity can be rescued in adult rats with 10 days of dark exposure 

(DE, He et al., 2006).  Similarly 10 days of dark exposure regulates neuronal excitability and 

rescues ocular dominance plasticity in adult wild type mice (Fig. 4-4E-F). However, the effects of 

DE can be occluded by knocking out NARP (Fig. 4-5). To ask if the effects of dark exposure can 

be reversed by NRG1, we systemically delivered NRG1 for the last 3 days of the 10 day dark 

exposure.  NRG1 administration did not affect the peak/trough ratio or the end slope of single unit 

waveforms from RS or FS neurons (Fig. 4-4D).  However, NRG1 administration during the last 3 

days of 10 day DE reversed the DE-induced changes in neuronal excitability, increasing the 
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visually-evoked firing rates of FS IN (spikes/s, WT+DE 6.64±0.16; DE + NRG1 7.87±0.11; Fig. 

4-4E, blue) and decreasing in RS neurons (spikes/s, WT+DE 3.58±0.13; DE + NRG1 2.16±0.05; 

Fig. 4-4E, green).  Spontaneous firing rates were similarly increased in FS (PV) INs and decreased 

in RS neurons (spikes/s, FS: WT+DE 1.74±0.07, DE + NRG1 2.11±0.07; RS: WT+DE 1.22±0.04, 

DE + NRG1 0.48±0.04, not shown). DE decreased the firing rates of WT adults to critical period 

level, while NRG1 administration reversed the firing rates back to WT adult level (data in Fig. 4-

1 and 4-7). Similarly, the robust shift in ODI observed in DE WT adults is reversed by NRG1 

treatment (blue MD alone, red DE+MD, green DE+NRG1+MD; cumulative distribution of ODI; 

*H(2)=15.77, p<0.001, Kruskal-Wallis test, Fig. 4-4F).   
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Figure 4-4. Rescue of ocular dominance plasticity in NARP -/- and reversal of DE effects in adult WT 

with NRG1. (A) NRG1 has no effect on spiking waveform parameters of both RS and FS in NARP -/- mice. 

Top, average peak / trough ratio of RS (green) and FS (blue) waveforms with or without NRG1 treatment 

in NARP -/- mice. Bottom, average end slope of RS and FS waveforms with or without NRG1 treatment in 

NARP -/- mice. (B) NRG1 decreased evoked firing rates of RS (green closed diamond) and increased evoked 
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firing rates of FS (blue open diamond) in NARP -/- mice. *one-tail unpaired t-test, p<0.05. Lines connect 

averages. Insert, representative PSTH for RS and FS with or without NRG1 treatment. (C) Cumulative 

distribution of ocular dominance index (ODI) of VEP amplitudes recorded from NARP -/- mice. 3 day MD 

decreased VEP ODI in NARP -/- only with NRG1. *Kruskal-Wallis test, H(2)=18.38, p<0.001. (D) NRG1 

has no effect on spiking waveform parameters of both RS and FS in DE adult WT mice. Top, average peak 

/ trough ratio of RS (green) and FS (blue) waveforms with or without NRG1 treatment in adult WT mice. 

Bottom, average end slope of RS and FS waveforms with or without NRG1 treatment in adult WT mice. 

(E) NRG1 decreased evoked firing rates of RS (green closed diamond) and increased evoked firing rates of 

FS (blue open diamond) in adult WT mice after 10 day DE. *one-tail unpaired t-test, p<0.05. Lines connect 

averages. Insert, representative PSTH for RS and FS with or without NRG1 treatment. (F) Cumulative 

distribution of ocular dominance index (ODI) of VEP amplitudes recorded from adult WT mice. 3 day MD 

decreased VEP ODI in adult WT after 10 day DE, which was reversed by NRG1. *Kruskal-Wallis test, 

H(2)=15.77, p<0.001.  
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Figure 4-5. DE effects are occluded in NARP -/- mice. (A) 10 days of DE did not change the evoked and 

spontaneous firing rates of RS (green closed diamond) in NARP-/- mice. Upper, representative PSTH for 

RS with or without 10 days DE. Down left, evoked spiking, right, spontaneous spiking. *one-tail unpaired 

t-test, p>0.05. (B) Cumulative distribution of ocular dominance index (ODI) of VEP amplitudes recorded 

from adult wild type and NARP-/- mice. 3 days MD following 10 days DE decreased VEP C/I only in wild 

type mice. Kruskal-Wallis test, *H(2)=17.48, p<0.001. Left, representative contralateral and ipsilateral VEP 

waveform in WT+DE (top), NARP-/- (middle) and NARP-/-+DE (bottom) mice following by 3 days MD.  
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4.3.3   Regulation of neuronal excitability and rescue of ocular dominance plasticity in 

adults with ErbB4 inhibition 

The cognate receptor for NRG1 is ErbB4, a receptor tyrosine kinase that is highly enriched at 

excitatory synapses on FS (PV) INs (Vullhorst et al., 2009).  To ask if systemic delivery of an 

ErbB4 inhibitor could weaken FS (PV) INs excitability, we administered PD 158780 (10 mg/kg, 

i.p., twice a day for 3 days), a receptor tyrosine kinase inhibitor with high specificity for ErbB4 

(IC50=52nM) to wild type adults (P90).  The ability to cross the blood-brain barrier of PD 158780 

was confirmed with the 25.1% increase of evoked spiking activity in RS neuron within 15min after 

acute administration (10mg/kg, i.p., Fig. 4-6). Systemic delivery of the ErbB4 inhibitor did not 

affect sorting of single units into two distinct clusters based on waveform (Fig. 4-7A right), the 

peak/trough ratio (RS: WT controls 0.59±0.11, WT+PD 158780 0.52±0.08; FS: WT controls 

0.78±0.16, WT+PD 158780 0.83±0.20; Fig. 4-7A left) or the end slope (RS: WT controls 

0.0004±0.005, WT+PD 158780 0.003±0.004; FS: WT controls -0.074±0.007, WT+PD 158780 -

0.055±0.006; Fig. 4-7A middle).  In addition, administration of the ErbB4 inhibitor did not affect 

the orientation tuning of RS or FS neurons in primary visual cortex (Fig. 4-2).    

 

Figure 4-6. Acute effects in RS evoked spiking of PD 158780 in P90 WT mice. Average single unit 

activity before and after the treatment of PD 158780 in vivo. After obtaining a baseline evoked spiking 

activity, PD 158780 was administrated acutely (10mg/kg, i.p.) and evoked spiking activity was measured 

every 5 min. Evoked spiking activity gradually increased and reached plateau about 15 min after the drug 

treatment (increased by 25.1% compared to baseline). The evoked spiking activity remained potentiation 

for at least 60 min. Recording section was restricted in the 60 min time frame to avoid the induction of 

response enhancement due to repetitive visual stimulation. Insert, 2 example unit spike waveforms 

normalized by amplitude from -1 to 1. Peak / trough ratio (0.496) and end slope (-0.005) of the SU 
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waveform are in the range of WT RS (peak / trough 0.59±0.11, end slope 0.0004±0.005) but not in the 

range of FS (peak / trough 0.78±0.16, end slope -0.074±0.007).  

 

Importantly, ErbB4 inhibition resulted in a decrease in evoked (left) and spontaneous 

(right) firing rates in FS neurons (spikes/s, blue; visually-evoked, controls 2.38±0.20, with PD 

158780 3.65±0.11; spontaneous, controls 0.39±0.07, with PD 158780 1.31±0.06; Fig. 3B), and a 

corresponding increase in evoked (left) and spontaneous (right) firing rates in RS neurons 

(spikes/s, green; visually-evoked, controls 7.52±0.34, with PD 158780 6.05±0.13; spontaneous, 

controls 2.34±0.06, with PD 158780 1.79±0.07; Fig. 4-7B). This is consistent with the observation 

that interfering with endogenous NRG1-ErbB4 signaling reduces the amplitude and frequency of 

mEPSCs onto FS (PV) INs (Ting et al., 2011). 

 

The decrease in output from FS (PV) INs and the subsequent increase in output from RS 

neurons in adults might be expected to drive cortical excitability back up into the permissive range 

for ocular dominance plasticity.  To address this question, we again explored the response to 3 

days of MD.  At this age, 3 days of MD does not induce a shit in the ocular dominance of VEPs 

(red MD, blue no MD control adults).  ErbB4 inhibition concurrent with 3 days of MD rescued the 

response to 3 days of MD in adults (green, *H(2)=15.24, p<0.001, Kruskal-Wallis test; Fig 4-7C). 

Thus systemic ErbB4 inhibition effectively regulates cortical excitability and subsequent ocular 

dominance plasticity. 
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Figure 4-7.  Regulation of spiking output and reactivation of ocular dominance plasticity in adult 

(P90) wild type mice with PD 158780.  (A) PD 158780 has no effect on spiking waveform parameters of 

both RS and FS. Left, average peak / trough ratio of RS (green) and FS (blue) waveforms with or without 

PD 158780 treatment in adult (P90) wild type mice. Middle, average end slope of RS and FS waveforms 

with or without PD 158780 treatment in adult (P90) wild type mice. Right, plotting unit waveform end 

slope against peak / trough ratio, each spot represent one single unit, green spot represent RS, blue spot 

represent FS. Insert, spike waveforms normalized by amplitude from -1 to 1, green traces represent RS, 

blue traces represent FS. (B) PD 158780 increased evoked and spontaneous firing rates of RS (green closed 

diamond) and decreased evoked and spontaneous firing rates of FS (blue open diamond) in adult wild type 

mice. Upper, representative PSTH for RS and FS with or without PD 158780 treatment. Down left, evoked 

spiking, right, spontaneous spiking. *one-tail unpaired t-test, p<0.05. Lines connect averages. (C) 

Cumulative distribution of ocular dominance index (ODI) of VEP amplitudes recorded from adult wild type 

mice. 3 day MD decreased VEP ODI only with PD 158780. *Kruskal-Wallis test, H(2)=15.24, p<0.001. 

Left, representative contralateral and ipsilateral VEP waveform in no MD (top), 3 day MD (middle) and 

PD 158780 +3 day MD (bottom) wild type mice.  
 

4.3.4   Regulation of cortical excitability and recovery from chronic monocular deprivation 

in amblyopic adults following inhibition of ErbB4 

One of the consequences of the developmental reduction in cortical excitability and constraint on 

ocular dominance plasticity is the increasing resistance to recovery from chronic monocular 

deprivation with age. Indeed, we have previously reported that ocular dominance and/or visual 

function do not recovery spontaneously following the removal of a chronic occlusion (He et al., 

2007).  Chronic MD mimics the inborn cataract in the amblyopia patient, and can be used to study 

the potential therapies to amblyopia.  

 

The demonstration that inhibition of ErbB4 signaling can reactivate ocular dominance 

plasticity led us to propose that the reactivated plasticity may be sufficient to promote the recovery 

from chronic monocular deprivation in adults. Mice were given monocular deprivation at eye 

opening (P14) which was maintained until adulthood (P100), which we have previously shown 

induces a severe amblyopia, including significant reduction in the strength and selectivity of 

visually-evoked responses from chronically-deprived eye (Montey and Quinlan, 2011).  Systemic 



 

 

85 

 

delivery of the ErbB4 inhibitor in cMD mice did not affect sorting of single units into two distinct 

clusters based on waveform, the peak/trough ratio or the end slope of single unit waveforms from 

RS or FS neurons (Fig. 4-8A).  Again, ErbB4 inhibition resulted in a decrease in evoked (left) and 

spontaneous (right) firing rates in FS neurons (spikes/s, blue; evoked, cMD 6.61±0.09, cMD+PD 

4.93±0.17; spontaneous, cMD 1.85±0.06, cMD+PD  1.25±0.06, Fig. 4-8B), and a corresponding 

increase in evoked (left) and spontaneous (right) firing rates in RS neurons (spikes/s, green; 

evoked, cMD 1.62±0.09, cMD+PD 3.21±0.21; spontaneous, cMD 0.20±0.02, cMD+PD 

1.09±0.08, Fig. 4-8B). 

 

To ask if the decrease in output from FS (PV) INs and the subsequent increase in output 

from RS neurons reactivated sufficient ocular dominance plasticity to allow for the recovery from 

cMD, we did 5 days reverse deprivation following chronic MD (from P14 to P100) in wild type 

mice. We see no spontaneous recovery of ocular dominance (ODI) following opening of the 

deprived eye and closing the non-deprived eye (reverse deprivation; RD; blue cMD, red cMD+RD, 

Fig. 4C). However, when ErbB4 inhibition was concurrent with 5 days of RD, a significant 

recovery from cMD was observed (green; *H(2)=15.37, p<0.001; Kruskal-Wallis test, Fig. 4-8C). 

Thus inhibition of ErbB4 can be used to regulate excitability in the amblyopic visual cortex, and 

enables the recovery from cMD in adulthood.   
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Figure 4-8. Regulation of spiking output and recovery of ocular dominance in chronic MDed adult 

wild type mice with PD 158780.  (A) PD 158780 has no effect on spiking waveform parameters of both 

RS and FS in chronic Mded adult wild type mice. Left, average peak / trough ratio of RS (green) and FS 

(blue) waveforms with or without PD 158780 treatment in chronic MDed adult wild type mice. Middle, 

average end slope of RS and FS waveforms with or without PD 158780 treatment in chronic MDed adult 

wild type mice. Right, plotting unit waveform end slope against peak / trough ratio, each spot represent one 

single unit, green spot represent RS, blue spot represent FS. Insert, spike waveforms normalized by 

amplitude from -1 to 1, green traces represent RS, blue traces represent FS. (B) PD 158780 increased evoked 

and spontaneous firing rates of RS (green closed diamond) and decreased evoked and spontaneous firing 

rates of FS (blue open diamond) in chronic MDed adult wild type mice. Upper, representative PSTH for 

RS and FS with or without PD 158780 treatment. Down left, evoked spiking, right, spontaneous spiking. 

*one-tail unpaired t-test, p<0.05. Lines connect averages. (C) Cumulative distribution of ocular dominance 

index (ODI) of VEP amplitudes recorded from chronic MDed adult wild type mice. 5 day RD increased 

VEP C/I only with PD 158780. *Kruskal-Wallis test, H(2)=15.37, p<0.001. Left, representative 

contralateral and ipsilateral VEP waveform in no RD (top), 5 day RD (middle) and PD 158780 +5 day RD 

(bottom) chronic MDed wild type mice.  

 

4.4   Discussion 

The critical period for ocular dominance plasticity was previously thought to be irreversible.  

However, here we show that ocular dominance plasticity can be reversibly, and rapidly, regulated 

throughout the course of postnatal development including adulthood. The neurotrophin NRG1 

increases excitability in FS (PV) INs and decreases excitability in RS neurons, which can be used 

to inhibit ocular dominance plasticity in juveniles and DE adults.  In contrast, inhibition of the 

NRG1 receptor tyrosine kinase (ErbB4) decreases excitability in FS (PV) INs and increases 

excitability in RS neurons, which can be used to engage ocular dominance plasticity in binocular 

and severely amblyopic adults.   

 

This work suggests that there is a narrow range of excitability in RS neurons that permits 

ocular dominance plasticity. Indeed, optimal excitability can stabilize the synaptic plasticity (Bi 

and Poo, 1998; Fagiolini and Hensch, 2000) that is based on spike-timing-dependent (STDP) 

mechanism. Hyperexcitaiblity, such as seen in the visual cortex during pre-critical period, and in 
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NARP -/- mice, or hypoexcitability, such as seen in post-critical period adults, are outside the 

permissive range for ocular dominance plasticity. Manipulation of NRG1-ErbB4 signaling allows 

for drive excitability of RS neurons into the permissive range to express ocular dominance 

plasticity.  

 

Importantly, stimulus selectivity was not affected by manipulations of the NRG1-ErbB4 

pathway. This is consistent with our previous result that knocking out NARP does not change the 

orientation selectivity in the visual cortex (Gu et al., 2013), and results from other labs that 

optogenetic activation of FS (PV) INs only modestly affect tuning properties (Atallah et al., 2012). 

This result support the model that feed-forward excitation determines orientation tuning (Priebe et 

al., 2004). However, we didn’t rule out the possibility that intracortical inhibition mediated by 

other types of inhibitory neurons sharpens or creates orientation tuning.  

 

The NRG1 peptide and the ErbB4 inhibitor employed here have the potential for 

therapeutic treatment for amblyopia because they can cross the blood-brain barrier.  The low 

molecular weights of PD 158780 (330.18 Da) and its high lipid solubility suggest that it may cross 

the blood-brain barrier without assistance (Fig. 4-6; Pardridge, 2005).  The NRG1 peptide utilized 

here (8 kDa) is likely to be recognized by receptor-mediated transport that normally transports 

NRG1 across the blood-brain barrier (Kastin et al., 2004).  This is in contrast to NARP, a calcium-

dependent lectin that binds to the GAG side chains of proteoglycans (Tsui et al., 1996), and is 

therefore likely to be trapped at basement membranes of blood-brain barrier (Baeten and 

Akassoglou, 2011).    
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4.4.1   The locus for the regulation of ocular dominance plasticity 

Previously, the timing of the critical period for ocular dominance plasticity was thought to be 

determined by the strength of perisomatic inhibition of principal neurons in the visual cortex 

(Hensch et al., 1998; Di Cristo et al., 2007; Rozas et al., 2001; Jiang et al., 2005). Indeed, early 

enzymatic removal (before critical period) of the PSA (polysialic acid) moiety of Neuronal Cell 

Adhesion Protein (NCAM) accelerates the maturation of perisomatic inhibition, resulting in an 

increase in the density of perisomatic inhibitory boutons, an increase in the frequency, not 

amplitude, of mIPSCs (onto layer V pyramidal neurons), and induction of a precocious critical 

period (Di Cristo et al., 2007). Similarly, over-expression of BDNF (during the critical period) 

accelerated the development of perisomatic GABAergic bouton density and increases maximal 

IPSC amplitudes (in layer III pyramidal neurons evoked by layer IV stimulation), and induces a 

precocious termination of critical period (Huang et al., 1999).  

 

Inhibitory circuitry, especially mediated by FS (PV) INs are increasingly implicated in the 

regulation of synaptic plasticity  (Donato et al., 2013; Kuhlman et al., 2013; Cardin et al., 2009; 

Gu et al., 2013). During the learning phase of Morris water maze, pharmacological inhibition of 

VIP neurons or activation of PV neurons induces a robust increase of PV signal in PV neurons, 

prevents the normal shift from high to low PV signal during training, and suppresses the behavioral 

performance improvement (Donato et al., 2013). Activation of excitation onto FS (PV) INs in 

barrel cortex by optogenetic techniques generates gamma oscillation, and rhythmically gates the 

synaptic input to generate synchronized responses of excitatory neurons (Cardin et al., 2009), 

which facilitates sensory processing and learning by amplifying signals and reducing noise in 

pyramidal cells (Sohal et al., 2009). This modification of sensory processing has been shown to 
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linearly transform the responses from PV neurons to pyramidal neurons, so it does not affect the 

tuning properties (Atallah et al., 2012), in agreement with our observation (Fig. 4-2).  

 

The strength of excitation onto FS (PV) INs is also regulated by monocular deprivation. 1 

day of monocular deprivation reduces the frequency of spontaneous and evoked EPSCs onto FS 

(PV) INs at the peak of the mouse critical period (P28; Kuhlman et al., 2013). DREADD-mediated 

inhibition of these synapses allows re-expression of rapid ocular dominance plasticity in older 

animals. However, if the excitation onto FS (PV) INs is too low, the critical period for ocular 

dominance plasticity cannot be initiated, perhaps because in a hyperexcitable visual cortex, visual 

experience cannot further decrease the excitation onto FS (PV) INs. Indeed, we have previously 

shown that reducing excitation onto FS (PV) INs by knocking out NARP maintains the cortex in 

a hyper-excitable state, which does not allow the expression of ocular dominance plasticity (Gu et 

al., 2013). This suggests the excitation onto FS (PV) INs should also be in an optimal range to 

maintain the ability to manipulate cortical excitability for the expression of ocular dominance 

plasticity. Interestingly, Kuhlman et al. (2013) showed 1 d MD did not reduce FS (PV) INs spiking 

in P45 mice, a time point at which we see robust ocular dominance plasticity. It is possible in older 

rodents, the time required for the reduction of FS (PV) IN spiking increases with age, such that >1 

day of MD is necessary to reduce FS (PV) IN spiking at P45. 

 

Brief MD in juvenile (P27-28) rats induces an ocular dominance shift in spiking output 

from both excitatory and inhibitory neurons in superficial layers of V1b, but the shift is more 

pronounced in inhibitory neurons in older subjects with prolonged MD (P60, Kameyama et al., 

2010). However, similarly work has shown that during the critical period, the ocular dominance 
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shift induced by MD is delayed but still robust in inhibitory neurons compared to excitatory 

neurons (Gandhi et al., 2008). The inconsistence of these two observation may be explained by the 

fact that Kameyama et al. (2010) used VGAT-Venus mice which have normal GAD67 expression 

level, while Gandhi et al. (2008) used GAD67-GFP knock-in mice which have low GAD67 

expression level. The low GABA content in GAD67-GFP knock-in mice could make the excitatory 

neurons more binocular so the response to brief MD is less robust.  

 

4.4.2   Mechanisms of NARP and NRG1 – ErbB4 pathway to enhance excitation onto FS 

(PV) INs 

The ability to rescue ocular dominance plasticity in the NARP -/- mouse, by enhancing inhibitory 

output with diazepam (Gu et al., 2013) or systemic administration of NRG1, suggests that NARP 

and NRG1-ErbB4 signaling regulate the excitability of FS (PV) INs via separate/independent 

pathways.  

 

Interestingly, both NARP and NRG1 – ErbB4 interact with molecules that make up 

perineuronal nets (PNNs), a specialization of the extracellular matrix (ECM) that is especially 

dense around the cell bodies of FS (PV) INs (Balmer et al., 2009). The polysaccharide side chains 

on the proteoglycans that make up the extracellular matrix (and the basement membrane) are 

substrates for lectins, including NARP. The bacterial enzyme Chondroitinase ABC (ChABC), 

which degrades the glycosaminoglycan side chains of proteoglycans (Kwok et al., 2011), disrupts 

the integrity of perineuronal nets and reduces the expression of NARP on the surface of FS (PV) 

INs (Chang et al., 2010). Importantly, in vivo delivery of the ChABC degrades PNN and 

reactivates ocular dominance plasticity in the visual cortex of adult rats (Pizzorusso et al., 2002) 
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but not adult cats (Vorobyov et al., 2013). Furthermore, the maturation of ECM in rodent visual 

cortex occurs ~ P70 (Pizzorusso et al., 2002), plateauing at the close of the critical period for ocular 

dominance plasticity observed in the absence of barbiturate anesthesia (Pham et al., 2004; Huang 

et al., 2011).  One intriguing possibility is that the maturation of dense PNN enshrouding FS (PV) 

INs allows for accumulation of NRG1 and NARP, resulting in a coordinated maturation of the 

ability to recruit inhibition from FS (PV) INs.  

 

The precursor for NRG1 is an inactive pro-NRG1 which is membrane bound. Most NRG1 

isoforms become functional following cleavage of the membrane-bound pro-NRG1 by neuropsin 

or BACE1, which allows the soluble ligand to bind to ErbB4 receptors (Savonenko et al., 2008; 

Tamura et al., 2012). Electrical stimulation onto cerebellar cultures induces ErbB phosphorylation 

activated by soluble NRG1, suggests that the processing and release of NRG1 is regulated in 

response to neuronal activity (Ozaki et al., 2004; Mei and Xiong 2008). After the cleavage, the 

soluble NRG1 binds to heparan sulfate proteoglycan (HSPG) of ECM, which serve as a reservoir 

to accumulate NRG1 for its function (Loeb et al., 1999). Furthermore, the EGF-domain of NRG1, 

the critical domain for the binding of NRG1 with ErbB4 that initiates the tyrosine kinase signaling 

pathway, directly binds to integrin, which is an adhesion protein that recognizes ECM receptors 

and cell surface receptors (Ieguchi et al., 2010). The integrin binding with NRG1 is critical for the 

NRG1–ErbB pathway, because NRG1/ErbB/integrin can form a ternary complex, and the 

disruption of this linkage suppresses the NRG1-ErbB4 signaling. This indicates the function of 

endogenous NRG1 – ErbB4 pathway requires the facilitation from ECM.  
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Although previous work indicates that NRG1 regulates the formation and strength of 

excitatory synapses onto FS (PV) INs (Ting et al., 2011; Yang et al., 2013; Abe et al., 2011), we 

have not yet shown the precise locus of the effects of our use of NRG1 and the ErbB4 inhibitor. It 

is also not known if our systemic administration of NRG1 and ErbB4 inhibitor regulate excitatory 

drive onto FS (PV) INs by regulating the strength of existing synapses, or regulating excitatory 

synapse density. To test this directly, EPSC amplitudes and connection probability from excitatory 

neurons to FS (PV) INs should be examined in the presence of NRG1 or ErbB4 inhibitor. However, 

the NRG1 rescue of ocular dominance plasticity in NARP -/- mice suggests that the reduction in 

connection probability seen in the transgenic mice does not down-regulate ErbB4 receptors in FS 

(PV) INs. One possibility is that since surface NARP accumulation is co-regulated with PNN 

development (Chang et al., 2010), knocking out NARP also suppresses the normal development 

of ECM, which decreases the endogenous NRG1 – ErbB4 signaling pathway. As NRG1 is released 

by activity from excitatory neurons (Ozaki et al., 2004; Mei and Xiong 2008), the increase in RS 

neuron excitability might be expected to enhance the release of NRG1 in NARP -/- mice. However, 

endogenous NRG1 is not sufficient to compensate for the loss of NARP, perhaps because, the 

reduction in connection probability reduces the number of excitatory synapses which release 

NRG1 in NARP-/- mice. To test this hypothesis, further experiments could compare the ErbB4 

phosphorylation level in WT adult, NARP -/- and ChABC treated WT adult mice, to see if the 

phosphorylated ErbB4 density is reduced in NARP -/- and ChABC treated mice.  
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Chapter 5: Conclusions and future directions 

In this thesis, I used different in vivo recording techniques and visual experience manipulations on 

rodents, to support a new model for the regulation of the critical period for ocular dominance 

plasticity. I showed that in the primary visual cortex, the ability to reopen the critical period with 

dark exposure differs over development. A refractory period, during which dark exposure is 

ineffective, exists towards the end of the critical period. In addition, ocular dominance plasticity 

is robust during the late critical period when perisomatic inhibition is mature. Enhancement of 

inhibition with a GABAAR modulator masks ocular dominance plasticity during the late critical 

period, suggesting there is sufficient perisomatic inhibition at this age to limit plasticity, but this 

inhibition is not fully recruited by visual experience. To examine the regulation of ocular 

dominance plasticity upstream of inhibitory output, I used NARP and NRG1-ErbB4 to manipulate 

neuronal excitability in the visual cortex. I showed that regulation of spiking in FS (PV) INs plays 

an important role in the regulation of the critical period. Importantly, retention of the excitability 

of FS and RS neurons into the permissive range can enable the expression of ocular dominance 

plasticity. My results also suggest that different aspects of stimulus selectivity (such as orientation 

tuning and ocular dominance) are regulated independently; while the excitatory synapses onto FS 

(PV) INs may be a good candidate for further clinical research for the treatment of amblyopia.  

 

5.1   The recruitment of inhibition in vivo 

In Chapter 2, I showed that robust ocular dominance plasticity persists after the maturation of 

perisomatic inhibition (P35 in rodents), but can be masked by enhancement of GABAergic 

inhibition with diazepam. This suggests that after P35 there is sufficient inhibition on principal 
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neurons to limit ocular dominance plasticity, but this inhibition is not fully recruited by visual 

experience at this age. This also indicates that the development of critical period may be 

determined “upstream” of inhibitory output onto principal neurons, which guided us to examine 

the regulation of excitation of FS (PV) INs in chapter 3 and 4.  

 

My results presented in Chapter 2 disagree with some previous experiments that rapid 

ocular dominance plasticity is lost after the maturation of perisomatic inhibition (P35; Gordon and 

Stryker, 1996). It was reported that 4d MD could not induce ocular dominance shift in P35 (Gordon 

and Stryker, 1996) and P46 (Fagiolini and Hensch, 2000). The discrepancy may be due to the 

difference in the choice of anesthetics, as Gordon and Stryker (1996) and Fagiolini and Hensch 

(2000) used pentobarbital (a positive allosteric modulator of GABAARs), which may mask ocular 

dominance plasticity after P35. Indeed, the expression of ocular dominance plasticity induced in 

rats with 4 day MD at P36-75 under urethane is acutely inhibited with pentobarbital (Pham et al., 

2004). Throughout the thesis I used light urethane (1.4mg/kg) or isoflurane (1.5% in O2) anesthesia 

to study ocular dominance plasticity.  Urethane only has modest effects on GABA receptors at 

anesthetic dosage (Hara and Harris, 2002), and isoflurane functions as anesthetics by binding to 

nAchRs (Brannigan et al., 2010).  Importantly, all current work in the Quinlan lab is performed in 

awake animals with chronically implanted electrodes.  

 

Another discrepancy is that synaptic plasticity, especially in layer IV, is restricted much 

earlier in development than we observe the loss of ocular dominance plasticity over development. 

Using in vitro techniques, such as paired recordings in the mice visual cortex, it is found that white 
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matter → layer IV LTP and LTD lost early in development (~P20; Jiang et al., 2007). However, 

using in vivo techniques, such as VEP and single unit recordings, it is found that ocular dominance 

plasticity persists even after P35 in the rodent V1b (Huang et al., 2010). One possibility is that 

inhibition is more efficiently recruited in vitro by stimulated electrode implanted in white matter, 

than in vivo by the visual pathway. A simple test of the hypothesis that inhibition is not fully 

recruited by vision in juvenile wild types, despite the presence of mature perisomatic inhibition, 

could be performed by comparing EPSCs in FS (PV) INs in vivo evoked by visual stimulation 

versus stimulation in proximal layer IV or layer II/III. I predict that the maximal EPSC amplitude 

evoked by visual stimulation would be smaller than that generated by electrical stimulation. 

 

5.2   The regulation of refractory period 

In Chapter 2 we showed that dark exposure does not further enhance ocular dominance plasticity 

in rodents at P35-55. The mechanisms for the refractory period are unknown, but I will speculate 

on some mechanisms: 

 

First, the refractory period reflects a time of incomplete maturation of excitation onto FS 

(PV) INs. The effects of DE are occluded in NARP-/- mice, and can be inhibited with NRG1 

injection, suggesting that DE reopens the critical period by reducing the connection probability or 

the synaptic efficacy of excitation onto FS (PV) INs.  Immature synapses are typically more 

plasticity, and so the reduction in excitation in response to DE may induce a compensatory increase 

in remaining synapses.  Alternatively, immature synapses may be resistant to modifications by the 

pathways engaged by DE. One simple way to ask if the refractory period reflects suboptimal 
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excitation onto FS (PV) INs would be to enhance the excitation of FS (PV) INs with NRG1 at P45 

(in the middle of the refractory period). If NRG1 inhibits ocular dominance plasticity at P45, but 

DE can reopen the critical period in P45 after NRG1 injection, then it suggests that a suboptimal 

level of excitatory drive impacts the expression of the refractory period.  

 

The refractory period may also be due to incomplete maturation of extracellular matrix. 

Importantly, the ECM in the rodent visual cortex matures around P60-70 (Pizzoruso et al., 2002), 

which correlates with the end of the refractory period (Huang et al., 2010). It is possible that DE 

reactivates ocular dominance plasticity by the degradation of the ECM, but this is ineffective 

during a time of rapid ECM growth. Thus a decrease in PNN maturation/density would be expected 

in DE adults, and DE may occlude the effects of chondroitnase treatment on ocular dominance 

plasticity.  In addition, we can enhance the development of ECM by inhibiting extracellular 

proteinases such as MMP9 +/- DE, which would be expected to accelerate the maturation of the 

ECM (Spolidoro et al., 2012). If inhibiting MMP9 suppresses ocular dominance plasticity at P45, 

but recovers the reactivation at this age by DE, we would conclude that the dynamics of ECM 

development contribute to the refractory period. 

 

5.3   A direct rescue of the NARP -/- phenotype 

In Chapter 3, we showed that in the absence of NARP, there is a decrease in the connection 

probability between pyramidal neurons and FS (PV) INs, which resulted in a hyper-excitable 

visual cortex that is unable to express ocular dominance plasticity. Nonetheless, diazepam can 

restore ocular dominance plasticity in NARP -/- mice, suggesting a threshold level of GABAARs 
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on principal neurons. One surprising result of this work was that downstream inhibitory synapses 

develop normally despite the upstream deficit in excitatory drive.  This suggests that the level of 

excitation necessary to drive the maturation of inhibitory output is lower than required to drive 

ocular dominance plasticity. 

 

I used two different pharmacological treatments to rescue ocular dominance plasticity in 

NARP -/- mice, diazepam and NRG1.  However, in both cases, the locus of the effect is inferred 

from in vivo electrophysiological recordings. To target excitation onto FS (PV) INs directly in 

adulthood, I could utilize an inducible cre-lox recombinase system to selectively express NARP 

in adult NARP -/- mice (Jaisser, 2000). I predict that after inducing the expression of NARP, it will 

accumulated on the surface of FS (PV) INs, resulting in an increase in connection probability 

between pyramidal neurons and FS (PV) INs.  The increase in excitability of FS (PV) INs and 

decrease in excitability of RS neurons would be expected to be accompanied by a rescue of ocular 

dominance plasticity.  

 

Future experiments could also attempt to rescue the NARP -/- phenotype using direct 

activation of FS (PV) INs with optogenetic techniques. To do this, cre recombinase could be 

expressed under a PV specific promoter, and the AAV containing floxed channelrhodopsin cDNA 

is delivered to V1b. With photo stimulation (470nm, 5 s per trial, 25 s inter-trial interval, 

approximately 30 trials) onto the visual cortex, the FS (PV) INs can be temporarily activated 

(Atallah et al., 2012; Lee et al., 2012). With this method, I can examine if the direct activation on 

FS (PV) INs will decrease the excitability of RS neurons in the NARP -/- mice V1b. If excitability 
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similar to what is observed in a critical period wild type mouse can be achieved and maintained, I 

could ask if various forms of plasticity, including ocular dominance plasticity, are restored.  

 

5.4   The possible application of FS (PV) INs excitation in the clinical research for 

amblyopia 

One aim of our research on ocular dominance plasticity is to find potential interventions to treat 

severe deprivation amblyopia in the clinic. At present, the most effective treatment for severe 

deprivation amblyopia is removal of the cataract by surgery, followed by wearing an eye patch to 

force the use of the deprived eye. However, these methods are more effective in juveniles, while 

in adults the cure rate is very low (Mitchell and MacKinnon, 2002).  

 

Pharmacological treatments have also had mixed successes. One problem is that the blood-

brain barrier may prevent the transportation of certain molecules into the brain. This can be 

overcome with the recent development of delivery methods using nanoparticles (Silke et al., 2013) 

and peptides which have active transporters, such as NRG1 (Van Dorpe et al., 2012; Kastin et al., 

2004).  

 

An additional obstacle to pharmacological approaches is specificity, which is the key step 

to translate animal work to clinical research. Previous models suggested that ocular dominance 

plasticity could be reactivated with reduced cortical inhibition. However, reducing inhibition in 

specific cell types (a subset of pyramidal neurons) in the visual cortex is difficult in humans. If 

global inhibition is reduced, the resulting hyperactivity is likely to cause seizures. To avoid these 
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problems, I used manipulation of the NRG1 – ErbB4 pathway to regulate FS (PV) INs excitability. 

This represents a potential approach for the clinical treatment for amblyopia, as ErbB4 receptors 

are highly enriched at excitatory synapses onto FS (PV) INs in mice (Vullhorst et al., 2009).  

 

In summary, understanding the mechanisms for the initiation and termination of the critical 

period for ocular dominance plasticity may lead to insights in potential treatments for amblyopia 

in adults. Whether other mechanisms exist to cooperate in the regulation of the ocular dominance 

plasticity and whether this circuit modifies other forms of stimulus selectivity remains to be 

determined.  
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Abbreviations 
Ach   Acetocholine 

ACSF   artificial cortico-spinal fluid 

AMPA   α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA   Analysis of variance 

APV   (2R)-amino-5-phosphonovaleric acid 

CB   cannabinoid 

CBI   contralateral bias index 

CNQX   6-cyano-7-nitroquinoxaline-2,3-dione 

DE   dark exposure 

DZ   diazepam 

ECM   extracellular matrix 

EPSC   excitatory postsynaptic current 

FS   fast-spiking 

GABA   γ-Aminobutyric acid 

GAD   Glutamate decarboxylase 

Glu   Glutamate 

IN   interneuron 

IPSC   inhibitory postsynaptic current 

LGN    lateral geniculate nucleus 

LM   lateral-medial area 

LTD   long-term depression 

LTP   long-term potentiation 

MD   monocular deprivation 

MMP   Matrix metalloproteinase 

MPA   3-mercaptopropionic acid 

NARP   neuronal activity related pentraxin 

NMDA   N-Methyl-D-aspartic acid 

NRG1   neuregulin1 

OSI   orientation selective index 

PCR   polymerase chain reaction 

PG   proteoglycan 

PNN   perineuronal net 

PPD   pair-pulse depression 

PV   parvalbumin 

Pyr   pyramidal 

RS   regular-spiking 

SEM   standard error of the mean 

TARP   Transmembrane AMPAR regulatory protein 

TBS   theta-burst stimulation 

TMS   Transcranial magnetic stimulation 

VEP   Visually-evoked potential 

VPL   visual perceptual learning 

V1b   binocular visual cortex 

WT   wild type 
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