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On the Early Historyof theSingular Value DecompositionG. W. StewartFor Gene Golub on his �fteenth birthday1. IntroductionOne of the most fruitful ideas in the theory of matrices is that of a matrix de-composition or canonical form. The theoretical utility of matrix decompositionshas long been appreciated. More recently, they have become the mainstay of nu-merical linear algebra, where they serve as computational platforms from whicha variety of problems can be solved.Of the many useful decompositions, the singular value decomposition|thatis, the factorization of a matrix A into the product U�VH of a unitary matrixUa diagonal matrix� and another unitary matrixVH|has assumed a special role.There are several reasons. In the �rst place, the fact that the decomposition isachieved by unitary matrices makes it an ideal vehicle for discussing the geometryof n-space. Second, it is stable; small perturbations in A correspond to smallperturbations in �, and conversely. Third, the diagonality of � makes it easyto determine when A is near to a rank-degenerate matrix; and when it is, thedecomposition provides optimal low rank approximations to A. Finally, thanksto the pioneering e�orts of Gene Golub, there exist e�cient, stable algorithms tocompute the singular value decomposition.The purpose of this paper is to survey the contributions of �ve mathemati-cians|Eugenio Beltrami (1835{1899), Camille Jordan (1838{1921), James JosephSylvester (1814{1897), Erhard Schmidt (1876{1959), and Hermann Weyl (1885{1955)|who were responsible for establishing the existence of the singular valuedecomposition and developing its theory. Beltrami, Jordan, and Sylvester cameto the decomposition through what we should now call linear algebra; Schmidtand Weyl approached it from integral equations. To give this survey context, wewill begin with with a brief description of the historical background.Is is an intriguing observation that most of the classical matrix decompositionspredated the widespread use of matrices: they were cast in terms of determinants,linear systems of equations, and especially bilinear and quadratic forms. Gauss isthe father of this development. Writing in 1823 [15, x31], he describes his famous1



2 The Early History of the SVDelimination algorithm as follows.Speci�cally, the function 
 [a quadratic function of x, y, z, etc.] can bereduced to the formu0u0A0 + u0u0B0 + u00u00C00 + u000u000D000 + etc:+M;in which the divisors A0, B0, C 00, C 000, etc. are constants and u0, u0, u00, u000,etc. are linear functions of x, y, z, etc. However, the second function, u0, isindependent of x; the third, u00, is independent of x and y; the fourth, u000is independent of x, y, and z, and so on. The last function u(��1) dependsonly on the the last of the unknowns x, y, z, etc. Moreover, the coe�cientsA0, B0, C 00, etc. multiply x, y, z, etc. in u0, u0, u00, etc. respectively.From this we easily see that Gauss's algorithm factors the matrix of the quadraticform xTAx into the product RD�1R, where D is diagonal and R is upper trian-gular with the diagonals of D on its diagonal. Gauss's functions u0, u0, u00, etc.are the components of the vector u = Rx.Gauss was also able to e�ectively obtain the inverse of a matrix by a processof eliminatio inde�nita, in which the system of equations y = Ax is transformedinto the inverse system x = By. Gauss's skill in manipulating quadratic formsand systems of equations made possible his very general treatment of the theoryand practice of least squares.Other developments followed. Cauchy [6, 1829] established the properties ofthe eigenvalues and eigenvectors of a symmetric system (including the interlacingproperty) by considering the corresponding homogeneous system of equations.In 1846, Jacobi [25] gave his famous algorithm for diagonalizing a symmetricmatrix, and in a posthumous paper [26, 1857] he obtained the LU decompositionby decomposing a bilinear form in the style of Gauss. Weierstrass [50, 1868]established canonical forms for pairs of bilinear functions|what we should todaycall the generalized eigenvalue problem. Thus the advent of the singular valuedecomposition in 1873 is seen as one of a long line of results on canonical forms.We will use modern matrix notation to describe the early work on the singularvalue decomposition. Most of it slips as easily into matrix terminology as Gauss'sdescription of his decomposition; and we shall be in no danger of anachronism,provided we take care to use matrix notation only as an expository device, andotherwise stick close to the writer's argument. The greatest danger is that the useof modern notation will trivialize the writer's accomplishments by making themobvious to our eyes. On the other hand, presenting them in the original scalar



The Early History of the SVD 3form would probably exaggerate the obstacles these people had to overcome, sincethey were accustomed, as we are not, to grasping sets of equations as a whole,With a single author, it is usually possible to modernize notation in such a waythat it corresponds naturally to what he actually wrote. Here we are dealing withseveral authors, and uniformity is more important than correspondence with theoriginal. Consequently, throughout paper we will be concerned with the singularvalue decomposition A = U�VT;where A is a real matrix of order n,� = diag(�1; �2; : : : ; �n)has nonnegative diagonal elements arranged in descending order of magnitude,and U = (u1 u2 : : : un) and V = (v1 v2 : : : vn)are orthogonal. The function k � k will denote the Frobenius norm de�ned bykAk2 =Xi;j a2ij =Xi �2i :In summarizing the contributions I have followed the principle that if you tryto say everything you end up saying nothing. Most of the works treated here arericher than the following sketches would indicate, and the reader is advised to goto the sources for the full story.2. Beltrami [5, 1873]Together Beltrami and Jordan are the progenitors of the singular value decom-position, Beltrami by virtue of �rst publication and Jordan by the completenessand elegance of his treatment. Beltrami's contribution appeared in the Journalof Mathematics for the Use of the Students of the Italian Universities, and itspurpose was to encourage students to become familiar with bilinear forms.The Derivation. Beltrami begins with a bilinear formf(x;y) = xTAy;where A is real and of order n. If one makes the substitutionsx = U� and y = V�;



4 The Early History of the SVDthen f(x;y) = �TS�;where S = UTAV: (2:1)Beltrami now observes that if U and V are required to be orthogonal thenthere are n2 � n degrees of freedom in their choice, and he proposes to use thesedegrees of freedom to annihilate the o� diagonal element of S.Assume that S is diagonal; i.e. S = � = diag(�1; : : : ; �n). Then it followsfrom (2.1) and the orthogonality of V thatUTA = �VT: (2:2)Similarly AV = U�: (2:3)Substituting the value of U obtained from (2.3) into (2.2), Beltrami obtains theequation UT(AAT) = �2UT; (2:4)and similarly he obtains (ATA)V = V�2:Thus the �i are the roots of the equationsdet(AAT � �2I) = 0 (2:5)and det(ATA� �2I) = 0: (2:6)Note that the derivation, as presented by Beltrami, assumes that �, and henceA, is nonsingular.1Beltrami now argues that the two functions (2.5) and (2.6) are identical be-cause they are polynomials of degree n that assume the same values at � = �i(i = 1; : : : ; n) and the common value det2(A) at � = 0, an argument that presup-poses that the singular values are distinct and nonzero.1However, it is possible to derive the equations without assuming that A is nonsingular; e.g.,UTAAT = �VTAT = �2UT, the �rst equality following on multiplying (2.2) by AT, and thesecond on substituting the transpose of (2.3). Thanks to Ann Greenbaum for pointing this factout.



The Early History of the SVD 5Beltrami next states that by a well-known theorem, the roots of (2.5) are real.Moreover, they are positive. To show this he notes that0 < kxTAk2 = xT(AAT)x = �T�2�; (2:7)the last equation following from the theory of quadratic forms. This inequalityimmediately implies that the �2i are positive.There is some confusion here. Beltrami appears to be assuming the existenceof the vector �, whose very existence he is trying to establish. The vector requiredby his argument is an eigenvector of AAT corresponding to �. The fact that thetwo vectors turn out to be the same apparently caused Beltrami to leap ahead ofhimself and use � in (2.7).Beltrami is now ready to give an algorithm to determine the diagonalizingtransformation.1. Find the roots of the equation (2.5).2. Determine U from (2.4). Here Beltrami notes that the columnsof U are determined up to factors of �1, which is true only if the�i are distinct. He also tacitly assumes that the resulting U willbe orthogonal, which also requires that the �i be distinct.3. Determine V from (2.2). This step requires that � be nonsingu-lar.Discussion. From the foregoing it is clear that Beltrami derived the singularvalue decomposition for a real, square, nonsingular matrix having distinct singularvalues. His derivation is the one given in most textbooks, but it lacks the extrasneeded to handle degeneracies. It may be that in omitting these extras Beltramiwas simplifying things for his student audience, but a certain slackness in theexposition suggests that he had not thought the problem through.3. Jordan [28, 29, 1874]Camille Jordan can fairly be called the codiscoverer of the singular value decom-position. Although he published his derivation a year after Beltrami, it is clearthat the work is independent. In fact, the \M�emoire sur les formes bilin�eaires"



6 The Early History of the SVDtreats three problems, of which the the reduction of a bilinear form to a diagonalform by orthogonal substitutions is the simplest.2The Derivation. Jordan starts with the formP = xTAyand seeks the maximum and minimum of P subject tokxk2 = kyk2 = 1: (3:1)The maximum is determined by the equation0 = dP = dxTAy + xTAdy; (3:2)which must be satis�ed for all dx and dy that satisfydxTx = 0 and dyTy = 0: (3:3)3 Jordan then asserts that \equation (3.2) will therefore be a combination of theequations (3.3)," from which one obtains3Ay = �x (3:4)and xTA = �yT: (3:5)From (3.4) it follows that the maximum isxT(Ay) = �xTx = �:Similarly the maximum is also � , so that � = � .Jordan now observes that � is determined by the vanishing of the determinantD = ����� ��I AAT ��I �����2The other two are to reduce a form by the same substitution of both sets of variables andto reduce a pair of forms by two substitutions, one for each set of variables. Jordan notes thatthe former problem had been considered by Kronecker [31, 1866] in a di�erent form, and thelatter by Weierstrass [50, 1868].3Jordan's argument is not very clear. Possibly he means to say that for some constants �and � we must have dxTAy+ xTAdy = �dxTx+ �dyTy, from which the subsequent equationsfollow from the independence of dx and dy.



The Early History of the SVD 7of the system (3.4){(3.5). He shows that this determinant contains only evenpowers of �.Now let �1 be a root of the equation D = 0, and let the equations (3.4) and(3.5) be satis�ed by x = u and y = v, where kuk2 = kvk2 = 1. (Jordan notesthat one can �nd such a solution, even when it is not unique.) LetÛ = (u U�) and V̂ = (v V�)be orthogonal, and let x = Ûx̂ and y = V̂ŷ:With these substitutions, let P = x̂TÂŷ:In this system, P attains its maximum4 for x̂ = ŷ = e1, where e1 = (1; 0; : : : ; 0)T.Moreover, at the maximum we haveÂŷ = �1x̂ and x̂TÂ = �1ŷT;which implies that Â =  � 00 A1 ! :Thus with �1 = x̂1 and �1 = ŷ1, P assumes the form�1�1�1 + P1;where P1 is independent of �1 and �1. Jordan now applies the reduction inductivelyto P1 to arrive at the canonical formP = �T��:Finally, Jordan notes that when the roots of the characteristic equation D = 0are simple, the columns of U and V can be calculated directly from (3.1), (3.4),and (3.5).Discussion. In this paper we see the sure hand of a skilled professional. Jordanproceeds from problem to solution with economy and elegance. His approachof using a partial solution of the problem to reduce it to one of smaller size|de
ation is the modern term|avoids the degeneracies that complicate Beltrami's4Jordan nods here, since he has not explicitly selected the largest root �1.



8 The Early History of the SVDapproach. Incidentally, the technique of de
ation apparently lay fallow until Schur[41, 1917] used it to establish his triangular form of a general matrix. It is now awidely used theoretical and algorithmic tool.The matrix  0 AAT 0 ! ;from which the determinant D was formed, is also widely used. Its present daypopularity is due to Wielandt (see [14, p.113]) and Lanczos [32, 1958], who ap-parently rediscovered the decomposition independently.Yet another consequence of Jordan's approach is the variational characteriza-tion of the largest singular value as the maximum of a function. This and relatedcharacterizations have played an important role in perturbation and localizationtheorems for singular values (for more see [43, xIV.4]).4. Sylvester [44, 46, 45, 1889]Sylvester wrote a footnote and two papers on the subject of the singular valuedecomposition. The footnote appears at the end of a paper in The Messenger ofMathematics [44] entitled \A New Proof That a General Quadric May Be Reducedto Its Canonical Form (That Is, a Linear Function of Squares) by Means of a RealOrthogonal Substitution." In the paper Sylvester describes an iterative algorithmfor reducing a quadratic form to diagonal form. In the footnote he points out thatan analogous iteration can be used to diagonalize a bilinear form and says thathe has \sent for insertion in the C. R. of the Institute a Note in which I give therule for e�ecting this reduction." The rule turns out to be Beltrami's algorithm.In a �nal Messenger paper [45], Sylvester presents both the iterative algorithmand the rule.The Rule. Here we follow the Messenger paper. Sylvester begins with thebilinear form B = xTAyand considers the quadratic formM =Xi  dBdyi!2(which is xTAATx, a fact tacitly assumed by Sylvester). Let M = P�i�2i be thecanonical form of M . If B has the canonical form B = P �i�i�i, then P[�i�]2 isorthogonally equivalent to M = P�i�2i , which implies that �i = �2i in some order.



The Early History of the SVD 9To �nd the substitutions, Sylvester introduces the matrices M = AAT andN = ATA and asserts that the substitution for x is the substitution that diago-nalizes M and substitution for y is the one that diagonalizes N. In general, thisis true only if the singular values of A are distinct.In his Comptes Rendu note Sylvester gives the following rule for �nding thecoe�cients of the x-substitution corresponding to a singular value �. Strike a rowof the matrix M � �2I. Then the vector of coe�cients is the vector of minors oforder n� 1 of the reduced matrix normalized so that their sum of squares is one.Coe�cients of the y-substitution may be obtained analogously fromN��I. Thisonly works if the singular value � is simple.In�nitesimal iteration. Sylvester �rst proposed this method as a techniquefor showing that a quadratic form could be diagonalized, and he later extended itto bilinear forms. It is already intricate enough for quadratic forms, and we willcon�ne ourselves to a sketch of that case.Sylvester proceeds inductively, assuming that he can solve a problem of ordern � 1. Thus for n = 3 he can assume the matrix is of the formA = 0B@ a 0 f0 b gf g c 1CA ;the zeros being introduced by the induction step. His problem is then to get ridof f and g without destroying the zeros previously introduced.Sylvester proposes to make an \in�nitesimal orthogonal substitution" of theform 0B@ x1x2x3 1CA = 0B@ 1 � ��� 1 ��� �� 1 1CA0B@ �1�2�3 1CA ;where the o� diagonal quantities are so small that powers higher than the �rst canbe neglected. Then the the (2; 1)- and (1; 2)-elements of the transformed matrixare (a� b)�� f� � g�; (4:1)while the change in f2 + g2 is given by12�(f2 + g2) = (a� c)f� + (b� c)g�:



10 The Early History of the SVDIf either of (a � c)f or (b � c)g is nonzero, � and � can be chosen to decreasef2 + g2. If (a � b) is nonzero, � may then be chosen so that (4.1) is zero; i.e.,so that the zero previously introduced is preserved. Sylvester shows how specialcases like a = b can be handled by explicitly de
ating the problem.Sylvester now claims that an in�nite sequence of these in�nitesimal transfor-mations will reduce one of f or g to zero, or will reduce the problem to one of thespecial cases.Discussion. These are not easy papers to read. The style is opaque, andSylvester ponti�cates without proving, leaving too many details to the reader.The mathematical reasoning harks back to an earlier, less rigorous era.The fact that Sylvester sent a note to Comptes Rendu, the very organ whereJordan announced his results a decade and a half earlier, makes it clear that hewas working in ignorance of his predecessors. It also suggests the importancehe attached to his discovery, since a note in Comptes Rendu was tantamount tolaying claim to a new result.Sylvester was also working in ignorance of the iterative algorithm of Jacobi[25, 1846] for diagonalizing a quadratic form. The generalization of this algorithmto the singular value decomposition is due to Kogbetliantz [30].It is not clear whether Sylvester intended to ignore second order terms inhis iteration or whether he regards the diagonalization as being composed of an(uncountably) in�nite number of in�nitesimal transformation. Though the pre-ponderance of his statements favor the latter, neither interpretation truly squareswith everything he writes. In the �rst, small, but �nite, terms replace the zerospreviously introduces, so that a true diagonalization is not achieved. The sec-ond has the 
avor of some recent algorithms in which discrete transformationsare replaced by continuous transformations de�ned by di�erential equations (forapplications of this approach to the singular value decomposition see [7, 9]). ButSylvester does not give enough detail to write down such equations.5. Schmidt [39, 1907]Our story now moves from the domain of linear algebra to integral equations, oneof the hot topics of the �rst decades of our century. In his treatment of integralequations with unsymmetric kernels, Erhard Schmidt (of Gram{Schmidt fame)introduced the in�nite dimensional analogue of the singular value decomposition.But he went beyond the mere existence of the decomposition by showing how itcan be used to obtain optimal, low-rank approximations to an operator. In doing



The Early History of the SVD 11so he transformed the singular value decomposition from a mathematical curiosityto an important theoretical and computational tool.Symmetric Kernels. Schmidt's approach is essentially the same as Beltrami's;however, because he worked in in�nite dimensional spaces of functions he couldnot appeal to previous results on quadratic forms. Consequently, the �rst part ofhis paper is devoted to symmetric kernels.Schmidt begins with a kernel A(s; t) that is continuous and symmetric on[a; b]� [a; b]. A continuous, nonvanishing function '(s) satisfying'(s) = � Z ba A(s; t)'(t) dtis said to be an eigenfunction of A corresponding to the eigenvalue �. Note thatSchmidt's eigenvalues are the reciprocals of ours.Schmidt then establishes the following facts.1. The kernel A has at least one eigenfunction.2. The eigenvalues and their eigenfunctions are real.3. Each eigenvalue of A has at most a �nite number of linearlyindependent eigenfunctions.4. The kernel A has a complete, orthonormal system of eigenfunc-tions; that is, a sequence '1(s), '2(s), : : : of orthonormal eigen-functions such that every eigenfunction can be expressed as alinear combination of a �nite number of the 'j(s).55. The eigenvalues satisfyZ ba Z ba �A(s; t)�2 ds dt �Xi 1�2i ;which implies that the sequence of eigenvalues is unbounded.Unsymmetric Kernels. Schmidt now allows A(s; t) to be unsymmetric andcalls any nonzero pair u(s) and v(s) satisfyingu(s) = � Z ba A(s; t)v(t) dt5This usage of the word \complete" is at variance with today's usage, in which a sequence iscomplete if its �nite linear combinations are dense.



12 The Early History of the SVDand v(t) = � Z ba A(s; t)u(s) dsa pair of adjoint eigenfunctions corresponding to the eigenvalue �.6 He thenintroduces the symmetric kernels�A(s; t) = Z ba A(s; r)A(t; r) drand A(s; t) = Z ba A(r; s)A(r; t) drand shows that if u1(s), u2(s), : : : is a complete orthonormal system for �A(s; t)corresponding to the eigenvalues �21, �22, : : : then the sequence de�ned byvi(t) = �i Z ba A(s; t)u(s) ds; i = 1; 2; : : :is a complete orthonormal system for A(s; t). Moreover, for i = 1; 2; : : : thefunctions ui(s) and vi(s) form an adjoint pair for A(s; t).Schmidt then goes on to consider the expansion of functions in series of eigen-functions. Speci�cally, if g(s) = Z ba A(s; t)h(t) dt;then g(s) =Xi ui(s)�i Z ba h(t)vi(t) dt;and the convergence is absolute and uniform. Finally, he shows that if g and hare continuous thenZ ba Z ba A(s; t)g(s)h(t) ds dt =Xi 1�i Z ba g(s)ui(s) ds Z ba h(t)vi(t) dt; (5:1)an expression which Schmidt says \corresponds to the canonical decomposition ofa bilinear form."6Again the usage di�ers from ours, but now in two ways. We work with the reciprocal of �,calling it a singular value, and we distinguish between the singular values of a matrix and itseigenvalues.



The Early History of the SVD 13The Approximation Theorem. Up to now, our exposition has been castin the language of integral equations, principally to keep issues of analysis inthe foreground. These issues are not as important in what follows, and we willtherefore return to matrix notation, taking care, as always, to follow Schmidt'sdevelopment closely.The problem Schmidt sets out to solve is that of �nding the best approximationto A of the form A �= kXi=1 xiyTiin the sense that kA� kXi=1 xiyTi k = min :In other words, he is looking for the best approximation of rank not greater thank. Schmidt begins by noting that ifAk = kXi=1 �iuivTi ; (5:2)then kA�Akk2 = kAk2 � kXi=1 �2i :Consequently, if it can be shown that for arbitrary xi and yikA � kXi=1 xiyTi k � kAk2 � kXi=1 �2i ; (5:3)then Ak will be the desired approximation.Without loss of generality we may assume that the vectors x1; : : : ;xk are or-thonormal. For if they are not, we can use Gram{Schmidt orthogonalization toexpress them as linear combinations of orthonormal vectors, substitute these ex-pressions in Pki=1 xiyTi , and collect terms in the new vectors.NowkA � kXi=1 xiyTi k= trace�(A� kXi=1 xiyTi )T(A� kXi=1 xiyTi )�= trace�ATA + kXi=1(yi �ATxi)(yi �ATxi)T � kXi=1ATxixTiA�



14 The Early History of the SVDSince trace�(yi � ATxi)(yi � ATxi)T� � 0 and trace(AxixTiAT) = kAxik2, theresult will be established if it can be shown thatkXi=1 kAxik2 � kXi=1 �2i :Let V = (V1 V2), where V1 has k columns, and let � = diag(�1;�2) be aconformal partition of �. ThenkAxik2 = �2k + �k�1VT1 xik2 � �2kkVT1 xik2����2kkVT2 xik2 � k�2VT2 xik2���2k�1� kVTxik� (5:4)Now the last two terms in (5.4) are clearly nonnegative. HencekXi=1 kAxik2 � k�2k + kXi=1�k�1VT1 xik2 � �2kkVT1 xik2�= k�2k + kXi=1 kXj=1(�2j � �2k)jvTj xij2= kXj=1��2k + (�2j � �2k) kXi=1 jvTj xij2�� kXj=1��2k + (�2j � �2k)�= kXj=1 �2j ;which establishes the result.Discussion. Schmidt's two contributions to the singular value decomposition areits generalization to function spaces and his approximation theorem. AlthoughSchmidt did not refer to earlier work on the decomposition in �nite dimensionalspaces, the quote following (5.1) suggests that he knew of its existence. Nontheless,his contribution here is substantial, especially since he had to deal with many ofthe problems of functional analysis without modern tools.An important di�erence in Schmidt's version of the decomposition is the treat-ment of null-vectors of A. In his predecessors' treatments they are part of the sub-stitution that reduces the bilinear form xTAy to its canonical form. For Schmidt



The Early History of the SVD 15they are not part of the decomposition. The e�ect of this can be seen in the thirdterm of (5.4), which in the usual approach is zero but in Schmidt's approach canbe nonzero.The crowning glory of Schmidt's work is his approximation theorem, whichis nontrivial to conjecture and hard to prove from scratch. Schmidt's proof iscertainly not pretty|we will examine the more elegant approach of Weyl in thenext section|but it does establish what can properly be termed the fundamentaltheorem of the singular value decomposition.6. Weyl [51, 1912]An important application of the approximation theorem is the determination ofthe rank of a matrix in the presence of error. If A is of rank k and ~A = A +E,then the last n� k singular values of ~A satisfy~�2k+1 + � � �+ ~�2n � kEk2; (6:1)so that the defect in rank of A will be manifest in the size of its trailing singularvalues.The inequality (6.1) is actually a perturbation theorem for the zero singu-lar values of a matrix. Weyl's contribution to the theory of the singular valuedecomposition was to develop a general perturbation theory and use it to givean elegant proof of the approximation theorem. Although Weyl treated integralequations with symmetric kernels, in a footnote on Schmidt's contribution hestates, \E. Schmidt's theorem, by the way, treats arbitrary (unsymmetric) ker-nels; however, our proof can also be applied directly to this more general case."Since here we are concerned with the more general case, we will paraphrase Weyl'sdevelopment as he might have written it for unsymmetric matrices.The Location of Singular Values. The heart of Weyl's development is alemma concerning the singular values of a perturbed matrix. Speci�cally, if Bk =XYT, where X and Y have k columns (i.e., rank(Bk) � k), then�1(A �Bk) � �k+1(A); (6:2)where �i(�) denotes the ith singular value of its argument.The proof is simple. Since Y has k columns, there is a linear combinationv = 
1v1 + 
2v2 + � � � + 
k+1vk+1



16 The Early History of the SVDof the �rst k + 1 columns of V (from the singular value decomposition of A)such that YTv = 0. Without loss of generality we may assume that kvk = 1, orequivalently that 
21 + � � �+ 
2k+1 = 1. It follows that�21(A �B)� vT(A �B)T(A�B)v= vT(ATA)v= 
21�21 + 
22�22 + � � � + 
2k+1�2k+1� �k+1:Weyl then proves two theorems. The �rst states that if A = A0 +A00 then�i+j�1 � �0i + �00j ; (6:3)where the �0i and �00i are the singular values of A0 and A00 arranged in descendingorder of magnitude. Weyl begins by establishing (6.3) for i = j = 1:�1 = uT1Av1 = uT1A0v1 + uT1A00v1 � �01 + �001:To establish the result in general, let A0i�1 and A00j�1 be formed in analogy with(5.2). Then �1(A0 � A0i�1) = �i(A0) and �1(A00 � A00j�1) = �j(A00). Moreoverrank(A0i�1 +A00j�1) � i+ j � 2. From these facts and from (6.2) it follows that�0i + �00j = �1(A0 �A0i�1) + �1(A00 �A00j�1)� �1(A �A0i�1 �A00j�1)� �i+j�1;which proves the theorem.The second theorem is really a corollary of the �rst. Set A0 = A �Bk andA00 = Bk, where, as above, Bk has rank k. Since �k+1(Bk) = 0, we have on settingj = k + 1 in (6.3) �i(A�Bk) � �k+i; i = 1; 2; : : : :As a corollary to this result we obtainkA �Bkk2 � �2k+1 + � � �+ �2n:This inequality is equivalent to (5.3) and thus establishes the approximation the-orem.Discussion. Weyl did not actually write down the development for unsymmetrickernels, and we remind the reader once again of the advisability of consulting orig-inal sources. In particular, since symmetric kernels can have negative eigenvalues



The Early History of the SVD 17as well as positive ones, Weyl wrote down three sequences of inequalities: one forpositive eigenvalues, one for negative, and one|corresponding to the inequalitiespresented here| for the absolute values of the eigenvalues.Returning to the perturbation problem that opened this section, if in (6.3) wemake the identi�cation A ~A, A0  A, and A00  E, then with j = 1 we get~�i � �i + kEk2;where kEk2 = �1(E). On the other hand, if we make the identi�cations A0  ~Aand A00  �E, then we get ~�i � �i � kEk2:It follows that j~�i � �ij � kEk2; i = 1; 2; : : : ; n:The number kEk2 is called the spectral norm of E. Thus Weyl's result impliesthat if the singular values of A and ~A are associated in their natural order, theycannot di�er by more than the spectral norm of the perturbation.7. EnvoiWith Weyl's contribution, the theory of the singular value decomposition can besaid to have matured. The subsequent history is one of extensions, new discoveries,and applications. What follows is a brief sketch of these developments yet to come.Extensions. Autonne [2, 1913] extended the decomposition to complexmatrices.Eckart and Young [12, 1936], [13, 1939] extended it to rectangular matrices andrediscovered Schmidt's approximation theorem, which is often (and incorrectly)called the Eckart{Young theorem.Nomenclature.7 The term \singular value" seems to have come from the lit-erature on integral equations. A little after the appearance of Schmidt's paper,Bateman [4, 1908] refers to numbers that are essentially the reciprocals of theeigenvalues of the kernel as singular values. Picard [37, 1910] notes that for sym-metric kernels Schmidt's eigenvalues are real and in this case (but not in general)he calls them singular values. By 1937, Smithes was referring to singular values ofan integral equation in our modern sense of the word. Even at this point, usagehad not stabilized. In 1949, Weyl [52] speaks of the \two kinds of eigenvalues ofa linear transformation," and in a 1969 translation of a 1965 Russian treatise on7Parts of this passage were taken from [43, p. 35]



18 The Early History of the SVDnonselfadjoint operators Gohberg and Krein [16] refer to the \s-numbers" of anoperator. For the term \principal component," see below.Related Decompositions. Beltrami's proof of the existence of the singulardecomposition shows that it is closely related to the spectral decompositions ofATA and AAT. It can also be used to derive the polar decomposition of Autonne[1, 1902], [3, 1915], in which is a matrix is factored into the product of a Hermitianmatrix and a unitary matrix.In his investigation of the geometry of n-space, Jordan [27, 1875] introducedcanonical bases for pairs of subspaces. This line of development lead to theCS (cosine-sine) decomposition of a partitioned orthogonal matrix introduced im-plicitly by Davis and Kahan [8, 1970], and explicitly by [42, 1977]. The CS decom-position can in turn be used to derive the generalized singular value decompositionof a matrix, either in the original form introduced by Van Loan [47, 1975] or inthe revised version of Paige and Saunders [35, 1981].Although it is not, strictly speaking, a matrix decomposition, the Moore-Penrose pseudo-inverse [34, 1920], [36, 1955] can be calculated from the singu-lar value decomposition of a matrix as follows. Suppose that the �rst k sin-gular values of A are nonzero while the last n � k are zero, and set �y =diag(��11 ; : : : ; ��1k ; 0; : : : ; 0). Then the pseudo inverse of A is given by Ay =U�yVT.Unitarily Invariant Norms. A matrix norm k � kU is unitarily invariant ifkUHAVkU = kAkU for all unitary matrices U and V . A vector norm k � kg isa symmetric gauge function if kPxkg = kxkg for any permutation matrix andkjxjkg = kxkg. Von Neumann [49, 1937] showed that to any unitarily invariantnorm k � kU there corresponds a symmetric gauge function k � kg such that kAkU =k(�1; : : : ; �n)Tkg; i.e., a unitarily invariant norm is a symmetric gauge function ofthe singular values of its argument.Approximation Theorems. Schmidt's approximation theorem has been gen-eralized in a number of directions. Mirsky [33, 1960] showed that Ak of (5.2)is a minimizing matrix in any unitarily invariant norm. The case where furtherrestrictions are imposed on the minimizing matrix are treated in [10, 17, 38].Given matrices A and B, The Procrustes problem, which arises in the statis-tical method of factor analysis, is that of determining a unitary matrix Q suchthat kA � BQk is minimized (for the name see [24, 1962]). Green [20, 1952]and Sch�oneman [40, 1966] showed that if UTATBV = � is the singular valuedecomposition of ATB, then the minimizing matrix is Q = VUT. Rao [38, 1980]



The Early History of the SVD 19considers the more general problem of minimizing kPA �BQk, where P and Qare orthogonal.Principal Components. An alternative to factor analysis is the principal com-ponent analysis of Hotelling [22, 1933]. Speci�cally, if xT is a multivariate randomvariable with mean zero and common dispersion matrix D, and D = V�VT isthe eigenvalue-eigenvector decomposition of D, then the components of xTV areuncorrelated with variances �i. Hotelling called the transformed variables \theprincipal components of variance" of xT. If the rows of X consist of independentsamples of xT, then the expectation of XTX is proportional to �. It follows thatthe matrix V̂ obtained from the singular value decomposition of X is an estimateV. Hotelling [23, 1936] also introduced canonical correlations between two sets ofrandom variables that bears the same relation to the generalized singular valuedecomposition as his principal components bear to the singular value decomposi-tion.Inequalities Involving Singular Values. Just as Schmidt did not have the lastword on approximation theorems, Weyl was not the last to work on inequalitiesinvolving singular values. The subject is too voluminous to treat here, and werefer the reader to the excellent survey with references in [21, Ch. 3]. However,mention should be made of a line of research initiated by Weyl [52, 1949] relatingthe singular values and eigenvalues of a matrix.Computational Methods The singular value decomposition was introducedinto numerical analysis by Golub and Kahan [18, 1965], who proposed a compu-tational algorithm. However, it was Golub [19, 1970] who gave the algorithm thathas been the workhorse of the past two decades. Recently, Demmel and Kahan[11, 1990] have proposed an interesting alternative.8. AcknowledgmentI would like to thank Nick Higham and Hongyuan Zha for reading and commentingon the manuscript.References[1] L. Autonne. Sur les groupes lin�eaires, r�eels et orthogonaux. Bulletin de laSoci�et�e Math�ematique de France, 30:121{134, 1902.
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