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Vehicle mobility is important to a diverse range of disciplines, e.g., geography, 

transportation, and public health. Machine Learning algorithms have been applied in 

geospatial analysis related to vehicle mobility and travel pattern research, which 

provided researchers with more flexibility and capabilities for complex mobility pattern 

analyses. This dissertation aims to explore how different Machine Learning models 

(e.g., regression and clustering) can be applied to enhance the interpretability of vehicle 

mobility patterns by conducting explanatory analyses on factors that may impact 

different mobility patterns (i.e., trip volume changes and travel times) over space and 

time (e.g., different stages of the COVID-19 Pandemic at regional and nationwide 

scales). In this dissertation, three studies were undertaken to investigate the 

spatiotemporal trends of vehicle trip changes and travel behaviors, using passively-

collected mobile device data. The first study examined mobility patterns over different 

time periods during the summer 2020 when COVID-19 cases were spiking in Florida 



  

(locations with large numbers of vulnerable individuals) and analyzed a set of 

underlying drivers for mobility and how these factors changed over time using Machine 

Learning approaches. The second study investigated changing mobility patterns across 

the U.S. during 2021 when COVID-19 vaccinations were becoming available to 

understand whether changing vaccination rates led to a change in the rate of trips using 

Machine Learning clustering methods. The third study investigated reasons impacting 

travel times for two origin-destination pairs using a Machine Learning approach to 

better understand how different factors can affect travel times over different trip 

purposes and different trip lengths in Maryland. The contributions of this dissertation 

are that it provided new insights into how different types of mobility patterns evolved 

over space and time, especially during a major public health crisis, and the results are 

useful for policy and planning implications for local and regional officials, e.g., 

mobility restriction measurements, decision support for economic recovery, and public 

health strategies. The integration of diverse data sources (e.g., passively-collected 

mobility data and other mobility data from different public and private sources) and the 

utilization of multiple Machine Learning models enhanced the interpretability of 

vehicle mobility patterns. 
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Chapter 1: Introduction 

1.1 Background and motivation 

Human mobility is important to a wide range of disciplines, including 

geography, transportation, sociology, and public health, among others. From the 

perspective of geographers, vehicle mobility studies play an important role in 

understanding how people’s day-to-day activities are structured in space and carried 

out across numerous sub-areas, including health geography, transportation geography, 

geospatial intelligence, etc. (Castles, 2018; Wolfe et al., 2020). Studies on mobility 

have been pushed forward to a new era due to huge amounts of location-based data 

generated for different purposes. Identifying and understanding mobility patterns has 

been an important area of research in the field of Geographic Information Science for 

urban planning, traffic forecasting, and mitigating the spread of infectious diseases 

among other application areas (Belik et al., 2011; M. C. González et al., 2008; Siła-

Nowicka et al., 2016; Xia et al., 2018). Topics on mobility include, for example, space-

time relationships, e.g., recovery of human mobility after the global pandemic and other 

natural hazards (Elliott, 2015; Griffiths et al., 2021; Huang et al., 2020; Q. Wang & 

Taylor, 2014); durations of mobility in different contexts, e.g., travel time estimation 

and reliability (Jenelius & Koutsopoulos, 2013; Sanaullah et al., 2016; Tang et al., 

2016; Xu et al., 2019); and trajectory analysis, e.g., trip purpose computation and 

trajectory characteristics (Kwan, 2000, 2004; J. G. Lee et al., 2008; Zamir et al., 2014); 

among other topics. 
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Geospatial modeling techniques, from traditional modeling methods to 

Machine Learning (ML) methods to recent deep learning methods (e.g., GeoAI), have 

been applied to vehicle mobility and travel pattern research (Fan et al., 2019; Mollalo, 

Vahedi, et al., 2020; Xu et al., 2019), for example, to analyze the spatiotemporal trends 

of mobility changes and understand how mobility patterns evolved over space and time. 

Before the rise of ML methods for different geospatial modeling tasks, analysis relied 

on prerequisite domain knowledge of the study subjects. ML algorithms provided 

researchers with insights on different impact factors including revealing factors that 

were otherwise undetected but have an impact on the social phenomenon being studied. 

For example, researchers investigated the risk of getting infected by SARS-CoV-2 

coronavirus disease (COVID-19) by three transportation modes, public transit, 

walking, and driving, and surprising, walking was not as safe as the general public 

perceived even with an increased rate of facemask wearing (R. Zhu et al., 2021). In 

addition, the enormous volumes of data, generated from Global Positioning System 

(GPS), social media check-ins, and from apps, offer more and more possibilities for 

analyzing underlying patterns of mobility, but leaves traditional modeling methods 

more limited for analysis tasks. ML methods, applied to different regions and time 

periods, provide flexibility and stronger capabilities for complex pattern recognition 

and predictive analytics needed for mobility analyses especially those involving 

passively-collected mobile device data (Luca et al., 2021; Song et al., 2016). 

The term human mobility contains a diverse range of transportation modes, 

including vehicle, pedestrian, cyclist, public transit, air, etc. (Barbosa et al., 2018). In 

this dissertation, I focused on vehicle movement, particularly trip volume changes and 
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travel time analyses. This dissertation investigates how ML models can be applied to 

interpret vehicle mobility patterns by examining factors that may impact mobility at 

different spatial and temporal scales (e.g., regional and nationwide study at census tract 

and county level) and under different contexts (e.g., different stages of the COVID-19 

Pandemic) (Figure 1.1). More specifically, in this dissertation, three studies related to 

vehicle mobility were undertaken using multiple ML approaches, e.g., regression and 

clustering, as well as statistical tests, e.g., Analysis of Variance (ANOVA) and Tukey’s 

Honestly Significant Difference test (Tukey HSD). 

 

 
Figure 1.1 Conceptual flowchart for dissertation topics. 

 

The first research study (Chapter 2) in this dissertation considered patterns of 

driving during the early pandemic when the COVID-19 case numbers were high and 

rising even more in certain parts of the U.S., and analyzed a set of factors to understand 

how these different factors impacted driver’s trips in a highly populated, region of the 

southeastern U.S. The first confirmed COVID-19 case in the U.S. was reported on 

January 20, 2020, and shortly after, World Health Organization (WHO) declared 
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COVID-19 a global pandemic on March 11, 2020, with more than 118,000 cases in 

114 countries and over 4,000 deaths (Centers for Disease Control and Prevention, 

2023). This study was undertaken when the pandemic was ongoing and there was not 

much known at the time about the relationship between the mobility and the changing 

levels of COVID-19 illness in different parts of the U.S. California was the first state 

to issue a statewide mandatory stay-at-home order that restricted mobility to reduce the 

transmission of the highly infectious COVID-19 on March 19, 2020. By May 31, 2020, 

42 states and territories issued mobility-restriction orders that required all residents to 

remain at home except for essential activities (Centers for Disease Control and 

Prevention, 2023). In the early pandemic, questions about how mobility patterns 

changed after the stay-at-home orders were issued, how the movement of people’s daily 

lives and travel was impacted by the pandemic, and the role of mobility in sustaining 

the level of infection and transmission were key topics of study (Gao, Rao, Kang, 

Liang, Kruse, et al., 2020; Kraemer et al., 2020; Nouvellet et al., 2021). For my research 

in Study 1, three counties in Florida (Miami-Dade County, Broward County, and Palm 

Beach County) were selected as a study area to analyze the spatiotemporal trends of 

dynamic mobility patterns in this tri-county region. These three counties were hard hit 

by the COVID-19 pandemic, contributing to about 57% of the total Florida positive 

COVID-19 cases and 55% of the total deaths in summer 2020 (Florida Department of 

Health, 2021a). With a large vulnerable population including Black and Hispanic 

populations as well as a significant population over the age of 65 in these three counties, 

we investigated the changing relationships between mobility patterns and increasing 

COVID-19 cases in the three counties in this early stage of the COVID-19 pandemic 
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(U.S. Census Bureau, 2022). The contribution of this research is that the dynamic 

relationships between mobility patterns and COVID-19 infections were examined at a 

fine spatial granularity in a hotspot region in the U.S. when there were not many 

understandings on the mobility patterns during the early-Pandemic period. The 

Random Forest results provided county-level insights that are useful for both public 

health officials and those stakeholders at the intersection of transportation planning and 

health management for decision support on managing expectations regarding expected 

travel by local populations during a major health crisis. 

Chapter 2 used a Random Forest model to examine explanatory factors 

including sociodemographic, travel-related, built environment, and health factors, and 

revealed how these factors contributed to mobility patterns among the three study 

counties and over different time periods at a time when the relationship between 

mobility and a high level of COVID-19 was not well understood. Generally, Random 

Forest models are a good choice for regression and classification tasks, as Random 

Forest requires little processing of the data, can handle both numerical and categorical 

values, and are typically robust to outliers and unbalanced data compared to other ML 

algorithms, e.g., artificial neural network and support vector machine (Nguyen et al., 

2021; Rodriguez-Galiano et al., 2015). The contributions of explanatory factors for trip 

patterns across the three counties were separately assessed using Random Forest 

models. The results revealed differences among the three study counties and over two 

time periods. 

The second study (Chapter 3) in this dissertation investigated the pattern of 

drivers’ trips across the U.S. during a time when COVID-19 vaccines were being 
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introduced and undertook a spatiotemporal ML analysis to detect trends in both 

mobility and vaccination rates, and analyze the degree to which vaccinations rates may 

have impacted the level of mobility in different parts of the U.S. While the first study 

focused on the mobility patterns during the early COVID-19 pandemic, the second 

study was conducted on data from the mid-Pandemic in 2021, after COVID-19 

vaccines were made available in late December 2020 (U.S. Food and Drug 

Administration, 2020). The administration of COVID-19 vaccines helped mitigate the 

spread of COVID-19, as while there were about 225,000 daily new COVID-19 cases 

on January 1, 2021, this level of infection decreased to a much lower level of about 

9,000 cases by the end of May 2021, approximately a 96% decrease, after vaccines 

were introduced. As the general public got vaccinated and the U.S. Government relaxed 

mobility-related policies (e.g., activity restrictions and social distancing measures), 

people were expected to feel safer once vaccinated and be more willing to leave their 

homes and travel (Fiori & Lacoviello, 2021). This research addressed a gap in 

knowledge regarding an understanding of how ongoing COVID-19 vaccination rates 

were associated with mobility across the U.S., i.e., the spatial and temporal 

distributions of counties with different mobility-vaccination profiles. The clustering 

analysis results identified the county differences, e.g., counties in large population 

centers and metropolitan areas and counties in the Mountain and Southern states.  

For Chapter 3, the dynamic relationships between mobility and vaccination 

rates were examined using a K-means time-series clustering approach. The time-series 

clustering method is used to investigate compound dynamic relationships over time for 

multi-variates, instead of only one variable at a time (Giordano et al., 2021; Siebert et 
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al., 2021). The different spatial and temporal distributions of detected clusters 

represented counties with different mobility-vaccination profiles. A set of demographic 

and socioeconomic factors (e.g., race and ethnicity, education, and work-related factors) 

was examined to investigate how these factors may serve as drivers for mobility 

behaviors and how they were related to the different mobility-vaccination profiles in 

the U.S., using the ANOVA test and the Tukey HSD test. Finally, to understand how 

different trip purposes (e.g., trips to retail/recreation locations and workplace locations) 

may also be associated with the different mobility-vaccination profiles was examined 

for a case study involving urban (dense population) and rural (less dense population) 

counties in Maryland and Alabama respectively. The findings of the research for 

Chapter 3 demonstrated the spatial and temporal distributions of counties with different 

mobility-vaccination profiles across the U.S., and factors related to education, 

economic, and race/ethnicity significantly contributed to these differences, among 

others. The results could guide policymakers, businesses, and individuals, in 

transportation demand analysis, economic recovery, and public health policies as 

people adapted to a post-pandemic world. 

The third study (Chapter 4) in this dissertation sought to understand how driving 

times can vary for the same origin-destination (O-D) and understand the impact of 

different factors on driving time using a ML model. The model was tested for two 

different trip lengths and different trip purposes – urban commuting and rural 

recreational – to understand how the importance of these factors changes for the 

different contexts of travel. Currently research mostly focuses on how advanced models 

could provide more accurate travel time prediction for a given O-D, while the gap that 
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this study fills is to answer the questions why drivers are taking different amount of 

time between the same O-D, what factors are the key factors contributing to the travel 

times, and whether the key factors change over different O-Ds. 

While Chapter 2 and Chapter 3 investigated mobility patterns in the context of 

the COVID-19 pandemic (confirmed cases and vaccines), the third study switched the 

focus to travel behaviors during a non-COVID time using trip data for 2018-2019. The 

mobility patterns examined in the first and second studies were represented by trip 

volumes (e.g., numbers of trips per person and relative numbers of trips), while in the 

third study, the data was also trips, but the focus for analysis was on travel time for 

these trips, i.e., the driving time to a destination. By examining and understanding how 

different factors impact travel time in the two contexts (urban commuting and rural 

recreation), transportation planners and policymakers can develop more effective 

strategies to enhance driver awareness, reduce traffic congestion and improve overall 

transportation efficiency (Carrion & Levinson, 2012; Z. Wang, Fu, et al., 2018). 

Existing research, including commercial navigation applications, mainly focus on 

providing more accurate travel time prediction using advanced ML algorithms, e.g., 

Artificial Neural Network and Graph Convolutional Neural Network (Jin et al., 2021; 

Xu et al., 2019) using the large volume of historical travel speed data and real-time 

traffic information (Epstein, 2013; Ireland, 2011). Current research falls short in 

interpreting how different factors contribute to different travel times even for the same 

trip and how factors vary for different trip purposes and trip lengths. 

The set of factors that were analyzed to understand their impacts on travel time 

in Chapter 4 were categorized into three groups, namely driver behavior, built 
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environment and road network, and external factors (e.g., weather, traffic incidents, 

and holidays). Other studies focused on the prediction of travel time, have analyzed 

departure date and time, weekday/weekend, public holidays, speed limit, functional 

class, intersections, season, temperature, and precipitation (Jenelius & Koutsopoulos, 

2013; Tang et al., 2016; Y. Wang et al., 2014). In my study, driver route choice and 

driver travel speed behaviors, two new factors not considered in previous travel time-

related research, were clustered with the other factors analyzed using a time-series 

clustering algorithm. All factors were trained using a Random Forest model on two 

selected O-D pairs representing different trip purposes and trip lengths. The results 

were constructive and could provide insights for travel time prediction researchers into 

how they could better weight these explanatory variables. 

1.2 Dissertation structure and research objectives 

Overall, this dissertation explores how different ML models can be applied to 

interpret vehicle mobility patterns (i.e., trip volume changes and travel time) by 

examining factors that may impact mobility over space and time in different contexts. 

This dissertation is composed of five chapters. Chapter 1 presents an 

introduction to the dissertation and describes the structure. Chapter 2 discusses an 

investigation of mobility patterns over different time periods during the early Pandemic 

when COVID-19 cases were spiking in Florida and analyzed the set of drivers for 

mobility in locations with large numbers of vulnerable individuals and how the factors 

changed over time using ML approaches. Chapters 3 examines changing mobility 

patterns across the U.S. during the mid-Pandemic when COVID-19 vaccinations were 

becoming available to understand whether changing vaccination rates led to a change 
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in the rate of trips using ML clustering methods. Chapter 4 investigates reasons 

impacting travel times for two O-D pairs using a ML approach to better understand 

how different factors can affect travel times over different trip purposes and different 

trip lengths in Maryland. Chapter 5 concludes the dissertation by summarizing the 

major findings of this dissertation and discussing future research directions relating to 

applications of advanced ML and even Deep Learning algorithms on mobility-related 

topics. 

 

The research objectives for Chapter 2 are: 

(1) Derive mobility patterns at census tract level during a peak period of the 

early Pandemic (May-July 2020) for three Florida counties (Miami-Dade, 

Broward, and Palm Beach counties) from passively-collected mobile 

device data to understand how trips were distributed and how they changed 

over the 3-month period. 

(2) Select and examine a set of more than 30 factors, including 

sociodemographic, travel-related, built environment and COVID-19 

factors, and detect the spatial and temporal distributions of these factors in 

order to understand the difference characteristics among the three counties. 

(3) Build and evaluate the performance of Random Forest models to reveal the 

changing importance ranking for factors in order to determine what factors 

were key factors contributing to the mobility patterns among the three 

counties and over different time periods. 
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The research objectives of Chapter 3 are: 

(1) Determine the patterns of county-level mobility across the U.S. in the 

context of increasing COVID-19 vaccination rates by week during 

January-May 2021 by developing a mobility index and explore how a 

spatiotemporal clustering approach can examine the compound 

associations between mobility and vaccination rates in different locations 

of the U.S. 

(2) Examine demographic and socioeconomic factors as well as numbers of 

COVID-19 cases and deaths to investigate how these drivers were related 

to the different mobility-vaccination clusters. 

(3) Examine county-level mobility by analyzing trip purposes for selected 

urban and rural counties to better understand how trip purposes such as 

retail/recreation trips and work trips among others may be associated with 

locations having different clusters. 

 

The research objectives of Chapter 4 are: 

(1) Identify and collect factors including driver behaviors, built environment 

and road network characteristics, and external factors (e.g., traffic incidents, 

weather, and holidays) that may impact driving time in an urban area. 

(2) Compute driver route choice and travel speed behaviors, two previously 

understudied factors, from GPS waypoints using time-series clustering 

algorithms. 

(3) Examine different trip lengths and trip purposes for trips representing 
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urban commuting driving and trips to a recreational or vacation destination 

to understand how different factors impact driving time and how the 

importance of factors changes with trip length/purpose using a ML model. 
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Chapter 2: Understanding the drivers of mobility during the 

COVID-19 pandemic in Florida, USA using a Machine Learning 

approach 

2.1 Abstract 

As of March 2021, the State of Florida, USA had accounted for approximately 

6.67% of total COVID-19 cases in the US. The main objective of this study is to analyze 

mobility patterns during a three month period in summer 2020, when COVID-19 case 

numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm 

Beach counties. To investigate patterns, as well as drivers, related to changes in 

mobility across the tri-county region, a random forest regression model was built using 

sociodemographic, travel, and built environment factors, as well as COVID-19 positive 

case data. Mobility patterns declined in each county when new COVID-19 infections 

began to rise, beginning in mid-June 2020. While the mean number of bar and 

restaurant visits was lower overall due to closures, analysis showed that these visits 

remained a top factor that impacted mobility for all three counties, even with a rise in 

cases. Our modeling results suggest that there were mobility pattern differences 

between counties with respect to factors relating, for example, to race and ethnicity 

(different population groups factored differently in each county), as well as social 

distancing or travel-related factors (e.g., staying at home behaviors) over the two time 

periods prior to and after the spike of COVID-19 cases. 
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2.2 Introduction 

Since January 2020, when the first confirmed case of the COVID-19 was 

reported in the United States, the pandemic has ravaged the United States, with the 

number of confirmed cases and deaths at over 30.2 million and 551,000 respectively, 

as of March 2021 (Centers for Disease Control and Prevention, 2023). Questions about 

how to best slow or stop the spread of this highly infectious disease, including what are 

the key factors that have enabled the spread of the virus and what can be done to impede 

its deadly progress, remain under study. The movement of people as they go about their 

daily lives or travel over larger spatial extents (e.g., travel by air) has been a key focus 

of study, throwing a spotlight on the role of mobility in sustaining the level of infection 

and transmission (Kraemer et al., 2020; Nouvellet et al., 2021). Tracking the movement 

of individuals as they undertake daily activities using the expanding location-based 

services via applications that apply passive tracking technologies (Gao, Rao, Kang, 

Liang, Kruse, et al., 2020; Kishore et al., 2020; Xiong et al., 2020), allows us to dig 

deeper into the role of mobility in infectious disease modeling. 

In this study, we investigate mobility patterns, i.e., mean inflow trip patterns, 

during a peak period of the pandemic, May, June, and July 2020 for three Florida 

counties, Miami-Dade, Broward, and Palm Beach counties. We use a random forest 

regression model to determine how a set of more than thirty different factors, including 

sociodemographic (e.g., median household income, age, race, and ethnicity), travel 

(e.g., mean travel time to work, percent of the population working from home), and 

built environment factors (e.g., road network density, street intersection density) as well 

as the changing number of COVID-19 positive cases, relates to changing levels of 



 15  

mobility across the tri-county region. Our study is at the detailed granularity of census 

tracts, highlighting how human behaviors relating to mobility across tracts and between 

counties varied over time and space and providing insights for planning as well as 

possible consequences for pandemic outcomes. 

Florida’s unique attractions (highly regarded oceanside beaches, hotels and 

resorts, and year-round warm weather) make the state a draw for tourists and travelers 

year-round, giving Florida a unique status of possibly being a driver for virus 

transmission beyond its borders (Mangrum & Niekamp, 2020). Local population 

groups of diverse race and ethnicity succumbed to high levels of infection, which 

combined with the high number of elderly residents, contributed to over 2 million 

confirmed cases and 33,000 deaths as of March 2021 (Florida Department of Health, 

2021b). 

ML algorithms (Breiman, 2001) and random forest models in particular (Liaw 

& Wiener, 2002) are widely used in geospatial modeling by providing determinant-

specific spatial contexts. These models have been especially useful for identifying 

explanatory variables and assessing the importance of these variables with respect to 

dependent variables such as transport mode choice decision prediction, transportation 

mode recognition, travel demand system prediction, and explanation of drivers for 

forest change (Ghasri et al., 2017; Jahangiri & Rakha, 2015; Rasouli & Timmermans, 

2012; Santos et al., 2019). A random forest regression model is a meta estimator that 

fits a number of decision trees to various sub-samples of the dataset and uses averaging 

to improve the predictive accuracy and control over-fitting (Chen et al., 1999; Hao & 

Ho, 2019). Generally, random forest models are a good choice for regression and 
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classification tasks based on their advantages, e.g., little pre-processing (rescaling or 

transforming) of the data is required, the modeling can be parallelizable, are compatible 

with high dimensional data, and are typically robust to outliers and unbalanced data 

(Rodriguez-Galiano et al., 2015). Comparisons of random forest models with other ML 

algorithms (e.g., linear regression, decision tree, artificial neural network, and support 

vector machine) for geospatial modeling find that the random forest model 

performance, in terms of both computation time and prediction accuracy, is generally 

positive (Hagenauer et al., 2019; Nguyen et al., 2021). 

We used a random forest model for examining explanatory factors (i.e., 

sociodemographic, travel-related, built environment, and health factors) and their 

relative importance for revealing drivers underlying patterns of mobility based on 

inflow trips in the context of rising COVID-19 cases in three key counties in Florida. 

2.3 Related work 

Studies published since the pandemic began to show the effect that COVID-19 

has had on employment, education, and the economy. Franch-Pardo et al. conducted a 

systematic review of scientific articles on geospatial and spatial-statistical analysis of 

COVID-19 using perspectives drawn from spatiotemporal analysis, health and social 

geography, environmental variables, data mining, and web-based mapping (Franch-

Pardo et al., 2020). New mobility platforms using mobile device data from SafeGraph, 

Google Mobility Reports, and Descartes Labs (Gao, Rao, Kang, Liang, & Kruse, 2020; 

Gao, Rao, Kang, Liang, Kruse, et al., 2020; Kang et al., 2020; Warren & Skillman, 

2020) have shown the dynamic nature of mobility data at different granularities, e.g., 

county, metropolitan area, and state. The University of Maryland’s COVID-19 Impact 
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Analysis Platform reports daily updated mobility-related data products (e.g., social 

distancing index and trip distances) (L. Zhang et al., 2020). Facebook, in partnership 

with academic institutions, created a global COVID-19 symptom survey that invites 

users to report on COVID-19 related symptoms, social distancing behaviors, and 

vaccine acceptance on a daily basis (Kreuter et al., 2020). 

Mobility restrictions have been posited to be effective for constraining disease 

transmission within and between communities (Espinoza et al., 2020), and mobility 

data that has been collected from mobile devices and location-based applications can 

be measured against a baseline from pre-pandemic times to provide insights for 

policymakers and epidemiologists interested in monitoring social distancing and the 

spread of COVID-19 (Chang et al., 2020; Kishore et al., 2020). Investigations of 

mobility trends indicate that stay-at-home orders were largely effective (M. Lee et al., 

2020). 

Numerous researchers have examined the relationship between human mobility 

and COVID-19 infection rates. For example, analysis using mobile device location data 

from across the U.S. and a Simultaneous Equations Model found a positive relationship 

between inflow trips for each U.S. county and COVID-19 infections, which may be 

useful for gauging the relationship between mobility and COVID-19 transmission risks 

(Xiong et al., 2020). Gao et al. examined the association between the rate of human 

mobility changes of mobile phone users (i.e., change rates of median travel distance 

and median home dwelling time), and the rate of confirmed COVID-19 cases in 50 

U.S. states and the District of Columbia, finding that social distancing mandates were 

associated with the slowing of COVID-19 spread, especially when stay-at-home orders 
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were to be lifted and states were planning for reopening their economies (Gao, Rao, 

Kang, Liang, Kruse, et al., 2020). Other dimensions were also studied, including 

socioeconomic factors, such as population, household income (Huang et al., 2021), age, 

race, and ethnicity. A multinational study investigated the relationship between the 

severity of COVID-19, mobility changes, and lockdown measures, found that 

lockdown measures were significant with respect to encouraging people to maintain 

social distancing, while the severity of socioeconomic and institutional factors (e.g., 

median age, percentage of the population employed in services, and percentage of 

health expenditure) may have limited effects to sustain social distancing (Rahman et 

al., 2020). It has also been demonstrated that COVID-19 case positivity during spring 

break in New York City was independently associated with mobility, and largely driven 

by residents’ socioeconomic status, including proportion of population living in 

households with more than three inhabitants and proportion of the 18- to 64-year-old 

population that is uninsured (Lamb et al., 2021). Behavioral changes, measured by 

multiple mobility metrics for March to May 2020, also seem to matter, with senior 

communities reacting faster and longer in response to the stay-at-home orders 

compared to younger communities (Kabiri et al., 2020). Research by Lou et al. involved 

a comparative analysis of responses between lower-income and upper-income groups 

and assessed their relative exposure to COVID-19 risks at the county level (Lou et al., 

2020). Analysis results showed that higher incomes were related to an improvement in 

social distancing behavior (Q. Sun et al., 2020). This research informed our study such 

that levels of income and poverty were included in the random forest model as 

explanatory variables. 
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A variety of regression models and algorithms have been used to predict or 

explain the occurrence of COVID-19. Mollalo et al. modeled over 50 environmental, 

socioeconomic, topographic, and demographic candidate explanatory variables as well 

as age-adjusted mortality rates of several disease factors at the county level across the 

U.S. using Geographically Weighted Regression and ML algorithms such as Artificial 

Neural Network. The interest was in identifying significant explanatory variables (e.g., 

median household income, income inequality, and age-adjusted mortality rates of 

ischemic heart disease) and hotspots of COVID-19 incidence (Mollalo, Rivera, et al., 

2020; Mollalo, Vahedi, et al., 2020). 

2.4 Materials and methods 

2.4.1 Data and study area 

The study area for this research comprises three counties in Florida, Miami-

Dade, Broward, and Palm Beach, located in the southeastern tip of Florida. One of the 

unique characteristics of Florida is the large population of retirees (over 65 years), 

approximately 18% of the state’s total population. The southeastern part of Florida has 

also a diverse population with respect to race and ethnicity, for example, Hispanics 

comprise 68% of Miami-Dade and 30% of Broward counties respectively, Blacks 

represent approximately 29% of Broward County, and White Non-Hispanics represent 

55% of Palm Beach County (Table 2.1) based on the 2019 American Community 

Survey (ACS) (2019 American Community Survey Single-Year Estimates, 2019). 
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Table 2.1 Demographics of Miami-Dade, Broward, and Palm Beach counties. 
 Miami-Dade Broward Palm Beach 

# of census tracts 519  362  338  

Total population 2,699,428  1,926,205  1,465,027  

Race and ethnicity       

  Black 469,202 17.38% 551,097 28.61% 273,384 18.66% 

  White 2,028,500 75.15% 1,170,083 60.75% 1,077,422 73.54% 

  Non-Hispanic 850,503 31.51% 1,351,916 70.19% 1,137,087 77.62% 

    Black Non-His 426,336 15.79% 530,990 27.57% 266,676 18.20% 

    White Non-His 356,026 13.19% 698,805 36.28% 799,422 54.57% 

  Hispanic 1,848,925 68.49% 574,289 29.81% 327,940 22.38% 

    Black His 42,866 1.59% 20,107 1.04% 6,708 0.46% 

    White His 1,672,474 61.96% 471,278 24.47% 278,000 18.98% 

Gender       

  Male 1,311,459 48.58% 938,043 48.70% 710,241 48.48% 

  Female 1,387,969 51.42% 988,162 51.30% 754,786 51.52% 
Median household 
income ($) 52,669  57,433  62,571  

Age group       

  0-19 615,919 22.82% 451,353 23.43% 313,436 21.39% 

  20-39 736,246 27.27% 501,570 26.04% 338,567 23.11% 

  40-59 765,800 28.37% 539,530 28.01% 373,605 25.50% 

  60-79 459,748 17.03% 349,128 18.13% 331,428 22.62% 

  80 and above 121,715 4.51% 84,624 4.39% 107,991 7.37% 

 

We used mobility data provided by the Maryland Transportation Institute (MTI) 

at the University of Maryland. These data included origin-destination trips data 

computed from mobile device locations that capture travel patterns at the granularity 

of census tracts for four time periods per day (6am - 10am, 10am - 2pm, 2pm - 6pm, 

and 6pm - 6am) (Xiong et al., 2020). The origin and destination trips data were 

aggregated into inflow (the number of trips per person flowing into a specific census 

tract from all other places) and outflow (the number of trips per person flowing out of 
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a specific census tract to all other tracts). As there was very little difference in the 

patterns of inflow and outflow trips per person per census tract, i.e., when there is a trip 

flowing into a specific census tract there is usually a trip going out, the number of 

inflow trips per person per tract was used to analyze mobility in this study (Figure 2.1). 

Inflow trips per person per unit have also been used in other studies for analyzing 

mobility (M. Lee et al., 2020; Xiong et al., 2020). 

 

 
Figure 2.1 Inflow trips per person per census tract 05/01-07/31/2020 in Miami-Dade, Broward, and 

Palm Beach counties. 
 

As of March 2021, these three counties had the highest COVID-19 severity in 

the state of Florida, contributing a total of about 38% of the total positive cases and 

about 33% of total deaths (Florida Department of Health, 2021b), while these three 

counties comprise over 28% of the total population of Florida. Miami-Dade County 

was the first county to implement a stay-at-home order among all Florida counties 

(March 2020) and was the last to lift the order and enter a reopening phase (May 2020). 
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During this March-May 2020 stay-at-home order period, the cumulative COVID-19 

cases reached a total of over 31,000 in the three counties; the number of cases in Florida 

during the same period reached over 55,000 (Centers for Disease Control and 

Prevention, 2023). After the stay-at-home order was lifted, COVID-19 cases remained 

low for the month of May, and then in mid-June, cases began to increase. We examined 

data for May, June, and July 2020 (a total of 92 days).  

County-level data were available from March 2, 2020, when the first COVID-

19 case was reported in Florida; ZIP code level COVID-19 case number data was made 

available from the Florida Department of Health public dashboard from May 18, 2020 

(Florida Department of Health, 2021a). 

The first two weeks of May were extrapolated based on the overall COVID-19 

trend at county level. To be consistent with the other study variables, the ZIP code level 

data were converted to census tracts using the HUD USPS ZIP Code Crosswalk 

provided by the U.S. Department of Housing and Urban Development’s Office of 

Policy Development and Research (United States Department of Housing and Urban 

Development, 2021). The relationship between the daily median inflow trips per person 

per census tract and daily new COVID-19 cases shows an increase in the number of 

cases in all three counties after the middle of June 2020 (Figure 2.2). We divided the 

3-month period into two time segments, i.e., May 1 to June 15, 2020, and June 16 to 

July 31, 2020 (both 46 days), and ran random forest models separately for these two 

periods in order to investigate any changes in the factors that might underlie mobility 

during these times. 
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Figure 2.2 Median daily inflow trips per person and daily new COVID-19 cases (05/01-07/31/2020) 

for (a) Miami-Dade County, (b) Broward County, and (c) Palm Beach County. 

 
We collected additional explanatory variables across three different categories: 

sociodemographic, travel, and built environment. Sociodemographic factors refer to 

sociological and demographic population characteristics collected from 2019 ACS, 

including income, employment, education, race and ethnicity (Figure 2.3), gender, age, 

and work-related measures. These variables were collected and processed at census 

tract level. Population demographic details have already been listed in Table 2.1. In 

this study, Black Non-Hispanic populations refer to Black, and White Non-Hispanic 

populations refer to White. Based on previous studies finding that different income 

groups respond differently to the COVID-19 outbreak in terms of practicing social 

distancing (Lou et al., 2020; Q. Sun et al., 2020), a factor representing essential workers 

was included in the model using 2019 ACS data and calculated based on a ratio of 
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service and production occupations, transportation, and material moving occupations 

to all occupations. 

 

 
Figure 2.3 Bivariate mappings of COVID-19 cases per 10k people and (a) percent of Hispanic 

population, (b) percent of White population, and (c) percent of Black population. 
 

Travel-related factors included vehicle mobility behavioral changes impacted 

by stay-at-home orders, work travel movements, travel distance to beaches, etc. The 

principal beaches in each county (i.e., Miami Beach, Fort Lauderdale Beach, and Palm 

Beach), attract both tourists and local people and we assumed these points of interest 

play an important role in daily mobility patterns during the COVID-19 pandemic. For 

this reason, the Euclidean distance from census tracts to their corresponding nearest 

beaches was calculated as one of the travel-related factors. To capture how people’s 

behaviors changed under social distancing requirements, SafeGraph’s Social 

Distancing Metrics dataset consisting of three different variables: percent of time 

dwelling at home, percent of devices completely at home, and percent of both full time 

and part time work behaviors (defined as devices spending over 3 hours at a location 

other than their home from 8am to 6pm) at census block group level were used in this 
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study (SafeGraph, 2021). The data were generated using GPS locations from 

anonymous mobile devices to census tract level for consistency. In addition, SafeGraph 

also provided POI daily visit pattern data at census block group level. Among all the 

POIs, bars (NAICS code = 722410) and restaurants (NAICS code = 722511) are 

typically correlated with higher exposure to COVID-19, and limits on bar and 

restaurant operations have been considered one of the most effective social distancing 

implementations (Wellenius et al., 2020). The numbers of bar- and restaurant-related 

POIs for the three counties during May-July 2020 vary by county (Table 2.2). The 

numbers of bars open in all three counties were likely lower than normal due to 

COVID-19 business closures. We processed and aggregated the mean daily bar and 

restaurant visits by census tract for processing in the random forest model. 

 

Table 2.2 Numbers of bars and restaurants in Miami-Dade, Broward, and Palm Beach counties during 
May-July 2020 (from SafeGraph). 

POI Miami-Dade Broward Palm Beach 

Bars 68 48 45 

Restaurants 5609 3725 2605 

 

Built environment factors were obtained from the Smart Location Database, 

which is a nationwide geographic data resource for measuring location efficiency 

maintained by the United States Environmental Protection Agency (United States 

Environmental Protection Agency, 2021). Among the more than ninety attributes 

summarizing characteristics, e.g., neighborhood design, transit service, and 

employment, a set of four spatial and built environmental variables that are most 

relevant to this study were selected: gross employment density, road network density, 

street intersection density, and distance to the nearest transit stop. The dataset was 
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available at the census block group level, which was processed to census tract level for 

the random forest model. Details of the explanatory and dependent variables used in 

this analysis and data sources for the variables are provided (Table 2.3). 

 

Table 2.3 Explanatory variables and the dependent variable used in this study. 
Category Variables Sources 

Explanatory variables 

Sociodemographic Median household income 
Unemployment rate 
Average household size 
Percent of population with low, medium, and high wages 
Percent of population with high school degree 
Percent of population with bachelor’s degree or above 
Percent of the Black population 
Percent of the White population 
Percent of the Hispanic population 
Sex ratio (number of males per 100 females) 
Age groups 0-19, 20-39, 40-59, 60-79, 80+ 
Percent of the population working from home 
Percent of population defined as essential workers 

2019 ACS 

Travel-related Mean time travel to work 
Distance to beach 
Percent of time dwelling at home 
Percent of devices completely at home 
Percent of full time and part time work behaviors 
Mean bar/restaurant visits 

2019 ACS 
and 
SafeGraph 

Built environment Gross employment density 
Total road network density 
Street intersection density 
Distance from centroids to the nearest transit stop 

Smart 
Location 
Database 

COVID-19 Cumulative COVID-19 positive cases (05/01-07/31/2020) 
per 10k people 

Florida DOH 

Dependent variable 

Mobility Inflow trips per person per census tract (05/01-
07/31/2020) at census tract level 

MTI 

 

2.4.2 Random Forest model 

We used Python as the processing language and Scikit-learn as the Python ML 

package. Before splitting the dataset into training and testing sets, extreme observations 
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were filtered out in order for these values not to influence the regression model. This 

included census tracts with a total population less than 500 and population density less 

than 0.0001 as these were considered to be not representative (e.g., tracts containing 

the Miami International Airport and the Everglades National Park). Also, outliers in 

the daily trips per person (i.e., the dependent variable), exceeding the 90% percentile, 

were removed to avoid the influence of extreme and unusual values skewing the 

models. The remaining data contained 1065 observations at census tract level which 

were randomly divided into two subsets. A training set comprising 80% of the data was 

used to develop the random forest model with 5-fold cross-validation (we also tested 

with 10-fold cross-validation), and the testing set comprising 20% of the data to assess 

model performance. To analyze the effect of the training and testing set split ratios, 

other split ratios, including 60%-40%, 70%-30%, and 75%-25%, were also tested to 

understand the impact on model performance. Four evaluation measures were used to 

assess the model performance: (1) Pearson correlation coefficient (𝑟𝑟) between the 

observed values and predicted values, (2) the coefficient of determination (𝑅𝑅2), (3) root 

mean square error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅), and (4) mean absolute error (𝑅𝑅𝑀𝑀𝑅𝑅). 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑀𝑀𝑅𝑅 are 

defined as follows: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1) 

 𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1  (2) 

While parameter tuning is often applied to avoid overfitting, this step also seeks 

the optimal combination of given parameters for the best model performance. Four 

parameters were tuned including the number of trees (n_estimators), maximum depth 

of trees (max_depth), the number of features considered when looking for the best split 
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(max_features), and the minimum number of samples required to be at a leaf node 

(min_samples_leaf). Then each combination of parameters was trained with 5-fold 

cross-validation while the optimal parameters were selected, and the best model 

performance was returned. 

Overfitting occurs when the model is overly trained, resulting in a good fit for 

a limited set of data, but performs unsatisfactorily when it comes to the unseen out-of-

bag testing samples. To prevent overfitting, several techniques were applied in this 

study, including recursive feature elimination (RFE), which is a feature selection 

algorithm, parameter tuning, oversampling (Branco et al., 2017; Lemaitre et al., 2015), 

and adding cost-complexity pruning (CCP) for regularization. 

After the optimal model was trained and tested, the contributions of explanatory 

variables for mobility patterns (i.e., inflow trips) in each county were assessed by 

visualizing a ranked list of feature importance. In this study, we used the Gini 

importance to evaluate the feature importance (Breiman et al., 1984). Gini importance 

is computed as the (normalized) total reduction of a criterion, i.e., the function to 

measure the quality of a split of randomized decision trees (i.e., the random forest) 

brought about by a specific feature. We use mean squared error (𝑅𝑅𝑅𝑅𝑅𝑅) as the criterion, 

and the function was computed by the Sci-kit learn package. The three counties were 

trained first as one model, and then a model for each county was trained separately for 

the two time periods so that any differences with respect to feature importance could 

be compared, and county patterns and trends could be identified. 
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2.5 Results 

2.5.1 Mobility patterns and related sociodemographic factors in the three counties 

Our primary interest was in investigating how mobility patterns changed across 

the three counties during a time in the pandemic when cases were rising, and what were 

the driving factors underlying these changes. At the county level, the pattern of 

COVID-19 daily new cases with daily median inflow trips per person (Figure 2.2) 

showed an increase in the number of cases beginning in mid-June 2020 and continuing 

into July. In contrast, mobility changes from the first time period to the second declined 

by -6.07%, -6.29%, and -10.62% for Miami-Dade, Broward, and Palm Beach counties, 

respectively (Table 2.1). Prior to mid-June 2020, Palm Beach and Broward counties 

experienced higher inflow trips per person than Miami-Dade County, and Palm Beach 

County experienced the largest decrease in mobility overall from the first time period 

to the second compared to the other two counties. Palm Beach County maintained the 

highest inflow trips per person and the lowest COVID-19 case numbers in the second 

time period. 

 

Table 2.4 Total inflow trips for 05/01- 06/15/2020 and 06/16-07/31/2020 for Miami-Dade, Broward, 
and Palm Beach counties. 

County 05/01-06/15 06/16-07/31 Change (%) 

Miami-Dade 388,724,381 365,125,529 -6.07 

Broward 280,165,073 2,62,556,430 -6.29 

Palm Beach 219,750,854 196,404,838 -10.62 

 

Pearson correlation coefficients were computed to determine the relationships 

between inflow trips per person and sociodemographic variables including median 



 30  

household income and age with significance levels of 𝑝𝑝 < 0.05, 𝑝𝑝 < 0.01, and 𝑝𝑝 <

0.001 (Table 2.5). For the first time period, for Miami-Dade and Palm Beach counties, 

the correlation between mobility and median household income was weakly positive, 

while for Broward County it was weakly negative. For the second time period when 

COVID-19 cases were spiking, Miami-Dade dipped to a weakly negative correlation 

with median household income, while Palm Beach (with fewer COVID-19 new cases) 

remained weakly positive (relationship for Broward County didn’t change). Examining 

the relationships between mobility and age groups, showed that younger aged groups 

tended to be negatively correlated with mobility both before and after the peak in cases, 

while for older age groups (over 60 years) there was a weak positive correlation in 

Miami-Dade and Broward counties and a weak negative correlation in Palm Beach 

County. For the second period where COVID-19 was higher, these relationships 

continued to hold suggesting that in Palm Beach County there was more concern about 

the increase in COVID-19 among older-aged individuals. 

 
Table 2.5 Pearson correlation analyses between inflow trips per person and median household income 
and age groups for Miami-Dade, Broward, and Palm Beach counties for 05/01-06/15/2020 and 06/16-

07/31/2020. 
 Miami-Dade Broward Palm Beach 

 5/1-6/15 6/16-7/31 5/1-6/15 6/16-7/31 5/1-6/15 6/16-07/31 

Income 0.0957* -0.0268 -0.0301 -0.1097* 0.1570** 0.0247 

Age group       

  0-19 -0.0701 -0.0717 -0.1742*** -0.1593** 0.0379 0.0517 

  20-39 0.0576 0.1256** -0.0069 0.0303 0.1434** 0.1732** 

  40-59 -0.0965* -0.1566*** 0.1398** 0.1146* 0.1296* 0.1262* 

  60-79 0.0344 0.0148 0.0652 0.0386 -0.0993 -0.1244* 

  80 or above 0.0973* 0.0771 0.0081 0.0068 -0.1338* -0.1404** 

Note: * p<0.05, ** p<0.01, *** p<0.001 
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2.5.2 Mobility patterns and travel-related behaviors 

The stay-at-home orders for these three counties were issued at similar times, 

Miami-Dade County on March 26, and Broward County and Palm Beach County on 

March 27. Palm Beach County lifted its stay-at-home order on May 11, while Miami-

Dade and Broward counties were part of the reopening phase on May 18. Two variables 

that related to how individuals responded to restrictions in travel, median percent of 

time dwelling at home (Figure 2.4a) and percent of population staying completely at 

home (Figure 2.4b) were analyzed at county level. The figures suggest that after the 

stay-at-home orders were lifted, the percent of time people spent dwelling at home 

decreased and remained relatively low through mid-June when COVID-19 cases began 

to spike in this part of Florida and continued to be relatively low compared to the stay-

at-home period through the end of July (Figure 2.4a). Miami-Dade County had the 

highest overall percent of the population who stayed at home throughout the three-

month period (Figure 2.4b) while Palm Beach County had the lowest percent. 

Patterns associated with either full-time and/or part-time work behaviors were 

captured through tracking mobile devices that spent more than 3 hours per day away 

from home (Figure 2.4c). While all three counties had similar patterns with respect to 

the percent of devices that spent more than 3 hours per day away from home, steadily 

increasing from early May to mid-June followed by a decrease from mid-June to the 

end of July, Miami-Dade County had the highest proportion of devices with such 

pattern suggesting either full-time and/or part-time work behaviors, while Palm Beach 

County had the lowest, suggesting different rates of work-related behaviors in the three 

counties. 
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While there was an overall lower level of mean bar and restaurant visits for the 

three counties due to COVID-19-related closures, our analysis showed that there was a 

steady increase in bar and restaurant visits until mid-June when these types of outings 

showed a sudden decrease followed by a subsequent increase again in early July (Figure 

2.4d).  

 

 
Figure 2.4 Mobility-related behaviors during 05/01-07/31/2020, including (a) median percent of time 

dwelling at home, (b) percent of devices completely at home, (c) percent of both full time and part 
timework behaviors, and (d) mean bar and restaurant visits. 

 

2.5.3 Random Forest models 

Model Performance 

Thirty explanatory variables (Table 2.3) were trained separately for each of the 

two time periods as features for the random forest regression models. The performance 
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of all random forest models was assessed using the measures of 𝑟𝑟, 𝑅𝑅2, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, and 

𝑅𝑅𝑀𝑀𝑅𝑅 (Table 2.6). We found some interesting variations between the models for each 

of the counties. With respect to values of 𝑟𝑟, i.e., the correlation between the observed 

values and predicted values that reflect how well the predictive model performed, the 

Palm Beach model returned the highest 𝑟𝑟 values (0.6781 and 0.6766 respectively), 

followed by Broward and Miami-Dade. This suggests perhaps that the set of analyzed 

variables performed slightly better for Palm Beach when it came to being able to predict 

mobility patterns than for the other two counties.  

The coefficient of determination (𝑅𝑅2 ) that measures the percentage of the 

response variable variation that is explained by the random forest model, was also 

found to be highest for Palm Beach County, while the 𝑅𝑅2 values for both Miami-Dade 

and Broward counties for the second time period (when cases were rising) were higher 

than that of the first time period. As we were not able to collect and include all the 

variables that could be impactful for mobility, for example, changes in employment 

due to the pandemic and COVID-19 mortality and hospitalization data, it is not 

completely surprising that the models showed room for improvement. In terms of 

prediction errors, Broward County had the highest 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑅𝑅𝑀𝑀𝑅𝑅 , although the 

values were similarly strong across all models. In general, the model performance for 

the second time period was better than that of the first time period with higher 𝑟𝑟 values 

and lower error values. 
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Table 2.6 Random Forest model performance for 05/01-06/15/2020 and 06/16-07/31/2020 for Miami-
Dade, Broward, and Palm Beach counties. 

 Miami-Dade Broward Palm Beach 

 5/1-6/15 6/16-7/31 5/1-6/15 6/16-7/31 5/1-6/15 6/16-7/31 

𝒓𝒓 0.5104 0.6068 0.5496 0.6712 0.6781 0.6766 

𝑹𝑹𝟐𝟐 0.2555 0.3549 0.2964 0.3666 0.4358 0.4415 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 34.03 33.31 44.22 42.67 37.27 37.80 

𝑹𝑹𝑴𝑴𝑹𝑹 27.21 26.64 36.61 35.48 31.14 28.89 

 

Feature contributions for the period prior to the rise in the COVID-19 cases 

Feature importance scores for the three counties were analyzed to obtain an 

understanding of how the different factors ranked in importance according to the 

random forest model with respect to the number of inflow trips per person. During the 

first time period (05/01-06/15/2020) when mobility was relatively high, COVID-19 

cases were still relatively low, the number of new COVID-19 cases was ranked 7th in 

importance in Broward, 8th in Miami-Dade, while for Palm Beach County, this variable 

was not among the top 15 factors ranked by importance scores. While COVID-19 cases 

were not so high, the importance scores for both the built environment factors and 

travel-related factors ranked higher overall than sociodemographic factors (Figure 2.5). 

Gross employment density was ranked very highly for all three counties (1st for 

Broward and Palm Beach, and 2nd for Miami-Dade). Other built environment factors, 

e.g., street intersection density and road network density, were also present in the top 

15 factors for all three counties. With respect to travel factors for the first period, these 

were highly ranked in all three counties, with mean bar and restaurant visits ranked 1st 

for Miami-Dade, 2nd for Palm Beach, and 5th for Broward. Time spent completely at 

home, full-time and part-time work behaviors (based on devices being away from home 

for more than 3 hours), median percent of time dwelling at home, and other social 
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distancing factors were also in the top 15 factors for all three counties suggesting that 

the population was also sensitive to the ongoing COVID-19 situation in their region.  

With regard to sociodemographic factors during the first time period for Miami-

Dade County, the percent of White and Hispanic population was ranked 3rd and 4th 

respectively for Miami-Dade County. White and Hispanic populations contribute, 

respectively, approximately 13% and 68% of the total population for Miami-Dade 

(Figure 2.5a). In Broward County, the percent of both Black and White populations 

were also in the top 15 rankings, albeit not as highly ranked (positions 9 and 12 

respectively), and the percent of Hispanic population was 13th in the rankings (Figure 

2.5b). For Palm Beach County, the results were different with important 

sociodemographic factors relating to income (median household income ranked 5th), 

employment (general unemployment levels ranked 8th), and education (bachelor’s 

degree and high school degree ranked 13th and 15th respectively) rather than race and 

ethnicity (not one of the top 15 factors) (Figure 2.5c). These inter-county differences 

in the model results relating to sociodemographic factors are interesting to note and 

underscore the kinds of population differences that exist between the counties. 
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Figure 2.5 The relative importance of the top 15 variables to the number of inflow trips per person 

(05/01-06/15/2020) using random forest models for (a) Miami-Dade County, (b) Broward County, and 
(c) Palm Beach County. 

 
Feature contributions for the period following the rise in COVID-19 cases 

As the number of new COVID-19 cases began to spike in mid-June 2020, the 

second period captured some changes in the ranking of variables based on importance 

scores. Factors that ranked highest in importance during this period continued to be 

those related to travel and built environment (Figure 2.6). Both gross employment 

density (1st for all three counties) and the mean number of bar and restaurant visits (2nd 

for all three counties) continued to be top factors for all the models. In Palm Beach 

County, the importance scores for these two factors were much higher than for the other 

counties (Figure 2.6c). Built environment factors, e.g., street intersection density and 

road network density, were still present in the rankings. Job- and work-related factors, 

i.e., mean travel time to work and full-time and part-time work behaviors were most 
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important in Palm Beach County (ranked 3rd and 4th respectively), while for Miami-

Dade County, full-time and part-time work behaviors were ranked 6th and for Broward 

County, they ranked 10th. Mean travel time to work ranked 3rd in Palm Beach, 12th in 

Miami-Dade, and 15th in Broward County, underscoring how work-related factors 

seemed to continue as strong drivers in Palm Beach County even with cases rising. 

Travel distance to beaches was ranked 5th for Broward and 8th for Palm Beach, while 

this factor was not in the top 15 for Miami-Dade County.  

With respect to sociodemographic factors for the second time period, the 

percent of Hispanic population was a factor in all three county models but was much 

more of a factor for Miami-Dade County where it ranked 3rd while it was 12th in 

Broward and 13th in Palm Beach. Black population was 8th in importance in Miami-

Dade and 14th in Broward County (not present in the Palm Beach rankings). The age 

group 40-59 years was another common factor but with different importance, as it 

ranked 4th for Miami-Dade, 7th for Broward, and 14th for Palm Beach, although the 

percent population corresponding to ages 40-59 were similar across the three counties 

(approximately 28%, 28%, and 26% respectively). The factor of age 80 or above ranked 

at 10 in Miami-Dade and 15 in Palm Beach County. Conversely, the youngest age 

group (0-19 years) appeared only in Broward County and at rank 13. 

The most noticeable change between the two time periods was that the factor 

representing the number of new COVID-19 cases was much higher ranked for the 

second time period, being 5th, 3rd, and 9th for Miami-Dade, Broward, and Palm Beach 

counties respectively. The random forest model was able to discern that the increase in 

COVID-19 was increasingly important for mobility, even in Palm Beach County where 
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for the first period of time, COVID-19 cases were not in the top 15 factors explaining 

inflow mobility. 

 

 
Figure 2.6 The relative importance of the top 15 variables for the inflow trips per person (06/16-

07/31/2020) using random forest models for (a) Miami-Dade County, (b) Broward County, and (c) 
Palm Beach County. 

 

We also analyzed a random forest model trained using all three months together. 

The Palm Beach model returned the highest 𝑟𝑟 value (0.6672), followed by Broward 

and Miami-Dade (0.5774 and 0.4946 respectively), which is similar to the order of 

model performance for the two separate time periods. The results showed that the 

rankings of important features were similar to the period from mid-June to late July 

(i.e., the second time period) with mean bar and restaurant visits, gross employment 

density, and the percent of Hispanic population being the top three factors for Miami-
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Dade. These three factors were within our expectations since Miami-Dade County is 

different from the other two counties in terms of race and ethnicity. Gross employment 

density, mean bar and restaurant visits, and median percent of time dwelling at home 

were the top three factors for the Broward model. Similarly, mean bar and restaurant 

visits, gross employment density, and mean travel time to work were the top three 

factors for the Palm Beach model. The time spent dwelling at home for Broward 

County and the mean travel time to work factor for Palm Beach County both relate to 

social distancing and suggest local county populations were sensitive to the changing 

COVID-19 situation and how that affected work travel decisions. In this model, 

COVID-19 new cases were ranked 4th for Broward, 5th for Miami-Dade, and 12th for 

Palm Beach, reflecting the situation that with the lowest number of COVID-19 new 

cases, mobility in Palm Beach County was not as influenced by COVID-19 cases, while 

Miami-Dade and Broward counties experienced higher numbers of COVID-19 new 

cases and mobility appeared to be sensitive to this situation. The increasing importance 

of COVID-19 cases as a driver for changing mobility patterns is evident in our models, 

demonstrating that the pandemic was indeed impacting mobility. 

2.6 Discussion 

For this research, we used random forest models to understand mobility patterns 

during the COVID-19 pandemic in three Florida counties, including Miami-Dade, 

Broward, and Palm Beach counties, and examined a set of sociodemographic, travel, 

and built environment explanatory factors and their relative importance for explaining 

patterns of mobility in the context of rising COVID-19 cases. Much of recent research 

investigating mobility under COVID-19 is at county-level or state-level across the U.S. 
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(Gao, Rao, Kang, Liang, Kruse, et al., 2020; Mollalo, Rivera, et al., 2020; Mollalo, 

Vahedi, et al., 2020; Xiong et al., 2020) or at nation-level (Nouvellet et al., 2021; 

Rahman et al., 2020). However, this research was undertaken at census-tract granularity 

to discover finer-grained patterns of mobility as well as the drivers for mobility based 

on the number of inflow trips for each county.  

Using a random forest model, we were able to compare the contributions of the 

explanatory variables over the three counties and over the two time periods. A changing 

relationship between important features was identified. Previous research suggested an 

association with COVID-19 cases, and reductions in mobility were correlated with the 

slowing of COVID-19 spread (Badr et al., 2020; Gao, Rao, Kang, Liang, Kruse, et al., 

2020; Xiong et al., 2020). The results of our random forest model analysis indicated 

that new COVID-19 cases did have an overall impact on mobility for the three counties 

we analyzed. In Palm Beach County, for example, this factor was much less important 

until when COVID-19 case numbers started to rise, when this factor shifted to become 

increasingly important for mobility. Other studies showed that socioeconomic and 

institutional factors (e.g., median age, percentage of the population employed in 

services, and percentage of health expenditure) may have limited effects for sustaining 

social distancing and reduced mobility (Rahman et al., 2020), and studies have also 

indicated a noticeable correlation between mobility and socioeconomic factors (Gao, 

Rao, Kang, Liang, Kruse, et al., 2020; Kabiri et al., 2020; Lou et al., 2020). Our random 

forest models revealed that sociodemographic factors (e.g., race, ethnicity, and age 

groups) did affect the number of inflow trips (e.g., the percent of the Hispanic 

population in Miami-Dade County, the age group of 40-59 in Broward County, and 
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income and employment factors in Palm Beach County) and that based on this result, 

this group of factors should be considered by decisionmakers and healthcare providers 

when considering strategies to reach different population groups during a spike in 

infections. 

Due to not being able to collect and include all the variables that could be 

impactful for mobility, the model performance and overfitting issues could perhaps be 

improved by including more dimensions of data, e.g., COVID-19 mortality and 

hospitalization data that are strongly related to healthcare resource availability (Baud 

et al., 2020; Ji et al., 2020) and changes in employment due to the pandemic. In 

addition, estimates for essential workers were made using sub-categories of occupation 

data in the 2019 ACS while 2020 estimates might differ, which might also affect the 

random forest model results. In terms of mobility data accessibility, the O-D matrix 

data used in this study was obtained from MTI under a restricted data agreement, and 

the SafeGraph data was obtained under a restricted data agreement for academic 

research only. The SafeGraph data currently is no longer available, even for the 

academic research purposes. 

2.7 Conclusions 

As the COVID-19 pandemic impacted the daily lives of individuals, this 

research found that based on tracking inflow trips at census tract level for three counties 

in Florida, mobility was indeed impacted by COVID-19, especially when compared to 

mobility during the pre-COVID period (i.e., in 2019). And that during a summertime 

spike in COVID-19 cases, there were further impacts on the number of trips being made 

in each county. The set of key explanatory factors revealed by the random forest model 
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were travel-related factors (e.g., social distancing and work travel-related variables) 

and built environment factors (e.g., gross employment density and street and road 

network density), while sociodemographic factors (race and ethnicity, age, household 

income) were also present. These three counties represent an urban region in the United 

States that has had a very high number of COVID-19 cases and that has high Black and 

Hispanic populations that have been particularly vulnerable to COVID-19 infections, 

as well as a significant population of individuals over the age of 65, also vulnerable to 

this infectious disease. These different factors that affect the number of trips made 

across this tri-county region (e.g., social distancing, work travel-related variables, and 

gross employment density) may be helpful for local officials and public health experts 

as they review steps and strategies, such as stay-at-home orders and business 

restrictions or closures. It is also important to note that counties have their unique local 

characteristics (sociodemographic, economic, points of interest) and our analysis 

showed how these different characteristics resulted in different sets of factor rankings 

for each county. While this study focused on counties in Florida, the methodology is 

generalizable to other locations across the U.S. and other regions. Future research could 

focus on the model performance improvement and overfitting elimination by including 

more variables that may be impactful on mobility, e.g., changes in employment during 

the pandemic, mortality and testing data if available, and trips to additional POIs. 

Further research on modified random forest approaches, e.g., geographically weighted 

random forest could offer new opportunities for improved spatial data handling. 
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Chapter 3: Space-time relationships between COVID-19 

vaccinations and human mobility patterns in the United States 

3.1 Abstract 

As COVID-19 vaccines were administered in early 2021, they helped to 

mitigate the spread of the COVID-19 virus and signaled an important shift in the 

pandemic. To better understand how ongoing COVID-19 vaccinations were related to 

human mobility across the U.S, we identified different mobility-vaccination profiles 

between January and May 2021 by county in the U.S., using K-means multivariate 

time-series clustering. The impacts of demographic, socioeconomic, and COVID-19-

related variables on different profiles were examined. Results showed 5 different 

clusters of mobility-vaccination profiles were found for the U.S. One cluster 

represented counties in metropolitan areas and tourist destinations (e.g., Los Angeles 

and New York) that had estimated 25% higher mobility and 75% higher vaccination 

rates than rural counties in the Mountain and South U.S. Census regions (e.g., counties 

in Arkansas and Mississippi), where people were mobile despite not getting vaccinated. 

Higher education and household income were found to impact counties’ mobility-

vaccination profiles. Examination of trip purposes for selected counties returned higher 

trips to retail/recreation and workplaces for rural counties with relatively lower 

mobility-vaccination profiles. The results can serve as input for regional and local 

health officials regarding population responses to a pandemic relevant to economic 

recovery and future disease prevention. 
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3.2 Introduction 

The SARS-CoV-2 coronavirus disease (COVID-19) has impacted populations 

around the world since March 2020, when the WHO officially declared COVID-19 as 

a global pandemic (WHO, 2023). With a total of over 767 million COVID-19 positive 

cases and over 6.9 million deaths worldwide as of July 2023 (WHO, 2023), the spread 

of the COVID-19 virus also contributed to a paradigm shift in people’s day-to-day 

activities, making it challenging for a period of time for individuals to carry out their 

activities in the same way as before the pandemic. In the United States, an important 

shift in the pandemic was when the U.S. Food and Drug Administration made COVID-

19 vaccines available under an emergency use authorization in December 2020 (U.S. 

Food and Drug Administration, 2020). After the delivery of vaccines to each state, state 

departments of health identified their priority groups and planned the distribution of 

vaccines accordingly. By the end of May 2021, five months since vaccinations began, 

the number of daily new COVID-19 cases had dipped to a new low of 9,000 cases, 

roughly a 96% decrease from the levels of infection in January 2021 (Centers for 

Disease Control and Prevention, 2023). Research on the relationship between COVID-

19 vaccines and COVID-19 cases has shown that the vaccines in the U.S. returned 

positive results for controlling the disease burden, not only with respect to case 

numbers, but for hospitalization and mortality as well (Patel et al., 2021), under 

different vaccination coverage scenarios in different regions in the U.S. (Alagoz et al., 

2021; Yuan et al., 2021). One finding predicted that if vaccine coverage between 20% 

and 50% could be achieved in the first half of 2021, the reduction in the total number 

of COVID-19 infections would be between 30% and 50% by the end of 2021, compared 
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with a no vaccination scenario (Saldaña & Velasco-Hernández, 2021). These 

predictions under different scenarios have been validated by researchers who indicated 

that COVID-19 vaccinations in the first five months of 2021 lead to fewer severe 

COVID-19 outcomes and prevented additional COVID-19 vases (Sah et al., 2021). 

Vaccinations were investigated for preventing future COVID-19 waves not only in the 

U.S., but also in China, Japan, Israel, and Europe (e.g., Italy) as well as other countries 

(B. Huang et al., 2021; Jabłońska et al., 2021; Kurita et al., 2021; Spinella & Mio, 

2021). 

Patterns of mobility during the pandemic have been a major topic of research 

as the COVID-19 pandemic significantly changed the way people travelled. People’s 

daily mobility measured, for example, using metrics for home-dwelling time (X. Huang 

et al., 2022; X. Huang, Lu, et al., 2021), median travel distance (Gao, Rao, Kang, Liang, 

& Kruse, 2020; Gao, Rao, Kang, Liang, Kruse, et al., 2020), trips by distance (Truong 

& Truong, 2021, 2022), and miles traveled per person (Tokey, 2021) showed different 

mobility patterns in different regions in the U.S., and during the different stages of the 

COVID-19 pandemic (Kim & Kwan, 2021; Lee et al., 2020; Zhang et al., 2021). For 

example, trip rates, out-of-county trips, and miles traveled per person decreased 

significantly during the early pandemic (March-August 2020), and COVID-19 

infection rates were found to be negatively correlated with miles traveled and out-of-

county trips (Tokey, 2021). 

With the rollout of vaccines in the U.S. in 2021 and as the government 

stringency (e.g., activity restrictions and social distancing measures) were relaxed, 

people could be expected to feel safer once vaccinated, and be more comfortable about 
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leaving their homes and traveling more (Fiori & Lacoviello, 2021). People might be 

willing to travel more and undertake more trips. For this study, we examine mobility 

from January to May 2021 when a widescale vaccination program was put in place to 

understand whether a relationship between mobility and ongoing vaccinations existed 

and how these relations may have varied across space and time. Inferring causal impact 

of vaccinations on mobility is challenging as there are potentially multiple factors 

including, for example, infection rates of COVID-19, access to healthcare, and 

government policy, among others, that could also play a role in the relationship. 

Understanding the spatiotemporal associations between human mobility and 

vaccination rates during the rollout of vaccinations is crucial for policymakers, 

businesses, and individuals since insights about the relationship between mobility and 

vaccination rates can serve as a guide for local and regional transportation demand, 

economic recovery, and public health policies as citizens adapt to a post-pandemic 

world. 

Existing research has mainly focused on the overall relationship between 

mobility and COVID-19 cases at state level or country level. There is a gap regarding 

our understanding of how ongoing COVID-19 vaccination rates were associated with 

mobility across the U.S. One study focused on Texas, for example, found that 

reopening after vaccinations in Texas did not appear to impact changes in social 

mobility, the rate of new COVID-19 cases, or short-term employment (Dave et al., 

2021). Moreover, the factors associated with the spatiotemporal differences in mobility 

and vaccinations require further attention. Potential factors found in existing research 

were related, for example, to socioeconomic and demographic factors and healthcare 
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infrastructure attributes associated with COVID-19 cases and deaths (Hu et al., 2022; 

Radulescu et al., 2021), where race and ethnicity (e.g., Black Americans), health 

conditions, income, and education were factors impacting infections (Bhowmik et al., 

2021; Lamb et al., 2021; Sun et al., 2022).  

For this study, we examined how mobility and vaccination rates varied across 

the entire U.S. by applying a K-means time-series clustering approach based on county-

level trends for both mobility (i.e., relative changes of trips) and COVID-19 vaccination 

rate, and considered the factors for the clustering patterns. Time-series clustering 

methods (Aghabozorgi et al., 2015; Singhal & Seborg, 2005; Wang et al., 2006), 

especially multi-dimensional K-means time-series clustering (Giordano et al., 2021; 

Siebert et al., 2021), have been used in related COVID-19 and mobility research. For 

example, Elarde et al. (2021) clustered the changes in time spent in public places from 

March to December 2020 in all counties in the U.S. and returned 3 clusters with 

outliers. Changes in home-dwelling time calculated from SafeGraph datasets were 

clustered at different spatial granularities, such as metropolitan statistical areas and 

census block groups, along with socioeconomic and demographic variables (e.g., 

economic status, race and ethnicity, gender and age, education, and transportation) to 

detect spatial units with similar spatiotemporal trends (X. Huang et al., 2020; X. Huang, 

Lu, et al., 2021). SaTScan clustering (Kan, Kwan, Huang, et al., 2021; Kan, Kwan, 

Wong, et al., 2021), shape-based time-series clustering (Cao et al., 2022), and spatial 

autocorrelation techniques (J. Huang et al., 2021) were applied to detect COVID-19 

virus transmission and spread. 
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The objectives of this study are: (1) reveal the patterns of county-level mobility 

across the U.S. in the context of increasing vaccination rates by week during 2021 using 

space-time clustering, (2) examine a set of factors that could serve as drivers for the 

mobility patterns and how these drivers relate to the different mobility-vaccination 

clusters across the U.S., and (3) examine county-level mobility by analyzing trip 

purposes for selected urban and rural counties to better understand how trip purposes 

such as retail/recreation and workplaces among others may be associated with locations 

having different clusters that represent different profiles of mobility together with 

vaccination rates. 

3.3 Materials and methods 

3.3.1 Mobility data 

For this study, we investigated mobility patterns at county level across the 

contiguous U.S. by week from January 2021 to May 2021. The principal data were 

from Apple Mobility Trends Reports1 that captured daily relative changes in routing 

requests from Apple Maps users in the U.S. for driving, walking, or taking public transit 

(compared to each county’s baseline for January 13, 2020). The Apple dataset, which 

is publicly available, was considered a good proxy for trips in the U.S. for several 

COVID-19-related studies (X. Huang, Li, et al., 2021; Kang et al., 2020; Noi et al., 

2022). However, due to the application of privacy protocols by users, available county-

level trip data for 2021 for the U.S. cover only 2,064 counties in the contiguous U.S. 

out of 3,108 counties in total, approximately 66% of counties. 

                                                 

1 https://covid19.apple.com/mobility 

https://covid19.apple.com/mobility
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Since this dataset did not cover all U.S. counties, another mobility dataset, the 

Federal Highway Administration (FHWA) Traffic Volume Data 2 , was used to 

supplement the Apple data. The FHWA Traffic Volume Data is unweighted raw 

continuous traffic count data collected by over 7,000 traffic counting stations 

nationwide reported by State Highway Agencies that cover 1,944 counties, including 

448 counties that were not included in the Apple mobility dataset. As the Apple data 

captures relative travel volumes over time for each county, we similarly calculated 

relative traffic volumes by county using the FHWA dataset, allowing us to compare 

these travel volumes with the Apple data. The correlations between the two datasets 

were analyzed for counties where data were available for both datasets (M=0.59, 

SD=0.24, over 91% of the counties had p<0.01 correlations), and the analysis showed 

that the two datasets represented very similar trip trends and could be used together to 

provide broader coverage of counties with respect to mobility. 

After filtering out records with more than 20 missing dates during the study 

period, the two datasets were used together and readjusted using the median mobility 

values for the first two weeks in January 2021 (January 1 to January 14, 2021) as the 

new baseline reference (i.e., 100) for each county. The newly combined mobility 

dataset captures relative level of changes in the number of trips for 2,445 counties 

(approximately 79% of the contiguous U.S. counties), which covered an estimation of 

317,186,955 population (approximately 96% of the U.S. population), and is referred to 

as the mobility index in this analysis. 

                                                 

2 https://catalog.data.gov/dataset/tmas-data-program 

https://catalog.data.gov/dataset/tmas-data-program
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Another dataset used for this research was trip purpose data for the U.S. sourced from 

the Google COVID-19 Community Mobility Report3. This dataset reports the percent 

change of travel to different categories of place, i.e., retail and recreation; grocery and 

pharmacy; parks; transit stations; workplaces; and residential by county in the U.S. 

compared to a baseline for January 2020. Due to variability in data availability (many 

counties were missing for certain categories), only four trip purpose categories were 

selected and examined for this study: retail and recreation; grocery and pharmacy; 

workplaces; and residential. On average, there were approximately 1450 counties 

available in the Google dataset for the study period (about 46% of contiguous U.S. 

counties). 

3.3.2 COVID-19 vaccination data 

COVID-19 vaccinations were made available nationwide based on priority 

groups from late December 2020. By the end of May 2021, all adults (18 years and 

over) in the U.S. were eligible for vaccines. The U.S. COVID-19 vaccination data was 

collected from the CDC4 at county level. The CDC dataset reports the cumulative 

numbers of people who got partly or fully vaccinated every day by county for the period 

January-May 2021. There were some missing states and counties, for example, the 

Texas Department of State Health Services did not report their COVID-19 vaccination-

related data to the CDC. Another data source, COVID Act Now5, a non-profit that 

provides up-to-date COVID-19 news and alerts, was used to fill in data for the missing 

                                                 

3 https://www.google.com/covid19/mobility/ 
4 https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh 
5 https://apidocs.covidactnow.org/#register 

https://www.google.com/covid19/mobility/
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
https://apidocs.covidactnow.org/#register
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counties in the dataset as much as possible. We merged the data from these two sources 

and calculated vaccination rates, i.e., the percent of population with at least one dose 

of COVID-19 vaccine, for the five-month period of study for 2,980 counties 

(approximately 96% of contiguous U.S. counties). After the mobility data and 

vaccination data were joined, there were 2,395 counties for the nationwide analysis 

(approximately 77% of contiguous U.S. counties). 

COVID-19 cases and mortality data were also collected from the CDC6 and 

used in our analyses. Although there were known issues in the CDC COVID-19 dataset, 

e.g., where state departments of health applied corrections to update their historic data, 

the number of new cases and new deaths (per 10,000 people) for the whole study time 

period for each cluster were calculated and used in the analysis. 

3.3.3 Demographic and socioeconomic data 

To examine mobility in the context of increasing vaccination rates, a set of 

demographic and socioeconomic variables were analyzed, including county-level 

urban-rural classification, gender, age, race and ethnicity, economic factors (e.g., 

median household income and unemployment rate), education, and work-related 

factors (e.g., median travel time to work and mean travel time to work) (Table 3.1). 

The urban-rural classification data was from National Center for Health Statistics 

(NCHS) Urban-Rural Classification Scheme for Counties 7 , which classifies U.S. 

counties into four metropolitan levels (large central metro, large fringe metro, medium 

metro, and small metro) and two non-metropolitan levels (micropolitan and non-core). 

                                                 

6 https://covid.cdc.gov/covid-data-tracker/#datatracker-home 
7 https://www.cdc.gov/nchs/data_access/urban_rural.htm 

https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://www.cdc.gov/nchs/data_access/urban_rural.htm
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In this study, we aggregated the levels as metropolitan (urban) counties and non-

metropolitan (rural) counties. The 2021 unemployment rate data was from the U.S. 

Bureau of Labor Statistics (BLS) Local Area Unemployment Statistics (LAUS) 

program8. The 2021 county-level annual average unemployment rate data was used to 

represent unemployment rates for the study period. The remaining variables that were 

considered to be related to both mobility and vaccination rates, were collected from the 

ACS 20209 and processed to county-level percentage data as needed. 

 

Table 3.1 Categories of demographic and socioeconomic variables and their data sources. 
Category Variables Data sources 
Urban-rural Urban-rural classification NCHS Urban-Rural 

Classification 2013 
Gender and age Percent of male, 

Percent of female, 
Age 0-19, 
Age 20-44, 
Age 45-64, 
Age 65 and older 

ACS 2020 

Race and ethnicity Percent of White population, 
Percent of Black population, 
Percent of Asian population, 
Percent of Hispanic population 

ACS 2020 

Economic Median household income, 
Unemployment rate, 
Percent of population below poverty, 
Population density 

ACS 2020, 
BLS LAUS 

Education Percent of bachelor’s degree and above ACS 2020 

Work-related Percent of population working from home, 
Mean travel time to work 

ACS 2020 

 

                                                 

8 https://www.bls.gov/lau/ 
9 https://data.census.gov/cedsci/ 

https://www.bls.gov/lau/
https://data.census.gov/cedsci/


 53  

3.3.4 Spatiotemporal clustering using ML 

To investigate the relationship between mobility and vaccination rates and 

identify different mobility-vaccination clusters across the U.S., we applied a ML 

clustering method, K-means with Dynamic Time Warping (DTW), that supports both 

temporal and multivariate analysis, using the tslearn Python package. Unlike the 

standard K-means calculation that considers the corresponding Euclidean distance 

between two time series elements, DTW also considers the time lag between two time 

series elements and calculates a temporal alignment that minimizes the Euclidean 

distances between the two aligned series. 

The mobility index, i.e., the relative changes in the number of trips with 100 as 

a baseline, ranged from 21 to 760 over the course of the study period. Vaccination rates, 

i.e., the percent of population with at least one dose of a COVID-19 vaccine, ranged 

from 0% to 80% of U.S. adults over 18 during this same period. These two variables 

are of incomparable units and different variances and would result in unbalanced 

weights when clustering. To account for these differences, we performed normalization 

and feature scaling, so that each variable ranged from 0 to 1. The elbow method 

(Makwana et al., 2013; Syakur et al., 2018) was used to determine the optimal number 

of clusters (𝐾𝐾) that not only could capture differences between clusters but at the same 

time would keep the number of classes for mapping to a set that was comprehensible. 

The resulting clusters represent counties with similar trends for both mobility 

and vaccination rates by county. When referring to the clusters in this study, we use 

mobility-vaccination profiles. The barycenter of each cluster was computed to 

represent the average sequence of values from the two time-series that comprise each 
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cluster. The barycenters (for both mobility and vaccination rates) were compared with 

the median for both variables to determine differences between clusters. 

After the clusters were obtained, the Silhouette score (Silhouette Coefficient) 

was used to evaluate the clustering quality, as the Silhouette score could represent the 

separation distance between the resulting clusters (Shahapure & Nicholas, 2020). The 

Silhouette score has a range from -1 to 1, while values near 1 indicate better clustering 

quality, values of 0 indicate the overlapping clusters, and negative values generally 

indicate that samples have been assigned to the wrong cluster. 

3.3.5 Examining the differences among clusters 

After the clustering analysis was completed nationwide, the characteristics of 

the mobility-vaccination profiles were analyzed in the context of COVID-19 confirmed 

cases and deaths as well as the demographic and socioeconomic variables, to detect 

differences among clusters using ANOVA. The differences among clusters could 

provide insights into the different mobility-related behaviors and differences in levels 

of mobility and vaccination rates. This analysis will shed light on how these variables 

could be related to the different patterns of mobility-vaccination profiles. We assume 

that if the distribution of a specific variable for a cluster (e.g., median household 

income) is distinct or unique, then that variable is more impactful for distinguishing 

clusters from each other, and could contribute to understanding differences among 

clusters, as well as providing further insights about the different mobility and 

vaccination rate patterns captured by the clusters. An ANOVA analysis was applied to 

check the differences in variance for these variables. A smaller p-value for a variable 
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reflects more significant differences and indicates that the variable has a higher impact 

on the clustering results. 

After the differences among the clusters were tested using ANOVA, post hoc 

tests were applied to identify clusters that differed significantly from each other. We 

used the Tukey HSD test for this analysis (Abdi & Williams, 2010). The post hoc tests 

were used to guide the analysis of significance levels for comparing between cluster 

means (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟2, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟3, …, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑛𝑛−1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑛𝑛). 

The adjusted p-values that statistically reflect the differences between two means for 

all pairings for all factors were computed using a significance level of 0.05 for this 

analysis. 

3.4 Results 

3.4.1 Dynamic trends of mobility and COVID-19 vaccination rates 

To analyze dynamic mobility patterns in the U.S., the mobility index for 

January to May 2021 by week showed spatial and temporal differences across the 

nation (Figure 3.1). In Week 5 (the end of January), counties in the U.S. showed little 

to no changes in mobility from the base level, with counties close to Yosemite National 

Park in California returning higher-than-baseline mobility index values, approximately 

110 (Figure 3.1a). By week 9 (the end of February 2021), the median index value for 

the whole country had risen to 113, returning an overall mobility index increase 

compared to January (Figure 3.1b). From Weeks 9 to 14 (late February to the end of 

March 2021), there were greater changes in mobility, with national average index 

values increasing from 113 to 130. Counties in Utah, Alabama, and South Carolina had 
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higher values of approximately 180 (Figure 3.1c). Weeks 14 to 18 (April 2021) 

continued to show an increase in mobility with average index values of around 133, 

with high values in Montana, Wyoming, and Utah (Figure 3.1d). In Week 22 (the end 

of May 2021), the greatest changes in mobility were noted (Figure 3.1e). By this week, 

the mobility index values in over 82% of counties exceeded 200 across the country. 

Counties in western states, for example, Wyoming, Utah, Arizona, Idaho, and Oregon, 

tended to have higher index values (e.g., Wyoming of 214 and Oregon of 220) than 

counties in the east (e.g., Rohde Island of 160 and New Jersey of 167) (Figure 3.1e). 

Over the entire study period, Goshen County, New Jersey returned the lowest mobility 

index value of 21 in Week 11, while Cape May County, New Jersey returned the 

highest mobility index value of 763 in Week 22. 

 

 
Figure 3.1 Mobility index in the U.S. at county level (01/01-05/31/2021) by week. Weeks 5, 9, 14, 18, 

and 22 are selected for the end of each month. 
 

The percent of population with at least one dose of a COVID-19 vaccine by 

county was mapped by week for the period January-May 2021 (Figure 3.2). In Weeks 

1-5 (January 2021), when only high-priority healthcare workers were eligible for 



 57  

vaccines, the percentage of the vaccinated population ranged between 6% and 10% 

(Figure 3.2a). By Week 9 (end of February 2021), vaccination rates had increased to 

15% (Figure 3.2b). By Week 14 (the end of March), states started to show greater 

variance in the percent vaccinated, for example, Colorado (12.0% on average) and New 

Hampshire (12.9% on average) had significantly lower vaccination rates than other 

states at this time, e.g., Connecticut with 39.5% with at least one vaccination, and 

Rhode Island with 38.2% (Figure 3.2c). Vaccination rates on average for all counties 

experienced the greatest increase in March 2021, from 15.1% in Week 9 to 28.4% by 

Week 14. The increase slowed down in April 2021, as vaccination rates on average 

reached 34.3% by Week 18 (Figure 3.2d). By week 22 (the end of May 2021), 

vaccination rates had risen on average to 37.1%, and vaccination rate differences 

among counties can be easily identified (Figure 3.2e), for example, counties in 

Virginia, Georgia, and Colorado showed rates of approximately 20%, while counties 

in New England (e.g., New Hampshire, Vermont, and Maine) showed higher rates, 

approximately 50%-60%. Overall, the percent vaccinated showed greater increases 

between Week 9 and Week 14 (late February to the end of March 2021), which was 

the same period when there were greater increases in the mobility index (approximately 

113 to 130) (Figure 3.1c). In April and May, differences among states appeared for 

both mobility and vaccination rates. 
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Figure 3.2 Cumulative vaccination rates (percent of population with at least one dose of COVID-19 

vaccine) on (a) 01/31/2021, (b) 02/28/2021, (c) 03/31/2021, (d) 04/30/2021, and (e) 05/31/2021. 
 

3.4.2 Spatiotemporal clustering results 

Using the elbow method, five clusters (𝐾𝐾 = 5) were selected for visualization 

and analysis. The Silhouette score for the clustering results was 0.3844, which indicated 

that the five clusters were generally independent of each other. A closer examination 

into the Silhouette score showed that there was minimal overlap between clusters and 

that most counties were a member of a single cluster. The barycenters of mobility-

vaccination profiles were compared with the median values (Figure 3.3). The temporal 

trends of the clusters over the weeks were more similar before Week 9 and started to 

separate after Week 9 (Figure 3.3a). 
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Figure 3.3 (a) Barycenters for five clusters plotted in a 3-dimensional approach. Barycenters for (b) 

mobility and (c) vaccination rates for each cluster compared to the median mobility and median 
vaccination rates separately. 

 

With respect to the mobility differences among clusters (Figure 3.3b), in Weeks 

1-5 (January 2021), all five clusters fluctuated around a mobility index value of 100 

and showed only minor differences between them. In Week 7, a large decrease in the 

mobility index could be seen in all clusters except for Cluster 5. Mobility index values 

for Clusters 1 and 4 were approximately 80, while that of Cluster 5 was around 103. 

The mobility index values for all clusters increased to approximately 110 (just over 

baseline) by Week 9 (the end of February). All clusters’ mobility index values 

experienced increases from approximately 110 to 130 in Weeks 9-14. From Week 14, 
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the differences among clusters start to become more noticeable with Cluster 5 showing 

higher relative mobility and Cluster 4 lower relative mobility. For Weeks 14-22 (April 

and May 2021), except for a slight decrease in Week 15 (around 7%), mobility for all 

clusters increased, for example, the mobility index of Cluster 5 increased from 132 to 

200, and Cluster 2 went from 128 to 170. By Week 22 (the end of May), Cluster 5, with 

the highest mobility index value of 200, was 25% higher than Clusters 3 and 4 which 

had a lower mobility index of 160. 

The patterns of vaccination rates among clusters were different from that of 

mobility as the trend for each cluster was distinct from that of other clusters over the 

entire time period. Vaccination rates increased the most rapidly during Weeks 9-15 

(March to early April 2021) (Figure 3.3c).  Cluster 5 had the highest rates throughout 

the time period and Cluster 4 had the lowest. In Week 22, Cluster 5 counties had 

approximately 70% higher vaccination rates than Cluster 4 counties. 

Differences in percentage vaccinated among clusters could be easily identified, 

while differences in mobility among clusters were not as marked. For example, Cluster 

4 was comprised of counties with approximately 70% lower vaccination rates than 

Cluster 5, but Cluster 4 had approximately 25% lower mobility index than Cluster 5 by 

the end of the study time period. Scatter plots of the mobility index and vaccination 

rates for clusters over the weeks supported this finding as clusters were distinguished 

mainly by levels of vaccination rates, demonstrated by the varying colors along the y-

axis (Figure 3.4). 

 



 61  

 
Figure 3.4 Scatter plots of mobility index and vaccination rates for selected weeks (Weeks 5, 14, and 

22). 
 

The different clusters were distributed across the U.S. (Figure 3.5). Cluster 5, 

capturing a profile based on the relatively highest mobility and vaccination rates, could 

be found in metropolitan areas, for example, Santa Clara County, CA is where the 

Silicon Valley is and New York County, NY is where Manhattan is. Cluster 5 counties 

could also be found in tourist destinations, for example, Coconino County, AZ was 

famous for the Grand Canyon National Park and Mono County, CA is close to 

Yosemite National Park. Cluster 2 counties, with profiles of high mobility-vaccination, 

were found in the areas surrounding Cluster 5 counties (over 47% of Cluster 5 counties 

were surrounded by Cluster 2 counties), for example, Santa Barbara County, CA (close 

to Los Angeles) and Queens County, NY (right next to Manhattan and part of New 

York City). 

Cluster 1 representing relatively lower mobility-vaccination profiles and 

Cluster 4 representing the relatively lowest mobility and vaccination rates were mostly 

found in the Mountain and South census regions, with over 47% of Cluster 4 counties 

being surrounded by Cluster 1 counties (Figure 3). Cluster 1 counties comprised many 

of the counties in Arkansas (69%), Mississippi (66%), Tennessee (63%), and Louisiana 

(61%), while over 80% of counties in Colorado were categorized as Cluster 4.  
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Figure 3.5 Spatial distributions of the clusters of mobility and vaccination rates across the U.S. 

 

3.4.3 Underlying characteristics of clusters 

The results of the ANOVA analysis provided further insights into the different 

clusters. The nineteen sociodemographic variables are listed in ascending order of p-

values (Table 3.2), where the top five of these variables were percent of Bachelor’s 

degree and above, percent of population working from home, median household 

income, percent of Asian population, and percent of population below poverty. These 

results suggest that the mobility undertaken by individuals during this period as 

vaccines became more available varied across the U.S. depending on the level of 

education, work-travel demand, race and ethnicity, and economic status. 
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Table 3.2 ANOVA analysis of p-values of the COVID-19 cases and deaths as well as demographic and 
socioeconomic variables in ascending order. 

Ranking Variable p-value 
1 Percent of bachelor’s degree and above 5.38 × 10−191 
2 Percent of population working from home 7.72 × 10−100 
3 Median household income 1.59 × 10−92 
4 Percent of Asian population 1.96 × 10−71 
5 Percent of population below poverty 3.55 × 10−41 
6 Age 0-19 1.36 × 10−31 
7 COVID-19 deaths 1.28 × 10−19 
8 Percent of male 6.18 × 10−16 
9 Percent of female 6.18 × 10−16 
10 Percent of Black population 3.25 × 10−12 
11 Population density 2.51 × 10−11 
12 Age 65 and older 1.04 × 10−10 
13 Age 45-64 3.84 × 10−6 
14 COVID-19 cases 2.16 × 10−4 
15 Mean travel time to work 3.06 × 10−3 
16 Unemployment rate 7.15 × 10−3 
17 Percent of Hispanic population 4.80 × 10−2 
18 Percent of White population 6.38 × 10−2 
19 Age 20-44 2.23 × 10−1 

 

Taking a closer look at these variables, we analyzed the mean values and 

standard deviations of the variables for each cluster following the ANOVA order 

(Table A1). The Tukey HSD post hoc test returned values for comparisons between all 

five clusters, providing a measure for how clusters differed from each other (Table A2). 

With regard to education, a positive association was found between education and the 

mobility-vaccination profiles as Cluster 5, with the highest mobility for most weeks 

and highest vaccination rates, was comprised of counties with an average 28.86% 

population with a Bachelor’s degree and above, significantly higher than the other four 

clusters, while Cluster 4, with the lowest mobility and vaccination rates (in Weeks 6-8 

and Weeks 13-22), had only about 13.33%. For household income, it was significantly 

different among all five clusters and was positively associated with higher mobility and 

vaccination rates, for example, the median household income for Cluster 5 on average 

was $73,606, approximately 43% higher than that of Cluster 4 ($41,408). 
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With respect to race and ethnicity, the percent of Asian population was ranked 

4th in importance. Clusters 5 and 2, with higher mobility and vaccination rates, had 4.88% 

and 2.69% of Asian population respectively, significantly higher than in Clusters 1 and 

4 (lower mobility and vaccination rates) with only 0.85% and 0.80% respectively. As 

for the percent of Black population, a higher percent of Black population was 

associated with lower mobility-vaccination profiles. Clusters 4 and 5, with lowest and 

highest mobility and vaccination rates respectively, had 10.19% and 5.34% percent 

Black population respectively. We could not draw a clear conclusion between the 

clustering results and the percent of both Hispanic and White populations as the five 

clusters were not significantly different from each other, suggesting that further 

research into these particular population-based differences in mobility-vaccination by 

county is warranted. 

In terms of age, the 20-44 age group, ranked 19th in importance and we did not 

see great variance among the five clusters (i.e., all comparisons between five clusters 

were not significantly different). As an age group likely to work, they may have been 

working at home (so mobility could be lower) and they may have been later in getting 

vaccinations due to not being in an age-related risk group. For older age groups, the 

percent of individuals aged 65 and over in Cluster 5 counties was 20.24%, significantly 

higher than all other clusters, suggesting that for certain locations, this age group was 

both vaccinated and mobile. 

The results also showed that the rates of COVID-19 deaths appeared to be 

impactful for mobility-vaccination patterns (ranked 7th in importance) where rates of 
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COVID-19 deaths increased, from 6.13 deaths per 10,000 people (Cluster 5), 7.16 

(Cluster 2), to 8.32 (Cluster 4). 

We also analyzed the percentage of urban counties by cluster and found 

differences did exist. For example, Cluster 5 and Cluster 2 were each approximately 

60% urban counties. In contrast, Cluster 4 and Cluster 1 were comprised of 70% and 

64% rural counties, respectively. Cluster 3 was comprised of 46.65% rural counties, 

which corresponded the locations of Cluster 3 counties (Figure 3.5). 

3.4.4 Trips to different categories of places 

Five counties, three in Maryland (MD) and two in Alabama (AL), were selected 

to further examine mobility by analyzing changing patterns of trips to different 

categories of places (i.e., retail and recreation, grocery and pharmacy, workplaces, and 

residential places) among the clusters (Figure 3.6). Montgomery County, MD, and 

Prince George’s County, MD were selected as they were considered representative of 

Cluster 5, Cluster 2 counties respectively. These two urban counties are adjacent to 

Washington D.C. and represent urban areas with high population density (both have 

over 700 people per square mile). Charles County, MD was selected as it was 

representative of a Cluster 3 county, which is urban and also close to large population 

centers, but not as populated as Montgomery and Prince George’s Counties. In contrast, 

Walker County, AL and Blount County, AL were selected as examples of Cluster 1 

and Cluster 4 counties respectively. These two counties have an economic focus on 

mining and manufacturing and represent rural areas in the South with lower population 

density (both around 30 people per square mile). 
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Montgomery County was classified as Cluster 5 (relative highest mobility and 

vaccination rates). Montgomery County returned an overall increasing trend for trips 

to retail/recreation and grocery/pharmacy places and showed an overall decreasing 

trend for trips to residential places over the study period. The trips to workplaces 

remained at a lower level (around 50% below baseline) until Week 21 when it started 

to increase and reached a level of approximately 30% below baseline by the end of 

May 2021 (Figure 3.6a). Prince George’s County was found to be a Cluster 4 county 

(relatively high mobility and vaccination rates). Prince George’s County had a very 

similar overall trip pattern for all four categories of places as Montgomery County, with 

only minor differences in the relative levels of trips to retail and recreation (reaching 

10% below baseline in Week 22) and trips to workplaces (remained around 40% below 

baseline during Weeks 1-21) (Figure 3.6b). Although these two urban counties in 

Maryland were identified as Cluster 5 and 2 with relatively higher mobility, they had 

different patterns regarding trip purpose with generally higher numbers of trips to retail 

and grocery and lower overall work-related travels likely mainly due to remote work. 

Charles County (median level mobility and vaccination rates) showed similar trends 

with Montgomery and Prince George’s Counties, particularly Prince George’s County 

(Figure 3.6c). This county had a lower number of trips to workplaces with an overall 

increase of only about 10% (from 50% to 40% below baseline) during the study period 

compared to Montgomery and Prince George’s Counties that had 20% increases. 

Walker County (lower mobility and vaccination rates) and Blount County (lowest 

mobility and vaccination rates) showed different trends in trip purposes than the 

Maryland counties. Trips to retail and recreation for Walker County experienced a 30% 
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increase during Weeks 8-14 bringing the mobility to 20% above baseline. Trips to 

workplaces fluctuated between 20% and 10% below baseline during the study period 

(Figure 3.6d). Blount County saw an even larger increase of 40% for trips to retail and 

recreation (30% above baseline) during Weeks 8-14, and slightly lower trips to 

workplaces (ranging between 30% to 20% below baseline) (Figure 3.6e). 

Trips to workplaces had the lowest levels among all categories for all five 

counties, suggesting people were not going to workplace locations as frequently during 

the study period. Walker and Blount Counties had lower percentages of population 

working from home (1.31% and 0.80% respectively) and their main occupations 

(mining and manufacturing) possibly contributed to higher trips to workplaces (20% 

below baseline) than Montgomery, Prince George, and Charles Counties (40% below 

baseline) whose major occupation is professional, scientific, and technical services. 

Although Walker and Blount Counties had lower vaccination rates (33.7% and 21.3% 

respectively) than Montgomery, Prince George, and Charles Counties (70.1%, 50.8%, 

and 45.6% respectively), Walker and Blount Counties had generally higher numbers of 

trips to retail and recreation. Trips to grocery and pharmacy increased by 20% over the 

period of time for all five counties. 
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Figure 3.6 Trips to different categories of places for (a) Montgomery County, MD, (b) Prince George’s 

County, MD, (c) Charles County, MD, (d) Walker County, AL, and (e) Blount County, AL. 
 

3.5 Discussion 

Our analyses showed that by the end of March 2021 as COVID-19 vaccinations 

were administered, differences in mobility among U.S. counties were becoming more 

notable as the number of trips in some locations started to increase from a below-

baseline level of travel. This result concurs with other research that also used the 

Google Mobility Report dataset and the travel behaviors of two groups of people (fast 

vaccinators and slow vaccinators) across countries (Israel, U.K., U.S., Canada, etc.) 

diverged after mid-February (Fiori & Lacoviello, 2021). Our spatiotemporal clustering 

results revealed that differences between mobility and vaccination rates existed across 

U.S. counties during the study period. Counties with relatively higher mobility and 

vaccination rates were in populated metropolitan areas and tourist destinations, and 

counties with relatively lower mobility and vaccination rates were in Mountain and 
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South U.S. Census regions (e.g., Arkansas, Mississippi, and Louisiana). The five 

clusters showed different spatial and temporal associations between mobility and 

vaccination rates, with vaccination rates varying more between clusters than mobility. 

We saw in Cluster 4, a trend of increasing mobility with vaccination rates lower than 

in other clusters, while Cluster 5 consistently returned higher (the highest) mobility and 

vaccination rates. 

Statistical tests revealed the top five variables that were considered most related 

to the mobility-vaccination profiles were percent of Bachelor’s degree and above, 

percent of population working from home, median household income, percent of Asian 

population, and percent of population below poverty. This result concurs with previous 

research that found that different income profiles contributed to different mobility 

patterns, e.g., response to travel restrictions (Lou et al., 2020; Sun et al., 2020, 2022) 

and pandemic outcomes, e.g., COVID-19 cases and deaths (Lamb et al., 2021; Mollalo 

et al., 2020; Zhu et al., 2021). Asians and college and/or graduate degree holders have 

also been found more likely to accept vaccinations (Malik et al., 2020), which 

confirmed the findings in this study as well. Other researchers found that Black 

population groups were the most impacted by the transmission of COVID-19 and had 

the highest mortality rates (Bhowmik et al., 2021), while also having the lowest 

probability of likely getting a vaccine (Malik et al., 2020; Nguyen et al., 2021; Niño et 

al., 2021) In our study, the percent of Black population was ranked 10th in the ANOVA 

analysis also indicating that this demographic was a factor differentiating the mobility-

vaccination profiles. 



 70  

There were limitations with respect to data availability, as the availability of 

mobility and vaccination rates data at county level was limited or unavailable for some 

counties. Our county results may be underestimates of both mobility and vaccinations 

rates, as both the mobility data and COVID-19 vaccination data did not cover all 

counties in the contiguous U.S. or were suppressed to protect data privacy. Mobile 

device data has associated biases, which was a challenge to personal data privacy and 

ethical concerns (Gao, Rao, Kang, Liang, & Kruse, 2020; Li et al., 2021). Although the 

mobility data were underestimated due to selection bias, the mobility trends (i.e., 

relative changes of trips) over space and time were considered to represent actual travel 

trends. In terms of the mobility data accessibility, the mobility data used in this study, 

i.e., Apple Mobility Trends Report and Google Community Mobility Report, was 

publicly available at the time of my analysis, however, they stopped updating the 

mobility data when the COVID-19 Pandemic was mitigated (on April 12, 2022 and 

October 15, 2022, respectively). Google had its historic data still available online, while 

the Apple data is no longer available. The FHWA Traffic Volume Data is publicly 

available, as FHWA poses their data on an U.S. government data sharing platform. 

3.6 Conclusions 

This study investigated the dynamic patterns of mobility in the context of 

ongoing COVID-19 vaccinations at county level in the contiguous U.S. by week from 

January to May 2021 in order to examine whether mobility patterns were responsive to 

increasing vaccination rates. Differences in mobilities among counties were found as 

the COVID-19 vaccines were distributed and counties responded differently to vaccine 

uptakes. Population metropolitan areas and their surrounding counties, as well as 
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counties with tourist destinations, showed both higher mobility and higher vaccination 

rates, compared to counties in the Mountain and South U.S. Census regions, including, 

e.g., Arkansas, Mississippi, and Louisiana, where both mobility and vaccination rates 

were 25% and 70% lower respectively by the end of the study period. Education, 

income, and race/ethnicity were sociodemographic variables that contributed to 

different travel behaviors the most, while percent of Black population and the number 

of COVID-19 deaths, also contributed to spatiotemporal non-stationarity found with 

the clusters. Three counties in Maryland and two counties Alabama, representing urban 

and rural counties respectively, were analyzed with respect to different trip purposes 

and showed that the two rural Alabama counties comprised mainly of Cluster 1 and 4 

(relatively lower mobility and vaccination rates) had higher trips to retail/recreation 

and workplaces as compared to the urban counties in Maryland comprised of Cluster 2 

and 5 (higher mobility and vaccination rates) and Cluster 3 (median level mobility and 

vaccination rates). 

While this research is explanatory research to investigate the associations 

between mobility and vaccination rates, future work may apply deep learning methods, 

e.g., Long Short-Term Memory and GeoAI, to infer causal relationships between 

mobility and vaccination rates and investigate additional underlying drivers, e.g., 

government policy and vaccination acceptance for dynamic mobility patterns. 
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Chapter 4: Investigating factors that impact vehicle travel time 

using Machine Learning approaches 

4.1 Abstract 

Travelers in the U.S. heavily rely on driving for all purposes, especially for 

short- and mid-distance trips. It is critical to understand what factors and how these 

factors contribute to different travel times even for the same origin-destination (O-D). 

To fill this gap, we computed travel times for two O-Ds in an urban area with different 

trip lengths/purposes. Two previously understudied factors, driver route choice and 

driver travel speed behaviors, were derived from GPS data using a clustering method. 

Factors from three categories, including driver behaviors, built environment and road 

characteristics, and external (e.g., traffic incidents and weather), were examined for 

their contributions on travel times for different trip lengths/purposes separately using 

Random Forest models. Some key results were built environment and road network 

factors were generally more impactful than driver behaviors and external factors. 

Travel speed behavior and departure time of the day were commonly important for 

travel times. Differences between different trip lengths and trip purposes were 

identified. The results not only filled the gap in research, but also could be contributing 

to future research in more accurate travel time prediction. The results are also 

meaningful for urban and transportation planners. 

4.2 Introduction 

In today's rapidly changing world, transportation is essential to our everyday 

lives as we rely heavily on driving for all purposes, e.g., commuting to work, traveling 
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to meet friends and family, and delivering goods. By examining and understanding how 

different factors impact travel time (i.e., the driving time to a destination) in different 

contexts, e.g., over different travel distances and for different trip purposes, 

transportation planners and policymakers can develop more effective strategies to 

enhance driver awareness, reduce traffic congestion and improve overall transportation 

efficiency (Carrion & Levinson, 2012; Z. Wang, Fu, et al., 2018). For this study on 

travel time, factors were categorized into three different categories including driver 

behavior, built environment and road network, and external factors. Driver behavior 

factors refer to individual driver characteristics and driving behaviors such as departure 

time and choice of routes (Feng et al., 2021; Kaplan et al., 2015). Built environment 

and road network factors refer to characteristics of the road network, for example, road 

functional class and speed limit (Ahie et al., 2015). External factors refer to different 

traffic conditions and weather conditions that are present during travel, e.g., 

precipitation and snow (Ewing et al., 2001; Small, 2012). Existing commercial 

navigation applications, e.g., Google Maps, provide support for accurate travel time 

prediction (Derrow-Pinion et al., 2021). After the user O-D is determined, the shortest 

route between O-D is computed by an A-star (A*) algorithm (Mehta et al., 2019) and 

the average speed for driving the O-D distance is computed and applied. Speed limits, 

historical average speed data, actual travel times from previous trips, and real-time 

traffic information also factor into travel time predictions (Epstein, 2013; Ireland, 

2011). However, these data-driven methods do not answer the question of why drivers 

end up with different travel times even for the same trip. In this study, we analyze the 
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different factors that contribute to travel time and how these factors vary in their impact 

with respect to travel time for different trip lengths and purposes. 

One challenge in analyzing travel time is to obtain reliable travel time data. 

Traditional approaches for collecting speed and travel time data include loop detectors, 

automatic vehicle identification sensors (i.e., automatic plate recognition), probe car 

data, and travel surveys (Kazagli & Koutsopoulos, 2013). Federal and State 

departments of transportation primarily capture traffic data from fixed sensors (e.g., 

loop detectors and automatic vehicle identification sensors), which continuously record 

data once installed on the roads. However, fixed sensors are relatively expensive to 

install and maintain, which can limit deploying these sensors on road networks (Hunter 

et al., 2009; Patire et al., 2015). Traditional travel surveys (e.g., face-to-face interviews, 

mail-out/mail-back, and telephone surveys) are designed questionnaires that provide 

transport habits and preferences (Dissanayake & Morikawa, 2010; Z. Li et al., 2020). 

Traditional travel surveys are known for data quality issues, e.g., under-reporting 20%-

30% of trips and for respondents providing inaccurate details of their travel (L. Li et 

al., 2020; Shen & Stopher, 2014; Z. Wang, He, et al., 2018). Global Positioning System 

(GPS) data, collected from vehicles or smartphones, provide large volumes of data with 

rich information and a better way to understand human mobility than both coarse and 

fine-grained sensor data (Nasri et al., 2019; G. Zhu et al., 2021). GPS trajectories are 

used in many applications, e.g., inferring transportation modes and purposes (Lu & 

Zhang, 2015; Xiao et al., 2015; X. Yang et al., 2018), estimating near-real-time road 

speed (J. Yu et al., 2020; J. J. Q. Yu & Gu, 2019; P. Zhang et al., 2023), and estimating 

vehicle miles traveled (Blei et al., 2015; Fan et al., 2019; Henao & Marshall, 2019). 
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GPS data does have some limitations as data sampling frequencies can be unstable and 

sometimes are lower, e.g., 1 GPS waypoint per several minutes (Bezcioglu et al., 2022; 

Chen et al., 2019), and inferring the true path between two consecutive GPS points is 

needed (Rahmani & Koutsopoulos, 2012; S. Sun et al., 2019). 

ML methods have been applied for predicting travel time, e.g., Support Vector 

Machine (Idé & Kato, 2009; Wu et al., 2004), Random Forest (Mendes-Moreira et al., 

2012), Artificial Neural Network (Xu et al., 2019), Graph Convolutional Neural 

Network (Jin et al., 2021), and Gradient Boosting Regression Tree (X. Li & Bai, 2017). 

This research mainly focuses on improving the accuracy of travel time estimation by 

applying pre-processing techniques or trying to derive more characteristics and 

connectivity from the mobility data itself. For example, spatiotemporal relevancy, i.e., 

the travel time of a target road segment compared to a previously traveled segment or 

nearby relevant segments, is one factor that has been considered (Xu et al., 2019). 

Applying other data-processing techniques to trajectory data, e.g., feature selection 

(i.e., selecting only features that are important to the prediction models) and domain 

value definition (e.g., categorizing road segment classes based on speed limits), has 

also been shown to improve travel time prediction accuracy (Mendes-Moreira et al., 

2012), and these are factors that we have used in the analysis presented here. 

A key objective of this study is to identify different factors that may impact 

travel time and result in variations in travel time even for the same route. In this analysis, 

factors were categorized into three categories, driver behavior factors, built 

environment and road network factors, and external factors. In terms of driver behavior 

category, driver characteristics have not been widely investigated as these factors are 
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often hard to obtain for data privacy reasons. Socioeconomic characteristics of drivers 

(e.g., gender, age, income, and education level) have been collected in travel survey 

studies (R. M. González et al., 2015; Jang & Ko, 2019), where it has been found that 

the relationship between sociodemographic characteristics and individual 

behaviors/attitudes is a complex function. Other drive behavior factors, e.g., departure 

time, day of week, month, weekday/weekend, and public holidays, have been 

frequently analyzed (Lenny et al., 1997; X. Li & Bai, 2017; Mendes-Moreira et al., 

2012). The built environment and road network category, including road network 

characteristics (e.g., speed limit, functional class, and intersections), and the external 

factor category, including weather conditions (e.g., season, wind speed, temperature, 

and precipitation) and even points of interest (POIs), have been widely investigated in 

previous research (Jenelius & Koutsopoulos, 2013; Mendes-Moreira et al., 2012; Tang 

et al., 2016; Y. Wang et al., 2014). Except for the aforementioned factors, some novel 

factors, e.g., travel speed and driver route choice between O-D, are also considered for 

this research. 

This study identifies factors that impact travel time in a heavily trafficked urban 

area, and examines differences in factor importance, revealing what factors are key to 

determining the driving travel time for a trip. Except for the commonly used factors 

that could be explicitly derived from the GPS waypoints data, we compute driver route 

choices and driver speeding behaviors using time-series clustering algorithms. We use 

a ML method to analyze how contributions of different categories of factors to the 

travel times for two different trip lengths (50 miles and 150 miles) and different trip 

purposes (daily commuters and vacationers) change. 
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4.3 Materials and methods 

4.3.1 Study area and data 

To obtain driving times, this study used raw GPS vehicle trajectory data 

collected by INRIX10 and made available for this research by the Center for Advanced 

Transportation Technology Laboratory (CATT Lab)11 at the University of Maryland. 

The INRIX data include vehicle GPS waypoints captured using embedded GPS 

trackers and the INRIX mobile app providing, device ID, trip ID, longitude, latitude, 

time stamp, raw speed, and driving profile (i.e., types of vehicles completing the trips, 

including consumer vehicles, field service/local delivery fleets, and for-hire/private 

trucking fleets). The GPS sampling intervals (time between two consecutive 

waypoints) range from 1s to 53min, with an average of 36s. The original data volume 

for the complete INRIX dataset used in this analysis is large with over 9.6 billion GPS 

waypoints and 191 million trips in total from January 2018 to September 2019. The 

trips between the O-D were filtered from the raw dataset using Apache Spark, an open-

source analytics engine for large-scale data processing on the Hadoop framework. The 

road network data is from OpenStreetMap 12  (OSM), a free and open geographic 

database. OSM road networks for the study areas were downloaded via the OSM API, 

including road segment length, and road functional classes (e.g., motorways, trunk, 

primary and secondary roads, tertiary and residential roads). 

                                                 

10 https://inrix.com 
11 https://www.cattlab.umd.edu/ 
12 https://www.openstreetmap.org 
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The travel times associated with driving on major roads in Maryland were 

analyzed. There are two pairs of O-D, from Towson to Silver Spring, MD (T-SS) and 

from Rockville to Ocean City, MD (R-OC) (Figure 4.1). Towson and Silver Spring are 

two highly populated cities in Maryland (close to Baltimore City and Washington D.C. 

respectively). Rockville is another city in Maryland, and Ocean City is a resort town, 

located on the Eastern Shore, on the Atlantic coast. The drive between T-SS represents 

an O-D trip of approximately 50 miles with highly frequent traffic volumes of 

commuters. R-OC represents an O-D trip of approximately 150 miles often undertaken 

by tourists and vacationers. 

 

 
Figure 4.1 The study area of Maryland, U.S., and the locations of Towson, Silver Spring, Rockville, 

and Ocean City. 
 

4.3.2 Map-matching GPS waypoints 

Map-matching is the technique to obtain the full GPS waypoint trajectories, on 

which travel time analysis is based. Map-matching consists of two steps – first, 

projecting GPS waypoints to their corresponding road segments, and second, inferring 

and filling the road segment gaps between GPS waypoints. Traditional map-matching 
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algorithms use only the coordinates of GPS points, e.g., fuzzy logic, Extended Kalman 

Filter, Bayesian theory, etc. (Quddus et al., 2007). Advanced map-matching algorithms 

also consider additional travel characteristics, e.g., real-time moving direction and 

delay at intersections (Hsueh & Chen, 2018; Tang et al., 2016; C. Yang & Gidófalvi, 

2018). This study used an original map-matching algorithm that was deployed using 

Apache Sedona, which was capable of dealing with million-scale big GPS data (P. 

Zhang et al., 2023). After complete GPS waypoint trajectories were computed, built 

environment and road network characteristics were calculated, for example, the 

percentages of highway and residential road usage along the trip, for later analysis. 

4.3.3 Travel time impacting factors 

The factors that were considered to be impacting travel time were identified and 

classified into three categories: driver behavior, built environment and road network, 

and external, for further analysis. 

Driver behavior factors 

Driver behavior factors refer to driver characteristics and individual driving 

behaviors. They were calculated based on map-matched GPS waypoints and trips and 

included departure time of day, day of week, month, driver choices of routes, speed, 

and driving profile (i.e., types of vehicles completing the trips, provided in the INRIX 

data). Departure time of day, day of the week, and month are factors that have been 

considered in studies of travel time prediction (X. Li & Bai, 2017). Different routes 

taken to reach the same destination may impact travel times and are considered in this 

study. Given designated travel origins and destinations, drivers may have preferred 

routes or choose to follow routes suggested by navigation apps. In this study, we used 
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the dynamic driving directions compared to the overall driving direction for the entire 

trip to represent and classify different route choices (Figure 4.2). The overall driving 

direction was represented using the start and end points of the map-matched GPS 

trajectory (Figure 4.2a). For each trip, the direction of every road segment (Figure 4.2b) 

was compared with the overall direction, and the angle between them was calculated 

(Figure 4.2c). After computing the angles, each trip was converted to a series of 

dynamic driving directions (i.e., angles), representing each driving route. Since trips 

have different trip distances and numbers of road segments, the set of dynamic driving 

directions was normalized against the percentage of trip length that the vehicles 

completed. The driving directions were later clustered using K-means time-series 

clustering (Giordano et al., 2021), and using the Elbow method to determine the 

optimal number of clusters, with the returned clusters representing different route 

choices (Makwana et al., 2013; Syakur et al., 2018). 

 

 
Figure 4.2 Dynamic driving direction compared to the overall driving direction for a trip. (a) An 
example map-matched trip. (b) An example road segment. (c) The angle between a road segment 

direction and the overall driving direction. 
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The travel speed, especially the low travel speed, could reflect both driver 

behaviors (e.g., stopping for gas/food/etc.) and traffic congestion situations. When the 

GPS waypoints were collected, their raw speed information was recorded by INRIX. 

Since there are missing raw speed values in the INRIX data, the missing values were 

estimated using their neighboring consecutive GPS waypoints. After estimating the 

missing speed data, trips that still had over 20% missing values were filtered from the 

dataset. Since trips had different trip distances and numbers of road segments, the series 

of travel speeds for a trip were normalized against the percentage of travel time the 

vehicle has completed. 

Built environment and road network factors 

A second category of factors refers to characteristics of the road network and 

built environment, including the number of road segments in a trip, the percent of 

different classes of road segments, the number of changes in road classes, trip distance, 

and average driving direction. We manually classified and assigned values to the road 

functional classes based on the importance given by OSM. Motorways and trunk were 

assigned as class 1; primary and secondary were assigned as class 2; tertiary and 

unclassified were assigned as class 3; residential and living street were assigned as 

class 4. The percent values for the four classes of road segments that vehicles traversed 

were calculated. When vehicles entered road segments that were different from the 

previous segments, driving speed also typically changed (e.g., speed will increase when 

a driver enters a highway from the ramp). The number of changes in road classes was 

computed and the average driving direction was calculated as the mean of the series of 

dynamic driving directions for a trip. 
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External factors 

The third category of factors refers to properties of the environment that may 

impact a traveler, including traffic and weather conditions. Traffic incidents are 

considered to impact overall travel time, and incident data was collected from the 

CATT Lab, including different types of incidents and events (e.g., accidents, collisions, 

and road work) and the associated incident durations. Weather data were collected from 

the Global Historical Climatology Network (GHCN) from the National Oceanic and 

Atmospheric Administration (NOAA) 13 , including daily temperature, wind speed, 

precipitation, and snow. Holidays are considered to be an external factor that could 

impact travel time, such as Independence Day (July 4th) and Christmas Day (December 

25th). We manually classified the trips into holidays and non-holidays based on the 

departure date and time. The set of impact factors was used as the explanatory variables 

that were input to the ML models for determining factor importance (Table 4.1). 

 

 

 

 

 

 

 

 

 

                                                 

13 https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily 
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Table 4.1 Factors that may impact travel times. Also the explanatory variables used in ML models. 
Category Factors Data source 
Driver behavior Time of day 

Day of week 
Month 
Route choices 
Travel speed 
Driving profile 

INRIX and 
OSM 

Built environment and 
road network 

Number of road segments 
Percent of different classes of roads 
Changes of road classes 
Trip distance 
Average driving direction 

INRIX and 
OSM 

External Incident duration 
Temperature 
Wind speed 
Precipitation 
Snow 
Holiday 

CATT Lab and 
NOAA GHCN 

 

4.3.4 Examining factor importance using ML model 

After the data were collected and processed, a Random Forest model was used 

to incorporate and identify contributing factors that may impact travel time including 

driver behavior factors, built environment and road network factors, as well as external 

factors for the two O-Ds T-SS and R-OC separately. A training data set comprising 

75% of the data was used to develop the Random Forest model, with the 5-fold cross-

validation, while the rest 25% of the data was used to assess model performance (other 

train-test splits, e.g., 80%-20% and 70%-30%, were also tested), which was evaluated 

using the coefficient of determination (𝑅𝑅2 ) and root mean square error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ).  

Parameter tuning techniques, as well as other data processing techniques, e.g., cursive 

feature elimination (RFE), adding cost-complexity pruning (CCP) for regulation, etc., 

were applied to achieve better model performance. Finally, factor importance was 
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returned by the Random Forest models and the ranked list of those factors for travel 

time for each trip scenario was analyzed. 

4.4 Results 

4.4.1 Route choice and its impact on travel time 

After processing, we obtained 9,103 trips for T-SS and 362 trips for R-OC from 

January 2018 to September 2019. The travel time for T-SS (𝑅𝑅 = 55.27 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 

𝑅𝑅𝑆𝑆 = 16.78 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) and R-OC (𝑅𝑅 = 189.23 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑅𝑅𝑆𝑆 = 25.61 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) 

were also computed using the GPS waypoint data. 

The different choices of routes by drivers may impact the travel time, and to 

investigate this, we applied the K-means time-series clustering method to the dynamic 

driving directions. The Elbow method suggested the optimal number of clusters for T-

SS trips should be five. The barycenters of clusters representing the average of each 

cluster confirmed that the five clusters showed different temporal trends (Figure 4.3a) 

and the differences among routes could also be recognized from the maps of routes 

(Figure 4.3c). The ANOVA test (𝑝𝑝 = 2.77 × 10−84 ) confirmed the significantly 

different travel times associated with different route choices between T-SS trips (Figure 

4.3b). 

The average travel times for the five clusters were 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 = 56.84 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 

𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 = 60.87 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 = 53.30 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4 =

 51.32 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, and 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 5 = 59.11 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Cluster 1 drivers used Interstate-83 

(I-83) to travel across Baltimore City, instead of using the Baltimore Beltway (i.e., I-

695). Cluster 2 drivers used the east I-695, which included the Baltimore Harbor Tunnel 
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and Fort McHenry Tunnel. The slowdown at the tunnels could be one possible reason 

for Cluster 2 having the longest average travel times among the five clusters. Cluster 3 

drivers used Exit 16 on I-695 to enter U.S. Route-29, instead of exiting to I-95 using 

Exit 11 on I-695. Cluster 4 drivers used the west I-695 and I-95, which corresponds to 

the default route suggested by navigation applications and had the shortest travel time 

of all clusters. Cluster 5 drivers used “corridor” routes that connected I-95 with other 

highways, e.g., Route-100, Route-32, and Route-200. Using these “corridor” routes to 

switch between highways may be the reason why Cluster 5 had the second longest 

travel times. 

 

 
Figure 4.3 Route clustering to determine route choices for Towson – Silver Spring trips. (a) The 

barycenters of the five clusters of route choices. (b) The maps of the five routes. (c) Box plot of travel 
time by the five clusters. 
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The Elbow method suggested three clusters for R-OC trips. The barycenters of 

each cluster showed that for the first 40% of the trip, Cluster 1 was comprised of 

different routes to Cluster 2 and Cluster 3, while for the remaining 60% of the trip, 

Cluster 3 was different from Cluster 1 and Cluster 2 (Figure 4.4a). The ANOVA test 

(𝑝𝑝 = 0.0139 ) confirmed the travel times associated with different route choices 

between R-OC were significantly different (Figure 4.4c). The average travel times for 

the three clusters were 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 = 199.15 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 = 187.71 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 

and 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 = 187.65 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 separately. Cluster 1 drivers mainly used Route-29 

and Cluster 2 mainly used I-495 before they drove over the Bay Bridge, located after 

approximately 40% of the trip lengths had been driven. After going over the bridge, 

Cluster 3 drivers chose a different route that went through the State of Delaware, 

compared to Cluster 1 and Cluster 2 drivers who stayed in Maryland for their entire 

trips (Figure 4.4b). The roads taken before the bridge contributed much to the travel 

time differences (about 12 minutes), as the road network density was higher and drivers 

had more choices compared to after the bridge where most of the driving was on the 

same U.S. Route-50 highway. 
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Figure 4.4 Route clustering to determine route choices for Rockville – Ocean City trips. (a) The 

barycenters of the three clusters of route choices. (b) The maps of the three routes. (c) Box plot of 
travel time by the three clusters. 

 

4.4.2 Driver travel speed behavior and its impact on travel time 

The different travel speed behaviors by drivers may impact travel time. 

Different patterns could be identified in the histogram of travel speeds for T-SS (Figure 

4.5a). Over 70% of T-SS trips were at speeds of 60-76mph during 50%-75% along the 

trip, while the rest 30% trips were at slower speeds of 30-40mph at the same point along 

the trip. For R-OC, we could see a clear low-speed period at about the ½ way point of 

the trip (Figure 4.5b). The slowdown happened at Easton, MD, a popular small town 

on the Maryland Eastern Shore that is about halfway in the trip. Drivers may stop at 

this town for multiple reasons, such as food, gas, and rest since R-OC was a relatively 

long trip of about 150 miles. 
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Figure 4.5 Histograms of travel speed (miles per hour) normalized by percentage of time that vehicles 

completed for (a) Towson – Silver Spring and (b) Rockville – Ocean City. 
 

We applied K-means time-series clustering method on the raw speed data 

associated with the INRIX GPS waypoints to investigate the relationship between 

driver travel speed behaviors and travel times. The Elbow method results returned three 

clusters for T-SS trips (Figure 4.6a). The ANOVA test (𝑝𝑝 = 1.42 × 10−229) confirmed 

the travel times associated with different travel speed behaviors were significantly 

different for T-SS trips (Figure 4.6c). The average travel times for the three clusters 

were 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 = 61.61 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 = 48.21 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , and 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 =

55.16 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 separately. Cluster 1 used U.S. Route-29, instead of Interstate-95. The 

choice of Route-29 meant lower travel speeds than on I-95, which led to Cluster 1 

having the longest travel time, 13.40 minutes that was 6.45 minutes longer than times 

of Cluster 2 and Cluster 3. Cluster 2 and Cluster 3 using the same route may represent 

trips either without or with traffic congestion (Figure 4.6b). Traffic congestion between 

T-SS resulted in 6.95 minutes of extra travel time on average. 
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Figure 4.6 Travel speed clustering for Towson – Silver Spring trips. (a) The barycenters of the three 

clusters. (b) The maps of the three clusters. (c) Box plot of travel time by the three clusters. 
 

The Elbow method results returned three clusters for R-OC trips (Figure 4.7a). 

The ANOVA test ( 𝑝𝑝 = 1.19 × 10−31 ) confirmed the travel times differences 

associated with different travel speed behaviors for R-OC were significant (Figure 

4.6c). The average travel times for the three clusters were 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 =

215.97 minutes , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 = 182.25 minutes , and 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 = 179.26 minutes . 

Cluster 1 drivers tended to drive at 40-55 mph speed throughout the whole trip (I-95 

has a speed limit of 55 mph and US Route-50 has a speed limit of 45 mph), leading to 

the longest travel times, approximately 33-37 minutes longer travel times than the other 

two clusters. Although Cluster 3 drivers had a slowdown at Easton, MD, they tended 

to drive at a relatively higher speed, around 70 mph during the trip, resulting in a similar 

travel time overall as Cluster 2 drivers, who did not stop along the trip (Figure 4.7b). 
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Figure 4.7 Travel speed clustering for Rockville – Ocean City trips. (a) The barycenters of the three 

clusters. (b) The maps of the three clusters. (c) Box plot of travel time by the three clusters. 
 

4.4.3 Examining the characteristics of trips 

The factors in three categories, driver behaviors, built environment and road 

network, and external factors, and their relationships with travel times were examined 

for both O-Ds. 

With regard to driving profiles (Table 4.2), we found that R-OC trips had a 

higher percentage of consumer vehicle trips (77.07%) and a lower percentage of field 

service/local delivery fleet trips (21.27%) than T-SS, keeping with the case that T-SS 

trips were urban commuting trips while R-OC trips were likely mainly associated with 

recreation and vacations. The for hire/private trucking fleet trips comprised an 

extremely low percentage of the total trips for both O-Ds (3.39% and 1.66% 

respectively). We applied ANOVA tests to investigate the variances across mean travel 
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times of different driving profiles. The p-value results for T-SS (6.75 × 10−83) and for 

R-OC (0.1105) indicated that the travel times for T-SS trips were associated with 

different driving profiles, while significant differences in travel times for R-OC trips 

were not detected over different driving profiles. Taking T-SS for example, the average 

travel times for field service/local delivery fleet trips were 60.35 minutes, 7.42 minutes 

longer than that of consumer vehicle trips. 

 
Table 4.2 Numbers of trips by driving profiles for the INRIX data. 

Driving profile Towson – Silver Spring Rockville – Ocean City 
Number of trips Percent Number of trips Percent 

Consumer vehicles 5,976 65.65% 279 77.07% 
Field service/local delivery fleets 2,769 30.42% 77 21.27% 
For hire/private trucking fleets 358 3.93% 6 1.66% 
Total 9,103  362  

 

The total numbers of trips and average travel times for driver behavior factors, 

including departure time of day, day of the week, and month, were investigated for both 

O-Ds (Figure 4.8). For T-SS, the numbers of trips showed that generally daytime trips, 

from 10 am to 4 pm, were higher and travel times showed two main peaks, one around 

8 am and the other around 5 pm, slightly after the two peaks in number of trips (Figure 

4.8a). The departure time of day for T-SS trips was associated with greater variance in 

travel times, from 50 minutes to over 200 minutes. T-SS had more trips as well as much 

longer travel times on weekdays than on weekends (Figure 4.8b), reflecting the heavily 

trafficked commuting patterns that are experienced during weekdays in the Washington 

DC-Baltimore area (Agarwal, 2004). T-SS showed fewer trips during October-

December, but the travel times in these months were relatively longer (Figure 4.8c), 

which may be related to the holidays held during this time period. More holidays 
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possibly led to fewer work-commuting trips, but the roads were packed with more 

holiday-travelers, which resulted in traffic congestion and longer travel times. 

R-OC trips, on the other hand, were distributed throughout the daytime with 

some very early morning peaks (prior to 8 am), showing that some drivers departed 

early perhaps so that they could arrive at Ocean City by or in the afternoon (Figure 

4.8d). However, travel times did not fluctuate very much during the day, suggesting 

that the departure time did not play an important role in determining the total travel 

time. A significantly larger number of R-OC trips on Fridays could be seen, together 

with longer travel times on Fridays (Figure 4.8e), likely due to travelers driving to 

Ocean City on Fridays for weekend trips and recreation. Over 73% of R-OC trips were 

made during May-September and the travel times were relatively longer, especially in 

June (Figure 4.8f), matching the time of the year when better weather and vacations to 

oceans/beaches increase the number of trips to coastal destinations like Ocean City, 

MD. 
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Figure 4.8 Data distributions for driver behavior factors: time of the day, day of the week, and month. 

Blue bars represent the total number of trips. Red lines represent average travel times (with 95% 
confidence interval). 

 

The impacts on travel time from external factors, including incident duration, 

precipitation, snow, wind speed, temperature, and holidays, were also investigated 

(Figure 4.9). There were many incidents reported for T-SS routes, mostly with incident 

durations of between 0-20 minutes and sometimes over 40 minutes, which significantly 

lengthened the overall travel time for T-SS trips (Figure 4.9a). We also found that there 

were trips with shorter accident times (e.g., 10 minutes), but still long travel times (e.g., 

100 minutes), perhaps indicating that once traffic backs up due to an incident, it takes 

some time for traffic flow to be reestablished (US Department of Transportation, 

2020a). Weather-related factors, precipitation (Figure 4.9b), snow (Figure 4.9c), wind 
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speed (Figure 4.9d), and temperature (Figure 4.9e), had non-linear relationships with 

travel time. During higher precipitation/snow events, travel times still varied from 50 

minutes to 90 minutes, suggesting that traffic was not always impacted by weather 

factors. The nature of work commuting between T-SS decided there were fewer trips 

on public holidays, associated with about 6 minutes of shorter travel times (Figure 4.9f). 

This finding seemed to be the opposite of what we observed in Figure 4.8c that during 

October-December, when there were more holidays, the travel times for T-SS were 

even longer. This was possibly due to our definition of “public holidays”, where only 

the public holiday observation days were counted. For example, the 2018 Thanksgiving 

Day was on Thursday, November 22, 2018. However, the actual Thanksgiving break 

was from Wednesday, November 21, 2018, to Sunday, November 25, 2018. There were 

more trips happening before and after the actual holiday observation date. 

For R-OC trips, there were few incidents recorded for the study period and the 

incident durations (2-12 minutes) were shorter than for T-SS incidents showing that 

total travel times were not adversely impacted by incidents (Figure 4.9g). The 

relationships between travel times and precipitation (Figure 4.9h), snow (Figure 4.9i), 

and wind speed (Figure 4.9j) were also non-linear. There was a clear segmentation that 

more trips happened when the temperature was relatively high, over 60 degrees 

Fahrenheit (Figure 4.9k). This finding corresponded with the patterns we saw in Figure 

4.8f that most R-OC trips happened in summertime, in which temperatures were higher. 

In contrast to T-SS, R-OC had more trips on holidays with shorter travel times (Figure 

4.9l) as people tended to visit recreation/vacation destinations more during holidays. 

The possible reasons for shorter travel times on holidays were similar to T-SS in that 
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when we collected the holiday data, only the date when the holidays were observed was 

counted for this factor. 

 

 
Figure 4.9 Travel time by external factors: incident duration, precipitation, snow, wind speed, 

temperature, and holidays. (a)-(f) for Towson – Silver Spring and (g)-(l) for Rockville – Ocean City. 
 

4.4.4 Random Forest model results 

We applied the Random Forest model with parameter tuning using the collected 

driver behavior, built environment and road network, and external factors, to examine 

how these factors impact travel time and how the importance of factors changes with 

different trip length/purpose (i.e., T-SS and R-OC trips). After testing different train-

test split ratios, 70%-30% was used as it returned the best model performance (Table 
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4.3). The model performance of T-SS was better than R-OC, possibly because a low 

number of records (362 recorded trips for R-OC) restricted the performance of Random 

Forest models when building decision trees (Han et al., 2021). 

 
Table 4.3 Random Forest model performance. 

 Towson – Silver Spring Rockville – Ocean City 

𝑅𝑅2 0.5357 0.4576 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 11.62 19.94 

 

The factors importance rankings represented how importantly explanatory 

factors contributed to travel time for T-SS (Figure 4.10a). The number of road segments 

factor and the percent of class 1 roads factor were ranked top for T-SS. The urban road 

network between T-SS decided that the roads drivers traveled were mostly higher speed 

limit roads, e.g., motorways and primary roads. The more roads with higher speed 

limits drivers used, the shorter travel times were. The travel speed behavior factor was 

ranked 3rd, which was discussed in Section 3.2. The roads with lower speed limits and 

the traffic congestion conditions both played an important role in the urban work-

commuting trips. The driving profile factor was ranked 4th, corresponding with the 

ANOVA analysis in Section 3.3 that the T-SS travel times were significantly different 

among different driving profiles. As discussed before, the departure time of the day 

was associated with different travel times, which was ranked 6th. Driver route choices 

were ranked at 18th, suggesting different route choices although were confirmed to be 

associated with different travel times, actually did not greatly impact travel times. 

The factor importance rankings for R-OC were also plotted to examine the 

differences of these factors between T-SS and R-OC, representing different trip 

length/purpose (Figure 4.10b). The travel speed behaviors were significantly important 
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for R-OC trips, outranging all other factors, suggesting that for a long-distance trip, the 

travel speed drivers took was the determinant factor for the overall travel time. For R-

OC, the trips where drivers consistently drove at 40-55 mph (speed limit of 45/55 mph) 

tended to be 33-37 minutes longer than other trips, some of which even made a stop at 

Easton, MD. Departure time of the day was ranked at 4th, which was similarly important 

for travel time as for T-SS trips (ranked at 6th). As there were more local roads (with 

lower speed limits) on the eastern shore of Maryland, the percent of class 4 roads factor 

made to the 6th of the list. The driving profile factor was not relatively important 

(ranked 17th), corresponding to the ANOVA analysis results in Section 3.2 that the 

driving profiles did not significantly differentiate travel times for R-OC. The incident 

duration factor was ranked at the bottom for R-OC as there were few incidents recorded 

and the incident durations (2-12 minutes) were disproportionate to the average R-OC 

travel time (189 minutes). 

 

 
Figure 4.10 Random Forest model importance rankings for the explanatory factors by categories for 

(a) Towson – Silver Spring and (b) Rockville – Ocean City. 
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Comparing the two O-Ds, a common conclusion was recognized that the 

category of built environment and road network factors was the most important for both 

O-Ds. There were more built environment and road network factors ranking relatively 

high than driver behavior factors and external factors. This finding was consistent and 

robust among Random Forest models which we trained with different tuning 

parameters. When comparing differences between the two O-Ds, we found that the 

built environment and road network factors (e.g., percent of class 2 roads and percent 

of class 4 roads) and external factors (e.g., wind speed, precipitation, and temperature) 

for R-OC were more important than for T-SS, indicating driving on local roads (lower 

speed limit) and the weather conditions were the factors drivers considered more when 

traveling for long-distance trips and for vacations and recreations.  

4.5 Discussion 

This study investigated factors that might impact travel time, including driver 

behavior factors, built environment and road network factors, and external factors, 

using the Random Forest model. Two representative trip O-Ds in Maryland, U.S., T-

SS (urban commuting driving, about 50 miles) and R-OC (trips to vacation or 

recreational destination, about 150 miles), were selected. GPS waypoint data were 

processed and map-matched from INRIX data and OSM road network data. The K-

means time-series clustering algorithm was applied to investigate different driver route 

choices and driver travel speed behaviors. Finally, all factors from the three 

aforementioned categories were trained using Random Forest models to understand 

what the key factors were for each O-D and how the factor importance changed over 

different trip length/purpose. 
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4.5.1 Driver route choice and travel speed behaviors and their impacts on travel times 

We computed two factors that were understudied in previous research, driver 

route choices and driver speed behaviors, using a time-series clustering method. 

Although the Random Forest showed different route choices did not greatly contribute 

to the overall travel times as other factors, the clustering analysis showed that drivers 

did use different routes and the ANOVA test confirmed that depending on which route 

drivers chose, their travel time was different. This leaves an interesting topic for future 

research, what would be dominant when the results from two ML methods do not align 

with each other. 

The driver travel speed factor was used to represent the traffic congestion 

situations (US Department of Transportation, 2020b). Both the clustering analysis and 

Random Forest models suggested the significant impact of travel speed behaviors on 

travel times. For example, Cluster 2 and Cluster 3 for T-SS represented trips using the 

same route but without and with traffic congestion separately, which had a difference 

of 6.95 minutes in travel times. Random Forest models confirmed the important role of 

the travel speed behavior factor for both O-Ds (ranked at 3rd and 1st respectively). 

Especially for R-OC (long-distance trip and trip for vacation/recreation), the travel 

speed behavior factor was more important than all other factors combined. 

4.5.2 Trip length and trip purpose 

The two O-Ds representing different trip lengths and trip purposes were 

examined in terms of impacting factors by Random Forest models. Except for the 

common pattern that the category of built environment and road network characteristics 
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was generally more important than the other two categories, when comparing the two 

O-Ds, differences between trip lengths and trip purposes could be found. 

The clustering analysis suggested that long-distance trips had fewer route 

choices than short-distance trips. The T-SS trips showed more variance in terms of the 

routes drivers could choose from. R-OC trips had limited variance before the drivers 

passed the Bay Bridge, and after passing the bridge, drivers could only choose either 

U.S. Route-50 or Delaware-404. In addition, the Bay Bridge was the only way for 

drivers to enter the eastern shore of Maryland. Drivers traveling for long-distance trips 

may follow the navigation apps, while short-distance trip drivers may be more familiar 

with the roads and may have their own preferences, which possibly contributed to this 

finding. There was another difference in the behaviors between long- and short-

distance trip drivers, which was stopping along the way. About 25% of R-OC drivers 

stopped at the small town, Easton, MD, for food/gas/rest/etc. purposes, as the whole 

trip was over 150 miles and over 3 hours. 

With regard to the differences of factors by categories, we found that driving 

on local roads (lower speed limit) and the weather conditions were the factors drivers 

considered more when traveling for long-distance trips and for vacations and 

recreations. Our findings that time of the day factor (i.e., departure time) was ranked 

relatively high (2nd and 4th respectively) and day of the week factor and month factor 

were ranked relatively low for both trip purposes, corresponding with the current 

research findings that departure time is important and weekday/weekend and month are 

unimportant (Lenny et al., 1997; X. Li & Bai, 2017; Mendes-Moreira et al., 2012). The 

driver-related characteristics were usually unavailable in travel time-related analysis, 
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while in this study, the driving profile (what type of vehicle the drivers were using) was 

included in the analysis. Both the ANOVA analysis and Random Forest models 

suggested that different driving profiles contributed to differences in travel times for 

T-SS trips, not for R-OC trips. The nature of trips to vacation/recreation destinations 

decided that the majority of R-OC trips were consumer vehicle trips. 

The built environment and road network factors were generally more important 

than driver behavior factors and external factors for both trip purposes, especially the 

road class factor. The class 1 roads (motorways and trunk) played an important role in 

travel times for both O-Ds, which corresponded with the research conclusion that the 

travel time of long distances is dominated by the time of “travel-free” sections (Wu et 

al., 2004). The weather-related external factors were ranked bottom among all factors 

for both O-Ds by the Random Forest model. This is likely because the Maryland 

climate was relatively mild, and severe weather was not experienced very much during 

this period. The incident factor was ranked at 12th and 20th respectively, which were 

the causes of traffic congestion and unreliable travel and could potentially lengthen 

travel times (US Department of Transportation, 2020b). This indicated the short-

distance trips were more easily impacted by traffic incidents.  

4.5.3 Possible data biases present in this research 

The biases associated with the data must be acknowledged that the sampling 

rate of the INRIX dataset (i.e., ratio of recorded trips to the total number of trips actually 

happening) was about 2%. The INRIX data was passively-collected by mobile devices 

(cell phones or GPS devices installed on vehicles). Certain population groups might be 

underrepresented, leading to biased travel patterns for this research. Previous research 
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investigated multiple mobility datasets, e.g., Apple, Google, SafeGraph, and Descartes 

Lab, and their sampling rates at different spatial scales demonstrated higher levels of 

underrepresentation bias in certain population groups, e.g., Black, Hispanic, elder, and 

low-income, possibly due to lower smartphone and cell phone ownership rates (Abrar 

et al., 2023; Coston et al., 2021; Z. Li et al., 2023). Different demographic groups were 

associated with different mobility patterns. For example, the Black population was 

positively associated with mobility decrease and the median household income was 

associated with mobility recovery during the COVID-19 Pandemic (G. Zhu et al., 2021; 

G. Zhu & Stewart, 2023). Compared to the average sampling rate 7.5% for SafeGraph 

data, the INRIX data with only 2% of sampling rate needs further investigation on 

which demographic groups were less captured in the dataset and to what degree this 

selection bias influenced the mobility patterns derived from INRIX data. 

4.6 Conclusions 

Existing research, including on-market navigation applications (e.g., Google 

Maps), focuses more on providing accurate travel time prediction using advanced 

algorithms that take into account shortest path computations, while the focus of this 

study was to investigate what kinds of factors from driver behaviors, to built 

environment and road network characteristics and also external factors (e.g., incidents 

and weather) impact travel time for different trip lengths and different trip purposes. 

The time-series clustering analysis showed that for each O-D pair, different route 

choices were being activated by drivers. The Random Forest models confirmed the 

consistent conclusion over the two O-Ds that factors related to built environment and 

road network characteristics were significantly influencing travel times in the urban 
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area of Maryland, as driving on roads with higher speed limits comprised large 

proportions of trips. Time of the day was another determinant factor for travel time, 

especially for T-SS, as people commute to work on a daily basis and are more sensitive 

to traffic congestion and rush hours. On the other hand, the different natures of T-SS 

and R-OC led to differences in factor importance. For example, T-SS experienced more 

incidents than R-OC, resulting in the incident duration factor more impacting T-SS 

travel times than R-OC travel times. The percent of class 4 roads factor was more 

important for R-OC, possibly due to R-OC trips traversing more local roads on the 

eastern shore of Maryland than T-SS trips. For long-distance trips and trips to 

vacation/recreation destinations, the driver travel speed played a determining role in 

travel times. Other factors, such as driver route choices, holiday, and weather 

conditions, did not greatly impact the overall travel times. 

This study only selected two popular O-Ds in Maryland, which is a mostly 

urbanized state. Driving conditions for other O-Ds and other suburban areas may not 

be the same as the two O-Ds in this study. Future work may scale up to the whole road 

network in an area to investigate the travel time of any trip made within the area, which 

may eliminate bias as much as possible. The holiday factor could be expanded to the 

neighboring dates of holidays when more trips happened. Additional data sources with 

socioeconomic information of drivers and better quality (i.e., less missing data) could 

help bridge the gap and provide more insights into how these factors generally impact 

travel time. The two O-Ds, although representing different trip lengths and trip 

purposes, could not quantitatively differentiate the impacts of trip length and trip 

purpose. Future research could control the variance and select two O-Ds with the same 
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trip lengths but different trip purposes (or vice versa) to investigate the solely impact 

of trip length or trip purpose. 
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Chapter 5: Conclusions 

5.1 Review of dissertation 

This dissertation is composed of three studies that investigated the 

spatiotemporal trends of mobility patterns, specifically vehicle mobility (i.e., vehicle 

trip changes and travel behaviors), using passively-collected mobile device data in the 

U.S. These regional (state) and nationwide analyses for trips and driving behaviors 

were undertaken at different spatial scales, such as census tract and county level, and 

over different time periods. Different ML models (regression, classification, and 

clustering) were applied to interpret factors that could contribute to different patterns 

of mobility, as well as categories of factors, that may impact mobility in different 

contexts, for example, different stages of the COVID-19 Pandemic. What were the key 

factors for mobility patterns and how the key factors changed over space and time were 

investigated by these explanatory analyses using ML models. In addition to providing 

new insights into how different types of mobility patterns evolved over space and time 

especially during a major public health crisis, the results are useful for policy and 

planning implications for local and regional officials, e.g., mobility restriction 

measurements, decision support for economic recovery, and public health strategies. 

The integration of diverse data sources (e.g., passively-collected mobility data and 

other mobility data from different public and private sources) and the utilization of 

multiple ML models enhanced the interpretability of mobility patterns. 

The first study of the dissertation (Chapter 2) examined mobility patterns 

(inflow trips per person) in Florida during the early COVID-19 Pandemic, when the 

number of COVID-19 cases started to rise in summer 2020. Three counties in Florida 
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were selected as the case study area. The temporal changes in the mobility patterns 

were identified that the number of trips made per person significantly declined in all 

three counites when new COVID-19 case numbers began to rise in mid-June. An 

explanatory analysis using Random Forest models to detect the key factors that may 

impact mobility patterns applied a set of over 30 factors, including sociodemographic, 

travel-related, and built environment factors, as well as COVID-19 case data. Some of 

the factors, e.g., distance to beach and bar/restaurant visits, were specially examined 

for the tri-county region. The Random Forest models revealed differences among 

counties with respect to factors that contributed to mobility patterns prior to and after 

the spike in COVID-19 cases. The results not only informed the Florida local health 

officials the spatiotemporal insights into mobility patterns among the three counties, as 

the counties were hard hit by COVID-19 infections, but also inspired the stakeholders 

to pay more attention to certain sociodemographic groups when making mobility-

restriction policies. 

The second study of the dissertation (Chapter 3) investigated the nationwide 

mobility patterns (i.e., relative trip changes) at county level in the U.S. in the context 

of ongoing COVID-19 vaccines. A mobility index representing the relative trip changes 

at county level was calculated using multiple mobility data sources, including Apple 

Mobility Trends Report and FHWA Traffic Volume Data, to obtain more county 

coverage. The patterns of mobility index and vaccination rates were examined for the 

first five months of 2021. The K-means multivariate time-series clustering algorithm 

was applied on both mobility and vaccination rates to examine the spatial and temporal 

distributions of counties with similar mobility-vaccination profiles and returned five 
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clusters of counties across the U.S. The characteristics of clusters were examined with 

respect to gender, age, race and ethnicity, economic, education, and work to better 

understand the drivers for different clusters using ANOVA tests. Results suggested 

higher education and household income impacted counties’ mobility-vaccination 

profile. The in-depth trip purposes of clusters were also examined for selected counties 

and higher trips to retail/recreation and workplaces were found to be associated with 

rural counties with relatively lower mobility-vaccination profile. 

The third study of the dissertation (Chapter 4) examined the vehicle mobility 

behaviors, i.e., vehicle driving time, between two selected O-Ds in Maryland 

representing different trip purposes and different trip lengths during January 2018-

September 2019 using passively-collected GPS waypoint data by INRIX to analyze 

how travel time varied among trips and the underlying factors for different travel times. 

Two factors that were understudied in previous research, driver route choice and 

different travel speed behaviors, were computed using a time-series clustering method, 

and their impacts on travel times were investigated. These two factors alongside factors 

from three additional categories, including driver behavior, built environment and road 

network, and external factors (e.g., incident and weather), were studied for the two O-

D pairs using Random Forest models to analyze what were the key factors and whether 

these key factors changed for different trip purposes and trip lengths. 

In this dissertation, I used various sources and types of mobility data. During 

the COVID-19 Pandemic, human mobility data provided important opportunities for 

both researchers and policymakers to understand how mobility was related to the 

spread of COVID-19, among other topics. However, in general, passively-collected 
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mobile device data is not as widely accessible for academic research as needed. To give 

some examples, the SafeGraph data in Chapter 2 was accessed via a data sharing 

agreement that the data could only be used for academic and research purposes and is 

no longer available from SafeGraph. The Apple Mobility Trends Report and Google 

Community Mobility Reports used in Chapter 3 were publicly available at the time of 

my analyses, however, were not updated after April 14, 2022 and October 15, 2022, 

respectively and while Google has made its historical data still publicly available, 

Apple data is now no longer provided. The FHWA mobility data used in Chapter 3 was 

publicly available through the U.S. Federal Government data sharing platform. The 

INRIX GPS waypoints data used in Chapter 4 was obtained from CATT Lab at the 

University of Maryland and requires an agreement with the data provider. These 

different levels of access pose certain disadvantages for mobility researchers. Greater 

data access would lead to an increased body of research that is more diverse, and would 

allow more research on mobility topics outside of the Pandemic. It is hoped that more 

collaboration between academia, mobility companies, and government agencies could 

be established to improve mobile device data access for academic research. 

The biases associated with the mobility data used in these analyses must be 

acknowledged. Certain population groups might be underrepresented, leading to biased 

travel patterns for this research. Previous research has found that older and non-White 

populations were less likely to be captured by mobility data, particularly in the 

Pandemic context (Coston et al., 2021). The sampling rates of current popular mobility 

datasets, e.g., Apple, Google, SafeGraph, and Descartes Lab, were examined and 

demonstrated higher levels of underrepresentation bias in certain population groups, 
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e.g., Black, Hispanic, elder, and low-income, possibly due to lower smartphone and 

cell phone ownership rates (Abrar et al., 2023; Coston et al., 2021; Z. Li et al., 2023). 

The passively-collected mobility data for Chapter 2, which recorded the driving trips 

in Florida, may leave certain groups underrepresented. The Apple Mobility Report for 

Chapter 3 captured the navigation app usage only for iPhone users, while the FHWA 

Traffic Volume Data for Chapter 3, which captured the changing numbers of trips on 

the road, only counted the number of vehicles detected by the fixed loop detectors 

installed on certain major highways in each state. The INRIX GPS waypoint data used 

in Chapter 4 had a sampling rate of 2%, i.e., only 2% of the trips that happened on the 

Maryland roads were recorded. Compared to the average sampling rate 7.5% for 

SafeGraph data, the INRIX data with only 2% of sampling rate means certain 

demographic groups were less captured in the dataset and to what degree this selection 

bias influenced the mobility patterns derived from INRIX data was left for future 

research. 

5.2 Significant contributions 

Chapter 2 - contribution 1: The relationship between mobility and COVID-19 

infections were understudied in summer 2020, an early-Pandemic stage, when the 

analysis for Chapter 2 was conducted. For this research, passively-collected mobile 

device data was obtained and analyzed in order to extract associations between daily 

mobility patterns at census tract-level and the daily new COVID-19 cases. Over a three-

month period (May-July 2020) after a period of higher levels of mobility, there was a 

clear change in mid-June, when COVID-19 cases began to rise significantly, and 
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mobility declined in all three counties. Counties with higher levels of COVID-19 

infections experienced larger decrease in mobility. 

Chapter 2 - contribution 2: Chapter 2 examined over 30 different factors 

including sociodemographic, work-related, built environment, and COVID-19 factors, 

to identify what factors significantly contributed to the different mobility patterns 

among the three counties and over time using Random Forest models. The analysis 

revealed different factors were important for different counties and over different time 

periods, which could support the local officials when making mobility and public health 

decisions. 

Chapter 3 - contribution 1: Chapter 3 examined the mobility patterns in the 

context of ongoing COVID-19 vaccinations at county level across the U.S. The study 

was novel for the analysis of compound associations of mobility and COVID-19 

vaccination rates using a ML clustering approach. Five clusters of counties representing 

different mobility-vaccination profiles were identified across the U.S. with different 

underlying demographic and socioeconomic characteristics. The multivariate time-

series clustering method was able to detect the spatial and temporal distributions of 

counties with different mobility-vaccination profiles and could be applied in the 

analysis of mobility and other topics. 

Chapter 3 - contribution 2: The mobility patterns investigated in Chapter 3 were 

the relative trip changes that were fused from two different mobility data sources, the 

Apple Mobility Report and the FHWA Traffic Volume Data. Due to data privacy 

policy, the two datasets only covered a portion of all U.S. counties, which motivated 

the mobility data fusion. After checking the correlations between the two datasets and 
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confirming the two datasets had the same trends of mobility, a mobility index was 

calculated fusing the two datasets, which enlarged the coverage of the U.S. counties. 

The process of mobility data fusion inspired further research where multiple mobility 

datasets could be fused to obtain a larger spatial scale and enhance the interpretability 

of mobility patterns. 

Chapter 4 - contribution 1: Chapter 4 investigated the travel (driving) time for 

two selected O-Ds in Maryland and revealed how different factors contributed to 

driving time. The two O-Ds represented short and long trips (50 miles and 150 miles) 

with different trip purposes of work commuting and trips to vacation/recreation 

destinations respectively. The characteristics of travel times for the two O-Ds were 

examined by three categories, including driver behavior, built environment and road 

network characteristics, and external factors. The key factors contributing to travel 

times between the two O-Ds were identified using Random Forest models. 

Understanding the importance of the explanatory factors on travel times is critical for 

transportation planners, researchers, and other stakeholders. For example, the results 

could better help researchers better select and weigh parameters/factors when designing 

advanced travel time prediction algorithms. 

Chapter 4 - contribution 2: Two factors, driver route choices and driver travel 

speed behaviors, that could possibly impact travel times and were less studied 

previously, were computed and investigated in Chapter 3. A time-series ML clustering 

method with DTW was applied and returned different driving route choices and 

different travel speed behaviors for both O-Ds, which were associated with statistically 

significantly different travel times. Travel speed behaviors, particularly, played a 
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critical role in determining travel times, especially for long-distance trips and trips to 

vacation/recreation destinations. The two factors provided new elements for future 

mobility-related research. 

5.3 Future work 

The three studies in the dissertation are explanatory studies that used multiple 

ML approaches (regression, classification, and clustering) to interpret mobility patterns 

in the U.S. 

One common future research topic for all three studies is to take advantage of 

the prediction capabilities of ML methods and perform predictive analysis on mobility-

related research. After interpreting the factors that contribute to mobility patterns, the 

general public would like to know what future mobility patterns will be like utilizing 

the current explanatory factors. For example, Chapter 2 and Chapter 3 are in the context 

of COVID-19. Although COVID-19 is no longer a global Pandemic and people have 

resumed higher levels of mobility, the research methodologies, as well as the selected 

explanatory, used in Chapter 2 and Chapter 3 are still meaningful for predicting 

mobility when a special event happens in the future. After a better understanding of 

how impactful the factors were on travel times for different trip length/purpose in 

Chapter 3, an advanced ML or Deep Learning algorithm (e.g., Long Short-Term 

Memory and GeoAI) could possibly improve the accuracy of travel time prediction. 

Another topic for future research lies in the mobility data sampling bias, which 

is discussed in Section 5.1. The COVID-19 Pandemic highlighted the importance of 

mobility data for e.g., tracking how infections may be spread, and how populations 

react during a major health crisis among other topics. There are many mobility data 
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sources, e.g., Google, Apple, and SafeGraph, and the mobility data made available by 

different providers has a sampling bias. Further study is needed on which demographic 

groups were underrepresented as the result of the sampling bias, how these 

underrepresented groups impact the mobility patterns generated by analyses such as the 

studies in this dissertation, and what methods can be implemented to reduce the 

sampling bias and account for these biases. 

The three studies in this dissertation focused specifically on the vehicle mobility 

patterns, either the changing numbers of trips or the vehicle driving times. The term 

human mobility contains multiple aspects that are worth investigating, e.g., pedestrian, 

cyclist, public transit (e.g., bus and subways), air transportation, bike-sharing, web 

mobility, etc. (Barbosa et al., 2018). It would be interesting to investigate how ML and 

Deep Learning models could help interpret other human mobility patterns in different 

contexts (i.e., over difference space and time). The categories of factors impacting other 

human mobility patterns are definitely different from the categories and factors 

examined for vehicle mobility patterns in this dissertation. The future research could 

examine the different categories and factors impacting different mobility types. 
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Appendices 

 

Table A1 Statistical details of the demographic and socioeconomic characteristics as well as COVID-
19 cases and deaths for clusters. The top row is the mean values for each cluster, while standard 

deviations are in parentheses. 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Percent of urban counties (%) 36.14 58.84 46.65 30.53 60.00 
Percent of bachelor’s degree and 
above (%) 

13.62 
(4.55) 

22.15 
(7.65) 

17.01 
(5.34) 

13.33 
(7.15) 

28.86 
(9.24) 

Percent of population working from 
home (%) 

2.01 
(1.16) 

3.36 
(1.35) 

2.52 
(1.14) 

2.22 
(1.76) 

4.14 
(1.40) 

Median household income ($) 51,760 
(11,028) 

65,013 
(16,961) 

56,560 
(11,834) 

51,408 
(13,734) 

73,606 
(22,870) 

Percent of Asian population (%) 0.85 
(0.91) 

2.69 
(3.55) 

1.46 
(1.90) 

0.80 
(0.86) 

4.88 
(7.03) 

Percent of below poverty (%) 15.29 
(5.07) 

11.56 
(4.90) 

13.46 
(4.94) 

15.29 
(6.22) 

11.04 
(6.38) 

Age 0-19 (%) 25.64 
(3.09) 

24.01 
(3.23) 

24.66 
(3.00) 

25.85 
(3.86) 

22.51 
(4.23) 

COVID-19 deaths (per 10,000 people) 9.48 
(4.78) 

7.16 
(4.58) 

8.46 
(4.87) 

8.32 
(4.95) 

6.13 
(4.94) 

Percent of male (%) 49.89 
(2.07) 

49.61 
(1.35) 

49.70 
(1.81) 

50.91 
(3.12) 

49.32 
(1.47) 

Percent of female (%) 50.10 
(2.07) 

50.38 
(1.35) 

50.29 
(1.81) 

49.08 
(3.12) 

50.67 
(1.47) 

Percent of Black population (%) 11.97 
(16.10) 

6.29 
(9.01) 

10.16 
(15.55) 

10.19 
(11.80) 

5.34 
(6.24) 

Population density (per 𝑘𝑘𝑚𝑚2) 42.92 
(91.89) 

233.55 
(645.05) 

127.91 
(660.02) 

34.04 
(129.11) 

431.27 
(1952.63) 

Age 65 and over (%) 17.89 
(3.52) 

18.86 
(4.71) 

18.50 
(4.16) 

17.26 
(3.93) 

20.24 
(6.85) 

Age 45-64 (%) 26.08 
(2.59) 

26.69 
(2.66) 

26.43 
(2.70) 

25.91 
(3.05) 

27.13 
(2.94) 

COVID-19 cases (per 10,000 people) 367.84 
(109.77) 

359.54 
(142.56) 

374.58 
(114.24) 

331.95 
(156.23) 

346.92 
(141.23) 

Mean travel time to work (minutes) 24.82 
(5.00) 

24.11 
(5.42) 

24.24 
(5.06) 

25.58 
(6.11) 

24.52 
(5.28) 

Unemployment rate (%) 4.69 
(1.47) 

4.82 
(1.73) 

4.74 
(1.58) 

4.77 
(1.49) 

5.27 
(1.85) 

Percent of Hispanic population (%) 9.48 
(13.01) 

11.19 
(16.42) 

9.61 
(13.51) 

11.93 
(13.21) 

11.44 
(15.12) 

Percent of White population (%) 80.43 
(16.15) 

82.63 
(13.51) 

81.32 
(16.86) 

80.79 
(14.08) 

78.60 
(16.79) 

Age 20-44 (%) 30.37 
(3.49) 

30.41 
(4.52) 

30.40 
(4.17) 

31.06 
(4.48) 

30.09 
(5.59) 
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Table A2 Adjusted p-values for all pair comparisons between 5 clusters from Tukey HSD post hoc test. 
Significance level is 0.05. 
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