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Abstract

This paper analyzes a connection between risk-sensitive and minimax cri-
teria for discrete-time, �nite-states Markov Decision Processes (MDPs). We
synthesize optimal policies with respect to both criteria, both for �nite horizon
and discounted in�nite horizon problem. A generalized decision-making frame-
work is introduced, which includes as special cases a number of approaches that
have been considered in the literature. The framework allows for discounted
risk-sensitive and minimax formulations leading to stationary optimal policies
on the in�nite horizon. We illustrate our results with a simple machine replace-
ment problem.

KeyWords: Stochastic Control, Risk-Sensitive Control, Minimax Control, Markov
Decision Processes

1 Introduction

In the classical, risk-neutral approach to stochastic control, one seeks to minimize the
expected total cost (or average cost) incurred in the evolution of a dynamical system.
Risk-sensitive control is a generalization of this approach whereby we consider higher
order moments of the probability distribution for the total cost as well. In minimax
control, one is interested in minimizing the worst-case behavior of a dynamical system.

An early formulation of the risk-sensitive control problem is due to [HM72]. In the
LQG setting, the problem was �rst studied by [Jac73], where it was found that in the
risk-sensitive setting, the certainty equivalence principle does not hold in its original
form. Extensions to the partially observed setting include [Whi81] and [BS85]. A

�Corresponding author Steven I. Marcus. Tel. 301-405-7589; Fax 301-314-9920; E-mail

marcus@isr.umd.edu.
1Department of Electrical Engineering and Institute for Systems Research, University of Mary-

land at College Park, MD 20742, U.S.A.
2Department of Electrical Engineering and Institute for Systems Research, University of Mary-

land at College Park, MD 20742, U.S.A.

1



somewhat surprising result is that the conditional distribution of the state given past
observations does not constitute an information state.

A good survey of work in nonlinear risk-sensitive control is given by [McE96a] and
[McE96b]. The partially-observed MDP setting has been studied in [BJam], where
an information state and dynamic programming equations for the value function on
the �nite horizon are introduced. Structural results for the value function are due to
[FGMar].

Early work in minimax control of stochastic systems includes [BR71], where the
connection between stochastic and deterministic descriptions of uncertainty is ad-
dressed. In the LQG setting, a connection between risk-sensitive control and H1

control is established in [GD88]. The connection between minimax and robust con-
trol is explored in [BB95]. In [BJam], a �nite-state robust control problem is studied
as the small-noise limit of a particular risk-sensitive control problem.

An interesting fact both in risk-sensitive and minimax control is that in general,
on the in�nite horizon and with stationary costs, there does not exist a stationary
optimal policy. This is the case in the �nite-state MDP setting as well. Dynamic
programming equations in the full state observations case are derived in [CS87]. Al-
ternate approaches to risk-sensitive control which lead to stationary optimal policies
are developed in [Por75], [KP78], and [Eag75]. An alternate approach in the LQG
setting is developed in [HS95]. Average cost approaches, which also lead to opti-
mal stationary policies on the in�nite horizon, are pursued in [FHH(1)], [FHH(2)],
[HHM96], [HHM97].

In this paper, we analyze the large-risk-limit connection between the risk-sensitive
and the minimax control problems in the MDP setting. The minimax control problem
can be addressed by exploiting this connection. We synthesize optimal risk-sensitive
and minimax policies on the �nite horizon, and derive dynamic programming equa-
tion on the in�nite horizon with discounted costs. A su�ciently large �nite horizon
approximation to the in�nite horizon problem can be used to obtain near-optimal
policies both for risk-sensitive and minimax criteria.

Further, we introduce a generalized decision-making framework which includes as
special cases a number of approaches that have been considered in the literature,
and extend these approaches to the minimax setting. We illustrate our results with
a machine replacement problem that has been used as a benchmark example in the
literature (see [FGMar]).

2 Risk-Sensitive and Minimax Control

We consider the class of discrete-time MDPs with �nite state space X, �nite control
space U , and �nite observation space Y . We denote the cardinality of these spaces
by jXj, jU j, and jY j. The probability transition matrix P (u) is de�ned by Pij(u) =
pr(xk+1 = jjxk = i; uk = u), and the observation matrix Q(u) is de�ned by Qij(u) =
pr(yk = jjxk = i; uk�1 = u). We de�ne ck(xk; uk) � 0 to be the (possibly discounted)
cost incurred by the system at time k � 0, given that it is in state xk 2 X and that
control uk 2 U is used. If there is a �nite horizon size N , there is a terminal cost
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cN(xN ) � 0. A partial sum of costs is denoted by Ci;N =
Pk=N�1

k=i ck(xk; uk)+cN(xN ).
The vector of terminal costs is denoted by cN .

The risk-neutral objective is given by

J(�; �0) = E�;�0[
X
k

ck(x; u)]; (1)

where � is a non-anticipative policy and �0 is the probability distribution on the
states of the system at time k = 0. The risk-sensitive objective is given by

J
(�; �0) =
1



logE�;�0 [exp (


X
k

ck(x; u))]: (2)

For small 
, (2) takes the form

J
(�; �0) ' E�;�0[
X
k

ck(x; u)] +



2
V ar�;�0[

X
k

ck(x; u)]; (3)

and in the limit 
 ! 0, (2) reverts to the risk-neutral objective (1). The parameter 

allows one to incorporate an aversion or preference for risk, or variability in the cost
incurred in the system's evolution. For 
 > 0, we are penalized for variability in the
cost incurred, so we say that we have a risk-averse objective.

An equivalently objective to (2) is given by

Ĵ
(�; �0) = E�;�0[exp (

X
k

ck(x; u))]: (4)

In [BJam], an information state process for the MDP with respect to criterion (4) is
de�ned, satisfying the following recursion:

�


0 = �0; (5)

�


k+1 = jY j�
kD


(k; uk) �Q(yk+1; uk); (6)

where
D



ij(k; u) := Pij(u) exp (
ck(i; u)); (7)

and �Q(�; �) is a diagonal matrix with �Qii(y; uk) = pr(yk+1 = yjxk+1 = i; uk = u). The

information state belongs to the space R
jXj
+ , where R+ is the space of non-negative real

numbers. On the �nite horizon, the value function associated with this information
state is given by

S


k;N(�) := inf

�2M
Ey[�
N � exp(
cN)j�



k = �]: (8)

where the exp operator is de�ned component-wise,M denotes the set of non-anticipative
policies, and y denotes a reference probability measure, under which all observations
y 2 Y are independent and equiprobable at every time k. Dynamic programming
equations for (8) are given by

S


N;N(�


) = �
 � exp(
cN); (9)

S


k;N(�


) = min
u2U

Ey[S

k+1;N(p�


D
(k; u) �Q(yk+1; u)]: (10)
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It has been shown in [FGMar] that S

k;N(�) is a concave and piecewise-linear func-

tion. These structural properties together with a normalized information state can
be exploited to develop an algorithm to synthesize an optimal policy, similar to the
algorithm given in [SS73] for risk-neutral control (with a minor correction in [Lov89]).
See [Cor97] for details.

The minimax objective is given by

�J(�; �0) = sup
!2
�

X
k

ck(xk; uk); (11)

where 
� is the set of trajectories of the form (x0; u0; x1; u1; : : :) that occur with non-
zero probability under policy �. Note that, with respect to the minimax objective,
the probability with which each trajectory occurs under a �xed policy � is signi�cant
only to the extent that it is zero or non-zero.

The following result will be useful in establishing a connection between the risk-
sensitive and minimax criteria. Its proof is similar to that of the Varadhan-Laplace
Lemma, given e.g. in [BJam].

Lemma 1 (Modi�ed Varadhan-Laplace Lemma). Let F 
; F be real valued
functions de�ned on a �nite set 
, where 8! 2 
; F (!) = lim
!1 F 
(!). Also, let
p(!) be a nonnegative real number 8! 2 
, independent of 
. Then

lim

!1

1



log

X
!2


p(!) exp [
F 
(!)] = max
!2
;p(!)6=0

F (!): (12)

Using Lemma 1, it can be shown that, on the �nite horizon, lim
!1 J
(�; �) =
�J(�; �). That is, the large-risk limit of the risk-sensitive objective is the minimax
objective. Let us de�ne a statistic for the MDP by

sk := lim

!1

1



log �
k ; 8k; (13)

where the log operator is de�ned component-wise. Again using Lemma 1, it can be
shown that the statistic satis�es the following recursion, where by s[x] we mean the
xth component of vector s:

s0[x] =

(
0 if �0[x] 6= 0,
�1 otherwise,

(14)

sk+1[x
0] = f(sk; uk; yk+1): (15)

The function f(�; �; �) is given by

f(sk; uk; yk+1) =

(
maxx2 ~X(x0;uk)

[sk[x] + ck(x; uk)] if ~X(x0; uk) 6= ;, x0 2 ~Y (yk+1; uk)

�1 otherwise,
(16)
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where ~X(x0; uk) is the set of states at time k from which, using control uk 2 U , there is
a nonzero probability that the state of the system at time k+1 will be x0; ~Y (yk+1; uk)
is the set of states at time k + 1 that can result in observation yk+1 at time k + 1, if
the control at time k is uk.

It can be shown that the statistic and the objective (11) on the �nite horizon are
related by the following:

�J(�; �0) = max
y1;:::;yN

max
i2X

sN [i]: (17)

This motivates the following de�nition for the value function:

Wk;N(s) := min
�2M

max
yk+1;:::;yN

max
i2X

sN [i]; where sk = s: (18)

Indeed, we have

W0;N(s0) = W0;N( lim

!1

1



log �0) = min

�2M

�J(�; �0): (19)

The value function at time k can be thought of as the worst case total cost incurred
in the system's evolution, given an information state at time k, and given that an
optimal policy is used thereafter.

The following result establishes that the statistic satisfying (14), (15) is an infor-
mation state, and that there exists an optimal separated policy that can be computed
by using the dynamic programming equations for the value function (18). First,
we introduce the following notation for the set of all information states. De�ne
~R
jXj
+ := fR+;�1gjXj.

Theorem 1 (Minimax Finite Horizon Dynamic Programming). The value

function satis�es the following, 8s 2 ~R
jXj
+ :

WN;N(s) = max
i2X

s[i]; (20)

Wk;N(s) = min
u2U

max
y2Y

Wk+1;N(f(s; u; y)); (21)

A policy that achieves the minimum in equations (20) and (21), also achieves the mini-
mum in (18). Furthermore, the policy is separated and is optimal with respect to (11).

Proof. Equation (20) follows immediately from (18). For k < N , using Lemma
1 and (13), we have

Wk;N(s) = min
�2M

lim

!1

1



logE�[exp(
Ck;N)j�



k = exp(
s)]

= lim

!1

1



logmin

�2M
E�[exp(
Ck;N)j�



k = exp(
s)]

= lim

!1

1



logS


k;N(exp(
s)): (22)
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Thus we have

Wk;N(s) = lim

!1

1



logmin

u2U
Ey[S


k+1;N(jY j exp(
s)D

(k; u) �Q(y; u))]

= min
u2U

lim

!1

1



logEy[S


k+1;N(jY j exp(
s)D

(k; u) �Q(y; u))]

= min
u2U

lim

!1

1



log

X
y2Y

jY jSk+1;N(exp(
s


k+1)); (23)

where s
k+1 is such that exp(
s


k+1) = jY j exp(
s)D
(k; u) �Q(y; u). Note that lim
!1 s



k+1 =

sk+1, as given by equation (15). Finally, using Lemma 1 and (22), we conclude

Wk;N(s) = min
u2U

max
y2Y

Wk+1;N(f(s; u; y)): (24)

It remains to show the optimality of a separated policy. Note that the minimization in
(21) depends on past observations only through the information state. Thus, setting
k = 0 we see that a total cost of W0;N(s0) is achieved by using a separated policy.
It follows from (19) that the policy is optimal in the larger class M of all admissible
policies. 2

In risk-neutral and risk-sensitive control, the determination of optimal policies
for partially observed MDPs typically involves the use of structural results for the
value function. Without such results, the minimization in (10) over a continuum of
information states (the unit simplex), is intractable. In the minimax control setting,
the situation is greatly simpli�ed since, on the �nite horizon, we need only consider a
�nite number of information states. At time k = 0, there are 2jXj� 1 values that the
information state s0 can take, corresponding to all possible subsets of X of feasible
initial states. At time k > 0, in the worst case there are (2jXj� 1)(jU j � jY j)k feasible
information states. A possible scheme for determining optimal policies on the �nite
horizon is the following:

1. Generate all information states of interest.

2. Use the dynamic programming equations (20), (21) to �nd the optimal control
at each state of interest.

The use of this scheme will be illustrated in Section 5.

3 The In�nite Horizon

One way to insure that the objectives (1), (2), and (11) are bounded on the in�nite
horizon by introducing a discounted cost structure. That is, we set ck(�; �) = �kc(�; �),
where 0 < � < 1. In [CS87] it is shown that the limit

Ŝ


k (x) := lim

N!1
Ŝ


k;N(x) (25)
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exists, for all x 2 X and 
 > 0, where Ŝ

k;N(x); x 2 X is the value function in the

case of full state observations. Furthermore, the in�nite horizon value function can
be characterized as follows:

Ŝ


0 = min

u2U
fD
(0; u)Ŝ�


0 g; (26)

where the minimum is taken separately for each component of the vector equation.
Analogously, in the partially observed setting we have the following.

Theorem 2 (Risk-Sensitive In�nite Horizon Dynamic Programming).

For all � 2 <jXj+ , and 
 > 0, de�ne

S


k (�) := lim

N!1
S


k;N(�); (27)

where S

k;N is de�ned in (8). The limit in (27) exists, and

S


0 (�) = min

u2U
Ey[S�


0 (p�D
(0; u) �Q(y1; u))]: (28)

Proof. The existence of the limit in (27) can be established as in ([CS87]). Now,
for �nite N , we have

S


0;N(�) = min

u2U
Ey[S


1;N(p�D

(0; u) �Q(y1; u))]

from (10). Letting N !1, we have

S


0 (�) = lim

N!1
min
u2U

Ey[S
1;N (p�D

(0; u) �Q(y1; u))]

= min
u2U

Ey[ lim
N!1

S


1;N (p�D


(0; u) �Q(y1; u))]

= min
u2U

Ey[S
1 (p�D

(0; u) �Q(y1; u))]

= min
u2U

Ey[S�
0 (p�D
(0; u) �Q(y1; u))]; (29)

using continuity of S

k;N(�) and the �niteness of the output space Y . 2

Proceeding in a similar fashion for the minimax objective, we introduce the fol-
lowing in�nite horizon value function:

Wk(s) := lim
N!1

Wk;N(s): (30)

We can verify that the limit in (30) is well-de�ned by recalling that Wk;N =
lim
!1

1


logS


k;N(exp(
s)), and limN!1 Sk;N is well-de�ned. Thus

Wk(s) = lim

!1

1



logS


k (exp(
s)) (31)

We can relate the value function to the criterion (11) by taking the limit in (19) as
N !1. We obtain:

W0(s0) = inf
�2M

�J(�; �0) (32)
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The following result characterizes the in�nite horizon value function.

Theorem 3 (Minimax In�nite Horizon Dynamic Programming). The

value function (30) satis�es the following, 8s 2 ~R
jXj
+ :

W0(s) = min
u2U

max
y2Y

�W0(
f(s; u; y)

�
): (33)

Proof. First, we derive a relationship between time-shifted value functions anal-
ogous to (29) in the risk-sensitive setting.

W1(s) = lim

!1

1



logS


1 (�

)

= lim

!1

1



logS�


0 (�
)

= lim

!1

�
1

�

logS�


0 (�
)

= �W0(s
0);

where s0 = lim
!1
1
�


log (�
). It follows that

W1(s) = �W0(
s

�
): (34)

We have

W0(s) = min
u2U

max
y2Y

W1(f(s; u; y))

= min
u2U

max
y2Y

�W0(
f(s; u; y)

�
);

using (34). 2

In risk-neutral control, a stationary optimal policy can be determined through
policy or value iteration techniques. Unfortunately, both in the risk-sensitive and the
minimax settings in general there does not exist a stationary optimal policy. Thus, the
optimal policies satisfying equations (28) and (33) are di�cult to determine. Given a
tolerance bound � > 0, we can consider the truncation of the in�nite horizon to a �nite

horizon of N = max fd�e; 1g, where � =
log [

(1��)�
kck

]

log �
, and k c k:= maxx2X;u2U jc(x; u)j.

Both for risk-sensitive and minimax criteria, if we solve the �nite horizon dynamic
programming equations with horizon size N and no terminal cost, and use a �xed, ar-
bitrary policy thereafter, the resulting objectives (2) and (11) are within � of optimal.
See ([Cor97]) for details.
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4 A Generalized Decision-Making Framework

Motivated by the the lack of stationary optimal policies for discounted risk-sensitive
and minimax criteria, and the complexity associated with solving the dynamic pro-
gramming equations (9), (10) or (20), (21) for a large horizon N , we would like to
formulate optimal risk-sensitive and minimax decision-making in a more general set-
ting, leading to stationary discounted optimal policies on the in�nite horizon. An
additional motivation is provided by decision theorists, many of whom argue (see e.g.
[EZ89]) that a normative theory for decision-making must lead to stationary optimal
policies on the in�nite horizon.

Assume that the state of the MDP is observed. On the �nite horizon, the value
function corresponding to the risk-sensitive criterion (2) can be de�ned as

s


k;N(i) := min

�

1



logE�[exp(
Ck;N)jxk = i]; i 2 X (35)

Recall that Ck;N =
PN�1

j=k cj(xj; uj) + cN(xN ). The dynamic programming equations
for (35) are given by

s


k;N(i) = min

u2U
fck(i; u) +

1



log[

X
j

Pij(u) exp(
s


k+1;N(j))]g; (36)

s


N;N(i) = cN(i): (37)

In the small-risk limit, 
 ! 0, (36), (37) revert to the usual risk-neutral dynamic
programming equations. On the in�nite horizon, we have

s


k(i) = min

u2U
fck(i; u) +

1



log[

X
j

Pij(u) exp(
s


k+1(j))]g; k = 0; : : : : (38)

If ck(�; �) = �kc(�; �), it can be shown that time-shifted value functions are related as
follows:

s


k+1(�) = �s

�

k (�): (39)

Equation (39) also reverts to a well-known relationship in the risk-neutral case:

s0k+1(�) = �s0k(�): (40)

A more general set of optimality equations than (36), (37) can be de�ned as
follows:

h


k;N(i) = min

u2U
fck(i; u) +

� 0



log[

X
j

Pij(u) exp(
�
00h



k+1;N(j))]g; (41)

h


N;N(i) = cN(i): (42)

An interpretation for these optimality equations is that the value function at time
k equals the cost incurred at time k, plus a (possibly discounted) contribution ac-
counting for future costs. Note that if we set � 0 = � 00 = 1, we revert to the classical
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risk-sensitive dynamic programing equations. If we set � = � 00 = 1, we obtain the
formulation that has been studies in a series of papers including [Por75] and [KP78],
which we refer to as the Porteus formulation. A similar formulation in the LQG
setting has been proposed recently in [HS95]. If we set � = � 0 = 1, we obtain the
formulation introduced in [Eag75], which we refer to as the Eagle formulation.

On the in�nite horizon, setting ck(�; �) = �kc(�; �), the generalized optimality equa-
tion is given by

h


k(i) = min

u2U
f�kc(i; u) +

� 0



log[

X
j

Pij(u) exp(
�
00h



k+1(j))]g; k = 0; : : : : (43)

Once again we obtain the classical, Porteus, and Eagle formulations as special cases
of (43). A key feature of the generalized formulation (43) is that it is su�cient for
one of �, � 0, and � 00 to be less than 1, provided the others are set to 1, to insure
boundedness of the value function h



k. Thus, by setting either � 0 or � 00 to be less

than one, we can set � = 1. It can then be shown that h
k(�) = h
(�), that is we
have a time-invariant value function, and furthermore there is a stationary policy
that achieves the minimum in (15). It can further be shown that policy and value
iteration techniques can be used to synthesize an optimal policy. See [Cor97] for
details, and for extensions to the partial state observations setting.

The nature of the discount factors �, � 0, and � 00 can be better understood by
considering the small-risk limit, 
 ! 0, of (43). We obtain the following:

h0k(i) = min
u2U

f�kc(i; u) + � 0� 00
X
j

Pij(u)h
0
k+1(j)g; k = 0; : : : : (44)

Note that this optimality equation is more general than the risk-neutral dynamic
programming equation. On the other hand, each of the three special cases of (43)
that we have considered (classical, Porteus, Eagle) is equivalent to risk-neutral control
in the small-risk limit.

A generalized minimax formulation is given by

�hk;N(i) = min
u2U

fck(i; u) + � 0� 00 max
j2 ~X0(i;u)

�hk+1;N(j)g; (45)

�hN;N(i) = cN(i); (46)

where once again ~X 0(i; u) is the set of states that the system reaches in one transition
with nonzero probability, given that it is in state i and control u is used. On the
in�nite horizon and with ck(�; �) = �kc(�; �), the generalized minimax formulation is
given by

�hk(i) = min
u2U

f�kc(i; u) + � 0� 00 max
j2 �X0(i;u)

�hk+1(j)g: (47)

It can be shown that the generalized minimax formulation is the large-risk limit of
the generalized risk-sensitive formulation. It follows that when � = 1 and at least
one of � 0; � 00 is less than 1, once again the value function is time-invariant, and there
exists a stationary optimal policy that can be determined by policy or value iteration
techniques.
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An interesting consequence of introducing the additional discount parameters � 0

and � 00 in the risk-sensitive formulation is that, unlike (36), (37), the equations (41),
(42) are not dynamic programming equations. By this we mean that, in general,
a policy �? achieving the minimum on the r.h.s. of equations (41), (42) does not
minimize a criterion of expected utility form. More precisely, in general there does
not exist a U : <+ ! <+, such that the objective E�[U(

P
k ck(xk; uk))] is minimized

by policy �?. The same comment applies to the in�nite horizon optimality equation
(43). This can be understood in light of the axiomatic foundation of Utility Theory
(see e.g. [HS84]), and some dynamic extensions discussed in [KP78].

5 Machine Replacement Example

Let us consider the following benchmark problem which has appeared in the literature
(see [FGMar]). We have state space X = f0; 1g, observation space Y = f0; 1g, and
control space U = f0; 1g. The probability transition matrix and output matrix are
given by

P (0) =
�
1� � �

0 1

�
; P (1) =

�
1 0
1 0

�
; 0 < � < 1; (48)

and

Q =
�

q 1� q

1� q q

�
: (49)

The MDP models an error prone manufacturing or communication system. The
working state is x = 0, and the failed state is x = 1. The control options are to keep
(u = 0) or repair (u = 1). The cost incurred in the system's evolution is de�ned by
c(0; 0) = 0; c(1; 0) = C, and c(x; 1) = R; x 2 X. The cost to repair exceeds the cost
associated with operating the faulty unit, that is R > C.

The probability transition matrices can be understood as follows. If the system
is working and we do not replace it, there is a probability � that it will be broken at
the next time unit. A broken unit will stay broken if it is not replaced. If the system
is replaced, it is certain to be in the working state at the next time unit. The quality
of observation is given by q > 0.

5.1 Finite Horizon

Let us assume that the system evolves on the �nite horizon, with N = 3, and that
there is no terminal cost. Let us also assume that q < 1, that is we do not have
perfect state observations.

We now implement the methodology introduced in Section 2 to determine a sep-
arated optimal policy. We consider all possible initial distributions on the state of
the MDP. These can be divided into three classes, each leading to a unique initial
information state s0:

1. �0 = [�0[0]; �0[1]]; 0 < �0[0]; �0[1] < 1) s0 = [0; 0].
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k = 0 s0 2 f[0; 0]g
k = 1 s1 2 f[0; C]; [R;�1]g
k = 2 s2 2 f[0; 2C]; [R+ C;�1]; [R;R]; [2R;�1]g
k = 3 s3 2 f[0; 3C]; [2C +R;�1]; [R + C;R + C]; [2R + C;�1];

[R;R + C]; [2R;�1]; [2R; 2R]; [2R;�1]g

Table 1: Minimax Information States

k = 0 W3;3([0; 3C]) = 3C,W3;3([2C +R;�1]) = 2C +R;

W3;3([R + C;R+ C]) = R + C,W3;3([2R + C;�1]) = 2R + C,
W3;3([R; 2R]) = 2R,W3;3([2R;�1]) = 2R,
W3;3([2R; 2R]) = 2R,W3;3([3R;�1]) = 3R

k = 1 W2;3([0; 2C]) = 3C and �?2([0; 2C]) = 0
W2;3([R + C;�1]) = R + C and �?2([R + C;�1]) = 0

W2;3([R;R]) = R + C and �?2([R;R]) = 0
W2;3([2R;�1]) = 2R and �?2([2R;�1)] = 0

k = 2 W1;3([0; C]) = minf3C;R+ Cg and �?1([0; C]) = 0, 2C < R

W1;3([R;�1]) = R + C and �?1([R;�1]) = 0
k = 3 W0;3([0; 0]) = min f3C;R+ Cg and �?0([0; C]) = 0, 2C < R

Table 2: Dynamic Programming

2. �0 = [1; 0]) s0 = [0;�1].

3. �0 = [0; 1]) s0 = [�1; 0].

Let us consider the �rst class, corresponding to s0 = [0; 0]. The �rst step is to
generate all information states of interest using (15), beginning with s0 = [0; 0]. The
result is shown in Table 1. Next, we use the dynamic programming equations (20),
(21) to determine the value function and the optimal control for each information
state of interest. Let us denote the optimal policy by �?. The result is shown in
Table 2.

We can proceed similarly for the other two classes of initial distributions, corre-
sponding to s0 = [0;�1] and s0 = [�1; 0]. The optimal policy can be described
succinctly as follows. At k = 2 (one step from the end), do nothing. For k < 2, do as
follows:

� If there is no possibility that the system is in the broken state, do nothing.

� Otherwise, do nothing if and only if 2C < R.

Note that the policy does not depend on the values of � and q, other than to the
extent that � > 0 and 0 < q < 1. This is consistent with our earlier remark that
probabilities of system trajectories are signi�cant only to the extent that they are
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zero or nonzero. The policy can indeed be interpreted as minimizing the worst case
cost incurred in the system's evolution. If 2C < R, then the optimal minimax policy
will be never to repair the system, and thereby incur in the worst case a cost of C at
each time. Alternatively, in the worst case, if we repair the system when it is possibly
in the broken state, it will return to the broken state after one unit of time in the
working state. Thus, again in the worst case we incur an average cost of R

2
, which is

greater than C.

5.2 In�nite Horizon

Let us assume that the state of the system is fully observed, i.e. q = 1. We wish to
compare risk-neutral policies with risk-sensitive and minimax policies, and develop
some intuition on what is the e�ect of increasing the risk-sensitivity parameter 
.
In the average cost setting, this type of question has been addressed recently in
[HHMF97]. In the discounted cost setting, comparisons are di�cult due to non-
stationarity of the optimal policies. Thus, we will use the generalized risk-sensitive
and minimax formulations, with � = � 00 = 1 (Porteus formulation).

For each of the criteria of interest, it turns out that the optimal policy is one of
the following.

� policy �0, given by �0(0) = 0; �0(1) = 0. This is the \no action" policy, leading
to the following risk-neutral and minimax value functions:

h0�0 =

" �0�C

[1��0(1��)](1��0)
C

1��0

#
; �h�0 =

" �0C

(1��0)
C

1��0

#
: (50)

� policy �1, given by �1(0) = 0; �1(1) = 1. This is the \repair when broken"
policy, leading to the following risk-neutral and minimax value functions:

h0�1 =

" �0�R

1��(1��+�0�)
[1��0(1��)]R
1��0(1��+�0�)

#
; �h�1 =

" �0R

1�(�0)2

R
1�(�0)2

#
: (51)

The risk-sensitive value functions involve a policy evaluation iteration and cannot be
represented analytically.

Comparing the value functions under the two policies of interest, we �nd that
optimal risk-neutral and decision-making are characterized by a threshold value for
R
C
. Speci�cally, we have:

R < C � trn , �1 is the optimal risk-neutral policy,

R < C � tmm , �1 is the optimal minimax policy,

where

trn =
1� � 0(1� � + � 0�)

[1� � 0(1� �)](1� � 0)
; tmm = 1 + � 0: (52)

trn and tmm are the risk-neutral and the minimax thresholds, respectively. Since
trn � tmm > 0 for 0 < � 0; � < 1, we conclude that for this system the risk-neutral
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Fig. 1: Risk-sensitive threshold as a function of 
, for � 0 = 0:9; � = 0:1.

controller is more aggressive than the minimax controller, in that there is a larger
range of values of R

C
for which a faulty unit is replaced.

The threshold value for the risk-sensitive criterion depends on the value for the
risk-sensitivity parameter 
, and must be determined numerically. The results of our
computations seem to con�rm that, for all values of 0 < � 0; � < 1, the value of the risk-
sensitive threshold decreases as the risk-sensitivity parameter is increased. Figure 1
indicates results for a particular choice of � 0 and �. Each asterisk in the plot indicates
that, for the corresponding values of R

C
and 
, the optimal risk-sensitive policy is �1.

Thus, the plot illustrates numerically determined risk-sensitive threshold values as a
function of the risk-sensitivity parameter.

6 Conclusions

This paper has provided a number of contributions to the literature on risk-sensitive
and minimax control for �nite state systems. Key results include a large-risk-limit
connection between risk-sensitive and minimax control in the MDP setting, in�nite
horizon discounted dynamic programming equations for both risk-sensitive and min-
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imax criteria, and a generalized framework for discounted optimal decision-making,
allowing for controllers that retain risk-sensitivity without sacri�cing stationarity on
the in�nite horizon.
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