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to a lattice. These systems are considered with an eye to enhancing some useful

quantum properties and making them available in wider parameter regimes.
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Chapter 1

Introduction

1.1 Motivation

From classes in introductory thermodynamics up through graduate-level sta-

tistical mechanics courses, it is often taken for granted that an astronomical number

of degrees of freedom can be described using only a few variables. Many students

are surprised to find that a gas of atoms, in general, does not have a temperature

(Well then how hot is it when you touch it?). Such massive simplifications of a sys-

tem’s complexity are made possible by the assumption that the system is at thermal

equilibrium, and despite the obvious and continued usefulness of this assumption, it

is incredibly restrictive. Experiments are possible, especially in the field of optically

confined atoms, that can access the instantaneous dynamics of systems with large

numbers of degrees of freedom. These experiments must be described by theory

that does not depend on the assumption of equilibrium. Furthermore, from the

perspective of applications, the relaxation of this assumption allows for a whole new

array of possible effects and engineering possibilities in systems that are much less

interesting at equilibrium.

Non-equilibrium (NEQ) theory and the theory of open systems attempt to

describe these interesting and potentially useful physical situations. The price we

pay to do this is the mathematical intricacy associated with describing large numbers
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of entities individually. Having to give up such cherished concepts as pressure,

temperature, and even entropy in favor of seemingly more abstract quantities can

be disconcerting at first. The first of the main goals of this work is to represent these

ideas in an intuitive language so that the theory can be used to describe observable

phenomena without getting tangled in all the formal rigor. Our second goal is to

showcase the usefulness of non-equilibrium theory by using it to predict a few new

and useful effects found in condensed matter and cold atom applications. It is our

hope that by intuitive explanation followed by a few illustrative examples, we will

help to dispel the reputation that non-equilibrium quantum statistical mechanics

has for opacity and help to keep pace with the fast-moving experimental work in

this area.

By no means will this work be comprehensive, nor will it survey all the tech-

niques available to the theorist interesting in non-equilibrium phenomena. The

generality of the theory of open systems makes the field extremely vast, and even a

cursory survey is impractical here. Rather, we shall explain a few techniques that

we have found useful in our work with an eye toward physical understanding. Along

the way, we shall direct the interested reader toward work that will provide more

extensive and indepth understanding.

1.2 Overview of Thesis

While the theory of open systems can be quite intuitive, it does require a

certain generalization of perspective. We believe that it can best be understood
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by building upon the concepts that it has in common with equilibrium theory and

emphasizing how and where equilibrium is a specific case of our treatment.

1.2.1 Unitary Dynamics

Before we burden ourselves with the complexity of non-equilibrium theory,

we shall review what we know of unitary many-body theory. We shall discuss the

Schrödinger, Heisenberg, and Interaction pictures of unitary dynamics. We shall

cover observables such as correlation functions and the basic kinetic theory necessary

to describe systems that do not couple to a bath of any kind. The Floquet theory of

periodically driven systems will be discussed, and we shall cover the master equation

approach to unitary quantum mechanics involving a density matrix.

1.2.2 Systems at Equilibrium

In order to understand what the assumption of equilibrium really does and

how it can be used, we shall review the basic framework of classical and quantum

statistical mechanics paying special attention to the assumptions that define equi-

librium. The definitions of closed and open systems will be reviewed with a few

demonstrative and somewhat counterintuitive examples. We shall generalize the

techniques familiar from unitary quantum mechanics so that they can be used to

describe systems at equilibrium with an energy or particle bath. We shall clearly

delineate how the assumption of equilibrium allows for massive simplifications of

our treatments.

3



1.2.3 Systems Out of Equilibrium

Here the assumptions mentioned in the previous chapters are relaxed, and

we derive a few approaches to dealing with systems away from equilibrium. The

Keldysh closed time-path integral and its associated correlation functions are de-

rived. Kinetic equations for the density operator are derived and related to the

Quantum Boltzmann equation. The assumptions under which a system can be par-

titioned into “system” and “reservoir” components are discussed, and the theoretical

framework of the coarse-graining procedure is discussed.

1.2.4 Dark States, Coherent Population Transfer, and Bistability in

Feshbach Coupled Fermions

As an application of our theory for unitary many-body quantum mechancs

to a problem, we derive the equations of motion for a system of fermions that are

coupled by a Feshbach resonance to an excited molecular state. This excited state is

photocoupled to a ground molecular state. We also consider the case where there is

only a Feshbach resonance between the free fermionic states and a single molecular

state. In this situation, the molecular state is not photoassociated with any other

molecular state.

In the coupled case, we find that there are stationary states with no popula-

tion in the excited state. This corresponds to coherent superpositions of unpaired

fermions and ground molecular states. Furthermore, these “dark states” can be

adiabatically tuned into each other resulting in coherent population transfer from
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free fermions to bosonic molecules. Quenching the system yields stable oscillations

dominated by two incommensurate frequencies.

In the uncoupled case, we find a useful analogue to a system familiar from

laser theory. Non-linear fermion interaction terms allow for population transfer

between unpaired and paired states with two possible frequencies. This bistability

reminds us of the multiple possible operating frequencies of a laser. We show that

the bistability leads to hysteresis effects when the strength of the interactions is

swept between the paired and unpaired sides. We also show that this sweeping

cannot be done adiabatically. This fact necessitates a non-equilibrium treatment.

1.2.5 Non-Equilibrium Enhancement of BCS Pairing

As a simple, intuitive application of our kinetic theory, we describe a system

of optically confined fermions. These fermions can interact, leading to pairing and

BCS superfluidity. We show that by pushing the system out of equilibrium with

driving lasers, we can enhance the superfluid transition. That is, the superfluid

order parameter and transition temperature can be increased. This phenomenon is

familiar from Eliashberg’s work [33] on driven superconductors. However, we will

show that the added tunability of the driving parameters afforded in cold atom

systems as compared to solid state allows us to actually drive the system from the

normal phase to superfluid. This is in stark contrast to solid superconductors where

the superconducting phase could only be enhanced if the system was superconduct-

ing at equilibrium. Our approach employs a Boltzmann-like kinetic equation in a

5



local-density approximation to describe the steady-state non-thermal energy distri-

bution of quasiparticles. The order parameter can then be calculated by putting

this distribution into the self-consistency equation.

1.2.6 Dynamic Stimulation of Phase Coherence in Lattice Bosons

As an application of our Keldysh closed time-path framework, we shall describe

a non-equilibrium phase transition in a system of interacting bosons on an optical

lattice driven by interfering lasers. Lattice bosons at equilibrium are described by

the Bose-Hubbard model, and this model admits a phase transition between an

insulator-like state and a phase coherent superfluid state. We blend Floquet and

Keldysh theory to expand the non-equilibrium site-to-site correlation function of

the driven system in small tunneling. We show that by tuning the driving energy

to be of the order of the insulating gap, particles can be made to tunnel prolifically

and condense producing phase-coherence in regions of parameter-space where it

was unavailable before. Divergences of the correlation function correspond to the

non-equilibrium phase boundary between phase coherent and incoherent states.

1.2.7 Conclusions and Future Work

Here we discuss the conclusions to be drawn from our study of non-equilibrium

many-body theory. We briefly discuss some future work that can be built off of the

aforementioned studies.
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Chapter 2

Unitary Dynamics

2.1 Overview

Unitary quantum mechanics is the first type of quantum dynamics that a

student is likely to meet. In unitary dynamics, the system is governed by a total

Hamiltonian such that the energy is a conserved quantity. The time-dependence of

the system is determined through the Schrödinger equation which can be written

in different “pictures” which will emphasize different features of the time-evolution.

These pictures allow the researcher to isolate the effects of selected couplings in a

system’s Hamiltonian. These pictures, as well as the formalism necessary to describe

quantum states, both pure and mixed, will generalize to non-unitary systems that

have contact with a reservoir.

2.2 Unitarity

Unitary dynamics refers to the dynamics of quantum systems governed by the

Schrödinger equation.

d

dt
|Ψ〉 = − i

h̄
Ĥ|Ψ〉, (2.1)

Of course all quantum mechanics is governed by the Schrödinger equation, but only

when describing a system in its entirety. More often than not, one only cares about
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some subset of the total degrees of freedom. For instance, if we wanted to describe

an electron on a large lattice of ions, we might look for an equation that described

only the motion of the electron and included the motion of the ions only as an

averaged effect on the electron. The entire system of ions and the electron will

be described by the Schrödinger equation, but the equation of motion for only the

electron will not be the Schrödinger equation. We have a demonstrated a coarse-

graining procedure [12, 76] wherein we average over some of a system’s degrees of

freedom to yield equations of motion for the remaining degrees of freedom that are

interesting. Systems are unitary if no such coarse-graining has been done.

To say that an operator Û in quantum mechanics is unitary is simply the

mathematical statement that its hermitian adjoint is also its inverse.

Û † = Û−1, (2.2)

However, this deceptively simple statement has far-reaching consequences when we

enforce the requirement that a system’s time-evolution is unitary. All systems gov-

erned by the Schrödinger equation have unitary time-evolution. That is, there exists

an operator for every (possibly time-dependent) Hamiltonian that evolves the state

|Ψ〉 in time:

|Ψ (t)〉 = Û (t) |Ψ (0)〉, (2.3)

Putting this expression into the Schrödinger equation exacts the following con-

straints on the time-evolution operator Û .

d

dt
Û (t) = − i

h̄
Ĥ (t) Û (t) , (2.4)
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with Û (0) equal to the identity operator. These two properties imply rather simply

that Û is unitary. It is obvious that Û † (0) Û (0) = 1̂ because Û (0) = 1̂. It is also

easy to check that

d

dt

[
Û † (t) Û (t)

]
= 0, (2.5)

ensuring that Û remains unitary for all times t. Unitarity of Û in quantum systems

refers to probability-conserving processes (i.e. evolution such that 〈Ψ (t) |Ψ (t)〉 = 1).

It is also implicitly related to the concept of reversibility which requires that Û have

an inverse to begin with. A system is said to be reversible when it is realistic for the

dynamics to be run backwards. It is easy to stop a pendulum swinging and get it to

swing in the opposite direction. It is difficult to perfectly reform a broken glass. We

say that the pendulum system is reversible while the glass is not [64]. The entropy

of the glass has been irreversibly increased. However, once reversibility has been

established, the unitarity statement, Û † (t) = Û−1 (t), requires

〈Ψ (t) |Ψ (t)〉 = 〈Ψ (0) |Û † (t) Û (t) Ψ (0)〉 = 〈Ψ (0) |Ψ (0)〉, (2.6)

Thus, 〈Ψ (t) |Ψ (t)〉 = 〈Ψ (0) |Ψ (0)〉, and the total probability is conserved. We

may intepret this mathematical statement as the assertion that no eigenstates of

the static Hamiltonian have any creation or decay channels. Particle number is

conserved, and the system is said to be closed. Of course, energy can still flow into

or from the system into an energy reservoir. If we further required that no energy

transfer was possible, the system would be said to be isolated. The focus of this

chapter will be to describe closed and isolated systems.
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2.3 States in Unitary Many-Body Quantum Mechanics

The concept of a state in quantum mechanics can be simultaneously elusive and

concrete. We will bypass many of the more epistemological questions by assuming

that the fundamental elements of our system (particles, quasiparticles, rotors, etc...)

are instantaneously in states |ψ〉 that can be projected onto different bases spanned

by the eigenvectors of physical operators such as position, momentum, and so on.

Once the quantum states of the fundamental elements have been defined, the state

of an ensemble of these elements is determined by the distribution of the ensemble

elements over their possible quantum states. For example, the state of a gas of atoms

is determined by the distribution of individual atoms over states defined by such

observables as position, momentum, and spin state. Classically, this leads to classical

kinetics with its distribution functions. At the quantum level, quantum interference,

uncertainty, and particle statistics arising from indistinguishability must also be

included. This leads to quantum kinetics and the density matrix formalism. Let us

operationally define the quantities of use to us.

As mentioned, we assume that the fundamental elements of our theory are

always in some states. Let us first consider one single such element and let its state

be |ψ〉 in the Schrödinger picture. That is to say that |ψ〉 is a function of t, and it

satisfies the Schrödinger equation, Eq. (2.1). At any time, |ψ〉 can be projected into

any basis that spans the Hilbert space of possible states. The state can be written

in terms of this basis of eigenstates (indexed by j) of some operator Â as

|ψ〉 =
∑
j

cj|j〉 (2.7)
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where the coefficients cj are complex and normalized to unity (
∑

j |cj|2 = 1). This

normalization is due to the fact that the probability of the fundamental element

being observed in state |j〉 is equal to |cj|2. A state that can be put into the form of

Eq. (2.7) is known as a pure state [81]. The coefficients cj are complex, and saying

that an element is in a pure state is equivalent to saying that we know the phases

of these numbers rather than just their moduli |cj|. In a pure state, we understand

how the states interfere with each other.

Contrary to this, we could envision a particle to be in a state of which we

have incomplete information. For instance, we may have complete knowledge of the

probabilities that the particle is found in different eigenstates of some observable

(we know the |ci|2) but have no knowledge of the phases among these states (we are

ignorant of the actual values of ci). This is known as a mixed state. The use of the

concept of a mixed state is not as common in single-particle mechanics as it is when

many particles are considered. When a system has many degrees of freedom, some

kind of coarse graining is usually necessary so that a theory can be derived that

applies only to the part of the system that is of interest rather than to the whole

system in its unwieldy entirety. This coarse-graining amounts to willing ignorance of

the total state of the system in favor of a probability distribution of its elements over

a set of observables or eigenstates. Take an ideal gas at equilibrium as an example.

Rather than define the precise microstate, including the number of bosons in each

free-particle state, we define the average occupation in these states through the

partition function. In reality, the total system is instantaneously in a well-defined

quantum state in the Fock basis, but in the interest of mathematical and conceptual
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tractability, we simply say that it has a “thermal probability” of being observed in

any number of these Fock states that have a common macroscopic feature such as

energy (i.e. A particle has a probability proportional to e−βε of being in some state

of energy ε). We say that the gas is in a mixed quantum state. We have denoted

the probabilities of particles being in certain single-particle states, but we have no

idea of the instantaneous relative phases between them. We have no interference

information, but we can still acheive useful results through the concept of a mixed

state.

There is a common framework that will enable us to describe both pure and

mixed states using the same mathematical quantities. We shall employ the very

powerful density matrix formalization which is useful both in single and many par-

ticle systems. The density matrix is fundamentally just a projection operator. Just

as the operator |x〉〈x| will yield the contribution (or “projection”) of that state into

the |x〉 direction, so the density operator ρ̂ = |Ψ〉〈Ψ| projects onto the instanta-

neous state |Ψ〉 of the system. This form for the density matrix, however, will only

be suitable for pure states (states that can be written as a single vector |Ψ〉). A

simple generalization is required to include mixed states (states with probability pi

of being in a pure quantum state |ψi〉). To that end, we define the density operator

is the following way.

ρ̂ =
∑
i

pi|ψi〉〈ψi| (2.8)

This form will incorporate both pure and mixed states. A pure state arises in the

situation when all the probabilities pi but one vanish. In that case, the density
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matrix reduces to

ρ̂ = |ψi〉〈ψi| (2.9)

for some i. Because this quantum state must be normalized 〈ψi|ψi〉 = 1, we note

that ρ̂2 = ρ̂. Equivalently, we may say that a density matrix (simply the matrix

elements of the density operator) describes a pure state when the trace of its square

is 1.

Tr{ρ̂2} = 1 (2.10)

Because this formalism is built on the quantum state of the total system, it will

describe systems in single-particle states or many-particle quantum state equally

well.

2.4 Observables

No theory can be said to be truly scientific until it describes something that

can be observed. In single-particle quantum mechanics, the observables are de-

scribed by Hermitian operators [81]. We recall that a state can be decomposed into

linear combinations of the eigenstates of such operators. We further recall that a

measurement of the observable Â will yield one of the eigenvalues of that operator

with a probability given by the state’s coefficient of that eigenvector. That is, if Â

defines a basis such that

Â|ai〉 = ai|ai〉 (2.11)

and we choose to express the state of our system in this basis: |Ψ〉 =
∑

i ci|ai〉, then

a measurement of the observable A on our system will yield ai with probability |ci|2.
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Even though we are dealing with a pure state which can be written in terms of a

single ket |Ψ〉, the indeterminacy inherent to quantum mechanics means that the

best prediction we can make of the outcome of a measurement will be a probability

distribution.

In classical statistical mechanics the situation is similar, but different in a

fundamental way. In this situation, we are dealing with huge numbers of particles,

and the indeterminacy of a measurement comes from the fact that it is impossible

to know the dynamics of such a big number of particles. It is much more feasible

to calculate the probability that a certain number of particles will exhibit a given

property. For instance, it is impossible to know the energy of every particle in a

confined ideal gas even though they all have well-defined energies. It is comparatively

simple to determine the probability that a given number of those particles have an

energy more than a set amount. We can calculate the probability distribution for

the value of a measurement of the energy of any of these particles. This probabilistic

nature of the treatment does not come from any indeterminacy inherent to the laws

of physics under consideration. It is merely due to the fact that we can never know

the full state of a system of so many particles.

Measurements in quantum statistical mechanics suffer from both of these kinds

of indeterminacy. When we wish to treat large numbers of quantum particles, mea-

surements will be statistical averages of quantum averages. That is, we shall have to

take averages over mixed states. Happily, the density matrix formalism has already

been show to be adept at describing mixed states. We would like the measurement
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of some observable on a mixed state to return the following average value.

〈Â〉 =
∑
i

pi〈Â〉i (2.12)

where this expression is a sum over quantum averages 〈Â〉i of the observable in

states indexed by i. These states are generally not eigenstates of Â. The average

is weighted by pi, the incoherent probability that the system is found in pure state

i. The density matrix formalism is particularly valuable in that it reproduces this

form for the observable immediately by taking a trace. Because the trace operation

is invariant to changes of basis, let us take the trace in the basis in which the density

matrix is defined.

Tr{ρ̂Â} =
∑
i

∑
j

〈ψi|ρ̂|ψj〉〈ψj|Â|ψi〉 =
∑
i

∑
j〈ψi|ρ̂|ψj〉〈ψj|Â|ψi〉

=
∑
k

pk〈Â〉k = 〈Â〉 (2.13)

This equation is equally valid in and out of equilibrium, and it will form the con-

nection between the somewhat abstract mathematical treatment of non-equilibrium

quantum mechanics and experimental observation.

While it is very useful to know the probability distribution of observables such

as those described in the previous paragraphs, there is more statistical information

available that will be useful in understanding experiments. Correlations are also of

great use as they are accessible by experiments in the linear response regime. This

can be made clear in the following way from reference [4]. Consider an experiment

where we shall probe a system with an external field. That is, we shall add a term
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ĤF to the Hamiltonian of the system where

ĤF =

∫
dxF (x, t) X̂ (x) (2.14)

The generalized force F (x, t) couples to some position-dependent operators X̂ (x)

such as density or position. We expect that the addition of this force will change

the expectation value of the operator to which it couples. What we find is that we

can relate the time-dependent change, X (x, t), in the expectation value of X̂ to the

strength of the force to first order as

X (x, t) =

∫
dx′
∫
dt′χ (x, t;x′, t′)F (x′, t′) (2.15)

where we may think of χ (x, t;x′, t′) as a generalized susceptibility or response func-

tion. This response function, appropriately scaled, is simply the correlation function

of the observable X̂ written in the interaction picture with respect to the perturba-

tion ĤF .

χ (x, t;x′, t′) = 〈X̂ (x, t) X̂ (x′, t′)〉 (2.16)

This correlation function will be dependent on properties of the system without

the external perturbation F (x, t). That is, if we can access the suceptibility by

probing, we will be able to use this function to describe or verify properties of the

unperturbed system. Therein lies a main value of correlators.

Correlation functions yield valuable information about a system’s order, phase

transitions, energy spectrum, lifetime, and distribution of excitations. As explored

by [4] in the following, a special case is given by the non-interacting single-particle

Green function: 〈T âα (t) â†α (t′)〉 where |α〉 represents an eigenbasis of the single-
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particle Hamiltonian. It is not difficult to show that the Fourier transform of aver-

ages of this form can be written in a simple way:

Gα (z) =
1

z − ξα
(2.17)

where ξα is the energy of |α〉 and we have analytically continued the function from

real frequency space into the complex plane of z. Clearly, the poles of this function

can be used to give us information about the single-particle spectrum. We employ

precisely this strategy in Chapter 7 to verify that the energy gap for mobile ex-

citations has closed. We do this because functions are often easier to evaluate in

complex time, and causality guarantees that these correlators are analytic through

the Kramers-Kronig relations [51]. Thus, we may evaluate these functions anywhere

we like in the complex plane and then analytically continue to the real axis (to study

real-time dynamics) or the imaginary axis (to study thermodynamics) [4, 63]. From

this function, it is possible obtain the single-particle density of states, the spectrum,

and the effective lifetime τ of state |α〉. Moreover, in the presence of many-body

interactions, this function generalizes with the addition of a complex self-energy

term. Confining ourselves to real frequencies ω+ = ω + i0 with a small imaginary

part enforcing causality, we have

Gα (ω)→ 1

ω+ − ξα − Σ (ω+)
(2.18)

If we decompose this self-energy into real and imaginary parts Σ = ΣR + iΣI (and

also make the unrealistically simplifying assumption that Σ is constant in ω), then

we can interpret the real effects of the interactions as follows. Let us look at the
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retarded response function in real time

GR (t) =

∫
dω

2π
e−iωtGR (ω) ≈ e−it(ξα+ΣR)+tΣI (2.19)

From here we see that the inclusion of many-body interactions renormalizes the

energies of the single-particle energy states by the ΣR while information regarding

the instability of single-particle states in the presence of interactions is encoded in

a decay time 1
τ

= −2ΣI . The factor of 2 results from the fact that the squared

modulus |GR|2 ∝ e2tΣI is interpreted as a probability density in a given state at

time t.

The off-diagonal correlators Gα,α′ (t, t
′) = 〈T âα (t) â†α′ (t

′)〉 also yield valuable

information about the system. If Gα,α is interpreted as the amplitude to remain in

state |α〉, then Gα,α′ is the amplitude for the transition |α〉 → |α′〉. Choosing to

find correlators in the position basis for instance, Gx,x′ (t, t
′) can be understood as

the amplitude for a particle to tunnel from points x to x′ over time |t − t′|. When

this tunneling amplitude is large over some distance scale ξ, we expect domain

formation as particles are very mobile over distances defined by this scale. In the

opposite limit, when this amplitude decays quickly over ξ, we say that there are

no correlations (no order) on the scale of ξ. Particles will not be able to tunnel

long-range, and the behaviors of the system at two points separated by a distance of

order ξ are independent. The different results in these two limits correpond to the

two phases of a phase transition. It is this thought process that allows us to define

a non-equilibrium phase transition in the driven Bose-Hubbard model in chapter 7

even when such concepts as temperature and free energy do not apply.
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2.5 Equations of Motion

As mentioned, unitary methods are useful when the system in question follows

the Schrödinger equation, Eq. (2.1). However, the same information can be encap-

sulated in different “pictures” that can be used to simplify or emphasize certain ele-

ments of a treatment. Specifically, we may redefine the states into which we project

our system such that they are rotating with chosen terms in the Hamiltonian. When

we do this, those terms in the Hamiltonian drop out of the equations of motion for

our operators and states. This is especially useful when one part of the Hamiltonian

is diagonalizable while another part is difficult to deal with. These time-dependent

rotations are nothing more than unitary evolution operators corresponding to differ-

ent terms of the Hamiltonian. Let us begin by explicitly define the time-evolution

operator to which we alluded in the first section of this chapter. We recall that this

is the operator that satisfies Eq. (2.4) under the constraint that Û (0). For a general

time-dependent non-commutative Hamiltonian, the time-evolution operator has the

form

Û (t) = 1 +
∞∑
n=1

(
−i
h̄

)n ∫ t

0

dt1

∫ t1

0

· · ·
∫ tn−1

0

dtnĤ (t1) Ĥ (t2) . . . Ĥ (tn) , (2.20)

The right-hand-side of equation (2.20) is called the Dyson series, and it has a short-

hand notation of the following form.

Û (t) = T exp{−i
h̄

∫ t

0

dt′ Ĥ (t′)}, (2.21)

where T represents the time-ordering symbol. This symbol will become important

when we consider driven systems because it will order arguments along a time-
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contour in the complex plane rather than on the real line. Additionally, there are

other ways to group the terms that appear in this series (i.e. the Linked Cluster Ex-

pansion [63]), but the general concept of writing the full time-evolution due to some

complicated Hamiltonian which appears in an exponential as a sum over simpler

polynomial terms will appear again and again.

We may, alternatively, choose to express the state of our system in the form

of a density matrix. As mentioned in section 2.3, instead of writing the state of

our system as a ket |Ψ〉, we may elect to write it as an operator ρ̂ = |Ψ〉〈Ψ| or its

corresponding matrix elements. While we are focusing on unitary motion presently,

the equation of motion for this operator can be generalized to non-unitary and non-

equilibrium dynamics [25]. Differentiating the density operator and noting that the

Hermitian adjoint of the Schrödinger equation is −ih̄ ∂
∂t
〈Ψ| = 〈Ψ|Ĥ, we get

ih̄
∂

∂t
ρ̂ = |Ψ〉ih̄ ∂

∂t
〈Ψ|+ ih̄

∂

∂t
|Ψ〉 〈Ψ|

= −|Ψ〉〈Ψ|Ĥ + Ĥ|Ψ〉 〈Ψ|

= [Ĥ, ρ̂] (2.22)

This is the famous Von Neumann “master” equation for the density matrix [81, 25].

As mentioned, it can be generalized to describe the non-unitary dynamics associated

with the coupling to a reservoir by adding terms to the right side. These extra bath

terms, called Lindblad operators, will allow us to derive a Quantum Master Equation

capable of dealing with driving, dissipation, and noise. The Wigner-Keldysh kinetic

equation [53, 54], the Feynman-Vernon Influence Functional [36], and the classical

Boltzmann equation [82, 76] can all be derived from the master equation in Lindblad
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form.

Armed with equations of motion for the density matrix and an expression for

the time-evolution operator, we may use it to project the state of a system onto

a basis of states that “moves with” chosen terms in the Hamiltonian. We may

choose to rotate with the entire Hamiltonian (Heisenberg Picture) or just a piece of

it (Interaction Picture). Let us consider the relative advantages of each.

2.5.1 Heisenberg Equation of Motion

For reasons that will become clear, we may choose to transform to a basis

wherein the states that describe our system are completely stationary. However,

the Schrödinger equation still encodes dynamic information, and so whatever new

equation of motion we wish to derive will do the same. The only difference will

be that the new equation encodes the information in the time-dependence of the

operators rather than the states. This is not such an unfamiliar concept. In classical

mechanics, the kinematics of a massive body for instance, a state is represented by

a time-dependent trajectory in which the position and momentum of the object are

changing instantaneously. In quantum mechanics, position and momentum (as well

as every other observable) are represented by operators. It is thus natural to expect

that there is a representation wherein these are the time-dependent quantities while

the states are constant. Such a representation is called the Heisenberg picture, and

for an undriven Hamiltonian it is described in Ref. [81] as follows. It redefines

operators ÂS in the familiar Schrödinger picture in terms of the evolution operator
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as

ÂH (t) = Û † (t) ÂSÛ (t) , (2.23)

To determine a desired matrix element or expectation value, we need only take an

inner product of this operator between the states in the Schrödinger picture at t = 0.

The time-dependence of this matrix element will be accomplished through the time-

dependence of the operator ÂH (t). The equation of motion for this operator is

simply

dÂH

dt
=

∂Û †

∂t
ÂSÛ + Û †ÂS

∂Û

∂t
(2.24)

= − 1

ih̄
Û †ĤÛÛ †ÂSÛ +

1

ih̄
Û †ÂSÛ Û †ĤÛ (2.25)

=
1

ih̄
[ÂH , Û †ĤÛ ], (2.26)

Because we postulated that the Hamiltonian in our system is stationary (as many

many-body Hamiltonians used in common applications are), we know that it com-

mutes with the time-evolution operator. As such, we may write the standard form

of the Heisenberg equation of motion.

dÂH

dt
=

1

ih̄
[ÂH , Ĥ], (2.27)

This equation is useful because of the ease with which one may interpret it classically.

Because of this fact, it is also possible to phenomenologically add terms (such as

decay channels) to Heisenberg’s equations of motion despite the fact that such terms

lead to non-unitary dynamics and are not derivable from Schrödinger’s equation or

any other treatment involving only Hamiltonian dynamics.
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2.5.2 Equations of Motion in the Interaction Picture

We saw in the previous section that states could be transformed in a time-

dependent way that would seemingly cancel out their own time-dependence. The

time-dependence required by the Hamiltonian was put instead onto the operators

that denote observables by transforming to a basis of states that “rotate with”

the Hamiltonian. Just as a person on a train that watches a car going at the

same velocity sees the car as a stationary object, so quantum states can be made

to appear stationary by making them rotate with the Hamiltonian. One could,

however, envision a transformation of the states that did not make them rotate

with the entire Hamiltonian, but rather with a selected portion of it. That is, we

could transform into a basis that is stationary with respect to a simple part of the

Hamiltonian but is still time-dependent due to the action of some more other part of

the Hamiltonian. In this case, the effects due to the other part could be isolated, and

we could deal with them without matters being complicated by the dynamics due

to the simple part of the Hamiltonian. This is the thought behind the interaction

picture of quantum mechanics.

We shall begin with a Hamiltonian that we shall assume can be split into

pieces as follows.

Ĥ = Ĥ0 + V̂ (2.28)

Our goal will be to choose a basis of states that rotate with H0. The equation

of motion governing the dynamics of these states will depend only on V . Every

such new state |ψI〉 can be given in terms of the state |ψS〉 that solves the total
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Schrödinger equation as

|ψI (t)〉 = eiĤ0t/h̄|ψS〉 (2.29)

Exactly as expected, the “interaction basis” is simply the Schrödinger basis with

a time-dependent prefactor that rotates the interaction states with Ĥ0. Let us

now remember what happened in the Heisenberg picture. We rotate the states

with respect to the full Hamiltonian and force all of their time-dependence onto

observables. Now we are rotating with respect to only a portion of the Hamiltonian,

so the observables will take on the time-dependence of only that portion. To that

end, we define operators ÂI (t) in the interaction picture in terms of the stationary

operators ÂS in the Schrödinger picture as follows.

ÂI (t) = eiĤ0t/h̄ÂSe
−iĤ0t/h̄ (2.30)

There is no need to distinguish between Ĥ0 in the interaction and Schrödinger

pictures because any operator or exponential of that operator commutes with itself.

However, the interaction Hamiltonian V̂ may not commute with Ĥ0. As such, we

have

V̂I (t) = eiĤ0t/h̄V̂ e−iĤ0t/h̄ (2.31)

In terms of this operator, the dynamics of both operators and states can be written.

Differentiating equation (2.29), we see that their dynamics are encapsulated in the

following familiar-looking equation.

ih̄
d

dt
|ψI (t)〉 = V̂I (t) |ψI〉 (2.32)

Of course, in the interaction picture, the operators have time-dependence too. The

equation of motion governing this dependence is again familiar-looking from our
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treatment of the Heisenberg picture. Operators in the interaction picture must

follow

ih̄
d

dt
ÂI (t) = [ÂI (t) , Ĥ0] (2.33)

In the same way as was done for the Schrödinger pictures, we may use equations

(2.32) and (2.33) to define time-evolution operators and density matrices in the

interaction picture. Let us first look at the density operator ρ̂ (t) = |ψS (t)〉〈ψS (t) |.

Despite the fact that this operator is defined in the Schrödinger picture, it is actually

a time-dependent object because the state of the system changes in this picture. We

may define the density operator in the interaction picture naturally to be

ρ̂I (t) = eiĤ0t/h̄ρ̂ (t) e−iĤ0t/h̄ (2.34)

Differentiating equation (2.34) yields the expected time-dependence for the density

operator.

ih̄
d

dt
ρ̂I (t) = [V̂I (t) , ρ̂I (t)] (2.35)

We took the time to write this equation because it forms the basis of quantum

kinetics. When we consider systems in contact with reservoirs, we shall show that

we can often expand the right side of Eq. (2.35) in weak coupling and average over

the bath degrees of freedom to arrive at a non-unitary equation of motion for the

dynamics of the system alone.

Alternatively, we might choose to describe the state of our system in terms

of a ket |Ψ〉. In this case, we may make use of the time-evolution operator in the

interaction picture. Just as in section 2.2, we may define this operator to be the
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operator that solves

d

dt
ÛI (t) = − i

h̄
V̂I (t) Û (t) (2.36)

such that ÛI (0) is simply the identity operator. As we expect from equation (2.20),

the operator satisfying this initial value problem can be written as

ÛI (t) = 1 +
∞∑
n=1

(
−i
h̄

)n ∫ t

0

dt1

∫ t1

0

· · ·
∫ tn−1

0

dtnV̂I (t1) V̂I (t2) . . . V̂I (tn) (2.37)

This equation will form the basis of our expansion of correlation functions in the

Bose-Hubbard model, chapter 7. It will be generalized to include non-equilibrium

situations by changing the integrations along real time to contours in complex time.

2.6 Periodic Hamiltonians

The Schrödinger equation is equally valid for time-dependent Hamiltonians.

In such cases the dynamics will be unitary despite the fact that the system is being

driven. The problem amounts to finding a solution to Eq. (2.1)

d

dt
|Ψ〉 = − i

h̄
Ĥ|Ψ〉, (2.38)

This is a problem in dynamics, but in the special case of periodic Hamiltonians,

we are afforded a great simplification from the discrete time symmetry. We shall

follow the work in [16] and [96] to rewrite the difficult dynamic problem of a time-

dependent Hamiltonian as a simple eigenvector problem using Floquet theory. Let

us begin with some unspecified system with a time-dependent Hamiltonian Ĥ (t)

which is periodic with period τ such that

Ĥ (t) = Ĥ (t+ τ) (2.39)
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for all t. In a way that is analogous to the Bloch theorem for spatially periodic

Hamiltonians, the Floquet theorem states that there exists complete basis of solu-

tions {|Ψα (t)〉} such that

|Ψα (t)〉 = e−iϕαt|uα (t)〉 (2.40)

where |uα (t)〉 = |uα (t+ τ)〉 shares the periodicity of the Hamiltonian. The phase ϕα

is called the quasi-energy because it shares some properties with the eigenvalues of a

static Hamiltonian. There is at least one very important difference, however. While

it is true that real energies manifest themselves in the dynamics of eigenstates of

static Hamiltonians as phase prefactors, energies also have a significance with respect

to transitions. The absolute value of energy must be conserved in transitions rather

than simply its value modulo 2π. This is in contrast to the behavior of quasi-energies

which only have a distinct meaning modulo 2π. This topological difference between

energy and quasi-energy is a source of great recent interest [55] in what are called

Floquet topological insulators [59].

Because |uα (t)〉 has period τ , only a discrete set of harmonics are necessary

to transform the function to frequency space. That is, we may define the Fourier

transform of |uα (t)〉 as

|uα (t)〉 =
∑
n

e−inΩt|unα〉 (2.41)

where N is an integer and Ω = 2π
τ

. It is this discreteness of the set of the frequencies

required for the Fourier transform that is going to allow us to represent the dynamics

of the system under the time-dependent Hamiltonian as matrix multiplication. If
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we now take the Fourier inner product of the Hamiltonian:

Ĥmn =
1

τ

∫ τ/2

−τ/2
dtei(m−n)ΩtĤ (t) (2.42)

then we can write the Schrödinger equation as a static linear algebra problem

∑
n

Ĥmn|unα〉 = (ϕα +mΩ) |umα 〉 (2.43)

The system we wish to consider has a time-dependent Hamiltonian. This

means that the energy of the system is not a conserved quantity. However, we

see in Eq. (2.43) that it is conserved up to integer multiples of Ω. These multiples

correspond to the absorption or emission of quanta of energy from or into the driving

field. The net effect of all this is that we are able to trade the dynamic problem of

Eq. (2.38) for the static eigenvector problem in Eq. (2.43). Because we are solving

a simpler problem, we should expect that observables will take on simpler forms

also. To determine averages of single particle operators, we can simply evaluate the

operators in the Floquet basis {|Ψα (t)〉}. The calculation of correlation functions

〈â†α (t) âα′ (t
′)〉 is slightly more complicated because there are two times, t and t′, to

account for and the correlator will depend on both of them separately (rather than

just on the difference t − t′ as is the case without driving). However, the situation

is once again salvaged by the fact that the dependence on T = t + t′ is nontrivial

only up to a period of 2π
Ω

.

Consider an arbitrary function G (t, t′) that satisfies the condition G (t, t′) =

G (t+ τ, t′ + τ). We may rewrite the function in center-of-mass coordinates T =

t+t′

2
and ∆ = t − t′ as G

(
t = T + ∆

2
, t′ = T − ∆

2

)
. A simple inspection shows that
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G (T,∆) = G (T + τ,∆). Therefore, we know that we may write a Fourier transform

as

G (T,∆) =
1

2π

∑
N

∫ ∞
−∞

dω e−iω∆eiNΩTG (ω,N) (2.44)

where the component G (ω,N) is given by

G (ω,N) =

∫ ∞
−∞

d∆

∫ 2π/Ω

0

dTeiω∆e−iNΩTG (T,∆) (2.45)

This representation is known as the Wigner representation. If we make one fi-

nal transformation, we will be able to write the Dyson expansions of dynamically

changing correlators as simple matrix equations. To that end, we define the Floquet

representation [16, 96] to be

Gmn (ω) = G ((m+ n)ω,m− n) (2.46)

where the right hand side of Eq. (2.46) is nothing more than the Wigner rep-

resentation given in Eq. (2.45). By writing the Dyson equation for the driven

Bose-Hubbard model in this form, we are able in chapter 7 to find the correlation

functions to infinite order in the driving strength.
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Chapter 3

Systems at Equilibrium

3.1 Overview

The assumption that a system is in equilibrium is a very powerful one. It allows

for a massive reduction in the mathematical complexity necessary for describing

a system. It is also a very restrictive assertion depending on requirements that

are never fully satisfied. In this chapter, we shall outline precisely where these

assumptions come into play and how they are used to make seemingly complex

problems more tractable.

3.2 Closed and Open Systems

There are many definitions of what equilibrium actually is. These can range

from the convolutedly abstract and mathematical to the hands-dirty and opera-

tional. It is defined in [4] as the simultaneous satisfaction of two assumptions. The

first is that the equilibrium system is characterized by a unique set of extensive and

intensive variables which do not change in time. The second is that after isolation of

the system from its environment, all the variables remain unchanged. This definition

is a little more of the hands-dirty variety. It has already partitioned the total system

of interest into a “system” and an “environment” [58], and it has skipped most of
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the hard work by assuming that the system is characterized by time-independent

extensive and intensive variables. We know immediately that such a definition can-

not be the whole story because it is precisely these thermodynamic variables that

we needed the assumption of equilibrium in order to define. Furthermore, it is cer-

tainly possible for an isolated gas to be in equilibrium with itself. In this case, there

is no easily identifiable “environment”, so it seems that the definition of equilib-

rium must not explicitly depend on such a construct. The second assumption is

made so as not to mislabel stationary non-equilibrium situations as thermal equi-

librium. The example given in [4] is of an electronic conductor subject to a strong

time-independent voltage bias. The particle energy distribution function will be

time-independent. Thermodynamic variables could be defined that are stationary,

but when the voltage is turned off, the particle distribution will relax back to the

Gibbs distribution. The thermodynamic variables will also change. The second

assumption defines such situations as non-equilibrium somewhat arbitrarily. Such

a situation could equally be considered equilibrium if we never wanted to consider

the voltage turning off. In just the same way, an ideal gas contained in a volume

can be considered non-equilibrium if some change is made to the volume in the far

future. The point of such considerations is to realize that whether or not a system

is in equilibrium depends critically on what is labeled the “system” and what is the

“environment” and on when the total system is observed.

With this in mind, let us discuss how the partitioning of a total system occurs.

To do this, we shall have to consider what can be exchanged between multitudes

of particles or elementary excitations. Consider a gas in a container. In this very
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abstract example, consider that the container is made of an infinitely rigid material

that does not accept any energy due to collisions with the particles of the gas.

This gas can be considered an isolated system, a system that does not exchange

energy or matter with any external environment [29]. From the detailed level of

abstraction necessary even to give an example of an isolated system, one should

get the feeling that they are not very common in real life. Indeed, no system is

completely isolated. The real question is “When is it justifiable to model a real

system as if it were isolated”. This is a question of time-scales.

Consider a gas of N atoms of Uranium or some other nuclear fissile material.

We wish to perform a statistical analysis of the gas to arrive at average values for

observables such as momentum and position and the like. If we confine ourselves

to time-scales that are short compared to the half-life of atoms, there will be no

trouble. The particle number N shall remain constant, and the system can be

modeled as if it were isolated. However, if we wish to consider the system at times

that are long compared to this half-life (as an operational definition of equilibrium

in terms of the infinite future state of a system would require), then N → 0 as

the Uranium decays. The system must be modeled as fully open with a “system”

of Uranium atoms exchanging both matter and energy with an “environment” of

lighter elements and photons. Fundamentally, it is when the system is observed and

described that determines whether or not it is open or isolated. It is the goal of

non-equilibrium statistical mechanics to describe these open systems.

There are other ways in which a system might interact with an environment.

It might exchange energy without exchanging matter. Such a system is referred to
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as “closed”, and an example might be that of a swimming pool [29]. A swimmer may

feel hot or cold depending on the temperature of the water, but he will not dissolve

like a sugar cube. The swimmer may be modeled as a closed system exchanging

energy with a thermal environment (the pool). Again, the question of whether a

system is closed or isolated depends on the time-scales over which energy exchange

occurs. A thermos of coffee might be modeled as isolated if we only consider times

that are short compared to the time it takes to cool thereby releasing its thermal

energy into the air surrounding it. Closed systems describing energy dissipation

into a thermal reservoir are general enough to describe a host of interesting current

phonemona. Indeed, chapters 7 and 6 deal physical systems of optically confined

atoms that can be well approximated as closed.

There are other ways to model systems’ interactions with environments. One

could envision a system designed such that matter but not energy is exchanged with

an environment by requiring that particles are removed or added only when their

energies are zero. There are no names for these other types of models as they are not

very common or particularly useful. These three types (open, closed, and isolated)

[29] will provide the necessary framework to define equilibrium. This is the topic of

the next section.

3.3 Equilibrium

Now that we have an understanding of the way in which systems may interact

with one another, we are in a position to define the assumptions of equilibrium more
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clearly. We shall begin by defining what we mean for a system to be at equilibrium

with itself. Using this definition, we will be able to define concepts such as entropy

and temperature. Then we shall say that two systems (both at equilibrium with

themselves) are at equilibrium with each other when they are in thermal contact

with the same temperature.

Let us begin by considering a system K. The system is a set of microscopic de-

grees of freedom that can be in quantum states. If we know the individual quantum

state of every degree of freedom in the system, we say that we know the microstate

of the system. As an example, if K represented an isolated gas and we knew the

quantum state of every particle in that gas, then the set {αi} where αi is a col-

lective index of quantum numbers that defines the state of particle i represents a

microstate of K. The system will always instantaneously be in some microstate,

but due to the large number of microscopic degrees of freedom it will be impossible

even to write down the microstate, much less describe the dynamics that govern

how K will change from one microstate to another. Furthermore, it would be fairly

useless even if the task could be completed. Even classically, if one were given the

position and momentum of a gas of 1025 particles, one would be hard-pressed to

give us an intuitive picture of what would happen when we squeezed it. Physicists

are macroscopic beings, and so they care mostly about macroscopic observables. As

such, there is a lot of useless microscopic information that can be coarse-grained in

order to determine a useful macroscopic property. Equilibrium, being a thermody-

namic property, applies only to macroscopic systems and its assumption performs

this coarse-graining. Furthermore, the requirement that the length and energy scales
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of K are much bigger than those of its microscopic degrees of freedom will be used

frequently and subtly to help us derive useful values for observables from the as-

sumption of equilibrium. To that end, we shall define equilibrium of K with itself

as the satisfaction of two conditions on the system. They are as follows

1. The system K is isolated

2. All accessible microstates of K have the same probability

The first supposition requires that the system under consideration is not being driven

nor is its energy being dissipated into a larger environment [70]. If we wish to provide

analysis of a system at equilibrium with an environment, the K must be thought to

include both the system and the reservoir such that the total system+reservoir is

isolated. Assumption 1 allows us to define a total energy E for K that we will later

assume to be much bigger than the energy of its the microscopic degrees of freedom

in K. A true purist might argue that this assumption is unnecessary in that it is

subsumed in assumption 2 when we say “accessible” which often means (at least)

that the energy of the microstate is equal to the total energy of the system. In any

case, both of these statements must be true, and we will use the first of these to

get something useful, the energy probability distribution, from the assumption of

equilibrium.

The second assumption is where the coarse-graining happens. We ignore all

the complex and necessarily chaotic dynamics [70] (It is chaotic dynamics that leads

to ergodicity which is the basis of assumption 2. Non-chaotic or “integrable” systems

need not ever equilibrate) of the system in favor of a probability distribution forK to
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be in any of the microstates available to it (availability determined by conservation

of particles, conservation of energy, and so on). Furthermore, we declare somewhat

arbitrarily that this probability distribution is completely flat. This was a fairly

controvertial assumption when it was first propounded, but it can be shown to be

true by employing non-equilibrium kinetic equations in the infinite future limit with

some (some would say equally dubious) conditions. This is not our concern. We

need need not concern ourselves with the conditions upon which the assumption of

equilibrium is rigorously satisfied because our aim is to deal with systems where

this assumption obviously fails. In the next section, we shall show how these two

assumptions have massively reduced the computational complexity of the problem

and allowed us to calculate macroscopic observables almost magically.

3.4 Particle Statistics at Equilibrium

3.4.1 The Gibbs Distribution

In this section, we shall use the assumption of equilibrium to determine the

energy distribution of the excitations at equilibrium. It should be no surprise that

this is possible because we have essentially done all the real work by assuming the

flat phase space density discussed in the previous section. The real surprise is that

the assumptions of equilibrium yield results that are as useful in the real world as

they are.

We shall paraphrase Landau’s arguments [58] using the two assumptions we

have made in the previous section to calculate the distribution of energy in some
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small subsystem of K. Let us begin by partitioning K into a system S (a set of

degrees of freedom that are of interest to us) and an environment R. We assume

that S is “small” (it has much smaller length and energy scales than those of K),

and we are not interested in the microscopic state of the R. The objective is to

find the probability pn that the whole system K is in a state such that S is in a

well-defined quantum microstate with energy εn. That is, we are looking for the

probability that the total system is in some unknown state (unknown because we

don’t want to know the state of the reservoir) but with the system in a microstate

that is known.

The assumptions of equilibrium will make this an easy task to complete. Start-

ing with assumption 2 from section 3.3, we know that the probability of every mi-

crostate of the total system K is equally probable. That means that if we want to

find the probability that the S is in a microstate defined by energy εn, we need only

count (and appropriately normalize) the number of states of K such that this is the

case. Thus, we have

pn = Ω (εn) (3.1)

where Ω (εn), called the statistical weight, is the number of microstates of the total

system such that S has energy εn. If we observe S to have energy εn, then we know

that the total system is in one of these states, but we are ignorant of which one. This

is what necessitated a probability distribution in the first place. Of course, since K

is a macroscopic system, the number of its possible microstates (even if we are only

counting the ones such that S has energy εn) is unimaginably huge. We shall make
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the problem more tractable by representing this huge number as an exponential.

pn = eln Ω(εn) =
1

Z
eS(εn) (3.2)

where we have cleaned up notation by introducing the function S (εn) = ln Ω (εn).

This is the entropy. The logarithm of the number of microstates of K such that S

has energy εn. Naturally, it is a function of εn. However, the first assumption of

equilibrium dictates that K is an isolated system, and as such, it has a fixed total

energy E. Because we know that the system energy εn and the reservoir energy

must add up to the total energy E, we can equally well write εn = E − (E − εn)

and let the entropy be a function of the reservoir energy E − εn.

S (εn)→ S (E − εn) (3.3)

Finally, because we constructed S such that it had much smaller energies than K,

we know that E � εn. Thus, we are justified in expanding the entropy in the

exponential of Eq. (3.2). We have

pn ≈ eS(E)−εn( ∂S∂x )
E (3.4)

Both S (E) as well as the derivative of the entropy function S (x) at x = E that

appear in Eq. (3.4) are constants with respect to εn. We shall identify the derivative

with a constant called temperature (in units where the Boltzmann constant kB = 1).

β =
1

T
=

(
∂S

∂x

)
E

(3.5)

Of course, we shall also have to normalize the probability. Defining a partition

function Z =
∑

n pn =
∑

n e
−εn/T , we are left with the Gibbs distribution.

pn =
1

Z
e−βεn (3.6)
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It is truly amazing that from these simple assumptions and abstractions it is possible

to describe the states of extremely complex systems seemingly without doing any

work. We never gave any of these details of what K, S, and R actually are. Par-

ticularly, we never said whether the microscopic states of S were many body states

or single-particle states. In the next section, we shall consider what happens when

they are many body states of particles that have quantum statistical requirements

due to particle-exchange symmetry.

3.4.2 Bosons and Fermions

Following the ideas in [82], let us consider a situation wherein the total system

K is a collection of non-interacting quantum particles. We will assume the system

to be at equilibrium with itself with a temperature T and a volume V . For the body

of interest S, we shall choose a small region of the total volume. If we look at this

small volume, particles will be entering and leaving all the time. The total number of

particles inside this smaller volume will fluctuate due to interactions with the larger

system T . However, the number of particles should not fluctuate very far away from

some average density for the system. We can model this type of fluctuation with

a chemical potential µ. That is, we shall phenomenologically describe fluctuations

by allowing the number of particles N to change but to associate an energy cost

−µN to the presence of N particles. Within the system, these N particles will be

distributed among quantum states i with energies εi. If there are ni particles in

quantum state i, then the total energy contribution from i is simply niεi. The total
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energy of the microstate of the system S will simply be the sum of these energies over

all these states i. Thus, using the Gibbs distribution, formula (3.6), the probability

that system S has N particles distributed with ni particles in each state i is given

by

p (N, {ni}) = eβµN exp

(∑
i

niεi

)
(3.7)

with the condition that
∑

i ni = N . Of course, it is possible for the particles (at

least for now) to be distributed into quantum states in any way such that this

condition is satisfied. Thus, if we want to find the partition function for S (usually

more useful than the probability distribution), we shall have to sum over all these

possible configurations as well as all the possible numbers of particles in S. The

partition function can hence be written as a sum over N and i of expression (3.7).

Z =
∞∑
N=0

∑
{ni}

exp[−β
∑
i

(εi − µ)ni] (3.8)

where for each value of N , we sum over all possible placements of the N particles

into the quantum states i. The only condition is that the sum of the numbers of

particles in each quantum state must add up to the number of particles in the total

system:
∑

i ni = N (and therefore
∑

i niµ = Nµ which we used in the derivation of

(3.8)).

We will now make a very useful observation. We know that all the occupations

ni of each state must add up to N , but we are summing over every possible value

of N . Thus we may as well dispense with the index N and simply sum over the ni

without any restrictions. If we do this, the sums in the expression for our partition
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function, Eq. (3.8), reduce to

Z =
∑

n1,n2,...

exp[−β (ε1 − µ)n1 − β (ε2 − µ)n2 − . . .] (3.9)

but this sum factorizes! The occupation numbers are all treated on the same footing

(we can write n instead of ni), and the partition function can easily be written as

Z =
∏
i

{
∑
n

e−β(εi−µ)n} (3.10)

Now we shall have to take particle exchange symmetry into account. We know

that quantum mechanically (for our purposes), particles can be divided into bosons

and fermions. Bosons have the property that many particles can be in the same

quantum state while fermions allow only a single fermion per state. In terms of our

partition function, this means that the sum over n in Eq. (3.10) goes from n = 0

to n = ∞ for bosons while it is only n = 0, 1 for fermions. Let us consider bosons

first. In this case, the sum in Eq. (3.10) is a geometric series which converges only if

e−β(εi−µ)n < 1. Therefore, we know that the chemical potential µ must be negative

for our analysis to be valid. If this is the case, we have for the bosonic partition

function

ZB =
∏
i

(
1− e−β(εi−µ)

)−1
(3.11)

Using the fact that the average occupation number can be determined through the

formula 〈ni〉 = − 1
β

∂
∂εi

lnZ, we find that the distribution of bosonic occupations

among the quantum states i is given by

〈ni〉 =
1

eβ(εi−µ) − 1
(3.12)
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The assumption that K is at equilibrium has allowed us to determine the particle

statistics even with the complication of exchange symmetry in the many-body wave-

functions.

Let us now consider the case where we are dealing with fermions. No two

fermions can be in the same quantum state, so n can be equal to 0 or 1 in Eq.

(3.10). Our partition function again has a simple form.

ZF =
∏
i

(
1 + e−β(εi−µ)

)
(3.13)

and again we may use 〈ni〉 = − 1
β

∂
∂εi

lnZ to find the fermionic occupation statistics

〈ni〉 =
1

eβ(εi−µ) + 1
(3.14)

From these distribution functions, it is possible to find the equilibrium av-

erages of many observables of great practical importance. We have made a lot of

headway with just a few very strong assumptions. Even apart from the restrictive

assumption that our system is in equilibrium, we have made other simplifications

that are physically unsound in certain limits. For instance, our sum over N to infin-

ity in Eq. (3.8) contradicts the assertion that S is very small compared to K upon

which the legitimacy of Gibbs distribution depends. This is generally not a problem

because the probability of high N states will be very low (exponentially suppressed

in the energy of those states). However, this is not the case when the phenomenon

of Bose-Einstein condensation is considered. As T → 0, the bosonic population in

the ground state (ε0 = 0) diverges. This is interpreted as a macroscopic population

in a single quantum state. Such interpretations yield useful predictions, but we will

have to be more exact if we want a quantitative understanding of the condensate
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fraction. In other areas, these equilibrium distribution functions have been found

especially useful in the theory of solids at low temperatures. Even when interactions

are included, they still retain some validity as jumping-off points from which to per-

form perturbative expansions in weak couplings. Furthermore, it is often possible to

reformulate an interacting problem in terms of elementary collective excitations that

are non-interacting with either bosonic or fermionic statistics. In the next chapter,

we will discuss how to generalize beyond these distributions to find observables of

interest in systems with both driving and dissipation.
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Chapter 4

Systems Out of Equilibrium

4.1 Overview

We will now review all of the basic techniques available to the theorist trying to

describe systems that are far from equilibrium. As mentioned in previous chapters,

the field is simply too big to give it a useful treatment here. Rather, we shall outline

the theory behind a few techniques that we have found to be useful in our studies

of non-equilibrium optical and condensed matter systems. For more comprehensive

surveys of techniques, one could look to references [19] or [4].

A non-equilibrium system does not have well-defined thermodynamic proper-

ties. Entropy, temperature, free energy, and the like are all undefined for a general

system. This is unfortunate in one respect because we seem to have lost the ability to

describe large numbers of degrees of freedom with a few variables. Consequently, we

can expect non-equilibrium treatments to be far more complicated mathematically

than their equilibrium counterparts. In another respect, however, the loss of these

equilibrium quantities can be something of a blessing in that it forces us to move

away from abstract thermodynamic concepts available only in unrealistic limits and

restrict ourselves to more concrete observables such as ensemble averages and corre-

lation functions. As with many theoretical methods, non-equilibrium theory offers

a tradeoff between the conceptual simplicity with which we describe the quantities
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of interest and the mathematical difficulty inherent to describing the dynamics of

those quantities. Here, we shall discuss the basic theoretical constructions that we

have made use of in our work.

4.2 Observables out of Equilibrium

In non-equilibrium systems, we shall still want information about observables

that are fairly familiar from systems at equilibrium. From an intuitive perspective,

they fall into two basic categories: ensemble averages of single particle operators (like

particle kinetic energy, position, or momentum) and correlations (ensemble averages

of products of such operators). These are the quantities that are directly measured

in experiments. At equilibrium, thermodynamic quantities like temperature can

then be inferred from knowledge of these concrete observables. Obviously, away

from equilibrium, it will be enough just to know the concrete observables them-

selves. Happily, we have already seen the basic formalism necessary to describe

these non-equilibrium observables. Our work has made heavy use of two elementary

prescriptions. The first is given in terms of the density matrix ρ̂ formalism which

describes instantaneous ensemble averages through the relation given in Eq. (2.13)

〈Â〉 = Tr{ρ̂Â} (4.1)

When the system is not at equilibrium, ρ̂ will generally be a function of time (how-

ever we do consider the especially useful case of stationary non-equilibrium solutions

in particular systems in later chapters). Consequently, the ensemble averages will

also be time-dependent through the traces taken over ρ̂. When we considered only
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unitary dynamics as in chapter 2, the dynamics were governed by the Von Neumann

equation, Eq. (2.22). However we know that the inclusion of an environment with

which the system has not equilibrated will make the dynamics non-unitary. We shall

have to introduce the quantum master equation in Lindblad form [40]. This will be

one of the focuses of section 4.4.

The second prescription for the solution of non-equilibrium problems is ex-

pressed in terms of correlation functions. We make great use of this method in

chapter 7 to describe a non-equilibrium phase transition in lattice bosons. Correla-

tions are also experimentally observable in the statistical properties of distributions

of single particle operators. Furthermore, if there is a separation in energy scales

among the terms contributing to the total Hamiltonian, then the correlation func-

tions will have well-understood expansions in terms of Feynman-like diagrams even

far from equilibrium. Indeed, the formulation of such a Dyson-like expansion for

a non-equilibrium correlation function is the central mathematical result of chap-

ter 7. Far from equilibrium, our understanding of these functions will have to be

generalized from what we know at equilibrium or unitary dynamics. For instance,

non-equilibrium functions Ĝx,x′ (t, t
′) = 〈â†x (t) âx′ (t

′)〉 will depend on t and t′ sep-

arately rather than on only the difference t − t′ as is the case at equilibrium (We

remember from chapter 2 that this property can also be exhibited in unitary dy-

namics. In special cases such as periodic driving it can be dealt with rather simply).

Furthermore, the brackets 〈· · · 〉 will denote averages over time-dependent density

matrices rather than stationary thermal ensembles. These considerations and others

are the focus of the next section.
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4.3 Non-Equilibrium Correlation Functions

In earlier chapters, we have discussed the various uses for finding averages of

products of operators such as the following.

Gα,α′ (t, t
′) = −i〈Tâ†α (t) âα′ (t

′)〉 (4.2)

where the brackets 〈· · · 〉 denote a quantum average over the ground state of the

full Hamiltonian (for T = 0) and T is the time-ordering symbol. At T = 0, we can

formally take this average and write the correlation function in terms of a scattering

matrix without ever knowing the ground state over the full Hamiltonian. It will be

the focus of this section to generalize this concept to non-equilibrium systems and

show equilibrium as a special case.

We begin by remembering the prescription at equilibrium with a bath at zero

temperature. Following [63], we write the total Hamiltonian as Ĥ = Ĥ0 + V̂ where

Ĥ0 is a “bare” Hamiltonian for which we know the ground state |φ0〉. We assume

that we cannot diagonalize V̂ so we wish to include its effect as a perturbation.

Being at equilibrium, all of these Hamiltonians are assumed static. We shall assume

that in the infinite past, V̂ = 0. As time progresses, V̂ is adiabatically turned on so

that the system is instantaneously in the ground state of Ĥ0 + V̂ for all time. Then,

in the infinite future, the perturbation is adiabatically turned off again. Assuming

the perturbation to be fully turned on at t = 0, the net effect of all this is that we

may write the instantaneous ground state |φ〉 over which the average in Eq. (4.2) is
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written as

|φ〉 = Ŝ (0,−∞) |φ0〉 (4.3)

〈φ| = 〈φ0|Ŝ (−∞, 0) (4.4)

in the interaction picture with respect to V̂ . The operator Ŝ (t, t′) = Û (t) Û † (t′)

is the scattering operator. If the time-evolution operator is defined such that

|ψ (t)〉 = Û (t) |ψ (0)〉 then the scattering operator is more general in that |ψ (t)〉 =

Ŝ (t, t′) |ψ (t′)〉. This operator can be written as a time-ordered operator.

Ŝ (t, t′) = T exp
[
− i
∫ t

t′
dt1V̂ (t1)

]
(4.5)

Because we have adiabatically turned the perturbation on and off, the adia-

batic theorem says that the ground state at t = ∞ is equal to the ground state at

t = −∞ up to a phase. That is,

〈φ0|Ŝ (∞,−∞) |φ0〉 = eiL (4.6)

This is the crucial assumption that we will relax when we generalize this formalize

out of equilibrium. Far from equilibrium, the perturbation cannot be assumed to be

adiabatically turned on. There is no reason to believe that the system will remain

in its ground state in the infinite future. We will deal with this issue soon. Using

equation (4.6), we can rewrite 〈φ| in terms of the ground state in the infinite future

rather than the infinite past so long as we divide out the extra phase.

〈φ| = 〈φ0|Ŝ (∞, 0)

〈φ0|Ŝ (∞,−∞) |φ0〉
= e−iL〈φ0|Ŝ (∞, 0) (4.7)

The end result of all these mathematical gymnastics is that we may now write

the correlation function in the interaction picture as a time-ordered product of the
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particle operators and the scattering matrix Ŝ (∞,−∞) averaged over the known

ground state |φ0〉 of the bare Hamiltonian.

Gα,α′ (t, t
′) = −i〈Tâ

†
α (t) âα′ (t

′) Ŝ (∞,−∞)〉0
〈φ0|TŜ (∞,−∞) |φ0〉

(4.8)

In this form, Eq. (4.8) is not particularly useful, but when combined with Eq. (4.5)

and Eq. (2.20) it forms an expansion series for G in the small Hamiltonian V̂ .

To generalize equation (4.8) to non-equilibrium situations, we must go back to

the assumption that requires equilibrium. The adiabicity assumption that we turned

the perturbation V̂ on very slowly compared to the system’s time-scales allowed us

to write the ground state in the infinite future in terms of the ground state in the

infinite past and a phase in Eq. (4.7). Relaxing this assumption, we must neglect

Eq. (4.7) and return to Eq. (4.4) writing it in a slightly different way using the

transitivity of the operator Ŝ.

〈φ| = 〈φ0|Ŝ (−∞, 0) = 〈φ0|Ŝ (−∞,∞) Ŝ (∞, 0) (4.9)

Rather than writing the infinite future state as the infinite past state with a phase

prefactor, we simply write the future state as the past state time-evolved to t =∞.

At equilibrium, this forward-backward evolution will produce the results mentioned

already in this section. However, this method is equally valid away from equilibrium.

Substituting Eq. (4.9) into our expression for the correlator, we find that we may

write the correlation function as

Gα,α′ (t, t
′) = −i〈TC â

†
α (t) âα′ (t

′) Ŝ (−∞,−∞)〉0 (4.10)

where C is a contour in complex time space that goes from t = −∞ to ∞ slightly
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above the real t axis and from t = ∞ to −∞ slightly below the real axis. The

forward-backward evolution is encompassed in a single scattering operator written

in terms of this Keldysh contour C, [53, 54]. The backward evolution is interpreted

to have occurred after the forward evolution, the contour-ordering symbol TC orders

times along the contour taking this into account. The scattering matrix now has

the form (For the remainder of our work, h̄ = 1 unless specifically indicated).

Ŝ (−∞,−∞) = TC exp
[
− i
∫
C

dt1V̂ (t1)
]

(4.11)

where this operator can still be expanded to yield a non-equilibrium Dyson equation

for G. However, due to the fact that the time arguments can be on different legs of

the contour, we will be forced to reorganize our Dyson equation into matrix form.

As indicated earlier, the backward evolution is interpreted to happen after

the forward evolution. This means that if t is on the forward leg while t′ is on the

backward leg, then the contour-ordering symbol will evaluate the correlator in Eq.

(4.10) as

Gα,α′ (t, t
′) = G>

α,α′ (t, t
′) = −i〈âα′ (t′) â†α (t) Ŝ (−∞,−∞)〉0 (4.12)

regardless of the actual values of t and t′. If both of the time arguments are on the

forward leg, then they contour-ordering symbol just becomes the time-ordering we

have already met. There are four possible ways that t and t′ can be placed on the two

legs of contour C. Thus, there are four possible Green’s functions that the contour-

ordered correlator can attain. Our goal is to expand the total correlator in Eq.

(4.10) in terms of bare correlators gα,α′ (t, t
′) = 〈TC âα′ (t

′) â†α (t)〉0. This expansion
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is best accomplished through the four possible bare correlators corresponding to the

four orderings by TC . They are presented here (for bosons).

g>α,α′ (t, t
′) = −i〈âα′ (t′) â†α (t)〉0 (4.13)

g<α,α′ (t, t
′) = −i〈â†α (t) âα′ (t

′)〉0 (4.14)

gTα,α′ (t, t
′) = θ (t− t′)G>

α,α′ (t, t
′) + θ (t′ − t)G<

α,α′ (t, t
′) (4.15)

gT̃α,α′ (t, t
′) = θ (t′ − t)G>

α,α′ (t, t
′) + θ (t− t′)G<

α,α′ (t, t
′) (4.16)

Let us see what an expansion of one of these four total correlators would look

like. Using our expansion for the scattering matrix in Eq. (4.10), we have for the

lesser correlator:

G<
α,α′ (t, t

′) = −i
∑
n

(−i)n

n!

∫
C

dt1 . . . dtn〈TC V̂ (t1) . . . V̂ (tn) â†α (t) âα′ (t
′)〉0 (4.17)

To illustrate how we may represent this series very simply in terms of matrix mul-

tiplication, let us take an example interaction form from [63]. In the Schrödinger

picture, we posit an interaction that has the form

V̂ =
∑
λβ

Mλβâ
†
λâβ (4.18)

Equation (4.17) then becomes

G<
α,α′ (t, t

′) = g<α,α′ (t, t
′) +

∑
λβ

Mλβ

∫
C

dt1〈TC â
†
α (t) âβ (t1)〉0〈TC â

†
λ (t1) âα′ (t

′)〉0 + . . .

(4.19)

Remembering that the integral over t1 runs over the contour C, we know that

the contour-ordering symbols will order the operators in the second term on the

right-hand-side depending on which leg t1 is on. The are two possiblities. The
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first is that t1 is on the forward leg and we have 〈TC â
†
α (t) âβ (t1)〉0 → g< and

〈TC â
†
λ (t1) âα′ (t

′)〉0 → gT . The second is that t1 is on the backward leg and we have

〈TC â
†
α (t) âβ (t1)〉0 → gT̃ and 〈TC â

†
λ (t1) âα′ (t

′)〉0 → g<. Because t1 will be on both

legs (the contour runs from −∞ to∞ and back), we can write these two possibilities

in the same line as

G<
α,α′ (t, t

′) = g<α,α′ (t, t
′) (4.20)

+
∑
λβ

Mλβ

∫ ∞
−∞

dt1[g<αβ (t, t1) gTλα′ (t1, t
′)− gT̃αβ (t, t1) g<λα′ (t1, t

′)]

+ . . .

Here is where the great simplification afforded by matrix multiplication becomes

apparent. If we define the following matrix

Ĝαα′ (t, t
′) =

 GT
αα′ (t, t

′) −G>
αα′ (t, t

′)

G<
αα′ (t, t

′) −GT̃
αα′ (t, t

′)

 (4.21)

then we immediately see that the information in Eq. (4.20) is encompassed in the

equation

Ĝαα′ (t, t
′) = ĝαα′ (t, t

′) +
∑
λβ

Mλβ

∫ ∞
−∞

dt1ĝαβ (t, t1) ĝλα′ (t1, t
′) + . . . (4.22)

where ĝ is the matrix definition analogous to Eq. (4.21) for the functions gαα′ (t, t
′).

It can be easily (if somewhat tediously;) verified that Eq. (4.22) is correct for all the

elements of Ĝ. Indeed it is also obvious how to expand the series to higher orders to

obtain the full non-equilibrium Dyson equation in terms of these matrix correlation

functions. Relation (4.22) holds even when the brackets 〈. . .〉 indicate a thermal

average or any average over a mixed state rather than simply the quantum average
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over the ground state. It is this method that we use in chapter 7 to determine the

non-equilibrium correlations in the driven Bose-Hubbard model.

4.4 Equations of Motion

Having considered the types of observables of interest in non-equilibrium the-

ory, we shall have to discuss the equations of motion that govern them. The density

operator ρ̂ (t) is a dynamically changing measure of the population of particles in

each quantum state. When we discussed unitary dynamics, we noted that the den-

sity operator solved the Von Neumann [81] equation of motion, Eq. (2.22).

ih̄
∂

∂t
ρ̂ = [Ĥ, ρ̂] (4.23)

How will this change when we wish to include the effects of an external environment

with which the system has not equilibrated? We find the answer by enlarging our

perspective to include the environment. Let us define the Hamiltonian to have three

parts.

Ĥ = ĤS + ĤR + V̂ (4.24)

Here we have included the environment and the system of interest into a larger

“total” system. The Hamiltonian that affects only the system is designated by ĤS.

The Hamiltonian ĤR governs the dynamics of the reservoir degrees of freedom only.

The coupling between the system and the reservoir is given by V̂ , which we assume

to be weak. This assumption is necessary almost by construction. By assuming

that there is a way to meaningfully partition the total system into a system and a

reservoir, we are implicitly assuming that the coupling between these to partitions is
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weak enough that the dynamics of the two can be separated (at least conceptually).

It would not make much sense to make an arbitrary distinction between particles in a

confined gas when the interaction between particles in the two imaginary classes is as

strong as the interaction among particles within the classes themselves. The density

matrix describing the state of the system+reservoir will follow the Von Neumann

equation with the total Hamiltonian given in Eq. (4.24). The dynamics of this total

system is unitary. However, remember that we are not interested in the dynamics of

the total system. Only S is of interest to us. We will want to coarse-grain over all

the unnecessary information about the reservoir to get an equation of motion only

for S. This equation will not be unitary [76, 12].

Following [25] with this objective in mind, we shall define the reduced density

matrix σ̂ (t) for the system to be

σ̂ (t) = TrR{ρ̂} (4.25)

Then we shall transform into the interaction picture with respect to the coupling.

ρ̃ (t) = ei(ĤS+ĤR)t/h̄ρ̂ (t) e−i(ĤS+ĤR)t/h̄ (4.26)

Ṽ (t) = ei(ĤS+ĤR)t/h̄V̂ e−i(ĤS+ĤR)t/h̄ (4.27)

As expected, in this basis, the Von Neumann equation only details the dynamic

dependence on the coupling term.

∂

∂t
ρ̃ (t) =

1

ih̄
[Ṽ (t) , ρ̃ (t)] (4.28)

The interaction picture is particularly useful because of our assumption that the

coupling was weak. Because we have assumed that V̂ is small compared to the
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other energy scales of the problem, the time-evolution due to equation (4.28) will

be slow without the rapid evolution due to the other terms in the Hamiltonian. We

can integrate both sides of Eq. (4.28) in time to get

ρ̃ (t+ ∆t)− ρ̃ (t+) =
1

ih̄

∫ t+∆t

t

dt′[Ṽ (t′) , ρ̃ (t′)] (4.29)

We can iterate this equation by letting ρ̃ (t′) = ρ̃ (t+ ∆′t) and using Eq. (4.28)

again. This can be done to any desired order in Ṽ , but we will only include the

second order term here.

ρ̃ (t+ ∆t) = ρ̃ (t) +
1

ih̄

∫ t+∆t

t

dt′[Ṽ (t′) , ρ̃ (t)]

+

(
1

ih̄

)2 ∫ t+∆t

t

dt′
∫ t′

t

[Ṽ (t′) , [Ṽ (t′′) , ρ̃ (t′′)]] (4.30)

As stated in [25], equation (4.30) is exact, but in order to get anything useful

from it, we shall now have to assume certain properties of the reservoir. We shall first

assert that the reservoir is large enough that the coupling to the system produces

no change in the reservoir

σ̃R (t) = TrS{ρ̃ (t)} = σR (4.31)

where σR is not a function of time. Secondly, we shall assume that the reservoir is

in a stationary state. Its density operator commutes with its Hamiltonian.

[σR, ĤR] = 0 (4.32)

Thus, σR is diagonal in the energy basis, and we can consider it to be a mixed state

of energy eigenkets. Lastly, we shall make a strong assumption on the coupling. We

shall assume that V̂ is a product of a system observable Â consisting of operators
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that act only on system states and a reservoir observable R̂. By construction, these

operators will commute with each other and we will have

V̂ = −ÂR̂ (4.33)

where the generalization to a sum of such operators is easily accommodated. We

also assume with no loss in generalization that the average value of the bath operator

vanishes. Writing the trace in the interaction picture yields

Tr{σRR̃ (t)} = 0 (4.34)

Finally, we shall make the Markovian assumption [25, 4]. Looking at the reservoir

correlation function g (t, t′) = 〈R̃ (t) R̃ (t′)〉 it is easy to prove that this function

depends only in the difference τ = t − t′ by virtue of the fact that the bath is in a

stationary state ([σR, ĤR] = 0). We have

g (t, t′) = TrR{σRR̃ (t) R̃ (t′)} (4.35)

= TrR{σReiĤRt/h̄R̂e−iĤR(t−t′)/h̄R̂e−iĤRt
′/h̄} (4.36)

= TrR{σRR̃ (τ) R̃ (0)} = g (τ) (4.37)

We expected this from knowing that reservoirs at equilibrium (though we have not

actually assumed our reservoir to be at equilibrium) have correlators that depend

only on the difference between their time arguments. The Markovian assumption

consists of the assertion that the bath has a very dense ensemble of energy levels.

Thus, when τ gets large enough, the exponentials in the Fourier expansion of g (τ)

will destructively interfere because the spread of frequencies in the expansion is

very dense. Thus, g (τ)→ 0 for times much bigger than some bath correlation time
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τc. The Markovian assumption is that τc vanishes when compared to the relevant

time-scales of the problem.

Under these assumptions, our goal is to use the exact equation (4.30) to de-

termine a coarse-grained equation of motion for the system density operator σ̃ (t)

where the degrees of freedom in the reservoir have been averaged over. Let us begin

by writing our total density matrix as a sum of two parts.

ρ̃ (t) = TrRρ̃ (t)⊗ TrS ρ̃ (t) + ρ̃correl (t) (4.38)

We have written the total density matrix as a product of the two reduced matrices

plus some unknown contribution having to do with correlations between the system

and the bath. We shall see that the Markovian assumption allows us to neglect the

contribution from ρ̃correl. Let us return to Eq. (4.30). We shall assume that ∆t is

small compared to the evolution time of the system τS. If this is the case (meaning

that V̂ is sufficiently weak), then we may replace ρ̃ (t′′) with ρ̃ (t). We have ignored

the evolution of the system due to third order and higher terms in V̂ arguing that

a substantial change in the system due to these terms takes a much longer time

than we wish to consider. Now we can trace both sides of this equation over the

bath degrees of freedom. Because the second term in Eq. (4.30) vanishes due to Eq.

(4.34), we have

∆σ̃

∆t
= − 1

h̄2

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ TrR
[
Ṽ (t′) , [Ṽ (t′′) , σ̃ (t)⊗ σR + ρ̃correl (t)]

]
(4.39)

where we have divided both sides by ∆t to form an equation reminiscent of that for

a time-derivative. An order of magnitude estimate of the term due to the system

bath correlations (which must accrue due to interaction during all times before
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t) including a contribution from the linear term in Eq. (2.22) (which cannot be

assumed to vanish in this case) is given in [25] as

(
σ̃

∆t

)
correl

= − 1

h̄2

1

∆t

∫ t

−∞
dt′′
∫ t+∆t

t

dt′〈Ṽ (t′′) Ṽ (t′)〉R (4.40)

Remembering that bath correlators vanish for t′ − t′′ � τc, an order of magnitude

estimate of this quantity is given by

1

h̄2

1

∆t
v2τ 2

c =
1

TS

τc
∆t

(4.41)

where v is the energy characterizing the strength of V̂ . Thus, in the limit where

τc
TS∆t

→ 0, we may write the coarse-grained equation of motion for our system density

matrix σ̃ in the interaction picture with respect to V̂ as

∆σ̃

∆t
= − 1

h̄2

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ TrR
[
Ṽ (t′) , [Ṽ (t′′) , σ̃ (t)⊗ σR]

]
(4.42)

This equation is not yet written in its most useful form. Specifically, the

right-hand side is not very intuitive. We would like to write it in a form that takes

advantage of the bath correlation functions which we know to be functions only of

τ = t′ − t′′. To that end, let us substitute our variables of integration such that the

time integrations can be written as

∫ t+∆t

t

dt′
∫ t′

t

dt′′ =

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′ (4.43)

Recalling that the bath correlators vanish for τ � τc, we know that we can extend

the upper limit of the integration over dτ to infinity and lower limit of the integration

over dt′ to t, and the error will be negligible. Finally, we may expand the commutator
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in Eq. (4.42) yielding

∆σ̃

∆t
= − 1

h̄2

∫ ∞
0

1

∆t

∫ t+∆t

t

dt′

×
{
g (τ) [Ã (t′) Ã (t′ − τ) σ̃ (t)− Ã (t′ − τ) σ̃ (t) Ã (t′)]

+g (−τ) [σ̃ (t) Ã (t′ − τ) Ã (t′)− Ã (t′) σ̃ (t) Ã (t′ − τ)]
}

(4.44)

where the operators Ã are just the interaction picture representation of the system

operator in Eq. (4.33). Equation (4.44) is the quantum master equation [40, 4, 38].

It is an operator equation, so it can be cast in whatever basis we choose (most often

the energy basis of eigenkets of the system Hamiltonian). The products of operators

appearing in Eq. (4.44) can be organized into what are called Lindblad operators

[40]. Often (but not always) they can be identified as noise and dissipation terms.

A much simpler Boltzmann-like equation is used in chapter 6 to model the energy

distribution of quasiparticle excitations in optically confined fermions.
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Chapter 5

Dark States, Coherent Population Transfer, and Bistability in

Feshbach Coupled Fermions

5.1 Dark States and Coherent Population Transfer in Feshbach Cou-

pled Fermions

5.1.1 Overview

As a demonstration of the unitary techniques available to model driven many-

body systems, this chapter is concerned with the efficient association of Feshbach

coupled Fermions into molecules. Large portions of the chapter are quoted from the

author’s publication, reference [78].

Association of ultracold atom pairs into diatomic molecules via Feshbach res-

onance [93] or photoassociation [92], has made it possible to create coherent super-

positions between atomic and molecular species at macroscopic level. This ability

is the key to applications that employ the principle of the double pulse Ramsey in-

terferometer [72] for observing coherent population oscillations between atoms and

molecules [30, 56, 62]. A particular kind of state, the atom-molecule dark state,

has been theoretically proposed [61, 60] and experimentally observed [99], where

population is trapped in a superposition between atom pairs and deeply bound

molecules in the electronic ground state. Destructive interference leads to the van-
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ishing population in the excited molecular level. Such a state is the generalization

of the usual atomic dark state that lies at the heart of many exciting applications,

including electromagnetically induced transparency, slow light propagation and pre-

cision spectroscopy [85]. So far, the macroscopic atom-molecule dark state has only

been studied in bosonic systems. The purpose of this chapter is to show that, under

proper conditions, an atom-molecule dark state also exists in fermionic systems, but

with quite distinct properties compared with its bosonic counterpart.

To be specific, we consider a homogeneous atom-molecule system where an

excited molecular level |m〉 is coupled both to a ground molecular level |g〉 (bound-

bound coupling) by a coherent laser field, and to two free atomic states of equal

population labeled as |↑〉 and |↓〉 (bound-free coupling) via, for example, a photoas-

sociation laser field. At zero temperature, bosonic molecules all condense to the

zero-momentum state, whereas fermionic atoms are of multi-momentum modes in

nature due to the Pauli principle, and are thus described by momentum continua of

different internal states. This difference has two important ramifications.

The first one is related to the formation of the dark state. As is known,

two necessary ingredients for creating a macroscopic atom-molecule dark state are

the coherence between its components and the generalized two-photon resonance

which, unlike in the linear atomic model, becomes explicitly dependent on the atomic

momentum. For bosons at zero temperature, since they all occupy the same zero-

momentum mode, properly tuning the laser frequencies can make all the bosons

satisfy the two-photon resonance simultaneously. However, for fermions, because

of the existence of the fermi momentum sea, the same technique can only render
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a limited number of atoms with the “right” momentum to satisfy the two-photon

resonance. Hence a macroscopic dark state involving all the particles in the system

does not seem to be possible for fermions. This difficulty can be circumvented when

the attractive interaction between atoms of opposite spins results in a fermionic

superfluid state that can be regarded as a condensate of atomic Cooper pairs. As

we shall show below, such a fermionic superfluid, together with the ground molecule

condensate, can now form a macroscopic dark state under the two-photon resonance

condition.

The second ramification of the momentum continuum is related to the collec-

tive excitation of the dark state. The excitation spectrum of the fermionic system

is far more difficult to analyze than its bosonic counterpart. The zero-temperature

spectrum of the bosonic system is discrete [60]. In contrast, the spectrum of the

fermionic system is made up of both a discrete and a continuous part, and hence

can be regarded as the nonlinear analog of the Fano-Anderson type of models in

linear atomic and condensed matter systems [35]. As we demonstrate later, this

analogy significantly simplifies our understanding of the excitation spectrum while

at the same time enables us to gain profound insights into the dynamical properties

of the fermionic dark state.
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5.1.2 Mean-Field Hamiltonian

Let us begin with the mean-field Hamiltonian [28] written in the frame rotating

at the laser frequency:

Ĥ =
∑
k,σ

εkâ
†
k,σâk,σ + ν0b̂

†
mb̂m + (δ0 + ν0) b̂†g b̂g

−
∑
k

ϕk

(
∆ â†k,↑â

†
−k,↓ + h.c

)
+

Ω0

2

(
b̂†mb̂g + h.c

)
+

1√
V

∑
k

gϕk

(
b̂mâ

†
+k,↑â

†
−k,↓ + h.c

)
, (5.1)

where âk,σ is the annihilation operator for an atom of spin σ(=↑ or ↓), having

momentum h̄k and kinetic energy εk = h̄2k2/2m, b̂m,g the annihilation operator for

a bosonic molecule in state |m〉 or |g〉. We have neglected the Hartree mean-field

potential as it is usually weak for typical parameters. Here, V is the system volume,

δ0 and Ω0 (ν0 and g) are respectively the detuning and coupling strength of the

bound-bound (bound-free) transition, ϕk = exp [−k2/(2K2
c )] is the regularization

function providing momentum cutoff, and ∆ = −U
∑

k ϕk 〈â−k,↓âk,↑〉 /V is the gap

parameter. The collisional interaction potential between atoms of opposite spins

and the atom-molecule coupling are given by U (k− k′) = Uϕkϕk′ and g (k) = gϕk,

respectively, where U and g are momentum independent. Evidently, Eq. (5.1)

preserves the total atom number N = 2(〈b̂†mb̂m〉+ 〈b̂†g b̂g〉) + 2
∑

k〈â
†
k,↑âk,↑〉.

The dynamics of the system is governed by the Heisenberg equations of motion

for operators. By replacing bose operator b̂m,g with the related c-number cm,g =

〈b̂m,g〉/
√
V and fermi operator âk,σ (t) with uk (t) and vk (t) through the Bogoliubov
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transformation  âk,↑ (t)

â†−k,↓ (t)

 =

 u∗k (t) vk (t)

−v∗k (t) uk (t)


 α̂k,↑

α̂†−k,↓

 (5.2)

with |uk (t)|2 + |vk (t)|2 = 1 and α̂k,σ being fermi quasiparticle operators, we obtain

the following equations

ih̄
dcm
dt

= ν0cm +
Ω0

2
cg −

g

U
∆, (5.3a)

ih̄
dcg
dt

= (δ0 + ν0) cg +
Ω∗0
2
cm, (5.3b)

ih̄
duk
dt

= −εkuk + ϕk (g∗c∗m −∆∗) vk, (5.3c)

ih̄
dvk
dt

= εkvk + ϕk (gcm −∆)uk, (5.3d)

∆ (t) = −U
V

∑
k

ϕku
∗
k (t) vk (t) , (5.3e)

where we have assumed that the state of the system is the quasiparticle vacuum

annihilated by α̂k,σ.

The stationary solutions to Eqs. (5.3) have the form:

cm,g (t) = csm,g e
−2iµt/h̄ , ∆ (t) = ∆s e−i2µt/h̄ ,

uk (t) = usk e
iEkt/h̄ eiµt/h̄ , vk (t) = vsk e

iEkt/h̄ e−iµt/h̄ ,

where quantities with superscript s are time-independent. Inserting this stationary

ansatz into Eqs. (5.3) and searching for solutions with csm = 0, we find that such

a dark-state solution indeed exists as long as the generalized two-photon resonance

condition

δ0 + ν0 = 2µ , (5.4)
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Figure 5.1: (a)
∣∣csg∣∣2 /n, µ, and ∆s as functions of Ω0. The dark

state solution at Ω0 = 4.1 EF is indicated by the vertical line where∣∣csg∣∣2 /n = 0.067, µ = 0.87 EF , and ∆s = 0.17 EF . (b)-(d) The ground

population dynamics where (b) ν0 = −4.32 EF , (c) ν0 = −2.88 EF ,

and (d) ν0 = 0.00 EF . The insets are the Fourier spectra of the corre-

sponding population dynamics after t = ts = 126.65h̄/EF . We have used

the following parameters: U0 = −28.39EF /k
3
F , g0 = −15.68EF /k

3/2
F ,

n = 0.034 k3
F , and Kc = 14.4kF , where EF and kF are the fermi energy

and momentum, respectively.
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is satisfied. Such a solution is given by |usk|
2 = 1 − |vsk|

2 = (Ek + εk − µ) /2Ek,

Ek =
√

(εk − µ)2 + |∆s|2 ϕ2
k, where µ,∆s and csg are determined from the follow-

ing equations, representing, respectively, (a) the destructive interference condition

leading to vanishing population in |m〉

Ω0

2
csg =

g

U
∆s , (5.5)

(b) the gap equation

1

U
= − 1

2π2

∫ ∞
0

ϕ2
k

2Ek
k2dk , (5.6)

and (c) the conservation of particle number

n =
N

V
= 2

∣∣csg∣∣2 +
1

2π2

∫ ∞
0

(
1− εk − µ

Ek

)
k2dk . (5.7)

Equation (5.5) in particular demonstrates the coherent nature of the dark state: for

a normal atomic Fermi gas (∆s = 0) which does not possess phase coherence, such

a state is impossible as Eq. (5.5) would imply vanishing population in the molecular

level |g〉 (csg = 0).

5.1.3 Stationary Dark State Solution

An example of the dark state solution obtained by solving Eqs. (5.5-5.7) self-

consistently is shown in Fig. 5.1(a). To remove the ultraviolet divergence in the

gap equation (5.6), we have followed the standard renormalization procedure to

replace U by ΓU0, where U0 is the physical two-body atomic collisional strength.

Here Γ = 1/(1 + U0U
−1
c ), and U−1

c = −mKc/
(
4π3/2h̄2

)
[57]. Further, by replacing

g with Γg0 while keeping the rest of parameters unchanged, we can easily show
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that our results become independent of Kc. Figure 5.1(a) displays the ground

molecular population of the dark state |csg|2, the corresponding chemical potential

µ, and the gap parameter ∆s as a function of the bound-bound coupling strength

Ω0. In the limit Ω0/(g0

√
n)→∞, we have

∣∣csg∣∣2 → 0 and all the population is in a

pure BCS atomic state; while in the opposite limit of Ω0/(g0

√
n) → 0,

∣∣csg∣∣2 → 0.5

and all the population are in the ground molecular state. Thus, in principle, we

can adiabatically convert the BCS atom pairs into ground molecular BEC or vice

versa by controlling the ratio Ω0/g0

√
n in the spirit of Stimulated Raman Adiabatic

Processes (STIRAP) [11].

Our use of STIRAP here is, however, for preparing a superposition which is

a prerequisite for demonstrating coherent oscillations in fermionic systems [101, 7,

9, 91]. Starting from t = 0 with a pure atomic BCS state at a relatively large Ω0,

we adiabatically decrease Ω0 to 4.1 EF at t = ts [indicated in Fig. 5.1(b)-(d)] while

maintaining the two-photon resonance condition (5.4) through a proper chirping of

the laser frequency [60]. At t = ts, a dark state, which is indicated by the vertical

lines in Fig. 5.1, is then formed with about 14% of the atoms now converted to

ground molecules. Next, immediately after t = ts, we suddenly change Ω0 from 4.1

to 4.6 EF and then keep it fixed for later time, while fixing all other parameters at

their respective values at ts. The dynamical response of the system is illustrated

in Fig. 5.1(b)-(d), which display the ground molecular population as a function of

time as obtained by solving Eqs. (5.3).
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5.1.4 Dynamic Simulations and Stability

From the dynamical simulation, we see that the system follows the dark-state

solution up to t = ts, after which, a sudden change of Ω0 induces oscillations in the

population. Note that although the dark-state solution is not explicitly dependent

upon the detunings δ0 and ν0, which must satisfy Eq. (5.4), the population dynamics

for t > ts does depend on their specific values. Several conclusions can be drawn

from Fig. 5.1(b)-(d). First, the atom-molecule dark state is robust as, after the

sudden “shake” at ts, the system oscillates around its steady state. Second, the

population oscillation occurs between the ground molecular state |g〉 and the atomic

state, while the excited molecular population (not shown in the figures) remains

negligible. Third, the oscillations are dominated by two frequencies whose values

depend on the detunings as indicated by the corresponding Fourier spectra shown

in the insets.

To better understand these oscillations and gain insight into the dark states,

we calculate the collective mode frequencies by linearizing Eqs. (5.3) around the dark

state solution. This procedure leads to a transcendental equation for the collective

mode frequency ω given by f (ω) = 0 where f (ω) has the following form:∣∣∣∣∣∣∣∣
1

Ueff (ω)
−
∫∞

0
dk
2π2k

2ϕ2
k
E2
k+(εk−µ)2+ω(εk−µ)

Ek(ω2−4E2
k)

∫∞
0

dk
2π2k

2ϕ2
k

(ϕk∆s)2

Ek(ω2−4E2
k)∫∞

0
dk
2π2k

2ϕ2
k

(ϕk∆s)2

Ek(ω2−4E2
k)

1
Ueff (−ω)

−
∫∞

0
dk
2π2k

2ϕ2
k
E2
k+(εk−µ)2−ω(εk−µ)

Ek(ω2−4E2
k)

∣∣∣∣∣∣∣∣
(5.8)

where the vertical delimiters indicate a determinant of the matrix and Ueff (ω) =

U + ωg2 [ω (ω + 2µ− ν0)− |Ω0|2/4]
−1

. Here, the integrals in the diagonal elements

68



are automatically renormalized since Ueff (ω) scales as ΓU0
eff (ω), where U0

eff (ω) =

U0 + ωg2
0/[ω(ω + 2µ− ν ′0)− |Ω0|2 /4] with ν ′0 = ν0 + Γg2

0/Uc.

Before examining f (ω) in detail, we first make a remark. As we have men-

tioned, our dark state reduces to a pure BCS state in the limit Ω0/g0

√
n → ∞. In

this case, Ueff → U0, which is independent of ω. As is known [97], the collective

excitation spectrum of a BCS state contains a continuous part and a discrete mode

lying just below the continuum threshold at 2∆s. Due to the coupling between

discrete (molecular) states and the continuum (atomic) states, the problem at hand

bears much resemblance to the energy diagonalization of the Fano-Anderson type

of Hamiltonians in linear atomic and condensed matter systems [35]. In analogy to

these problems, such discrete-continuum coupling may lead to drastic modifications

to both parts of the excitation spectrum. Mathematically, this coupling gives rise

to ω-dependence in Ueff and introduces extra poles in f(ω).

We now examine the spectrum by finding the roots of Eq. (5.8). Since f(ω) is

an even function of ω, we only concentrate on the positive-frequency branch. The

function of f(ω) is plotted in Fig. 5.2. The left panel [Fig. 5.2(a)-(c)] shows the

low-frequency part. Here, just as in the pure BCS model, one isolated mode lies

not far below the continuum threshold. As the free-bound detuning becomes more

negative, this mode decreases and shifts further away from continuum. In the right

panel [Fig. 5.2(d)-(f)], we show the high-frequency part. Here, the vertical lines

are the poles determined by ω = 2Ek at discrete momenta. Typically, a single

root is trapped between two adjacent poles. These roots will form a continuum.

This pattern of root distribution is, however, broken in the region indicated by the
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arrow, where two roots exist between two adjacent poles. In the continuous k limit,

one of the two roots joins the continuum while the other one becomes part of the

discrete spectrum. The two discrete modes (one shown in left and the other in right

panel) are the ones that determine the dynamical population oscillation shown in

Fig. 5.1(b)-(d), while the contribution from the continous part of the spectrum, due

to the destructive interference, may lead to a power-law decay of the oscillation at

a longer time scale [97, 101].

5.1.5 Summary

In summary, we have shown that it is possible to construct a macroscopic atom-

molecule dark state in a fermionic superfluid. The superfluidity of the fermionic

atoms is a necessary ingredient for such a state. Therefore characteristics of the

dark state may serve as a diagnostic tool for Fermi superfluids. Via direct dynamical

simulation, we have shown that the dark state is quite robust. By perturbing the

state, we are able to generate coherent oscillations reminiscent of the oscillating

current across Josephson junctions. A remarkable feature here is that the population

oscillation occurs between the ground molecules and the BCS atom pairs, while

the excited molecular population remains highly suppressed. This has the obvious

advantage of preserving the atom-molecule coherence for a time much longer than

the excited molecular lifetime. Thus, this technique has the potential to increase

the sensitivity in interference-based high-precision measurements. In particular, the

low frequency mode is directly related to the gap parameter ∆s, and measurement
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Figure 5.2: The sections of f (ω) containing the low frequency root (left

column) and the high frequency root (right column). (a) and (d) are

for ν0 = −4.32 EF , (b) and (e) are for ν0 = −2.88 EF , and (c) and (f)

are for ν0 = 0.00 EF . Other parameters are the same as in Fig. 5.1.
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of this frequency will allow us to gain insight into the atom-atom and atom-molecule

interactions as they will strongly affect ∆s.

5.2 Matter-Wave Bistability in Feshbach Coupled Fermions

5.2.1 Overview

Here we study the matter-wave bistability in coupled atom-molecule quan-

tum gases,in which heteronuclear molecules are created via an interspecies Fesh-

bach resonance involving either two-species Bose or two-species Fermi atoms at zero

temperature. We show that the resonant two-channel Bose model is equivalent to

the nondegenerate parametric down-conversion in quantum optics, while the corre-

sponding Fermi model can be mapped to a quantum optics model that describes a

single-mode laser field interacting with an ensemble of inhomogeneously broadened

two-level atoms. Using these analogies and the fact that both models are subject

to the Kerr nonlinearity due to the two-body s-wave collisions, we show that under

proper conditions, the population in the molecular state in both models can be made

to change with the Feshbach detuning in a bistable fashion. Large portions of the

chapter are quoted from the author’s publication, reference [52].

The ability to cool and trap neutral atoms down to quantum degenerate regime

has created a host of new and exciting problems that are increasingly interdisci-

plinary, bridging in particular the atomic, molecular, and optical physics and the

condensed matter physics. The rich knowledge and experience accumulated over

the past several decades in these fields have dramatically accelerated the progress
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of ultracold atomic physics. An example that serves to illustrate how the inter-

disciplinary fields learn and benefit from each other is the phenomonon of atomic

pairing where a bosonic molecule is coupled to two bosonic or fermionic constituent

atoms via Feshbach resonance or photoassociation. So far this is the only viable

approach to create ultracold molecules. It is also an ideal test ground for studying

coupled atom-molecule condensates and the BCS-BEC crossover [23]. The latter is

thought to be underlying the mechanism of high temperature superconductors and

extensively studied in the realm of condensed matter physics. In addition, the cou-

pled atom-molecule systems have deep quantum optical analogies [50, 94]: bosonic

molecules coupled to bosonic atoms (which we will refer to as the bosonic model)

is the matter-wave analog of parametric coupling of photons which has important

applications in generating nonclassical light fields and, more recently, in quantum

information science; while the system of bosonic molecules coupled to fermionic

atoms (which we will refer to as the fermionic model) can be mapped to the Dicke

model where a light field interacts with an ensemble of two-level atoms, a model

having fundamental importance in the field of quantum optics.

In this work, we will further explore these quantum optical analogies of the

atom-molecule system and focus on the important effects of binary collisional inter-

actions between atoms which are largely ignored in previous studies [50, 94]. We

show that the atom-atom interaction introduces extra nonlinear terms which, under

certain conditions, give rise to matter-wave bistability in both bosonic and fermionic

models. Hence, we may establish the connection between the coupled atom-molecule

quantum gases and the nonlinear bistable systems [41] that have been extensively
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studied in the 80’s in the context of nonlinear optics, due both to its fundamen-

tal interest, and to its many practical applications in fast optical switches, optical

memory, laser pulse shaping, etc.

5.2.2 Bosonic model

In what we call the bosonic model, a molecule associated with annihilation

operator âm is coupled to two non-identical atoms labeled as | ↑〉 and | ↓〉 with

corresponding annihilation operators â↑ and â↓, respectively. Here we consider two

types of atoms in order to make direct comparisons with the fermionic model to be

treated in the next section, for which only unlike fermionic atoms can pair with each

other and form a bosonic molecule. Futhermore, in this work we only consider the

zero-temperature homogeneous case so that all the bosons are condensed into zero

center-of-mass momentum states.

The second quantized Hamiltonian reads

Ĥ = δ â†mâm + g
(
â†mâ↑â↓ + h.c.

)
+
∑
i,j

χij â
†
i â
†
j âj âi , (5.9)

where the detuning δ represents the energy difference between the molecular and

atomic levels which can be tuned by external field, g is the atom-molecule coupling

strength and χij = χji is the s-wave collisional strength between modes i and j. This

system has been studied in Ref. [103]. For completeness and better comparison with

the fermionic model, we briefly state some of the main results relevant to the focus

of this work — matter-wave bistability — and direct readers to Ref. [103] for more

details.
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For our purpose, we take the standard mean-field approximation and replace

operators âj with c-numbers aj =
√
Nj e

iϕj . The mean-field Hamiltonian takes the

form:

H = 2Λ(y2 − y) + 2νy + (1− 2y)
√

2y cosϕ , (5.10)

where N ≡ N↑+N↓+2Nm is a constant of the motion representing the total number

of atoms, and we have assumed that the number of atoms in states | ↑〉 and | ↓〉 are

equal, i.e., N↑ = N↓. We also find the quantities

y = 0.5 [1− (N↑ +N↓) /N ] = Nm/N , ϕ = ϕ↑ + ϕ↓ − ϕm (5.11)

which are a pair of conjugate variables representing the molecular population and

phase mismatch, respectively. Other quantities are defined as

G = g
√

2N ,

Λ = N (χ↑↑ + χ↓↓ + χmm + 2χ↑↓ − 2χm↑ − 2χm↓) /G ,

ν = [δ + χ↑↑ + χ↓↓ + (N − 1)χmm −Nχm↑ −Nχm↓] /G ,

We will focus on the stationary states with ϕ = π which has lower energies than the

ones with ϕ = 0.

5.2.2.1 Quantum Optical Analogy

It is quite clear from the form of the second-quantized Hamiltonian in Eq. (5.9)

that without the collisional terms our model will reduce to the trilinear Hamiltonian

describing the nondegenerate parametric down-conversion in quantum optics [31,

65]. In this analogy, the molecular mode plays the role of the pump photon, where
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the two atomic modes are the signal and idler photons, respectively. The collisional

terms would correspond to the Kerr-type cubic nonlinearity which will be present

in the optical system if the light fields propagate in some nonlinear medium [89].

5.2.2.2 Bistability

In the absence of the collisions or Kerr nonlinearity (i.e., Λ = 0), the system

does not exhibit bistability. This can be seen by studying the properties of the

mean-field Hamiltonian H in Eq. (5.10) which can be simplified as (taking ϕ = π)

H = 2νy − (1− 2y)
√

2y , (5.12)

The stationary state corresponds to the solution of

∂H

∂y
= 2ν + 3

√
2y − 1/

√
2y = 0 . (5.13)

For a given detuning ν, the stationary state is unique:

y0(ν) =


0.5 , ν < −1

1
18

(−ν +
√
ν2 + 3)2 , ν ≥ −1

(5.14)

For Λ 6= 0, using Eq. (5.10), the stationary condition is given by

∂H

∂y
= 2ν ′ + 3

√
2y − 1/

√
2y = 0 , (5.15)

where we have defined

ν ′ = ν + Λ(2y − 1) . (5.16)

Note that Eqs. (5.13) and (5.15) have the same form. In other words,we can express

the effect of collisions as a nonlinear phase shift for molecules that modifies the
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Figure 5.3: For given Λ and ν, the thick solid line represents y0(ν ′) and

the thin dashed straight line represents Eq. (5.16). The intersects are

the stationary solutions. Here we take 1/2Λ = −0.1 and ν = 0.4Λ.

detuning ν. Consequently, the stationary solution for Λ 6= 0 should have the same

form as in Eq. (5.14) but with ν replaced by ν ′, which makes y0 an implicit function

of the detuning ν. To find the explicit dependence of y0 on ν, we can use the graphic

method as illustrated in Fig. 5.3. For the example given, we obtain three stationary

states. Further analysis shows that the middle solution is dynamically unstable

and the other two are stable solutions [103]. Such a behavior is typical in bistable

systems [41].

The graphics of Fig. 5.3 also shows that, in order to have multiple stationary

solutions, the slope of the straight line (given by 1/2Λ) must be negative and cannot

be too steep. More specifically, the slope of the straight line has to be larger than

the slope of the curve at ν = −1, and this leads to the condition

Λ < −1 , (5.17)
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in order for the system to exhibit bistability.

5.2.3 Fermionic model

In the fermionic model, we denote âk,σ as the annihilation operator for an

atom with spin σ (=↑ , ↓), momentum h̄k, and energy εk = h̄2k2/(2m), and as

before denote âm as the annihilation operator for a molecule in state |m〉 with zero

momentum. the second quantized Hamiltonian reads:

Ĥ =
∑
k,σ

εkâ
†
kσâkσ + U

∑
k,k′,q

â†k↑â
†
−k+q↓â−k′+q↓âk′↑

+ νâ†mâm +
g√
V

∑
k

(
â†mâ−k↓âk↑ + h.c.

)
, (5.18)

where V is the quantization volume. Hamiltonian (5.18) has the form of the two-

channel model of BCS-BEC crossover where only the condensed molecule part is

considered [24]. Following the Hartree-Fock-Bogoliubov mean-field approach [28]

by dividing the two-body collision into a part related to the BCS gap potential

∆ = Up, where

p =
∑
k

〈â−k↓âk↑〉 /V (5.19)

and a part related to the Hartree potential

Vh = U
∑
kσ

〈â†kσâkσ〉/(2V ) , (5.20)
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where we again assume equal population in | ↑〉 and | ↓〉 atomic states, i.e., 〈â†k↑âk↑〉 =

〈â†k↓âk↓〉, we may express the Hamiltonian as

Ĥ =
∑
k,σ

(εk + Vh)â
†
kσâkσ + νâ†mâm

+
∑
k

[(
Up+ gâm/

√
V
)
â†k↑â

†
−k↓ + h.c

]
. (5.21)

Defining N̂ = 2â†mâm +
∑

k,σ â
†
kσâkσ as the number operator which is a constant of

motion, we may rewrite the term proportional to Vh in (5.21) as

∑
k,σ

Vhâ
†
kσâkσ = Vh(N̂ − 2b̂†b̂)

= VhN̂ −
(
Un− 2U〈b̂†b̂〉/V

)
b̂†b̂ , (5.22)

where n = 〈N̂〉/V is the constant total atom number density. In our derivation,

Vh arises from the two-body atom-atom collision. In general, additional terms rep-

resenting atom-molecule and molecule-molecule collisions are also present. These

additional terms will modify the coefficient U in the definition of Vh [Eq. (5.20)],

which is the counterpart of Λ in the bosonic model, but the general form of Eq. (5.22)

will remain valid. In the following, we will refer to this term as the collisional term.

Through Eq. (5.22), we have expressed the effect of the two-body collisions as a

nonlinear energy shift of the molecules (along with a constant energy bias VhN),

in complete analogy with the bosonic model. We remark that in the usual one-

channel model of the mean-field BCS theory valid when the molecular population is

negligible, the collisional term just represents an unimportant constant energy shift.

As usual, âkσ (t) and âm (t) obey the Heisenberg equations of motion based

on Hamiltonian (5.21). By replacing Bose operator âm with the related c-number
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c = 〈b̂〉/
√
V and Fermi operators âkσ (t) with the familiar uk (t) and vk (t) parameters

through the Bogoliubov transformation âk↑ = u∗k α̂k↑+vk α̂
†
−k↓ and â†−k↓ = −v∗k α̂k↑+

uk α̂
†
−k↓, where α̂kσ are the Fermi quasiparticle operators, we arrive at the following

set of mean-field equations of motion

ih̄ċ = νec+ gp , (5.23a)

ih̄u̇k = −εkuk + ∆evk , (5.23b)

ih̄v̇k = ∆euk + εkvk , (5.23c)

where p =
∑

k u
∗
kvk/V , ∆e = gc+ Up , and

νe = ν − Un+ 2U |c|2 , (5.24)

is the effective detuning which contains a Kerr nonlinear term 2U |c|2 whose origin

can be traced to the two-body collisional shift. This set of equations describes the

dynamics at zero temperature where the state of the system can be described as the

quasiparticle vacuum.

5.2.3.1 Quantum Optical Analog

In several previous studies where the collisional term is neglected, it has been

pointed out that the fermionic model can be mapped to the Dicke model in quantum

optics [86, 50] as schematically shown in Fig. 5.4 (see below for details). In fact, this

model was recently shown to display collective dynamics similar to photon echo and

soliton-like oscillations in transient collective coherent optics [8]. Such a connection

can be traced to the work of Anderson’s spin analogy [6] for the BCS problem.
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Figure 5.4: Mapping of the two-channel resonant Fermi superfluid model

to the Dicke model. The bosonic molecules and the fermionic atoms in

the former are mapped to the cavity laser field and an ensemble of two-

level atoms in the latter, respectively. See text for details.
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To show what is the quantum optical analogy of the collisional term, let us

rewrite Eqs. (5.23) in a form more familiar in cavity optics. To this end, we first

introduce a set of new variables

Pk = 2u∗kvk , Dk = |uk|2 − |vk|2 , EL = 2i∆e ,

and recast Eqs. (5.23b), (5.23c) into

h̄Ṗk = −i2εkPk − ELDk , (5.25a)

h̄Ḋk = (E∗LPk + ELP ∗k ) /2 . (5.25b)

Interpreting Pk and Dk as the microscopic polarization and population inversion,

respectively, Eqs. (5.25) then become the optical Bloch equation that describes the

interaction between a local electromagnetic field EL and a fictitious two-level atom,

characterized with a transition energy 2εk [3]. This analogy is consistent with the

fact that there exists a one-to-one mapping between pairs of fermion operators and

Pauli matrices when the BCS pairing mechanism is taken into account [6].

In this optical analogy, the local electric field EL = E + Ei contains two con-

tributions because of ∆e = gc + Up. The first of these (E = i2gc) is equivalent to

an average macroscopic field, whose dynamics is described by Eq. (5.23a), which

can now be interpreted as the Maxwell’s equation for the cavity field E with cavity

detuning νe, driven by a macroscopic polarization density p =
∑

k Pk/(2V ) of an

inhomogeneously-broadened medium [see Fig. 5.4]. The second part Ei = i2Up may

be regarded as the internal field at the atom due to the collective dipole polarization

of the nearby two-level atoms in the ensemble. As such, EL = E + Ei here bears

82



a direct analogy to the Lorentz-Lorenz relation in optics [51]. Note that had the

collisional term been neglected (i.e., U = 0), there would have been no internal field

contribution, nor would there have been the Kerr nonlinearity in the equation for

the bosonic mode. For U 6= 0, both of these terms will be present. Under such a

circumstance, Eqs. (5.23a) and (5.25) represent the generalized optical-Bloch equa-

tions in which the Lorentz-Lorenz relation is explicitly incorporated [15], and hence

can lead to interesting nonlinear phenomena just as they do in optical systems.

5.2.3.2 Bistability

Having established this analogy, we now look for the steady state solution from

Eqs. (5.23a) and (5.25). As is well-known, the operation frequency of a laser field

is not known a priori ; but is established through the so-called mode pulling — the

dynamical competition between atomic and cavity resonances. A similar argument

holds for the molecular field c. For this reason, we adopt the following steady-state

ansatz

c→ c e−2iµt/h̄, Pk → Pk e
−2iµt/h̄, Dk → Dk

where the same symbols are used for both dynamical and steady-state variables for

notational simplicity. The molecular chemical potential, 2µ, is just the correspond-

ing lasing frequency in the cavity optics model. From the steady state equations

obtained by inserting this stationary ansatz into Eqs. (5.23a) and (5.25), we can

easily find that (a) there always exists a trivial solution or a “non-lasing” state with

∆e = 0 or equivalently c = 0, which corresponds to the non-superfluid normal Fermi
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sea; and (b) a non-trivial solution with its µ, ∆e and c determined self-consistently

from the gap equation

1

U − g2/(νe − 2µ)
= − 1

2V

∑
k

1

Ek
(5.26)

with Ek =
√

(εk − µ)2 + ∆2
e, the number equation

2|c|2 +
1

V

∑
k

(
1− εk − µ

Ek

)
= n, (5.27)

and an auxiliary relation

|g∆e| = |c(νe − 2µ)[U − g2/(νe − 2µ)]| . (5.28)

The integral in the gap equation (5.26) under the assumption of contact interaction

is known to be ultraviolet divergent. To eliminate this problem, we renormalize the

interaction strength U and g, as well as the detuning ν in (5.26), while U in the

collisional term is replaced by the background interaction strength U0 [57, 47].

Note that there exists, in the single-mode inhomogeneously broadened laser

theory [1], a similar set of steady-state integral equations, which, due to lasers being

open systems, are obtained under different considerations. For example, the require-

ment that the cavity loss balance the saturated gain leads to the “gap” equation,

whose primary role is to limit the laser intensity; while the phase matching condition

translates into the “number” equation, whose main responsibility is to assign the

amount of mode pulling of the laser field relative to the cavity resonance.

An alternative way to derive Eqs. (5.26)-(5.28) is from the energy density.

The zero-temperature energy density f(∆e, c, µ) ≡ 〈Ĥ〉/V can be calculated using
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Figure 5.5: Free energy density f as a function of ∆e and |c|2 at

ν = 0.02 (a) and ν = 0.2 (b). Extremum points are indicated by ‘x’

(minimum) and ‘+’ (saddle point). f , ∆e, and ν are all in units of

EF = (3π2n)2/3/(2m), the Fermi energy of the non-interaction system.

In all the examples shown in this paper, the physical parameters corre-

sponding to g0 and U0 are 1.2EF/k
3/2
F and −60.7EF/k

3
F , respectively.
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(a) (b)

Figure 5.6: Molecular population |c|2 as a function of detuning. Vertical

line in (a) indicate the critical point of a first-order phase transition. In

(a) the collisional term is included while it is neglected in (b).

Hamiltonian (5.21) and the Bogoliubov transformation as [47]

f =
∑
k

εk − µ− Ek
V

− (∆e − gc)2

U
+ (νe − 2µ)|c|2 + µn . (5.29)

The extremum conditions ∂f/∂∆e = ∂f/∂c = 0, lead to Eqs. (5.26) and (5.28),

respectively, while the condition ∂f/∂µ = 0 results in the number equation (5.27).

Figure 5.5 illustrates the energy density in the |c|2-∆e plane for different de-

tuning ν. For any given pair of (c, ∆e), µ is calculated self-consistently using the

number equation (5.27). Typically, f has only one extremum which is a minimum

point as shown in Fig. 5.5(a). However, in the regime ν ∈ (−0.08, 0.13)EF , f pos-

sesses three extrema: two of them are local minima and the third a saddle point.

An example with ν = 0.02 is shown in Fig. 5.5(b).

To gain more insight into the bistable behavior, we may carry an analogous

analysis as in Sec. 5.2.2.2. In the absence of the collisional term, steady-state molec-

ular population |c|2 is a smooth monotonically decreasing function of ν and the sys-
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tem does not exhibit bistability: As ν increases, molecules decompose into atoms.

This is shown in Fig. 5.6(a). When the collisional term is included, the relevant

equations of motion maintain the same forms if we replace ν with

ν ′ = ν + 2U0|c|2 . (5.30)

Hence the solution |c|2 as a function of ν ′ is represented by the same curve as in

Fig. 5.6(a). To find |c|2 as a function of ν, we need to find the intersects between

this curve and the straight line representing Eq. (5.30). In direct analogy to the

graphic method in Fig. 5.3, for U0 sufficiently large and negative, these two curves

have three intersects and the system exhibits bistability. One example is shown in

Fig. 5.6(b). The vertical line in Fig. 5.6(b) indicate the critical point of a first-order

phase transition: across this line, the ground state jumps from the upper branch to

the lower one. For the parameters used, this occurs at νc = −0.01EF .

To check the stability of these steady states, we have solved the dynamical

equations (5.23) using the slightly perturbed steady state solution as the initial

condition. From the dynamical evolution of the system one can see that, just like in

the bosonic model, the states in the upper and lower branches are dynamically stable:

when slightly perturbed, they exhibit damped oscillations around their equilibrium

values. These oscillations can be further understood from the excitation spectrum

of the corresponding steady state. This can be done using a linear stability analysis,

which is also the standard tool for studying laser instabilities [1, 67]. The spectrum

is found to contain a discrete part which determines the oscillation frequencies, and

a continuous part which contributes to the damping of these oscillations at a much
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longer time scale [78]. By contrast, the states in the middle branch are unstable as

small perturbations will lead to large departures.

5.2.3.3 Dynamics

The bistability has important ramifications in atom-molecule conversion dy-

namics. When the collisional term is unimportant and negligible, one can easily cre-

ate bosonic molecules from fermionic atoms by adiabatically sweeping the Feshbach

detuning across the resonance. As long as the sweeping speed is sufficiently slow,

the molecular population will follow the steady-state curve as shown in Fig. 5.6(a).

By contrast, when bistability induced by the collisional term occurs, the adiabatic-

ity condition will necessarily break down. Fig. 5.7 displays the dynamical evolution

of the bosonic population when the detuning is swept starting either from a large

positive or a large negative value. We can see that the steady-state curve can be

followed up to the point where the stable states of the upper and lower branches

and the unstable states of the middle branch join each other (indicated by ν1 and ν2

in Fig. 5.7), where the population suddenly jumps between the two stable branches.

Note that the critical detuning νc for the first-order phase transition as indicated

by the vertical line in Fig. 5.6(b) lies between ν1 and ν2. The dynamical population

curve thus exhibits hysteresis in the vicinity of the first-order phase transition. In

this way, by tuning the detuning in the vicinity of ν1 or ν2, an atom-molecule switch

can be realized. Similar behavior is also found in the bosonic model.
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(a)

(b)

|c|2

ν1

ν2

Figure 5.7: Dynamics of atom-molecule conversion as illustrated by the

molecular population when the detuning ν is slowly swept. Curve (a) is

obtained by sweeping ν from positive to negative values, while curve (b)

is obtained by sweeping ν in the opposite direction. The dotted line is

the steady-state molecular population, the same as in Fig. 5.6(b).
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5.2.4 Conclusion

In conclusion, we have studied the matter-wave bistability in coupled atom-

molecule quantum gases in both the bosonic and the fermionic models. These two

cases can be mapped to two very different quantum optical models: parametric

downconversion in the former and generalized Dicke model in the latter. Neverthe-

less, one important common feature for both cases is that bistability can be induced

by collisional interactions which give rise to Kerr nonlinearity. We hope that our

work will motivate experimental efforts in demonstrating the matter-wave bistability

we predicted here.
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Chapter 6

Non-Equilibrium Enhancement of BCS Pairing

6.1 Overview

In this chapter, we employ a semiclassical kinetic equation to demonstrate

the enhancement of BCS pairing by non-equilibrium driving. Large portions of this

chapter are quoted from the author’s manuscript, [77]. The difficulty of observ-

ing quantum coherent phases in cold gases highlights the need to overcome low

transition temperatures. In addition to Bose-Einstein condensation, there has also

been recent interest in the generation of Fermi superfluids through the BCS pairing

mechanism [74, 42, 84]. This phenomenon is more difficult to observe due to pro-

hibitively low transition temperatures [46, 90] though the problem may be partially

surmounted by use of Feshbach resonances [74, 42, 84, 104, 48]. Non-equilibrium

effects can also be used to control and effectively cool such systems. However, this

is an unexplored area of research by comparison.

Since the 1960’s, it was known that superconductivity could be stimulated

by radiation in microbridges [100]. In 1970, Eliashberg explained this effect as an

amplification of the gap parameter by means of a stationary nonequilibrium shift

in the quasiparticle spectrum to higher energies brought on by the radiation [33,

34]. Over the next decade, his theory found experimental acceptance through the

enhancement of critical currents and temperatures in Josephson junctions [95] and
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thin films [69]. At the same time, other nonequilibrium stimulation methods were

developed [22] with more recent reports of enhancements of the superconducting

critical temperature by up to several times its equilibrium value [14, 45]. With the

present interest in the application of the BCS model of superconductivity to trapped

atomic Fermi gases [21, 45, 17], nonequilibrium effects represent an attractive way

to magnify the quantum properties of these types of superfluids.

As in superconductors, the BCS order parameter ∆0 for cold fermionic gases

obeys a self-consistency equation [80, 48, 88]

∆0

λ
= ∆0

∑
k

[
1− 2nk

2
√
ξ2
k + ∆2

0

− 1

2ξk

]
, (6.1)

where ξk = εk − εF is the quasiparticle dispersion centered on the Fermi energy εF,

∆0 is the BCS gap, and nk is the quasiparticle distribution function. The constant

λ has the form λ = −4πa↑↓/mF where a↑↓ is the negative s-wave scattering length

for collisions between hyperfine states and mF is the mass. At equilibrium, n
(FD)
k is

the Fermi-Dirac distribution function, and the only way to increase ∆0 is either to

increase the interaction strength or to lower the temperature. However, there exists

a wide class of stationary nonequilibrium distributions, nk, such that Eq. (6.1) is

still valid and has solutions with enhanced order parameters. Indeed, if a quasista-

tionary non-equilibrium distribution is created that is different from the canonical

Fermi-Dirac function, δnk = nk − n(FD)
k , then according to the weak-coupling BCS

Eq. (6.1), it effectively renormalizes the pairing interaction and transition temper-

ature as follows:

1

λeff

=
1

λ
+
∑
k

δnk

Ek

≡ 1

λ
− ν(εF)χ and T (eff)

c = T (0)
c eχ, (6.2)
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where here and below Ek =
√
ξ2
k + ∆2

0, ν(εF) is the density of states at the Fermi

level, T
(0)
c ∼ εF exp {−1/ [ν(εF)λ]} is the weak-coupling BCS transition temper-

ature in equilibrium, and we also introduced the dimensionless parameter χ =

−
∑

k δnk/ [ν(εF)Ek]. For many non-equilibrium distributions, χ > 0, and this

yields an effective enhancement of Tc and/or ∆. We note that even though our the-

ory below and that of Eliashberg are limited to small deviations from equilibrium,

with |χ| � 1, this does not imply a limitation in experiment, where this param-

eter can be large. For such large deviations from equilibrium, the weak-coupling

BCS approach and Eqs. (6.1) and (6.2) may not be quantitatively applicable, but

the tendency to enhance pairing may remain. Therefore the proposed underlying

mechanism may lead to substantial enhancement of fermion pairing and superfluid-

ity. We also emphasize here that cold atom systems offer more control in creating

and manipulating non-equilibrium many-body quantum states than that available

in solids. Specifically, we will show that while it was impossible to drive a metal

from the normal to the superconducting phase by irradiation, it is indeed possible

to drive the equivalent transition in cold gas by utilizing this additional control.

In this paper, we propose a theory of nonequilibrium stimulation of fermion

pairing by considering the effect of Bragg pulses [13, 75] as shown schematically in

Fig. 6.1 on a harmonically trapped gas of fermions in the Thomas-Fermi approx-

imation [18]. The heating induced by the external perturbation is dumped into

an isothermal bath of trapped bosons via collisions, but this is not necessary in

general. The pairing enhancement is calculated for a typical mixture of 87Rb and

6Li. It depends on the state of the gas at equilibrium. In the superfluid phase,
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Figure 6.1: Bragg Potential: A moving lattice with wave vector q =

k2 − k1 can be formed in the region of the Bose-Fermi mixture through

the interference of two lasers with differing wave vectors and frequencies.

By adjusting the parameters of this non-equilibrium perturbation, one

can achieve states with enhanced superfluidity.

Eliashberg’s requirement that the frequency of the perturbation be less than twice

the equilibrium gap (h̄ω < 2∆0) ensures that the pulse does not effectively heat

the system by producing more quasiparticles with energies ε ∼ ∆0. Though this

requirement cannot be satisfied in the normal phase, where ∆0 = 0, the independent

tunability of both the momentum and energy of the Bragg pulse allows us to protect

the system from effective heating through energy conservation. This avenue, which

was not available in the context of superconductors, effectively provides a means to

“sharpen” the Fermi step (or even create a discontinuity at a different momentum),

thereby enhancing fermion pairing.
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6.2 Model

In our problem, we assume optically trapped bosons in thermal contact with

fermions that occupy two hyperfine states |↑〉 and |↓〉. This system has a Hamilto-

nian of the form Ĥ = Ĥ0 + ĤI where the noninteracting part Ĥ0 is given by

Ĥ0 =

∫
d3r
∑
p

ψ̂†p (r)

[
− 1

2mp

∂2 − µα + Vα (r)

]
ψ̂p (r) ,

where for brevity, we introduced the subscript p = B,F↑, F↓ which labels bosons

(p = B) and fermions in the two hyperfine states: “up” (p = F↑) or “down” (p = F↓)

and mF↑ = mF↓ ≡ mF is the fermion mass and mB is the mass of the bosons. We

assume that fermions in either hyperfine state feel the same trapping potential.

Thus, Vp (r) is given by VF,B (r) = 1
2
mF,BΩ2

F,Br
2 where the subscript F (B) refers to

fermions (bosons). There is also an interaction Hamiltonian ĤI which has the form

ĤI =
1

2

∫
d3r

∑
p1,p2

gp1,p2 ψ̂
†
p1

(r) ψ̂p1 (r) ψ̂†p2
(r) ψ̂p2 (r) ,

with gp1p2 being the strength for s-wave collisions between the particles labelled

by p1, p2 = {B,F↑, F↓}. While Pauli exclusion requires that gF↑F↑ = gF↓F↓ = 0,

an attractive coupling gF↑F↓ ≡ gF↓F↑ < 0 will lead to BCS pairing. A nonzero

interaction gFB between bosons and fermions is required for thermalization between

the two populations. We need put no other restrictions on gp1p2 , but our desired

effect will be easier to observe experimentally with some other constraints. For

instance, requiring that gFB < 0 will raise the BCS condensation temperature [44]

while a larger gBB > 0 facilitates thermalization between bosons and fermions.
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To proceed further we use the gap equation, Eq. (6.1), where we have nk =

n
(FD)
k at equilibrium. In the Thomas Fermi approximation, the transition tempera-

ture, T
(0)
c , is given by [48]

kBT
(0)
c ' 8εF e

γ−2

π
exp

[
− π

2kF |a↑↓|

]
, (6.3)

where kF is the Fermi wave-vector and γ ≈ 0.577 . . . is Euler’s constant, the scat-

tering length a↑↓ is a simple combination of the coupling strengths gp1p2 .

6.2.1 Nonequilibrium Enhancement

It is possible to create distributions that lead to larger order parameter and

effective condensation temperature by weakly perturbing the trapped fermions.

Specifically, we affect a Bragg pulse (Fig. 6.1) by illuminating the fermions with

two lasers, which are both largely detuned from any fermionic transition. In what

follows, we assume the lasers to be even further detuned from any bosonic transition

such that we may ignore the effect of the Bragg pulse on the bosons. The interaction

of the fermions with these lasers is described by the addition of a term

Ĥbg =

∫
d3r

∑
pf=F↑,F↓

ψ̂†pf (r) [h̄Ωbg cos (q · r− ωt)] ψ̂pf (r)

to the Hamiltonian where q and ω represent the difference in wavevectors and fre-

quencies between the two lasers [13]. Now, following Schmid [83] and the general

argument in the introduction [see, Eq. (6.2)], we introduce the function, δnk, which

describes departure from equilibrium. While Eliashberg assumed in [34] that the

impurity concentration was high enough in metals such that momentum relaxation
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happened at a much faster rate than energy relaxation, we shall not make this as-

sumption. As such, δnk need not be isotropic although this requirement is easily

included in our model. The corresponding term, χ/ν(εF) from Eq. (6.2), is added

to the right side of the gap equation (6.1) and leads to a new solution, ∆ > ∆0,

for the order parameter at the same temperature (note that in the non-equilibrium

situation, the notion of a temperature of the Fermi system is undefined, and here

by temperature we imply the original temperature and that of the Bose bath). For

T − T (0)
c � T

(0)
c , Eq. (6.1) can be cast in the form of a Ginzburg-Landau equation,

which, including the nonequilibrium term, becomes

(
ln

T

T
(0)
c

− χ
)

∆ + b

(
|∆|
T

(0)
c

)2

∆ = 0, (6.4)

where we assume that the coefficient in the cubic term of Eq. (6.4) is only weakly

affected by the perturbation and use its standard BCS value [ζ(z) is the Riemann

zeta-function] b = 7ζ(3)/(8π2) ≈ 0.107 . . . (see also, Ref. [10]). Eq. (6.4) nominally

leads to an exponential enhancement of the effective critical temperature: T eff
c =

eχT
(0)
c , if χ is positive.

6.2.2 Kinetic Equation

To calculate this enhancement for the Bose-Fermi mixture, we shall balance

the Boltzmann equation for nk in the spirit of Eliashberg, including both a collisive

contribution and that from Bragg scattering.

ṅk = Icoll [nk] + IBragg [nk] . (6.5)
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For small departures from equilibrium, we can linearize the collision integral in

δnk and use the 1/τ -approximation: Icoll [n] = −δn/τ0, where τ0 is the quasiparticle

lifetime. In our system, this lifetime will be dominated by the inelastic collision time

between bosons and fermions. We may estimate this time as in [5, 20] by means of

a 1/τ0 = nσv approximation where n is the boson density at the center of the trap,

σ is the constant low temperature cross-section for boson-fermion scattering, and

v is the average relative velocity associated with the collisions between bosons and

fermions.

Note that there exist other contributions to the collision integral, in particular

those coming from fermion collisions. Our model assumes point-like interactions be-

tween fermions: Such interactions can be separated into interactions in the reduced

BCS channel, which involve particles with opposite momenta that eventually form

Cooper pairs and other types of scattering events, which give rise to Fermi liquid

renormalizations on the high-temperature side and superconducting fluctuations on

the BCS side. Note that dropping off the latter terms would lead to an integrable

(Richardson) model that does not have any thermalization processes and therefore

the collision integral for its quasiparticles must vanish. In thermodynamic limit this

model is described by BCS mean-field theory perfectly well and so we can say that

the pairing part of fermion interactions is already incorporated in our theory. Of

course, including fermion-boson collision and the second type of fermion interaction

processes break integrability and lead to two types of effects: First, such interactions

lead to Fermi liquid renormalizations of the effective mass and the quasiparticle Z-

factor. However, these effects are not germane to the physics of interest, and we
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may assume that all relevant corrections are already included and treat our sys-

tem as that consisting of Fermi liquid quasiparticles. However, there is of a course

a second dissipative part coming from interactions, such as those due to bosons

already included into τ0 and quasiparticle scatterings and decay processes due to

non-BCS fermion-fermion collisions. Similarly to the work of Eliashberg, we will

assume that the latter contribution to the collision integral is less significant than

τ−1
0 due to the bosons. Fermi Liquid quasiparticles are exactly defined precisely on

the Fermi sphere, but they have a finite lifetime due to decay processes elsewhere.

By not including the lifetime τk of a quasiparticle at momentum k in our lineariza-

tion of the Boltzmann equation, we have implicitly assumed that τk � τ0. Because

1
τk
∝ (πkBT )2 + (εk − εF )2 in a Fermi Liquid [71], there will always be an energy

region where this assumption will indeed be true for low temperatures. The most

important contribution to the integral in the expression for χ comes from states for

which εk is within kBT of εF . As such, if we require that T � TF and h̄ω � εF , then

our linearization of the Boltzmann equation with respect to τ0 will be legitimate for

the calculation of an enhancement of superfluidity. Again, we stress the importance

of recognizing that the aforementioned requirements are necessary only for quantita-

tive accuracy of our model. As with Eliashberg’s enhancement of superconductivity,

we expect our effect to be observable far outside the constrained parameter space

that is necessary for strict validity of our simple model, which provides a proof of

principle for using nonequilibrium perturbations to enhance fermion pairing in cold

atom systems.

With these caveats in mind, we shall tune the frequency of our Bragg pulse
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such that ωτ0 � 1. This will ensure that any non-stationary part of the distribution

function will be small [34]. Equivalently, we may think of this requirement as the

statement that the Bragg pulse pumps the system out of equilibrium must faster

than the system relaxes. We may note here that the aforementioned assumption that

δn is small also implies that χ� 1, thereby diminishing the desired effect, T eff
c = (1+

χ)T
(0)
c ∼ T

(0)
c . Again, this approximation greatly simplifies our theoretical problem

by allowing us to expand the Boltzmann equation, but it is only a mathematical

convenience that represents no impediment to an experimentalist looking for striking

enhancements of T
(0)
c .

Eq. (6.5) can now be solved for δn to yield

δnk = τ0IBragg

[
n

(FD)
k

] (
1− e−t/τ0

)
, (6.6)

which shows that a stationary nonequilibrium state is formed in a characteristic

time τ0. The Bragg part in Eq. (6.5), IBragg [n], now depends only on n
(FD)
k and can

be computed with Fermi’s golden rule. When the wavelength of the Bragg pulse

is much larger than the DeBroglie wavelength of the fermions and the reciprocal

frequency of the pulse is much smaller than the relaxation time (λF |q| � 1 and

ωτ0 � 1), Fermi’s golden rule yields

IBragg

[
n

(FD)
k

]
=

2π

h̄
Ω2
bg

{
n

(FD)
k−q

(
1− n(FD)

k

)
δ (εk − εk−q − h̄ω)

−n(FD)
k

(
1− n(FD)

k+q

)
δ (εk+q − εk − h̄ω)

}
. (6.7)

The determination of IBragg

[
nFk
]

allows us to find χ and ultimately T
(eff)
c . The

optimal parameters depend on whether the fermionic gas is in the superfluid or
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normal phase at the time the Bragg pulse is applied. In the former case, the energy

gap in the quasiparticle density of states protects a Bragg pulse with h̄ω < 2∆0

from producing new quasiparticles that will hinder superfluidity. However, in the

normal phase, the energy conservation requirement that εk+q − εk = ±h̄ω and an

independent control of q and ω allow us to engineer a pulse that ensures that only

“thermal” quasiparticles with energies ε > εF are pushed to even higher energies,

while the fermions below εF are not affected.

Thus far, we have assumed that heat is being dissipated from the fermions

into the bosons through collisions. Because Bose-Einstein condensation inhibits

collisions with fermions and severely reduces thermalization between the two popu-

lations, our simple analysis depends on the bosons being at a constant temperature

T greater than their Bose-Einstein condensation temperature TBEC ' 0.94h̄ΩBN
1/3
B

[2]. Condensation can be prevented at temperatures close to the BCS transition

temperature by having ΩB � ΩF and mB � mF . Treating the bosons classically,

we expect their temperature to increase no faster than dT
dt

= 1
C

Ωbgω, which is the en-

ergy pumping rate due to the Bragg pulse for a specific heat C. For a harmonically

confined classical gas, we use a specific heat given by C = 3kBNB. If tBragg is the

time over which the Bragg pulse is turned on, then so long as tBragg
dT
dt

is much less

than the temperature of the bosons, we may consider the bosonic population to be

an isothermal bath. This may be accomplished by having a large number of bosons

at low density. One may be able to avoid the assumption of a bosonic population

altogether when driving the transition from normal to superfluid at temperatures

above T
(0)
c by allowing energetic particles to leave the trap as in evaporative cooling.
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We shall show later that this is possible because the Bragg pulse may be tuned to

couple only to particles with energies above a threshold energy depending on ω and

q. For concreteness however, we shall keep the bosonic population throughout the

following section.

6.3 Numerical Results

As an example, we calculate the nonequilibrium enhancement of Tc for a

trapped mixture of 87Rb and 6Li under the aforementioned assumptions with δn�

1. We assume a cloud of 105 Lithium atoms and 107 Rubidium atoms in traps

of frequencies ΩF = 200ΩB = 3 kHz correspondingly. We use scattering lengths

aBB = 109a0, aFF = −2160a0, aFB = −100a0 [44] where a0 is the Bohr radius and

a typical collision time τ0 ≈ 136 ns is estimated via the 1/τ0 = nσv approximation

given above and in section A.1. With these parameters, the equilibrium BCS and

BEC condensation temperatures are T
(0)
c ≈ 0.15 TF = 291 nK and TBEC ≈ 23.2

nK. The quasiparticle lifetime τk for the normal fluid is estimated as τk ≈ 3 µs for

|εk − εF | ' h̄ω via the methods in Refs. [71, 87].

6.3.1 Superfluid at Equilibrium

Let us assume that the system is initially in the superfluid phase at equilib-

rium with a low enough temperature T < T
(0)
c such that 2∆ > h̄ω = 0.15εF . Using

Eq. (6.6), we may calculate the stationary distribution function (Fig. 6.2) for Bragg

parameters Ωbg = 70ΩF and |q| = 0.1 kF . Some comments on the form of δnk are

102



0.0 0.1 0.2 0.3 0.4
E � ΕF

0.1
0.2
0.3
0.4
nHEL

(a)

D0+ÑΩ D0+2ÑΩ

0.0 0.1 0.2 0.3 0.4
E � ΕF

0.1
0.2
0.3
0.4
nHEL

(b)

Figure 6.2: (a) The first order approximation to the quasiparticle oc-

cupation as a function of E =
√
ξ2 + ∆2

0 for parameters Ωbg = 70 ΩF ,

|q| = 0.1kF , and h̄ω = 0.15εF . The unphysical singularities at E = ∆0

and E = ∆0 + h̄ω are not included in the calculation of χ. See text

for details. The equilibrium values for this system are T = 0.14TF and

∆0 = 0.08εF . (b) The exact distribution function schematically drawn

for the same parameters with ∆0 and h̄ω in units of εF . The thick dashed

lines represent the occupation at equilibrium.

103



necessary. As shown in Fig. 6.2(a), the first order approximation to nk has unphys-

ical singularities at E = ∆ and E = ∆ + ω. These are due to first-order transitions

to E = ∆ + ω from E = ∆ where the quasiparticle density of states diverges for

a superfluid at equilibrium. The exact distribution function, schematically drawn

in Fig. 6.2(b), has no infinities. Higher orders in the expansion of the Boltzmann

equation are necessary to curtail the singularities at ε = ∆0 + nω (n = 0, 1, 2 . . .).

However, so long as these singularities are localized on energy intervals that are

much smaller than ω, the approximate δnk calculated from Eq. (6.6) will be suit-

able for the calculation of both the enhanced order parameter via Eqs. 6.1 and 6.2 as

well as the value of χ in the Ginzburg-Landau equation (Eq. 6.4) [34]. As expected

from the analogy to Eliashberg’s work, our singularities have energy widths of about

∆
2πτ0Ω2

bg

ΩF (6NF )1/3 . Hence, we may consider the inequality ∆
ω

2πτ0Ω2
bg

ΩF (6NF )1/3 � 1 as a further

requirement for the validity of our linearization of the Boltzmann equation for the

calculation of χ in the superfluid case. We may also note that due to the fact that

h̄ω < 2∆0, no new quasiparticles are excited from the lower branch by pair break-

ing. Hence, the quasiparticle number is conserved in this first order approximation

(
∑

k δnk = 0). The quasiparticles are simply redistributed from the gap edge to

higher energies. Substituting δnk into Eq. (6.2), we find that at T ' 0.13 TF we

calculate an increase in ∆ by a factor of 1/10. So long as T < T
(0)
c , the relative

enhancement increases with temperature because there are more particles to redis-

tribute and the pulse does not have enough energy to break Cooper pairs. Unlike

in the normal fluid where ∆0 = 0 at equilibrium, the enhancement χ depends on

the initial value of the gap. In Fig. 6.3, we plot the temperature dependence of the
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enhanced nonequilibrium gap with a slightly stronger pulse given by Ωbg = 110ΩF ,

h̄ω = 0.15εF , and |q| = 0.1 kF . Note that after the pulse is applied at equilib-

rium, the temperature of the bath may be increased above T
(0)
c while maintaining

a nonzero gap. This temperature dependence is exactly what would be expected

from the analogous plot in Ref. [34]. The new BCS transition temperature Tc is

given by the maximum of the nonequilibrium plot where the inequality h̄ω < 2∆0 is

saturated. If the temperature is further increased, ∆ discontinuously vanishes again.

For these parameters we calculate a small 3% increase of the transition temperature

as expected from our requirement that nonlinear effects (even gap enhancing effects)

be ignored in the Boltzmann equation. The temperatures we have considered are

sufficiently close to the equilibrium transition temperature such that the approxi-

mation TBCS ≈ T
(0)
BCS(1 + χ) is justified. For small ∆0 a crude, order of magnitude

estimate of χ may be given by χ ∼ 2πh̄Ω2
bgτ0

εF
n0(∆0)n0(∆0 + h̄ω).

6.3.2 Normal at Equilibrium

For contrast, let us now assume that we start in the normal phase at equilib-

rium. The initial distribution function is simply the Fermi-Dirac function for the

noninteracting quasiparticles of Fermi Liquid theory. We have ∆0 = 0, so Eliash-

berg’s requirement that h̄ω < 2∆0 cannot be satisfied. However, we can guarantee

that particles are not excited from below the Fermi level by choosing ω and q such

that the constraint 4εqεF ≤ (h̄ω − εq)2 is enforced. Because of this requirement,

momentum and energy conservation cannot be simultaneously achieved for parti-
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Figure 6.3: The order parameter ∆ as function of the temperature which

solves the nonequilibrium gap equation for parameters Ωbg = 110ΩF ,

|q| = 0.1 kF , and h̄ω = 0.15εF . The black dashed line is the equilibrium

dependence while the red dashed line gives the nonequilibrium transition

temperature TBCS > T
(0)
BCS. We have constrained ∆0 > h̄ω/2 to avoid

pair-breaking.
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cles with energies less than εF . As such, only particles outside the Fermi sphere can

undergo transitions. The lower equilibrium occupation number and higher density

of states at high energies ensures that quasiparticles just outside the Fermi sphere

are excited to higher energies.

Although in our system we have particle conservation just as in the superfluid

case, we comment here that if these excited particles are allowed to leave the trap,

then we have effectively cooled the fermions by sharpening the Fermi step, and the

boson bath is unnecessary. Substituting δnk into Eq. (6.2), we see that the depres-

sion of the population at the Fermi level shown in Fig. 6.4 allows for a nonzero ∆

above T
(0)
BCS. As the temperature is increased, the nonequilibrium gap enhancement

is overpowered by thermal smearing of the distribution function. There are more

quasiparticles at energies near εF where they most strongly hinder superfluidity.

This contrasts with the superfluid situation wherein the enhancement increases with

temperature so long as T < T
(0)
BCS. This effect can be seen in Fig. 6.5, where we find

an enhancement of TBCS by about 30% for parameters Ωbg = 110 ΩF , |q| = 0.1 kF ,

and h̄ω = 0.21εF . This increase is much more drastic than the enhancement in

the superfluid phase because the requirements that δnk � n
(FD)
k and h̄ω � εF are

much less stringent than the superfluid requirements ∆
ω

2πτ0Ω2
bg

ΩF (6NF )1/3 � 1 and h̄ω ≤ ∆.

Thus, we may use a stronger pulse while still linearizing the Boltzmann equation

legitimately. As such, fermionic superfluidity is expected to appear at temperatures

as high as T ≈ 1.3 T
(0)
c .
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Figure 6.4: The T = 0.18 TF normal phase occupation as a function of

energy for Ωbg = 110 ΩF , |q| = 0.1 kF , and h̄ω = 0.21εF . The enhanced

nonequilibrium transition temperature is TBCS = 1.3 T
(0)
BCS. The dashed

line is the occupation at equilibrium.
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Figure 6.5: The enhanced gap ∆ as function of temperatures above

T
(0)
BCS for fermions in the normal phase at equilibrium and parameters

Ωbg = 110 ΩF , |q| = 0.1kF , and h̄ω = 0.21 εF
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6.4 Summary

To conclude, we have shown that perturbing a system of trapped fermions

creating a stationary quasiparticle distribution can be an effective way to stimulate

fermion pairing and superfluidity. To demonstrate this, we calculate enhancements

of the BCS order parameter and the transition temperature for a mixture of 87Rb

and 6Li that is pushed out of equilibrium by a Bragg pulse. The mechanism by which

fermions within the Fermi sphere are not excited differs depending on initial condi-

tions. If the gas is a superfluid at equilibrium, these excitations are precluded by

keeping h̄ω < 2∆0. In the normal phase, the parameters of the pulse can be chosen

such that fermions below a certain energy cannot simultaneously satisfy momentum

and energy conservation. Thus, they are not excited. In both cases, the enhance-

ments that we calculate are small, but this is a consequence of our perturbative

treatment rather than a physical constraint. This is evidenced by the strong effects

reported from experiments on superconductors [14, 45], which are based on the same

underlying mechanism. Finally, we suggest that by enhancing or creating a discon-

tinuity in the quasistationary strongly non-equilibrium distribution of fermions (not

necessarily at the Fermi momentum) via the technique proposed in this paper, one

may achieve effective BCS pairing at nominally very high temperatures of the bath.
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Chapter 7

Dynamic Stimulation of Phase Coherence in Lattice Bosons

7.1 Overview

In this chapter, we employ an perturbative expansion to determine the non-

equilibrium Keldysh site-to-site correlation functions of a driven system of bosons.

We then use these correlators to find a phase boundary between coherent and inco-

herent phases of the system. Large portions of this chapter are excerpted from the

author’s publication [79] which has been accepted for publication in the Physical

Review Letters. A system of bosons confined to a lattice has long represented an al-

luring opportunity to study the interplay between two phenomena at the heart of the

academic and industrial interest in many-body quantum mechanics: particle tunnel-

ing and phase coherence. The Bose-Hubbard model (BHM) describing such systems

in the tight-binding approximation is much richer than its simple mathematical form

betrays. It admits such novelties as dynamic localization [102, 26], photon-assisted

tunneling [98, 32], as well as an archetypal example of a quantum phase transition

between superfluid and insulator-like states [39, 37]. It is well known that thermal

fluctuations destroy these quantum effects. However it is comparatively unknown

that deliberately driving the system out of equilibrium can moderate or reverse

entirely the destructive effect of raising the temperature.

Despite the topic’s obscurity, it has been known as far back as the 1960’s that
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pushing a system out of equilibrium can enhance its quantum properties. In 1966,

Wyatt [100] showed that illuminating a microbridge could stimulate its supercon-

ductivity. Eliashberg explained this result in 1970 by calculating the nonequilibrium

quasiparticle distribution induced by the radiation [33]. Blamire later demonstrated

that superconducting transition temperatures could be enhanced in this manner

by several times their equilibrium values [14]. More recently, this idea of non-

equilibrium superfluid phase transitions has garnered interest in studies of optically

trapped atoms [77].

The reason for enhancement goes as follows. The quantum properties of a

system (e.g. superfluid order parameter) depend on the energy distribution of ex-

citations. In mean-field theory, for instance, they will be related through a self-

consistency equation. It is easily verified that the equilibrium distribution (obtained

by maximizing entropy under given constraints) is rarely optimal for the enhance-

ment of a chosen property. A brief survey of the model at equilibrium reveals this to

be the case for the BHM. Indeed, an analogue of photon-assisted tunneling (PAT)

[26, 32] has already been theorized for the BHM at T = 0. However, a fully non-

equilibrium treatment including the effects of temperature (and how they may be

mitigated) is not known to us.

In this chapter, we shall show that harmonically driving a system of lattice

bosons connected to a thermal reservoir can increase the region in parameter space

where the quantum coherent phase exists. Even for finite temperatures of the bath,

the phase diagram of the BHM can be made qualitatively identical to the T = 0 di-

agram. We shall demonstrate this by defining non-equilibrium correlation functions
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〈a†i (t)aj(t′)〉 within the Keldysh and Floquet formalisms [53, 54, 63, 16, 96]. Diver-

gences of the real part of this quantity correspond to infinite long-range correlations.

This will define the phase boundary between superfluid and incoherent states for

our non-equilibrium system. We shall find these functions perturbatively [66, 68] in

the small quantity J/U and arrive at a Dyson equation that has both ordinary and

entry-wise (Hadamard) matrix products. This novel structure will then be solved

by column vectorization for the stationary non-equilibrium correlation function.

7.2 Superfluidity at Equilibrium

To see how superfluidity may be enhanced by means of a non-equilibrium

pulse, let us briefly review the BHM at equilibrium. The hamiltonian of the BHM

is

H0 +HJ =
1

2
U
∑
i

a†iai

(
a†iai − 1

)
− µ

∑
i

a†iai −
∑
ij

Jija
†
iaj, (7.1)

where nearest neighbor tunneling of strength Jij = J is assumed on a 2D square

lattice with T � U . This bath temperature models the coupling to an environment

[27] that influences energy dissipation. The bath is only necessary to balance the

energy input from the driving potential, but the exact form of the coupling to

this bath has far-reaching consequences that will be discussed later. We are now

only considering the system without driving. Let us first consider the case where

the bath temperature vanishes, T = 0, and µ/U is close to some integer M so

that µ/U = M ± δ for some 0 < δ < 1/2. We shall also let the tunneling J be

infinitesimally small. The ground state is a Mott insulator with energy EMott, and
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the energy gap for adding a particle (+) or hole (−) to a site are E∓ − EMott = δU

and E±−EMott = (1− δ)U respectively. As δ is tuned to zero (unity), the state with

an extra particle (hole) becomes degenerate with the Mott insulator state. Thus,

even with arbitrarily small hopping, the kinetic energy (∼ J) gained for the system

by accepting a particle (hole) from the reservoir and allowing it to tunnel about the

lattice is enough to compensate the insulating gap. These excess particles(holes) will

be free to hop among sites with no energy barrier. At low temperatures, they will

condense producing superfluidity [37]. As the tunneling is increased, the low lying

excitations become long-range coherent particle (hole) tunneling events between the

system and reservoir. These tunneling events promote particle fluctuations, but they

tend to stabilize the phase across sites by virtue of the fact that particle number

and phase at a site at quantum conjugate variables.

[φi, ni] = i (7.2)

The manifold where the energies needed for these long-range excitations vanishes

defines the phase boundary [39] at T = 0.

When T is finite, sites will have a thermal probability pn = e−βεn of being

occupied by n bosons. Sites will have different energies, and their phases will rotate

at different rates. This aggravates the phase fluctuations that destroy superfluidity.

Equivalently, it will require more energy to excite a phase coherent tunneling event.

Because it is fundamentally the thermal distribution of energies that leads to this

suppression of phase coherence, it is natural to expect a change in the phase diagram

when pn assumes a stationary nonthermal form. In particular, we expect that the
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phase diagram will be qualitatively identical to the T = 0 diagram if we apply some

perturbation with an energy comparable to that of the lowest lying excitation. That

is, we expect our non-equilibrium correlation functions to show long-range phase-

coherence if we artificially close the Mott gap by exciting the lowest tunneling modes.

This interpretation is illustrated in Fig. 7.1 where we plot the phase boundary with

a thermal occupation distribution as well as a fictitious distribution modeling the

effect of a pulse of energy h̄Ω = 0.1U . Note that the superfluid region of our

nonequilibrium system is significantly enhanced near integer values of µ/U .

7.3 Dynamic Enhancement of Superfluidity

In keeping with the intuition at the end of the previous section, we shall need

a perturbation that pushes the system out of equilibrium if we are to enhance super-

fluidity by changing the distribution of excitations. A thermal bath is also necessary

both to counterbalance the heating induced by the perturbation as well as to ensure

that the concept of temperature remains well-defined. We shall add three terms to

the Hamiltonian so that H (t) = H0+HJ+Hbath+Hcoup+HV (t). The bath and cou-

pling Hamiltonians Hbath =
∑

iα εαb
†
iαbiα and Hcoup =

∑
iα gα

(
b†iα + biα

)
a†iai model

the coupling of each site to an infinite bath of oscillator degrees of freedom such

as the collective modes of a larger condensate in the which the lattice is immersed.

This type of on-site density system-bath interaction is specific to our optical system.

In contrast, an array of Josephson junctions would have an interaction that does

not conserve the system’s particle number. This would model cooper pairs form-
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Figure 7.1: The dotted and solid lines are the equilibrium phase bound-

aries with T/U = 0.1 and T/U = 0.04 respectively. The dashed

line is the boundary when the thermal distribution is replaced by

pn ∝ e−βεn
(

1− h̄Ω
Min[Enp ,E

n
h ]

)
representing depletion of sites when the en-

ergy of the lowest excitation is equal to h̄Ω = 0.1U. Note its similarity

to the T = 0 equilibrium diagram.
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ing from and breaking into electrons in the substrate. We intuit that the results

of this paper would largely extend to this alternate form of dissipation because,

as a first approximation, such a bath can be thought merely to renormalize the

chemical potential and number fluctuations leaving the rest of out treatment valid.

While future work is needed to verify this assertion, low frequency irradiation of

a Josephson array should easily corroborate or deny this intuition experimentally.

We shall model the strength of our bath coupling [27] by a purely local and Ohmic

parameter g2
α = ηεα exp {−εα/Λ}. The driving term that will force a departure from

equilibrium is given by

HV (t) = V
∑
i

a†iai cos (k · xi − Ωt), (7.3)

In practice, HV (t) describes what is called a Bragg pulse [77, 13, 75]. In the limit

where energy differences between internal atomic levels are much larger than U , J ,

and T , the potential in Eq. (7.3) is created by the superposition of two lasers offset

to each other in both frequency and wave vector. The spatial dependence of our

perturbation is necessary for nontrivial results because a spatially constant pertur-

bation merely modulates the global chemical potential such that all the single-site

energy levels are changed by the same, albeit time-dependent, amount. The en-

ergy differences to be compensated by the tunneling energy are unchanged and this

effect can be gauged away by the transformation aj (t) → aj (t) ei
V
Ω

sin(Ωt). This is

consequent to our choice of bath interaction. The same logic would not apply to a

Josephson array where the time modulation of a spatially constant chemical poten-

tial would have a nontrivial effect. The precise form of the spatial dependence in our
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system, however, seems not to be very important and other schemes are certainly

possible [26]. We have chosen this one because of its experimental simplicity.

To determine the phase boundary between insulator-like and coherent phases,

we shall approximate the correlation function 〈a†i (t)aj(t′)〉 and look for divergences

of this quantity over long distances. We shall do this perturbatively in the small

quantity J/U following the general method in [66, 68]. Anticipating a nonequilib-

rium formalism and considering only the first order in the self-energy, the correlation

function can be written as an infinite sum of simple chain diagrams defined on the

foward-backward Keldysh contour, C. The evolution on C is important in nonequi-

librium problems because it dispenses with the need to know the state of the system

at t =∞ for the calculation of expectation values. The contour-time-ordering is ac-

counted for by allowing green’s functions to have a matrix structure [53, 63]. That

is, if we define Ĝ =

GA 0

GK GR

 where A,K,R refer to advanced, Keldysh, and

retarded Green’s functions, then the non-equilibrium Dyson series can be written

as a sum of matrix products of correlation functions.

Ĝij (t, t′) = ĝij (t, t′)−
∑
i1i′1

Ji1i′1

∫ ∞
−∞

dt1 ĝii′1 (t, t1) Ĝi1j (t1, t
′), (7.4)

where ĝij refers to the correlation functions with respect to the hamiltonians H0 +

Hbath + Hcoup + HV (t) at bath temperature T . Because these hamiltonians are

just sums of single-site terms proportional to products of density operators ni =

a†iai, they are easy to diagonalize in the occupation basis. Additionally, the bath

can be decoupled from the system [27, 63] via a canonical transformation ai →

eSaie
−S = aie

∑
α
gα
εα

(b†iα−biα) = aiXi that uses the time-derivatives of the transformed

118



fields to cancel the coupling to the bath. Averages of the form 〈Tca†i (t) aj (t′)〉

simply transform to 〈Tca†i (t) aj (t′)〉〈TcX†i (t)Xj (t′)〉 = ĝij (t− t′) ◦ f̂ij (t− t′) where

◦ denotes a Hadamard or entrywise product given by
(
Â ◦ B̂

)
αβ

= AαβBαβ where

α,β designate components in the 2× 2 Keldysh space. The inclusion of the driving

field HV (t) produces a simple phase factor [16] equal to ei
V
Ω

[sin(k·xi−Ωt)−sin(k·xi−Ωt′)].

We conclude that the non-equilibrium function ĝij is a product of the time-dependent

factors produced by Hbath + Hcoup + HV (t) and the bare function with respect to

H0. Expanding the non-equilibrium prefactor in terms of Bessel functions, the exact

expression for ĝij is

ĝij (t, t′) = ĝbare
ij (t− t′) ◦ f̂ (t− t′) (7.5)

×
∞∑

mn=−∞

(−1)m+n Jn
(
V

Ω

)
Jm
(
−V

Ω

)
ei[nΩt+mΩt′−(n+m)k·xi],

The functions f̂ and ĝbare
ij are 2×2 matrices of the equilibrium correlation functions

for the bath and the system given by H0, respectively. As they are equilibrium

functions, they depend only on the difference of their time-arguments. All of the

non-equilibrium information is stored in the expansion of the phase prefactor which

depends on t and t′ separately. This is the source of the J0

(
V
Ω

)
dependence of the

tunneling renormalization familiar from studies of dynamic localization [26].

The non-equilibrium phase factor makes Ĝij a function of τ = (t+ t′) /2 rather

than simply of ∆ = t − t′. However, due to the time-periodicity of Eq. (7.3),

Ĝij (τ,∆) is a function of τ only up to period 2π/Ω. This discrete time symmetry

of the Hamiltonian allows us to decompose every matrix function in Eq. (7.4) as

Ĝij (t, t′) = 1
2π

∑
N e

iNΩτ
∫∞
−∞ e

−iω∆Ĝij (ω,N). Following the technique illustrated in
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[16], equation (7.4) can now be written in terms of the functions ĝij (ω,N), but it will

be burdensome to work with it because the equation for Ĝij (ω,N) will include con-

tributions from Ĝij (ω,N ′) for all N ′. If the harmonics indexed by N were thought of

as bands, this would be the equivalent of interband coupling familiar from Bloch the-

ory of solids. Fortunately, we can mathematically represent this coupling as simple

matrix multiplication if we transform to the so-called Floquet representation [96, 16]

defined as Ĝij (ω)mn = Ĝij

(
ω + m+n

2
Ω,m− n

)
. We may now think of Ĝij (ω)mn as

an infinite square matrix in the two-dimensional space of Floquet indices m and

n. Each element of this matrix is itself a 2 × 2 Keldysh matrix. We will suppress

the site indices and make use of the discrete translational symmetry of the problem

by transforming to lattice-momentum space Ĝi (ω,q)mn =
∑

j e
iqi·(xj−xi)Ĝij (ω)mn.

Finally, we explicitly account for the plane-wave contribution to the full Green’s

function by defining ei(n−m)ki·xiĜ (ω,q)mn = Ĝi (ω,q)mn. Having made these trans-

formations, we arrive at an extremely simple form for the nonequilibrium Dyson

equation.

Ĝ (ω,q) = ĝ (ω)
[
1− J (q,k) ◦ Ĝ (ω,q)

]
, (7.6)

where for given matrices A and B in the Floquet space (indexed by m,n), AB indi-

cates an ordinary matrix product while A ◦ B denotes a Hadamard in the Floquet

space rather than Keldysh space. The matrix J (q,k) is a generalized lattice disper-

sion in Floquet space given by Jmn (q) = J
∑

ν cos [qν + (m− n) kν ] where ν = 1, 2

denotes principal directions in our square lattice.

The existence of a Hadamard product in Eq. (7.6) complicates matters. We
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cannot merely multiply by inverses to solve for Ĝ because there are now two types of

inverses corresponding to the two types of products. This double-product structure

in a Dyson equation seems so far unknown in any other context, but the situation

can be salvaged by column vectorization (CV): the mapping of matrix A to a vector

~A consisting of the first column of A stacked on the next column and so on. We can

then make use of the convenient identities relating Hadamard and ordinary matrix

products through CV to solve Eq. (7.6) and rewrite it as

~G (ω,q) =
(
1n

2
p×n2

p −
[
1np×np ⊗ ĝ (ω)

]
D
{
~J (q)

})−1

~g (ω) , (7.7)

where ⊗ indicates a Kronecker product, and D
{
~A
}

denotes the diagonal matrix

with entries given by those of ~A. The identity matrix of size k× k is given by 1k×k,

while np is the size of the matrix ĝ in the Floqet (m,n) space. It signifies how many

higher harmonics we wish to include, or equivalently, the maximum time-resolution

of our treatment. If we needed infinite time-resolution, we would of course let

np →∞. However, each off-diagonal element (m,n) will be weighted by (J/U)m−n

while ĝmn → 0 with increasing m + n, so we expect that np need not be large to

capture the relevant stationary behavior.

7.4 Non-Equilibrium Phase Boundary

To determine the phase boundary, we are only interested in the stationary

behavior of the system given by Ĝ00. Inverting the block-diagonal n2
p×n2

p matrix in

Eq. (7.7), the real part of the Keldysh component of our correlation function, ReGK00,

can be displayed. Fig. 7.2(a) shows the system at equilibrium (V = 0) including the
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effects of Ohmic dissipation. The phase boundary is given by the points where ReGK00

diverges, and our results match those of Ref. [27]. Fig. 7.2(b) is an example of weak

dynamic enhancement of superfluidity. The similarity of Fig. 7.2(b) to the phase

diagram given by the nonequilibrium distribution in Fig. 7.1 advocates the interpre-

tation discussed earlier wherein our perturbation excites phase-stabilizing collective

modes and artificially closes the energy gap. This interpretation is strengthened

by Fig. 7.2(c) where the effect of making the pulse energy h̄Ω ten times smaller is

considered. Again there is superfluid enhancement, but notice that the valleys come

to much finer points closer to the µ/U axis. This is because a smaller perturbation

energy h̄Ω can be resonant with a much smaller gap. Thus, the phase boundary is

much closer to the µ/U axis at integer values of µ/U where the gap goes to zero. It

becomes qualitatively identical to the T = 0 equilibrium phase diagram.

While this effect of dynamic enhancement of superfluidity is found at low values

of V/U and h̄Ω/U , our model also exhibits interesting behavior in other regions of

V,Ω space. These results are catalogued in Fig. 7.3. For instance, at high frequencies

(h̄Ω � U), we see the phenomenon of dynamic localization [102, 26] familiar from

studies of driven Josephson arrays. All Wigner components other than N = 0 can

be ignored, and the tunneling is renormalized J → JJ0 (V/Ω) by the zeroth Bessel

function of the first kind coming from the expansion of the non-equilibrium phase

factor in Eq. (7.6). If V/Ω is tuned to a zero of J0 (x), we have dynamic suppression

of tunneling. We find a featureless phase diagram (not shown in Fig. 7.3) because

there is no region of J vs. µ space that admits long-range phase-coherence.

This phenomenon, familiar from driven Josephson arrays, can be understood
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Figure 7.2: Numerical density plots of ReGK00 for bath temperature βU =

25, bath coupling width Λ/U = 3, and coupling strength η = 0.01.

(a) Equilibrium: V = 0. (b) Superfluid enhancement: V/U = 0.1,

h̄Ω/U = 0.05, k = π
a
x, np = 5. (c) Superfluid enhancement: V/U = 0.1,

h̄Ω/U = 0.005, k = π
a
x, np = 5. Note the similarity to the T = 0

equilibrium diagram.
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Figure 7.3: Schematic representation of characteristic examples of the

superfluid phase boundary boundary from different regions of driving

parameter space. The dotted line is the phase boundary at equilibrium

for T = 0.04U
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as a cancellation of the dynamic phase acquired by a particle due to one period of

driving with the phase resulting from hopping between sites. The bosons become lo-

calized with no long-range correlations. That is, ReGK00 diverges nowhere. If we now

tune V toward zero, the phase boundary returns to its equilibrium form. However,

if instead Ω is tuned lower, it will eventually be small enough to be resonant with

the low energy collective modes available when µ/U is close to an integer. Close

to this valley, we will again have dynamic enhancement of superfluidity. However,

further from the valley, there will be no available low-energy modes, and we will see

suppression of tunneling. The result is larger Mott lobes that almost touch the µ/U

axis.

7.5 Summary

We have thus demonstrated the non-linear enhancement of the superfluid re-

gion in parameter space by non-equilibrium driving. Our theory is capable of de-

scribing the effect of the driving to all orders in the perturbation strength V . How-

ever, we find that the inclusion of behavior on time-scales given by just a few of

the lowest harmonics of ω is sufficient to yield the qualitative effects of the driving

on the phase transition. We expect that the experimental signature of this effect

would be similar to what has been found in time-of-flight experiments [43]. When

µ and J are tuned to a point within the enhanced superfluid region close to integer

values of µ/U , there will be well-defined peaks in momentum space corresponding

to superfluidity when the perturbation is on (V 6= 0) and a featureless interference
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pattern corresponding to the destroyed phase coherence associated with an insulator

when the perturbation is off (V = 0). Consistent with the understanding presented

in this chapter, we expect that non-equilibrium driving will continue to be found a

practical way to moderate environmental decoherence in quantum systems.
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Chapter 8

Conclusions and Future Work

As we have seen in the previous chapters, the description of systems with driv-

ing and dissipation can be burdensome mathematically, but with intuition as our

guide we are rewarded with the ability to treat systems that more completely de-

scribe real experimental setups. We have found that these types of non-equilibrium

treatments are becoming necessary to describe systems of interest to experimental-

ists as the assumptions of unitarity, adiabicity, and equilibrium come to be violated

in very subtle ways in modern experiments. As experimentalists peer further into the

dynamics of systems, fully non-equilibrium theory will have to be used to describe

their findings.

Apart from merely describing new experiments, we have also seen that there

is great potential technical applications associated with the theory of open systems.

Through driving and dissipation, it is often possible to enhance the properties that

make a system interesting or useful to begin with. This general phenomenon of

stimulation of the quantum properties of a system is likely to become a fixture in

the field of cold atom optics since the control achievable in these systems allows

for direct access to the dynamics of systems of interest. In particular, the project

discussed in chapter 7 is still very fertile for future inquiry. While we have shown that

it is possible to enhance long-range phase coherence using driving, we expect that our
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results are more generic than our specific model allows. It would be interesting to see

how different types of dissipation would affect the enhancement. The Bose-Hubbard

model is known to describe arrays of Josephson junctions, but the dissipation in

these arrays is not of the type described in chapter 7 in that it does not conserve

particle number at lattice sites. In Josephson arrays, bosonic Cooper pairs can

tunnel between lattice sites and the substrate carrying energy with them. It might be

easier to describe such a system using a density matrix formalism in Lindblad form

rather than through an expansion of Keldysh functions. Other lattice structures

[49], other types of driving perturbations, and transport phenomena could also be

considered. Moreover, our model describes where there exists a transition between

incoherent and coherent phases in parameter space. We do not say anything about

what those phases are and how they relate to the known phases at equilibrium.

Our model is equally valid in three dimensions, but it is known that there is a

Kosterlitz-Thouless transition in two dimensions. Our model completely ignores the

vortex physics associated with this transition. It would also be interesting to see

how including these dynamics would influence the outcome. For a more practically

driven project, we know that a gravity detector can be fashioned when we have a

physical system with two populations of quantum particles separated in space such

that they have different gravitational energies. While the idea has been considered,

it was determined that a Josephson junction would not be a good candidate for

such a detector because the junctions are generally so small that the gravitational

difference is negligible and corresponds to a very slow energy scale. However, in a

chain or array of Josephson junctions near the insulating-superconducting transition
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point, the state of a single site is influence by sites that are macroscopic distances

away. This means that gravity can affect the system on a much larger energy scale.

It would be interesting to see if gravity could be sensed by noting the position of

the phase transition in parameter space.

We also expect that the techniques available through driving and dissipation

will allow the experimentalist to engineer more general properties of systems. In-

deed, in references [55] and [59], we have already seen how driving can affect the

topology of a system. This work has been done in the unitary regime, and future

work will be required to include the effects of dissipation into a thermal reservoir.

However the fact remains that as we try to extend our control of systems to finer

and finer time and spatial scales, non-equilibrium methods will have to be used to

paint a complete picture of the results of experiments. A fortunate consequence of

this fact is that our efforts to describe the dynamics of these systems will allow us

to find ways to also control those dynamics.
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A.1 Estimation of Mean Collision Time Between Harmonically Trapped

Bosons and Fermions

We wish to estimate the relaxation time appearing in equations (6.5) and (6.6).

Because the scattering cross-section for fermions vanishes at low temperatures due

to the exclusion principle, we expect this relaxation time will be proportional to

the mean collision time between the trapped bosons and fermiosn. In this case, we

expect two-body s-wave scattering between bosons and fermions to dominate, and

we would like to find the collision time τ in terms of the scattering cross-section σbf

for this process (equivalently in terms of the scattering length abf ).

We recall that when a particle distibution relaxes by means of scattering events

another type of particle (which we shall call “the scattering particle”), the rate at

which the distribution settles to its equilibrium form is proportional to the departure

from equilibrium. We recall further that the time-constant for this exponential decay

can be written in terms of a scattering cross-section and a scattering particle flux.

1

τ
= γ = nvσ (1)

where φ = nv is the flux (n is a density of scattering particles and v is their average

velocity relative to the target particles). The cross section σ is the number of

scattering events per unit flux. In our case, we make the common assumption

that it is energy independent. This classical notion can be generalized to collisions

between two different atomic species that are trapped together. For given species

of trapped bosons and fermions, the cross-section can be measured in experiment.

Thus, our main goal will be to calculate the average velocity v between target and
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scattering particles. In terms of the bosonic and fermionic velocity distribution

functions nb,f (v), the average relative velocity has the following form.

v =

∫
dvfdvf nf (vf )nb (vb) |vf − vb|∫

dvfdvf nf (vf )nb (vb)
(2)

We shall also need to calculate the joint density n =
∫
dx nf (x)nb (x) in terms of the

bosonic and fermionic spatial distributions [5]. We assume that the temperature is

low enough that the spatial profiles of the fermions and bosons are well approximated

by their respective many-body ground state Thomas-Fermi semiclassical profiles for

harmonic 3D traps at zero temperature [18]. We also assume that the trap for the

bosons is much more shallow than that of the fermions. This was already necessary

for us to claim that the bosons can be considered an isothermal bath. With all of

these considerations, we have

nf (x) =
Nf

R3
F

8

π2

(
1− |x|

2

R2
F

)3/2

θ (RF − |x|) (3)

nb (x) = Nb

(α
π

)3/2

e−α|x|
2

(4)

where α = mbωb
h̄

characterizes the strength of the bosonic trap of frequency ωb.

Similarly, the Fermi radius RF =
√

2EF
mfω

2
f

characterizes the strength of the fermionic

trap in terms of the mass mf and number Nf of the fermions. We may thus write

the joint density explicitly as

n =

∫
dx nf (x)nb (x)

=
NfNb

R3
F

√
α

π

4e−αR
2
F

παRF

[
αR2

FI0

(
αR2

F

2

)
+
(
αR2

F − 4
)
I1

(
αR2

F

2

)]
(5)

where I0 and I1 are modified Bessel functions. Because we are in the Thomas-Fermi

regime, we know that αR2
F � 1. As such, we may replace these Bessel functions
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with their asymptotic limits Iν → 1√
παR2

F

eαR
2
F /2 to get

n→ 8

π2

NbNf

R3
F

(6)

We now must calculate the relative velocity. There is a useful simplification

in the fact that at T = 0, the bosons will condense into a zero momentum state.

We may thus calculate the relative velocity simply as the average Thomas-Fermi

velocity of the trapped fermionic population. We define a local fermi momentum

kF (x) through the relation

h̄2k2
F (x)

2mf

+
1

2
mfω

2
f |x|2 = EF (7)

Using this, we may write the Fermi momentum distribution simply as

nf (k) =
1

(2π)3

∫
dxθ (kf (x)− |k|) =

8

π2K3
F

(
1− |k|

2

K2
f

)3/2

θ (KF − |k|) (8)

where KF is the total Fermi momentum of the whole trapped system of fermions

not to be confused with the local Fermi momentum. Substituting velocity for mo-

mentum, we may write our relative velocity in terms of the total Fermi velocity VF

as

v =

∫
dv nf (v) |v|∫
dvnf (v)

=
64

35π
VF (9)

Putting all of our expressions together, we have a useful estimate for the collision

time τ in our system.

1

τ
= nvσbf =

256

35π3

NfNbmfω
3
f

EF
σbf (10)
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A.2 Equilibrium Phase Boundary of the Bose-Hubbard Model within

Keldysh Framework

A.2.1 Model

We wish to reproduce the equilibrium phase-boundary of the Bose-Hubbard

model including the coupling into a thermal bath of oscillators. Since we are looking

for results at equilibrium and there are certainly methods [73] that will determine the

phase boundary with much less difficulty than our approach within the framework

of Keldysh Green’s functions. However, we wish to verify that our mathematical

procedure yields good results while at the same time providing good introduction

to the use of the Keldysh method. We begin with the following Hamiltonian.

Ĥ = Ĥ0 + ĤJ + Ĥbath + Ĥcoup (11)

where the charging hamiltonian ĤC and the Josephson coupling Hamiltonian ĤJ

are given by

Ĥ0 =
U

2

∑
i

â†i âi

(
â†i âi − 1

)
− µ

∑
i

â†i âi (12)

ĤJ =
∑
ij

Jij â
†
i âj (13)

with the indices i, j labeling lattice sites. Ohmic dissipation is represented through

the coupling of particle density â†i âi at a site to a bath described by bosonic degrees

of freedom b†iα, biα. Again, the index i labels a lattice site while α labels the possible

energy states for the bath degrees of freedom at that site. We choose the following
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form for the bath and coupling hamiltonians.

Ĥbath =
∑
iα

εαb
†
iαbiα (14)

Ĥcoup =
∑
iα

gα â
†
i âi

(
b†iα + biα

)
(15)

with coupling parameters assumed to be purely local and Ohmic.

g2
α = ηεα exp (−εα/Λ) (16)

The strength of the coupling is given by η and the energy cutoff for the bath degrees

of freedom is given by Λ. This model provides an adequate description of the

dissipation to be expected in an optically confined system of bosons on a lattice

that can interact with a larger condensate of distinguishable bosons that do not see

the lattice. The phonon modes of this larger condensate will affect with the system

bosons via a site-density interaction of the form given by 15. The consequences

of this choice for the dissipation mechanism are far-reaching, and future work will

be required to generalize the effects of this work to other types of dissipation such

as non-Ohmic or particle non-conserving dissipation the type of which is found in

arrays of Josephson junctions wherein Cooper pairs can tunnel in and out of the

bath (substrate) into the system (array).

A.2.2 Expansion of Keldysh Correlation Functions

Armed with our model, our goal is to calculate Green’s functions in the Keldysh

formalism. Our strategy is to do this perturbatively in the small quantity J/U . Our

“unperturbed” Green’s function will be the site-to-site correlator for the system
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given by all pieces of the full Hamiltonian that can be diagonalized in the Fock

space (the site occupation basis). That is, we want to find the functional form of

Gij (t, t′) = −i
〈
Tc

[
a†i (t) aj (t′)U (−∞,−∞)

]〉
(17)

where Tc orders the Heisenberg operators (with respect to Ĥ0 + Ĥbath + Ĥcoup) and

the scattering operator U (−∞,−∞) along the Keldysh contour. The scattering

operator in the interaction picture has the form

U (−∞,−∞) = 1 +
∞∑
n=1

(−i)n

n!

∫
C

· · ·
∫
C

dt1 . . . dtnTc[ĤJ (t1) . . . ĤJ (tn)] (18)

with C being the Keldysh contour. Using the expansion in Eq. (18), eq. (17)

becomes

Gij (t, t′) = −i
〈
Tc

[
a†i (t) aj (t′)

]〉
(19)

−
∫
C

dt1

〈
Tc

[
a†i (t) aj (t′) ĤJ (t1)

]〉
+ . . .

= −i
〈
Tc

[
a†i (t) aj (t′)

]〉
(20)

−
∑
i1i′1

Ji1i′1

∫
C

dt1

〈
Tc

[
a†i (t) aj (t′) â†i1 (t1) âi′1 (t1)

]〉
+ . . .

Unfortunately, the Wick theorem does not apply because we have a non-quadratic

bare Hamiltonian Ĥ0. However, the linked cluster theorem states that the discon-

nected contributions to our Green’s function will still cancel out. Thus, we may

write the second term in Eq. (20) in terms of its connected part only.

Gij (t, t′) = −i
〈
Tc

[
a†i (t) aj (t′)

]〉
(21)

−
∑
i1i′1

Ji1i′1

∫
C

dt1

〈
Tc

[
a†i (t) âi′1 (t1)

]〉〈
Tc

[
aj (t′) â†i1 (t1)

]〉
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We will make the approximation in Ref. [27] by assuming that the dominant con-

tribution to this expansion comes from simple chain diagrams. This is equivalent to

treating the self-energy to first order. We shall keep an infinite number of these dia-

grams, but our approximation ensures that we shall only need to find the functions〈
Tc

[
a†i (t) aj (t′)

]〉
and perform the integrals over C rather than having to deal with

more complicated diagrams.

A.2.3 Lang-Firsov Transformation

The connected correlation functions
〈
Tc

[
a†i (t) aj (t′)

]〉
are diagonal in the

system occupation basis but not in the bath occupation basis. We would like to

diagonalize the bath part of the Hamiltonian. This will be possible without having

to rediagonalize the system Hamiltonian because the coupling Hamiltonian ĤC is

diagonal in the system occupation basis. We proceed through the method outlined

Ref. [27] and more generally Ref. [63]. It is known as the Lang-Firsov transforma-

tion familiar from polaron physics. It uses the time-dependence of the particle fields

to cancel out the coupling to the bath. We begin by defining an operator

Ŝ =
∑
iα

gα
εα
â†i âi

(
b†iα − biα

)
(22)

We use this operator to transform to a new basis such that the Hamiltonian takes the

form Ĥ ′ = eŜĤe−Ŝ. The operator Ŝ easily commutes with Ĥ0 and Ĥcoup. However,

the commutator with Ĥbath produces

Ĥ ′bath = eŜĤbathe
−Ŝ = Ĥbath − Ĥcoup −

∑
iα

g2
α

εα
â†i âi (23)
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The effect of the extra terms in Eq. (23) is to renormalize U and µ while cancelling

the explicit coupling between the system and the bath. In terms of the new operators

âi → eŜ âie
−Ŝ, the Hamiltonian can be written exactly as

Ĥ ′0 = Ĥ0 + Ĥbath (24)

where the parameters U and µ in ĤC have been renormalized to

U ′ = U − 2
∑
α

g2
α

εα
, µ′ = µ+

∑
α

g2
α

εα
(25)

Noting that Ŝ† = −Ŝ and eŜe−Ŝ = 1, our unperturbed Green’s function then

becomes

−i
〈
Tc

[
a†i (t) aj (t′)

]〉
= −i

〈
Tc

[
eiĤ0ta†ie

−iĤ0teiĤ0t′aje
−iĤ0t′

]〉
(26)

= −i
〈
Tc

[
eiĤ

′
0t
(
eŜa†ie

−Ŝ
)
e−iĤ

′
0teiĤ

′
0t
′
(
eŜaje

−Ŝ
)
e−iĤ

′
0t
′
]〉

where the action of our transformation on â† and â can be given in terms of a new

operator X̂ (which immediately commutes with a and a†).

eŜ â†ie
−Ŝ = â†i exp

[∑
α

gα
εα

(
b†iα − biα

)]
= â†iX̂

†
i (27)

eŜ âie
−Ŝ = âi exp

[
−
∑
α

gα
εα

(
b†iα − biα

)]
= âiX̂i (28)

The Hamiltonian Ĥ0 commutes with X̂i and X̂†j while Ĥbath commutes with âi and

â†j, and both mutually commute. Because of this, we can see that our Green’s

function in eq. (26) is separable into two partial traces: one over the system and

137



one over the bath.

−i
〈
Tc

[
a†i (t) aj (t′)

]〉
= −i〈Tc[eiĤ0tâ†ie

−iĤ0teiĤ0t′ âje
−iĤ0t′ ]〉0 (29)

×
〈
Tc

[
eiĤbathtX̂†i e

−iĤbathteiĤbatht
′
X̂je

−iĤbatht
′
]〉

B

= −i
〈
Tc

[
â†i (t) âj (t′)

]〉
0

〈
Tc

[
X̂†i (t) X̂j (t′)

]〉
B

(30)

= g0
ij (t, t′) fij (t, t′) (31)

where the brackets 〈· · · 〉0 indicate an average over the system partial density matrix

at t = −∞ while 〈· · · 〉B indicates an average over the bath partial density matrix

assumed to be the same for all time.

A.2.4 Zeroth Order Keldysh Green’s Function

In this section, we shall calculate the averages in Eq. (30). We recall that

Gij (t, t′) can be equal to either the (anti) time-ordered or (lesser) greater Green’s

functions depending on where t and t′ lie on the contour C. Because Ĥ0 is diagonal

in the operator n̂i = â†i âi all of these functions are very simple to find assuming that

the system is in equilibrium with the bath in the infinite past. They are reproduced

here.

g<,0ij (t, t′) = −i
〈
a†i (t) aj (t′)

〉
0

=
−iδij
Z(0)

∞∑
n=0

nei(εn−εn−1)(t−t′) (32)

g>,0ij (t, t′) = −i
〈
aj (t′) a†i (t)

〉
0

=
−iδij
Z(0)

∞∑
n=0

(n+ 1) ei(εn+1−εn)(t−t′) (33)

gT,0ij (t, t′) = θ (t− t′) g<,0ij (t, t′) + θ (t′ − t) g>,0ij (t, t′) (34)

gT̃ ,0ij (t, t′) = θ (t′ − t) g<,0ij (t, t′) + θ (t− t′) g>,0ij (t, t′) (35)
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where Z(0) is the single site partition function for the charging Hamiltonian and

εn = U ′

2
n (n− 1) − µ′n. Similarly, the bath correlation functions Fij (t, t′) can be

written in terms of four analogous functions though they are somewhat more tedious

to calculate. Because these functions will always multiply one of the system green’s

functions which vanish when i 6= j, we will only need the same-site functions. They

are rigorously derived using the method in Ref. [63] in section A.2.6 and they are

reproduced here.

F<
ii (t, t′) =

〈
X†i (t)Xi (t

′)
〉
B

= e−Φ(t−t′) (36)

F>
ii (t, t′) =

〈
Xi (t

′)X†i (t)
〉
B

= e−Φ(t′−t) (37)

F T
ii (t, t′) = θ (t− t′)F<

ii (t, t′) + θ (t′ − t)F>
ii (t, t′) = e−Φ(|t−t′|) (38)

F T̃
ii (t, t′) = θ (t′ − t)F<

ii (t, t′) + θ (t− t′)F>
ii (t, t′) = e−Φ(−|t−t′|) (39)

where the argument of the exponential is given in terms of the bosonic occupation

Nα =
(
eβεα − 1

)−1
as

Φ (x) =
∑
α

(
gα
εα

)2 [
(Nα + 1)

(
1− e−iεαx

)
+Nα

(
1− eiεαx

)]
=

∑
α

(
gα
εα

)2 [(
1− e−iεαx

)
+Nα

∣∣1− eiεαx∣∣2] (40)

We are now in a position to write the explicit form of eq. (21) in matrix form.
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Noting that
∫
C
dt1 =

∫∞
−∞ dt+ −

∫∞
−∞ dt− and letting

Ĝij (t, t′) =

 GT
ij (t, t′) −G>

ij (t, t′)

G<
ij (t, t′) −GT̃

ij (t, t′)

 (41)

ĝ0
ij (t, t′) =

 gT,0ij (t, t′) −g>,0ij (t, t′)

g<,0ij (t, t′) −gT̃ ,0ij (t, t′)

 (42)

=

 gT,0ij (t, t′)F T
ij (t, t′) −g>,0ij (t, t′)F>

ij (t, t′)

g<,0ij (t, t′)F<
ij (t, t′) −gT̃ ,0ij (t, t′)F T̃

ij (t, t′)

 (43)

we can immediately write Eq. (21) as

Ĝij (t, t′) = ĝ0
ij (t, t′)−

∑
i1i′1

Ji1i′1

∫ ∞
−∞

dt1ĝ
0
ii′1

(t, t1) ĝ0
i1j

(t1, t
′) + . . . (44)

The fourier transforms of the components of Ĝ0
ij (t, t′) are relatively easy to approx-

imate to first order in η in the limit that η � 1 (see section A.2.7).

A.2.5 Equilibrium Phase Boundary

Our model so far has been fairly general. Let us see if we can now use Eq.

(44) to find the phase boundaries with and without dissipation at finite and zero

temperatures to see that these results agree with the literature. To do this, we shall

need to access the long-time behavior of the system. We may therefore take the

frequency transform of equation (21) noting that the ω → 0 limit corresponds to

the long-time limit that we presently seek. Because we are presently interested in

the system at equilibrium, we know that the correlation functions depend only on

the difference (t − t′) of their arguments rather than on time independently (as is
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the case out of equilibrium). Thus, we can take a frequency transform with respect

to a single variable. These transforms are explicitly determined in section A.2.7.

We merely reproduce them here.

g<,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

e−βεnnH (ω + εn − εn−1)

g>,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

e−βεn (n+ 1)K (ω + εn+1 − εn)

gT,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

e−βεn [nQ (ω + εn − εn−1) + (n+ 1)Q (−ω − εn+1 + εn)]

gT̃ ,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

e−βεn [nP (−ω − εn + εn−1) + (n+ 1)P (ω + εn+1 − εn)]

where

H (x) =
π

Γ (η)
e−|x|/ΛΛ−η |x|η−1 (1 + sign (x)) (45)

K (x) =
π

Γ (η)
e−|x|/ΛΛ−η |x|η−1 (−1 + sign (x)) (46)

Q (x) =
i

x
− iη

x
R
(x

Λ

)
− η

x
G
(x

Λ

)
(47)

P (x) =
i

x
− iη

x
R
(x

Λ

)
+
η

x
G
(x

Λ

)
(48)

and finally

G (x) =
1

4
e−x[π

(
1 + e2x

)
− 2iΓ0 (−x)− 2i ln (−x)]] (49)

+
1

4
e−x[2i ln (−ix) + 2ie2x (Γ0 (x)− ln (−ix) + ln (x))]

R (x) = exExpIntegralE (1, ω) (50)

+e−x (ExpIntegralE (1,−ω) + ln (−ω))

+e−x cosh (ω) (−2 ln (−iω) + ln (ω))

+ sinh (ω) (−iπ + ln (ω))
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A.2.5.1 Phase Boundary at Equilibrium without Dissipation

As a sanity-check, let us first consider the system with no dissipation. Setting

gα = 0, we trivially get F T ,F T̃ ,F<, and F> all equal to unity. Using the identity

A (t− t1)B (t1 − t′) = A (t− t′ − x)B (x) along with the convolution theorem, we

may write eq. (44) in frequency space as

Ĝij (ω) = ĝ0
ij (ω)−

∑
i1i′1

Ji1i′1 ĝ
0
ii′1

(ω) ĝ0
i1j

(ω) + . . . (51)

where the frequency transforms of these correlators take on a fairly simple form

because the effect of the bath is not included.

gT,0ij (ω) = − δij
Z(0)

∞∑
n=0

e−βεn
[

n+ 1

εn+1 − εn + ω + i0
− n

εn − εn−1 + ω − i0

]
(52)

and the lesser (greater) Fourier transforms are

g>,0ii′1
(ω) = −2πi

δii′1
Z(0)

∞∑
n=0

e−βεn (n+ 1) δ (εn+1 − εn + ω) (53)

g<,0i1j
(ω) = −2πi

δi1j
Z(0)

∞∑
n=0

e−βεn (n) δ (εn − εn−1 + ω) (54)

The transform of the anti-time-ordered function is not included as it will not play a

part in our analysis at equilibrium. Because we are interested in long-time correla-

tions, we shall let ω → 0. At the same time, we note that our system has a discrete

spatial symmetry. We take advantage of this symmetry by transforming Eq. (51)

to momentum space leaving

Ĝ (ω → 0,q) = ĝ0 (0)− J (q) ĝ0 (0) ĝ0 (0) + . . . (55)

where J (q) = 2J
∑

ν=1,2,3 cos (qν) is the lattice dispersion.
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A simple inspection of eq. (55) shows that we may rewrite the equation more

illustratively for small J as

Ĝ (0,q) = ĝ0 (0)
[
1 + (−J (q)) Ĝ (0)

]
= ĝ0 (0)

[
1 + J (q) ĝ0 (0)

]−1
(56)

with −J (q) being identified as the first-order approximation to the self-energy. Let

us take the Keldysh component of the matrix equation, Eq. (56). Ignoring terms

higher than first order in J for computational purposes only (they do not yield

significant differences when the phase boundary is numerically computed), we have

GK (0,q) =
gK,0 (0)

1 + 1
2
J (q) (gA,0 (0) + gR,0 (0))

=
gK,0 (0)

1 + J (q) (gT,0 (0)− 1
2
g>,0 (0)− 1

2
g<,0 (0))

(57)

The equilibrium phase boundary is the manifold in parameter space where long-

time, long-range correlations diverge, GT (ω → 0,q→ 0)→∞. That is, where the

real part of the denominator of eq. (57) goes to zero. This equation can be written

for z dimensions as

1 = −Re[J (0) (gT,0 (0)− 1

2
g>,0 (0)− 1

2
g<,0 (0))]

=
2Jz

Z(0)

∞∑
n=0

e−βεn
[

n+ 1

εn+1 − εn
− n

εn − εn−1

]
(58)

which is indeed the equation for the phase boundary given in the literature for finite

and zero temperatures. We have thus shown that we can reproduce the equilibrium

phase boundary when dissipation is not considered.
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A.2.5.2 Phase Boundary at Equilibrium with Dissipation

To replicate the results from Ref. [27], we shall include dissipation but let the

temperature go to zero. Letting T → 0 so that Nα → 0, we trivially reproduce the

results for the bath correlation function.

F T
ii (t, t′) = e−Φ(|t−t′|) = exp

[
−
∑
α

(
gα
εα

)2 (
1− e−iεα|t−t′|

)]
(59)

as well as their renormalization of U and µ which leads to a phase boundary that

is slightly different from the T = 0 boundary calculated without dissipation. Our

treatment can also access the finite temperature regime. While we are aware of no

other paper that treats both dissipation and finite temperature at the same time,

we admit that this is computationally taxing. It is much easier to simply assume

that the bath temperature is non-negligible compared to the energy scales of the

system (the lattice) while it is very small compared to the energy scales of the bath.

Under this assumption, we can approximate the bath correlation functions as their

T → 0 counterparts while still retaining the important effect of the bath’s finite

temperature on the system. The temperature of the bath will influence system

correlation functions through the initial condition that the bath and the system

were at equilibrium in the infinite past.

A.2.6 Phonon Green’s Functions

We now wish to find the bath correlators, i.e. the functions
〈
X†i (t)Xj (t′)

〉
bath

and
〈
Xj (t′)X†i (t)

〉
bath

from equations (30) and (43), using the method described

by Mahan [63]. They will be refered to as “phonon correlators” because they the
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system/bath interaction has a phononic form in Eq. (15). Furthermore, these

functions will always be multiplying G0
ij (t, t′) ∝ δij. As such we need only consider

the case i = j. We may begin with the following repeated from earlier.

Xj (t′) = eiHbatht
′
Xje

−iHbatht
′
= eiHbatht

′
exp

[
−
∑
α

λα

(
b†jα − bjα

)]
e−iHbatht

′

= exp

[
−
∑
α

λα

(
b†jαe

iεαt′ − bjαe−iεαt
′
)]

(60)

X†i (t) = eiHbathtX†i e
−iHbatht = eiHbatht exp

[∑
α

λα

(
b†iα − biα

)]
e−iHbatht

= exp

[∑
α

λα

(
b†iαe

iεαt − biαe−iεαt
)]

(61)

with λα = gα/εα. Since our goal is to take a thermal average of the product of these

operators over bath states,

〈
Xj (t′)X†i (t)

〉
bath

=
1

Zbath

Tr[e−β
∑
α ωαnαXj (t′)X†i (t)] (62)

with nα the bosonic occupation number of bath mode α and Zbath the bath partition

function. After substituting the definitions (60) and (61) into equation (62), we shall

make use of the theorem that for any operators A and B such that both commute

with C = [A,B], we have eA+B = eAeBe−1/2[A,B]. Thus we have

Xj (t′) = exp
[
−λα

(
b†jαe

iεαt′ − bjαe−iεαt
′
)]

= exp
[
−λαb†jαeiεαt

′
]

exp
[
λαbjαe

−iεαt′
]

exp
[
−λ2

α/2
]

(63)

X†i (t) = exp
[
λα

(
b†iαe

iεαt − biαe−iεαt
)]

= exp
[
λαb

†
iαe

iεαt
]

exp
[
−λαbiαe−iεαt

]
exp

[
−λ2

α/2
]

(64)
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So that we may easily take averages over the thermal state, we will want all the

destruction operators on the right. We may write

exp
[
λαbjαe

−iεαt′
]

exp
[
λαb

†
iαe

iεαt
]

(65)

= exp
[
λαb

†
iαe

iεαt
] (

exp
[
−λαb†iαeiεαt

]
exp

[
λαbjαe

−iεαt′
]

exp
[
λαb

†
iαe

iεαt
])

= exp
[
λαb

†
iαe

iεαt
]

exp
[
λα

(
exp

[
−λαb†iαeiεαt

]
bjα exp

[
λαb

†
iαe

iεαt
])
e−iεαt

′
]

but we know from the Baker-Haussdorf lemma that for i = j, the parenthesized

terms the last line of Eq. (65) can be written as

exp
[
−λαb†iαeiεαt

]
bjα exp

[
λαb

†
iαe

iεαt
]

= bjα+
[
−λαb†iαeiεαt, bjα

]
= bjα+λαe

iεαt (66)

This allows us to write expressions like the first line of Eq. (65) in normal order as

exp
[
λαbjαe

−iεαt′
]

exp
[
λαb

†
iαe

iεαt
]

(67)

= exp
[
λαb

†
iαe

iεαt
]

exp
[
λα
(
bjα + λαe

iεαt
)
e−iεαt

′
]

= exp
[
λ2
αe

iεα(t−t′)
]

exp
[
λαb

†
iαe

iεαt
]

exp
[
λαbjαe

−iεαt′
]

With the product Xj (t′)X†i (t) now written in normal order, the operators b̂†i and

b̂j will simply become complex numbers inside the bath average. We may write an

explicit form for the phonon correlator using the following identity (equation 4.240

in Ref. ([63])).

(
1− e−βεα

)∑
nα

e−βεαnα 〈nα| exp
[
u∗b†iα

]
exp [−ubiα] |nα〉 = e−|u|

2Nα (68)

where Nα =
(
eβεα − 1

)−1
and we can assign u = λα

(
e−iεαt − e−iεαt′

)
and u∗ =

λα
(
eiεαt − eiεαt′

)
. Thus, the phonon correlator can be written as

〈
Xj (t′)X†i (t)

〉
bath

=
∏
α

exp{−λ2
α

(
1− e−iεα(t−t′) + |1 + e−iεα(t′−t)|2Nα

)
} (69)
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Defining the phase associated with each bath mode as

φα (t, t′) = λ2
α

[(
1− e−iεα(t′−t)

)
+
∣∣∣1− eiεα(t′−t)

∣∣∣2Nα

]
= λ2

α

[
(Nα + 1)

(
1− e−iεα(t′−t)

)
+Nα

(
1− eiεα(t′−t)

)]
(70)

we may write the full phonon correlator quite simply as

〈
Xj (t′)X†i (t)

〉
bath

= e−
∑
α φα(t,t′) = eΦ(t,t′) (71)

Employing the same procedure, we may find the other function to be

〈X†i (t)Xj (t′)〉bath = eΦ(t′,t) (72)

The time ordered and anti-time-ordered functions can now be built from the greater

and lesser functions in equations (71) and (72). We can then approximate the bath

modes as infinitely dense in energy space
∑

α →
∫
dε. This is all that is necessary

for our treatment if one is willing to perform frequency transforms numerically. In

the interest of numerical and analytical tractability, we went further and let the

temperature be small enough such that Nα is negligible over most of the energy

range from 0 to Λ. This assumption allows us to approximate the bath correlators

by the T → 0 functional form appearing in references ([27]) and ([63]). Noting that

Φ (t, t′) is a function only of the difference ∆ = t− t′ due to the fact that the bath

is assumed to be at equilibrium with itself, we find

e−Φ(∆) → (1 + iΛ∆)−η (73)
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A.2.7 Frequency Transforms of Undriven Functions ĝ0ij (t, t′)

We wish to find frequency transforms of the functions in eq. (43). For conve-

nience they are reproduced here.

g<,0ij (t, t′) = −iδij
1

Z(0)

∞∑
n=0

n exp [i (εn − εn−1) (t− t′)] e−Φ(t−t′)

g>,0ij (t, t′) = −iδij
1

Z(0)

∞∑
n=0

(n+ 1) exp [i (εn+1 − εn) (t− t′)] e−Φ(t′−t)

gT,0ij (t, t′) = θ (t− t′) g<,0ij (t, t′) e−Φ(t−t′) + θ (t′ − t) g>,0ij (t, t′) e−Φ(t′−t)

gT̃ ,0ij (t, t′) = θ (t′ − t) g<,0ij (t, t′) e−Φ(t−t′) + θ (t− t′) g>,0ij (t, t′) e−Φ(t′−t)

where the bath correlators yield factor that is an exponential of Φ (x) given in terms

of the boson occupation Nα =
(
eβεα − 1

)−1
as

Φ (x) =
∑
α

(
gα
εα

)2 [
(Nα + 1)

(
1− e−iεαx

)
+Nα

(
1− eiεαx

)]
(74)

=
∑
α

(
gα
εα

)2 [(
1− e−iεαx

)
+Nα

∣∣1− eiεαx∣∣2] (75)

Now we shall make a computationally useful assumption. We shall assume that the

temperature of the bath is of an order comparable to the energy scales of the system

but that it is small compared to energy scales of the environment. This will allow us

approximate the bath correlators by their T → 0 (for the bosonic bath) counterparts.

We have done this to simplify the analytical form of these bath correlators in order

to make them computationally manageable with our computer resources, but it

does not represent a conceptual difficulty for the model. If we required the greater

accuracy afforded by not making this approximation, we could merely perform the

necessary Fourier transforms of these correlation function numerically rather than
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looking for asymptotic approximations. As it is, however, we shall approximate the

bath correlators in the zero-temperature limit:

e−Φ(x) → (1 + iΛx)−η (76)

We may then begin taking Fourier transforms. The greater and lesser functions are

the simplest. Letting x = t− t′ we have

g<,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

n

∫
dxeiωxei(εn−εn−1)xe−Φ(x) (77)

= −iδij
1

Z(0)

∞∑
n=0

nH (ω + εn − εn−1) (78)

g>,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

(n+ 1)

∫
dxeiωxei(εn+1−εn)xe−Φ(−x) (79)

= −iδij
1

Z(0)

∞∑
n=0

(n+ 1)K (ω + εn+1 − εn) (80)

where the integrals H and K are transforms of the bath correlators. They have the

following exact expressions

H (ω) =

∫ ∞
−∞

dxeiωx (1 + iΛx)−η

=
π

Γ (η)
e−|ω|/ΛΛ−η |ω|η−1 (1 + sign (ω)) (81)

K (ω) =

∫ ∞
−∞

dxeiωx (1− iΛx)−η

=
π

Γ (η)
e−|ω|/ΛΛ−η |ω|η−1 (−1 + sign (ω)) (82)
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The time-ordered and anti-time-ordered functions are slightly more complex.

gT,0ij (ω) = −iδij
1

Z(0)

∞∑
n=0

[
n

∫ ∞
−∞

dxeiωxθ (x) ei(εn−εn−1)xe−Φ(x) (83)

+ (n+ 1)

∫ ∞
−∞

dxeiωxθ (−x) ei(εn+1−εn)xe−Φ(−x)

]
= −iδij

1

Z(0)

∞∑
n=0

[
nQ (ω + εn − εn−1) + (n+ 1)Q (−ω − (εn+1 − εn))

]
gT̃ ,0ij (ω) = −iδij

1

Z(0)

∞∑
n=0

[
n

∫ ∞
−∞

dxeiωxθ (−x) ei(εn−εn−1)xe−Φ(x) (84)

+ (n+ 1)

∫ ∞
−∞

dxeiωxθ (x) ei(εn+1−εn)xe−Φ(−x)

]
= −iδij

1

Z(0)

∞∑
n=0

[
nP (−ω − εn + εn−1) + (n+ 1)P (ω + εn+1 − εn)

]

An added simplification is afforded by our consideration of a specific type of dis-

sipation. Our dissipation mechanism is given as the interaction of lattice bosons

with low-energy collective modes of a larger condensate that is not affected by the

lattice. In systems such as these, the strength η of the dissipation modeled in this

way tends to be much small than unity while the energy spread of the interaction

Λ/U can be made to be of order unity. Therefore, we are justified in approximating

the functions Q and P in the η � 1 limit. This is the subject of the next section.

A.2.7.1 The Functions Q and P

We will now approximate the functions appearing in the expressions for the

time-ordered and anti-time-ordered undriven correlation functions in equations (83)

and (84). First we write the complex functions (1± iΛx)−η as the product of a
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modulus and a phase in terms of the unitless variable x = x̃/Λ.

Q (ω) =

∫ ∞
0

dxeiωx (1 + iΛx)−η (85)

=
1

Λ

∫ ∞
0

dx̃eiωx̃/Λ
(
1 + x̃2

)−η
e−iη tan−1(x̃)

P (ω) =

∫ ∞
0

dxeiωx (1− iΛx)−η (86)

=
1

Λ

∫ ∞
0

dx̃eiωx̃/Λ
(
1 + x̃2

)−η
eiη tan−1(x̃)

Now we shall use the aforementioned assumption regarding the strength of our

dissipation. Under the assumption that η � 1, we may make the following approx-

imation.

(
1 + x̃2

)−η
e±iη tan−1(x̃) = 1− η ln

(
1 + x̃2

)
± iη tan−1 (x̃) +O

(
η2
)

(87)

Inserting this approximation into our expressions for P and Q, we note that these

two functions can each be written as a sum of three integrals

Q (ω) =
1

Λ

∫ ∞
0

dx̃eiωx̃/Λ − η

Λ

∫ ∞
0

dx̃eiωx̃/Λ ln
(
1 + x̃2

)
(88)

−iη
Λ

∫ ∞
0

dx̃eiωx̃/Λ tan−1 (x̃)

P (ω) =
1

Λ

∫ ∞
0

dx̃eiωx̃/Λ − η

Λ

∫ ∞
0

dx̃eiωx̃/Λ ln
(
1 + x̃2

)
(89)

+
iη

Λ

∫ ∞
0

dx̃eiωx̃/Λ tan−1 (x̃)

All of these integrals can be done by allowing ω to have a small positive imaginary

part iδ. The first integral in each line is simple in the limit where δ → 0.

1

Λ

∫ ∞
0

dx̃ei(ω+iδ)x̃/Λ =
1

Λ

1

i (ω + iδ) 1
Λ

[
ei(ω+iδ)x̃/Λ

]∞
0

=
i

ω
(90)
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The next integral,again the same both in Eq. (88) and Eq. (89), is first done by

parts with the boundary term going to zero, then by trigonometric substitution

η

Λ

∫ ∞
0

dx̃eiωx̃/Λ ln
(
1 + x̃2

)
=

η

Λ

[
ei(ω+iδ)x̃/Λ

i (ω + iδ) /Λ
ln
(
1 + x̃2

)]∞
0

− η
Λ

∫ ∞
0

dx̃
ei(ω+iδ)x̃/Λ

i (ω + iδ) /Λ

2x̃

1 + x̃2

=
2iη

(ω + iδ)

∫ π/2

0

dθei(ω+iδ) tan(θ)/Λ tan θ

=
2iη

ω

∫ π/2

0

dθei(ω+iδ) tan(θ)/Λ tan θ

=
iη

ω
R
(ω

Λ

)
(91)

where R (x) has a somewhat unilluminating (but computationally manageable) form

R (x) = exExpIntegralE (1, ω) (92)

+e−x (ExpIntegralE (1,−ω) + ln (−ω))

+e−x cosh (ω) (−2 ln (−iω) + ln (ω))

+ sinh (ω) (−iπ + ln (ω))

Finally, the last integral in Eq. (88) and Eq. (89) is done in the same manner.

iη

Λ

∫ ∞
0

dx̃eiωx̃/Λ tan−1 (x̃) =
iη

Λ

[
ei(ω+iδ)x̃/Λ

i (ω + iδ) /Λ
tan−1 (x̃)

]∞
0

− η

ω + iδ

∫ ∞
0

dx̃ei(ω+iδ)x̃/Λ 1

1 + x̃2

=
−η

ω + iδ

∫ π/2

0

dθei(ω+iδ) tan(θ)/Λ

=
−η
ω
G
(ω

Λ

)
(93)

where G (x) has the form

G (x) =
1

4
e−x[π

(
1 + e2x

)
− 2iΓ0 (−x)− 2i ln (−x)]

+
1

4
e−x[2i ln (−ix) + 2ie2x (Γ0 (x)− ln (−ix) + ln (x))] (94)
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Thus, we are left with

Q (ω) =
i

ω
− iη

ω
R
(ω

Λ

)
− η

ω
G
(ω

Λ

)
(95)

P (ω) =
i

ω
− iη

ω
R
(ω

Λ

)
+
η

ω
G
(ω

Λ

)
(96)

with R and G defined above.

A.3 Nonequilibrium Phase Boundary of the Bose-Hubbard Model

with Periodic Driving

A.3.1 Homogeneous Perturbation

The analysis above can recreate all the equilibrium results within the Keldysh

framework. Now we wish to generalize to nonequilibrium systems. Specifically, we

would like include the effect of a perturbation of the form

HV (t) = V
∑
i

n̂i cos (Ωp) (97)

We shall find that this will be insufficient to drive our system out of equilibrium

in any meaningful way as it does not change the probabilities of site occupation

numbers. Instead, it merely changes the energy of those occupation states for every

site in the same time-dependent fashion. In this sense, the perturbaton can be

“gauged away”. Specifically, we may write the Hamiltonian as

H (t) = H0 +HJ +HV (t) (98)

where H0 includes the energy relaxation due to the bosonic bath. We know from

our analysis earlier that we can expand the Green’s function for this Hamiltonian
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in a Dyson series in the the small parameter J/U . That means we may write

the total Green’s function in terms nonequilibrium correlation functions that treat

the Hamiltonian HV (t) to all orders. However, when we find these nonequilibrium

functions explicity, we shall note that the non-equilibrium character simply manifests

as an unimportant global phase factor due to the fact that HV (t) is constant in

space. Take for example the lesser function with respect to H0 +HV (t).

g<ij (t, t′) =
〈
U † (t) a†iU (t)U † (t′) ajU (t′)

〉
(99)

where the time-evolution operator is given as

U (t) = exp

[
−i
∫ t

0

dt′ (H0 +HV (t′))

]
(100)

This is the crucial point. Because [HV (t′) , H0] = 0 at all times, the evolution

operator simply picks up a global phase due to the action of HV (t).

U (t) = exp

[
−i
∫ t

0

dt′HV (t′)

]
exp

[
−i
∫ t

0

dt′H0

]
= e

−i Ω
ωp

(sin(ωpt)−sin(ωpt′))e−iH0t

(101)

In terms of our Green’s functions, we simply get

g<ij (t, t′) = e
−i Ω

ωp
(sin(ωpt)−sin(ωpt′))

〈
eiH0ta†ie

−iH0teiH0t′aje
−iH0t′

〉
= e

−i Ω
ωp

(sin(ωpt)−sin(ωpt′))g<,0ij (t, t′) (102)

where g<,0ij is simply the Green’s function with respect only to the hamiltonian H0;

that is, the equilibrium green’s function considered in earlier sections. This form

for the driven correlator upon which we will base our expansion of the full Green’s

function is derived in section A.3.6. The non-equilibrium phase factor in Eq. (102)
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has no dependence on the site indices {i, j}. As such, it will be irrelevant when

transitions between sites are considered. The full correlation function will not have

diverging correlations in any way that is different from the case at equilibrium.

Another way to see this is to perform the transformation aj (t′)→ aj (t′) e
i Ω
ωp

sin(ωpt′).

This transformation will leave the Hamiltonian (which depends only on density â†â

rather than on the operators â† or â individually) invariant, but it will cancel the

phase prefactor in eq. (102).

In order to get something non-trivial from our non-equilibrium driving, we

must either include a pulse that affects the system inhomogeneously or we must

include a term in H0 that does not conserve the system’s particle number. The

dissipation mechanism that is present in Josephson Junction arrays is exactly of

this type. Because the number of cooper pairs on a superconducting grain can be

changed by Andreev tunneling into the substrate, this type of dissipation can be

modeled by terms in the Hamiltonian that depend explicitly on â† and â separately.

The coupling of an array of Josephson junctions will have a reservoir Hamiltonian

of the form:

Hbath =
∑
i,k,σ

εkc
†
i,k,σci,k,σ Hcoup =

∑
i,k

(
λka

†
ici,k,σci,−k,−σ + λ∗kaic

†
i,k,σc

†
i,−k,−σ

)
(103)

where ci,k,σ is the normal electronic destruction operator for an electron in state

|k, σ〉. These terms will not commute with n̂i = â†i âi in HV (t), and the effect of

the driving perturbation will be more than simple multiplication by a trivial phase

factor.
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While the question of how driving will affect a system with this type of dis-

sipation is an interesting and open one, it is beyond the scope of this work. A

conceptually simpler way of achieving the same end is to simply allow the driving

term to have spatial dependence. Driving of this form well describes the so-called

Bragg pulse familiar in cold atom optical experiments, and it is the subject of the

next section.

A.3.2 Heterogeneous Non-Equilibrium Perturbation

As mentioned, an alternative method to having particle non-conserving dis-

sipation is to keep the same bath terms as in Eqs. (14) and (15) but to have the

perturbation itself be inhomogenous. Let us consider a perturbation of the form

HV (t) = V
∑
i

n̂i cos (k · xi − Ωt) (104)

Again, we may write the Dyson equation as the summation of all simple chain

diagrams

ĝij (t, t′) = ĝ0
ij (t, t′) +

∑
i1i′1

∫ ∞
−∞

dt1ĝii′1 (t, t1)
(
−Ji1i′1

)
ĝi1j (t1, t

′)

+
∑

i1i′1,i2i
′
2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2ĝii′1 (t, t1)
(
−Ji1i′1

)
ĝi1i′2 (t1, t2)

(
−Ji2i′2

)
ĝi2j (t2, t

′)

+ . . . (105)

= ĝij (t, t′) +
∑
i1i′1

∫ ∞
−∞

dt1ĝii′1 (t, t1)
(
−Ji1i′1

)
Ĝi1j (t1, t

′) (106)

where the nonequilibrium matrix green’s function ĝij (t, t′) is taken with respect to

Ĥ0 + Ĥbath + Ĥcoup + HV (t). It can be related exactly to the function ĝ0
ij (t− t′)
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with respect to H0 as (see section A.3.6)

ĝij (t, t′) = ei
V
Ω

sin(k·xi−Ωt)e−i
V
Ω

sin(k·xj−Ωt′)ĝ0
ij (t− t′) (107)

Note that the phase prefactor in Eq. (107) is not global as it would be if k = 0.

It depends on the site index through the value of k · xi, and it will be important

when particle tunneling events between sites are considered. Furthermore, we our

function to all orders of the driving strength in terms of the undriven functions

ĝ0
ij (t− t′). These functions appear above in equations (32) through (39) and equa-

tion (43).Because we know that ĝ0
ij (t− t′) ∝ δij, we may rewrite equation (107)

as

ĝij (t, t′) = ei
V
Ω

[sin(k·xi−Ωt)−sin(k·xi−Ωt′)]ĝ0
ij (t− t′) (108)

The driven functions are still proportional to δij, but with a phase prefactor that

depends explicitly on the site index. We may deduce from this that the effect of the

driving will be to locally renormalize the nearest-neighbor tunneling as desired.

A.3.3 Correlation Functions in Wigner Coordinates

Because the Hamiltonian is periodic, we know that the total Green’s function

must be invariant with respect to the transformation Ĝij (t, t′)→ Ĝij

(
t+ 2π

Ω
, t′ + 2π

Ω

)
.

If notes the fact that a convolution of two periodic functions is also periodic, a simple

inspection of equations (108) and (105) reveals that this is so. We take advantage of

this property through the use of Floquet analysis. We define first the decomposition

of the Green’s function into Wigner coordinates T = t+t′

2
, ∆ = t− t′ as

Ĝij (ω)N =

∫ ∞
−∞

d∆ eiω∆

∫ 2π

0

d (ΩT )

2π
e−iΩNT Ĝij

(
t = T +

∆

2
, t′ = T − ∆

2

)
(109)
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and the reverse transformation as

Ĝij

(
t = T +

∆

2
, t′ = T − ∆

2

)
=

1

2π

∑
N

∫ ∞
−∞

dω e−iω∆eiΩNT Ĝij (ω)N (110)

In terms of these, the Dyson equation (eq. (105)) can be written (see section A.3.5)

Ĝij (ω)N = ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

ĝii′1

(
ω + Ω

N1 −N
2

)
N1

Ĝi1j

(
ω + ωp

N1

2

)
N−N1

(111)

where ĝij (ω)N can be calculated (see section A.3.4) in terms of the Fourier transform

of the undriven correlation functions ĝ0 (t, t′).

ĝij (ω)N = (−1)N e−iNk·xi
∞∑

k=−∞

Jk

(
V

Ω

)
JN−k

(
−V

Ω

)
g0
ij

(
ω +

(
k − N

2

)
Ω

)

= e−iNk·xiδij (−1)N
∞∑

k=−∞

Jk

(
V

Ω

)
JN−k

(
−V

Ω

)
g0

(
ω +

(
k − N

2

)
Ω

)
= e−iNk·xiδij ĝ (ω)N (112)

with g0 (ω) given as the Fourier transforms (with respect to t− t′) of the undriven

green’s functions g0 (t− t′) with respect to the bath and charging Hamiltonians. As

mentioned before, these functions are rather complicated. Their determination is

the subject of section A.2.7. In the third line of equation (112), we have explicitly

put all the site-index dependence of the function into the prefactor and labeled

everything else as ĝ (ω)N . This was simply to condense notation.

A.3.3.1 Rewriting in Floquet form

Our non-equilibrium Dyson equation, Eq. (111), is still a quite difficult con-

struct to use or calculate. Conceptually, this equation tells us how to build up the

full correlation function out of Fourier components that multiply terms rotating with
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harmonics of the driving frequency. These components are indexed by the integer

N , but there is a glaring problem. After inspecting Eq. (111), one immediately

notices that in order to calculate a single Fourier component (with index N) of

the full correlator Ĝ, one must include contributions from all other components N ′.

This fact frustrates any attempt to arrive at a closed-form solution for Ĝ. To deal

with this problem, we shall employ a treatment [96, 16] that is usually associated

with the Floquet theorem. While we never specifically use the Floquet theorem

(which defines the specific form of the solution to a time-periodic Hamiltonian), we

will represent the N , N ′ couplings between different Fourier components as matrix

multiplication. We shall begin by defining the following matrix forms of the Green’s

functions. We will call this new form the Floquet representation.

Ĝmn (ω,q) ≡ Ĝ

(
ω − m+ n

2
Ω,q

)
m−n

(113)

We can write this transformation explicitly for the functions ĝ (ω)N as

ĝij (ω)mn = e−i(m−n)(k·xi−π)δij

[
∞∑

k=−∞

Jk

(
Ω

ωp

)
Jm−n−k

(
− Ω

ωp

)
G0 (ω + (k −m)ωp)

]
(114)

Let us see how the Dyson equation can be rewritten in terms of these new objects.

Starting with eq. (111), we easily have

Ĝij (ω)mn = ĝij (ω)mn −
∑
i1i′1

(
Ji1i′1

)∑
N1

ĝii′1

(
ω + ωp

N1 − 2m

2

)
N1

×Ĝi1j

(
ω + ωp

N1 −m− n
2

)
m−n−N1

(115)

159



We shall now define the sum over N1 to be the sum over a new variable k such that

m− k = N1. This transformation yields

Ĝij (ω)mn = ĝij (ω)mn

−
∑
i1i′1

(
Ji1i′1

)∑
k

ĝii′1

(
ω − Ω

m+ k

2

)
m−k

Ĝi1j

(
ω − Ω

k + n

2

)
k−n

= ĝij (ω)mn −
∑
i1i′1

(
Ji1i′1

)∑
k

ĝii′1 (ω)mk Ĝi1j (ω)kn (116)

Now the matrix structure is apparent through the sum over the shared Floquet index

k in Eq. (116). The fact that the correlators only depend on t and t′ separately up

to a period has been used to encode much of the dynamic information into a matrix

structure. This is a generic feature of the Floquet method of periodic Hamiltonians.

In many problems, all of the dynamic information can be encapsulated in a simple

eigenvalue problem. We can formally simply our, as of yet, complicated version of the

Dyson eqatuion by further taking advantage of the discrete translational symmetry

afforded by our lattice. We will do this by transforming to lattice momentum space.

Accordingly, we may dispense with the site indices i and j defining Ĝmn (q) =

ei(m−n)k·xiĜmn (q). This will explicitly accomodate the plane-wave contribution to

the correlator that is required by Bloch’s theorem. In lattice-momentum space,

equation (116) has a simple form (see section A.3.7).

Ĝ (ω,q) = ĝ (ω) + ĝ (ω)
(
Ĵ (q) ◦ Ĝ (ω,q)

)
(117)

where ◦ denotes a Hadamard matrix product given as (A ◦B)pq = apqbpq. Let us re-

flect on what we have derived. The full non-equilibrium correlator including driving

and dissipation has been transformed in a way such that the dynamic information
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having to do with the time center-of-mass coordinate T = t+t′

2
has been encoded in

the matrix structure of the Dyson equation. Each correlator in Eq. (117) is a two-

dimensional matrix with an infinite number of elements indexed by the integeres m

and n. Each of these elements is itself a 2 × 2 matrix of Keldysh components. We

mentioned in earlier sections that we expected the driving perturbation to locally

renormalize the nearest-neighbor tunneling. This intuition has manifested through

the generalized non-equilibrium lattice dispersion

Jmn (q,k) = −J [cos (qx + (m− n) kx) + cos (qy + (m− n) ky)] ., (118)

where it is clear that the local tunneling now depends on the parameters of the

driving potential through the momentum k and the Floquet indices m and n.

The non-equilibrium Dyson equation, Eq. (117) is generally difficult to work

with because there are two types of products. The existence of both ordinary as

well as entry-wise (Hadamard) products makes it unclear how to define an inverse.

Without these inverses, it is impossible to find the closed-form solution for Ĝ except

in the certain easy limits wherein the Hadamard product reduces to a simple matrix

or scalar product. Expectedly, these limits are the cases where V , Ω, or k vanish

thereby trivializing the perturbation. However, less trivial are the fast approxima-

tions where Ω � Ω, Ω� U , or Ω� Λ. We shall discuss these limits later. To get

results that are more general than these approximations will allow, we will have to

convert this equation to an equation in a larger space that has only ordinary matrix

multiplication. This is a simple problem in linear algebra, and the solution is called

column vectorization. We shall define the column vector of a matrix to be merely
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the vector given by the columns of that matrix stacked upon each other. In other

words, if

A =

 a b

c d

 , (119)

then the column vector vec{A} is given by

vec{A} =



a

c

b

d


, (120)

Let us take column vectorizations of both sides of equation (117) using the following

three linear algebra identities

vec {AB} = (1⊗ A) vec {B} (121)

vec {A ◦B} = vec {A} ◦ vec {B} (122)

vec {A} ◦ vec {B} = diag [vec {A}] vec {B} (123)

Under this transformation, we get the slightly messier equation

vec
{
Ĝ (ω,q)

}
= vec {ĝ (ω)}+ (1⊗ ĝ (ω)) diag

[
vec
{
Ĵ (q)

}]
vec
{
Ĝ (ω,q)

}
(124)

We can now solve this equation for the full correlator vec
{
Ĝ (ω,q)

}
. We get

vec
{
Ĝ (ω,q)

}
=
(

1− (1⊗ ĝ (ω)) diag
[
vec
{
Ĵ (q)

}])−1

vec {ĝ (ω)} (125)

Finally, we have a closed form solution for the non-equilibrium correlator which is

valid to infinite order in the strength of the driving. Presently it is an infinite-

dimensional matrix equation. However, we will be most interested in phase tran-

sitions. That is, we shall care most about the static behavior given by G (ω,q)00.
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While evaluating this component exactly would still require an infinite sum over

all other components, very good approximations are obtained with matrices of only

a small number of components. The elements that we drop are higher harmonics

of the driving frequency. Thus, this treatment is perturbative in fastest processes.

There is some frequency scale at which we will truncate our matrices under the

intuition that behavior at all faster scales are averaged over. Of course, we still have

yet to deal with the components in Keldysh space. Keeping only terms of order J ,

we may write the Keldysh component of equation (125) as

vec
{
GK (ω,q)

}
=

(
1−

(
1⊗ 1

2

[
gA (ω) + gR (ω)

])
diag [vec {J (q)}]

)−1

vec
{
gK (ω)

}
,

(126)

where the indices K, R, and A refer to the Keldysh, retarded, and advanced Green’s

functions respectively.

A.3.4 Wigner Transformation of g (t, t′)

Our goal in this section is to find the Wigner transformation of the exact

nonequilibrium green’s function in Eq. (108). We may begin with the function

written in the time-domain.

ĝij (t, t′) = ei
V
Ω

[sin(k·xi−Ωt)−sin(k·xi−Ωt′)]ĝ0
ij (t− t′) , (127)

Using this form, we shall perform the necessary integral transforms over ∆ = t− t′

and T = t+t′

2
. That is, we shall perform the following integrals.

ĝij (ω)N =

∫ ∞
−∞

d∆ eiω∆

∫ 2π

0

d (ΩT )

2π
e−iΩNT ĝij

(
t = T +

∆

2
, t′ = T − ∆

2

)
, (128)
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In the non-equilibrium phase prefactor in Eq. (127), we wish to separate out the

contributions from terms rotating at different harmonics of the driving frequency.

Making use of the generating function for Bessel functions of the first kind, eiz sinφ =∑∞
n=−∞ i

2nJn (z) e−inφ, we can write

ĝij (ω)N =

∫ ∞
−∞

d∆ eiω∆

∫ 2π

0

d (ΩT )

2π
e−iΩNT

×
∑
n

i2nJn

(
−V

Ω

)
e−in(k·xi−Ωt)

∑
m

i2mJm

(
V

Ω

)
e−im(k·xi−Ωt′)ĝ0

ij (∆)

=

∫ ∞
−∞

d∆ eiω∆
∑
nm

i2(n+m)Jn

(
V

Ω

)
e−i(n+m)k·xiJm

(
−V

Ω

)
× einΩ ∆

2 e−imΩ ∆
2 ĝ0

ij (∆)

∫ 2π

0

d (ΩT )

2π
ei(m+n−N)ΩT (129)

Clearly the integral in the last line of Eq. (129) is simply a Kronecker delta function

δN,m+n. Using this fact, we get

ĝij (ω)N = i2Ne−iNk·xi
∑
n

Jn

(
V

Ω

)
JN−n

(
−V

Ω

)∫ ∞
−∞

d∆ei(ω+
(2n−N)

2
Ω)∆ĝ0

ij (∆)

(130)

Finally we may do the integral over ∆. We simply get the Fourier transform of

ĝ0
ij (t) evaluated at ω + (2n−N) Ω/2. We are left with

ĝij (ω)N = (−1)N e−iNk·xi
∑
n

Jn

(
V

Ω

)
JN−n

(
−V

Ω

)
ĝ0
ij

(
ω +

(
n− N

2

)
Ω

)
(131)

thus proving eq. (112).

A.3.5 Dyson Equation in Wigner Form

We wish to demonstrate how the Dyson equation can be written in Wigner

transformed coordinates. That is, we want to look for the form of the correlator
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expansion written in Fourier transform variables N and ω that correspond to the

Wigner coordinates T = t+t′

2
and ∆ = t− t′. We shall begin with Eq. (106).

Ĝij = ĝij (t, t′) +
∑
i1i′1

∫ ∞
−∞

dt1ĝii′1 (t, t1)
(
−Ji1i′1

)
Ĝi1j (t1, t

′) (132)

We shall now integrate both sides with respect to T and ∆.

ĝij (ω)N = ĝij (ω)N +

∫ ∞
−∞

d∆eiω∆

∫ 2π

0

d (ΩT )

2π
e−iΩNT

∑
i1i′1

(
−Ji1i′1

)
×
∫ ∞
−∞

dt1ĝii′1

(
T +

∆

2
, t1

)
Ĝi1j

(
t1, T −

∆

2

)
(133)

Knowing that every function of T and ∆ that is periodic in T can be written as a

sum and an integral over Wigner components,

F̂ij

(
t = T +

∆

2
, t′ = T − ∆

2

)
=

1

2π

∑
N

∫ ∞
−∞

dω e−iω∆eiΩNT F̂ij (ω)N (134)

we write the remaining functions in the second line of Eq. (133) in Wigner decom-

posed form. For instance, we shall write ĝii′1
(
T + ∆

2
, t1
)

as

ĝii′1

(
T +

∆

2
, t1

)
=

1

2π

∑
N1

∫ ∞
−∞

dωe−iω1(T+ ∆
2
−t1)ei

N1Ω
2 (T+ ∆

2
+t1)ĝ (ω1)N1

(135)

Next, we collect terms proportional to exponentials of ∆, T , and t1 to the right. We

are left with

Ĝij (ω)N = ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

∫ ∞
−∞

dω1ĝii′1 (ω1)N1

∑
N2

∫ ∞
−∞

dω2Ĝi1j (ω2)N2

× 1

2π

∫ ∞
−∞

d∆eiω∆e−iω1
∆
2 eiΩN1(∆

2 )/2e−iω2
∆
2 eiΩN2(−∆

2 )/2

× 1

2π

∫ ∞
−∞

dt1e
iω1t1eiΩN1t1/2e−iω2t1eiΩN2t1/2

×
∫ 2π

0

d (ΩT )

2π
e−iΩNT e−iω1T eiΩN1T/2eiω2T eiΩN2T/2 (136)
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The integrals with respect to time arguments (the lower lines of Eq. (136)) are

simply 2 Dirac delta functions and a Kronecker delta function. They will make the

integrals over ω1 and ω2 and the sum over N2 much simpler. We’ll do the integral

over dω2 first.

ĝij (ω)N = ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

∫ ∞
−∞

dω1ĝii′1 (ω1)N1

∑
N2

∫ ∞
−∞

dω2Ĝi1j (ω2)N2

×δ
(
ω − ω1

2
+ Ω

N1

4
− ω2

2
− Ω

N2

4

)
δ

(
ω1 + Ω

N1

2
− ω2 + Ω

N2

2

)
×
∫ 2π

0

d (ΩT )

2π
e−iΩNT e−iω1T eiΩN1T/2eiω2T eiΩN2T/2 (137)

= ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

∫ ∞
−∞

dω1ĝii′1 (ω1)N1

×
∑
N2

Ĝi1j

(
ω1 +

Ω

2
(N1 +N2)

)
N2

×
∫ 2π

0

d (ΩT )

2π
e−iΩNT e−iω1T eiΩN1T/2ei(ω1+ Ω

2
(N1+N2))T eiΩN2T/2

×δ
(
ω − ω1 − Ωp

N2

2

)
(138)

= ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

∑
N2

ĝii′1

(
ω − Ω

N2

2

)
N1

Ĝi1j

(
ω +

Ω

2
N1

)
N2

×
∫ 2π

0

d (ΩT )

2π
e−iΩNT e−i(ω−Ω

N2
2 )T eiΩN1T/2

×ei((ω−Ω
N2
2 )+ Ω

2
(N1+N2))T eiΩN2T/2 (139)

The last two lines are simply the Kronecker Delta function δN2,N−N1 . Using this, we

can easily perform the sum over N2. We finally have

Ĝij (ω)N = ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

∑
N2

ĝii′1

(
ω − Ω

N2

2

)
N1

Ĝi1j

(
ω +

Ω

2
N1

)
N2

×δN2,N−N1

= ĝij (ω)N −
∑
i1i′1

Ji1i′1

∑
N1

ĝii′1

(
ω + Ω

N1 −N
2

)
N1

Ĝi1j

(
ω + Ω

N1

2

)
N−N1

(140)
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We have thus proven the form of Eq. (111).

A.3.6 The Exact Non-equilibrium Single-Site Correlation Function

We want the Green’s function with respect to Ĥ (t) = Ĥ0 + ĤV (t). We shall

keep to the convention of letting Ĥ0 refer to the charging and bath Hamiltonians,

Ĥ0 = Ĥcharging + Ĥbath + Ĥcoup. Furthermore, we want an exact result for this

correlator that is valid to all orders in the driving perturbation ĤV (t).

gij (t, t′) =
〈
TcU

† (t, t0) a†iU (t, t0)U † (t′, t0) ajU (t′, t0)
〉

(141)

where Tc is the Keldysh contour ordering symbol and the time evolution operator

has the form

U (t, t0) = Tc exp

[
−i
∫ t

t0

dt′Ĥ (t′)

]
(142)

Note however that
[
Ĥcharging + Ĥbath + Ĥ coup, ĤV (t)

]
= 0. That is, we may sepa-

rate the action of the driving from the rest of the dynamics.

U (t, t0) = Tc exp

[
−i
∫ t

t0

dt′ĤV (t′)

]
exp

[
−iĤ0

∫ t

t0

dt′
]

(143)

= Tc exp

[
−iΩ

∑
i

n̂i

∫ t

t0

dt′ cos (k · xi − ωpt′)

]

× exp

[
−iĤ0

∫ t

t0

dt′
]

(144)

= exp

[
−i Ω

ωp

∑
i

n̂i (sin (k · xi − ωpt0)− sin (k · xi − ωpt))

]
× exp

[
−iĤ0 (t− t0)

]
(145)

= exp

[
i
∑
i

λi (t, t0) n̂i

]
exp

[
−iĤ0 (t− t0)

]
(146)
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Here we notice that the driving term results in a function λi (t, t0) that locally

renormalizes the chemical potential. It is defined as

λi (t, t0) =
Ω

ωp
(sin (k · xi − ωpt0)− sin (k · xi − ωpt)) (147)

As a consequence of the commutation properties of our Hamiltonian, we also note

that the two exponentials in Eq. (146) commute. The Green’s function can be

written

gij (t, t′) = 〈TceiĤ0(t−t0)
(
ei

∑
i λi(t,t0)n̂ia†ie

−i
∑
i λi(t,t0)n̂i

)
e−iĤ0(t−t0)

×eiĤ0(t′−t0)
(
ei

∑
i λi(t

′,t0)n̂iaje
−i

∑
i λi(t

′,t0)n̂i
)
eiĤ0(t′−t0)〉 (148)

Using the Baker-Haussdorf lemma and the fact that
[
n̂i, a

†
i

]
= a†i while [n̂i, ai] =

−ai, we easily have

ei
∑
i λi(t,t0)n̂ia†ie

−i
∑
i λi(t,t0)n̂i = eiλi(t,t0)a†i (149)

ei
∑
i λi(t

′,t0)n̂iaje
−i

∑
i λi(t

′,t0)n̂i = e−iλi(t
′,t0)aj (150)

This means, for one, that gij (t, t′) ∝ g0
ij (t, t′) ∝ δij. This also allows us to write our

Green’s functions in a very simple way as

gij (t, t′) = eiλi(t,t0)e−iλi(t
′,t0)
〈
Tce

iĤ0(t−t0)a†ie
−iĤ0(t−t0)eiĤ0(t′−t0)aje

iĤ0(t′−t0)
〉

= ei
V
Ω

(sin(k·xi−Ωt′)−sin(k·xi−Ωt))g0
ij (t, t′) (151)

This is the form for our driven correlators that we use in Eq. (102).
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A.3.7 Lattice-Momentum Transformation of the Nonequilibrium Dyson

Equation

In this section, we will transform the Non-equilibrium Dyson equation in the

Floquet representation, eq. (116), into lattice-momentum space. We will begin with

the fully expanded version of Eq. (116). For convenience, we shall write the site

indices i and j as superscripts.

Ĝij
mn = ĝijmn +

∑
i1i′1

(
−Ji1i′1

)∑
k

ĝ
ii′1
mkĝ

i1j
kn +

∑
i1i′1
i2i′2

(
−Ji1i′1

) (
−Ji2i′2

)∑
ks

ĝ
ii′1
mkĝ

i1i′2
ks ĝ

i2j
sn + · · ·

(152)

We remember that ĝijmn ∝ δij. We write this site-index dependence explicitly so that

ĝmn now refers to the remaining parts of the functions that are site-independent.

We are left with the following:

Ĝij
mn = e−i(m−n)k·xjδij ĝmn +

∑
i1i′1

(
−Ji1i′1

)∑
k

δii′1δi1je
−i(m−k)k·xie−i(k−n)k·xj ĝmkĝkn

+
∑
i1i′1
i2i′2

(
−Ji1i′1

) (
−Ji2i′2

)∑
ks

δii′1δi1i′2δi2j

×e−i(m−k)k·xie−i(k−s)k·xi1e−i(s−n)k·xj ĝmkĝksĝsn + · · ·

= e−i(m−n)k·xj ĝmn + (−Jji)
∑
k

e−i(m−k)k·xie−i(k−n)k·xj ĝmkĝkn

+
∑
i1

(−Ji1i) (−Jji1)
∑
ks

e−i(m−k)k·xie−i(k−s)k·xi1e−i(s−n)k·xj ĝmkĝksĝsn + · · ·

(153)

Taking advantage of the discrete spatial periodicity of the lattice, we now apply

our momentum space transformation Gij
mn → Ĝmn (q) =

∑
i e
iq·rijĜij

mn where rij =
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xj − xi. We have

Ĝmn (q) = e−i(m−n)k·xi ĝmn +
∑
i

eiq·rij (−Jji)
∑
k

e−i(m−k)k·xie−i(k−n)k·xj ĝmkĝkn

+
∑
i

eiq·rij
∑
i1

(−Ji1i) (−Jji1)

×
∑
ks

e−i(m−k)k·xie−i(k−s)k·xi1e−i(s−n)k·xj ĝmkĝksĝsn + · · ·

(154)

Next, we define Ĝmn (q) = ei(m−n)k·xiĜmn (q) to explicitly account for the plane

wave contribution to the correlator that is required by Bloch’s theorem. Letting

xj = xi + rij, we get

Ĝmn (q) = ĝmn +
∑
k

ĝmkĝkn

(∑
i

eiq·rij (−Jji) e−i(k−n)k·rij

)

+
∑
ks

ĝmkĝksĝsn
∑
i

eiq·rij

(∑
i1

(−Ji1i) (−Jji1) e−i(k−s)k·rii1e−i(s−n)k·rij

)
+ · · · (155)

As a consequence of our nearest neighbor assumption, we know that Jij = J for |rij|

equal to the lattice spacing. For a square 2D lattice, this means that rij = ±x,±y

where x,y are unit vectors in the perpendicular lattice directions. We may thus

write the sums in the parentheses as

Ĝmn (q) = ĝmn +
∑
k

ĝmkĴkn (q,k) ĝkn +
∑
ks

ĝmkĴkn (q,k)
(
ĝksĴsn (q,k) ĝsn

)
+ · · ·

(156)

where Ĵmn (q,k) = −J [cos (qx + (m− n) kx) + cos (qy + (m− n) ky)] has taken the

form of a generalized non-equilibrium lattice dispersion that depends on the pa-

rameters of the driving potential. This interpretation is quite consistent with our
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earlier intuition that the driving would locally renormalize the chemical potential,

which equivalently, renormalizes the tunneling energy. Formally we may write the

equation (156) above as

Ĝ (ω,q) = ĝ (ω)
(

1 + Ĵ (q) ◦ Ĝ (ω,q)
)

(157)

where ◦ denotes a Hadamard product. We have thus proven the central result of

this work, equation (117).
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