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Excessive power dissipation has been one of the major bottlenecks for design

and manufacture in the past couple of decades. Power efficient design has become

more and more challenging when technology scales down to the deep submicron

era that features the dominance of leakage, the manufacture variation, the on-chip

temperature variation and higher reliability requirements, among others. Most of

the computer aided design (CAD) tools and algorithms currently used in industry

were developed in the pre deep submicron era and did not consider the new features

explicitly and adequately.

Recent research advances in deep submicron design, such as the mechanisms

of leakage, the source and characterization of manufacture variation, the cause and

models of on-chip temperature variation, provide us the opportunity to incorporate

these important issues in power efficient design. We explore this opportunity in this

dissertation by demonstrating that significant power reduction can be achieved with

only minor modification to the existing CAD tools and algorithms.

First, we consider peak current, which has become critical for circuit’s reliabil-



ity in deep submicron design. Traditional low power design techniques focus on the

reduction of average power. We propose to reduce peak current while keeping the

overhead on average power as small as possible. Second, dual Vt technique and gate

sizing have been used simultaneously for leakage savings. However, this approach

becomes less effective in deep submicron design. We propose to use the newly de-

veloped process-induced mechanical stress to enhance its performance. Finally, in

deep submicron design, the impact of on-chip temperature variation on leakage and

performance becomes more and more significant. We propose a temperature-aware

dual Vt approach to alleviate hot spots and achieve further leakage reduction. We

also consider this leakage-temperature dependency in the dynamic voltage scaling

approach and discover that a commonly accepted result is incorrect for the current

technology.

We conduct extensive experiments with popular design benchmarks, using the

latest industry CAD tools and design libraries. The results show that our proposed

enhancements are promising in power saving and are practical to solve the low power

design challenges in deep submicron era.
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Chapter 1

Introduction

Over the past several decades, the continuous downsizing of transistors and

related frabrication processes have been the key driving force for the blooming of

semiconductor and integrated circuit (IC) industry. The number of transistors in-

tegrated on a single die roughly doubles in every 18 months, enabling the imple-

mentation of much faster and more sophisticated systems that permeate daily life,

from portable computing devices and wireless communication systems to high-end

products used in scientific computing and large data centers.

However, the delivery of advanced silicon solutions has to rely on the availabil-

ity of electronic design automation (EDA), design technologies, as well as effective

verification methodologies at all levels of abstraction [1]. With semiconductor in-

dustry entering deep submicron era, many challenges are imposed on EDA and IC

design community. This thesis focuses on the challenges related to power and energy

efficiency. Specifically, we investigate how to enhance several state-of-the-art power

effcient design techniques so that further power/energy savings can be achieved and

other critical issues can be alleviated at the same time. The keyword in this state-

ment is to “enhance”. That is, we are not developing new techniques. Instead,

we will incorporate new requirements and information in the deep submicron de-

sign to improve the performance of existing power optimization techniques without
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introducing major changes to these EDA tools.

1.1 Challenges in Deep Submicron Era

The design challenges in deep submicron domain can be generally classified as

follows [2]:

• Signal Integrity: The much higher operating frequency along with the scal-

ing and integration of mixed-signal and RF components bring ever larger noise

and interference to the circuit signals. Emerging issues include noise head-

room, large numbers of capacitively and inductively coupled interconnects,

supply voltage IR drop and ground bounce and substrate coupling. These

issues may cause false switching, delay variation or timing failures [6, 7].

• Power Management: High power densities worsen the thermal impact on

circuit performance and reliability, while decreasing supply voltages worsen

noise margin and leakage current. Under 45nm technology and beyond, leakage

power starts to dominate dynamic power. As a result, the focus of research

and EDA tool development has shifted to the reduction of leakage and total

power consumption, particularly subthreshold leakage.

• Reliability and Resilience: Due to the much lower supply voltage, the gate

oxide thickness has to be reduced to maintain circuit performance. However,

with the continuous scaling, gate oxide breakdown is expected to arise. In

addition, the much higher direct current densities in deep submicrometer de-

sign can lead to Joule heating and electromigration effect. Other issues such
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as single-event upset can also become a serious reliability concern. Evidently,

automatic insertion of robustness into design is becoming a new trend.

• Manufacturing Variability: Advanced ICs with high functionality, low

power consumption and extreme reliability are pushing the manufacturing

process to the limit. Slight manufacturing variations can significantly affect

performance and yield. Interconnecting manufacturing-related disciplines with

design process can provide a possible solution. A popular research topic known

as design for manufacturability (DFM) has emerged.

• Design Productivity: To avoid the exponential increase of design complex-

ity and thus design cost, design productivity has to be improved with technol-

ogy scaling. The implied needs for design productivity reside in verification,

embedded software design, and automated methods for analog/mixed-signal

design and test. For instance, design verification is one of the major bot-

tlenecks in the design process. One current practice, the partial verification

process provides only a small fraction of coverage. A potential breakthrough

relies on the shift from such ad hoc verification method to more structured

and formal processes.

Each of the design challenges demands substantial research efforts. This thesis

focuses on the challenge of power management. In the remaining of this chapter, we

first review the state-of-the-art power efficient design techniques. Next we explore

the new challenges and opportunities facing low power design in deep submicron

domain. Finally we conclude with the overview of the thesis and the key contribu-
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tions.

1.2 Existing Work on Power Efficient Design

In this section, we briefly describe the most relevant work on power efficient

design. Detailed survey of the current state-of-the-art power efficient design method-

ologies can be found in Chapter 2.

Extensive researches on power efficient design have been performed at all de-

sign levels. To reduce dynamic power, various dynamic power management tech-

niques [33] such as clock gating and dynamic voltage scaling can be applied at

system level. Clock gating uses a hierarchical clocking scheme with conditional

clocks that turn off sections of the chip that are not needed on a cycle-by-cycle basis

[34]. Dynamic voltage scaling scales down the supply voltage when the workload

is not intensive [32]. At logic synthesis level, precomputation method is proposed

which adds combinational logic in front of the original circuit to precompute the

output logic values of a subset of input cases so that part of the circuit could be

turned off in the succeeding clock cycle [36]. Path equalization makes all signal paths

from input to output of the same length to minimize spurious switching activities

[37]. Local transformations like re-factoring, re-mapping, phase assignment and pin

swapping seek to have gates with high switching activity fan out to nets with small

capacitance [37]. Finite state machine encoding also matters because the hamming

distance between two codes determines the number of switchings [39]. At circuit

level, static voltage scaling can be applied, where critical units and non-critical units
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are powered by higher and lower supply voltages, respectively [29, 30]. Transistor

sizing is also effective in that it reduces load capacitance [38].

To minimize leakage power, varieties of techniques are also proposed at differ-

ent design levels. At system level, dynamic Vt scaling technique will automatically

adjust threshold voltage depending on the current workload [24, 25]. Less leakage

will be consumed by increasing Vt when workload is small. At logic synthesis level,

approaches like input vector control takes advantage of transistor stacking effect

and selects an optimal input vector to minimize subthreshold leakage in standby

mode [16, 17]. At circuit level, multithreshold-voltage CMOS (MTCMOS) reduces

standby leakage power by inserting high Vt devices in between power/ground line

and low Vt circuitry. The low Vt circuitry will be cut off from power/ground during

standby mode by the high Vt devices to reduce leakage [18, 19]. Dual Vt technique as-

signs high Vt to transistors on non-critical paths, while maintaining the performance

by preserving low Vt to transistors on critical paths [112]. Variable threshold CMOS

(VTCMOS) employs self-substrate bias circuit and applies a reverse body bias in

standby mode to increase threshold voltage and cut off leakage current [41, 20]. Sim-

ilarly, dynamic threshold CMOS is also able to alter threshold voltage by connecting

the gate and body together [21, 22].

1.3 New Challenges and Opportunities for Power Efficient Design

All the challenges in deep submicron design we describe in Section 1.1 have

impact on the power and energy efficient design methodologies developed in the
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past couple of decades. Among others, the dominance of leakage, the manufac-

ture variation, the on-chip temperature variation, and higher reliability requirement

highlight the new challenges. These are the features that most of the low power

design methods developed in the pre deep submicron era did not consider explicitly

and adequately.

The recent research advances in deep submicron design, such as the mecha-

nisms of leakage, the source and characterization of manufacture variation, the cause

and models of on-chip temperature variation, provide us the opportunity to incor-

porate these important issues in power efficient design. Since the late 1990’s, not

only have we seen many new low power techniques targeting deep submicron design,

but also the growing trend of combining two or more techniques simultaneously for

further power efficiency.

Meanwhile, there is another design trend known as physical synthesis that

integrates physical design with high level synthesis. In deep submicron domain,

design productivity requires system level specifications to sign off into reliable and

predictable handoffs at physical design level. However, the growing silicon complex-

ity makes it difficult to estimate the effects of an optimization factor on eventual

design quality (speed, power, signal integrity, reliability and manufacturing variabil-

ity). To avoid excessive guardbanding, the design in logic synthesis level and even

system level must become more closely related to physical design. In some cases, it

is accomplished by characterizing the target physical design specifications at logic or

system level. In some other cases, it involves repeated iterations of synthesis stage

and placement and/or routing stage to achieve design spec closure.
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Finally, deep submicron design does bring many challenges and there is the

need to re-visit many of the existing CAD tools and algorithms. However, from

practical point of view, it is not desirable for EDA and semiconductor industry to

re-design and re-development these tools. The goal of this dissertation is to demon-

strate that it is feasible to modify the current CAD tools and algorithms to incor-

porate the new features and requirements of deep submicron design. Specifically,

we will elaborate our idea and approach through the following four examples.

Peak current is one of the vital physical parameters for circuit reliability.

Short-lived high current pulses can bring large voltage drops to the power line or

ground bounce, both of which can impact circuit timing [57, 54, 69] or lead to logic

errors[54, 69]. As the feature size continues shrinking, the metal conductors are

much finer than before. This imposes an even greater challenge for designers to

control the peak current in order to avoid electromigration effect [56, 64, 58]. It is

known that peak current in synchronous circuits usually occurs at clock transition,

when the clock tree, flip-flops, and the combinational circuits directly driven by the

flip-flops switch simultaneously. A recent report based on SPICE simulation shows

that peak current in a synchronous circuit is dominated by the current in state regis-

ters, which can be characterized at logic synthesis level by the maximum number of

state bits switching in the same direction in the finite state machine (FSM) model.

Therefore, it becomes interesting to study how to incorporate peak cur-

rent reduction into the traditional average power minimization technique

at logic synthesis stage.

It has been a common practice in today’s industry design to combine the
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multiple power optimization techniques while achieving timing closure. For example,

dual Vt technique and gate sizing have been used simultaneously to leverage timing

slack for leakage and dynamic power savings [79, 112, 78, 38]. However, in deep

submicron design, the room for changing threshold voltage and sizing gates becomes

much smaller. In addition, the timing budget becomes tighter and tighter. These

significantly limit the effectiveness of low power design techniques that rely on the

power versus timing tradeoff. Process-induced mechanical stress is a novel technique

induced into CMOS channel that enhances carrier mobility and reduces transistor

delay [87, 88, 89]. With the pre-characterized stress-enhanced cell into the

library [90], we will be able to integrate mechanical stress optimization

into the power optimization process.

Excessive power dissipation in a certain chip region can result in local heat

accumulation and therefore hot spots. For a high-performance microprocessor chip,

the hot spot temperature can be 50oC higher than other regions, which can poten-

tially become a reliability issue. Meanwhile, since leakage current has an exponential

dependency on temperature, the leakage power consumption can be much larger in

high temperature region, which will in turn exacerbate heat accumulation. Tra-

ditional dual Vt technique assumes a uniform on-chip thermal distribution, which

can either lead to too pessimistic or too optimistic design. Therefore it would be

more accurate and effective if thermal profile can be taken into consideration during

the dual Vt design procedure. Because of the interdependency between leakage and

temperature, it is necessary to iteratively update thermal and power profile each

time dual Vt assignment is performed. However, thermal profile can not be obtained
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until the placement is performed and physical location of each cell is known. As

a result, further investigation needs to be conducted for thermal-aware

dual Vt techniques.

On-chip temperature does not only affect leakage, it also has impact on power

optimization techniques at system level. Dynamic voltage scaling (DVS) is one of

the most popular power management techniques at system level. Generally the

supply voltage is scaled down so that scheduled tasks can be finished exactly at its

deadline to save dynamic power and energy [124, 132]. When leakage starts to dom-

inate dynamic power, it is believed that more total energy can be saved if tasks can

be finished earlier and the system can be shut down to avoid leakage consumption

[125, 128, 137, 116, 119, 120, 138]. However, the DVS policies proposed in existing

works either ignore leakage power or treat leakage as a temperature-independent con-

stant. It is therefore of first importance to propose an accurate transient

temperature model that fully considers temperature-leakage interdepen-

dency in order to enhance the DVS technique.

1.4 Key Contributions

As illustrated in the previous section, multiple techniques should be combined

to achieve further power efficiency and higher level designs must be more closely

linked to physical design to improve design productivity. This thesis proposes sev-

eral enhancement to traditional power optimization techniques, regarding issues of

peak current, on-chip temperature and layout-dependent mechanical stress in deep
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submicron domain.

• Enhancing FSM Power Efficient Design by Simultaneous State Repli-

cation and State Re-encoding: Traditional FSM power efficient design

targets minimization of average power consumption, particularly, dynamic

power consumption. It is well known that dynamic power relates to the to-

tal switching activities (TSA) [53]. However, peak current can remain high

even when average power is minimized, affecting circuit’s reliability. Huang

et al. [70] show a strong correlation between the peak current in a sequen-

tial circuit and the maximum number of state registers switching in the same

direction upon state transitions, referred to as peak switching value (PSV ).

In the work presented in Chapter 3, we propose an enhanced FSM synthesis

framework that takes both average power minimization and peak power reduc-

tion into consideration. The enhanced framework applies power optimization

techniques state replication [74] and state re-encoding simultaneously. Starting

with an already synthesized FSM with, for example, minimal average power as

the synthesis target, we identify all the transitions that reach maximum PSV

and put them into a working set S. Then we construct the corresponding

solution pool SP that includes all the feasible codes for reducing the PSV by

state replication or state re-encoding. We pick the least constraining solution

from SP for the most constrained transition in S and perform an update over

S and SP . We continue this procedure until either S or SP becomes empty.

In the former case, it means that PSV has been reduced. In the latter, it
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means that we fail to reduce PSV . Our experiments show that out of the 52

MCNC FSM benchmarks encoded by power-driven encoding algorithm POW3

[55], 39 of them are not optimal in terms of PSV . Our approach can improve

34 of them with an average 39.2% reduction, while [70] can improve 27 bench-

marks with an average 24.5% reduction. Meanwhile, our approach only incur

3% overhead in TSA compared to POW3 and [70].

• Improving Dual Vt Technology by Simultaneous Gate Sizing and

Mechanical Stress Optimization: Process-induced mechanical stress is

used to enhance carrier mobility and drive current in contemporary CMOS

technologies. Stressed cells have reduced delay but larger leakage consumption.

Its efficient power/delay trading ratio makes mechanical stress an enticing

alternative to other power optimization techniques. The work in Chapter

4 re-evaluates the concept of leakage minimization with multiple techniques

simultaneously (dual Vt, gate sizing, and mechanical stress in our discussion).

More specifically, we first balance the circuit paths as close to the timing

constraint as possible (apply dual Vt in our case) and identify paths that do

not have sufficient slack for further leakage reduction with high Vt. Then we

repeat the following 2-step procedure: using gate sizing and/or mechanical

stress to create new slacks at the cost of power overhead; using dual Vt to

trade these new slacks for power saving. We introduce the concept of urgent

paths to help us locate the cells that would relax as many paths as possible

in the first step. The use of mechanical stress is shown to achieve 9.77%
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leakage and 2.79% total power savings over combined gate sizing and dual Vt

approach. Moreover, the employment of urgentpath also plays a crucial role in

power optimization, achieving 13.5% leakage and 5.00% total power reduction

compared to the sensitivity-based approach in the existing literature.

• Enhancing Dual Vt Leakage Minimization by Considering On-Chip

Temperature Variation: In Chapter 5, we aim to use on-chip temperature

variation and coupling effects between leakage and temperature to guide fur-

ther leakage reduction. The temperature profile can be obtained by 3-D mesh

model [96] given the placement information and Vt assignment. The proposed

temperature-aware dual Vt algorithm is a three-phase procedure. First, we

obtain the temperature profile based on an initial Vt assignment. Then we

repetitively adjust this initial assignment by changing as many low Vt cells as

possible in hot region to high Vt (for leakage reduction), and changing as few

high Vt cells as possible in cool regions to low Vt (for timing closure). Tem-

perature profile is updated at the end of each iteration. This second phase

will stop when there is little leakage savings or temperature variation becomes

trivial. After the second phase, slacks tend to be distributed to cells in hot

region where the change of low Vt to high Vt gives more leakage saving. In

the last phase, we take advantage of slacks created from timing closure step

and search for further leakage reduction. The experiment is performed on five

large circuits from OpenCores [115], ranging from a few thousands to over

50K cells. We use a TSMC 65nm low-power dual-Vt library with 17 base cells.
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The circuits are synthesized and placed by Synopsys Design Compiler and

IC Compiler respectively. Synopsys Power Compiler provides leakage power

evaluation and the intial Vt assignment (using dual-Vt algorithm described in

[111]). The results show that we are able to achieve an average of 11.2% in

leakage saving and 39% reduction of cells in hot regions without timing failure.

• Enhancing DVS Technique for Real-Time Systems by Incorporat-

ing Temperature-Leakage Interdependency: In the work presented in

Chapter 6, temperature-aware design approach is applied to system level. Dy-

namic voltage scaling (DVS) is one of the most effective techniques to reduce

dynamic power for real-time systems. We first study the interdependency of

temperature and leakage and how it influences DVS. We derive a temperature

model in analytic form that considers the interdependency between leakage

and temperature so that the transient behavior of temperature can be cap-

tured. We then re-visit DVS approaches and find that, for a single task that

starts execution from time zero, scaling down the voltage to the lowest level

without missing execution deadline gives the most total energy saving with

the parameters in the current technology. With the presence of idle time, al-

locating all of it before executing the task helps cooling down the system, and

thus achieves the most energy saving. However, for a set of non-preemptive

real-time tasks, the same idle time distribution strategy may result in high

starting temperature for the subsequent task. Based on the observation that

an idle time of 1.5×R×C will be sufficient for the system cooling procedure,
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we propose an efficient online DVS scheduling policy for total energy mini-

mization. Experimental results show that the traditional DVS and CS-DVS

approaches consume 6% and 9% more total energy, respectively.
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Chapter 2

Preliminary

2.1 Power Fundamentals

There are three major sources of power dissipation in a CMOS circuit [12]:

Ptotal = Pdynamic + Pleakage + PSC (2.1)

Pdynamic is the dynamic power, Pleakage is the leakage power, and PSC is the

short circuit power.

The dynamic power is caused by charging and discharging the parasitic capac-

itance in the circuit. It can be modeled as follow:

Pdynamic = αCV 2
ddfCLK (2.2)

where α is the switching activity, which is the effective voltage transitions per clock

cycle. C is the load capacitance, Vdd is the supply voltage, and fCLK is the clock

frequency.

High leakage current in deep submicron era is becoming a significant contribu-

tor to power dissipation of CMOS circuits as threshold voltage, channel length, and

gate oxide thickness are reduced. As indicated by the left chart in Figure 2.1, leak-

age power consumption can take up to 50% of the total power for 45nm technology

node [5].
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Figure 2.1: Left: Cumulative power allocation fractions for the logic in
processor cores, for 45nm node [5]. Right: Leakage current mechanisms
of deep-submicrometer transistors [105].

There are six leakage mechanisms [4], shown in the right subfigure in Fig-

ure 2.1: the reverse bias pn junction leakage (I1), subthreshold leakage (I2), oxide

tunneling current (I3), gate current due to hot-carrier injection (I4), gate induced

drain leakage (I5), and channel punchthrough current (I6). In long-channel devices,

leakage is dominated by reverse bias pn junction leakage, while in deep submicron

domain, subthreshold leakage takes the larger proportion in short-channel transis-

tors. It is because short-channel transistors require lower power supply levels to

reduce power consumption. The lower power supply levels force a reduction in

threshold voltage to maintain a high drive current, which can cause substantial in-

crease in leakage. This is commonly referred to as Short Channel Effects (SCE) [105].

Meanwhile, oxide thickness has to be reduced nearly in proportional to the channel

length to maintain a reasonable SCE immunity. The decrease in oxide thickness

results in increase in the electric field, which along with thinner oxide, can result in

considerable leakage current flowing through the gate. As a result, the major leak-
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age sources in deep submicron domain include subthreshold leakage and gate oxide

leakage (contributed by three mechanisms of I3, I4 and I5). In current technology,

gate leakage current can be largely supressed by using high-k dielectric materials,

while subtheshold leakage is still a serious concern. Moreover, subthreshold leakage

has an exponential dependency on temperature according to BSIM model [140].

Besides dynamic power and leakage power, the short circuit power can be

kept less than 15% of the dyanmic power with careful design [13] and therefore is

no longer a big concern.

2.2 Power Efficient Design Techniques for CMOS Circuits

Extensive researches have been performed on power efficient design at different

design levels. In the following, we provide a survey on various power efficient design

techniques at various design levels [105, 15].

2.2.1 Dynamic power minimization

Dynamic power minimization can be achieved by decreasing any of the four

factors that appear in Equation 2.2.

• Dynamic Power Management: Dynamic power management (DPM) is

a design methodology that dynamically reconfigures a system to provide the

requested services and performances with a minimum number of active com-

ponents or a minimum load on such components [33]. Clock gating is a typical

example of DPM. Since the power dissipation of the clocked components in a
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system is often the largest of the total power consumption, clock gating uses

a hierarchical clocking scheme with conditional clocks that turn off sections

of the chip that are not needed on a cycle-by-cycle basis [34]. Similarly, [35]

propose to shut down the idle components of a system to save both dynamic

and leakage power. However, both approaches suffer from latency penality

and power overhead.

• Dynamic Voltage Scaling: Because of the quadractic dependence of the dy-

namic power on supply voltage, it is very effective to reduce the dynamic power

if the supply voltage scales down. The operating system of a microprocessor

can intelligently determine the processor speed. Then the power management

unit generates the minimum voltage required for the desired speed. All de-

vices of the microprocessor work at the same frequency under the same supply

voltage. When it comes non-intensive task, the operating system scales down

the supply voltage to save power [32]. Dynamic Voltage Scaling (DVS) can

also fall into the category of DPM.

• Static Voltage Scaling: Static voltage scaling is also based on the quadratic

dependence of the dynamic power on supply voltage [29, 30]. However, multi-

ple supply voltages are provided. It is of the same flavor as dual Vt technique,

where critical units and non-critical units are powered by higher and lower

supply voltages, respectively. The differences are that the critical and non-

critical units are clustered as much as possible and level converter is inserted

at the interfaces of low Vdd to high Vdd units.
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• Precomputation method: Precomputation method adds combinational

logic in front of the original circuit. It can precompute the output logic values

of a subset of input cases one clock cycle before they are required so that

part of the circuit could be turned off in the succeeding clock cycle [36]. This

method reduces both load capacitance and switching activity.

• Path equalization: Path equalization transforms the logic network so that

all signal paths from input to output have the same length. This ensures that

most gates can have aligned transitions at their inputs, thereby minimizing

spurious switching activities [37]. This technique is very effective in arith-

metic circuits as they have more regular structures. For those with irregular

structures, gate resizing can be applied so that the delay of fast paths can be

equalized to that of critical paths without affecting circuit timing.

• Local transformations: Techniques like re-factoring, re-mapping, phase as-

signment and pin swapping can all be classified as local transformations. They

are applied on gate netlist and target the nets with large switching capacitance

(αC). They seek to fan out nodes with high switching activity to the net that

contributes small load capacitance [37].

• Finite State Machine encoding: State encoding is to assign a unique

code to each state such that certain cost function of binary logic level can be

minimized. As the 01 or 10 switching at binary logic level will result in the

switchings in flip-flops, the hamming distance of two codes involved in each

transition should be as small as possible to minimize dynamic power [39].
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• Transistor sizing: Transistor sizing is exploited in both combinational cells

and flip-flops to minimize dynamic power consumption [38]. By sizing down

the transistors, load capacitances and thereby power consumption of the fan-

in components can be largely reduced. Sizing down flip-flops can be especially

effective in reducing power as flip-flops contribute to the load of clock distribu-

tion network, which constantly involves switching activities. However, sizing

down transistors can increase transistor delay, so transistor sizing needs to be

carefully designed to take advantage of power-delay tradeoff.

2.2.2 Leakage power minimization

As leakage power has become a major contributor to the total power dissipation

in deep submicron technology, it is crucial to take leakage power minimization into

consideration.

• Transistor stacking effect: The subthreshold leakage flowing through a

stack of transistors is significantly smaller if more than one transistor in the

stack is turned off. Because of this stacking effect, the magnitude of sub-

threshold leakage can be largely dependent on the applied input vector, which

is propagated from primary input vector. Due to the exponential size of pri-

mary input vectors, an enumerative approach is impractical. [16] applied a

random search-based approach, while [17] employed a genetic algorithm to

speculate new search points with potentially improved performance. In [14], a

low Vt transistor is inserted into the stack and is turned off in standby mode

20



to reduce subthreshold leakage.

• Multiple-threshold technologies: The threshold voltage of a transistor

can be adjusted by means of channel-doping densities, gate oxide thickness,

channel length and body bias. Various techniques have been proposed that

take advantage of different properties of different Vt transistors: low Vt tran-

sistors are used to achieve high performance, while high Vt transistors can

suppress subthreshold leakage power. Multithreshold-voltage CMOS (MTC-

MOS) reduces standby leakage power by inserting high Vt devices in between

power/ground line and low Vt circuitry. The low Vt circuitry will be cut off

from power/ground during sleep mode by the high Vt devices to reduce leak-

age [18, 19]. MTCMOS can bring delay overhead in active mode and area

overhead to the circuit. Dual Vt technique assigns high Vt to transistors in

non-critical paths, while maintaining the performance by preserving low Vt to

transistors on critical paths [112]. Dual Vt technique is able to suppress leak-

age in both active and standby modes. Variable threshold CMOS (VTCMOS)

employs self-substrate bias circuit and applies a reverse body bias in standby

mode to increase threshold voltage and cut off leakage current [41, 20]. How-

ever, the effectiveness of reverse body bias has been decreased as technology

scales. Dynamic threshold CMOS (DTMOS) is able to alter threshold voltage

dynamically by connecting the gate and body together [21]. DTMOS is only

suitable for ultralow voltage circuits. Double-gate dynamic threshold SOI

CMOS (DGDT-MOS) combines the advantage of DTMOS and double-gate
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FD SOI MOSFETs without limitations on the supply voltage [22].

• Super cutoff CMOS: Super cutoff CMOS (SCCMOS) uses an on-chip boost

voltage to provide reverse bias on the sleep transistor to cut off the leakage

current in standby mode [23]. Different from MTCMOS, the sleep transistor

is low Vt and therefore the circuit can work at lower supply voltages.

• Dynamic Vt Scaling: Dynamic Vt scaling will automatically adjust threshold

voltage as well as operating frequency depending on the current workload

[24, 25]. When workload is small, less leakage power is consumed by increasing

Vt.

• SRAM Cache memory leakage reduction: Memory structures (instruc-

tion and data caches, prediction tables and translation look-aside buffers) in

modern microprocessors have taken large fraction of chip areas. In deep sub-

micron technology, caches account for a large component of leakage power

consumption. Several techniques have been proposed to address this issue.

Date retention gated-ground chache places an extra NMOS transistor in the

leakage path from power to ground of SRAM cells. The unused portions of

cache is changed into low leakage mode by turning of the extra NMOS tran-

sistor [26]. Drowsy cache [27] and Dynamic Vt SRAM [28] utilizes multiple

supply voltages and dynamic threshold voltages by body biasing to reduce

SRAM leakage.
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2.3 Summary

In this chapter, we first address the three major sources of power consumption

in CMOS circuits: dynamic power, leakage power and short circuit power. Dynamic

power has already been a major component of power consumption. With continous

scaling of CMOS devices, however, leakage power starts to dominate dynamic power

and becomes a emerging challenge for power efficient design. On the other hand,

short circuit power can be largely suppressed in today’s technology. We then review

the most popular and representative techniques that minimize dynamic power and

leakage power respectively. The techniques apply to various design levels. Take

the dynamic power minimization techniques for example. DPM and DVS apply to

system level design, requiring software support. Precomputation, path equalization,

FSM encoding and local transformations belong to logic synthesis level. Transistor

sizing can be categorized into circuit level.
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Chapter 3

Finite State Machine Synthesis Technique for Peak Current

Reduction

Peak current reduction has attracted more and more attention in circuit design

at deep sub-micron technology node. Peak current is vital for circuit reliability

because short-lived high current pulses can cause a metal line to fail instantaneously

and large voltage drops that impact circuit timing [57, 54, 69]. As the feature size

continues shrinking, the metal conductors are much finer than before. This imposes

a great challenge for designers to control the peak current in order to meet the

electromigration specification when the peak current occurs [56, 64, 58]. In addition,

the supply voltage in today’s digital circuits has been consistently scaled down to

reduce power consumption. Large voltage drops caused by peak current can have

a serious impact on circuit timing and may lead to timing failures and logic errors

[54, 69].

In synchronous circuits, peak current usually occurs at clock transition, when

the clock tree, flip-flops, and the combinational circuits directly driven by the flip-

flops switch simultaneously. Many approaches at different design levels have been

proposed to mitigate the large current flows at clock transitions. At system level,

various clock skew scheduling algorithms are proposed to achieve more even distri-

bution of clock arrival times [58, 59, 60, 61, 62, 63]. At physical level, many works
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seek to change polarities of clock buffers so that current flows can be altered into op-

posite directions [64, 65, 66, 67]. Other techniques like MTCMOS [68] and flip-flop

resynthesis [69] can also be applied at physical design stage to reduce peak current.

Very few works happen at logic synthesis level. The only two works we are aware of

are state register re-encoding approach [70] and SAT-based encoding [71].

Peak current reduction at FSM synthesis level is based on the two observations:

(i) peak current in an FSM circuit is largely dependent on peak current in state

registers. This is because the state registers often have large switching current due

to their large load capacitance at the fanouts. Besides, all the state registers switch

simultaneously at the arrival of the clock signal (assuming a very small clock skew).

(ii) peak current in state registers are directly related to the maximum number of

state bits switching in the same direction. This is because when state bits switch

from one logic value to the other. The total currents in power or ground nets are

the sum of the charging or discharging current in individual registers.

We focus on minimizing peak current in state registers during state transi-

tion in FSM. For a given encoded FSM, we first identify the state transitions that

cause peak current, then we consider state replication and state re-encoding simul-

taneously to reduce the maximal number of charging and discharging on such state

transitions. In state re-encoding, we aim to find a new code for a state that cur-

rently contributes to peak current. In state replication, we create a copy of a state

and assign it a different code to reduce the charging and discharging on that state

transition. Our proposed approach seamlessly combines these two basic techniques

by the most constrained least constraining paradigm [72] and outperforms the state-
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of-the-art FSM level approach [70] in reducing peak current on most of the MCNC

benchmark circuits.

We have made the following contributions in peak current reduction for FSM

in this article:

• This is the first work of re-encoding state for peak current reduction. Although

Huang et al. use the same term in [70], our method is completely different

from theirs. In fact, the solution space they consider is only a very small

subset of ours.

• We have applied the state replication technique proposed by Yuan et al. [74]

for peak current reduction. By the nature of state replication, it gives us

more freedom and options to reduce the maximal charging and discharging

and therefore peak current.

• We propose the simultaneous state replication and re-encoding (SSRR) al-

gorithm that combines these two techniques by the most constrained least

constraining paradigm. The algorithm takes an encoded FSM as input and

produces a new encoded FSM with less peak current. Its complexity is poly-

nomial to the number of states and the number of transitions in the FSM.

• We have implemented the power-driven state encoding algorithm POW3 [55],

the only existing peak current minimization approach at FSM level [70], and

our SSRR and apply them to the entire 52 MCNC benchmark circuits. At

FSM level, SSRR reduces PSV on 34 of the 36 circuits that POW3 is unable

to minimize with solutions 18.4% better than those found by [70].
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The rest of the article is organized as follows. In Section 3.1, a brief survey on

recent works for peak current reduction is conducted. In Section 3.2, we define the

necessary terms and review the two most relevant works. The two basic techniques,

state replication and state re-encoding, are illustrated using an example in Section

3.3 to show how they can be improved or tuned for our purpose. Then we discuss in

details how we can combine these two techniques seamlessly to reduce peak current

and total dynamic power in Section 3.4. An illustrative example is given in Section

3.5 to help understand the proposed approach. Section 3.6 reports the experimental

setup and results. Section 3.7 concludes.

3.1 Related Works

Different approaches have been proposed to reduce peak current. For a syn-

chronous circuit, peak current can be mostly observed at the moment of clock tran-

sitions, because clock buffers at the same level in the clock tree, flip-flops and com-

binational cells driven by the flip-flops can switch at the same time window. As a

result, lots of charging and discharging can happen to the load capacitances of the

transistors involved with these units. Varieties of clock skew scheduling approaches

have been proposed [58, 59, 60, 61, 62, 63]. These works aim at finding an optimal

distribution of clock arrival time so that the current pulses from neighboring units

will have less overlap and accumulation. Benini et al. [58] formulated the problem of

finding optimal clock latencies as an NP-complete problem, and proposed a Genetic

Algorithm (GA) to solve it. GA-based technique has long run time, and the objective
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function used requires pre-characterization of individual flip-flops for each circuit,

which is also timing-consuming. Vittal et al. [59] formulated the problem into

Integer Linear Programming (ILP) problem under the constraint of multi-domain

clock skews. Both the complexity of ILP problem and extensive circuit simulations

involved with the objective function also renders this approach impractical for large

circuits. Huang et al. [60] accelerated this work by first applying ASAP and ALAP

scheduling policies to prune the redundancies in ILP formulation, then further ap-

plying a zone-based scheduling algorithm to solve large circuits heuristically. Yu et

al. [61] instead, seeks to achieve the statistically even distribution of clock skews by

setting skew variance as the optimization objective, which is not linear. A heuristic

that gradually tunes initial solution by peak trimming and valley filling is proposed

to solve the problem. Rahimi [62] considers the load capacitances of flip-flops when

spreading clock transitions. It creates a center-of-gravity constraint to help bal-

ance clock latencies around the center of the search interval. Mukherjee et al. [63]

considers the impact on peak current from clock buffers, flip-flops and fanout com-

binational cells all at the same time by combining retiming and clock scheduling

techniques.

Another group of works seek to change polarities of clock buffers by replacing

them with inverters for peak current reduction and power/ground noise control

[64, 65, 66, 67]. Nieh et al. [64] proposed an opposite-phase approach that changes

clock buffer close to the root of clock tree into inverter, which successfully reduces

peak current. However, the power/ground noises in a local area are not. Samanata

et al. [65] observed that power/ground noises are sensitive to the locations of clock
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buffers and proposed to replace half of the buffers in some particular locations

with inverters. However, it can render the clock skew out of control. Chen et

al. [66] assigns signal polarities at the leaves of clock tree, so that peak current and

power/ground noises can be reduced simultaneously, and clock skew can also be kept

in control. Jang et al. [67] applies buffer sizing together with polarity assignment to

the minimization of power/ground noises while satisfying the clock skew constraint.

Other techniques like MTCMOS and flip-flop resynthesis are also addressed

in concern of peak current. Lu et al. [68] applies Mutiple Threshold CMOS (MTC-

MOS) technique by changing cells in non-critical paths to high Vt to reduce both

peak current and leakage power in the circuit. Wu et al. [69] introduces long delay

flip-flops to reduce peak current by flip-flop resynthesis. It is similar to traditional

clock skew scheduling, however more advantageous in the sense that it is able to

bypass hold time constraints. Moreover it can be applied to either logic synthesis

stage or physical design stage.

However, very few peak current reduction works happen at FSM synthesis

level. Since a sequential circuit can be represented by a set of finite state machines

(FSM) at logic synthesis level, FSM state encoding (or re-encoding), which seeks

to assign distinct binary codes to each state in the FSM, is a well know problem in

sequential circuit optimization. Most early work (such as JEDI, MUSTANG, MUSE,

etc.) focus on minimizing circuit area [73]. Many power-driven state encoding

techniques that target at reducing the circuit switching activity have been proposed

in the mid-90s. A representative work among them is the POW3 encoding proposed

by Benini and De Micheli [55]. A brief survey on power-driven state encoding can be
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found in a recently published work [74], where a novel approach to re-construct FSM

for low power is proposed. [70] and [71] are the only two works we are aware of that

target at minimizing peak current by FSM state encoding. Huang et al. [70] consider

reducing peak current using FSM synthesis technique. They first conduct SPICE

simulation to show that peak current in power line Vdd and Vss are directly related

to the maximal number of simultaneous charging and discharging, respectively, in

the state registers. They then propose a state re-encoding technique to reduce peak

current by reducing the maximum number of state registers that switch in the same

direction. Lee et al. [71] first achieves the optimal solution that minimizes peak

current by formulating the state encoding into SAT problem with pseudo-Boolean

expressions, then further reduces the switching power without deteriorating the

minimum peak current using an efficient SAT-based heuristic.

3.2 Preliminaries

In this section, we give the necessary background on FSM model and then

describe the two most relevant works: peak current reduction by state re-encoding

[70] and FSM re-engineering for switching activity and power reduction [74].

3.2.1 Finite State Machine Synthesis

FSM is a popular model for sequential circuit design. We use the state tran-

sition graph (STG) G = (V,E, {Ci}, {wij}) to represent an encoded FSM, where a

node vi ∈ V represents a state si (or i for short); Ci = ci0ci1 · · · cik is a (k + 1)-bit
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code assigned to state si; a directed edge (vi, vj) ∈ E between nodes vi and vj rep-

resents a state transition from state si to state sj; and the non-negative value wij is

its transition probability.

FSM synthesis consists of state minimization and state encoding. State min-

imization finds a functionally equivalent FSM that has the minimum number of

states. State encoding assigns distinct codes to each state of the FSM such that the

sequential circuit modeled by the FSM can be efficiently implemented in terms of

area, performance, or power. State re-encoding is an approach to adjust the codes

of certain states in order to optimize some objectives (e.g. power and performance)

while the current coding scheme optimizes other objectives (e.g. area).

For a state transition si → sj, for convenience, we call si a previous-state of sj,

sj a next-state of si, and they are neighboring states to each other. The transition’s

switching activity is defined as the Hamming distance H(Ci, Cj) between their codes

Ci and Cj. The total switching activity (TSA) of the encoded FSM is defined as the

following weighted sum:

TSA =
∑

(vi,vj)∈E

wijH(Ci, Cj) (3.1)

Let pij(0 → 1) denote the number of bits switching from 0 to 1 during the state

transition si → sj. That is, the number of bits that have value 0 in Ci but change

to value 1 in Cj. Take the state transition from 101100 to 001010 for example,

pij(0 → 1) equals one and is contributed by the second bit from the right. We

can define pij(1 → 0) similarly, which equals two and are contributed by the first
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and fourth bits from the left. We denote the peak switching value on this transition

psvij = max{pij(0 → 1), pij(1 → 0)}. Obviously, psvij = max{1, 2} = 2 in this

example.

The peak switching value of the entire FSM can be defined as follows:

Peak (0 → 1) = max
(vi,vj)∈E

pij(0 → 1) (3.2)

Peak (1 → 0) = max
(vi,vj)∈E

pij(1 → 0) (3.3)

PSV = max
(vi,vj)∈E

psvij

= max{Peak(0 → 1), P eak(1 → 0)} (3.4)

We say that a transition si → sj is a critical transition (CT) if pij(0 → 1) or

pij(1 → 0) reaches PSV .

The value of TSA is a good indicator of the sequential circuit’s average dy-

namic power; the values of Peak(0 → 1) and Peak(1 → 0) have a strong correlation

with peak current at the power line Vdd and Vss, respectively [70], which is also

validated by Figure 3.7 and Figure 3.8 in Section 3.6. Therefore, we choose PSV

as the main optimization objective for peak current reduction. Meanwhile, we try

to keep TSA as low as possible in order to minimize average dynamic power.

3.2.2 Peak Current Reduction by Re-Encoding

In [70], the authors propose to consider the switching directions of the state

register (either go from logic 0 to 1 or go from logic 1 to 0) to reduce the number of

state registers that switch in the same direction at the same time. That is, if they

decide to change the bit (that is, the switching direction) on one state register, the
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code of every state in the FSM will flip at that bit position. Deciding which bit to

be changed first follows greedy fashion: At each iteration, the unmarked bit that

helps reduce the peak swiching value of the entire FSM most or reduce the number of

critical transitions most with the same peak switching value is flipped and marked.

Table 3.1: Original codes from POW3 for circuit ex5 n (see Figure 3.1) and the new
codes obtained by the state register re-encoding in [70].

state 0 1 2 3 4 5 6 7 8

c0c1c2c3 0000 0100 0011 0010 0001 0101 0111 0110 1110

d0d1d2d3 0101 0001 0110 0111 0100 0000 0010 0011 1011

For example, Table 3.2.2 gives the original codes ci0ci1ci2ci3 for each state i

in the FSM shown in Figure 3.1 as well as the new codes di0di1di2di3 obtained by

the re-encoding approach in [70], where we can see that the second and last state

registers have been flipped (that is, di1 = c′i1, di3 = c′i3).

According to the original coding scheme, PSV = 3 on two CTs: 6 → 0 and

8 → 0, where three state registers change from logic 1 to 0 simultaneously. In the

new coding scheme, the PSV is reduced to 2.

3.2.3 FSM Re-Engineering for Low Power

Yuan et al. [74] propose a novel re-engineering paradigm for FSM synthesis.

Their idea is to construct a new FSM from the minimized FSM to relax the con-

straints on the most constrained portion of the original FSM. The basic technique

they develop to achieve this is state replication, or state splitting as is called in

their work. When it becomes hard to find a code for a state without causing large
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Hamming distance to one or more of its neighboring states, they create a new state

to take away some of the previous-states to make encoding easier and more efficient.

Figure 3.1: The 9-state STG representing MCNC benchmark circuit ex5.
Left: the original STG with two CTs 6 → 0 and 8 → 0. Right: new
10-state STG where state 0’ is a replicate of state 0 and PSV is reduced
from 3 to 2.

For example, on right of Figure 3.1, state 0’ is a replicate of state 0 with the

two CTs being redirected to this new state. Originally, for transition 8 → 0, we have

H(1110, 0000) = 3. Now we have the new transition 8 → 0′ with H(1110, 1010) = 1.

So the TSA defined in Equation (1) would be reduced.

3.3 Two Basic Techniques for peak current reduction

Figure 3.1 depicts circuit ex5 from the MCNC benchmark suite [77], where

there are 9 states labeled from 0 to 8. The FSM is encoded by the power driven

encoder POW3 [55] and the codes for each state can also be found in Table 1.We

can see that on two CTs 6 → 0 and 8 → 0, there are three bits changing from 1 to
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0. This means that three state registers will switch from logic level 1 to logic level

0 simultaneously, causing peak current at power line Vss.

To reduce peak current, which corresponds to PSV = 3, it will be sufficient

to make adjustments along each CT such that there will not be three or more state

registers switching at the same direction at the same time. The two basic techniques

we propose target directly the states that are involved in the critical transitions.

3.3.1 State Re-Encoding

Consider the CT 6 → 0, where the codes for the two states are 0111 and 0000,

we can find a new code either for state 6 or state 0 to reduce the number of 1’s

changing to 0’s and thus make this transition not critical. By checking the codes of

previous-states of 6: {0101,0110} and its next-states: {0000,0100,0101}, we see that

among the seven unused 4-bit codes, any one of the followings {1000,1001,1010,1100}

can be used for state 6 such that all the state transitions that are involved with state

6 will not have more than two bits switching from 0 to 1 or from 1 to 0 at the same

time. Similarly, we can achieve this by keeping the code of state 6 and re-encoding

state 0 to be any of the followings: {1001,1010,1100}.

We refer to this technique as state re-encoding because of its nature of assigning

a new code to the state. The new code to resolve a CT can be any valid code, not

necessarily unused ones. We consider only unused codes in the above example for

simplicity. If we use a code that is currently assigned to another state, this state

will lose its code and we need to find a new code for it. We will elaborate this later.
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If we have an n-state FSM where each state has a distinct k-bit code (k ≥ ⌈log2 n⌉),

potentially each of the n states can be encoded by any of the 2k k-bit codes. In

another word, the state re-encoding space we can explore is as large as (2
k

n ) · n!.

Note that our approach is conceptually different from the term of state re-

encoding used by Huang et al. in [70]. They indeed consider the switching direc-

tion of the state registers, not individual states. Consequently, in their solution

d0d1 · · · di · · · dk−1, for any given bit position i, di = ci or di = c′i for all the states.

They consider up to all the 2k combinations of whether to flip each of the k state

registers, which is a subset of our re-encoding solution space. Moreover, considering

that 2k is normally of the same order of n, 2k is much less than (2
k

n ) · n!.

Another feature that distinguishes our state re-encoding and that in [70] is the

impact on TSA. In [70], because they re-encode the state registers, the Hamming

distance between any pair of states will not change. From Equation 3.1, the TSA

will not change. In our approach, we re-encode individual states and may change

the value of TSA. This brings the challenge of how to resolve the CT without

increase or with the minimum increase on TSA. On the other hand, it gives us the

opportunity to reduce TSA at the same time. Therefore, when there are multiple

options of new code for state re-encoding, we will select the one that will reduce

TSA or cause the minimum increase of TSA. We will discuss this in-depth in the

next section.
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3.3.2 State Replication

The FSM re-engineering technique proposed in [74] seeks to reduce the FSM’s

TSA. It consists of three steps, first, identify a most constrained state s whose

code contributes the most to TSA; then add a new state s′ to replicate state s

and connect s′ to all the next-states of s; finally assign a code to s′ and split the

previous-states of s such that each previous-state goes to either s or s′.

We modify this approach to resolve CT and reduce PSV . Firstly, the state

to be replicated is set to be the ending state of as many CTs as possible. Consider

the example in Figure 3.1, the target state is state 0 as the two CTs are 6 → 0 and

8 → 0. We add a new state 0′ and connect 0′ to all the next-states of 0. Then we

redirect the CTs 6 → 0 and 8 → 0 to 6 → 0′ and 8 → 0′, respectively. Finally we

let state 0′ go into all the next-states of state 0. Now we only need to assign 0′ a

code such that on all the transitions involving 0′, there will not be two or more bits

switching from 1 to 0 (or from 0 to 1) at the same time. It is not hard to verify that

codes 1010, 1100, or 1001 can all satisfy this requirement and there is no transition

causing more than two bits switching at the same direction, which means that PSV

is reduced. Note that by introducing a replicate of state 0, it enables us to split the

previous-states of state 0 and makes both state 0 and its replicate less constrained.

We refer to this technique as state replication.

For a CT i → j, state re-encoding can be applied to both states i and j;

state replication can only be applied to state j. This is because that a state and

its replicate will have the same set of next-states, replicating state i alone will not
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make the transition i → j non-critical.

Finally, both techniques have its pros and cons and it is a non-trivial problem

to combine the two techniques to achieve our optimization goal. Details are discussed

in the following section.

When there are multiple codes available to make a CT non-critical, we can

choose the one that contributes the least to TSA. This is the reason that we encode

the replicate state 0′ by 1010 in the above example. We can also seek further

reduction in TSA by redirecting other transitions into state 0 into state 0′ instead,

if the hamming distance of latter is smaller. It suggests that state replication has the

potential to reduce both peak current and average dynamic power. Normally state

replication is applied when there are unused codes available, that is, the number of

states in the FSM is not a power of 2. Because otherwise it will increase the number

of encoding bits and introduce additional state registers. We restrict our discussion

under this constraint for simplicity.

The solution space defined by state replication can be very large. If the FSM

has n states and encoded with k-bit codes. Let p be the number of states that are

the ending state of a CT, and q be the total number of previous-states that those

p states have. The search space will be roughly (2
k−n

p ) · p! · q. The first term is the

ways to find unused code for the replicate states; term p! is the different ways to

assign each replicate states a code; determining whether a previous-state should be

re-directed to the replicate state can be done by checking whether the CT is resolved

and TSA can be reduced. Both state re-encoding and state replication give large

solution space, in the next section, we present how to explore such space efficiently.
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3.4 Simultaneous State Replication and Re-Encoding

As mentioned earlier, our proposed approach aims at reducing an encoded

FSM’s PSV while keeping the increment of TSA, if any, as little as possible. We

start with an encoding scheme that minimizes the TSA, then perform simultaneous

state replication and re-encoding (SSRR) so that the psvij can be reduced along each

of the CT statei → statej. Since these adjustments can cause the increase of TSA,

we make the adjustment local to minimize this impact. However, global adjustment

of the FSM is often unavoidable due to the limited number of codes available for

state replication and re-encoding. In this section, we describe how we seamlessly

combine these two basic techniques to balance the local and global adjustments.

3.4.1 Overview of the Approach

The proposed SSRR approach is depicted in Figure 3.2. Recall that Peak

Switching Value (PSV ) is the maximal number of bits that switches from 1 to 0 (or

from 0 to 1) during a single transition. We define the working set S as the set of

transitions in the given encoded FSM that need to be adjusted for PSV reduction.

It intially contains all the critical transitions (CT s). In the later phase, transitions

whose two involved states have one or both codes missing are also included. We

define the solution pool SP as the set of codes that can be used for the states such

that one or more transitions can be removed from the working set S.

Starting with an FSM that has been encoded (for example, to minimize TSA),

we first identify all the CT s. This can be done by checking each state transition
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New FSM

Encoded FSM Identify CTs

Construct initial solution pool SP and working set S

Solve the most constrained transition in S

Update S and SP

S or SP is empty?
Yes No

Figure 3.2: Overview of the simultaneous state replication and re-encoding ap-
proach.

with a complexity of O(k · m), where m is the number of state transitions in the

FSM and k is the number of bits in the code. These CTs form the initial working

set S. Next we construct the corresponding solution pool SP based on how each

CT in S can be resolved. The complexity in this step is bounded by O(2k · m)

when S has all the m transitions and each of them can be reduced by any of the

k-bit code. Then we pick the most constrained transition from S and use the least

constraining solution from SP to adjust the states involved in the transition. We

will show that this has a complexity of O(n+m), where n is the number of states in

the FSM. We update both S and SP and continue this procedure until S becomes

empty, which means that the PSV has been reduced, or SP becomes empty which

means that we fail to reduce PSV . As we will show in Section 3.4.4, the complexity

is bounded by O(m2) and there are at most 2m rounds, so the complexity of this

step is O(m3). Note that normally code length k is close to ⌈log n⌉ and m > n, so
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the overall complexity of our approach is bounded by O(m3).

3.4.2 Initial Construction of S and SP

Consider an FSM with n states encoded with code of length k ≥ ⌈log2 n⌉, we

say that there are states AVAILABLE for state replication without increasing code

length if n < 2k; for each of the 2k k-bit code, we say that a code is USED if the

code has been assigned to some state, otherwise the code is UNUSED.

For each transition statei → statej (denoted as Tij) in S, we say that a code

is a proper code for statej if statej will not be involved with any transitions in the

working set S when it is assigned this code. The solution pool SP initially contains

all the proper codes for states involved in CT s in S. They can be found by one of

the following three actions:

Replicate statej. If there is state AVAILABLE, we first make a copy of statej

as state′j; add a transition from state′j to all the next-states of statej; let statei

move to state′j instead of statej if statei → statej is a CT . Then we find all the

UNUSED proper codes for state′j and denote this set of codes as SP.rep(Tij). This

state replication strategy ensures that it is a local adjustment and will not trigger

further state adjustments of other states. The advantage is that it preserves the

original coding scheme which is optimized for TSA for example.

Re-encode statej. For each code ck, we check whether it is a proper code for statej.

If so, we will add code ck into either the set SP.rec0(Tij) or the set SP.rec1(Tij)

based on ck is UNUSED or USED. The key difference between SP.rec0(Tij) and
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SP.rec1(Tij) is their impact on the rest of the state adjustment process. Re-encoding

by an UNUSED code is a local adjustment while re-encoding with a USED code ck

in SP.rec1(Tij) can be more complicated (we will elaborate this as R2 in Section

3.4.4).

Re-encode statei. The peak switching along Tij can also be reduced by re-encoding

statei. Similar to re-encoding of statej, we can add UNUSED proper codes for statei

into SP.rec0(Tij) and USED proper codes into SP.rec1(Tij). Finally, as we have

discussed earlier, replicating statei will not help to resolve Tij.

At the end of this stage, working set S is constructed as the set of all the CT s

found in the first step. For each Tij in working set S, SP.rep(Tij) ∪ SP.rec0(Tij) ∪

SP.rec1(Tij) gives all the possible ways to reduce the psvij along Tij.

3.4.3 The Most Constrained Transition and the Least Constraining

Solution

For each transition Tij in the working set S, we define its level of constrainess

as the number of codes contained in its corresponding SP . Since the transitions

in initial S have SP.rep as a superset of SP.rec0, their level of constrainess can

be calculated as |SP.rep| + |SP.rec1|. For the transitions that are added into S

later (see Section 3.4.4 for when a transition needs to be included into S), we set

its |SP.rep| = 0 and the level of constrainess will be |SP.rec0|+ |SP.rec1|. In sum,

we can define the level of constrainess of Tij in S as

loc(Tij) = max{|SP.rep(Tij)|, |SP.rec0(Tij)|}+ |SP.rec1(Tij)| (3.5)
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The most constrained transition is the one with the minimal number of solu-

tions. By adjusting the most constrained transition first, we tend to allocate a code,

if it can be used to adjust multiple transitions in S, to the one that needs it the

most. This is an effective way to utilize the limited number of codes available.

For each code ck in the solution pool SP , we define its level of constrainess

with respect to transition Tij as

∑

ck∈SP.rep(Tpq)∪SP.rec0(Tpq)∪SP.rec1(Tpq),Tpq 6=Tij

1

loc(Tpq)− 1
(3.6)

If loc(Tpq) = 1 and the code ck is the only solution to adjust transition Tpq, we can

replace the expression of 1
loc(Tpq)−1

by a large number, say the number of states in

the FSM for example. Clearly, the value of 1
loc(Tpq)−1

measures how important a code

is for the adjustment of transition Tpq. The level of constrainess w.r.t. Tij defined

above measures the impact on other states by assigning code ck to Tij . The least

constraining code for Tij is a code in SP that can be used to adjust Tij and has the

minimal value of level of constrainess w.r.t. Tij .

Figure 3.3 illustrates how we resolve the most constrained CT in S by the

least constraining solution from SP . This combined with the update of S and SP

in Section 3.4.4 will be performed iteratively until we reduce the PSV or fail to do so.

We resolve the most constrained T ∗
ij found in line 1 by the least constraining solutions

from SP.rep(T ∗
ij), SP.rec0(T

∗
ij), and SP.rec1(T ∗

ij), in the order of priority. State

replication is of the highest priority because by splitting the incoming transitions,

there will be fewer constraints on the code selection for the replicated state, and it

can be more likely to find a code that can reduce both TSA and PSV . However,
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1. Select the most constrained transition T ∗
ij from S;

//case I: Use state replication strategy
2. if (SP.rep(T ∗

ij) 6= φ)

3. Replicate state∗j into state∗
′

j ;

4. Select the least constraining code c∗k from

SP.rep(T ∗
ij) for state

∗′
j ;

5. for each next-state statei of state
∗
j

6. Add transition state∗
′

j → statei;

7. for each previous-state statei of state
∗
j

8. if (H(i, j∗
′

) < H(i, j∗))

9. Add transition statei → state∗
′

j ;

10. Delete transition statei → state∗j ;

11. Mark the code c∗k USED;
//case II: Use state re-encoding with UNUSED code
12. else if (SP.rec0(T ∗

ij) 6= φ)

13. Select the least constraining code c∗k from
SP.rec0(T ∗

ij) for state
∗
j ;

14. Mark the code c∗k USED;
//case III: Use state re-encoding with USED code
15. else if (SP.rec1(T ∗

ij) 6= φ)

16. Select the least constraining code c∗k from
SP.rec1(T ∗

ij) for state
∗
j ;

17. Mark the code c∗k DONE;
//for case II and III
18. if (state∗j has its original code cl)

19. Mark the code cl UNUSED;

Figure 3.3: Solving the most constrained CT with the least constraining solution.

since the number of extra states in a given FSM is limited, state replication is not

always a feasible option. State re-encoding with USED code, however, can always

be applied. But it is of the lowest priority because it can trigger subsequently many

code adjustments. Starting from a TSA-minimized encoding scheme, more changes

on the state’s code may bring more overhead to TSA. Therefore in line 17, once a

USED code is re-assigned to a different state, we mark the code DONE and will not

include it in SP as a potential solution to adjust any CTs. This constraint guarantees
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a bounded complexity. The computation is elaborated at the end of Section 3.4.4.

Figure 3.3 is easy to follow and its complexity is bounded by O(n+m).

We mention that other techniques have also been adopted to keep the increase

of TSA as little as possible when we select the least constraining solution. For

example, always selecting code c∗k that gives the minimal switching activity when

there is a tie; shifting transitions from previous-state statei of statej to its replicate

state′j if H(i, j′) is smaller than H(i, j) during state replication (lines 7-10).

3.4.4 Update S and SP

After the most constrained transition T ∗
ij is adjusted, we need to update both

the working set S and the solution pool SP before we can proceed to the next

iteration. Here we list the set of rules for the updating stage.

R1. In state replication, when there is no state AVAILABLE for replication. Change

SP.rep(Tij) = φ for all Tij ∈ S.

R2. When a state is re-encoded with USED code cp, which is currently used to

encode statep, identify all transitions Tij with i = p or j = p. There are

following two cases we need to consider:

1) If Tij /∈ S, add Tij into S, construct SP (Tij).

2) If Tij ∈ S, re-construct SP (Tij).

R3. If statek is re-encoded, for all Tij ∈ S, i = k, j = l or i = l, j = k, there are

following two cases:
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1) If statel has its code, delete Tij from S and SP (Tij) from SP .

2) If statel has its code missing, re-construct SP (Tij).

R4. For all the codes that have changed their status in Figure 3.3, the correspond-

ing entries in SP have to be updated.

R2 adds new transitions into S. Different from the CT s added into S initially,

the newly added transitions Tij are those with either statei or statej’s code missing.

It is also possible that both statei and statej’s codes are missing. It happens when

Statei’s code is first deprived to re-encode some state, while statej’s code is next

deprived to re-encode some other state before statei has been assigned a code.

Constructing and re-constructing SP (Tij) in R2 and R3 involves the following

two cases:

1) If both Statei and Statej have their codes missing, include the union of USED

or UNUSED proper codes for Statei and those for Statej. Here transition Tij

is not examined when looking for proper codes.

2) If either Statei or Statej has its code missing, without loss of generality, we

assume Statei, SP (Tij) will include all the USED or UNUSED proper codes

for Statei.

Figure 3.4 depicts the implementation of R4.

Lines 1-6 are the updates performed when a code is first assigned to a state.

Lines 7-12 illustrate the updates performed when a code is released by one state.

Lines 13-14 discuss the case when a code is transferred from one state to another.
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//ck status change: UNUSED to USED
1. for each SP.rep(Tij) ∪ SP.rec0(Tij) that contains ck
4. add ck to SP.rec1(Tij);
5. delete ck from SP.rep(Tij) if any;
6. delete ck from SP.rec0(Tij) if any;

//ck status change: USED to UNUSED
8. for each SP.rec1(Tij) that contains ck
9. add ck to SP.rec0(Tij);

10. if (there is state AVAILABLE &&
both Statei and Statej have their codes &&
Tij is no longer critical if statej is encoded with ck)

11. add ck to SP.rep(Tij);
12. delete ck from SP.rec1(Tij);

//ck status change: USED to DONE
14. delete ck from all the entries in SP ;

Figure 3.4: Update code information.

Line 14 ensures that once one code is transferred, it is settled and won’t be used in

re-encoding again. This prevents the algorithm to enter an endless loop such as a

cyclic state re-encoding operations, where two or more states need each other’s code

and form a circle.

All the update rules are bounded by O(m) in the worst case, and there will at

most m transitions to be updated. So the update process is bounded by O(m2) for

each round of SSRR algorithm.

Since the program terminates when S becomes empty and we will not add the

same transition to S more than twice, there will be O(m) rounds to solve all the

transitions that have been put into S. Therefore, overall complexity of the proposed

SSRR algorithm will be O(n ·m)+O(m ·(m+n))+O(m ·m2) = O(m3). In practice,

the runtime is much less than this theoretical bound and is almost trivial. Since

SSRR algorithm aims at reducing PSV by one, we may perform several iterations
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of SSRR algorithm until no further reduction can be achieved.

3.5 Illustrative Example for SSRR

In this section, we present a small example to illustrate step by step how the

proposed SSRR approach can reduce PSV of an encoded FSM.

Fig. 3.5 shows part of a 14-state FSM already encoded using four encoding bits.

Therefore there are two states AVAILABLE for state replication without increasing

number of encoding bits. The two UNUSED codes are 1000 and 1100. Currently

PSV equals 2 and is expected to be reduced to 1. There are only two CTs in

the FSM, which are both included in the figure indicated by dashed arrows. The

transition probabilities are also given in the figure. It can be noted that the sum

over all transition probabilites is less than 1, because the figure only includes part

of the FSM.

S1 S3 S8

S0 S7

S2 S4 S6

0000 0011 0111

1101 1001

1011 0101 0001

0.06 0.24

0.02

0.160.04

0.04
0.04

0.04 0.16

Figure 3.5: Part of a 14-state FSM already encoded.

48



3.5.1 Initial Construction of S and SP

Initially Working Set S contains the two CTs T1,3, T2,4. They are also marked

as in CINI for later usage. The initial Solution Pool SP for each CT can be con-

structed by exhausting all the solution options provided by state replication and

state re-encoding. Table 3.2 lists SP.rep, SP.rec0 and SP.rec1 for T1,3 and T2,4

respectively.

Table 3.2: Initial Working Set and Solution Pool for FSM in Fig. 3.5

S T1,3 T2,4

SP.rep 1000 –

SP.rec0 1000 1100

0001, 0010, 0011 0101, 0111
SP.rec1 0101, 0110, 0111 1001, 1101

1001, 1010, 1011

The second row indicates that state replication is infeasible for T2,4, because

neither of the two UNUSED codes can be assigned to replicated state of S4 without

reaching PSV of 2. The third and fourth rows list sets of eligible codes, UNUSED

or USED, to re-encode either state involved with the CT.

3.5.2 The First Iteration

Each iteration involves two steps: Resolving the most constrained transition

from S using the least constraining code from the corresponding SP ; Updating S

and SP .

Since the level of constrainess regarding a transition indicates the size of its
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corresponding SP , the most constrained transition refers to the one with the smallest

SP size. In the illustrative example, |SP |(T2,4) = 5 < |SP |(T1,3) = 10, therefore

T2,4 is the most constrained and should be resolved first.

Meanwhile, the level of constrainess regarding a code measures the impact on

resolving other transitions by assigning it to the target transition, therefore the least

constraining code can be interpreted as the one least shared by transitions remaining

in the S. Among the five solutions in SP of T2,4, based on the fact that 1100 does

not appear in SP of T1,3 and is UNUSED, it will be employed to resolve T2,4. So in

the first iteration, S2 is re-encoded by 1100 and CT of T2,4 is resolved.

At the end of this iteration, T2,4 is deleted from S, and its corresponding entry

in SP is also deleted from SP . Code 1100 becomes USED, while the original code

of S2 1011 becomes UNUSED. The SP of T1,3 is updated accordingly as shown in

Table 3.3.

Table 3.3: S and SP at the end of the first iteration

S T1,3

SP.rep 1000

SP.rec0 1000, 1011

0001, 0010, 0011
SP.rec1 0101, 0110, 0111

1001, 1010
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3.5.3 The Second Iteration

As T1,3 is the only transition remaining in S, the entire procedure would stop

if T1,3 can be resolved in the second iteration. According to the solution priority in

Fig. 3.3, state replication is applied by performing the following actions: Replicate

S3 into S ′
3; Encode S ′

3 is by 1000 from SP.rep; Redirect S1 and S7 into S ′
3 instead.

The resultant FSM is depicted in Fig. 3.6, with PSV successfully reduced to 1.

S1 S3'

S8

S0 S7

S2 S4 S6

0000 1000

0111

1101 1001

1100 0101 0001

0.06

0.24

0.02

0.040.04

0.04
0.04

0.04 0.16

S3

0011

0.12

Figure 3.6: New FSM with reduced PSV .

3.5.4 Result Evaluation

It can be easily verified that the new FSM is functionally equivalent with the

original one. Though the new FSM incur one extra state, the number of encoding

bits remains as four, which indicates the same number of state registers in the

synthesized circuit. Moreover, PSV has been reduced, so that peak current and

peak power in the synthesized circuit can be expected to be reduced. TSA, which
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corresponds to average power in the circuit, can also be compared. In the original

FSM, TSA with respect to all transitions that appear in Fig. 3.5 can be evaluated as:

0.04×(1+1+2+3)+0.02×2+0.16×(1+1)+0.24×1+0.06×2 = 1.0, while TSA in Fig.

3.6 equals: 0.04×(1+1+1+2+2)+0.02×1+0.16×1+0.24×1+0.12×1+0.06×1 =

0.88, a 12% reduction.

3.6 Experimental Results

The main objective of the experiments is to validate (1) the observation that

state registers are the major contributor to peak current in the circuit, and there

is a strong correlation between peak current and the maximum number of state

bits switching in the same direction at the moment of state transition; (2) the

effectiveness of the proposed SSRR technique in reducing PSV while also considering

TSA.

We demonstrate both (1) and (2) by comparing our approach with POW3 en-

coding algorithm[55] and the state register re-encoding approach (SR for short) [70].

We first demonstrate (1) using the simulation results of s512 from MCNC bench-

marks. Since there is only one single operating voltage in our circuits, we measure

the peak power to represent peak current using an industry gate-level transient

power analysis tool Synopsys PrimeTime-PX [76].

Figure 3.7 is the transient power waveform of the circuit s510 whose FSM

is encoded using POW3 [55] and SR [70]. They are the same because SR fails

to improve the encoding scheme in the case of s510. The waveform on top is the
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Figure 3.7: Power waveform in circuit s510 encoded by POW3 and SR. Top waveform
is the power in the circuit; bottom waveform is the power in the state registers only.
Top x-axis is the simulation time. The peak power in the circuit is 13.1mW and
the peak power in the state registers is 12.6mW. The maximum number of state
registers switching in the same direction is 3.

power of the entire circuit and the waveform at the bottom is the power of the state

registers only. The top x-axis is the simulation clock time. We can clearly see that

the peak power of the entire circuit (13.1mW, the 13.0mW reported on the figure is

due to truncation) and the peak power of the state registers (12.6mW) both occur

at the simulation time 535 ns, which is at clock rising edge. The peak power occurs

when the FSM is switching from state ’000010’ to state ’011110’, which causes three

state registers (the 3rd, 4th and 5th state registers) to switch from bit 0 to 1 at the

same time.

Figure 3.8 shows the transient power waveform of the circuit s510 whose FSM

is encoded using our SSRR approach. The maximum number of state bits switching

in the same direction is 2 when the FSM is transitioning from state ’001000’ to

state code ’011010’ (the 2nd and 5th register are switching from 0 to 1). The peak

power in the entire circuit (11.5mW, the 11.4mW reported on the figure is due to

truncation) as well as the state registers (11.5mW, the 11.4mW reported on the
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Figure 3.8: Power waveform in circuit s510 encoded by SSRR. Top waveform is the
power in the circuit; bottom waveform is the power in the state registers only. Top
x-axis is the simulation time. The peak power in the circuit and the state registers
are both 11.5mW. The maximum number of state registers switching in the same
direction is 2.

figure is due to truncation) occur at simulation time 1397 ns 1. The magnitude of

circuit peak power is 12% smaller than that in Figure 3.7, which demonstrates the

strong correlation between peak current and maximum number of state switching

bits.

To validate the effectiveness of our approach, we apply all of the three encod-

ing methods: POW3, SR [70] and SSRR to 52 MCNC FSM benchmarks[77]. We

also implemented SAT method [71] to provide the optimal results. SAT method

transforms the encoding problem into a Pseudo Boolean (PB) formulation, and em-

ploy PB solver to get the optimal results. However, it involves high computational

effort, and therefore is limited to solve up to 8-bit encoding. We reported the result

in Table 3.4. The first four columns list the name, the number of states (n), the

1Note that, in this case, the peak power in state registers and in the entire circuit are the same.

This is because the input values for this state transition remain the same as the previous state

transition, and therefore no combinational gate is switching before the current state registers get

updated.
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number of transitions (m), and the code length (k, in bits) for each POW3 encoded

FSM. These values are the same as in SAT and SR encoded FSMs. The fifth column

(n′) shows the number of states in SSRR encoded FSM, where the increased number

of states is brought by state replication.

The PSV values in the encoded FSMs using POW3, SAT, SR, and SSRR

respectively are reported in the next four columns. Though the SAT-based approach

is of exponential complexity and cannot handle circuits with more than six state

registers, its results are optimal in terms of PSV if the number of states are the

same. It helps us study how far off our SSRR solution is from the optimal. Overall,

SR approach can successfully reduce PSV in 27 FSMs with an average reduction

of 24.5%; SSRR approach can reduce PSV in 34 FSMs with an average 39.2%

reduction; Optimally, SAT approach reduces PSV in 39 FSMs with an average

46.3% reduction. However, in 6 out of 34 FSMs where SSRR can achieve smaller

PSV than POW3, SAT is able to achieve further PSV reduction. It is worth noted

that SSRR actually achieves smaller PSV than SAT for s298. It is a strong proof

of the contribution made by state replication. The next column (improv) shows the

improvement of SSRR over SR. We can see that SSRR is able to further reduce

PSV in 18 FSMs over SR with an average improvement of 18.4%.

One advantage of SR algorithm is that it does not increase TSA in the POW3

encoded FSM. We report the TSA in FSMs encoded by SSRR compared to FSMs

encoded by SR in the last column. The result shows that SSRR on average has

only 3% increase in TSA and in 13 FSMs it even has less TSA compared to SR

and POW3. This again gives proof that state replication takes effect. Finally, the
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runtime of the SSRR algorithm is very small. It can finish all these benchmarks in

a couple of seconds.

3.7 Summary

We focus on the problem of how to reduce peak current at the FSM level of the

circuit by minimizing the peak switching value (PSV ) of the FSM. For state tran-

sitions that reach PSV , we perform either state replication or state re-encoding to

reduce its peak switching activity. We develop a most constrained least constraining

heuristics to combine these two techniques seamlessly. The proposed algorithm is

very effective in reducing FSM’s PSV while keeping the increment on TSA under

control. In 36 MCNC benchmarks whose PSV is not minimized by POW3, the only

other known approach [70] reports better solutions on 27 circuits. Our algorithm

outperforms this approach by finding better solutions on 34 circuits, out of which

21 are better than the solutions found by [70]. This is achieved with only an average

of 0.5% increase in TSA.
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Table 3.4: Comparison of different encoding techniques on the 39 circuits that PSV
has not reached minimal by POW3.

circuit n m k n’ PSV TSA runtime

POW3 SAT SR SSRR improv. ratio / ms

bbsse 16 56 4 16 4 2 3 2 33.3% 1.03 0.450
bbtas 6 24 3 7 2 1 1 1 0.0% 1.00 0.119
cse 16 91 4 16 4 2 3 2 33.3% 1.18 0.476
dk16 27 108 5 30 3 2 3 2 33.3% 0.89 0.821
dk27 7 14 3 8 3 1 2 2 0.0% 1.00 0.107
dk512 15 30 4 16 3 2 3 2 33.3% 0.99 0.177
donfile 24 96 5 29 4 2 3 2 33.3% 1.02 0.958
ex1 20 138 5 24 4 2 3 2 33.3% 1.03 1.134
ex2 19 74 5 23 4 2 3 2 33.3% 1.00 0.766
ex3 10 37 4 12 3 2 2 2 0.0% 0.99 0.171
ex4 14 21 4 24 2 1 2 2 0.0% 1.09 0.171
ex5 9 33 4 10 3 2 2 2 0.0% 1.00 0.175
ex6 8 34 3 8 3 2 2 2 0.0% 1.08 0.123
ex7 10 37 4 11 3 2 2 2 0.0% 1.00 0.215
keyb 19 170 5 20 4 2 3 2 33.3% 1.00 0.910

kirkman 16 367 4 16 2 1 1 1 0.0% 0.89 0.500
lion9 9 25 4 11 2 1 1 1 0.0% 0.83 0.227
mark1 15 22 4 15 3 2 3 2 33.3% 1.15 0.172
opus 10 22 4 10 2 1 2 2 0.0% 1.00 0.162
planet 48 115 6 48 2 1 2 2 0.0% 1.00 1.472
planet1 48 115 6 48 2 1 2 2 0.0% 1.00 1.471
pma 24 73 5 24 3 1 3 2 33.3% 0.90 0.506
s1 20 107 5 23 3 2 3 2 33.3% 0.97 0.445

s1488 48 251 6 51 5 2 3 2 33.3% 1.88 2.790
s1494 48 250 6 56 5 2 3 2 33.3% 1.03 5.479
s1a 20 107 5 23 3 2 3 2 33.3% 0.97 0.480
s208 18 153 5 18 3 2 2 2 0.0% 1.30 0.617
s298 218 1096 8 229 6 5 5 4 20.0% 0.89 41.20
s386 13 64 4 14 3 2 2 2 0.0% 1.01 0.203
s420 18 137 5 20 4 2 3 2 33.3% 1.00 0.897
s510 47 77 6 49 3 1 3 2 33.3% 0.99 1.578
s8 5 20 5 5 2 1 2 2 0.0% 1.00 0.114
s820 25 232 5 30 4 2 3 2 33.3% 0.99 1.794
s832 25 245 5 26 4 2 3 3 0.0% 1.00 0.651
sand 32 184 5 32 4 2 3 3 0.0% 0.98 0.619
sse 16 56 4 16 4 2 3 2 33.3% 1.03 0.422
styr 30 166 5 31 4 2 3 2 33.3% 1.00 0.609
tbk 32 1569 5 32 5 3 4 3 25.0% 0.92 3.845
tma 20 44 5 21 3 1 2 2 0.0% 1.00 0.352

average 17.4% 1.03 1.881
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Chapter 4

Improving Dual Vt Technology by Simultaneous Gate Sizing and

Mechanical Stress Optimization

When technology scales down to 90nm and beyond, leakage power starts to

dominate dynamic power and dual Vt technique is projected to reduce leakage con-

sumption. This is based on the fact that high Vt cells are less leaky compared to

the low Vt cells. However, it can only be applied to off-critical path because high Vt

cells have longer delay. This dual Vt technology has been well-researched in the past

decade for leakage and total power minimization under timing constraint [79, 112].

In this work, we propose to explore performance enhancing techniques, gate sizing

and mechanical stress used as examples, to improve dual Vt technology for further

leakage reduction. The key idea is to apply gate sizing and mechanical stress to

create delay slacks such that we will be able to assign high Vt to cells that would

otherwise be assigned low Vt due to the timing constraint.

Gate sizing is a technique where we increase the channel widths of transistors

and thus the current driving strength. It is very effective to improve circuit delay

and dynamic power consumption [78, 38]. Many researches have been conducted

to combine gate sizing with dual Vt technique for total power minimization. This

problem has been known to be a Mixed-Integer Non-Linear Programs (MINLP)

due to the discrete Vt levels and gate sizes, which is of high complexity. One cat-
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egory of works employ sensitivity-based heuristics to guide the selection of gates

to be changed, which can be computationally efficient, but far from optimal due

to its greedy nature [80, 81]. The methods focus on the isolated impact on delay

and power of one cell, ignoring the overall impact on the circuit and other cells.

Another category of works first approximate the discrete problem into continuous

formulations, solve the continuous formulation using either optimization techniques

like Lagrangian Relaxation [82, 83] or heuristics [84], and then snap the results.

Although it shows in [84] that the results of most gates have snapped by themselves

except the few due to sizing constraints or with fixed input drivers, significant de-

scretization errors still cannot guarantee to be eliminated. There is also a category

of works that employ combinatorial algorithms [85, 86], which would enumerate and

propagate all possible cases while discarding impossible ones with certain pruning

criterions. They are normally able to achieve very optimal results, however, at the

cost of expensive runtime.

While gate sizing and dual Vt has already been commonly leveraged during

physical synthesis stage (iterations of combined synthesis and physical design) as a

tuning strategy for timing closure, it becomes more and more challenging to solely

depend on these two techniques due to more and more tight timing budget. As

device densities become much larger, there is not much space for sizing up the

gates. Meanwhile, sizing up a certain gate contributes to larger load for all the

gates in its fan-in cone, which may in turn require further sizing up the fan-in gates.

This can make the timing optimization procedure very difficult to converge and fail.

Similarly, as supply voltage level becomes much lower under 45nm technology, there
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is not much space for lowering threshold voltage to trade timing either. These facts

necessitates the introduction of a third optimization technique.

Process-induced mechanical stress is a novel technique induced into CMOS

channel that enhances carrier mobility [87, 88, 89]. On one hand, the enhanced

carrier mobility leads to increased saturation drain current, which will in turn help

reduce transistor delay; On the other hand, it also results in larger subthreshold

drain current, which indicates larger leakage power consumption. This delay/power

tradeoff makes mechanical stress a potential alternative to gate sizing and dual Vt.

Compared to gate sizing, mechanical stress incurs little physical impact when tuning

for timing closure. It has also been shown to have a more efficient power/delay

trading ratio than dual Vt technique [90]. The work conducted in [90] fully explores

the layout dependence of stress enhancement and provides stress-enhanced versions

for cells in a 65nm industrial library (can be considered as “dual stress”). The

characterization of cells into the library enables incorporating the use of mechanical

stress into as early as synthesis stage. To the best of our knowledge, [90] is the only

work so far that embodies techniques of dual Vt, gate sizing and mechanical stress

together. However, gate sizing does not participate in leakage optimization in their

algorithm. It is applied for the objective of iso-area.

In this work, we consider the following problem: given the netlist of a combi-

national logic circuit with a timing constraint, a comprehensive leakage/performance

driven cell library with options of dual Vt, dual sizing, and dual stress, choose the

size, Vt, and stress level of each cell such that the circuit’s leakage (or total) power

is minimized while the timing constraint is met. We re-evaluate the concept of leak-
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age minimization with multiple techniques simultaneously (dual Vt, gate sizing, and

mechanical stress in our discussion). More specifically, we propose to first balance

the circuit paths as close to the timing constraint as possible (apply dual Vt in our

case), then introduce the concept of urgent paths to guide the repeated procedure of:

performance improvement (gate sizing and mechanical stress) to create new slacks

at the cost of power overhead; and power optimization (dual Vt) to trade slacks for

power saving. We validate this approach on 8 OpenCores benchmarks using the data

from a 65nm industrial library. The results show that our approach can achieve an

average of 13.5% more leakage saving than the standard sensitivity-based approach.

The rest of the work is organized as follows. Section 4.1 reviews the components

of power consumption in a CMOS circuit and the delay/power tradeoff property

for each of the three techniques. The dual Vt combined with simultaneous gate siz-

ing and mechanical stress is illustrated in Section 4.2 and experimental results are

presented in Section 4.3. Finally Section 4.4 concludes.

4.1 Preliminaries

In this section, we first describe the power and delay models we use. Then we

introduce the three techniques with emphasis on their difference in the power-delay

tradeoffs. Small illustrative examples are included.
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4.1.1 Power Consumption in CMOS Circuits

There are three major sources of power consumption in a digital CMOS gate

[91] which are summarized in the following equation:

Pavg = Pdynamic + Pshort−circuit + Pleakage

= αCL · V 2
dd · fclk + Isc · Vdd + Ileakage · Vdd (4.1)

The first term represents the switching component of power, where CL is the

load capacitance, fclk is the clock frequency, and α is the switching activity of the

gate, which indicates the average number of times the gate makes a logic transition

in one clock cycle (0 ≤ α ≤ 1). The second term is due to the short circuit

current Isc, which occurs when both PMOS and NMOS transitors are turned on

simultaneously and the current flows directly from the power line to the ground.

Short circuit current can be kept less than 15% of dynamic power with careful

design [92]. The last term is brought by leakage current Ileakage, which arises from

various mechanisms, with subthreshold leakage as the major component. When

technology scales down to deep submicron era, leakage power has contributed to

substantial percentage of total power.

4.1.2 Delay Model

This work adopts a non-linear delay model based on the 2-D lookup tables

provided by the 65nm technology library. Cell delay is typically measured from 50%

input pin voltage to 50% output pin voltage. It is impacted by two factors: input pin

transition delay and output capacitance of the cell. These two factors are used as the
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two indices of the lookup table for cell delay. Interpolation is applied for intermediate

values. Output capacitance can be calculated as the sum of the capacitances of input

pins the gate’s output net connects to, while the input transition delay, typically

measured from 10% to 50% input pin voltage, is by itself indexed from a separate

2-D lookup table. Parasitic capacitance of wires and wire delay is not considered at

this phase since physical information is not yet attainable. In the following, we use

inverters as an example to illustrate the concept and power-delay tradeoff of gate

sizing, dual Vt and mechanical stress.

4.1.3 Gate Sizing, Dual Vt and Mechanical stress Techniques

Gate sizing adjusts the power-performance tradeoff by changing the (W/L)

ratio of the gate. When sizing up a gate, its equivalent resistance becomes smaller,

while its equivalent capacitances become larger. The overall effect is the reduction

in gate delay and increase in leakage power. Meanwhile, since the dynamic power as

well as the delay of a gate depend on the load capacitance it’s driving, the gates in

the fanin cone of the sizing gate will consume more dynamic power and have delay

overhead.

Table 4.1 provides the input pin capacitances for different inverters under the

65nm library we use. Table 4.2 and Table 4.3 provides leakage power and cell delay

information. The impact brought by gate sizing can be observed by making row-

based comparisons among these tables. As indicated by Table 4.1 and 4.2, the input

capacitance and the leakage power of a large inverter is much larger than that of
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the small inverter, both around three times, regardless of the Vt value. Meanwhile,

the dynamic power of a cell will also go up with one or more of its fanout cells sized

up. However, large inverter is fast. From Table 4.3, we can see that the speed-up

of large inverter increases as the load capacitance becomes large.

Table 4.1: Comparison of input pin capacitances for different inverters. Vdd = 1.2V ,
temperature = 25oC.

Gate low Vt high Vt

/pf /pf

INVsmall 0.003282 0.002893

INVlarge 0.009204 0.008032

Table 4.2: Comparison of leakage power for different inverters. Vdd = 1.2V , temper-
ature = 25oC.

Gate low Vt high Vt

/nW /nW

INVsmall 0.253 0.013

INVlarge 0.797 0.036

Table 4.3: Comparison of gate delay for different inverters. Vdd = 1.2V , temperature
= 25oC. Different number of fanout gates are considered, assuming all of them are
of type INVsmall. The input transition delay is assumes to be 0.24ns for simplicity.

Gate #Fanouts low Vt high Vt

/ns /ns

INVsmall 1 0.0671 0.1037

10 0.1302 0.1843

INVlarge 1 0.0584 0.0915

10 0.0890 0.1342

Example: Consider the 3-inverter circuit in Figure 4.1, where all three gates are

low Vt inverters of type INVsmall. By changing G2 into type INVlarge, the delay on
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path G1 to G2 will decrease by 0.0671− 0.0584 = 0.0087ns (Table 4.3), the leakage

of the circuit will increase by 0.797− 0.253 = 0.544nW (Table Table 4.2), the input

capacitance will increase by 0.009204−0.003282 = 0.005922pf (Table 4.1). The last

change will increase the dynamic power of inverter G1 as follows:

∆Pdynamic =
0.005922

0.003282 + 0.003282
· Pdynamic,1

= 0.9Pdynamic,1 (4.2)

In general, the increase in dynamic power can be estimated by

∆Pdynamic =
C

′

L,1 − CL,1

CL,1

· Pdynamic,1 (4.3)

where CL,1 = Cinput,2 + Cinput,3

and C
′

L,1 is the increased load capacitance after gate sizing.

NOT

NOT

NOT

in

out1

out2

Figure 4.1: One inverter fans out to two inverters.

If the gate has low switching activity, the dynamic power increase can be

trivial; If the gate is of high switching activity, however, the dynamic power increase

can become numerically comparable to the leakage power increase.

Gate delay has a sub-linear dependency on threshold voltage while subthresh-

old leakage is exponentially dependent on threshold voltage. This makes threshold

voltage a powerful optimization parameter. High Vt gates are generally slower, how-

ever consume less leakage power; while low Vt gates are faster, but consume more
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leakage power. From Table 4.3 and Table 4.2, we can see that by using high Vt,

leakage can be reduced by around 20X while the delay increase is less than 2X.

Example: Combining gate sizing and dual-Vt techniques have been extensively

researched. The advantage brought by the combination of the two techniques can

be observed by comparing INVsmall cell at low Vt (0.253nW and 0.1302ns) with

INVlarge cell at high Vt (0.036nW and 0.1342ns), both under the case of 10 fanouts.

Although gate sizing and dual-Vt have opposite impacts on delay and leakage con-

sumption, the huge leakage saving can be achieved without incurring much delay

overhead, as indicated by the following estimation.

∆Pleakage

Pleakage

= (0.253− 0.036)/0.253 = 85.8%

∆D

D
= (0.1342− 0.1302)/0.1302 = 3.0%

Furthermore, when total power is concerned, the dynamic power increase caused

by using INVlarge can be estimated as in Equation 4.2. One can easily compare

the leakage saving and the dynamic power overhead to evaluate the impact on total

power. When the leakage dominates the total power, this will result in total power

saving.

Mechanical stress is not able to adjust the gate delay as extensively as dual-

Vt technique, but it is advantageous in that it provides a much more efficient

power/delay tradeoff, and much finer tunability than gate sizing and dual Vt. We

may evaluate the effectiveness of mechanical stress via the data in Table 4.4. More

complete table for all gate types can be found in the previous work [90].

Example: Assuming the inverter has the same rise and fall time, and the same
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Table 4.4: Drive current improvement and leakage power increase via mechanical
stress. Vdd = 1.2V , temperature = 25oC. In our approximation, the data is regarded
to be universal to all inverter types in the library.

Percentage Drive Increase in
Current Improvement LeakageCurrent

Gate
by Stressing after Stressing

NMOS PMOS NMOS PMOS

INV 6% 13% 1.86X 3.88X

chance of 0 → 1 and 1 → 0 switching, we can convert the measurement into aver-

age delay reduction rate and leakage power increase rate by perform the following

computation:

∆Pleakage

Pleakage

=
1

2
(1.86 + 3.88) = 2.87

∆D

D
= 1−

1

2
(

1

1 + 6%
+

1

1 + 13%
) = 8.58%

Dynamic power can also increase due to the increase in load capacitance.

However, it happens after layout, which is beyond the control of synthesis stage,

and is relatively trivial to consider.

The higher power/delay trading ratio can be taken advantage of for both power

and delay optimization. If after the combined gate sizing and dual-Vt illustrated,

mechanical stress is further applied, simultaneous leakage and delay reduction can

be achieved.

Pleakage new = 0.036× (1 + 2.87) = 0.139 < 0.253

D new = 0.1342× (1− 8.58%) = 0.1227 < 0.1302

From these examples we see that dual Vt gives significant leakage reduction
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at the cost of delay increase, sizing up the cells and applying stress both help to

speed up, and if we use them simultaneously, we are able to overcome the delay

overhead from using high Vt cells. This motivates us to explore using gate sizing

and mechanical stress as a vehicle to provide the delay slacks required for dual Vt

technology.

4.2 Urgent Path Guided Power Optimization

In this section, we improve dual Vt technique by simultaneous gate sizing

and mechanical stress. We introduce the concept of urgent paths, and propose an

efficient yet more optimal approach than standard sensitivity-based method. Guided

by urgent paths, gates are selected for gate sizing or mechanical stress based on not

only its power/delay tradeoff, but also the effective slack 1 it contributes to low Vt

gates in the circuit.

The urgent path for gate Gj (denoted as UPj) is defined as the longest one

among all paths that go through Gj. Obviously, the slack of the urgent path UPj

decides the effective slack of Gj. Consider a gate Gi(i 6= j) on the path of UPj

(or Gi covers UPj). Speeding up Gi brings slack to UPj, which indicates that the

effective slack of Gj can be increased and power savings can be traded in turn. It

has to be noted that the urgent path of Gi (UPi) can be different from UPj, and Gi

can cover multiple urgent paths, with UPj as one of them. Obviously, UPi is also

covered by Gi itself.

1The slack of a gate is the minimum slack of every path going through it. To clarify, we call it

effective slack in the work.
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Figure 4.2 gives the overview of our flow.

Initial dual Vt assignment

Compute #urgent paths 

covered by each gate

Urgent path covering

Dual Vt assignment Terminate

Power 

Saving?

Yes

No

Circuit netlist

Timing constraint

65nm technology library

Figure 4.2: Overview of the proposed approach

The approach starts with all low Vt, small sized and non-stressed circuit. It

first performs an initial dual Vt assignment. Then the approach enters a loop and

performs the following three steps iteratively: 1. Compute the number of urgent

paths each gate covers; 2. Select as few gates as possible to cover as many urgent

paths as possible. Apply either gate upsizing or mechanical stress to the selected

gates so that slacks are created on the urgent paths being covered; 3. Select as many

low Vt gates as possible and change them into high Vt without timing violation.

Power savings achieved in step 3 can normally exceed the power overhead in step 2

because the number of gates being changed in step 3 is normally much larger than

that in step 2. The loop terminates when there is no more power savings achieved.

Performing initial dual Vt assignment provides a good starting point before
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entering the loop. After this phase, the urgent paths for each gate are exposed and

approach timing constraint. By speeding up the gates that cover as many urgent

paths as possible, which is done in step 2 of the loop, effective slacks can be created

for many low Vt gates and large power savings can be achieved in return. The starting

point in our approach is fundamentally different from most of the sensitivity-based

works, where they either start from the fastest circuit, or the most power efficient

one. In the former case, most paths have sufficient timing slack; while in the latter

case, most paths violate timing. In either case, it gives subtle hints on which gates

should be accelerated.

The dual Vt assignment in both the initial phase and in step 3 of the loop

adopts levelization algorithm, where gates are changed level by level, in the order

of the magnitude of power savings [93]. In the remaining content of this section, we

will elaborate the first two steps performed in the loop.

4.2.1 Compute number of urgent paths each gate covers

The urgent path of Gi can be obtained by the longest path among those that

enter Gi (denoted by UPi in) combined with (denoted by ;) Gi itself and the

longest path among those that leave Gi (denoted by UPi out):

UPi = UPi in ; Gi ; UPi out

Define the previous gate of Gi as the gate connecting to the incoming net with the

latest arrival time (denoted by Gprev(i)), and the next gate as the gate connecting to

the outgoing net with the earliest request time (denoted by Gnext(i)). Since UPi in
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should always go through Gprev(i) before entering Gi, and UPi out should always

go through Gnext(i) after leaving Gi, the urgent path of Gi can be retrieved by the

following recursion:

UPi in = UPprev(i) in ; Gprev(i)

UPi out = Gnext(i) ; UPnext(i) out

As a result, if we record the previous gate and next gate for each gate in the circuit by

one forward and one backward traversal, the urgent path for each gate can be traced.

This procedure is of the same complexity as performing static timing analysis.

Gate Gi not only covers the urgent path of itself, it can cover multiple urgent

paths of other gates. We define the urgent path set of gate Gi as the set of urgent

paths Gi covers, denoted by UP i. We compute the number of urgent paths Gi

covers (|UP i|) by performing another round of forward and backward traversal.

The procedure is based on the following key observation:

Lemma 1: if a gate Gi covers the urgent path of another gate Gj, UPj should

either overlap with UPi in or with UPi out, or both.

Proof Suppose Gj is topologically prior to Gi and Gi covers UPj (see Figure 4.3).

Assuming UPj does not overlap with either UPi in or UPi out, it will contradict

the definition of UPj as by replacing the subpath Pj with UPi out, the new path is

even longer and still goes through Gj. The similar reasoning can be applied to Gk

which is topologically after Gi. UPk must overlap with UPi in.∗

Based on the observation above, we can divide the paths in the set of UP i

into two categories: those that overlaps with UPi in and those that overlaps with
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GkGj

Gi
UPi_in

UPi_out

Pj
Pk

UPj UPkUPi

Figure 4.3: One gate covers the urgent paths of the other two gates.

UPi out. We denote the two sets of paths as UP i in and UP i out, respectively. The

only intersection of the two sets, if any, is UPi.

Before we illustrate the procedure in Figure 4.4, two more lemmas are intro-

duced below to show the correctness of the procedure.

Lemma 2: If Gi is the next gate of its fan-in gate Gij , UP ij out ⊆ UP i out.

Proof Consider an urgent path ŨP ∈ UP ij out, ŨP overlaps with UPij out

according to the definition of UP ij out. Since Gi is the next gate of Gij , UPij out

must contain UPi out as its subpath. As a result, ŨP also overlaps with UPi out

and according to the definition of UP i out, ŨP ∈ UP i out.∗

Lemma 3: If Gi is the previous gate of its fan-out gate Gik , UP ik in ⊆ UP i in.

Proof Similar to proof of Lemma 2 and omitted here.

The procedure described in Figure 4.4 obtains the size of |UP i| by computing

|UP i in| and |UP i out| separately. Line 1-6 is the initialization stage. All gates,

except those on PIs and POs, have the number of urgent paths they cover initialized

to zero. In line 8-10, we examine each of the fan-in gates For a certain gate Gi. If

Gi is the next gate of its fan-in gate Gij , Lemma 2 indicates that size of UP ij out

will contribute to the size of UP i out (line 10). Similarly, in the backward traversal

described in line 14-16, if Gi is the previous gate of its fan-out gate Gik , size of
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// Initialization
1. for each gate Gi

2. |UP i in| = 0; |UP i out| = 0;
3. if all of Gi’s incoming nets are PIs
4. |UP i out| = 1;
5. else if all of Gi’s outgoing nets are POs
6. |UP i in| = 1;
// Forward traversal
7. for each gate Gi following topological order
8. for each fanin gate Gij of Gi

9. if next(Gij) == Gi

10. |UP i out| += |UP ij out|;
11. if prev(next(Gi))! = Gi

12. |UP i out| += 1;
// Backward traversal
13. for each gate Gi reversing topological order
14. for each fanout gate Gik of Gi

15. if prev(Gik) == Gi

16. |UP i in| += |UP ik in|;
17. if next(prev(Gi))! = Gi

18. |UP i in| += 1;
// Combine
19. for each gate Gi in the circuit
21. |UP i| = |UP i in| + |UP i out| - 1;

Figure 4.4: Compute #urgent paths each gate covers by forward and backward
traveral.

UP ik in contributes to the size of UP i in (line 16) based on Lemma 3. In line 11-

12, the urgent path if Gi itself (UPi) is added into UP i out if it is not previously

included in line 8-10. UPi was not included only when Gi is not the next gate of its

previous gate, therefore UPi is not counted in line 10 when examining the previous

gate. Similarly, line 17-18 include UPi into UP i in if it is not previously included

in line 14-16. Line 20-21 combines the results of |UP i in| and |UP i out| into |UP i|

while eliminating the double count of UPi.

If there are n gates in the circuit with m edges. The complexity of this step
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will be the same as circuit traveral, which is O(n+m).

4.2.2 Urgent path covering

In the second step of the loop, we select as few gates as possible to cover as

many urgent paths as possible. For each gate being selected, either gate upsizing or

mechanical stress is applied to reduce the gate delay.

We use a heuristic approach to perform urgent path covering. The following

metric is defined:

Wi = |UP i| ×max{
δDik

δPik

|k = 1, 2} (4.4)

where i indicates different gate, k indicates two options of gate upsizing or me-

chanical stress. The larger W of a gate, the larger slack it brings and more urgent

paths will benefit, while smaller power overhead is incurred. Both δDik and δPik

(k = 1, 2) are pre-estimated. Upsizing a gate does not necessarily reduce the path

delay, because larger gate brings larger load to its fan-in gates and their delay will

increase. If it results in timing violation, the option of gate upsizing is regarded as

ineligible.

We find a set of gates as small as possible to cover urgent paths by iteratively

selecting the gate with the largest W . After a gate is selected and changed, incre-

mental timing analysis is performed. δDik and δPik (k = 1, 2) for all the gates in

the circuit are re-estimated because the input transition delay and/or output load

capacitance can be different. We also need to update the number of urgent paths

each gate covers, because some of them have been covered by the selected gate. The
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iteration stops when the number of urgent paths newly covered is smaller than a

threshold. Figure 4.5 elaborates the update procedure.

1. |UP i out| = 0; |UP i in| = 0;

update fanin urgent path(Gi)
2. if Gi ∈ PI
3. return;
4. for each fanin gate Gij of Gi

5. if next(Gij) == Gi

6. |UP ij out| = 0;
7. update fanin urgent path(Gij);

update fanout urgent path(Gi)
8. if Gi ∈ PO
9. return;
10. for each fanout gate Gik of Gi

11. if prev(Gik) == Gi

12. |UP ik in| = 0;
13. update fanout urgent path(Gik);

Repeat line 7-21 in Figure 4.4

Figure 4.5: Update #urgent paths each gate covers

When gate Gi is selected, all the urgent paths in the set of UP i are covered.

Line 1 therefore updates the size of UP i to zero. In line 2-7, transitive fan-ins

of Gi are examined. According to Lemma 2, UP ij out ⊆ UP i out and therefore

|UP ij out| ≤ |UP i out| if Gi is the next gate of its fan-in gate Gij . Since |UP i| is

updated to zero in line 1, |UP ij out| ≤ |UP i out| ≤ |UP i| = 0 (line 6). With the

help of next gate, all the transitive fan-in gates getting affected can be recursively

backtraced. Similarly, line 8-13 updates UP ik in to zero if transitive fan-out gate Gik

is the transitive previous gate of Gi. The update in |UP out| of the transitive fan-in

gates of Gi will also affect |UP out| of other gates. We perform the same forward

traversal from Figure 4.4 to update |UP out| of un-updated gates. Similarly, the
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same backward traversal from Figure 4.4 is applied to update |UP in| due to the

change in |UP in| of the transitive fan-out gates of Gi.

If we evaluate the complexity of this step, selecting the gate with largest weight

takes O(n) complexity. Re-estimating δDik and δPik takes another O(n) complexity.

Performing the update in Figure 4.5 won’t be of higher complexity than four passes

of circuit traversal, which is bounded by O(m + n). Incremental timing analysis

can also be bounded by O(m + n). So the total complexity of selecting one gate is

O(m + n). Meanwhile each gate in the circuit won’t be selected into urgent path

covering for more than twice because there are only options of either gate sizing

or mechanical stress. The accumulative complexity of urgent path covering over all

loops can therefore be bounded by O(n(m+ n)).

The complexity of performing dual Vt assignment can vary by different al-

gorithms. Suppose it is of O(c(n,m)) accumulative complexity over all loops, the

overall complexity of our approach can therefore be evaluated as O(n(m + n) +

n(m+ n) + c(n,m)) = O(nm+ c(n,m)).

4.3 Experimental Results

We use 9 different types of cells from the same 65nm low-power dual-Vt indus-

trial library as in [90], where each cell has both low Vt and high Vt implementations.

The library also provides implementations with larger driving strength for each type

of cells. These implementations characterize the behavior of gate upsizing, which

has increased leakage but reduced delay. In our current work, only one larger ver-
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sion of each cell type is included for ease of analysis. However, our approach can

be easily extended to more general cases, and given more options, better results

can be expected. The behavior of mechanical stress is characterized by the data

provided in [90]. So the library used in our work can be regarded as the one con-

taining 9 cell types, each with three options: low/high Vt, small/large size, and

unstressed/stressed, which are eight combinations in total. The switching activity

and dynamic power is calculated by propagating the user-specified toggle rate and

static probability at the primary inputs. In this work, we specify static probability

as 50% and toggle rate as 10%.

We apply our approach on 8 benchmarks from OpenCores [115]. The number

of cells in the design is listed in Table 4.5, ranging from a few thousands to 38

thousands. We obtain the netlist of these designs using Synopsys Design Compiler.

The ambient temperature is assumed to be 25oC, and supply voltage is assumed to

be 1.2V .

Table 4.5: Number of cells for each benchmark circuit after synthesis.

Benchmark des3 tv80s mc top systemcaes

#cells 3758 6991 8140 10498

Benchmark ac97 pci bridge32 aes cipher top sha512

#cells 11362 20043 21249 38002

As mechanical stress is the newly introduced optimization technique, our first

set of experiments is designed to show the effectiveness of mechanical stress. Table

4.6 lists different leakage and dynamic power consumption under the following three
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cases: Column 2-4 in the first tabular shows the results when only dual Vt (D) is

applied based on levelization algorithm [93]; Column 5-9 in the first tabular shows

the results when combined dual Vt and gate sizing (D+S) is applied; The second

tabular gives the results when mechanical stress is also incorporated (D+S+Str). We

apply our urgent path guided approach to both D+S and D+S+Str cases. In column

5-7 of the first tabular, the leakage, dynamic and total power savings/overhead

achieved by D+S are compared against dual Vt only; while the power savings in the

second tabular achieved by D+S+Str are the further savings compared with D+S.

On average, leakage power is reduced by 7.31% when gate sizing is combined, and

is further reduced by 9.77% when mechanical stress is added. The straightforward

reason is that gate upsizing and mechanical stress helps create timing slacks in the

circuit, enabling more low Vt cells to be changed into high Vt. This can be observed

from column 4, 8 of the first tabular, and column 5 of the second tabular, where the

number of high Vt cells grows larger and larger. Mechanical stress is sometimes more

efficient in trading power for speed than gate sizing, which partially contributes to

the further leakage saving. It is also interesting to notice that the number of large

cells also increases after mechanical stress is introduced (column 9 of the first and

column 6 of the second). It is because the slack created by mechanical stress helps

offset the delay increase in the fan-in cells brought by gate upsizing, which would

otherwise result in timing violation. Gate sizing thereby can be more thoroughly

exploited for potentially more power savings. To summarize, mechanical stress not

only functions as an alternative for gate sizing, it is also a supplement to apply gate

sizing under tight timing budget. The average power consumption saving is much
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smaller, with 1.57% by D+S and 2.79% more by D+S+Str. It is due to the slight

increase in dynamic power (around 0.86%) caused by gate sizing, and the fact that

dynamic power is still relatively larger than leakage power.

In our second set of experiments, we investigate the crucial impact of employing

urgent paths into the power optimization procedure. We compare our approach with

the one without the guidance of urgent paths simply by defining the metric in section

4.2.2 as Wi = max{
δDik

δPik

|k = 1, 2} instead. The results are reported in Table 4.7.

For ease of comparison, we still list the results in the second tabular of Table 4.6

into the second one of Table 4.7, though the absolute power consumption is the

same as in Table 4.6 after conversion. In all but one circuit, either the number

of large cells or the number of stressed cells is much smaller if urgent path is not

employed. It is because without the guidance of urgent paths, the cells selected in

step 2 of the loop in our algorithm may reside in paths not under the most tight

timing budget. Changing these cells into large or stressed version won’t be able

to contribute effective slack to the low Vt cells in the circuit. Therefore the low Vt

cells won’t be eligible to be changed into high Vt and power consumption cannot be

saved or even retrieved. As a result, rather than keep on changing cells into large

or stressed ones and incurring more power overhead, the procedure would stop at

an early stage. In ac97 however, there are more large cells and stressed cells when

urgent paths is not employed, but the number of high Vt cells is still smaller. This

on the other hand also indicates that the location of large and stressed cells matters

more than their quantity. Figure 4.6 compares the different number of high Vt cells

we can afford to have in the circuit when every ten more cells are upsized or stressed.
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We take des3 and pci bridge32 as examples. It is obvious to see that more high Vt

cells can be afforded at each sample point and the number also grows faster if guided

by urgent paths. On average, the urgent path guided approach consumes 12% less

leakage power and 3.49% less total power.

Figure 4.6: X axis: sample points when every ten more cells are upsized or stressed.
Y axis: number of high Vt cells in the circuit. Left: des3. Right: pci bridge32.

Last but not the least, we extend the sensitivity-based approach in [81] to deal

with combined dual Vt with gate sizing and mechanical stress. The approach starts

from the all high Vt and small sized circuit, which corresponds to minimal dynamic

and leakage power but maximal delay. In each iteration, the approach finds among

all the cells with negative slacks, the option of which with the largest sensitivity. It

modifies the cell by either upsizing, reducing Vt or applying mechanical stress. Then

it updates the circuit using static timing analysis. The iteration terminates when it

achieves timing closure. There can still exist slacks at the end of the procedure. To

make fair comparison, we apply levelization in the end to balance the circuit and

obtain more power savings. The results are reported in Table 4.8. Again the results

of urgent path based approach are the same as those in Table 4.6 and Table 4.7.

Similar to what happened in our second set of experiments, sensitivity-based
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approach in [81] select cells purely based on power/delay tradeoff to make up timing.

Without considering the actual impact it can bring to the circuit by changing a

cell, the effectiveness of sensitivity-based approach is always limited. Compared

to sensitivity-based approach, our approach results in 13.5% less leakage power

consumption and 5% less total power consumption.

4.4 Summary

This work is the first work that improves traditional dual Vt technique by

incorporating gate sizing and mechanical stress for power optimization. Mechanical

stress not only provides a more power efficient alternative to gate sizing for delay

reduction, it also facilitates gate sizing when the circuit is under tight timing budget.

The work also proposes a novel urgent path guided approach to help select cells to

create slacks. The experimental results show that the urgent path guided approach

enables more cells to be changed to high Vt and thus consumes less leakage and total

power than its purely sensitivity-based counterparts.
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Table 4.6: Power consumption comparison among dual Vt only (D), dual Vt combined
with gate sizing (D+S), combined dual Vt and gate sizing further incorporating
mechanical stress (D+S+Str).

D D+S

Benchmark leakage dynamic leakage dynamic total
(nW) (nW)

#high
saving overhead saving

#high #large

des3 329.33 517.68 2544 6.39% 0.25% 2.34% 2633 32

tv80s 212.05 264.18 6199 1.69% 0.09% 0.70% 6217 41

mc top 250.13 643.47 6514 6.05% 0.00% 1.69% 6576 189

systemcaes 305.59 2713.9 9218 2.19% 0.56% -0.28% 9273 203

ac97 862.98 2770.6 6226 32.2% 0.89% 6.97% 7367 101

pci bridge32 507.48 943.93 15799 1.92% 0.10% 0.61% 15851 130

aes cipher top 1427.5 3234.2 16409 7.62% 2.55% 0.56% 17048 899

sha512 1920.8 1894.7 30328 0.41% 0.44% -0.02% 30380 192

average 7.31% 0.61% 1.57%

D+S+Str

Benchmark leakage dynamic total
saving overhead saving

#high #large #stressed

des3 20.2% 0.80% 7.03% 3085 178 1072

tv80s 0.00% 0.00% 0.00% 6217 38 2

mc top 6.44% 1.01% 0.98% 6675 230 80

systemcaes 0.80% 0.58% -0.44% 9360 373 167

ac97 2.36% 0.13% 0.30% 7429 103 17

pci bridge32 38.4% 0.00% 13.3% 16649 191 59

aes cipher top 5.32% 2.37% -0.18% 17772 1513 1247

sha512 4.64% 1.92% 1.37% 30970 640 1230

average 9.77% 0.84% 2.79%
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Table 4.7: Power consumption comparison between approaches with and without
the guidance of urgent paths

Without urgent path

Benchmark leakage dynamic
(nW) (nW)

#high #large #stressed

des3 322.62 521.63 2601 53 70

tv80s 212.09 264.18 6199 0 1

mc top 240.97 646.45 6564 35 37

systemcaes 305.62 2713.9 9218 1 0

ac97 597.68 2871.7 7420 278 242

pci bridge32 485.30 943.97 15908 35 41

aes cipher top 1427.5 3234.2 16409 0 1

sha512 1920.8 1894.7 30328 1 0

With urgent path

Benchmark leakage dynamic total
reduction overhead reduction

#high #large #stressed

des3 23.8% 0.29% 8.90% 3036 99 701

tv80s 1.71% 0.08% 0.72% 6217 38 2

mc top 8.76% 0.55% 1.98% 6675 230 80

systemcaes 2.98% 1.14% -0.72% 9360 373 167

ac97 4.40% -2.54% 2.86% 7429 103 17

pci bridge32 36.8% 0.03% 12.5% 16649 191 59

aes cipher top 12.5% 4.98% 0.38% 17772 1513 1247

sha512 5.03% 2.37% 1.36% 30970 640 1230

average 12.00% 0.86% 3.49%
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Table 4.8: Power consumption comparison between sensitivity-based approach and
urgent path guided approach

Sensitivity based

Benchmark leakage dynamic
(nW) (nW)

#high #large #stressed

des3 293.88 525.20 2724 97 67

tv80s 241.01 266.52 6257 159 16

mc top 228.42 644.66 6636 82 6

systemcaes 309.28 2734.2 9264 120 11

ac97 781.22 2932.0 6704 499 33

pci bridge32 408.77 944.02 16222 142 2

aes cipher top 1324.8 3459.7 17340 1565 129

sha512 2093.7 1950.6 30976 1457 172

Urgent path guided

Benchmark leakage dynamic total
reduction overhead reduction

#high #large #stressed

des3 16.3% -0.40% 6.10% 3036 99 701

tv80s 13.5% -0.80% 6.83% 6217 38 2

mc top 3.74% 0.83% 0.37% 6675 230 80

systemcaes 4.13% 0.39% 0.07% 9360 373 167

ac97 26.9% -4.55% 9.24% 7429 103 17

pci bridge32 25.0% 0.03% 7.53% 16649 191 59

aes cipher top 5.75% -1.86% 2.94% 17772 1513 1247

sha512 12.9% -0.56% 6.94% 30970 640 1230

average 13.5% -0.87% 5.00%
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Chapter 5

Enhancing Dual-Vt Design by Considering On-Chip Temperature

Variation

As technology scales down to the deep sub-micron domain, chip power dissipa-

tion and power density are increasing rapidly. As a result, the heat accumulation on

the chip causes the rise of on-chip temperature and its spatial variation known as hot

spots. Such on-chip temperature variations are nonuniform across the chip and on

high-performance microprocessor chip hot spots can be 50oC hotter than other parts

of the die. To reduce the peak on-chip temperature, most active research are on dy-

namic thermal management (DTM) at microarchitecture level [94, 101, 106, 107]; on

resource allocation and binding at behavioral synthesis [113]; and on cell placement

and floorplanning at physical design level [96, 97, 98, 110].

Temperature has a strong impact on leakage current, an exponential depen-

dency according to the Berkeley BSIM model. Several work have been reported

on the study of temperature aware leakage minimization at high level design [95,

99, 114], which we will review in next section. The goal of this work is to explore

how to incorportate on-chip temperature variation into the low level dual Vt design

methodology to enhance the leakage reduction.

Dual-Vt technique is a popular leakage reduction methodology in logic and

physical synthesis. It is based on the fact that cells implemented by low Vt has
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short delay but large leakage comparing to the same cell implemented by high Vt.

Therefore, it assigns high Vt to cells off the timing critical paths to reduce leakage

while using low Vt cells on timing critical paths for timing closure. Current dual-Vt

assignment algorithms use the delay and leakage data provided by the cell library

and treat temperature as a pre-assumed constant [100, 111].

Ignoring the on-chip temperature variation will not fully explore the potential

of dual-Vt methodology. For example, in the TSMC’s 65nm low power dual-Vt li-

brary, the 2-input NAND cell’s leakage is 0.016nW and 0.205nW at 25oC and 125oC,

respectively when implemented using high Vt. However, these numbers change to

0.074nW and 3.973nW when the same cell is implemented using low Vt. Therefore,

when we raise the cell’s Vt from low to high, the leakage reduction will be 0.189nW

if the cell is at a 25oC region, while the saving will be as much as 3.899nW for

the same cell at a 125oC region. This implies that with temperature information,

dual-Vt design can be more effective.

More specifically, treating temperature as a constant during dual-Vt design

has the following drawbacks: (1) Non-minimized leakage. Without considering tem-

perature explicitly, cells in high temperature region cannot be identified for high

Vt to achieve maximal leakage saving. (2) Hot spots and thermal runaway. When

temperature is higher than the pre-assumed constant, leakage will be larger than

expected which will further raises temperature, creating hot spots and causing ther-

mal runaway. (3) Over-designed cooling system. Using pre-assumed constant values

such as the highest operating temperature will guarantee timing and avoid themal

runaway. However, it will (significantly) over-estimate leakage and thus the cooling
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cost.

Fig. 5.1 on the left is the temperature profile on aes core circuit from the

Opencores benchmark [115] with Vt assignment guided by a state-of-the-art dual-Vt

assignment algorithm [111] currently used in industrial CAD tools. aes core circuit

is a cryptocore which implements Advanced Encryption Standard (AES). We see

that the peak temperature is 70.37oC and there are 1309 cells (about 10%) have

temperature 55.37oC or higher.

We modify this design by our temperature-aware enhancement approach and

we are able to reduce the peak temperature to 68.54oC. More importantly, there are

only 863 cells with 55.37oC or higher and the total leakage saving in combinational

part is about 17.27% of the original design. This can be seen clearly from the smaller

high temperature area in Fig. 5.1 on the right.

In this work, we study how to incorporate on-chip temperature variation into

the leakage model to enhance the leakage reduction of the dual-Vt design in the

following problem: given a gate level circuit implemented by a dual-Vt cell library

for leakage minimization, how to improve the design in terms of leakage reduction

while considering the temperature-leakage dependency and the on-chip temperature

variation.

5.1 Challenges of Temperature-Aware Dual-Vt Design

The first challenge is how to obtain the temperature information for each cell,

which depends on many factors such as the location of the cell, the dynamic and
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Figure 5.1: Temperature profile of the AES design using the dual-Vt algorithm
proposed in [111] (left) and after our temperature-aware enhancement approach
(right).
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Figure 5.2: Nine cells extracted from AES design using the dual-Vt algorithm pro-
posed in [111].

leakage power of the circuit, and the cooling system. Such temperature information

is necessary for the evaluation of circuit leakage for any temperature-leakage models

[109]. We perform a global placement with the given initial dual-Vt assignment.

This gives us the physical location of each cell, based on which we can partition the

circuits and apply the commonly used 3-D mesh temperature model [96] to obtain

the steady-state temperature distribution.

Second, there are a few technical difficulties to implement our basic idea:

assigning more cells with high Vt in hot regions in order to reduce leakage. We

use an example of nine cells extracted from the above aes core benchmark circuit

(Fig. 5.2) to illustrate this.

1) We prefer to change more cells in hot region to high Vt to reduce both
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leakage and temperature. However, changing multiple cells (e.g. G1 and G3, or G4

and G5) may create long delay overhead. But changing G1 and G2 together will

create the same delay penalty as replacing G3 alone while giving twice the leakage

saving.

2) When we lower Vt on cells to make the timing, the selection of these cells

are critical. For example, using low Vt on G7 and G8 can make up the timing for

paths p1 and p2, respectively; while a low Vt implementation of G9 can make up the

timing for both paths. Clearly the second option is preferred for its smaller leakage

increase.

3) We follow the current industry design standard to use worst-case delay as

the cell delay, despite the known temperature-delay dependency. That is, changing

the Vt of the same cell in different temperature has the same impact on circuit

timing. However, changing G6 to high Vt does not save as much leakage as changing

G3 and changing G7 to low Vt will incur more leakage overhead than changing G9.

This makes the problem more complicated.

In summary, the key technical challenge in our approach is how to select mul-

tiple low Vt cells and change them to high Vt with minimal impact on circuit timing

and maximal leakage saving; and how to select high Vt cells and change them to low

Vt for timing closure with minimal leakage overhead. We propose effective heurisitcs

solutions to solve the problem. Experimental results show that we are able to achieve

an average of 11.2% more leakage reduction and 39% reduction of cells in hot regions

comparing to the dual-Vt assignment approach [111].
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5.2 Related Work

With the increasing magnitude of leakage power, many leakage reduction tech-

niques have been proposed for low power designs. When the circuits are in standby

mode, techniques such as power-gating, input vector control and forward body-

biasing etc. have been proposed to reduce the static leakage power. A survey of

these techniques can be found in [105].

Dual-Vt is one of the most effective methods to reduce both static and dynamic

leakage power in the circuit. It was first proposed by Wei et al. [112]. In this

approach, all the cells are initially assigned low Vt and a static timing analysis

is performed to obtain the timing slack for each cell. Then it assigns high-Vt to

cells that have sufficient timing slack following the topological order from primary

inputs to primary outputs. Wang et al. [111] proposed a more efficient graph-

partitioning-based dual-Vt assignment algorithm. They partition the circuit graph

using Max-Cut algorithm. Cells in the same cut set can be considered for high-Vt

assignment together without affecting the timing slack of each other. Srinivastava

et al. consider dual-Vt, voltage scaling and gate sizing simultaneously due to their

common dependency on delay/power trade-offs [108]. They calculate the leakage

sensitivity of each cell and use a greedy approach to assign high Vt; if there is not

enough timing slack, gate sizing is applied. Most recently, a dual-Vt assignment

algorithm for sequential element in the circuit is proposed in [100].

Temperature, another important design consideration in deep submicron tech-

nology, has been extensively studied in many design phases. In physical design, [110]
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proposed a compact thermal model to calculate the temperature profile efficiently

on the die. Based on the temperature distributioin, they proposed a placement algo-

rithm such that the hot spots can be reduced without compromising area and wire

length. [96] proposed a multigrid-like heuristic that simplifies the thermal equation

at each level of partitioning and makes it possible to incorporate temperature di-

rectly as placement constraints. Temperature-aware floorplanning and clock tree

design are also studied in [97, 98] and [103] respectively. In behavior synthesis,

Mukherjee et al. have discussed temperature aware resouce allocation and bind-

ing for thermal management [104]. Yu et al. propose to balance different types of

resource under area constraint to reduce peak temperature [113]. At microarchi-

tecture and system level, Brooks and Martonosi define the major components and

explore several techniques for DTM on microprocessor [94]. Skadron et al. describe

the design of HotSpot thermal model and several DTM techniques [106]. Srinivasan

and Adve propose a predictive DTM algorithm for multimedia applications where

dynamic voltage scaling and architecture adaptation have been used [107].

Temperature’s impact on leakage has also been studied in several works. Ku et

al. propose a thermal-aware cache powerdown technique that lowers the temperature

and thus leakage of the active parts [101]. He et al. use a system-level leakage model

for leakage reduction on caches and discuss the interdependency between leakage

and temperature [99]. Mukherjee et al. control peak temperature to reduce leakge

during resource binding [104]. Yuan et al. develop an online algorithm to turn on

and off the processor based on temperature and workload to reduce leakage [114].

We aim to use on-chip temperature variation to guide further leakage reduction
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by the dual-Vt design method. This is different from the above approaches because

at a low design level (i.e., gate level) where leakage data is provided in the cell

library, leakage and its reduction can be modeled more precisely. [95] is the only

work we know that connects temperature and dual-Vt assignmnet. However, they do

not consider temperature variation and the inversed temperature-delay dependency

in their circuit is not observed in our 65nm cell library.

5.3 Leakage and Temperature Models

In this section, we describe the power and temperature models we used for

temperature aware Vt assignment. These models have been validated by SPICE

simulation and widely adopted in other literatures [96, 99, 109, 110].

5.3.1 Leakage and Power Model

Power consumption in CMOS circuits consists of dynamic and leakage power.

Dynamic power depends on supply voltage, switching activity, clock frequency and

load capacitance, but is insensitive to temperature. In our experiment, dynamic

power is obtained directly from industry CAD tool.

Leakage power, on the other hand, has a strong dependency on temperature

and can be modeled at many design levels [96, 99, 100, 109, 114]. Our proposed

method is independent of the temperature-leakage model. We adopt the following

quadratic model proposed in [109] because of its accuracy (comparing to SPICE

simulation) and computational efficiency:
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Ileak(T ) = I0(c1(T − T0)
2 + c2(T − T0) + 1), (5.1)

where I0 is the leakage current at the nominal temperature T0, c1 and c2 are tech-

nology dependent constants, which vary from cell to cell and are normally obtained

empirically.

The TSMC 65nm dual-V t library has cell information characterized at different

temperature corners. We first find the leakage power for each cell under minimum,

nominal and maximum temperatures. We then perform curve fitting to compute

the coefficients c1 and c2. This is performed twice for each cell, one at low Vt and

one at high Vt. For instance, a INVD1 cell with drive strength 1X in the library has

c1 = 6.01×10−3, c2 = −5.02×10−2 at low Vt; and c1 = 3.54×10−3, c2 = −2.58×10−2

at high Vt.

5.3.2 Temperature Model

Temperature on VLSI chip exhibits both temporal and spatial characteristics.

Because the time constant of on-chip heat conduction is usually several orders of

magnitude larger than the clock periods in modern VLSI designs, the transient

change in power does not have much impact on temperature distribution and hence

we only consider the steady-state temperature profile.

Fig. 5.3 is a typical 3-D heat conduction model for VLSI chip [96]. The chip

is partitioned into many thermal blocks. The heat diffusion between each thermal

block and from thermal blocks to the ambient can be described by different thermal

conductance value. Compact thermal model [110] shown in (5.2) can be deduced if
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Figure 5.3: 3-D mesh model for heat conduction on chip [96].

we are only interested in the thermal blocks at the top layer with correspond to the

thermal distribution on the silicon surface. The heat in each of these top blocks are

mainly caused by the power dissipation of the standard cells in the block.
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, (5.2)

where G is the thermal conductance matrix, and vector T and P are the temperature

and power dissipation in each thermal block respectively. In our work, however,

since the leakage power is associated with a given Vt assignment and is affected by

temperature as in (5.1), the power vector ~P is a function of temperature ~T and ~Vt.

Equation (5.2) will be in the following format:

G× ~T = ~P (~T , ~Vt) (5.3)

Theoretically, we should be able to compute the steady-state temperature

under a certain Vt assignment. However, because of the quadratic dependency of ~P
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on ~T , a closed form of the solution to this nonlinear equation (5.3) is impractical and

unnecessary for large scale circuit design. Instead, we apply an iterative approach

which keeps on updating ~P based on (5.1) and updating ~T based on (5.2) until

the temperature converges. The convergence is within a few iterations under our

experiment settings.

5.4 Temperature-Aware Dual-Vt Design

5.4.1 Overview of the Approach

We propose to enhance a dual-Vt assignment by assigning more cells with high

Vt in hot regions in three phases. This is motivated by the observation that it

is advantageous to distribute slack to cells in high temperature region where the

change of low Vt to high Vt will give more leakage saving.

First, we do circuit placement based on the Vt assignment that we want to

improve. Then we partition the circuit and compute each region’s steady-state

temperature as described in the previous section.

In the second phase, we repetitively adjust the initial Vt assignment by chang-

ing selective low Vt cells in high temperature region to high Vt (for leakage reduction),

and changing high Vt cells in low temperature regions to low Vt (for timing closure).

Steady-state temperature corresponding to the current Vt assignment is computed

based on the iterative approach indicated by Section 5.3.2. This procedure stops

when there is little leakage saving or the temperature variation among different re-

gions across the chip becomes small. We will elaborate this phase in the rest of this
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section.

When we change high Vt cells to low Vt for timing closure, cells that are on

the same path as these new low Vt cells may have increased slack. In the last phase,

we take advantage of these positive slacks for further leakage reduction by assigning

more cells high Vt. At the end, another round of thermal analysis will be performed

to obtain the final leakage and temperature information.

5.4.2 Terminologies

If there is a path that goes from cell ci to cell cj, we say ci is a transitive

fanin of cj and cj is a transitive fanout of ci. For cell ci, define TIi and TOi as

the transitive fanin set and transitive fanout set that consists of all ci’s transitive

fanins and fanouts, respectively. We can construct TIi and TOi using the following

formula:

TIi = ∪cj(TIj ∪ {cj}) (5.4)

TOi = ∪cj(TIj ∪ {cj}), (5.5)

where ∪ is taken over all fanin cj of ci in (5.4) following a topological order {c1, c2, · · · , cn}

and the ∪ in (5.5) is taken on all fanout cj of ci in the reverse order {cn, · · · , c2, c1}.

The union of cell ci’s transitive fanin set and transitive fanout set is defined as

Covi as follows:

Covi = {cj|cj ∈ TIi ∪ TOi} (5.6)

Covi is actually the set of cells whose timing can be affected by ci.

Let INi and OUTi be the number of paths going into ci from primary inputs

96



and going out to primary outputs from ci, respectively. Given a topological order

{c1, c2, · · · , cn}, they can be calculated by:

INi = PIi +
∑

j

INj (5.7)

OUTi = POi +
∑

j

OUTj, (5.8)

where PIi is the number of primary inputs in ci’s fanin and POi is the number of

primary outputs in ci’s fanout, the
∑

is taken over all fanin cj of ci in (5.7) in the

order of {c1, c2, · · · , cn} and the
∑

in (5.8) is taken in the reverse order {cn, · · · , c1}

for all fanout cj of ci. Clearly we have

Lemma 1. Pi = INi × OUTi gives the number of distinct paths from primary

input to primary output that pass through cell ci.

Lemma 2. For a circuit with n cells, the complexity to compute TIi, TOi, Pi and

Cov(c) is O(n2).

Finally, we define the following metric to measure the impact of changing a

low Vt cell ci to high Vt:

wi(T ) =
∆Li(T )

∆Di × Pi

=
I
V low
t

leak (T )− I
V high
t

leak (T )

(DV high
t

−DV low
t

)× Pi

, (5.9)

where ∆Li(T ) and ∆Di are the leakage saving at temperature T and worst-case

delay increment, respectively, by raising cell i to high Vt at a region with steady-

state temperature T . ∆Di×Pi gives a tight upper bound on the total delay impact

across the entire circuit. This is because that in the worst case when none of the Pi
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paths overlap, we need to find at least one cell on each path and change its Vt from

high to low to make up the extra delay ∆Di.

5.4.3 Raise Vt in Hot Regions

Fig. 5.4 depicts our heuristics on the selection of a set of low Vt cells for Vt

increase. In line 3, we need to compute the leakage saving ∆Li(T ) for each cell

with low Vt at the current steady-state temperature T . The use of metric wi(T )

encourages the selection of cells with large leakage saving and small total delay

overhead. We sort the cells in line 4 to facilitate such selection. The complexity is

O(|R| log |R|), where |R| is the number of cells in the hot region R picked in line 1.

As we have noticed in the introduction, we will select a set of low Vt cells

and raise them to high Vt simultaneously to accelerate the process. We use the

concept of maximal independent set (MIS) for the selection. Lines 5-7 illustrate a

heuristic to construct an MIS, not necessarily an MIS with the maximal size (which

is an NP-complete problem). Because each cell in R will be marked only once and

we can take advantage of the pre-computed TIi and TOi, the complexity of this

part is O(n). Therefore, the complexity of the heuristics in Fig. 5.4 is bounded by

O(n log n).

MIS is indeed an extension of the concept behind the levelization dual-Vt

assignment algorithm [111] because cells at the same level belong to one independent

set, but not necessarily maximal. Of course, one can use more sophisicated algorithm

to build the MIS, which trades the complexity and performance and is out of the
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scope of this work.

The construction of MIS ensures that when we change multiple cells to high

Vt, the delay penalty will not be additive to make timing closure easier.

Lemma 3. When we change the cells in MIS to high Vt, the delay on any path

(or cell) is bounded by max{∆Di} for all ci ∈ MIS.

5.4.4 Reduce Vt for Timing Closure

With the delay penalty caused by changing Vt from low to high in the hot

region for leakage reduction, we may violate the circuit’s timing constraint by as

much as the upper bound given in Lemma 3. The goal in this step is to meet the

timing constraint before the next iteration of MIS selection in hot regions. As a

dual problem to the previous one, we propose to find minimal number of high Vt cells

in low temperature region and change them to low Vt, so that the leakage overhead

can be minimized. Our heuristic algorithm is shown in Fig. 5.5 below.

Candidate cells that can be used to make for timing closure should be high Vt

cells on negative slack path(s) (line 2). Candidate can be built in O(n) by checking

1. find the region R that has the highest temperature T ;
2. mark the cells with high Vt in R;
3. compute wi(T ) by (5.9) for each low Vt cell in R;
4. sort low Vt cells in R in decreasing order by wi(T );
5. for each unmarked cell ci in R in the above order
6. add cell ci into candidate set MIS;
7. mark ci and all the cells in R ∩ (TOi ∪ TIi)
8. change ci in MIS to high Vt

Figure 5.4: Selecting an MIS of low Vt cells from the hot region.
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the cell one by one if it has high Vt and negative slack. For each cell ci in the set

Candidate, we compute the leakage increase and delay decrease when we reduce its

Vt (line 3). Negative slack cells whose timing can get improved by ci are in the set

Effi (line 4). Effi can be built by one traversal on Covi while checking if the cell

has negative slack. This for loop has complexity O(n2).

Then as long as there is timing violation (line 5), we find the best cell ci based

on a metric similar to wi defined in (5.9) and change it to low Vt (lines 6, O(n)).

According to the metric, cells in low temperature region are in favor because they

cause less leakage increase comparing to the same cells in higher temperature region.

Also, cells that compensate more negative slack cells and with larger delay saving

and are favorable, because fewer such cells are likely to be needed. We perform

incremental timing analysis in line 8, which has a complexity of O(n) according to

[102]. The set of negative slack cells, N , may shrink if a cell’s slack becomes zero

or positive (line 9). Updating Effi for each ci remaining in Candidate takes O(n2)

for the same reasoning as above.

Since each time a cell gets assigned to low Vt, the while loop executes at most

1. H = set of high Vt cells; N = set of cells with negative slack;
2. for each ci ∈ Candidate = H ∩N
3. compute ∆Di(T ),∆Li(T ) at ci’s steady-state temperature T ;
4. Effi = N ∩ Covi;
5. while (negative slack cell set N 6= φ)
6. find ci ∈ Candidate with the largest ∆Di × |Effi|/∆Li(T );
7. change ci to low Vt and remove it from Candidate;
8. incrememental timing analysis;
9. N,H change, update Effi for each ci ∈ Candidate;

Figure 5.5: Selecting a minimal set of high Vt cells to meet timing.
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n times before N = φ (this is guaranteed because the timing will be met when all

cells have low Vt). Therefore, the complexity of this heurisitc is bounded by O(n3).

5.4.5 Update of Steady-State Temperature and Iteration of Proce-

dure

After we raise Vt in hot regions and reduce Vt in cold regions for timing closure,

steady-state temperature corresponding to the current Vt assignment is computed

based on the iterative approach indicated in Section 5.3.2. Total leakage under such

temperature and leakage savings are also computed.

Based on the leakage saving and temperature variation from this round of

Vt adjustment, we can decide whether further Vt adjustment is needed. If large

leakage saving is obtained from the current round, we will repeat the procedure

in Section 5.4.3 and Section 5.4.4 for further leakage reduction, and evaluate the

steady-state temperature and leakage saving again.

In summary, because each low Vt cell can be included in an MIS at most once

in Fig. 5.4 for leakage reduction, the number of iterations will be bounded by n.

Therefore, the overall complexity of our algorithm is O(n4) in the worst case. As

we have analyzed and will show by results, real run time complexity is much lower.

5.5 Experimental Results

We use 17 different types of cells from a TSMC 65nm low-power dual-Vt library,

where each cell has both high Vt and low Vt implementation.
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We apply our technique on five benchmarks from OpenCores [115]. The num-

ber of cells in the design ranges from a few thousands to over 50K as shown in the

second column in Table 5.1. We synthesize these benchmarks using Synopsys Design

Compiler and flatten the netlist. We then use the flat design flow to place the cells

using Synopsys IC Compiler. This is because dual-Vt technique is usually applied

on standard cells in flattened design. For hierarchical designs, we can first apply our

technique within each macro and then apply it to the standard cells at top level.

The ambient temperature is assumed to be 25oC. We report leakage power at 25oC

and the dynamic power for each cell from IC Compiler and calculate the leakage

power at any given temperature using (5.1).

Based on the thermal model in Section 5.3.2, we partition the chip into a 40 ×

40 × 6 3-D mesh. The same thermal conductivity parameters as in [96] are adopted:

10 W/moC for the top, 8800 W/moC for the bottom, 7 W/moC for the side, and 150

W/moC for the silicon. Cells scatter over the 40 × 40 regions on the surface of the

chip. A cell is said to belong to one region if the coordinates of the cell’s center falls

in that region. Cells in one region are considered to have the same temperature.

We first use Synopsys Power Compiler to perform dual-Vt assignment on the

circuits. Synopsys Power Compiler utilizes the algorithm described in [111] and does

not consider temperature variation over the chip and its effect on leakage. Then we

apply our temperature-aware dual-Vt assignment technique to re-assign Vt values

on some of the cells based on this initial assignment. The experimental results are

reported in Table 5.1 to show leakage savings and Table 5.2 to show cell temperature

changes achieved by our technique.
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Table 5.1: Comparison in power consumption between the levelization-based dual-Vt

assignment algorithm and our temperature-aware enhancement technique.

% of high Vt Power (uW) leakage
Benchmark #cells

initial new dynamic leakage saving

des3 2698 68% 67% 2563.6 120.0 6.1%

systemcaes 7048 83% 84% 5061.3 480.4 8.0%

ac97 8824 64% 66% 11506.1 2093.3 12.0%

aes core 13816 77% 69% 10013.7 1678.8 17.3%

double fpu 54937 84% 85% 31775.3 3460.1 12.7%

average 76% 74% 11.2%

Table 5.2: Comparison in cell temperature between the levelization-based dual-Vt

assignment algorithm and our temperature-aware enhancement technique.

initial new
Benchmark

T peak T avg #hot T peak T avg #hot
runtimes (s)

des3 37.0 29.1 12 36.0 29.1 11 15

systemcaes 66.1 48.3 11 63.9 48.2 5 55

ac97 89.9 73.8 44 88.8 73.5 3 67

aes core 70.4 46.7 1309 68.5 46.0 863 149

double fpu 76.5 51.6 1911 75.5 51.5 1856 367

In Table 5.1, the third and fourth column show the percentage of high-Vt cells

in the initial assignment and after applying our technique. On average, 76% of the

total cells have been assigned high-Vt by the intial assignment, and 74% high-Vt cells

by our technique. These two figures are close because the initial dual-Vt assignment

algorithm is a greedy algorithm that already tries to utilize the timing slack on non-

critical paths as much as possible to minimize leakage, while our technique seeks to

assign such timing slack in a better way to achieve larger leakage reduction. The
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slight decrease in the percentage of high Vt cells further indicates that the location

of high Vt cells matter more than the number of high Vt cells.

The fifth column shows the dynamic power in the circuit; the sixth and seventh

columns show the leakage power in the combinational part of the design based

on initial dual-Vt assignment and the leakage reduction by our temperature-aware

Vt assignment technique. We only implemented the temperature-aware dual Vt

assignment technique for combinational cells for comparison purpose, because [111]

apply only to combinational circuits. We are currently working to expand our

temperature-aware dual-Vt asssign to include sequential cells. In the two big circuits

(aes core and double fpu), our technique can achieve leakage reduction of 17.3% and

12.7% respectively. In the three small circuits, the leakage saving is smaller (8.7%

on average). This is because the timing paths between flip-flops are much shorter in

those small circuits, so that the temperature variation along the paths are smaller.

In Table 5.2, it compares the peak temperature, the average temperature and

the number of “hot” cells in the circuits before and after applying our technique

respectively. We see that after applying our technique the peak temperatures are

reduced by one to two degrees celsius and the average temperature is almost the

same. This is because of the following two reasons: first, the dynamic power in

this library is still dominating especially when the temperature is low. Therefore,

the reduction in leakage power does not affect the peak temperature significantly.

Second, since we change some of the low-Vt cells in the hot regions to high Vt, we

have to switch some high-Vt cells in the mild or cold regions to low-Vt in order to

make up timing. This will slightly increase the temperature of those cold regions
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and therefore the average temperature remains at the same level. The “hot” cells are

defined as the cells whose temperatures are higher than 90% of the peak temperature

in the original circuit. The 4th and 7th columns show that the number of “hot”

cells have been reduced by our technique.

Finally the last column in Table 5.2 shows the runtimes of our algorithm. The

longest runtime is 367 seconds for the 55K instance design double fpu.

5.6 Summary

In this chapter we propose the first temperature-aware enhancement approach

to improve the leakage performance in dual-V t assignment algorithm. Experimen-

tal results show that we can achieve more leakage saving and fewer gates in high

temperature regions while meeting the timing requirement. It is interesting and de-

batable whether the delay-temperature dependency should be explored for further

leakage reduction. Such dependency does exist and has been well-documented and

studied at high level such as microarchitectural level. Our preliminary results show

that if we are allowed to take advantage of the delay at the steady-state temper-

ature, which is normally much lower than the highest operating temperature, we

will be able to enjoy a much more significant leakage saving and a more balanced

temperature distribution across the chip.However, the risk of such approach is that

timing might be violated for example when temperature during a stretch is higher

than the steady-state temperature. Further researches can be done regarding this

issue.
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Chapter 6

Enhancing DVS Technique for Real-Time Systems by Incorporating

Temperature-Leakage Interdependency

Chip temperature is playing a more and more important role in sub-65nm

designs. High temperature not only create problems in system reliability and per-

formance, it also causes sharp increase in leakage current, which in turn increases

the system power dissipation and could further raises the temperature. When the

cooling devices cannot absorb the heat, such positive feedback between leakage and

temperature can result in thermal runaway [121, 129]. Developing an accurate tem-

perature model is thus crucial for many purposes such as hotspot prediction and

leakge estimation.

Temperature information can be obtained either from on-chip thermal sensors

[122, 139] or from temperature models that treat on-chip heat transfer as an RC

circuit using the following differential equation [129, 130, 133]:

C
dT

dt
+

T − Tamb

R
= P (6.1)

where C and R are the lumped thermal parameters of the system, Tamb is the

ambient temperature, and P is the power dissipation on the chip. The values of the

constant parameters are listed in the results section.

Ideally, the power on the r.h.s. of equation (6.1) should include all sources of

power disipation. Curve 2 in Figure 6.1 shows the numerically accurate transient
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temperature of equation (6.1) obtained by Runge-Kutta formula and Dormand-

Prince pair [123, 126].

However, many models consider only dynamic power and ignore leakage (e.g.,

the HotSpot tool [133]), or treat leakage as a constant. Curve 4 in Figure 6.1 shows

the temperature when leakage is ignored, where we see a significant underestimation

of the steady state temperature by around 5 degree Kelvin. Curve 1 in Figure 6.1

uses the leakage value at the maximal manufacture specified temperature (370K in

this case) and overestimates the steady state temperature by about 4 degree Kelvin.

More accurate models use a piece-wise linear function to estimate leakage at different

temperature regions [121, 130]. But they are not suitable for real-time applications

in general. We will elaborate these in the next section.

Figure 6.1: Temperature predicted by using different power models.

From this, we see clearly the need for an accurate temperature model that

captures leakage’s impact. Our first goal is to develop such a model. To do this,

we consider leakage as a function of time in Equation 6.1 and derive an anyltical
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solution for the temperature model. Curve 3 (dashed curve) in Figure 6.1 is the

temperature predicted by our model, which is a very good match to the baseline

temperature Curve 2. Simulation demonstrates that our model’s mean absolute

error is within 0.5 degree Kelvin on average over different type of applications.

The second goal of this paper is to apply our derived temperature model

to estimate the temperature-dependent leakage and guide dynamic voltage scaling

approach for total energy minimization on real-time applications. We report the

proven optimal solution for the case of single task and propose an online heuristic

for multiple tasks. On 10 sets of real-time tasks, traditional DVS [136, 132] and

the leakage-aware CS-DVS algorithms [125, 128] consume on average 6% and 9%

more total energy than our approach. It is also interesting to learn that CS-DVS

overestimates leakage and selects voltage higher than necessary, which results in

a slight more energy consumption than the DVS algorithms that do not consider

leakage.

6.1 Modeling Temperature-Leakage Interdependency

Our goal is to find an accurate model based on equation (6.1) to describe how

temperature is impacted by power, particularly leakage.

6.1.1 Existing Models

Case 1. The most widely used solution to equation (6.1) treats power P as a

constant that is independent of temperature and time. Then equation (6.1) becomes
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linear and can be trivially solved . Specifically, let T0 be the temperature at time

t = 0, temperature at time t can be expressed as

T (t) = P ·R + Tamb + (T0 − P ·R− Tamb)e
−t/(R·C) (6.2)

A representative example of this case is the popular HotSpot simulator [133]

where P is treated as dynamic power only. Because that total power dissipation

P is always higher than dynamic power, this will underestimate temperature as we

have seen in Figure 6.1. This problem remains when we add leakage to P as a

temperature-independent constant. For instance, when leakage is calculated at the

maximal temperature, we will overestimate temperature as shown in Figure 6.1.

Therefore, we need to first model leakage as a function of temperature. Sub-

threshold leakage and gate leakage are the two major sources of IC circuit’s leakage,

and only the former is very sensitive to temperature [121, 129]. We adopt the

following model for circuit’s leakage current

Ileak = I0 · (A · T 2 · e
αVdd+β

T + B · eγVdd+δ) ·Ngate (6.3)

where the constants can be obtained empirically and for the 65nm technology, we

have A = 1.1e − 12, B = 1.0e − 14, α = 466, β = −1225, γ = 6.3, δ = 6.9, I0 =

1.03e+ 3, and Ngate is the gate count of the circuit [129].

Case 2. There is no analytic solution for Equation (6.1) when we use Equation

(6.3) for leakage. A popular approach is to use piece-wise linear approximation for

leakage. For example, in [131], the authors use the following 2-piece linear model

for the leakage dependent temperature:
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Pleak = Pmid − k1(Tmid − T ) Tmin < T ≤ Tmid

= Pmax − k2(Tmax − T ) Tmid < T ≤ Tmax

This linear dependency ensures that Equation (6.1) is linear and solvable. In

addition, piece-wise linear approximation can provide arbitrarily accurate estimation

when the length of each piece is sufficiently small. However, it is not clear how

many pieces should be used and how to select mid-points (such as Tmid in the above

equation) for the best fit. Besides, the coefficients (such as Pmid, k1 and k2) are all

circuit dependent.

A recent study [130] proposes to separate leakage into two parts, the part that

linearly depends on temperature and the high-order part. The non-linear part is the

high-order terms in the Taylor series, which can be truncated around a reference

temperature. They report the leakage estimation error when the number of pieces

goes from 1 to 10. They show that the error can be reduced by 50% each time

when we go from 1-piece to 2-piece and then to 3-piece, and five or more pieces are

required to keep the error below 1% for their benchmarks. However,this Taylor series

based approximation limits their model to be effective only around the reference

temperature and equation (6.1) in general cannot be solved with these high-order

terms.
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6.1.2 The Proposed Model

We consider P as the sum of dynamic power and leakage power Ileak · Vdd and

use equation (6.3) for Ileak. Equation (6.1) becomes

dT

dt
=

I0 · A · Vdd ·Ngate

C
· T 2 · e

αVdd+β

T

−
T

R · C
+

Tamb

R · C
+

Pdyn

C

+
I0 ·B · Vdd ·Ngate

C
· eγVdd+δ

This non-linear differential equation does not have analytic solution. However,

we observe that the term e
α·Vdd+β

T does not have dramatic change when T varies in

the working temperature range. Therefore, we approximate this term by a constant

and obtain the following solution

T (t) = −r +
s− r

T0+s
T0+r

· e
−t
R·C

·
√
1−4·a·b − 1

(6.4)

where r = −1−
√
1−4·a·b
2·a , s = −1+

√
1−4·a·b
2·a , a = I0 · A · Vdd · Ngate · R · e

α·Vdd+β

T0+Pdyn·R , and

b = I0 ·B · eγVdd+δ · Vdd ·Ngate · R + Pdyn · R + Tamb.

The derivation of equation (6.4) is tedious, which is based on the following

∫

1

(x+ a)(x+ b)
dx =

1

b− a
ln

x+ a

x+ b
+ c

Curve 2 in Figure 1 is drawn using this equation and we see it is very close to

the baseline Curve 1 obtained numerically.
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6.2 DVS Scheduling for Total Energy Minimization

In this section, we first present the models for system and energy and the basics

of the dynamic voltage scaling (DVS) techniques. Then we study how to incorporate

the temperature-leakage interdependency into DVS for total energy minmization.

6.2.1 Current DVS Approaches

We consider a system that will process real-time tasks. Each task is charac-

terized by a deadline di and its workload wi.

During execution at Vdd, the dynamic power Pdyn, leakage power Pleak, and

clock frequency f are

Pdyn = K1 · Ceff · V
2
dd · f (6.5)

Pleak = Ileak · Vdd (6.6)

f = K2 ·
(Vdd − Vth)

χ

Vdd

(6.7)

where K1 and K2 are constants, Ceff is the effective capacitance, Ileak is the leakage

current, and χ is technology dependent with value between 1.0 and 2.0 [129].

With a low Vdd, the system runs at a slow clock and consumes less Pdyn.

DVS techniques are originally developed to leverage this non-linear dependency

between power/energy and supply voltage to dynamically change Vdd and thus clock

frequency such that each task will be finished by its deadline and the energy due to

dynamic power will be minimized. It is proved that the best DVS strategy, which

we refer to as the traditional DVS, will execute the task at the lowest frequency

to complete the task exactly on the deadline [136, 132].
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Variations of DVS approaches were proposed later with different focuses. [134]

improved traditional DVFS efficiency by exploiting the path-grained adaptability.

NBTI-aware DVFS is proposed in [118] that utilizes the guard band to improve

power consumption as well as lifetime without compromising performance against

NBTI degradation.

When leakage becomes significant in system’s total power, the low power sleep

modes are introduced so system only need power Psleep, not dissipating dynamic or

leakage power. We use Ewakeup for the energy overhead to activate the system from

the sleep mode and a binary variable δ to indicate whether the system is in sleep

mode (δ = 1) or not (δ = 0).

Leakage-aware DVS methods have been proposed to utilize this sleep mode and

balance dynamic and leakage in order to reach minimal total energy [125, 128, 137].

Basically, the system will operate faster than the slowest clock frequency to finish

the work early and then shut down (or go to sleep mode) to save leakage and hence

total energy. For example, in [128] and [125], a critical speed DVS (CS-DVS)

approach is proposed where the system will not run below a centain speed.

Nonsurprisingly, chip temperature is the next addition to DVS research due

to leakage’s strong dependency on temperature as we have shown in the previous

section. There are many work targetting the temperature-dependent leakage or total

energy reduction [116, 119, 120, 138]. They treat leakage current either as a constant

or use piece-wise linear models to estimate leakage at different temperature where

their temperature models do not properly consider leakage’s impact. In [117], it

proposed an online temperature aware DVFS technique which consists of two stages:
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an offline temperature-aware optimization step and online voltage/frequency setting

based on temperature sensor readings1.

Combining Equations (6.3) and (6.4), we see that if a system is active for time

0 to tactive and then go to sleep for time tsleep, its total energy will be:

δ · Ewakeup + Pdyn · tactive +

∫ tactive

0

Pleakdt+ Psleep · tsleep (6.8)

The temperature-dependent leakage is included in the integration. Tempera-

ture affects gate delay as well. However, the system’s clock frequency f depends on

many issues and we follow the industry practice by assuming that f only changes

when throttling happens or when Vdd changes and does not change with temperature.

If Vdd changes during the execution, the dynamic energy will also be replaced by an

integration to reflect this. In the rest of this section, we re-evaluate DVS techniques

under total energy model in Equation (6.8) which considers the temperature-leakage

interdependency.

6.2.2 Optimal Solution for A Single Task

For a single task, the problem can be described as: how to use the minimal

total energy consumption to complete w units of computation within time interval

[0, d].

We first consider the simplified case that the task starts execution from time

zero with temperature T0. We derive the following lemma to obtain the optimal

solution.

1Reading from temperature sensor is a separate topic and is out of the scope of our discussion.
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Lemma 1. To complete w units of computation and start execution from time

zero with temperature T0, leakage energy Eleak =
∫ tactive
0

Pleak(t)dt increases as Vdd

increases.

[Proof:] The temperature-dependent leakage power Pleak(t) is given by equations

(6.3) and (6.6). Hence, leakage energy Eleak, as expressed in the integration, is a

function of Vdd. Let f be the clock frequency, then tactive =
w
f
. Since f is a function

of Vdd, tactive is also a function of Vdd.

dEleak

dVdd

=
d

dVdd

∫ tactive

0

Pleak(t)dt

=

∫ tactive

0

dPleak(t)

dVdd

dt+ Pleak(tactive) ·
dtactive
dVdd

=

∫ tactive

0

(Ileak(t) +
dIleak(t)

dVdd

· Vdd)dt+ Pleak(tactive) ·
d

dVdd

(
w

f
)

=

∫ tactive

0

(Ileak(t) +
dIleak(t)

dVdd

· Vdd)dt− Ileak(tactive) ·
w

f
·
χ · Vdd − Vdd + Vth

Vdd − Vth

≥

∫ tactive

0

(Ileak(t) +
dIleak(t)

dVdd

· Vdd − Ileak(tactive) ·
Vdd + Vth

Vdd − Vth

)dt

The last inequality is based on the fact that χ ≤ 2. From equations (6.3),

dIleak(t)

dVdd

=
∂Ileak
∂Vdd

+
∂Ileak
∂T

·
dT

dVdd

∂Ileak
∂Vdd

= α · I0 · A · T 2 · e
αVdd+β

T ·Ngate + γ · I0 ·B · eγVdd+δ ·Ngate

≥ min{α, γ}Ileak

∂Ileak
∂T

·
dT

dVdd

= I0 · (A · 2T − A · (αVdd + β)) · e
αVdd+β

T ·
dT

dVdd

≥ 0

where the second inequality is based on the values of α, γ, and Vdd under current
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technology. Therefore,

dIleak(t)

dVdd

≥ min{α, γ}Ileak (6.9)

Moreover,

dEleak

dVdd

=

∫ tactive

0

(Ileak(t) · (min{α, γ}+ 1)− Ileak(tactive) ·
Vdd + Vth

Vdd + Vth

)dt

≥

∫ tactive

0

(Imin
leak · (min{α, γ}+ 1)− Imax

leak ·
Vdd + Vth

Vdd + Vth

)dt

≥ 0

where Imin
leak is the leakage under ambient temperature, and Imax

leak is the leakage under

worst case temperature. In this work, we assume the ambient temperature of 300K

and the worst case temperature of 370K. END.

Lemma 1 together with the fact that using high Vdd consumes more dynamic

energy and more sleep energy (due to the longer sleep time), we conclude the fol-

lowing theorem:

Theorem 1. The most energy efficient solution for the simplified case is to use

the lowest possible voltage to complete the task on its deadline.

Earlier results contradict with this because in approaches such as CS-DVS,

they treat leakage as a temperature-independent constant, and dEleak

dVdd
is not al-

ways positive; In approaches that use piece-wise linear approximation, dIleak(t)
dVdd

≥

min{α, γ}Ileak does not hold due to the discontinuity at the mid-points when two

pieces meet.

When the initial temperature is high, it is sometimes better to let the system

idle for a while before executing the task. The idle period at the beginning helps cool
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down the system, providing a lower starting temperature for the task and therefore

resulting in smaller leakage energy consumption. In this case, it addresses the more

general problem in which idle time can be leveraged when deciding the voltage level.

First of all, it is always preferable to allocate the idle time before executing the task

than after. The intuitive proof is given in Figure 6.2. Yet it is left to decide how

long the idle time should be allocated, sometimes at the cost of higher voltage level

for extremely high initial temperature.

Figure 6.2: Temperature curve of traditional DVS (curve 1) and optimal DVS for a
single task (curve 2).

Suppose the system idles for x units of time before executing the task, and

the temperature cools down to T̃0. Apparently, T̃0 is a function of x. The remaining

problem is to select a voltage level for the task to start at time x with temperature

T̃0, and finish before deadline d. We can instead think of the task to start at time

zero with initial temperature T̃0 and finish at deadline d− x. This is the simplified

case we discussed above. According to Theorem 1, it is optimal to select the lowest
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possible voltage that completes the task on its deadline. Therefore Vdd can be

selected accordingly once the idle time x is decided. We can regard Vdd as function

of x. Eleak can therefore be expressed as follows:

Eleak =

∫ d−x

0

Ileak · Vdddt (6.10)

where Ileak is expressed as in equation 6.3 and T is expressed as in equation 6.4.

However we need to replace T0 with T̃0 in equation 6.4. Apparently, both Ileak and

Vdd are function of x. We can differentiate Eleak over x to derive the x for minimal

Eleak, however, only numerical solution can be obtained.

6.2.3 Online DVS Heuristic for Multiple Tasks

We now consider a set of non-preemptive real-time tasks, each of which arrives

with a workload wi and a deadline di. We want to design an online DVS scheduler

that, at the finish time of task i − 1, selects the next task i from the available

tasks and decides the operating voltage with frequency fi so that the total energy

consumption is minimized while all the tasks are completed. The system can scale

its operating voltage Vdd within [Vmin, Vmax]. The corresponding frequency range

supported by the system is [fmin, fmax].

Assume that at the current moment, there are k available tasks with workload

and deadline (wi, di). Without loss of generality, we assume di1 ≤ di2 ≤ · · · ≤

dik . Based on the well-known property of the earliest deadline first (EDF) policy,

selecting task (wi1 , di1) with the frequency:

fi1 = max{
wi1

di1
,
wi1 + wi2

di2
, · · · ,

wi1 + · · ·+ wik

dik
} (6.11)
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ensures the completion of the task set if fi1 ≤ fmax. Otherwise, the set of tasks are

not schedulable. Moreover, according to the notion of critical interval [135, 136], if

fi1 ≥ fmin, it guarantees minimal dynamic energy consumption for these k tasks.

Without further increasing the complexity of the online heuristic, we adopt this rule.

When fi1 ≤ fmin, we will be running slightly faster than the frequency decided

by EDF policy. It comes the question of how to allocate the extra idle time. For a

single task, it has been illustrated in the previous section that it is always better to

allocate all the idle time before executing the task. For multiple tasks however, the

same strategy does not necessarily apply. As indicated in Figure 6.2, having all idle

time before the task will most likely result in high temperature upon its completion.

The subsequent task therefore has to start with this high temperature and consume

a lot of leakage. If instead, we could move part of the idle time from before to after

the task, the system will cool down and the subsequent task can consume much less

leakage energy.

Before illustrating our online DVS policy for multiple tasks, there is an im-

portant observation regarding the system’s cooling process.

Figure 6.3 depicts the cooling curves from different initial temperatures based

on equation (6.4). We see that no matter how big the initial temperature gap is

(from 370 to 310 in our case), the gap narrows drastically. Experimental data shows

that after cooling down for about 1.5×R×C, the temperature gap will be within 10

degree Kelvin. After that, chip temperature becomes close to Tamb and the cooling

process slows down.

Based on this observation, we propose the following DVS policy as shown in
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Figure 6.3: Temperature behavior during sleep mode under different starting tem-
peratures

Figure 6.4.

0. on the completion of the current task i:
1. select the next task τ for execution based on EDF;
2. determine Vdd for the execution of τ based on frequency in equation (6.11);
3. if Vdd ≥ Vmin, execute at Vdd and go to line 0;
4. total idleTime = ei(Vdd) - si;
5. front idleTime = min {1.5RC, total idleTime};
6. set si+1 as ei(Vmin), go to line 0;

Figure 6.4: Online DVS scheduler for energy minimization.

In line 4-6, ei(Vdd) (end time when executing at Vdd) is the guardbanding finish

time of current task decided by EDF policy, while ei(Vmin) (end time after idling and

then executing at Vmin) is the actual finish time. si is the starting time of current

task. s0 = 0.

The proposed heuristic tries to cool down the system for the current task while

also takes care of the starting temperature for the subsequent task. When the total

idle time is longer than 1.5 × R × C, extra idle time will be merged into the time
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budget of the subsequent task to help bring temperature down. Only when the total

idle time is shorter than 1.5×R×C, all of it will be put before the current task. In

the former case, ei(Vmin) < ei(Vdd), and the extra idle time is merged into the time

budget of the subsequent task by setting the start time of subsequent task as the

end time of the current task (line 6); In the latter case, ei(Vmin) = ei(Vdd).

Figure 6.5 shows the effectiveness of our DVS policy. The temperature curve

1 is based on traditional DVS that puts the total idle time after execution. Curve 2

is based on our proposed DVS policy. It cools down the system first, then executes

the task, then idles again after execution. As a result, we see that curve 2 consumes

significantly less leakage due to much lower operating temperature (more than 40

degree Kelvin), while its ending temperature quickly decreases to the same level as

that of curve 1, even though the idle time of curve 2 after execution is much smaller

than that of curve 1. It is because the cooling process has the inverse exponential

nature that changes fast at the beginning and gradually slows down. It is also

because the peak temperature after execution of curve 2 is much lower than that

for curve 1.

6.3 Experimental Results

The goal of the simulation is to (1) validate the accuracy of the proposed

temperature-leakage model; (2) compare our proposed online DVS heuristic with

other approaches in terms of total energy saving on real-time systems.

Table 6.1 lists the thermal parameters extracted from the single core Intel
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Figure 6.5: Temperature curve of traditional DVS (curve 1) and optimal DVS based
on proposed policy for multiple tasks (curve 2).

Celeron Processor 540 at the 65nm technology. We emulate the thermal behavior

and power consumption of single processor using Matlab with different initial tem-

perature and different Vdd. Then we compute using three models (1) only dynamic

power is considered; (2) leakage power under worst case temperature is considered;

(3) our model that considers temperature-leakage interdependency. The numerially

accurate results [123, 126] are used as the baseline for comparison. Table 6.2 reports

the mean absolute error (MAE) over sufficient sampling points.

Clearly, method (1) ignores leakage and underestimates the temperature by

8.25K on average. As leakage increases as Vdd increases, we see the error increases

too. Method (2) overestimates leakage by about 2.5 degree and it has relatively

large error when Vdd is low. Our proposed model (3) is quite accurate with only

0.51K mean absolute error on average. In all cases, initial temperature’s impact is

not significant.

122



Table 6.1: Thermal parameters for a single core processor.

R 1.2oC/Watt

C 140.45mJ/oC

Tamb 300K

Tworst 370K

Vdd ref 1.0V

Vdd 0.8 ∼ 1.0V

f ref 2.08GHz

Pdyn ref 37.35W

Psleep 50µW

Vth 0.3V

To test the proposed online DVS heuristic over other approaches, we randomly

generate 10 different task sets as listed in Table 6.3. Each task set will be executed

in a periodic manner, with period length T equal to the global deadline of the

task set. The number of tasks ranges from 5 to 15. Task set’s utilization factor is

defined as

n
∑

i=1

wi

T
. When the utilization factor is high, system will run at the highest

reference Vdd for most of the time, all the approaches will consume similar total

energy. This has also been observed and reported in other studies such as [125] and

[128]. Therefore we keep the utilization factor below 50% for all task sets.

We repeat each task set for ten times to monitor thermal behavior of the pro-

cessor, as well as the total energy consumption. We assume the initial temperature

as 350K. Table 6.4 compares the total energy consumption under our approach

(denoted as TDVS), traditional DVS, CS-DVS, and Non-DVS scheme. Since the

utilization factor of the task sets is around 29%, most tasks can apply the lowest
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Table 6.2: Mean absolute error over sufficient sampling points.

Tinit(K) Vdd(V ) MAE1(K) MAE2(K) MAE3(K)

300 0.8 4.42 3.27 0.14

300 0.9 7.28 3.11 0.31

300 1.0 12.40 1.44 1.08

330 0.8 4.54 3.14 0.17

330 0.9 7.44 2.93 0.33

330 1.0 12.68 1.65 0.75

370 0.8 4.70 2.99 0.38

370 0.9 7.71 2.70 0.54

370 1.0 13.04 1.24 0.92

average MAE 8.25 2.50 0.51

voltage (0.8V ) when DVS is enabled. Therefore, Non-DVS consumes much more

energy. CS-DVS scheme adopts critical speed, whose corresponding Vdd is a lit-

tle higher than the lowest possible Vdd used by DVS and TDVS and consequently

consumes more energy than DVS and TDVS. This verifies Lemma 1. Finally, our

proposed TDVS approach takes full consideration of the interdependency between

leakage and temperature, and allocates the available idle time in an efficient way. We

see that without temperature-awareness, DVS consumes 6.16% more energy than

our approach, although the same Vdd are used for most tasks.

Figure 6.6 shows the transient temperature when we repeat a task set for ten

times using our proposed scheduler. The ten star marks around the 325 degree line

label the ending temperature of each period. In the first period, we start with 350K

and end with 324.4663K. This becomes the starting temperature for the second

period and it results in a little lower ending temperature, 324.4627K. For the rest
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Table 6.3: Randomly generated task sets.

Taskset Task Number Utilization Factor

1 5 23.76%

2 11 40.41%

3 8 31.86%

4 6 33.44%

5 5 26.45%

6 11 29.20%

7 15 27.13%

8 8 22.84%

9 11 33.87%

10 9 21.41%

average 8.9 29.04%

periods, all the ending temperature remain the same. This indicates that our online

heuristic becomes stable quickly, an indication for a good online algorithm.

Figure 6.7 reveals the mechanism of how our approach outperforms the other

two DVS approaches. Curve 1, 2, 3 correspond to transient temperature in two

randomly selected consecutive periods of task set 4 under TDVS, DVS, and CS-

DVS scheme. TDVS allocates some idle time before certain task starts so that the

temperature and leakage consumption are reduced throughout the task execution.

It also allocates the rest of idle time after the task ends, so that it won’t lay much

temperature burden onto the next task. Note that CS-DVS is likely to exceed worst

case temperature. This is because CS-DVS makes inaccurate estimation on the

leakage by assuming it as a constant, and mistakenly select a Vdd higher than that

of DVS and TDVS.
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Table 6.4: Comparison of total energy consumption.

Taskset ETDV S(10
4J) dEDV S dECSDV S dENONDV S

1 41.4 5.27% 10.87% 69.81%

2 154.6 4.72% 12.24% 70.64%

3 105.8 4.66% 5.05% 69.98%

4 64.14 8.32% 14.35% 65.96%

5 46.66 4.82% 4.82% 69.74%

6 162.9 6.03% 7.13% 83.43%

7 192.2 4.96% 7.59% 78.11%

8 110.6 5.81% 9.95% 79.63%

9 149.4 10.59% 11.01% 94.16%

10 123.1 6.84% 9.32% 83.31%

average - 6.16% 9.23% 76.48%

Table 6.5: Impact of different initial temperatures.

Tinit ETDV S(10
4J) dEDV S

300 63.84 7.86%

330 64.01 8.11%

350 64.14 8.32%

370 64.31 8.56%

Finally, we investigate the impact of initial temperature on the efficiency of

our approach. We use task set 4 again as an example. Table 6.5 ranges the initial

temperature from 300K to 370K, total energy consumption of TDVS and total

energy consumption increase of DVS are reported in the second and third column.

Data in the row of 350K matches that in Table 6.4. We see that our approach

consistently saves more total energy than the traditional DVS by around 8%. When

the initial temperature goes up, both approaches will consume more energy and the
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Figure 6.6: Ending temperature of each period under TDVS

advantage of our approach over DVS becomes slightly bigger. But the impact of

initial temperature is not significant.

6.4 Summary

In this paper, we show that if leakage’s impact on temperature is not con-

sidered properly, the temperature estimation can have large error which will affect

the solution to all temperature-aware problems, in particular leakage current related

problems due to its strong dependency on temperature. We study the temperature-

leakage interdependency and propose a new analytic temperature model that gives

very accurate temperature prediction. We further apply this model to guide the

design of DVS algorithm for total energy minimization. We find that some popular

leakage-aware DVS algorithm indeed does not work as well as the traditional DVS

for the current technology. We propose an online heuristic DVS approach that is

capable of saving more total energy than known algorithms.
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Figure 6.7: Transient temperature curves.
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Chapter 7

Conclusion and Future Works

When technology scales down to deep submicron domain, there is an urgent

need for more effective power efficient design techniques. We show in this disserta-

tion that there is great potential to enhance the existing CAD tools and algorithms.

One such enhancement is to combine multiple techniques simultaneously, another is

to integrate physical design with high level synthesis. We demonstrate this approach

through the following four case studies.

First, based on the observation that peak current occurs at clock transition and

can be characterized by the maximum number of state bits switching in the same

direction in the FSM model, we integrate state replication and state re-encoding

into a low power encoding approach. This gives us 39.2% reduction in PSV with

only 3% overhead in average power.

Second, we propose to use the newly developed process-induced mechanical

stress to enhance the performance of dual Vt and gate sizing. Our algorithm based

on the concept of urgent path shows that about 10% more leakage saving can be

achieved when mechanical stress is used and this algorithm outperforms the popular

sensitivity-based approach by 13.5%.

Next, we realize that, in the dual Vt technique, using a high Vt cell in a hot

region gives much more leakage saving than using the same cell in a low temperature
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area. But the current EDA tools on dual Vt do not consider leakage’s dependency

on temperature. We propose a temperature-aware enhancement that can further

reduce leakage by 11% and the number of cells in the hot region by 39%.

Finally, it is believed that a high voltage should be used in dynamic voltage

scaling (DVS) approach to reduce total energy. After taking the leakage-temperature

dependency into consideration, we prove that this belief is incorrect. Indeed, it

will lead to a 9% overhead in total energy consumption compared to our proposed

approach.

The future of this research will be on the continuation and expansion of this

approach. For the continuation, we will look for opportunities, particularly with the

collaboration with EDA industry, to integrate these highly practical enhancement

techniques into the existing CAD tools. For the expansion, one interesting topic

will be thermal-aware design and thermal management for three-dimensional (3D)

integrated circuits (IC). To conclude this dissertation, I briefly describe this below.

The idea of 3D IC has been proposed for a while and the recent progress of

through-silicon-via (TSV) technology marks the possible start of the real 3D IC era

[141]. 3D integration has the advantage in decreasing interconnection delay, increas-

ing integration density, improving performance, and reducing power consumption

[142]. However, due to the vertical interaction of inter-layer heat sources and the

3D thermal gradient, thermal problem will be a bottleneck for 3D IC design. There

have been several approaches on temperature-aware floorplanning and cell placement

[144, 145, 146]. Thermal management approaches such as thermal-through-silicon-

vias and micro-fluidic channel have also been proposed [147, 148, 149, 150]. Like the
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deep submicron design, there will also be many research challenges and opportuni-

ties for power efficient design for 3D IC. I believe that our methodology of enhancing

existing techniques with new design features will thrive in this upcoming 3D IC era.
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1. A. Yao, J. Gu, G. Qu, and S.S. Bhattacharyya, ”Energy Efficient Implementa-
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on Advanced Infocomm Technology, July 2008.

2. J. Gu, A. Yao, G. Qu, and A. Bouridane, “Minimizing Point-to-Point Trans-

mission Energy with Error Correction Coding and Transmission Power Con-

trol”, ACM International Conference on Advanced Infocomm Technology, July

2008.

3. J. Gu, C. Zhuo, J. Qian, J. Zhou, and K. Chen, “Transient analysis of irregular
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