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Thin-film photovoltaics have provided a critical design avenue to help decrease

the overall cost of solar power. However, a major drawback of thin-film solar cell

technology is decreased optical absorption, making compact, high-quality antireflec-

tion coatings of critical importance to ensure that all available light enters the cell.

In this thesis, we describe high efficiency thin-film InP and GaAs solar cells that

utilize a periodic array of nanocylinders as antireflection coatings. We use coupled

optical and electrical simulations to find that these nanophotonic structures reduce

the solar-weighted average reflectivity of InP and GaAs solar cells to ∼ 1.3 %,

outperforming the best double-layer antireflection coatings. The coupling between

Mie scattering resonances and thin-film interference effects accurately describes the

optical enhancement provided by the nanocylinders. The spectrally resolved reflec-

tivity and J-V characteristics of the devices under AM1.5G solar illumination are

determined via the coupled optical and electrical simulations, resulting in predicted

power conversion efficiencies > 23 %. We conclude that the nanostructured coat-



ings reduce reflection without negatively affecting the electronic properties of the

InP and GaAs solar cells by separating the nanostructured optical components from

the active layer of the device.
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Chapter 1: Introduction

The field of photovoltaics has been a primary area of research for electrical

engineers, materials scientists, and physicists for over five decades. From the in-

vention of photovoltaic cells at Bell Labs in the mid-1950’s, their implementation

in space missions in the 1960’s and 1970’s, to modern day rooftop solar companies

and panel manufacturers, the development and maturation of the field into a vi-

able industry is well documented. With the ever-increasing threat of irreversible

climate change, photovoltaics have now become a prominent method of alternative

energy generation and production. The technological development of photovoltaic

devices, also known as solar cells, is critical to combat the effects of climate change

and to push our global society towards a more sustainable existence. New methods

of increasing the power conversion efficiency of these devices and of minimizing the

mechanisms responsible for energy loss are necessary in order to continue developing

photovoltaic technology and making it more economically viable. In this section we

will describe a few of these methods, the primary materials and techniques used in

their implementation, and relate these ideas to the overall objectives and goals of

this thesis.
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1.1 Thin-Film Photovoltaics and Nanophotonics

Solar cells operate via a simple physical mechanism: the absorption of photons

with energies higher than the bandgap of the semiconductor being used as the active

photovoltaic material. The absorption of the photon generates an electron-hole pair,

which is then separated by the internal field of the p-n junction in the device. Each

individual charge carrier drifts or diffuses towards a contact, and then is extracted

out of the device as DC current. The material used for the absorbing semiconductor

is known as the active photovoltaic material. Typical solar cells have active material

thicknesses of hundreds or thousands of µm, in order to absorb more of the light

that enters the cell and provide structural rigidity. However, active material quality

has a major impact on the device performance, and large single crystals of most

materials used for photovoltaics (e.g. Silicon (Si), Gallium Arsenide (GaAs)) are

expensive to produce. In this vein, thin-film photovoltaics have provided a critical

design avenue to help decrease the overall cost of solar power. Thin-film solar cells

are made with many of the same active materials as typical photovoltaic devices

except they contain less of that material, with active layer thicknesses of a few µm

to tens or hundreds of µm. This helps reduce the cost because less of the expensive

high-quality semiconductor material is used.

However, a major drawback of thin-film solar cell technology is decreased op-

tical absorption. A material’s optical absorption is characterized by its absorption

coefficient, an intrinsic material quantity which describes how far light of a certain

frequency (and therefore energy) can penetrate into the material before being ab-
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sorbed. This is why most conventional solar cells use thick layers of active material,

in order to guarantee that incident light over the entire visible spectrum is absorbed

by the cell and converted to electricity. Thin-film solar cells naturally have less

material and are more likely to appear transparent to longer wavelength (lower fre-

quency) light, thus absorbing less light and losing potential photogenerated carriers,

which could be extracted for electrical power.

This behavior results in a trade-off when designing thin-film solar cells -

balancing the optical performance with the electrical performance. Figure 1.1 shows

Figure 1.1: A simplified schematic of a typical thin-film solar cell. The
cell consists of front and back contacts and the emitter and base lay-
ers of active material which form the p-n junction of the device. In
this schematic we are assuming an n-type emitter layer and p-type base
layer, consistent with the setup of many III-V solar cells. Incoming light
of frequency ν is incident on the cell, generating an electron-hole pair
(electron-red, hole-white). The carriers are separated by the internal
field, and then the minority carriers, here the electrons, travel a distance
≤ LD (the diffusion length) to be extracted as photogenerated current
from the contacts.
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a schematic of a typical thin-film solar cell. Here, incident light is absorbed by the

cell, generating an electron-hole pair. The minority carrier, namely the carrier that

has the lower concentration in the active semiconductor material (e.g. an electron in

a p-type material), travels a distance LD to be extracted by the contacts. LD is the

diffusion length of the minority carrier, the length the electron (or hole) can travel

before it recombines. In order for the solar cell to maximize its power conversion

efficiency it should be able to collect all of the carriers generated by the photons

it absorbs and extract them as current. However, if the device is so thick that the

distance from the junction to the contacts is larger than LD then it may be difficult

to efficiently extract the generated carriers. Additionally, the active layers must still

be large enough to absorb most of the incident light, so a good thin-film solar cell

must be thin enough to efficiently extract generated carriers, yet thick enough to

effectively absorb incident light.

One method to increase the amount of light absorbed by these photovoltaic

devices is the use of a thin-film dielectric antireflection coating (Figure 1.2). In this

case, a thin dielectric layer with a certain thickness and refractive index is placed on

top of the active material. As light passes from the incident medium into the coating

layer, it is reflected at the interface between the coating and the incident medium

and the interface between the coating and the active material. If the coating is of

a certain thickness and refractive index then the reflected waves will destructively

interfere and all of the light incident on the cell will be transmitted through the

coating and into the active material. This helps ensure that all available light en-

ters the cell, helping to mitigate the effects of the lack of optical thickness of many
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Figure 1.2: A simplified schematic of a thin-film dielectric antireflection
coating. Light passes from a medium with refractive index n0 into a
properly designed coating of thickness d1 and refractive index n1. Upon
reflection at the interface between the coating and the active material
(refractive index n2) the waves destructively interfere and all incident
light is transmitted into the active material. This interference condition
is valid for a coating with an index equal to n1 =

√
n0n2 and a thick-

ness d1 = λ
4n1

. For an improperly designed coating with thickness d2
the reflected light will not destructively interfere and will therefore be
reflected from the back surface of the coating.

thin-film solar cells.

Recently various concepts and designs have been utilized to raise the efficiency

of thin-film photovoltaic cells beyond the enhancement provided by traditional thin-

film dielectric antireflection coatings (ARCs). These ideas center around the field of

nanophotonics. Nanophotonics describes the study of light at the nanoscale and its

interactions with nanoscale objects. By fabricating nanoscale structures tailored to

create certain responses from their interaction with incident light, possibilities such

as coupling more light into the cell, inducing resonances at specific wavelengths, and

angularly-independent absorption all become achievable. Some of these designs and
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concepts include nano-textured transparent conducting oxides (TCOs) [1,2], nanos-

tructured dielectric reflectors [3–6], plasmonic structures [7–11], and more. The

success and limitations of these strategies (including parasitic absorption and wave-

length and angle sensitivity) only further emphasizes the need to take advantage of

other optical mechanisms to increase absorption in thin-film solar cells.

1.2 III-V Materials and Nanostructuring

A recently proposed novel antireflection and photonic design concept was sug-

gested using a periodic square array of subwavelength nanocylinders (NCs) on sili-

con [12]. These structures utilize Mie resonances, electromagnetic resonances that

arise from the interaction of these structures with the incoming light. The Mie res-

onances couple to leaky optical modes in the high-index Si substrate, reducing the

reflectance of the device to less than 8 % over the entire spectral range [12]. The

resonances in the Si nanostructures have also been found to exhibit strong depen-

dences on different geometric parameters such as nanocylinder diameter and array

period [13]. Additional studies have shown that these types of nanostructures can

be fabricated via inexpensive processes such as nanoimprint lithography, and exhibit

significant light absorption enhancement in thin-film silicon solar cells [14,15].

While these nanostructures and design techniques have yielded substantial im-

provements for Si, thin-film III-V photovoltaics with thicknesses < 1µm offer the

possibility of even higher efficiencies. III-V materials, though expensive to manu-

facture, offer significant benefits such as radiatively limited recombination [16–18],
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large absorption coefficients [19], high conversion efficiencies [20–22], and the pos-

sibility of built-in optical concentration [23]. The large absorption coefficients of

direct bandgap III-V materials such as gallium arsenide (GaAs) and indium phos-

phide (InP) result in higher absorption using less material.

Thus, nanoscale optical coatings may result in similar performance enhance-

ments using even thinner layers than can be achieved with Si-based devices; how-

ever, a potential disadvantage of nanostructuring is the possibility of increased

non-radiative recombination processes [24, 25]. Because nanostructuring a mate-

rial results in increased surface area and possibly substantial surface damage, the

potential avenues for surface recombination to occur increase dramatically with sur-

face nanostructuring. Though GaAs is the prototypical III-V photovoltaic material

due to its ideal bandgap and high conversion efficiency, InP has the potential to per-

form similarly well and has a lower surface recombination velocity [26]. This quality

makes InP an excellent candidate to explore nanostructured photovoltaic design

concepts, and InP nanowire-based photovoltaic devices have already demonstrated

great promise [27, 28]. In this work we have chosen to investigate the performance

of nanostructured optical coatings on both GaAs and InP for the reasons outlined

above.

1.3 Objectives and Goals

The primary goals and objectives of this thesis are to build off of the previous

work done with Si nanocylinder coatings and extend those ideas to materials systems
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ideally suited for nanostructuring and thin-film photovoltaics (InP and GaAs). We

set out to perform three separate objectives:

• First, we want to fully optimize the design of these nanostructured coatings

on both InP and GaAs by minimizing reflection from the device.

• Second, we want to identify the underlying physical mechanisms, which de-

scribe the performance of these structures.

• Third, we want to fully characterize the optoelectronic performance of these

devices, including how these cells perform in a realistic, module-like design.

For reasons specified in Chapter 2, as each coating design is introduced, we will be

focusing on a wide range of materials for the nanocylinder array coatings, consisting

of the active photovoltaic material, titanium dioxide (TiO2), and indium-tin-oxide

(ITO). We aim to show that GaAs and InP solar cells with nanostructured coatings

of these materials can outperform devices with traditional thin-film antireflection

coatings through a combination of scattering resonances and thin-film interference

effects. Further, we will demonstrate that these device can perform as well as de-

vices with advanced multilayer ARCs, but without the need for multilayer coatings.

Finally, we find that a nanostructured TiO2 or ITO coating can further reduce reflec-

tion below that of a device consisting only of GaAs or InP, enabling a nanophotonic

coating that does not affect the electronic properties of the underlying material.
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1.4 Outline of Thesis

The current chapter, Chapter 1, has provided a brief introduction to the basic

concepts covered in this thesis, as well as contextualized the motivation for the work.

Chapter 2 covers the design of the nanophotonic coatings and describes the

optical simulations that form most of the backbone of the work in this thesis. First

the software package and design methodology used will be outlined, followed by

descriptions of the various coating designs and optical simulation results for each

design. After summarizing the angularly-dependent reflection of a few selected coat-

ing designs, different results between the various coatings and active materials will

be discussed.

Chapter 3 describes the methods, techniques, and results of investigating the

optical mechanisms behind the performance enhancement provided by the nanopho-

tonic coatings. Examinations of the electric field intensity profiles around individual

nanostructures will be discussed in conjunction with studies of the optical modes of

the structures. Both of these investigations reveal mechanisms which describe the

enhancement.

Chapter 4 highlights the overall performance of the designed III-V solar cells

with nanophotonic coatings as optoelectronic devices. First the electrical and device

simulations are presented, which allow for the accurate determination of important

solar cell parameters. Then optical results from simulating the cells in a module-

like configuration and optical environment are discussed. In combination, these two

studies characterize the optoelectronic performance of realistic devices utilizing our
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nanostructured coatings.

Chapter 5 provides a conclusion for this thesis and presents opportunities for

future work in this area. Additionally, Appendix A showcases a few extra figures

and results of this work.
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Chapter 2: Coating Design and Optical Simulations

In this chapter, we will present the software and design methodology used to

simulate and optimize various nanophotonic coating structures on InP and GaAs.

We will describe each nanostructure, the context behind why the particular design

was investigated, and summarize the results. However, it is important to note

that the more thorough analysis of why we see these results will come in Chapter

3, once the optical mechanisms have been examined and explained. After this

chapter, when referencing the nanocylinder coatings, we will be referencing the fully

optimized geometries of these structures (i.e. the structures with the best optical

performance). This chapter will describe the optimizations and optical results of

the nanophotonic coatings investigated in this thesis.

2.1 Optical Modeling Software

To calculate the reflection and quantify the optical performance of these nanopho-

tonic structures we perform three-dimensional finite-difference time-domain (FDTD)

simulations using a commercially available software package (Lumerical FDTD So-

lutions). The FDTD method is a computational method used to solve Maxwell’s

equations for electromagnetic wave propagation in both time and space. Maxwell’s
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equations are solved on a discrete spatial and temporal grid, where each field com-

ponent is solved at a slightly different location in each grid cell. This grid cell is

called a “Yee cell”, and its size is determined by the mesh size of the simulation,

which can be manually or automatically set. The data is then interpolated to the

origin of each grid point. Typically the finer the mesh the more computationally

intensive and time consuming the simulation is, while too coarse of a mesh may yield

inconclusive or unreliable results. The resulting solutions of the FDTD simulations

can be converted into the frequency domain (thus in terms of the wavelength of

the incident light) via Fourier transforms, which are implemented in the software

package. Not only that, but certain boundary conditions can be specified to make

sure the results are accurate. This provides a powerful tool to study the optical

response of various coatings on active photovoltaic materials in a computational

environment.

Setting up a simulation in Lumerical is fairly straightforward. The software

provides a CAD-like environment and a GUI which can be used to add relevant

objects to the simulation. Materials of specific geometries can be added and then

adjusted as necessary, with the ability to specify the position, type of material, thick-

ness, and other parameters of the object. A scripting language similar to MATLAB

and C can be used to create periodic structures or specify an analysis to run after

the simulation is complete. Lumerical also provides different options for sources of

the electromagnetic radiation incident on the structure in the simulation, such as a

dipole source or plane-wave source. The geometry, boundary conditions, and mesh

size of the FDTD region itself can be specified, followed by the placement of various
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monitors to measure the reflectance, absorption, or power flow at certain locations

during the simulation. Finally, Lumerical contains a large database of optical data

(i.e. real and imaginary refractive index data) for various materials which can be

modified with user-inputted optical data as well. In order to successfully run these

simulations, Lumerical fits the optical data to a polynomial used in the simulation

with tolerances that can also be set by the user. This again provides a useful plat-

form to customize the optical simulations and study specific structures or certain

aspects of the optical responses of various materials and geometries.

2.2 Design Methodology

Because the main goal of these nanophotonic antireflection coatings is to min-

imize reflection and facilitate light in-coupling and absorption into the active pho-

tovoltaic material, we want to find the geometry of the nanocylinder array that

minimizes the reflectance of the solar cell. To do this we use the following simula-

tion guidelines. The structure is illuminated with p-polarized normally incident light

from a broadband plane-wave optical source, corresponding to the above bandgap

components of the solar spectrum for InP (λ = 350 nm to 925 nm) and GaAs (λ

= 350 nm to 871 nm). We use 350 nm as our starting wavelength for reasons de-

scribed later in this section. A reflection monitor is placed above the optical source

to measure the total amount of light reflected from the device. For all of our simula-

tions, we assume ambient room temperature conditions (T = 300K), which we used

to obtain our values for the cutoff wavelength for InP and GaAs [29]. The cutoff
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wavelength for a semiconductor is the wavelength corresponding to the energy of

the semiconductor’s bandgap, indicating the wavelength beyond which no light is

absorbed.

We define a simulation region based on the specific geometry of the nanocylin-

ders (periodicity and height). A single unit cell is simulated, with periodic boundary

conditions to replicate the periodic square array of nanocylinders. The simulation

region also penetrates 100 nm into the active material layer, though we use a per-

fectly matched layer (PML) boundary condition at the bottom of the simulation

volume to simulate an infinitely thick layer of InP or GaAs. This allows us to study

only the coupling of the incident light into the active material without additional

effects due to light reflection off the back surface. Simulations of finite thickness

samples in a device-like architecture are discussed in Chapter 4.

Periodic hexagonal arrays of these structures were also investigated, but the

results had negligible deviations from the square array results, leading us to focus

on square arrays for simplicity. In all of the simulations, the mesh size was re-

fined until there was negligible change in the reflectance spectrum, typically less

than a few hundredths of a percent (corresponding to mesh sizes on the order of 1

nm). Wavelength-dependent optical data (n,k) was obtained from [19] for InP and

GaAs, [30] for TiO2, and Lumerical’s materials database for ITO. Over the relevant

spectral ranges (λ = 350 nm to 871 or 925 nm), the real part of the refractive index

is ∼3.7 for InP and GaAs, ∼1.8 for ITO, and ∼2.5 for TiO2.

Now that we have set up the framework of our reflectance simulations, we de-

termine the optimal geometries for these nanostructures, namely geometries which
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Figure 2.1: A diagram of an array of active material nanocylinders,
highlighting the three geometric parameters of the nanocylinders that
were varied during the optimization and design process. This general
geometry is consistent between all nanostructured coatings investigated
in this thesis.

minimize the reflectance of the photovoltaic device. The three adjustable geo-

metric parameters of the nanocylinder arrays - diameter, period, and height - are

indicated in Figure 2.1. To cover a wide range of potential geometries and designs

we perform large parameter sweeps of the nanocylinder diameter and period for

four specific nanocylinder heights (50 nm, 100 nm, 150 nm, and 200 nm). However,

optimizing these structures via minimized spectral reflectivity fails to consider the

spectral characteristics of the incident radiation (i.e. the solar spectrum), because

we use a simple plane wave source for these simulations. As a result, we must devise

a new figure of merit to use for these geometric optimizations which considers the

reflectance of the devices, as well as the photon flux and spectral characteristics of

the real solar spectrum.

To address this issue, we utilize a solar-weighted reflectivity (RAM1.5G). We

weight the reflectance from the device by the actual spectral photon flux (pho-

tons per unit time per unit area per wavelength) from incident sunlight in order to
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determine the fraction of photons that are reflected from the device under solar illu-

mination. The incident spectral photon flux from the sun is a quantity determined

by NREL and subject to standards set by the solar industry. In calculations of ef-

ficiency for non-concentrating solar cells it is standard to use the AM1.5G (Global)

spectrum, while AM1.5D (Direct) is used for concentrating photovoltaics. The spec-

trum is simply measured data of the incident power (which can be converted to a

photon flux) of solar radiation on Earth averaged over the year and for generic atmo-

spheric conditions. We calculate the solar-weighted reflectivity using the spectrally

resolved reflectivity from the nanostructured solar cell, R(λ), weighted by the solar

photon flux from the AM1.5G spectrum at each wavelength, φAM1.5G(λ), which is

integrated over the available wavelengths (λmin = 350 nm to λg = 871 nm or 925

nm, the bandgap wavelength of the active photovoltaic material):

RAM1.5G =

∫ λg
λmin

R(λ)φAM1.5G(λ)dλ∫ λg
λmin

φAM1.5G(λ)dλ
. (2.1)

We use 350 nm as a starting wavelength for all of our simulations because only 2%

of the total power density in the AM1.5G solar spectrum for wavelenghts < 1 µm

is present for wavelengths below 350 nm. Using this figure of merit (Equation 2.1),

we obtain the solar-weighted reflectance as a function of nanocylinder geometry,

and find the optimal geometry for the nanocylinders by finding which geometry

minimizes the solar-weighted reflectance.
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2.3 Active Material Nanocylinder Coating

The first type of nanostructured coating we examined was a coating consisting

of nanocylinder arrays of the active photovoltaic material, either InP or GaAs. We

performed optical simulations following the process outlined in the previous section

and performed vast sweeps of the geometric parameter space to find the optimal

NC geometry which minimized the RAM1.5G. We performed these optimizations for

four NC heights from 50 nm to 200 nm in 50 nm intervals, for NC diameters from

20 nm - 400 nm in 20 nm intervals (depending on the NC height), and for NC array

periods from 20 nm - 700 nm also in 20 nm intervals (depending on the NC height).

For each individual simulation we extracted the spectrally resolved reflectance and

the solar-weighted reflectivity. We then plotted the solar-weighted reflectance as a

function of NC period and diameter on a contour plot and found the minimum to

determine the optimized geometry. The results of our optimizations for both InP

nanocylinders and GaAs nanocylinders are shown in Figure 2.2 (a) and (b). Both

plots only show the results for h = 100 nm NCs because NCs at that height had

the lowest solar-weighted reflectance for all of the NC heights we examined. Results

for the optimizations we performed for the other three NC heights are presented in

Appendix A.

For both InP and GaAs, the NCs which minimized the solar-weighted re-

flectance from the cell had the same geometric dimensions: a height of 100 nm,

diameter of 120 nm, and array period of 180 nm. This optimized geometry is in-

dicated by the black diamonds in Figure 2.2. In these optimizations we used a
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Figure 2.2: Solar-weighted reflectivity and spectrally resolved reflectance
for InP and GaAs nanocylinder coatings. (a) Contour map of the solar-
weighted reflectivity of nanocylinder coatings in InP as a function of
NC diameter and period. (b) Same as (a) but for NCs in GaAs. Both
(a) and (b) show results for NCs with a height, h = 100 nm, with the
optimized geometry indicated by the black diamond. (c) Spectrally re-
solved reflectance for optimized NC active material coatings of various
geometries in InP: bare InP substrate (black dashed line), h = 50 nm
NCs (black), h = 100 nm NCs (red), h = 150 nm NCs (green), and h =
200 nm NCs (blue). (d) Same as (c) but for GaAs.

color-scale which emphasized the low reflectance regions in red and the high re-

flectance regions in blue. It is interesting to note that there is a clear peak region

in the contour plot and that at larger periodicities, the solar-weighted reflectance of

the active material nanocylinders seems to drop off. This drop off is likely a result of
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reduced nanocylinder-to-nanocylinder coupling, which decreases as the nanocylin-

ders are moved further and further apart.

Figure 2.2 (c) and (d) present the spectrally resolved reflectances of the bare

substrates and of the optimized nanocylinders for each height. Clearly the nanocylin-

der arrays made of active material drastically reduce the overall reflection of the

device compared to the bare substrate. It is also interesting that the intermedi-

ate height ranges (100 nm and 150 nm) produce NC array geometries that further

reduce the reflectance over a large spectral range. In particular, the red curve rep-

resenting the 100 nm NCs shows broad dips in the reflectance over almost the entire

visible range (400 nm - 700 nm), exhibiting the potential of these active material

NC coatings as a method of enhanced antireflection. We can take these spectrally

resolved reflectances and convert them directly to solar-weighted reflectances via

Equation 2.1, which yields the results of Table 2.1. As we shall show later in this

thesis, these RAM1.5G values demonstrate a nearly 90 % reduction in solar-weighted

reflectance compared to a bare substrate, again showcasing the potential of these

types of coatings.

Table 2.1: Solar-weighted reflectivity (RAM1.5G) for all optimized active material
nanocylinders. The results are shown for each of the four nanocylinder heights that
were investigated.

RAM1.5G for various NC heights

Substrate Material h = 50 nm h = 100 nm h = 150 nm h = 200 nm

InP 8.06 % 3.68 % 8.49 % 14.08 %

GaAs 7.70 % 4.72 % 11.36 % 17.46 %
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2.4 Titanium Dioxide Nanocylinder Coating

Even though InP and GaAs have relatively low surface recombination veloc-

ities, nanostructuring may still increase recombination. To avoid potential perfor-

mance degradations resulting from a textured active layer, we explored the use of

nanostructured TiO2 coatings on these III-V solar cells as a means to maintain

similar optical enhancement without negatively impacting the overall device perfor-

mance.

2.4.1 Advantages of Titanium Dioxide

TiO2 might not be a material that typically comes to mind when one conceives

of an optical coating material for a solar cell due to its high refractive index. How-

ever, it has been shown that TiO2 is a highly effective passivating layer when used

as a coating on InP [31], may be used as a highly efficient hole-selective contact [32],

and provides substantial optical improvement when used as a nanostructured coating

on Si [33]. This body of work has laid the groundwork for these types of coatings,

though they have not been extensively studied for use as antireflection coatings

on III-V solar cells. The TiO2 nanostructured coatings we have designed include a

thin TiO2 spacer layer separating the nanocylinders from the InP active layer, which

would aid with surface passivation and improved optical performance in a fabricated

device. To determine the thickness of the spacer layer, we perform sweeps similar to

those made with the active material nanostructures. For these simulations we swept

the thickness of the TiO2 spacer layer with and without an addditional NC coating

20



Figure 2.3: Solar-weighted reflectivity of TiO2 coatings on (a) InP and
(b) GaAs for varying thicknesses of the TiO2 spacer layer. For (a) and
(b) the black dashed line indicates the RAM1.5G of the bare substrate
material, the blue line represents the TiO2 film with no NC coating on
top, and the red line represents a generic NC coating (h = 100 nm, p
= 500 nm, d = 350 nm). The results for the NC coating do not vary
significantly with different NC geometries.

instead of sweeping the NC geometric parameters. The results of these thickness

sweeps for a TiO2 layer on both InP and GaAs are shown in Figure 2.3. From these

results, we determined that a 30 nm thick spacer layer provides the lowest solar-

weighted reflectance over the full spectral range regardless of nanocylinder geometry.

2.4.2 Nanostructure Optimization and Results

We then perform optimizations mirroring those from section 2.3 for the ac-

tive material nanocylinder coatings, this time using our TiO2 NC coatings with a

30 nm thick TiO2 spacer layer. The results of these geometry optimizations are

shown in Figure 2.4. These optimizations revealed that TiO2 nanocylinders with a

21



Figure 2.4: Solar-weighted reflectivity and spectrally resolved reflectance
for TiO2 nanocylinder coatings on InP and GaAs. (a) Contour map of
the solar-weighted reflectivity of TiO2 nanocylinder coatings on InP as
a function of NC diameter and period. (b) Same as (a) but for NCs in
GaAs. Both (a) and (b) show results for NCs with a height, h = 100
nm, with the optimized geometry indicated by the black diamond. (c)
Spectrally resolved reflectance for optimized TiO2 NC coatings of various
geometries in InP: bare InP substrate (black dashed line), h = 50 nm
NCs (black), h = 100 nm NCs (red), h = 150 nm NCs (green), and h =
200 nm NCs (blue). (d) Same as (c) but for GaAs.

height of 100 nm, diameter of 180 nm, and array period of 320 nm minimize the

solar-weighted reflectance from both InP and GaAs substrates. While the overall

results are qualitatively similar to the contour plots from Figure 2.2, the quantita-

tive range of solar-weighted reflectances covered by these structures is about half of
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those covered by the active material NCs (from 3 % - 40 % to 2 % - 20 %). This is

evidence that the TiO2 NCs have much lower solar-weighted reflectances across the

entire parameter space, as can be seen in (a) and (b) of Figure 2.4.

Again, we can gain further insight by examining the spectrally resolved re-

flectances of the optimized TiO2 NCs for each NC height, as seen in (c) and (d) of

Figure 2.4. For the h = 50 nm NCs on both substrate materials (indicated by the

black solid lines), the spectrally resolved reflectance looks similar to that of a single

layer antireflection coating. A possible explanation for this effect will be provided

in the next chapter when the optical mechanisms are discussed. The optimized

structures (h = 100 nm, red solid lines) yet again show large, broad reflectance dips

throughout the visible spectrum. The results of converting these reflectances into

solar-weighted reflectivities are shown in Table 2.2. These solar-weighted reflectiv-

ities are significantly lower than those of the active material NCs, supporting the

choice of TiO2 as a nanostructured antireflection coating material for III-V solar

cells.

To further validate the effect of the TiO2 NCs and TiO2 spacer layer as an

Table 2.2: Solar-weighted reflectivity (RAM1.5G) for all optimized TiO2 nanocylin-
ders. The results are shown for each of the four nanocylinder heights that were
investigated.

RAM1.5G for various NC heights

Substrate Material h = 50 nm h = 100 nm h = 150 nm h = 200 nm

InP 5.67 % 1.25 % 3.62 % 6.57 %

GaAs 6.23 % 1.23 % 4.08 % 6.87 %
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antireflection coating structure, we modified our simulations slightly in order to de-

termine the absorption in the TiO2 NC coating and the active photovoltaic layer

directly. By determining the absorption in the TiO2 layers, we could confirm that

the coatings are working as intended, not simply absorbing a large fraction of the

incident light as their main contribution to lowering the solar-weighted reflectivity of

the structure. The goal of these structures is to aid in-coupling of light to the solar

cell rather than acting as an additional absorbing medium. We modified our optical

simulations to measure this absorption by including two new reflectance monitors,

one at the interface between the TiO2 spacer layer and the active material and an-

other at the interface between air and the top of the NC array. By calculating the

difference in power transmitted from the top monitor to the bottom monitor, we

could directly determine the power absorbed in both the coating and the substrate.

This is possible because we are assuming that all light that is transmitted into the

substrate is eventually absorbed, which is a good approximation because we are

using a semi-infinite substrate due to the PML boundary condition at the bottom

of the FDTD simulation region.

The results of these simulations for the optimized TiO2 NC geometries

are shown in Figure 2.5. Though the overall absorption in the TiO2 layer is mini-

mal in comparison to that in the substrate, it is certainly not negligible, especially

at shorter wavelengths. This makes sense, however, as shorter wavelength light is

more likely to be absorbed closer to the surface of a material because it has a small

penetration depth. Additionally, TiO2 has an extinction coefficient (and therefore

absorption coefficient) that is much higher at wavelengths below 400 nm, making
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Figure 2.5: Spectrally resolved layer-by-layer absorption for optimized
TiO2 NCs on (a) InP and (b) GaAs. In (a) and (b) the blue region
represents the absorption in the substrate while the red region represents
the absorption in the TiO2 coating layer.

it more likely to absorb light at those wavelengths. To put the absorption in these

layers into the proper context, namely potential optical performance for device op-

eration, we can use Equation 2.1 and substitute the spectrally resolved reflectivity

R(λ) for the spectrally resolved absorptivity A(λ) to calculate the solar-weighted

absorptivity (AAM1.5G) in each layer. For the overall structure, we can simply use

the following relation to calculate the solar-weighted absorptivity (as a percent-

age), because all incident light is either absorbed or reflected in these simulations:

AAM1.5G = 100−RAM1.5G.

We can see quantitatively from Table 2.3 that the absorption in the TiO2 layer

for both InP and GaAs makes up almost 10 % of the total absorbed power from the

device. While this is fairly significant, 90 % of the total absorbed light being trans-

mitted into the substrate, along with the enhanced antireflection effects at the front
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surface, is further validation of this type of coating design. While other coatings

may absorb less incident light, it is difficult to compete with ∼1.25 % solar-weighted

reflectivity across the relevant spectrum.

Table 2.3: Solar-weighted absorptivity (AAM1.5G) in each layer for optimized TiO2

nanocylinder coatings on InP and GaAs.

AAM1.5G

Substrate Material Total AAM1.5G In substrate In TiO2

InP 98.75 % 91.03 % 7.70 %

GaAs 98.77 % 89.92 % 8.82 %

2.5 Fabrication Considerations - ITO Nanocylinders

While these optical investigations are interesting and reveal insights into these

kinds of nanostructured coating designs on III-V photovoltaic materials, the end

goal of this research is to fabricate and test these coatings, ideally building towards

making them viable alternatives to typical antireflection coatings. When examining

different fabrication processes for creating these nanostructured coatings, the facil-

ities available in the UMD Nanocenter and AIM Lab immediately came to mind.

The new FIB/SEM system provides an opportunity for nanopatterning to create

the structures and high quality imaging in-situ. However, some of the issues with

FIB patterning resulted in us investigating another potential coating material.
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2.5.1 Focused Ion Beam and Charging Problems

Focused ion beam (FIB) is a microscopy technology which uses ions instead of

electrons (such as those used in SEM, scanning electron microscopy) for imaging and

patterning purposes. The FIB/SEM systems at UMD use either Gallium or Xenon

(Xe) ions, though the Xe ions are much larger and are therefore used for larger-scale

imaging and patterning. Because our structures are on the order of hundreds of

nanometers, we would want to use the Ga system for our nanopatterning. This pat-

terning works essentially by material ablation, as high energy Ga ions are focused

into a beam which blasts away material from the sample. Images in the FIB can be

acquired through secondary ions that are scattered from the beam’s interaction with

the sample, or more typically, secondary electrons. Scattered secondary electrons

are also the primary imaging method for the SEM.

However, Ga ions are positively charged, so the ion beam acts as a large beam

of positive charge hitting the sample. Over time the exposure of the surface to the

beam can cause the sample to develop a net positive charge. As a result of this

charging, emitted secondary electrons (negatively charged) will be attracted back

towards the surface of the sample and thus not be collected for imaging purposes.

This causes the image of the sample to look black due to the lack of secondary

electrons reaching the detector in the FIB system. Not only that, but excess sam-

ple charging can result in improper nanopatterning or milling of the sample. In

order to mitigate this charging effect conductive coatings are typically deposited on

the sample to facilitate charge movement away from the sample and towards the
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grounded sample holder. In our experiment, we want to deposit a non-conductive

dielectric coating on top of our solar cells to pattern into nanocylinder arrays, so

having a conductive coating on top of the dielectric coating seemed counterintuitive.

Upon further thought, it would be interesting to see how a transparent conductive

coating, a type of material often used in solar cell design and development, would

work as a nanostructured antireflection coating.

2.5.2 ITO Nanocylinders

This realization lead us to use Indium Tin Oxide (ITO) as another potential

coating material for our III-V photovoltaic devices. ITO is a transparent conducting

oxide (TCO) used in various optoelectronic applications, including solar cells. Us-

ing ITO as the material for our nanocylinders would alleviate the charging problem

of FIB fabrication and potentially increase the effectiveness of these structures as

antireflection coatings. Not only that, but with an index of ∼ 1.8 over the visible

spectrum, ITO has optical properties that are close to optimal for a single layer

antireflection coating on InP or GaAs, using the relation described in Figure 1.2.

We perform the same simulations described in the previous section to determine the

thickness of an ITO spacer layer between the nanocylinders and the active photo-

voltaic material. The results are shown in Figure 2.6 below. From these results, we

determined that a 50 nm spacer layer would minimize the solar-weighted reflectance

from the device. Though using the NCs decreased this optimal thickness to 40 nm,

we went with the 50 nm from the thin-film simulations for reasons which will be
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described in Chapter 3.

Once we had determined the optimal spacer layer thickness we again performed

sweeps of the parameter space to find the geometries of the ITO NC arrays which

would minimize the solar-weighted reflectance from the devices. We can see from

the results, shown in Figure 2.7, that the optimized geometries for the ITO NCs are

fairly similar to those of the TiO2 NCs. For InP the optimized NCs had a height =

100 nm, a diameter of 180 nm, and an array period of 340 nm, while for GaAs the

larger NCs with a height of 150 nm, a diameter of 200 nm, and an array period of

360 nm minimized the solar-weighted reflectance. Though the range of RAM1.5G in

these sweeps has a higher minimum than the TiO2 NCs, the magnitude of RAM1.5G

across all of the geometries simulated is much lower on average than the TiO2 NCs.

Figure 2.6: Solar-weighted reflectivity of ITO coatings on (a) InP and
(b) GaAs for varying thicknesses of the ITO spacer layer. For (a) and
(b) the black dashed line indicates the RAM1.5G of the bare substrate
material, the blue line represents the ITO film with no NC coating on
top, and the red line represents a generic NC coating (h = 100 nm, p
= 500 nm, d = 350 nm). The results for the NC coating do not vary
significantly with different NC geometries.
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Figure 2.7: Solar-weighted reflectivity and spectrally resolved reflectance
for ITO nanocylinder coatings on InP and GaAs. (a) Contour map of
the solar-weighted reflectivity of ITO nanocylinder coatings on InP as
a function of NC diameter and period for a NC height of 100 nm. (b)
Same as (a) but for NCs with a height of 150 nm on GaAs. Both (a) and
(b) indicate the optimized geometry by a black diamond. (c) Spectrally
resolved reflectance for optimized ITO NC coatings of various geometries
in InP: bare InP substrate (black dashed line), h = 50 nm NCs (black),
h = 100 nm NCs (red), h = 150 nm NCs (green), and h = 200 nm NCs
(blue). (d) Same as (c) but for GaAs.

We can see through the spectrally resolved reflectance plots in (c) and (d) of Fig-

ure 2.7 that these structures maintain the broad reflectivity drops characteristic of

the previous coating structures we have examined.

Converting these spectrally resolved reflectivities to solar-weighted reflectivi-
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Table 2.4: Solar-weighted reflectivity (RAM1.5G) for all optimized ITO nanocylin-
ders. The results are shown for each of the four nanocylinder heights that were
investigated.

RAM1.5G for various NC heights

Substrate Material h = 50 nm h = 100 nm h = 150 nm h = 200 nm

InP 6.96 % 3.34 % 3.60 % 5.04 %

GaAs 8.17 % 4.54 % 4.45 % 5.61 %

ties via Equation 2.1 yields the results in Table 2.4. We can see that these results

are consistent with results for previous NC coatings, where the intermediate NC

heights have minimized RAM1.5G while the more extreme structures have decreased

optical performance. These values fall in between those from the active material

NCs and the TiO2 NCs, indicating that using this transparent conductive layer as a

nanostructured coating still provides a benefit over nanostructuring the active pho-

tovoltaic material. This provides good incentive for us to fabricate these structures

as opposed to others, in order to alleviate charging problems that might arise with

processing in the FIB.

This perception of the ITO coatings changes, however, when we take a closer

look at the absorption in the ITO layer. The ITO absorbs much more incident

light than TiO2 and is more consistent in its absorption across the entire spectrum

(Figure 2.8). While the strong absorption at short wavelengths is still present due

to the reasons outlined in the previous section regarding short-wavelength incident

light, the continued strong absorption throughout the spectrum is a negative aspect

of using ITO as a NC coating material. This absorption detracts from potential pho-
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ton absorption and resulting carrier generation in the active photovoltaic material

substrate, thereby decreasing the potential efficiency increase the nanostructured

coating could provide.

The negative aspects of this parasitic absorption in the ITO layer are made

more apparent by calculations of the solar-weighted absorptivity in each layer, as

outlined in Section 2.4. Looking at the results in Table 2.5, we can see quantita-

tively the massive increase in absorption in the ITO layer compared to TiO2 from

the previous section (Table 2.5). Almost 15 % of the incident light absorbed by

the device is absorbed in the ITO layer. This drastically diminishes the amount

absorbed in the substrate and made available for generating electron-hole pairs and

thus usable electric current. This calculation provides a good check on the optical

results we calculated from the solar-weighted reflectivity of the overall structure,

Figure 2.8: Spectrally resolved layer-by-layer absorption for optimized
ITO NCs on (a) InP and (b) GaAs. In (a) and (b) the blue region
represents the absorption in the substrate while the red region represents
the absorption in the ITO coating layer.
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and provides another metric by which we can gauge the overall optical performance

of these nanostructured coatings.

Table 2.5: Solar-weighted absorptivity (AAM1.5G) in each layer for optimized ITO
nanocylinders on InP and GaAs.

AAM1.5G

Substrate Material Total AAM1.5G In substrate In ITO

InP 96.66 % 83.12 % 13.42 %

GaAs 95.55 % 77.24 % 18.22 %

2.6 Antireflection Coatings

In order to determine how our nanostructured coatings compare with the cur-

rent state-of-the-art optical designs for solar cells, we performed simulations of var-

ious antireflection coatings on InP and GaAs. These calculations provided us with

a baseline of data to compare with the results for our nanostructured coatings and

gave context to our designs with respect to current optical techniques.

2.6.1 Current Materials and Design Schemes

As described in Chapter 1, thin-film dielectric antireflection coatings have been

implemented in photovoltaic design to reduce reflection at the front surface of the

cell and facilitate light in-coupling for absorption and the generation of electron-hole

pairs. These coatings achieve these goals through a thin-film interference effect,

where a coating of the proper thickness and refractive index causes destructive
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interference in the film and no reflected light for a specific wavelength. Two typical

materials for these single layer antireflection coatings are Silicon Nitride (Si3N4) and

Magnesium Fluoride (MgF2). Magnesium fluoride can be used as a simple single

layer ARC on some photovoltaic devices and is used as the top layer of the dual layer

ARC on the InP solar cell with the world record power conversion efficiency [22].

Silicon nitride, on the other hand, is probably the most widely used single layer

ARC, because it is the primary ARC material for Si solar cells and has an index of

∼ 2.1 over the visible spectrum. This index is close to the optimized index of a single

layer ARC on InP or GaAs of ∼ 1.9, making Si3N4 a great candidate material to

test our nanostructured ARCs against. We also chose to examine a TiO2 single layer

ARC, to see how TiO2 performed as an ARC on its own without nanostructuring.

Single layer antireflection coatings are not the only optical design method to

reduce reflection. In the highest-efficiency photovoltaic devices a dual layer ARC

is used, with a top and bottom layer optimized to facilitate more light in-coupling

into the cell at a broader range of wavelengths. For example, the InP solar cell with

the world record power conversion efficiency used a dual layer ARC made up of a

bottom layer of Zinc Sulfide (ZnS) and a top layer of MgF2 [22]. By comparing the

performance of our nanostructured coatings to this dual layer ARC, we can evaluate

their optical performance with that of the proven technology in the field. While there

are many other potential avenues for optical design, such as those discussed in the

introduction (nanostructured TCOs, plasmonic nanostructures, etc.), we chose to

focus on dielectric-based ARCs in order to compare our designs with the most widely

developed, implemented, and proven technology. The goal of these simulations was
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to provide accurate context of how our designs performed optically when compared

to simpler and more widespread optical coatings for photovoltaics.

2.6.2 Optimizations and Results

Before we could compare the optical performance of our coatings with those

of single and dual layer ARCS, we needed to determine the optimal thicknesses of

these ARCs on InP and GaAs. We used the same methods for determining the

spacer layer thicknesses for TiO2 and ITO to determine the thicknesses of the ARCs,

summarized by the results shown in Figure 2.9 for Si3N4. From these results we can

see that the optimized thickness of a single layer Si3N4 ARC on InP or GaAs is 50

nm. We already determined the optimal spacer layer thickness for TiO2 on InP and

GaAs, 30 nm, and through the same simulations found an 80 nm ARC of MgF2 also

minimized RAM1.5G from the devices. For the dual layer ARC we needed to per-

form thickness sweeps, similar to the geometry sweeps we ran on the nanocylinder

coatings, to determine the thicknesses of both the top and bottom layer of the ARC

simultaneously which minimize the solar-weighted reflectance of the device. These

thickness sweeps revealed that a dual layer ARC with 40 nm of ZnS and 90 nm

(InP) or 80 nm (GaAs) of MgF2 formed the optimal dual layer coatings for their

respective photovoltaic materials (Figure 2.9).

As with previous coatings, we can gain further insight by examining the

spectrally resolved reflectance. We can see from Figure 2.10 that the dual layer

ARC has the lowest reflectance across the entire spectrum, as expected. Addition-
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Figure 2.9: Solar-weighted reflectivity of a single layer (a,b) and a dual
layer (c,d) ARC on (a,c) InP and (b,d) GaAs for varying thicknesses of
the coating layers. For (a) and (b) the black dashed line indicates the
RAM1.5G of the bare substrate material and the blue line represents the
device with the coating, in this case Si3N4. (c) and (d) show contour plots
of the RAM1.5G for varying the thickness of each layer in a dual layer ZnS
and MgF2 coating on (c) InP and (d) GaAs. The black diamond indicates
the thicknesses of each layer for the optimized dual layer coating.

ally, we can clearly see the differences between a single and dual layer ARC in these

reflectance plots. The reflectance of the Si3N4 ARC is minimized for a particular

wavelength, around 450 nm, and then gradually increases for longer wavelengths of

light. The minimized reflectance region is quite small and narrow, while for the dual

layer ARC the region of minimized reflectance is quite broad and covers almost the
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Figure 2.10: Spectrally resolved reflectance for various single and dual
layer ARCs on (a) InP and (b) GaAs: bare substrate (black dashed line),
MgF2 ARC (magenta dashed line), TiO2 ARC (blue solid line), Si3N4

ARC (green solid line), and ZnS & MgF2 dual layer ARC (magenta solid
line).

Table 2.6: Solar-weighted reflectivity (RAM1.5G) for all optimized ARCs.

RAM1.5G for optimized ARCs

Substrate Material Bare Substrate MgF2 TiO2 Si3N4 ZnS & MgF2

InP 36.66 % 17.30 % 14.77 % 7.47 % 3.04 %

GaAs 40.79 % 20.86 % 14.96 % 8.58 % 4.50 %

entire visible spectrum.

Again using Equation 2.1 we can convert these reflectances to gain a quanti-

tative understanding of the results in Figure 2.10. The results of these calculations

are shown in Table 2.6, which presents the solar-weighted reflectances for the vari-

ous coatings investigated in this thesis. These values validate the qualitative results

from Figure 2.10, and show that Si3N4 is the highest performing single layer ARC,

with a RAM1.5G about two times larger than that of the ZnS & MgF2 dual layer
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Figure 2.11: Spectrally resolved layer-by-layer absorption for select single
layer ARCs on (a,c) InP and (b,d) GaAs. (a) and (b) show the results
for the Si3N4 ARC while (c) and (d) show the results for the TiO2 ARC.
In all parts of this figure the blue region represents the absorption in the
substrate while the red region represents the absorption in the coating
layer.

ARC. Another important aspect of these results is that TiO2 does not make a good

single layer ARC on InP or GaAs, yet it makes the best material for our nanocylin-

der coatings. Possible explanations for this will be discussed in Chapter 3.

To make sure that these coatings were not absorbing much of the incident

light we again ran the relevant simulations to determine the absorption in the ARC

layers. In Figure 2.11 we see slight absorption in the coating layers at short wave-
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lengths. However, unlike the ITO NCs, we do not see much absorption throughout

the rest of the relevant spectrum. This is because, unlike ITO, these materials have

fairly low extinction coefficients in the visible range, meaning that they are rela-

tively ineffective when it comes to absorbing visible light. Again, using methods

we have discussed in previous sections, we can determine how much solar-weighted

absorption is present in both the ARC layer(s) and the substrate. We can see quan-

titatively from Table 2.7 and Table 2.8 that the amount of solar-weighted absorption

in the single layer coatings is incredibly low, on average around 3 %. These values

also validate that Si3N4 is the best material to use for a single layer ARC on InP

and GaAs.

Table 2.7: Solar-weighted absorptivity (AAM1.5G) in each layer for optimized ARCs
on InP.

AAM1.5G

Coating Material Total AAM1.5G In InP In coating

80 nm MgF2 82.70 % 79.68 % 3.03 %

50 nm Si3N4 92.53 % 89.36 % 3.18 %

30 nm TiO2 85.23 % 81.37 % 3.80 %

2.7 Angular Dependence of Reflection for Various Coatings

While all of the previous results covered in this chapter are important to help

quantify the performance of the nanocylinder coatings and typical single and dual

layer ARCs, it is critical to realize that all of these results are for normally incident

light. Normally incident light is light from the sun which hits the photovoltaic de-
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Table 2.8: Solar-weighted absorptivity (AAM1.5G) in each layer for optimized ARCs
on GaAs.

AAM1.5G

Coating Material Total AAM1.5G In GaAs In coating

80 nm MgF2 79.14 % 76.02 % 3.12 %

50 nm Si3N4 91.42 % 87.84 % 3.59 %

30 nm TiO2 85.04 % 83.53 % 1.44 %

vice from an incident angle of 0◦, or perpendicular to the device surface. However,

this is not necessarily a situation that will occur in practice all of the time. While

most concentrating photovoltaic systems employ complex solar tracking software

and motors/actuators to move the panel to always have normally incident light,

typical rooftop and extraterrestrial photovoltaic systems do not, meaning light can

be incident on the device from various angles. As a result, antireflection coatings on

these cells might not reflect light at different angles as well as from normal incidence,

making angle-insensitive performance a key design aspect to make a better ARC.

In order to determine the performance of our ARCs for various angles of in-

cident light, we needed to slightly modify our optical simulations. We do this by

first, as expected, changing the incident angle of the plane wave source, which we

can accomplish by a direct change of a setting on the source in the simulation. Be-

cause this is an adjustable parameter, we can set up a parameter sweep where we

cycle through a wide variety of incident angles for our plane wave source. For our

simulations we chose angles from 0◦ - 70◦ in intervals of 10◦. However, the slight

change of incident angle means our in-plane periodic boundary conditions are in-
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Figure 2.12: Angularly resolved reflectance for various coating structures
on (a) InP and (b) GaAs. Both plots show the reflectance as a function
of incident angle for the bare substrate (black), the 50 nm thick Si3N4

ARC (green) and the optimized TiO2 NC coating (blue) averaged over
both polarizations. For (a) InP the data is shown for wavelengths of λ =
570 nm (triangles, dashed lines) and λ = 900 nm (squares, dotted lines).
For (b) GaAs the data is shown for wavelengths of 557 nm and 800 nm.
The two wavelengths chosen for each active material were characteristic
of a reflectance minima and a value close to the bandgap wavelength for
each material.

correct, because the propagating light from one unit cell of the simulation to the

next will not be exactly periodic. Portions of the incident plane wave will be out

of phase with other portions by some non-zero amount. To correct for this phase

factor, Lumerical provides the option of using Bloch boundary conditions, where we

can include this phase difference in the calculation of the fields via a simple Bloch

formalism, namely an exponential phase factor multiplying the field magnitudes.

We can see the results of these simulations in Figure 2.12 for the best single

layer ARC and nanocylinder coating. When we performed the simulations we ran

one set with p-polarized light and another set with s-polarized light, then averaged
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the results to arrive at the data presented in Figure 2.12 for light with an average

polarization. It is not entirely unexpected that for a wavelength where a reflectance

minimum occurs for these structures that the angularly resolved reflectance will also

be minimal. What is interesting, however, is that for both the Si3N4 ARC and the

TiO2 NCs on both substrates the reflectance is on average fairly angularly insen-

sitive before 45◦. This is a good indication, especially for our TiO2 nanocylinder

coating, that our designs can hold up with the industry standards for ARCs, even

surpassing them in angle-insensitive performance for most relevant incident angles.

2.8 Overall Results and Discussion

In this chapter, we have described and presented the results of our optical

simulations for various antireflection coating designs. We have also covered the main

optical design structures of this thesis, namely the nanocylinder array coatings,

single layer ARCs, and even a dual layer ARC. Here we will discuss some of the

overall results of our simulations with these coatings and some potential conclusions

that can be drawn from them.

2.8.1 Coatings

In terms of comparing the various coating structures, we will use solar-weighted

average reflectivity as our metric of comparison, taking into account both reflectance

from the structure as a whole and the light absorbed in the coatings themselves.

We first examine the characteristics of all of the nanocylinder coatings used in this

42



Figure 2.13: Spectrally resolved reflectance of all NC coatings on (a)
InP and (b) GaAs. Both plots show the reflectance for the following
coatings: bare substrate (black dashed line), active material NCs (black
solid line), ITO NCs (red solid line), and the TiO2 NCs (blue solid line).

Table 2.9: Solar-weighted reflectivity (RAM1.5G) for all optimized nanocylinder coat-
ings.

RAM1.5G for optimized NCs

Substrate Material Bare Substrate Substrate NCs ITO NCs TiO2 NCs

InP 36.66 % 3.68 % 3.34 % 1.25 %

GaAs 40.79 % 4.72 % 4.45 % 1.23 %

study. The spectrally resolved reflectances for all of our optimized nanocylinder

coatings are shown in Figure 2.13, while the solar-weighted reflectances are shown

quantitatively in Table 2.9. For a bare substrate with no optical coating, the solar-

weighted reflectance is 37 % for InP and 40.8 % for GaAs, much larger than any

option with a nanostructured coating. Recalling from Table 2.6 that our best ARC,

Si3N4, resulted in a solar-weighted reflectance of 7.5 % for InP and 8.5 % for GaAs,

we note that all of our nanostructured coatings optically outperform even the best
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single layer ARC. Additionally, our nanocylinder array coatings carry the additional

benefits of significant broadband reflectivity suppression throughout the visible spec-

trum and angle insensitivity for many incident angles. Even with the substantial

absorption in the ITO layer for our ITO NCs, the other nanostructured coatings

facilitate greater solar-weighted absorption in the active photovoltaic material than

a single layer coating (Table 2.3, Table 2.5, Table 2.7, Table 2.8).

In terms of the nanostructured coatings themselves, it is clear that TiO2 is

the best material to use for these types of structures on these III-V photovoltaic

materials. While the index of TiO2 might not match exactly with the optimal

index for a single layer ARC, the nanocylinder architecture provides the benefits

of broadband reflectance suppression, small absorption in the coating layer, and

angle-independent reflectivity at short-to-intermediate incident angles (Figure 2.4,

Figure 2.5, Figure 2.12). While it is beneficial to learn that ITO makes a viable

nanostructured coating on these materials, the large amount of absorption in the

ITO layer makes it much less practical in terms of its implementation in a real de-

vice. However, using it as a sacrifical layer for charge mediation purposes in FIB

fabrication of these nanostructured coatings may be a possible option for the ma-

terial, especially because we can see from our results that it does not significantly

compromise the optical performance. The active material nanostructures perform

well compared to a single layer ARC, but are the worst nanostructures in terms of

optical performance, with the added drawback of requiring nanostructuring of the

active material.

We can also compare the performance of the nanostructured coatings with

44



Figure 2.14: Spectrally resolved reflectance of various coatings on (a) InP
and (b) GaAs. (c) and (d) show zooms of the visible spectrum region
for all coatings on InP and GaAs, respectively. All NC coatings have
the same colors as in Figure 2.13, while the Si3N4 ARC (green line), and
the dual layer ZnS & MgF2 ARC (magenta line) are also represented in
these plots.

the single and dual layer ARCs (Figure 2.14). Here, both the substrate and TiO2

NCs have lower reflectances over the visible range than even the dual layer ARC.

This is another validation that our nanostructured coatings can outperform even

the best dual layer coatings. We can gain further insight by comparing their solar-

weighted reflectances. With a solar-weighted reflectance of ∼ 1.3 % over the spectral

range (Table 2.2), the TiO2 NCs again surpass the performance of the optimized
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dual layer ARC (3.1 % solar-weighted reflectance) used in the world record InP solar

cell [22]. The optical advantages of these nanostructured coatings provide compelling

reasons to use them for light absorption enhancement compared to typical ARCs. It

is important to note, however, for these direct bandgap materials (InP and GaAs),

the antireflection properties of the nanostructures become more important than the

light trapping properties. This is because nearly 95% of the entering light (at λ

= 900 nm in InP) can be absorbed within a 1 µm InP cell with a back reflector.

However, for a 1 µm Si cell with a back reflector to absorb a similar fraction of the

above bandgap spectrum, a light trapping factor (i.e. path length enhancement) of

16 would be needed. Thus, for thin-film (∼ 1 µm) direct bandgap semiconductors,

the design of high quality antireflection coatings is of greater importance.

2.8.2 Photovoltaic Materials

As we see from the results of these optical simulations, there are almost no

differences between using InP and GaAs as the active photovoltaic material, in

terms of designing nanostructured coatings and grading their optical performance.

The reflectance spectra from nanostructures on both materials are extremely similar

and only differ quantitatively by a few percent. While the GaAs structures result

in larger solar-weighted reflectances, part of this can be attributed to the larger

bandgap of GaAs, preventing light from 871 nm - 925 nm from being absorbed.

However, the power density in the solar spectrum at these wavelengths is low, so

another possible explanation might be the slightly higher index of refraction in
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GaAs compared to InP. Despite these small differences, the performance of these

nanostructured optical coatings are similar across both material systems, indicating

that the optical enhancement gained from using the nanostructures is a result of

design or geometry rather than compatibility with a particular photovoltaic material.

Overall, the results from this chapter provide strong evidence that optically designed

nanostructures have significant potential as antireflection layers, and that this effect

is not limited to Si but may be beneficial for many thin-film high index absorber

materials, such as InP and GaAs.
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Chapter 3: Investigation of Optical Mechanisms

In this chapter, we will dive into the underlying mechanisms responsible for the

optical enhancement provided by the nanocylinder array coatings on III-V solar cells.

We will present studies of the electrical field intensities around the nanocylinders and

compare them to previous results to support the idea of a Mie-like resonance effect

provided by the nanostructures. Additionally, we will describe investigations into

the specific optical modes of the nanocylinder arrays, revealing that a combination

of the Mie-like resonance effect and an effective index model accurately describes

the overall enhancement of the nanostructured coatings.

3.1 Electric Field Intensity Profiles

When thinking about what would reveal the underlying physical mechanisms

responsible for the antireflection effects of our nanocylinder arrays, the first place we

turned to was previous work with these nanostructures on Si. The work by Spinelli

et. al. (Ref. [12]), highlighted the importance of examining the distribution of the

electric field around and inside the nanocylinder itself. By examining the electric

field intensity distribution, we can visualize the field coupling between the nanos-

tructure and the substrate, as well as examine variations in the geometrical modes of
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light inside the nanocylinder [12]. We again turned to Lumerical FDTD simulations

to accomplish this task. In these simulations, because we are only examining one

isolated nanocylinder, we used a finer mesh around the nanoclyinder volume with

only 1 nm mesh spacing. The fine mesh drastically increases computational time,

but yields results with much higher resolution so that we can clearly visualize all of

the features of the field intensity distribution in and around the nanocylinder. For

ease of simulation and visualization, we created two 2D cross-sectional field intensity

monitors in these simulation, both splitting through the center of the nanocylinder,

one in the XZ plane and one in the YZ plane. This method allowed us to acquire a

full set of results to visualize the internal field intensity profile in the nanocylinder.

For these simulations we utilized a total-field scattered-field (TFSF) method,

using Lumerical’s option for a TFSF plane wave source. A total-field scattered-field

calculation is typically used to calculate the field from optically scattering structures.

In Lumerical, the TFSF source separates the simulation volume into two regions -

one where the total field is calculated (incident field + scattered field), and another

where only the scattered field is calculated. The incident plane wave is injected

normally to the surface, in our case in the -ẑ direction, and at the boundaries of the

source region the incident field is subtracted, leaving only the scattered field outside

of the volume enclosed by the source. We completely enclosed the nanocylinder in

the source volume, so that the field calculated inside the nanocylinder is the total

field plus the scattered field. The field calculated outside the nanocylinder volume

is exclusively the scattered field. This simulation allows us to directly visualize the

field coupling from the nanocylinder into the substrate, by seeing only the scattered
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field outside of the nanocylinder volume.

We ran our field intensity profile simulations for a few specific wavelengths,

namely wavelengths where there were minima in the reflectance spectra for the var-

ious optimized structures we investigated. For example, for the optimized InP NCs

there were two minima in the reflectance spectrum, one at λ = 458 nm and another

at λ = 599 nm, while for the optimized GaAs NCs these minima occurred at λ =

474 nm and λ = 634 nm. The results of these field intensity profile simulations

are shown in Figure 3.1. We can clearly see the field intensity distributions in and

around the nanostructures, as well as the similarities between them for the individ-

ual reflectance minima. For each wavelength the field intensity profiles are extremely

similar across both substrate materials. In all of the structures we see a few similar

characteristics: two high field intensity lobes at the top corners of the nanocylin-

der, a large scattered field in the substrate, and a dome-like intensity region inside

the nanocylinder. All three of these features are consistent with previous results

for these nanostructures on silicon [12], indicating that the optical enhancements

provided by the nanostructures are not necessarily material dependent. Specifically,

the large forward scattering of the field from the nanoclyinder into the substrate is

an indication of a leaky optical mode in the high index substrate for light that is

resonantly confined in the nanocylinder [12]. This facilitates increased in-coupling of

light into the substrate and provides a mechanism which may explain the beneficial

antireflection effects of the nanocylinders.

We find similar results when we examine the field intensity profiles for the

TiO2 NCs on InP and GaAs. Looking at the profiles in the context of the spectrally
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Figure 3.1: Electric field intensity profiles for optimized (a,c) InP and
(b,d) GaAs NCs at wavelengths where there were minima in the re-
flectance spectrum. All colorscales are the same and the plots show the
logarithm of the field intensity spatially distributed in the XZ cross sec-
tion of the nanocylinder. The schematic in the top left of each image
shows the electric field polarization direction and the wavevector of the
incident plane wave. The scale bar in the bottom left indicates 100 nm
in the simulation.

resolved reflectance (Figure 3.2), we can see that they maintain many of the same

characteristics as those for the active material nanostructures - two high intensity

lobes at the corners of the nanocylinder and large forward scattering of the field in

the substrate. However, the high intensity lobes seem to stretch across the entire

side of the nanocylinder, in addition to a high intensity region in the TiO2 spacer
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Figure 3.2: Spectrally resolved reflectance and electric field intensity
profiles for optimized TiO2 NCs on (a) InP and (b) GaAs. All colorscales,
field polarizations, and cross sections are the same as Figure 3.1.

layer between the nanocylinder and the substrate. This is likely an indication of

the differences in material between the spacer layer, nanocylinder, and substrate,
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because we would expect different optical enhancement with a nanocylinder of a

different index of refraction as the substrate. Another possible explanation for the

enhancement in the spacer layer will be provided later in this chapter. Finally, we

see little difference between the field intensity profiles for the NCs on InP versus

those on GaAs.

Looking at the field intensity profiles for the optimized ITO NCs (Figure 3.3),

we see similar results to the TiO2 NCs with high intensity lobes on the sides of the

nanocylinders and large forward scattering of the fields into the substrate. However,

in the ITO structures we see much larger field intensities throughout the nanocylin-

der volume, especially for the ITO NC on the GaAs substrate in Figure 3.3(b).

Overall, the field intensity profiles for all of our nanostructured coatings show that

large forward scattering into leaky optical modes in the substrate is likely a primary

optical mechanism which describes the enhancement of the NCs over traditional

Figure 3.3: Electric field intensity profiles for optimized ITO NCs on (a)
InP and (b) GaAs. All colorscales, field polarizations, and cross sections
are the same as Figure 3.1.
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ARCs.

3.2 Probing Optical Modes

We can gain further insight into the optical mechanisms behind the advantages

of these nanostructured coatings by considering the spectrally resolved reflectance of

the structures as a function of NC diameter and period. Variations in the reflectance

versus nanocylinder diameter can reveal information about localized modes in these

structures, while pitch (i.e. period) variations can uncover information about the

coupling between different nanostructures as a result of grating and diffraction ef-

fects. These investigative methods allow us to identify specific optical modes in

the nanostructured coatings. Because we already have all of the relevant data from

previous optimizations and geometry sweeps from earlier simulations, no new simu-

lations were needed to acquire this data. For these results, we chose to focus on the

TiO2 and ITO NCs, because those are the two primary nanostructured coatings we

wanted to investigate.

We can see the results for the TiO2 NCs on InP (Figure 3.4) and GaAs

(Figure 3.5) in the following figures. In both figures, there are two large regions of

minimal reflectance coinciding with minima in the reflectance spectrum for the op-

timized geometry. This can be explained by the combination of two different optical

effects, as described in the following sub-sections.
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Figure 3.4: Spectrally resolved reflectance as a function of (a) NC diam-
eter and (b) period for TiO2 NCs on InP. In part (a) the period is fixed
at 320 nm and in part (b) the diameter is fixed at 180 nm. For (a) and
(b) the dashed lines indicate the dimensions of the optimized structure,
the circles indicate positions of local minima in the reflectance spectrum,
and the dotted lines indicate spectral features that can be described by
specific optical effects.

3.2.1 Mie-like Resonant Mode

The first of these optical effects is that of a Mie-like resonance, which origi-

nates at wavelengths between 400 and 450 nm for small nanocylinder diameters and

intersects with the optimized geometry at the first local minimum in the reflectance

spectrum (λ = 454 nm for InP (Figure 3.4), λ = 459 nm for GaAs (Figure 3.5)).

We call this a Mie-like resonance because proper Mie resonances occur for spheres

of material in air, in accordance with how Gustav Mie originally discovered his solu-

tions to Maxwell’s Equations for the scattering profiles of such objects. In practice,

Mie scattering refers to the scattering from structures with sizes on the order of the

wavelength of the incident light/field, which applies to our nanostructured antire-
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Figure 3.5: Spectrally resolved reflectance as a function of NC diameter
(a) and period (b) for TiO2 NCs on GaAs. All aspects of these plots,
including the dimensions of the optimized NCs, are the same as those in
Figure 3.4.

flection coatings. We have, in essence, already validated the existence of this mode

via the field intensity profiles from Figure 3.2. The field profiles contain two high

intensity lobes at the top corners of the nanocylinder and strong forward scattering

into the substrate. As stated previously and verified in previous work, this is pri-

marily the result of light from a Mie-like resonance in the nanostructure coupling

into leaky optical modes in the high index InP or GaAs substrate [12].

This short-wavelength resonant mode is present in these modal investi-

gations of both of our nanostructured coatings. While it is less evident in the NC

diameter and period variations for our ITO NCs (Figure 3.6 for InP, Figure 3.7 for

GaAs), the presence of the mode is still validated by the field profiles in Figure 3.3.

In the modal investigations, especially for the ITO NCs on GaAs in Figure 3.7,

the resonant mode results in a strong reflectance minimum across most if not all
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Figure 3.6: Spectrally resolved reflectance as a function of (a) NC di-
ameter and (b) period for ITO NCs on InP. In (a) the period is fixed at
340 nm and in (b) the diameter is fixed at 180 nm. The dashed lines,
circles, and dotted lines have the same significance as in Figure 3.4.

Figure 3.7: Spectrally resolved reflectance as a function of (a) NC diam-
eter and (b) period for ITO NCs on GaAs. In (a) the period is fixed at
360 nm and in (b) the diameter is fixed at 200 nm. The dashed lines,
circles, and dotted lines have the same significance as in Figure 3.4.
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geometries. The resonant mode also lines up well with the reflectance minimum for

the optimal geometry for the GaAs case, providing strong evidence that it is the

primary optical mechanism responsible for the minimized reflection of that struc-

ture. It is important to keep in mind that, while the resonant mode is present in

both of these modal plots, the more important case for the Mie-like resonance is the

diameter variations case, because that will reveal more information about localized

modes within the individual nanocylinders.

3.3 Thin-Film Effect - Effective Index Model

The second of the optical effects evident in these modal studies is present

for the TiO2 NCs in the second minimal reflectance region, seen near λ = 570 nm

for InP (Figure 3.4) and near λ = 558 nm for GaAs (Figure 3.5). This minimal

reflectance region is more pronounced for diameters larger than the optimum and

for array periods smaller than the optimum (labeled as thin-film effect in Figure 3.4),

and can be attributed to a thin-film effect provided by the nanocylinders acting as

a layer with an effective refractive index. The mixture of the high index TiO2 (or

ITO) nanocylinders and the surrounding air acts as a thin-film with a thickness

governed by the nanocylinder height and an effective index that is calculated as a

volume weighted average of the refractive indices of the two materials (TiO2 (or

ITO) and air):

neff = nT iO2(
πd2

4p2
) + nair(1−

πd2

4p2
), (3.1)
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where nT iO2 is the refractive index of TiO2, nair = 1, d is the nanocylinder diameter,

and p is the periodicity.

3.3.1 Dual Layer ARC Configuration

In fact, the entire structure can be approximated as a dual layer ARC, with a

top layer described by the effective index determined by the nanocylinders (Equa-

tion 3.1) and a bottom layer described by the TiO2 spacer layer (Figure 3.8). To

verify this effect, we ran optical simulations of a dual layer ARC with a top layer

consisting of an effective index determined by Equation 3.1 (representing the NCs)

Figure 3.8: Optical performance of a dual layer ARC on InP with a
top layer of an effective refractive index replacing the TiO2 NCs. (a)
Reflectance of an effective dual layer ARC on InP as a function of wave-
length and NC diameter for a period of 320 nm and height of 100 nm.
The top layer has a thickness equivalent to the NC height and an ef-
fective index calculated using Equation 3.1. The bottom layer is the 30
nm thick TiO2 spacer layer. The dashed line, circles, and dotted lines
have the same significance as Figure 3.4. (b) Comparison between the
reflectance spectra for the optimized nanostructured device and a simple
effective index model for this optimized NC geometry.
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and a bottom layer of 30 nm of TiO2 for the spacer layer. The results are shown in

Figure 3.8(a), which indicate clear quantitative and qualitative agreement with the

data from Figure 3.4, capturing the thin-film effect for long wavelengths and large

NC diameters. For the optimized geometry (Figure 3.8(b)), the dual layer ARC

model accurately reproduced the long-wavelength broadband reflectance suppres-

sion while missing the short wavelength reflectance minimum due to the resonant

mode. We can see these results replicated for the ITO structures on InP and GaAs

in the figures below (Figure 3.9 and Figure 3.10).

3.3.2 Rayleigh Anomaly

Additionally, in Figure 3.4 there is another unique spectral feature charac-

terized by reflectance minima at wavelengths equivalent to the array period. This

feature is the consequence of a Rayleigh anomaly, which appears for similar struc-

tures on Si [12], and describes a dramatic change in the diffracted field from a grating

as the result of a scattered wave emerging tangentially to the grating surface [34].

The scattered light traveling with a momentum in the plane of the nanocylinders is

more strongly absorbed in the nanocylinders, causing the large reflectance dips in

the spectrum at those specific wavelengths.

60



Figure 3.9: Optical performance of TiO2 and ITO NCs on InP acting as
a dual layer ARC with an effective index. (a) Same plot as Figure 3.8(a).
(b) Same as (a) except varying the period and keeping a constant diam-
eter of 180 nm. (c) and (d) are the same as (a) and (b) except using the
optimized ITO NC geometries, where here, the bottom layer of the dual
ARC is the 50 nm thick ITO spacer layer. The dashed line, circles, and
dotted lines have the same significance as Figure 3.4.

3.4 Discussion

While the strategy to reduce reflection via a combination of Mie resonances and

thin-film coating effects is quite general, the refractive indices of the materials used

in this study are particularly beneficial. On its own, TiO2 (with a refractive index

of ∼ 2.5 over the visible spectrum) is not a great thin-film dielectric antireflection
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Figure 3.10: Optical performance of ITO NCs on GaAs acting as a dual
layer ARC with an effective index. (a) Reflectance of a dual layer ARC
on GaAs as a function of wavelength and NC diameter for a period of
360 nm and height of 100 nm. The top layer has a thickness equivalent
to the NC height and an effective index calculated using Equation 3.1.
The bottom layer is the 50 nm thick ITO spacer layer. The dashed
line, circles, and dotted lines have the same significance as Figure 3.4.
(b) Same as (b) except varying the NC period and keeping a constant
diameter of 200 nm.

coating for InP due to its large index contrast with air, which we have seen from

the results presented in Section 2.6. However, the inclusion of the TiO2 NC coating

layer (which has neff = 1.39 for the optimized structure), enables a graded index-

like behavior. This combination of materials yields an index of refraction profile

that more gradually transitions from air (nair = 1) to InP (nInP = 3.7) through the

inclusion of two additional layers with neff = 1.39 and nT iO2 = 2.5, thus yielding

a better impedance match between air and InP. Similar results are expected for

GaAs, and are clearly present with the ITO NCs. However, due to the parasitic

absorption in the ITO layer, neither the effective index dual ARC effect nor Mie

resonance accurately describe the effects of these structures.
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Chapter 4: Optoelectronic Device Performance

In this chapter we will examine the optoelectronic performance of our InP and

GaAs photovoltaic devices with and without our nanostructured coatings. While

the two previous chapters described our optical simulations, this chapter will focus

on the combination of slightly modified optical simulations with electronic device

simulations, utilizing another software package provided by Lumerical (Lumerical

Device). We will describe how we can take the results from these optical simulations

and use them as inputs into the electrical simulations to see how the solar cell per-

forms electronically, extracting important solar cell device parameters to quantify

how a realistic device using our structures would perform. Then, in a further effort

to quantify the performance of a real device utilizing these structures, we perform

optical simulations of our cells in a module-like architecture with a glass front in-

terface and an encapsulant. All of these results help validate our design as being

viable for a realistic and functional photovoltaic device.
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4.1 Electrical and Device Simulations

4.1.1 Optical Simulations with a Device-like Architecture

In order to quantify the device performance enhancements resulting from our

nanostructures, we use the results from optical simulations as inputs in electrical de-

vice simulations to determine the expected power conversion efficiencies. For these

new optical simulations, we again use the FDTD method and keep almost all of

the parameters the same except for a few key parts. First, we vary the InP and

GaAs substrate thicknesses for three different thicknesses, 0.5 µm, 1 µm, and 2 µm

(Figure 4.1, Figure 4.2). These thicknesses are typical for thin-film photovoltaic

devices and provide a range of thicknesses for which we can investigate the opto-

electronic performance of our devices. For these simulations the entire simulation

region must enclose the volume of the substrate as well, because we are simulating

a finite substrate thickness. We also decided to include an ideal metal back reflector

as the boundary condition for our simulations at the back surface of the substrate.

Back reflectors are a typical optical design method for photovoltaic cells, used to

reflect light back into the cell that might otherwise transmit through it and to limit

the cell’s emission angle (i.e. no light can escape through the back). We will use

the results from these optical simulations as inputs into our electronic simulations.

Because our simulation region now encompasses the entire substrate thickness

rather than just the first few hundred nanometers, we can calculate the spatially

resolved absorption throughout the entire InP or GaAs substrate. Using this spa-
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Figure 4.1: Spectrally resolved reflectance of various coating structures
on (a,c) InP and (b,d) GaAs thin-film solar cells with active layer thick-
nesses of (a,b) 0.5 µm and (c,d) 2 µm. All cells simulated have the
device-like architecture described in this section. The coatings investi-
gated were: bare substrate (black dashed lines), TiO2 ARC (blue dashed
lines), Si3N4 ARC (green lines), ZnS & MgF2 dual ARC (magenta lines),
and the TiO2 NCs (blue lines).

tially resolved absorption profile, we can calculate the electron-hole pair generation

rate, assuming one electron-hole pair is generated per absorbed photon [9]. This

rate is used to determine the carrier dynamics in electrical device simulations using

a finite-element based software platform (Lumerical Device) to solve the semicon-

ductor drift-diffusion equations.
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Figure 4.2: Spectrally resolved reflectance of various coating structures
on 1 µm thick (a) InP and (b) GaAs thin-film solar cells. All cells
simulated have the device-like architecture described in this section. The
coatings and colors corresponding to the coatings are the same as those
in Figure 4.1.

4.1.2 Motivation and Design Methodology

While we performed the optical simulations for both InP and GaAs, we de-

cided to only perform the electrical simulations on the InP cells to provide a proof

of concept. We design the photovoltaic device for the device simulations using a

nominal p-i-n structure for a solar cell, with a background p-doping concentration

of 1015 cm−3. The cell is illuminated from the top surface, which consists of an

80 nm thick doped n+ (1019 cm−3) InP layer. Below lies the intrinsic p-layer with

the background concentration, which makes up the base, and finally another 80 nm

thick doped InP layer, this time with p+ (1019 cm−3) doping (Figure 4.3). This

doping profile is optimized within reasonable limits and based on the generation

rates within the active InP layer obtained from the optical simulations (Lumerical
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FDTD). The optical data for these doped layers of InP is assumed to be the same as

that of the intrinsic material. We assume ideal ohmic contacts at flatband voltage

Figure 4.3: Generation rate profiles and J-V curves for InP solar cells
with various coatings. Generation rate profiles were calculated via opti-
cal simulations of 1 µm - thick InP solar cells with an ideal metal back
reflector and different optical coatings: (a) Bare InP, (b) 50 nm of Si3N4,
and (c) optimized TiO2 NCs. (d) Device parameters for p-i-n cell. (e) J-
V characteristics for InP cells using the above coatings: bare InP (black),
Si3N4 (green), optimized TiO2 NCs (blue). Significant current density
enhancement is found for our optimized TiO2 nanophotonic coatings.
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conditions, and the device model includes modest surface recombination velocities

(S = 107 cm/s) at the interfaces between the active layer and the contacts [26]. The

device simulations also incorporate radiative and non-radiative (Shockley-Read-Hall

(SRH) and Auger) recombination mechanisms in the InP active layer. For SRH re-

combination, we use a bulk minority carrier lifetime of 10−8 s in the p-doped base

layer and 3 x 10−6 s in the n-doped emitter. We assume a radiative recombination

rate of 2 x 10−10 cm3/s and an Auger coefficient of 9 x 10−31 cm6/s. All of the above

values were obtained from Ref [29]. and were utilized to recreate the electronic

conditions seen in a real device.

4.1.3 Generation Rate Profiles and J-V Characteristics

As stated previously, optical simulations yield the generation rate profiles, in-

tegrated over the full spectrum to yield the number of electron-hole pairs generated

per volume of InP per second (Figure 4.3). The three generation rate profiles shown

were obtained for an InP layer thickness of 1 µm because they demonstrated the

best optical and electrical performance. The generation enhancement is clearly seen

in these images, as the carrier generation, particularly in the top half-micron of InP,

increases for the Si3N4 and TiO2 NC coatings compared to the bare InP. In partic-

ular, the strong forward scattering of light from the TiO2 nanostructures into the

InP results in a high generation rate in the top half of the cell. The various minima

in the lower half of the generation rate profiles are due to optical interference effects
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Table 4.1: Device results for InP solar cells with varied active layer thicknesses and
optical coating structures.

InP Layer Thickness 0.5 µm 1 µm 2 µm

Material Bare InP Si3N4 TiO2 NCs Bare InP Si3N4 TiO2 NCs Bare InP Si3N4 TiO2 NCs

Jsc (mA/cm2) 20.70 24.82 26.10 21.78 28.86 30.47 21.25 27.00 28.85
Voc (V ) 0.902 0.906 0.908 0.901 0.908 0.909 0.891 0.899 0.901
FF (%) 85.9 86.1 86.1 83.3 83.8 83.9 80.1 80.2 80.82
η (%) 16.04 19.36 20.41 16.35 21.96 23.24 15.16 19.47 20.85

between the incident light and the reflected light from the back reflector.

The calculated generation rate profiles are input into the electrical simula-

tions, which calculate the specific solar cell device parameters as well as the J-V

characteristics (Figure 4.3). Table 4.1 summarizes the results of our device simu-

lations for each thickness of the InP active layer. The large short-circuit current

density enhancement is clearly seen in the data, as expected due to antireflection

effects provided by our nanostructured optical coating. The > 23 % efficiency of

this device is a result of improved current density and voltage in our proposed de-

sign while simultaneously reducing cell thickness. However, the parameters of our

simulation define idealized conditions, namely an ideal back reflector, idealized con-

tacts, perfect periodicity, and no damage to the device due to additional processing.

Some of these conditions may be unable to be met in a fabricated device, which

would likely reduce the power conversion efficiency. We also note that the slight

improvement of the fill factor as the active layer thickness is reduced (Table 4.1) is

likely due to improved carrier transport and collection.
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4.2 Module Configuration

4.2.1 Device Operation in an Encapsulant Environment

To further extend the practical implications of our design, we performed sim-

ulations to determine the effects of encapsulation of these cells in ethylene vinyl

acetate (EVA), the industry standard for encapsulants in commercial solar mod-

ules. In order to accomplish this, we followed the methodology outlined recently by

Spinelli et. al. [35]. We surrounded our InP and GaAs solar cells in EVA instead of

air, including a variety of different coating structures in order to accurately compare

the performance of our NC coatings to typical single and dual layer ARCs. We define

a PML boundary condition at the top surface of the EVA to simulate a semi-infinite

layer on the top surface. By including an additional 4.4 % reflection offset in our

results from the glass-air interface of an actual module architecture [35], we can in-

corporate the effects of the glass cover and the encapsulant in one simulation. This

design is because in typical solar modules the cells are surrounded by encapsulant

and then encased in glass. In terms of the simulation structure for the solar cells

themselves, we maintained the same simulation structure as with our optimizations

from Chapter 2, with a semi-infinite substrate layer and normally incident illumi-

nation across the relevant spectral ranges for each photovoltaic material.

We can see results for a few of our coatings in Figure 4.4, where it is evident that

the TiO2 NCs still outperform both the ITO NC and Si3N4 coatings. Not only that,

but we can see the vast difference between our devices when in EVA versus air by
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Figure 4.4: Spectrally resolved reflectance for selected nanocylinder coat-
ings and a single layer ARC on InP and GaAs solar cells in an EVA
encapsulant. (a) and (b) show the reflectance spectra for the TiO2 NCs
(blue), ITO NCs (red), and Si3N4 ARC (green), as well as including the
reflectance offset from the glass-air interface at the front of the module
(black dashed line). (c) and (d) show results for the TiO2 NCs and Si3N4

ARC in EVA (solid lines) and air (dot-dashed lines).

examining Figure 4.4 parts (c) and (d), which compare the TiO2 NC and Si3N4 coat-

ings in air and EVA. In air, the coatings are able to fully minimize the reflectance,

but tend to have large reflectance tails which decrease the antireflection effects of

the coatings at large wavelengths. While the coatings in EVA do not perform as well

as in air, they seem to have flatter reflectance spectra, and thus more broadband
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Figure 4.5: Spectrally resolved reflectance for various coating structures
on InP and GaAs solar cells in an EVA encapsulant. (a) and (b) show the
reflectance spectra for the active materials NCs (black solid line), TiO2

NCs (blue), ITO NCs (red), Si3N4 ARC (green), and ZnS & MgF2 dual
layer ARC (magenta), as well as including the reflectance offset from the
glass-air interface at the front of the module (black dashed line).

Table 4.2: Solar-weighted reflectivity (RAM1.5G) for all optimized ARCs on InP and
GaAs in EVA. Note - these values include the 4.4 % reflectance offset at the glass-air
interface at the top of the module.

RAM1.5G for optimized coatings in EVA

Substrate Material Substrate NCs ITO NCs TiO2 NCs Si3N4 ARC ZnS & MgF2 ARC

InP 11.41 % 11.27 % 9.54 % 11.40 % 11.90 %

GaAs 12.94 % 13.39 % 10.91 % 13.91 % 12.61 %

and wavelength-insensitive behavior. The feature in the reflectance spectra of the

NC coatings for wavelengths < 500 nm is due in part to the onset of backscattered

diffraction orders at these wavelengths.

When comparing these results against the active material NCs and the optimized

dual layer ARC, we can see a few interesting trends (Figure 4.5). For example, the

dual layer ARC in EVA has a reflectance spectrum similar to that of a single layer
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Table 4.3: Solar-weighted absorptivity (AAM1.5G) for optimized NCs on InP and
GaAs in EVA. Note - these values include the 4.4 % reflectance offset at the glass-
air interface at the top of the module.

AAM1.5G for optimized NCs

Substrate Material NC Material Total In substrate In coating

InP
ITO 88.73 % 76.53 % 12.20 %
TiO2 90.46 % 83.83 % 6.63 %

GaAs
ITO 86.61 % 71.28 % 15.33 %
TiO2 89.09 % 81.51 % 7.58 %

ARC in air (see Figure 2.10). This is not surprising though, because the top layer

of the dual layer ARC, MgF2 has an index of ∼ 1.4 over the relevant spectrum,

while EVA has an index of ∼ 1.5 over the same spectral range. EVA’s index is al-

most identical to the glass layer at the top surface of the module, and is so close to

that of the MgF2 that the dual layer ARC in EVA acts like an effective single layer

coating. Additionally, the active material NCs seem to have significant reflectance

suppression at long wavelengths in EVA which is not necessarily present in air. One

possible cause of this effect could simply be the difference in index contrast from the

air/active material interface versus the EVA/active material interface. Finally, we

can see qualitatively that the TiO2 NC coating still has the best overall reflectance

supression across the entire spectral range.

As in previous chapters, we can take the spectrally resolved reflectance of

our structures in EVA and convert them to a solar-weighted reflectance via Equa-

tion 2.1. We can see from the results in Table 4.2 that even though the results are

much higher than these structures in air, the nanocylinder coatings still outperform
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Figure 4.6: Spectrally resolved absorption in the NC coating and sub-
strate layers for the TiO2 NC and ITO NC coatings on InP and GaAs
in EVA. (a) and (b) show the results for the TiO2 NC coatings on InP
and GaAs, respectively. (c) and (d) show the results for the ITO NC
coatings on InP and GaAs respectively. The blue region represents the
absorption in the substrate while the red region represents the absorp-
tion in the NC coating layer. The black dashed line represents the 4.4
% absorption decrease due to reflection at the glass-air front interface.

both the single and dual layer ARCs, even in EVA. It is also important to note that

these reflectances are a bit inflated due to the 4.4 % reflectance offset at the top

surface of the module structure. So the solar-weighted reflectivity for the optimized

TiO2 NCs increased from 1.3 % at the air/TiO2 interface (Table 2.2) to 5.1 % at

the EVA/TiO2 interface (Table 4.2). Overall, this is not an extremely significant
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increase in RAM1.5G and the broadband reflectance suppresion of the NC coatings in

EVA may end up being an added benefit of using these coatings in realistic module

configurations of solar cells.

We do not want to be misled by these low solar-weighted reflectance values

from these structures, however, so we again perform simulations such as those de-

scribed in Chapter 2 to determine the solar-weighted absorption in each layer for

these devices in EVA (Figure 4.6). We can also see the quantitative results, sum-

marized in Table 4.3. As with previous results, there is significant absorption in the

ITO NC coatings, which decreases the amount of absorption we can theoretically

achieve in the substrate. Also consistent with previous results, there is more ab-

sorption in the coating layers at short wavelengths and consistent absorption across

the entire spectrum for the ITO NC coatings, regardless of substrate material.

4.3 Discussion

In this chapter we have seen that solar cells with our nanostructured coatings

have the potential to perform extremely well, with potential efficiencies rivaling that

of world record solar cells. We have also seen that these structures still perform well

optically even when being placed in a module-like architecture, surrounded by an

encapsulant instead of air. Further studies to optimize these nanostructures within

an encapsulant could reveal the versatility of these types of nanophotonic coatings

on different materials and in different optical environments. Overall, the thin-film

devices with the nanostructured TiO2 coatings show vastly improved performance
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compared to both the bare substrate material and the single and dual layer ARCs.
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Chapter 5: Conclusions and Future Work

In this chapter we summarize the main conclusions that can be drawn from

this work, as well as present options for future work which can build on our results.

5.1 Conclusions

In this thesis we have presented designs of novel nanostructured anitreflec-

tion coatings for high performance III-V thin-film solar cells consisting of periodic

arrays of nanocylinders. The nanocylinders can be made of many different mate-

rials, though the arrays we designed focused on nanostructures of the active pho-

tovoltaic material, TiO2, and ITO for reasons such as low surface recombination,

previous work with Si, and fabrication considerations, respectively. These nanopho-

tonic structures are used primarily as antireflection coatings which enhance the solar

cell’s overall optoelectronic performance. Geometric optimizations utilizing solar-

weighted reflectance as a figure of merit as well as spectrally resolved reflectance

studies have shown that these structures, when properly optimized, can have a

solar-weighted average reflectance of 1.3 %, outperforming traditional antireflection

coatings. We were also able to explore the absorption in the substrate and coating

layers to validate the reflectance results, and found that the ITO NC coatings suf-
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fered from large parasitic absorption in the ITO layer, preventing more light from

being absorbed in the substrate. Overall the TiO2 NC coatings had the best opti-

cal performance with minimal parasitic absorption, showing that these NC coatings

have potential use beyond the Si materials systems with which they have been pre-

viously utilized.

By investigating the field intensity profiles and optical modes of these nanos-

tructured coatings, we found that the optical enhancement provided by the coatings

is primarily due to the coupling between Mie-like resonances and thin-film inter-

ference effects. The nanoclyinder arrays act as a thin-film dielectric layer of an

efffective refractive index, providing additional enhancement compared to a typical

single or dual layer ARC. Additionally, the highest performing nanostructures do not

require modification of the absorber layer, which may help reduce complexity and

cost, while simultaneously limiting the negative effects of increased surface recombi-

nation. We used results from optical simulations with a device-like architecture as

inputs into electrical simulations, which allowed us to explore the possible solar cell

device parameters of fully functional devices utilizing our coatings. We discovered

that these nanostructured optical coatings can push the efficiency of InP cells to >

23 %, with similar results expected for GaAs but with possibly higher efficiencies.

By using inexpensive industrial fabrication processes such as nanoimprint lithogra-

phy, these types of structures can be fabricated on other high-index substrates, thus

continuing to push the limits of photovoltaic performance.
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5.2 Future Work: Fabrication, Testing, and Measurement

The primary goal of future work with this project is to fabricate these struc-

tures on already-functional solar cells and take measurements to quantify the op-

toelectronic characteristics of real devices. As stated previously, we had considered

fabricating the nanostructures on these cells via FIB, and this is likely the route we

would take in fabricating the structures we have designed here. From our studies

of ITO NCs, we have seen that though there is large absorption in the ITO, there

is not a significant decrease in overall optical performance. We would likely deposit

TiO2 on bare InP and GaAs via electron beam deposition, and then deposit small,

thin layers of ITO to facilitate the transport of excess charge during FIB process-

ing. Once the nanocylinder arrays were fabricated we would use a solar simulator

and voltage and current probes to measure the electrical response of the cells to an

AM1.5G solar spectrum, obtaining J-V characteristics. We would then take optical

measurements in our lab with setups we currently have, such as spectrally resolved

reflectance, angularly resolved reflectance, and external quantum efficiency (EQE).

We would also perform all of these measurements and tests on the original cells

in order to have a control set of data for comparison. These measurements and

experiments would provide us with a set of experimental results we could compare

to the computational and theoretical results of this work, ideally further validating

the advantages of these nanocylinder coatings on III-V thin-film solar cells.
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Appendix A: Additional Results and Figures

Here we include a few additional figures and results.

Figure A.1: Geometry sweeps of h = 50 nm active material nanocylinders
in (a) InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.
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Figure A.2: Geometry sweeps of h = 150 nm active material nanocylin-
ders in (a) InP and (b) GaAs. Both (a) and (b) show the optimized
geometry, indicated by the black diamond.

Figure A.3: Geometry sweeps of h = 200 nm active material nanocylin-
ders in (a) InP and (b) GaAs. Both (a) and (b) show the optimized
geometry, indicated by the black diamond.
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Table A.1: Optimized geometries of active material nanocylinder coatings on InP
and GaAs. Solar-weighted reflectivities of these structures can be found in Table 2.1.

Substrate Material NC Height (nm) NC Period (nm) NC Diameter (nm)

InP

50 100 80
100 180 120
150 360 200
200 380 200

GaAs

50 100 80
100 180 120
150 360 200
200 400 220

Figure A.4: Geometry sweeps of h = 50 nm TiO2 nanocylinders on (a)
InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.
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Figure A.5: Geometry sweeps of h = 150 nm TiO2 nanocylinders on
(a) InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.

Figure A.6: Geometry sweeps of h = 200 nm TiO2 nanocylinders on
(a) InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.
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Table A.2: Optimized geometries of TiO2 nanocylinder coatings on InP and GaAs.
Solar-weighted reflectivities of these structures can be found in Table 2.2.

Substrate Material NC Height (nm) NC Period (nm) NC Diameter (nm)

InP

50 100 80
100 320 180
150 360 180
200 400 220

GaAs

50 80 60
100 320 180
150 360 180
200 380 200

Figure A.7: Geometry sweeps of h = 50 nm ITO nanocylinders on (a)
InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.
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Figure A.8: Geometry sweeps of h = 150 nm ITO nanocylinders on (a)
InP and h = 100 nm ITO NCs on (b) GaAs. Both (a) and (b) show the
optimized geometry, indicated by the black diamond.

Figure A.9: Geometry sweeps of h = 200 nm ITO nanocylinders on
(a) InP and (b) GaAs. Both (a) and (b) show the optimized geometry,
indicated by the black diamond.
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Table A.3: Optimized geometries of ITO nanocylinder coatings on InP and GaAs.
Solar-weighted reflectivities of these structures can be found in Table 2.4.

Substrate Material NC Height (nm) NC Period (nm) NC Diameter (nm)

InP

50 100 60
100 340 180
150 360 200
200 400 200

GaAs

50 400 200
100 340 180
150 360 200
200 400 200

Figure A.10: Solar-weighted reflectivity of a single layer MgF2 ARC on
(a) InP and (b) GaAs for varying thicknesses of the coating layer. For (a)
and (b) the black dashed line indicates the RAM1.5G of the bare substrate
material and the blue line represents the device with the coating, in this
case MgF2.
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