TECHNICAL RESEARCH REPORT

Network Unfolding Algorithm and Universal
Spatiotemporal Function Approximation

by D-T. Lin and J.E. Dayhoff

T.R. 95-6

INSTITUTE FOR SYSTEMS RESEARCH
‘ Sponsored by
the National Science Foundation
‘ Engineering Research Center Program,
’ the University of Maryland,
Harvard University,

‘ and Industry

Network Unfolding Algorithm and Universal

Spatiotemporal Function Approximation*!

Daw-Tung Lin and Judith E. Dayhoff
Institute for Systems Research
University of Maryland

College Park, MD 20742

Abstract

It has previously been known that a feed-forward network with time-delay can be
unfolded into a conventional feed-forward network with a time history as input. In
this paper, We show explicitly how this unfolding operation can occur, with a newly
defined Network Unfolding Algorithm (NUA) that involves creation of virtual units
and moving all time delays to a preprocessing stage consisting of the time histories.
The NU A provides a tool for analyzing the complexity of the ATNN. From this tool,
we concluded that the ATNN reduces the cost of network complexity by at least a

factor of O(n) compared to an unfolded Backpropagation net. We then applied the

*Copyright ©1994 by D.-T. Lin and J. E. Dayhoff. All Rights Reserved.

tThis work was supported in part by the National Science Foundation under Grant No. NSF D CDR
8803012 and NSF EEC 94-02384, ,the Naval Research Laboratory (N00014-90K-2010), , and the Applied
Physics Laboratory of Johns Hopkins University.

theorem of Funahashi, Hornik et al and Stone-Weierstrass to state the general func-
tion approximation ability of the ATNN. We furthermore show a lemma (Lemma 1)
that the adaptation of time-delays is mathematically equivalent to the adjustment of
interconnections on a unfolded feed-forward network provided there are a large enough
number (h2"¢) of hidden units. Since this number of hidden units is often impractically
large, we can conclude that the TDNN and ATNN are thus more powerful than BP

with a time history.

1 Network Paradigm and Definition

Networks with this capability can play an important role in applications domains that have
naturally time-varying properties to their signals and dynamic situations. These domains
include identification and control as well as signal processing and speech recognition.

An important contribution in this area has been the time-delay neural network (TDNN)
proposed by Waibel et al [18], which employs time-delays on connections in feedforward
networks and has been successfully applied to speech recognition [19, 9]. The time-delay
neural network also classifies spatiotemporal patterns and provides robustness to noise and
graceful degradation [14]. Techniques such as backpropagation through time [20] have been
applied to temporal pattern recognition but not with adaptive time-delays. Time delays are
fixed initially and remain the same throughout training. The decision of how many time
delays are needed and what are the most appropriate lengths for each time delay are often
made by trial-and-error. As a result, the system may have poor performance due to the

inflexibility of time delays and due to a mis-match between the choice of time delay values

and the temporal location of the important information in the input patterns. In addition,
the system performance may vary depending on the range of the time delay values.

To overcome this limitation, we have used an Adaptive Time Delay Neural Network
model [6, 14, 13, 7, 15]. This network adapts its time delay values as well as its weights
during training, to better accommodate to changing temporal patterns, and to provide more
flexibility for optimization tasks. The AT NN used here allows arbitrary placement of time
delays along interconnections and adapts those time delays independently of one another.
Furthermore, time-windows are not used as in previous work [2, 18] but instead classifi-
cation relies on a set of individual time delay values associated with each interconnection.
Although other artificial neural network architectures that make use of time delays have been
suggested [17, 5, 7, 2, 3], these paradigms employ different training rules or different network
topologies, and the network presented here is simple to use and has a general formulation.

The proposed ATNN model employs modifiable time delays along the interconnections
between two processing units, and both time delays and weights are adjusted according to
system dynamics in an attempt to achieve the desired optimization. Node 7 of layer h — 1
is connected to node j of the next layer h, with the connection line having an independent
time-delay 7;;x 51 and synaptic weight w;s s—1. To illustrate, a three layered ATNN is shown
in Figure 1.

Next we propose definitions that are used to describe a general ATNN architecture with

flexible configuration.

Definition 1 nj; is the number of time-delays employed on the connections to node j from

node i (i.e., the number of samples in the time frame Tj;).

10

1O

’I’Llj-

Ti:
elay block -

J

pO

q
input layer hidden layer output layer
set NVq set Ny set N3
i € Ny,p = Wi GENna=INY keNsr =Ny

Figure 1: Three layered ATNN

Definition 2 Time frame: Time frame Tj; is a set of time delays (7ji1, ..., Tjin,;) employed
on the connections to node j from node i. The time frame can have an additional index h

(Tiin) to signify layer h of time-delay.

Definition 3 The set of time frames T; for connections that originate at node % is defined

as:

7;_—'(711:7"')7;1:7”.77:11:)) (1)
where q is the number of units that receive connections from node 1.

Definition 4 p;;(t, Tj;) is the set of signal values transmitted to node j from node i via time
frame Tj; at time t. Thus, p;i(t, Tjs) = [s:(t = Tjar), .., 5i(t — Tjin;;)], where si(t) is the signal

from node i at time t.

Definition 5 P;(t, T;) is the set of signal values transmitted from node i to other nodes at

time t. Thus,

p1i(t, Tis) [8:(t = T161), +ons Si(t — Tainy,)]
B, T = | pu(t,T) | = [Si(t = Tji1)y -y Si(t — Tjinﬂ)]
Pai(t, Tas) [Si(t — Tgi1)y s St — qu‘nq,)]

Let J; ». be a set of nodes that receive connections from node 7 on layer h. Node i transmits
the set of pattern values P;(t, T;) to selected subset J;;. In other words, Vj € J; 5, node j
receives pattern P;(t,7;;) from node 4 through a time frame 7;;. The samples in the time
frame T;; correspond to the delays 7j;z 5, where £ = 1,2, -+, nj;, where nj; = |T3{],7 € Jin,
and h is the index of the layer in which 7 belongs. In the definitions above, we have omitted

the layer index h for simplicity.
Definition 6 N, is the set of nodes {1,2,...,Wi|} of layer h

Thus, each node j of layer h (eg. j € N,), receives nj; inputs from each i € Z; ;,, where Zn
is the subset of nodes on layer h — 1 (Z;, C NV,_1) that connects to unit j on layer h. The
total number of inputs to j is: m; = Yliez; , Miie

In this model, we assume that p = |\Wi|,¢ = |IVY|,» = |IV4l| are fixed, and that the
connectivity between layers is fixed (||J; 1| for the same layer is fixed), and for the sake
of simplicity, we assume [}J;4]| = |IVJ| and |[J; 4| = |I4|| (fully connected). In general, the

number of samples in the time frame, n;;, and the values of the delays (therefore the set 7;)

are variables. In this research, we assume that n;; is fixed (selected) and allow Tjiz,h—1 1O be
variable. We also assume that nj; is the same for all i € T, and for all j € J; ;. If nj; is

the same (fixed) for all 5 € Z;, then m; = ny; - |IZ; -

Definition 7 n,_; is defined as the number of time-delays on connections originating at

node i on layer h — 1 where np_y = nj; for all j.
Then our model possesses the following property:

Property 1 For each nodei € N_y connecting to all j € J; 1, Ji o1 C Ny, there is a time
frame Tj; with ny_y samples, corresponding to the delays Tjizh—1,Z = 1, -+, np_1. Inputs to

node j (on layer h) are from node i (on layer h—1), and there are np_, - |Is_i|| such inputs.

2 NUA and Complexity Analysis

From previous literature, researchers have indicated that a time-delay embedded network
can be unfolded into feedforward network, but left the procedure of unfolding vague. In this
section we elucidate this procedure in a very explicit four-step operation: Network Unfolding
Algorithm (NUA).

For notational simplicity, we use a three layer ATNN to illustrate the unfolding operation
NUA and to keep the number of time-delays in the same layer to be consistent. We use
definitions of the network configuration in previous section. Use Definition 6 and let n; =
Wil,ng = |[Nu|,no = |No| be the number of nodes on the input, hidden and output layers
respectively. Use Definition 7 and let n; = d;, ny = d; be the number of delays on connections

originating at nodes on the input and hidden layers respectively. From Property 1, there are

di -ny and dy - ny inputs to each node on the hidden layer and the output layer respectively.

Knowing the number of connections, we can unfold the ATNN by the following algorithm:

Algorithm 1 (Network Unfolding Algorithm (NUA))
Step 1 — unfold inputs:
For each hidden node j do in parallel:

For each input node i do in parallel:

1.1 duplicate (dy — 1) new input nodes and spread these nodes horizontally next to

each original input node

1.2 move (dy — 1) of the original connections to new input nodes correspondingly
and retain the weight and time-delay on each connection
end
end
Step 2 — re-adjust input time lag:
For each hidden node j do in parallel:

2.1 remove the time-delays between input and hidden units

2.2 set the input values as [p;1(t, Tj1), .., Djn; (t, Tin,)] accordingly, where Tj; is the time
frame (in Definition 2) on the connections from node i to j, pji 15 the signal value
vector transmitted from node i to j (Definition 4)

end
Step 3 — unfold hidden nodes:
For each output node k do in parallel:

For each hidden node j do in parallel:

3.1 duplicate (dy — 1) new input nodes and spread these nodes horizontally next to

each original hidden node

3.2 move (dy — 1) of the original connections to new hidden nodes correspondingly

and retain the weight and time-delay on each connection to output node k

3.8 for each newly created hidden node do in parallel:

copy the whole branch which associates with the original hidden node in

Step 2, and then connect to that new node as its branch and retain the weights

end
end
end
Step 4 — re-adjust input time lag:
For each each hidden node j and its newly created node from Step 3 do in parallel:

4.1 remove the associated time-delays between hidden and output units

4.2 re-adjust the input node time lag, such that the input node of each branch takes the
vectors of [pji(t — Tk, Tj1)s -+ Ping (¢ = Thogits Ting))s +os [Pj1 (€ = Thidn, Tjn), s Py (€ —
Tk jdgs Ting)] correspondingly

end 0

Let nr,nm,no be the number of units in input, hidden and output layer respectively.
Let d; and dy be the number of time-delay connections between input-hidden node pairs
and hidden-output node pairs respectively. We present a table (Table 1) which shows how
the number of input and hidden units in a feedforward network or BP (with zero weight on
connections to other nodes) are increased exponentially from unfolding. If the number of

8

nodes in each layer is n, then the number will be increased by a factor of O(n) and the input
nodes is increasing by a factor of O(n?). Therefore the ATNN is indeed a very economic
architecture to achieve the same goal as feedforward network. For a network with more than.
two hidden layers, the unfold operation can be executed by repeating Step 3 and Step 4
from the lowest hidden layer to the highest layer, and expanding the net until reaching the
output layer.

Figure 2 explicitly and graphically elucidates the unfold operation of an ATNN with net
configuration 2 — 2 -2+ 1 (labeled as original). In Steﬁ 1, two new nodes (2x2—2 = 2)
are created (drawn in dotted circle) which are labeled as I; and I, then spread these two
newly created nodes next to its original node. In Step 2, each associated time-delay is
removed by adjusting the time lag of each input node so that each node receiving information
at correct time slot (¢ — 71,t — 72,t — 73, and t — 74). In Step 3, since there are two synapse
connections from node H; to output node O;, we need to create another hidden node (labeled
in H{) and then copy the whole branch of node H; and hook up to node Hi. In Step 4, the
time-delays 75 and 7¢ are removed from connections between hidden node and output node.
These time lag factors are pushed down to the input layer, so that each branch inherits its
value from the upper level. In other words, the input vector of the branch under node H;
becomes [z (t — 71— 75), Z1(t — T2 — T5), T2(t — T3 — 75), T2(t — 74 — 75)]. The input vector of the

other branch (under node H;) is [z (t — 71 — 76), 21 (t — T2 — T6), Ta(t — T3 — 76, T2 (t — T4 — 76)].

The NUA can also be executed in an alternative order by unfolding the second layer
first using the same procedure. This is illustrated graphically in Figure 2. In Step 1 and

Step 2, the hidden layer is unfolded first by creating a virtual node Hi and duplicating the

9

z1(t) Q 1 n
<>@
za(t) =(I,)~—% T

original
T (t - 7'1)
zit—m) -1 s
o)
flfz(t - T3) Te

.'L‘](t - T1)
xl(t — 7'2)
.’L‘2(t - 7'3)

z2(t — 74) za(t — T4 — T5) - I;

z1(t — 71— 75) =)
.’I“l(t — Ty — TG) —>I1

xz(t — T3 — Ts) _>

Ig(t — T4 — TG)_>' I‘r;

z1(t—7)
71 {t — 1) o
H,
xz(t — 7'3)

zz(t - 7'4)

Step 3 Step 4

Figure 2: Explicit demonstration of unfold operation.

10

| [originalnet | unfolded net |

of output nodes no O(n) no O(n)
of connections b/t each H/O node pair ds 0(1) 1 o(1)
of hidden nodes ng O(n) ngdeno 0O(n?)
of connections b/t each I/H node pair d; 0o(1) 1 0O(1)
of input nodes nr O(n) | nydingdano O(n®)
of connections to each output node nyds O(n) ngds O(n)
of connections to each hidden node nrdy O(n) nrd; O(n)
total # of connections to output layer ngdano O(n?) ngdano O(n?)
total # of connections to hidden layer nrding O(n?) | nydingdano O(n?)

Table 1: Comparison of the original and unfolded network configuration.

entire branch of the original node H;. The input time lags of each branch are adjusted to
corresponding time-delay 75 and 74. In Step 3, the new input nodes are generated and the

entire input layer is unfolded. Then finally in Step 4, each input time lags is readjusted.

3 Hidden Units and Single Layer Time-Delay Adap-

tation

Property 2 The TDNN is equivalent to its unfolded feedforward network with sufficient
number of hidden and input units. However, it is usually impractical to have such large
number of hidden nodes and input nodes in an unfolded configuration. An example of a
three layered network is shown in Table 1, the total number of hidden units in the unfolded

network may grow up to O(n?), while the total number of input nodes may grow up to

O(n®).

Lemma 1 (single layer time-delay adaptation) Given a TDNN with ATNN algorithm
applied to adapt time-delays on only one layer (layer one or layer two) of connections and
adapt weights on both layers. Then, after each iteration of training, the time-delay changes

11

z1(t) —>® 1 .
Ve
z5(t) @ Ta T

original

Figure 3: Alternative NUA by unfolding second layer time-delay first.

12

of the TDNN can be realized in a feedforward network with a sufficiently large number of
hidden units h2™, where h and n are the number of hidden and input units of the ATNN
respectively, d denotes the sum of the mazimum time-delay variables in layer one and layer
two of TDNN (i.e., d = maz(T1) + maz(T3), where Ty and Ty are time-delay matrices of

layer one and two respectively).

Proof: Given n input units and sufficient number of historical time step d, each hidden node
is associated with n - d inputs (Property 1). For all n - d elements, there are at most 2™ of
combinations (denoted as set .A) in terms of whether each element is selected or unselected.
Since d is sufficiently large, all the changes in any time-delay elements will fall in the range
[0, d].

Given an feedforward net with A2"¢ hidden units in which each hidden unit of the original

* ATNN is expanded to 2" units, such that each of the 2™ units is associated with one of the
possible combinations (in set .A) of a connection configuration to the historical time steps of
all input units.

Applying NUA operation, the ATNN can be unfolded into a feedforward net with the
input node taking data a;(t — Tiayer—one — Tiayer—two) OUt of input node i, where Tjgyer_one and
Tiayer—two T€present the time-delay in layer one and two respectively. For example, Tiayer—one
is one of 7y, 7o, T3, or 74 in Figure 2, Tigyer—two 18 T5 OF Te.

If Tigyer—two is fixed, changing layer one of time-delays is equivalent to making selection
of a input set a;(t — Tigyer—one) With a fixed amount of shift 7j4ye;—two. The input data set is
a subset of all input data combinations set 4.

If Tigyer—one is fixed, changing layer two of time-delays is equivalent to shifting all input

13

data a;(t — Tigyer—one) in the same time step Tigyer—two. The shifted data set is also a subset
of set A.

Therefore, given h2™¢ hidden units will be sufficient to represent all different combinations
of connection configurations to the historical record of all input nodes. With layer one or
layer two of time-delay adapted, the ATNN is equivalent to an unfolded feedforward net
with extra and sufficient enough number of hidden units h2"¢. O

Given the fact of Theorem 1 and Corollary 1, we need to consider the optimal weights
¢; and time-delays 7; ;x, where the ATNN is applied. Given sufficient number of hidden
units and time delays, ATNN with one hidden layer is capable of approximating any spatio-
temporal function to any desired degree of accuracy. Practically, for a small number of
hidden units, then we need to adapt delays in both layers in order to achieve better mapping

or performance.

Remark 1 Given a lower bound number of hidden units, with a proper choice of weights
and time-delays, the ATNN can approximate any complex spatiotemporal function to desired
accuracy. However, it can get stuck in a local minimum. The convergence is expected to

improve if additional hidden units are employed [10, 12].

4 ATNN: Universal Spatiotemporal Function Approx-

imator

The capability of multilayer feedforward networks has been theoretically studied. In previous

work, Funahashi, Hornik, Stinchcombe and White have concluded that “standard multilayer

14

feedforward networks with as few as one hidden layer using arbitrary squashing functions are
capable of approximating any Borel measurable function from one finite dimensional space
to another to any desired degree of accuracy, provided sufficiently many hidden units are
available. In this sense, multilayer feedforward networks are a class of universal approxima-
tors” [11]. Similar theorems can also be seen in [8, 16, 4]. The superpositions of a sigmoidal
function in achieving universal approximation is also discussed [1].

In this section, we rephrase this mathematical statement and then extend these results
to networks with time-delays.

Let r € N and A" be the set of all affine functions from R” to R: A(z) = w-x +b where
w and z are vectors in R, and b € R is a scalar. Let ¢(-) be a measurable function from
R to R and let 7(4) denote the class of functions {f(z) = T{_;¢;¢(A;(z))} from R" to R,

where £ € R",¢c; € R, A; € A™,q € N. We adopt Funahashi’s main results as below:

Theorem 1 (adopted and restated from Funahashi [8]) Let {z1,...,z,} be a set of
distinct points of compact set K in Fuclidean space R™ and let f : R™ — R be an arbi-
trary real valued function on K. If ¢ is a bounded and monotone increasing differentiable
function, then for any € > 0, there exists an integer N and real constants c;, 0;, and w; ;
(i € {1,..,N},j € {1,..,n}) such that f(z1,..2n) = SY (S wiz; — 6;) of TV(9)
satisfies Vo € K, |f(z) — f(2)| < e. That is, with N hidden units, a three layered network of

class S(¢) can approzimate any function to a desired accuracy.

Proof of Theorem 1 can be referred to Funahashi (1989) [8] and Hornik, Stinchcombe and
White (1989) [11].

Similar theorems can be applied to the TDNN and ATNN to approximate a spatio-

15

temporal function with the extra degrees of freedom in the time-delay domain, considering
the network is unfolded. Because the Stone-Weierstrass theorem played a central role in the
proof of Theorem 1, we state it here for reference and later use. First we give a few necessary

definitions before we introduce the Stone-Weierstrass theorem.

Definition 8 A family A of real functions defined on a compact set K is an algebra if A is

closed under addition, multiplication and scalar multiplication.

Definition 9 A set A separates points on compact set K if for every z,y,x # y in K, there

exists a function f in A such that f(z) # f(y).

Definition 10 A set A vanishes at no point of K if for each z in K there exists f in .A such

that f(z) # 0.

Theorem 2 (Stone-Weierstrass) Let A be an algebra of real continuous functions on a
compact set K. If A separates points on K and if A vanishes at no point of K, then A

consists of all real continuous functions on K.

Let zi[t], z2[t], ..., z,[t] be n input signal channels measured/observed in time interval
[to, T] in a discrete manner. For fixed 7;5 > 0,5,k € N and ¢t — 7 in interval [to, T], we
let {< z1(t —T11), 0y 21(t — T1,0) >, 0, < Tn(t — Tn1), oo, Tn(t — Tn,g) >} be a set of distinct
points of compact set K¢ in Euclidean space R™. We extend Theorem 1 and obtain the

following corollary:

Corollary 1 (original contribution) Let f : R™ — R be an arbitrary real valued func-

tion on K% If ¢ is a bounded and monotone increasing differentiable function, then for

16

any € > 0, there ezists integer N, and real constants c;, 0;, and w;x (¢ € {1,...,N},j €

{1,...,n}), such that

f(z) = BN cid (B0 By wi a2 (E — Tig) — 6)

satisfies Vz € K9, |f(z) — f(z)| < e. In other words, with at least one hidden layer of N hid-
den units and d time-delays elements in each input-hidden connections pairs , a three layered
TDNN network (with delays employed on the first layer) can approzimate any spatiotemporal

function to a desired accuracy.

Proof: We apply the Stone-Weierstrass Theorem and use the notations above. Given ¢(:) :
R"d — R and let A is the set of all affine functions from R"™ to R such that A(z) =
w-z+b,x € K¢ ie z={<z1(t—711), -, T1{t—T1,0) >y .00, < Tn(E=Tn 1)y ooy Tu(E—Tra) >}
We denote £™(4) as the class of functions A(z) : {Zcip(A(z))}. We need to show £m¢(¢)
consists of all real functions on K¢. First we show ¢(A) is separating on K¢ that ensures
¥"4(¢) is separating on K¢. Let K¢ C R™ be a compact set, so for ¢ from R™ to R, L(4) is
an algebra on K¢. Pick a,b € R,a # b such that ¢(a) # ¢(b). Pick A(-) such that A(z) = a
and A(y) = b, 2,y € K¢, then we obtain ¢(A(z)) # ¢(A(y)). Therefore ¢ is separating on
K4

Secondly, we need to show ¢(.A) vanishes at no point on K9 Pick b € R such that
¢(b) # 0 and set A(z) =0-z +b. For all z € K9, ¢(A(X)) = ¢(b), the result follows. O

The proof is mathematically equivalent to that of Hornik, Stinchcombe and White’s
theorem of universal approximation with multilayer feedforward networks. We extend from n
dimensional input space to nd dimensional space. In other words, each distinct input point x;

17

in n dimensional input space is expanded into a distinct points set < z;(¢—71), ..., z;(t—74) >

in nd dimensional input space.

5 Conclusion

The ATNN provides more dynamics and flexibility for the network itself to approach an
efficient performance level and to optimize its configuration. A network unfolding algorithm
(NUA) has been explicitly defined to formulate the unfolding operation from TDNN or
ATNN to feedforward network. This procedure provides ways to analyze the complexity of
ATNN. The NUA algorithm also provides a guide line for hardware conversion from con-
ventional feed-forward network without redesign overhead. Extended corollary and lemmas
are proposed such that the ATNN inherits the properties and capabilities of feedforward

network as a universal function approximator.

References

(1] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal func-

tion. IEEE Trans. on Information Theory, 39(3):930-945, 1993.

[2] U. Bodenhausen and A. Waibel. The tempo2 algorithm: Adjusting time-delays by
supervised learning. In J. E. Moody R. P. Lippmann and D.S. Touretzky, editors,
Advances in Neural Information Processing Systems, volume 3, pages 155-161, Denver

1991, 1991. Morgan Kaufmann, San Mateo.

18

[3] F. Chapeau-Blondeau and G. Chauvet. Stable, oscillatory, and chaotic regimes in the

dynamics of small neural networks with delays. Neural Networks, 5:735~-743, 1992.

[4] D.S. Chen and R.C. Jain. A robust back propagation learning algorithm for function

approximation. IEEE Trans. on Neural Networks, 5(3):467-479, May 1994.

[5] S. P. Day and D. S. Camporese. Continuous-time temporal back-propagation. In Inter-
national Joint Conference on Neural Networks, volume 2, pages 95-100, Seattle, 1991.

IEEE, New York.

[6] S. P. Day and M. Davenport. Continuous-time temporal back-propagation with adap-
tive time delays. Neuroprose archive, Ohio State University. Accessible on Internet

via anonymous ftp on archive.cis.ohio-state.edu, in pub/neuroprose/day.tempora.ps Au-

gust, 1991.

[7] S. P. Day and M. R. Davenport. Continuous-time temporal back-propagation with

adaptive time delays. IEEE Trans. on Neural Networks, 4(2):348-354, March 1993.

[8] K.-I. Funahashi. On the approximate realization of continuous mappings by neural

network. Neural Networks, 2:183-192, 1989.

[9] P. Haffner and A. Waibel. Multi-state time delay neural networks for continuous speech
recognition. In S. J. Hanson J. E. Moody and R. P. Lippmann, editors, Advances in
Neural Information Processing Systems, volume 4, pages 135-142, Denver 1992, 1992.

Morgan Kaufmann, San Mateo.

[10] Y. Hirose, K. Yamashita, and S. Hijiya. Back-propagation algorithm which varies the
number of hidden units. Neural Networks, 4:61-66, 1991.

19

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2:359-366, 1989.

D.-T. Lin. The Adaptive Time-Delay Neural Network: Characterization and Applica-
tions to Pattern Recognition, Prediction, and Signal Processing. PhD thesis, University

of Maryland at College Park, 1994.

D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides. Adaptive time-delay neural network
for temporal correlation and prediction. In Intelligent Robots and Computer Vision XI:
Biological, Neural Net, and 3-D Methods, Proc. SPIE, volume 1826, pages 170-181,

Boston, November, 1992.

D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides. Trajectory recognition with a time-
delay neural network. In International Joint Conference on Neural Networks, volume 3,

pages 197-202, Baltimore, 1992. IEEE, New York.

D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides. Learning spatiotemporal topology
using an adaptive time-delay neural network. In World Congress on Neural Networks,

volume 1, pages 291-294, Portland, OR, 1993. INNS, New York.

T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE,

78(9):1481-1497, 1990.

D.W. Tank and J.J. Hopfield. Neural computation by concentrating information in

time. Proceedings of the National Academy of Sciences, USA, 84:1896-1900, 1987.

20

[18] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition:
Neural networks versus hidden markov models. In Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Processing, pages 107-110, April 1988.

[19] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition
using time-delay neural networks. IEEE Trans. on Acoust., Speech, Signal Processing,

37(3):328-339, 1989.

[20] P. J. Werbos. Backpropagation through time: What it does and how to do it. In

Proceedings of the IEEE, volume 78, pages 1550-1560, October 1990.

21

