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Optical tweezers have been an important tool in biology and physics for studying single 

molecules and colloidal systems. Most of current optical tweezers are built with microscope 

objectives, which are: i) expensive, ii) bulky and hard to integrate, iii) sensitive to environmental 

fluctuations, iv) limited in terms of working distances from the substrate, and v) rigid with the 

requirements on the substrate (transparent substrate made with glass and with a fixed thickness). 

These limitations of objective-based optical tweezers prevent them from being miniaturized. 

Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these 

optical tweezers can be potentially used in microfluidic systems. However, the existing fiber 

optical tweezers have the following limitations: i) low trapping efficiency due to weakly focused 

beams, ii) lack of the ability to control the positions of multiple particles simultaneously, and iii) 

limited functionalities. 

 

The overall objective of this dissertation work is to further the fundamental understanding of 

fiber optical tweezers through experimental study and modeling, and to develop novel fiber 

optical tweezers systems to enhance the capability and functionalities of fiber optical tweezers as 

microscale and nanoscale manipulators/sensors. The contributions of this dissertation work are 

summarized as follows. i) An enhanced understanding of the inclined dual-fiber optical 



tweezers (DFOTs) system has been achieved. Stable three dimensional (3D) optical trapping of 

a single micron-sized particle has been experimentally demonstrated. This is the first time that 

the trapping efficiency has been calibrated and the stiffness of the trap has been obtained in the 

experiments, which has been carried out by using two methods: the drag force method and power 

spectrum analysis. Such calibration enables the system to be used as a picoNewton-level force 

sensor in addition to a particle manipulator. The influence of system parameters on the trapping 

performance has been carefully investigated through both experimental and numerical studies. ii) 

Multiple traps have been created and carefully studied with the inclined DFOTs for the first 

time. Three traps, one 3D trap and two 2D traps, have been experimentally created at different 

vertical levels with adjustable separations and positions. iii) Multiple functionalities have been 

achieved and studied for the first time with the inclined DFOTs. Particle separation, grouping, 

stacking, rod alignment, rod rotation, and optical binding have been experimentally demonstrated. 

The multiple functionalities allow the inclined DFOTs to find applications in the study of 

interaction forces in colloidal systems as well as parallel particle manipulation in drug delivery 

systems. iv) Far-field superfocusing effect has been investigated and successfully 

demonstrated with a fiber-based surface plasmonic (SP) lens for the first time. A planar SP 

lens with a set of concentric nanoscale rings on a fiber endface has been developed. For the first 

time, a focus size that is comparable to the smallest achievable focus size of high NA objective 

lenses has been achieved with the fiber-based SP lens. The fiber-based SP lens can bridge the 

nanoscale particles/systems and the macroscale power sources/detectors, which has been a long 

standing challenge for nanophotonics. In addition to optical trapping, the fiber-based SP lens will 

impact many applications including high-resolution lithography, high-resolution fluorescence 

detection, and sub-wavelength imaging. v) Trapping ability enhanced with the fiber-based SP 



lens has been successfully demonstrated. With the help of the fiber-based SP lens, the trapping 

efficiency of fiber optical tweezers has been significantly enhanced, which is comparable with 

that of objective-based optical tweezers. A submicron-sized bacterium has been successfully 

trapped in three dimensions for the first time with optical tweezers based on single fibers. 
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Chapter 1. Introduction and Background 
 

Single-beam optical trapping, also referred to as optical tweezers, is a technique that uses a 

tightly focused laser beam to trap or rotate micrometer-sized particles. [1] To be precise, any 

kind of optical forces resulting from inhomogeneous optical fields can be called optical trapping. 

In this dissertation, a distinction is not made between optical trapping and optical tweezers, and 

by either one the author refers to the application of optical forces to manipulate or sort particles 

and to sense forces or displacements. 

 

1.1. Problem of interest 

 

In biology and in physics, there has been a common interest in single molecules and particles 

with sizes raging from 1 nm to 1 µm [2]. The forces and strains induced by biological molecular 

motors are in the range of picoNewtons (pN). To measure these forces and manipulate the 

particles in these ranges, appropriate tools are needed [3]. The tools currently used for single 

molecular manipulation include optical tweezers, magnetic tweezers, and atomic force 

microscopes (AFMs) [2, 3, 4]. Magnetic tweezers can normally apply forces up to 10 pN, while 

an AFM works better when forces are above tens of pN [3, 4]. Compared to magnetic tweezers 

and AFMs, the forces of optical tweezers range from 0.1 pN to 100 pN, which covers a broader 

range of forces [3]. Furthermore, most biomolecules have no magnetic susceptibility [3], and 

thus a magnetic bead is always necessary when magnetic tweezers are used. Therefore, magnetic 

tweezers become inapplicable when attaching beads is not possible (e.g., manipulation of 
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organelles inside a cell). However, optical tweezers are readily applicable to such applications [5, 

6]. In addition, the stiffness of optical tweezers can be 1000 times smaller than that exhibited in 

an AFM [3], and this can help optical tweezers realize better resolution for force measurements 

and displacement measurements (with nanometer resolution [7] or even Angstrom resolution [8]). 

 

Optical tweezers are routinely applied in studies of molecular motors and mechanoenzymes at 

the single-molecule level [1], colloidal physics, and mechanical properties of polymers [9]. As a 

unique tool, optical tweezers have helped to achieve an improved understanding of many 

problems in physics and biology; for example, the attractive force between like-charged particles 

[10] and base-pair stepping of the RNA polymerase during transcription [8]. Currently, most of 

optical tweezers are based on objective lenses due to their technical maturity and diffractive-limit 

focus quality [1, 7, 11, 12, 13]. In combination with three-dimensional piezoelectric stages, high 

resolutions of force-displacement measurements and better force control are realized [7]. With 

the help of holograms and other types of diffractive optics, one can generate up to 400 

controllable multiple traps [14, 15].  

 

Despite the abovementioned attractive features, the main problem with objective-based optical 

tweezers is that compared with the size of a typical MEMS device, there has to be a huge 

objective lens to achieve a sharp focus. This eliminates the possibility to integrate an optical 

trapping system into a small system. In addition, many practical issues have to be taken care of 

relative to the objective lens, such as, thickness and transparency of the substrate, working 

distance [16, 17], spherical aberrations [18], and so on. Other problems arise from the external 

free-space optics used before the laser is coupled into the objective. Besides precise alignment 
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and the large space needed, the free-space optics has to be enclosed and protected in a gas like 

helium environment [8] to isolate the environmental disturbances, especially, when high 

precision is needed [7]. These issues may not be so harmful when a large passive air table in a 

well controlled laboratory environment is available [7], but it is a different story when the space 

is limited, especially when the system is to be miniaturized. Interest is increasing in scaled down 

analytical processes, which can be used to perform laboratory operations on a miniature device 

(lab-on-a-chip) [19]. The chip-based methods can reduce reagent costs, amount of chemical 

waste, and the time needed to synthesize and analyze a product. Optical tweezers have been 

proposed to combine with lab-on-a-chip formats for future individual molecule studies, but 

integrating the optical tweezers into chip-based systems needs a lot of further efforts [20]. 

 

Fiber optical tweezers provide a reasonable solution to the problem of integration with a lab-on-

a-chip system. An optical fiber is flexible and small in size. With the fiber serving as a good 

waveguide, free optics and large objectives can be eliminated from the optical trapping system. 

In addition, an optical fiber is inexpensive, biocompatible, mechanically robust, free of 

electromagnetic interference [21], and most importantly, compatible with Micro-Electro-

Mechanical Systems (MEMS) technology [22]. However, fiber optical tweezers are far from 

having been extensively investigated as compared with objective-based optical tweezers. Most of 

current fiber optical tweezers employ two well aligned opposite fibers fixed in the substrate, with 

which the flexibility of fibers is actually limited. Moreover, this kind of configuration cannot be 

used to pick up microscale particles lying on the substrate. Other configurations that make use of 

two inclined fibers can be used to pick up particles lying on the substrate, but no experimental 

calibrations of these configurations have been carried out. Another issue that deserves attention 
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is that an optical fiber cannot achieve a sharp focus as objective-based optical tweezers; so, the 

trapping efficiency is not as strong. Currently, it remains a challenge to achieve a sharp focus, 

and hence, a large gradient force with fiber optical tweezers. 

 

1.2. Review of previous work 

 

1.2.1. Basic optics 

 

When an optical beam is incident on an interface, typically the surface of the trapped object, the 

beam is deflected due to reflection and/or refraction. The deflection of the beam induces changes 

to the photon momentum that the beam carries, and these momentum changes cause optical 

forces to be applied to the trapped object. It is noted that the momentum of the photons may be 

increased or decreased, depending on the beam intensity distribution; the optical forces may be 

either along or opposite to the direction of the incident photons. The optical forces can be 

classified into two types, the scattering force and the gradient force [1], as shown in Figure 1.1. 

The scattering force results from the reflection, scattering, and absorption of incident photons, 

and it is always along the direction of optical beam propagation. The gradient force is along the 

gradient direction of the optical field, and it pulls the object towards the position of the highest 

intensity. An optical trap is essentially an optical field that can apply optical forces on the 

particles located in the field and, therefore, confine the positions of particles, as if the particles 

are “trapped” by the optical field. A three-dimensional (3D) optical trap has an equilibrium 

position so that any displacement from this position will result in a restoring force, just like a 
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spring but in three dimensions. To realize a stable 3D optical trap with a single optical beam, the 

beam needs to be focused tightly to achieve a large optical field gradient; this gradient allows 

one to have a strong enough gradient force to preventing the object from being pushed away 

along the optical beam due to the scattering force. In addition, to enable the trap, the size of the 

trapped object should be small enough, since the optical force is on the order of picoNewtons 

(10-12 N).  

 

 
Figure 1.1. Scattering and gradient forces of optical tweezers. [23] 

 

In the ray optics regime (or Mie regime), where the particle size (a) is much larger than the 

wavelength of light (λ) (a > 10λ), the scattering force can be viewed as the result of scattering 

(reflection) and absorption [1, 7]. The light is incident on the particle surface and is randomly 

scattered (including reflected) in a variety of directions with absorption. Since the absorbed 

photons and the scattered photons have directions opposite to that of the beam propagation, their 

momentum along the propagation direction reduces and the net momentum that the particle gains 

from these photons is along the propagation direction; that is, the particle is pushed down by the 

optical beam. This is easy to understand if the laser beam is considered as a stream of photons 

with momentum. The collision of the photons with the particle will transfer photon momentum 
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to the particle and push it along the beam, which is referred to as “radiation pressure”. For the 

gradient force, its origin is due to refraction. If a particle has a higher refractive index than the 

surrounding medium and the beam is incident from the medium, the refraction light leans 

towards the normal direction of the surface, and hence, the refracted photons gain momentum. 

Therefore, the particle is always pushed towards the beam by the refraction. As shown in Figure 

1.1, if there is a gradient in the optical field, a stronger light beam will induce a larger force on 

the particle than a weaker beam. The net force due to the refractions of these two beams will 

attract the particle towards the strongest intensity position; the gradient force generates [11]. 

 

In the Rayleigh regime, where the particle size is much smaller than the laser wavelength (a < 

0.1λ), the particle can be treated as a point electric dipole, which is induced by the external 

optical field [7, 11, 24]. It should be noted that the induced dipole momentum is oscillating 

because the external optical field is oscillating. In this case, the scattering force is due to the 

absorption and re-radiation of the optical field by the dipole. Moreover, a dipole in an 

inhomogeneous electric field experiences another force in the direction of the field gradient; this 

is the gradient force. The gradient force is proportional to both the beam gradient and the 

polarizability of the dielectric (i.e., how easily the dipole can be induced). It should be 

emphasized that although the dipole momentum is oscillating in both magnitude and sign, the 

induced dipole momentum remains harmonic with respect to the external optical field. This 

makes the sign of the gradient force invariant with time and results in a time-averaged constant 

gradient force instead of zero. 
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When the particle size is comparable with the wavelength (a ~ λ), neither the ray optics nor 

Rayleigh approximation is valid [7].  Further development of electromagnetic theory is needed 

for the optical trapping that falls in this regime. However, most useful or interesting trapping in 

biological research is within this size range (0.1λ ~ 10λ). For example, bacteria [25], yeast cells 

[26], and organelles inside cells [5, 6] all lies in this size range. The dielectric microspheres used 

as handles when studying biological cells and molecules are also in the range of 0.2 ~ 5 µm [7]. 

With these considerations, calibration of optical tweezers is always necessary, and this 

calibration cannot be replaced by modeling and simulations. 

 

1.2.2. Optical tweezers based on microscope objectives 

 

1.2.2.1. Basic experimental arrangement 

 

A basic objective-based optical tweezers is shown in Figure 1.2. The essential elements include a 

laser system, steering optics, a dichroic mirror, the sample cell, and a microscope with a high 

numerical aperture (NA) objective [7].  

a) The laser system contains a laser source and a beam expander. Either free space lasers [5, 24, 

25, 26] or fiber-coupled laser diodes [27] can be used to build the optical tweezers. For 

single-beam optical tweezers, the gradient forces must be large enough to overcome the 

scattering forces. The gradient force, to a good approximation, is proportional to the spatial 

intensity gradient [28]. This explains the necessity for two components of the system: i) the 

high NA objective to achieve a small focus, and hence, a steep gradient and ii) the beam 
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expander to allow the laser to overfill the back aperture of the objective. The wavelength of 

the optical tweezers needs to be chosen with considerations of possible optical damage and 

heating. For optical trapping of biological materials, the relative transparent wavelengths are 

between 750 nm and 1200 nm [7]. For Escherichia coli cells, the optical damage is 

minimized at 970 nm and 830 nm. 

 

Mirror

Beam
Steering

Cube with
dichroic
mirror

Laser

Illumination
light

Sample Cell

Camera

 
Figure 1.2. Basic experimental setup of objective-based optical tweezers. The 
dimensional sketch of the microscope is reprinted from the CKX41 Brochure [29]. 

 

b) Steering optical systems are used to move the optical traps relative to the sample chamber. 

Moreover, a steering optical system allows for a dynamic control of the position and the 

stiffness of the trap. This control system can enable both force and position clamps for the 

measurement conditions. Also, a scanning optical trap can generate multiple traps if the 
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scanning speed is faster than the Brownian relaxation time of the trapped particles. Typical 

strategies for beam steering include scanning mirrors, acousto-optic deflectors, electro-optic 

deflectors, and piezoelectric stages [7]. 

 

c) A dichroic mirror is a filter that selectively allows for the transmission of a range of 

wavelengths while reflecting other wavelengths. The dichroic mirror couples the laser beam 

upwards into the objective to form an optical trap, and filters out the downward laser beam 

reflected from the trapped particles and from the surfaces of the objective and coverglass. 

This helps prevent the reflected laser coupling into the oculars or the CCD camera, which can 

dazzle the field of view. 

 

If more complex dynamics of the trapped particles are required, other beam controlling 

components can be added into the beam path, such as wave plates [27], spatial light modulators 

[26], and diffractive optical elements [15]. 

 

1.2.2.2. Current state-of-the-art of optical tweezers based on objective lenses 

 

Evolution of optical tweezers based on objective lenses 

Photons carry no mass but they carry momentum. One can intuitively think of the possibility that 

the momentum carried by photons can be transferred to objects, which is manifested as forces 

applied to the objects of interest. It was Mr. Arthur Ashkin at AT&T Bell Labs in the US, who 

pioneered optical tweezers. He found that optical forces were able to significantly affect the 

dynamics of small particles, and further built the first stable 3D optical trap with two counter-
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propagating Gaussian beams (shown in Figure 1.3(a)) in 1970 [1]. The particles dispersed in 

water were 2.68 µm in diameter, and the laser power was 128 mW [30]. One year later, Ashkin 

and his co-workers built an optical levitation device (shown in Figure 1.3(b)), in which the 

radiation pressure from a single vertical beam is employed to balance the gravity of the particle. 

The experiment was carried out in air. Since the damping coefficient was much smaller in air 

than in water, a feedback scheme was needed to damp particle oscillations caused by beam 

fluctuations.  

 

 
Beam 1

 k1

Beam 2
 k2

Particle

F1F2

 
(a) 

 
(b) 

 
(c) 

 Figure 1.3. Evolution of optical trapping. (a) Optical trapping with two counter-

propagating beams (1970). Equilibrium between the radiation pressures of the two 

beams. (b) Optical levitation built with a low NA objective (1971). Equilibrium 

between the gravity force and the radiation pressure. (c) Stable 3D single beam 

trapping built from a tightly focused beam with a high NA objective. Equilibrium 

between the scattering force (radiation pressure) and the gradient force (1986). 

 

In the two optical traps introduced previously, trapped particles reached equilibrium either by 

balancing the optical pressures from the counter-propagating beams, or by being pushed upwards 

against gravity. Neither case is surprising since the existence of radiation pressure has been 

known for a long time. However, during the experiments, Ashkin and his co-workers found that 

the particles off the beam axis were dragged into the axis and then accelerated along the axis 
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under the radiation pressure [1]. This observation means that there exists a transverse optical 

force component other than the radiation pressure (scattering force) along the beam axis. They 

came to realize that this transverse optical force rose from the gradient of the optical field. Based 

on this finding, it was proposed that atoms could be trapped analogously. 

 

The first single-beam optical tweezers for micron-sized particles were built by Ashkin et al. in 

1986 [31], somewhat accidentally [1]. The single beam optical tweezers were originally intended 

for atom cooling and trapping, which succeeded in 1985 [32]. Steve Chu, also from AT&T Bell 

Labs, was awarded the 1997 Nobel Prize in physics for inventing the single beam atom trapping. 

At a time of temporary difficulty in atom trapping, it was decided to test the single beam trapping 

on submicron Rayleigh particles instead of atoms, and it turned out to work well. It was 

demonstrated later that it also worked with micron-sized particles. Single-beam optical tweezers 

use a tightly focused Gaussian beam to generate a large gradient on-axis, as shown in Figure 

1.3(c). It is counter-intuitive at first sight, since the optical beam pulls the particle back when the 

trapped particle tries to move down the beam axis. Only tightly focused beams can achieve 

strong enough on-axis gradient forces to overcome scattering forces. Therefore, most existing 

optical tweezers based on microscope objectives require high numerical aperture (NA) objectives. 

Researchers have found out that the single-beam optical trapping was not difficult to construct 

and that it is helpful and efficient to perform manipulation and force/position sensing in micro-

scales and nano-scales; and it has become an important and even a routine technique in some 

physical and biological studies [1, 7, 11, 12, 13].  
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Ashkin pointed out in 1986 that optical trapping would be used for studies of macromolecules, 

colloids, small aerosols, and biological particles [31], and this is exactly what researchers were 

working on in the last two decades [11]. Some of the research conducted on the use of objective-

based optical tweezers is reviewed next. 

 

Optical trapping of low-index particles 

It is well known that a highly focused optical beam serves as a 3D potential well for particles that 

have a higher refractive index than that of the surrounding medium [33]. On the other hand, the 

particles with a low refractive index are always repelled from the focus of a TEM00 laser beam 

and these particles are thus pushed to the position of lowest intensity [5]. The ability to trap 

particles with a low refractive index will enable manipulation of bubbles and droplets so that the 

properties and evolution of the bubbles can be investigated [34]. This is also of great interest to 

biologists because some organelles in cells, such as vacuoles, are also low-index particles 

relative to the surrounding medium. Furthermore, the optically trapped aqueous droplets can 

provide a micrometer-size container for single molecule studies in biology [35]. This container 

can confine a single molecule inside the detection volume, and yet allow the molecule to freely 

diffuse for a substantial period of time. In addition, hollow glass spheres can also be used as laser 

fusion targets [1]. 

 

According to the work of Gahagan et al. [36], a 3D potential well also exists for the particles 

with lower refractive index compared to the surrounding medium if the laser beam with an 

optical vortex is used, as shown in Figure 1.4. In this manner, the low-index particles are actually 

trapped by an optical bubble, which is the dark region surrounded by the optical field. A similar 
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optical bubble created by the interference between two plane waves can also produce a two-

dimensional trap for low-index particles, as shown in Figure 1.5 [34]. However, if the low-index 

particles are out of the dark region, there is no way for the optical force to pull it back, unless one 

uses other effects of the beam such as thermal effects. More recently, Ivanova et al. [37] used an 

absorbing liquid as the surrounding medium, so that the thermocapillary forces, which are 

dependent on the temperature gradient due to the laser beam heating, can drag a gas bubble 

outside the laser caustic to the trapping position.  

 

 
Figure 1.4. (a) Intensity profile of the focus of a Gaussian beam (w0 is the beam size) 
with an optical vortex (wv is the vortex size) and (b) different trapping location of the 
particles with high-index and low-index [36]. 

 

 

(a)   (b)  

Figure 1.5. (a) Interference of two beams (left) and the interference patter (right) and 
(b) two hollow spheres trapped by the interference pattern [34]. 

 

(a) (b) 
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Optical trapping with holographic optical fields and special laser beams 

Holograms have been used to generate complex, high-order optical trapping systems [7, 14, 15, 

38]. Dufresne et al. [15] first presented a holographic optical tweezers system in 2001. A 

diffractive optical element (DOE) was placed in a plane optically conjugated to the back aperture 

of the objective. Thus, the pattern generated on the DOE will be Fourier transformed to the focal 

plane. In this case, multiple traps can be generated and controlled independently. 400 traps were 

generated with these holographic optical tweezers. Holographic optical tweezers have also been 

used to sort particles and realize complex 3D motion control of multiple particles [14, 38, 101]. 

These 3D patterns created with the trapped particles are artificial crystalline structures with 

controllable material properties. [101] In addition to a holographic optical field, Bessel beams 

can also be used for optical tweezers [39, 40]. As a beam with a tightly confined size, Bessel 

beams have been used either to stack multiple beads or align rod-shaped particles [40]. Laguerre-

Gaussian (LG) beam is a beam with helical wavefront, and this beam has been used to trap and 

rotate multiple particles. [41, 42] 

 

Optical trapping of nonspherical particles and micromachined particles 

Particles with different shapes have been experimentally trapped and rotated with optical 

tweezers. Gauthier optically trapped glass cylinders with inclined end-surfaces, with the 

cylinders’ axes aligned along the optical axis [43]. Rotation of the trapped glass cylinders was 

observed, as shown in Figure 1.6. 
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Figure 1.6. (a) Glass cylinders before trapping and (b)-(p) trapped glass cylinders 
with axis aligned with the optical axis (perpendicular to the paper surface) rotates 
while being dragged along a larger cylinder. [43]. 

 

 

 
Figure 1.7.  A complex-shaped mirorotor fabricated and rotated by optical tweezers. 
[46] 
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Micromachines have also been optically trapped and rotated by optical tweezers [44, 45]. A 

microrotor with complex shape was fabricated with two-photon excitation in optical tweezers, 

and then optically trapped and rotated, as shown in Figure 1.7 [46]. 

 

Optical trapping of living cells 

Optical trapping can be used to apply remotely controlled forces to living cells, internal parts of 

cells, and large biological molecules without inducing detectable optical damages [12]. This 

makes it an ideal tool for manipulation and sensing of biological particles in their naturally living 

conditions. 

 

Right after the single beam optical trap, or a system of optical tweezers, was invented in 1986 

[47], it was used to trap biological cells, such as viruses and bacteria that are readily available. 

The first biological application was demonstrated by Ashkin et al. [48], the inventor of the 

optical tweezers in 1987. The viruses and bacteria were trapped by using a 514.5 nm laser. 

Because of the absorption and heating of the laser, the death of the bacteria due to the laser posed 

a problem. Later in 1987, they changed the light source to a 1.06 µm infrared laser in order to 

decrease the absorption of the laser [49]. In this case, the trapped cells were alive for a long time 

and the reproduction of the bacteria was even observed within the trap. Currently, the optical 

tweezers have been used to study cell motions (e.g. [25, 50, 51, 52]) and measure cell properties, 

such as mechanical properties of cell membranes [50, 53]. Some of the recent work on optical 

trapped cells is discussed in what follows. 
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Some illness may cause cells to function differently from normal cells. Dharmadhikari et al. 

showed that Plasmodium malaria infected red blood cells (iRBCs) rotated within the optical trap 

built with a linearly polarized laser, while normal red blood cells (RBCs) did not [50]. The 

rotations of the trapped iRBC are shown in Figure 1.8. When trapped, both the normal RBCs and 

iRBCs were folded to a rod-like cylinder. IRBCs rotated with a speed of 19-300 rpm. The 

rotation direction of trapped iRBCs changed when the focus of the laser beam moved from under 

to above the cells, but the rotation speed remained the same if the laser power did not change. 

The reason why iRBCs rotated was believed to be the gradients of K+, Na+, and Ca2+ around the 

diseased cell, which were generated due to altered ion transportation caused by the disease. 

These ion gradients increase the anisotropy of the polarization tensor for iRBCs, which affects 

the anisotropy of the induced dipole moment and induces a rotational motion. 

 

 
Figure 1.8. Rotation of the Plasmodium infected red blood cells [50]. 

 

Another work that was carried out to induce large deformation in human RBCs with optical 

tweezers is shown in Figure 1.9 [53]. Two silica beads of 4.12 µm in diameter were attached 

diametrically onto the cell surface, to serve as handles. One of the beads was fixed to the glass 

surface. A 1064 nm laser with a power of 1.5 W was used to trap the free bead and to apply 

stretching forces to the cell. The mechanical responses of the cell during loading and after release 

of the optical force were analyzed to obtain the elastic properties of the cell membrane. 
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Figure 1.9. Large deformation of the stretched RBC. The values shown on the left 
are the measured optical forces applied to stretch the RBC [53]. 

 

In addition, optical tweezers have also been used in other work related to living cells, including 

orientation control of cells by controlling polarization of the trapping beam [51], trapping and 

damage evaluation of cells with a femtosecond laser [52] and study of the influence of 

confinement on the growth of a yeast cell [26]. 

 

Optical trapping of subcellular structures 

Optical tweezers have been employed to trap subcellular structures such as cytoskeletons and 

cell membranes. [54-57] Murdock et al. [54] used optical tweezers to find that the drug effect of 

chlorpromazine on the mechanical properties of a mammalian outer hair cell is the plasma 

membrane-cytoskeleton interaction. Tolic-Norrelykke et al. [55] investigated the viscoelastic 

properties of the cytoplasm and the contribution of the cytoskeleton to those properties by 

optically trapping small lipid granules embedded in the cytoskeleton. Balland et al. [56] applied 

oscillating forces to the cytoskeleton of C2 myoblasts, and found that the actomyosin activity 

appears as an essential mechanism making the cytoskeleton more rigid and more dissipative. 



 19

Titushkin et al. [57] measured the membrane mechanics of human mesenchymal stem cells 

(MSCs) and fibroblasts by extracting tethers from the outer cell membrane with optical trapped 

beads. They found that the fibroblasts use two mechanisms, membrane stiffness and membrane-

cytoskeleton interactions, for membrane regulation, while MSCs only use the former mechanism 

and have weak membrane-cytoskeleton interaction. Nishizaka et al. [58] used optically trapped 

beads to examine the position dependence of binding and release cycle of fibronectin-integrin-

cytoskeleton interactions. 

 

Currently objective-based optical tweezers plays a major role in single-particle studies in physics 

and biology, and they have been thoroughly investigated. [1] Briefly, the most important 

advantage of optical tweezers that distinguishes them from other nano-manipulation methods, 

such as atomic force microscopes (AFM), is that they interfere with the trapped particles much 

less (non-contact manipulation except for the attached bead) while allowing one to perform high-

resolution measurements at the same time. One can manipulate a free particle in its natural 

existing state while performing high-resolution measurements. This is extremely important 

especially for the study of single molecules in biology (such as DNA and RNA) and colloidal 

systems in physics. [7] One example is the direct observation of single base pair stepping by 

RNA polymerase during transcription, facilitated by optical tweezers with Angstrom resolution. 

[8] 

 

1.2.2.3. Limitations of objective-based optical tweezers 
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In most of the current research, objective-based optical tweezers are used due to their technical 

maturity and good focus quality. However, objective-based optical tweezers have some 

disadvantages, which limit their applications. The limitations of objective-based optical tweezers 

include the following: 

i). High costs make commercial optical tweezers unaffordable. 

Some optical tweezers systems are commercially available. In 2000, the price of the 

basic Laser Tweezers Workstation was $56,000, excluding a microscope, which is 

necessary for monitoring and imaging. Its motorized stage only has a resolution of 

approximately 200 nm. A company in Chicago, Arryx, Inc., manufactures the 

“BioRyx 200” system that can steer up to 200 optical traps independently. The 

minimum incremental motion of a trap is approximately 20 nm. However, this system 

cost $377,500 in 2004 [59]. Most of the commercial optical trapping systems run 

between $100,000 and $350,000 in 2009. [60] The high cost limits the availability 

and application of objective-based optical tweezers both in lab and in industry. 

ii). Large sizes make objective-based optical tweezers hard to integrate. 

Objective-based optical tweezers require a free-space laser to be focused by a high 

NA objective. The high NA objective measures tens of millimeters, both in diameter 

and in length. The reason for this large size is that the high NA objective needs a set 

of carefully designed and positioned lenses to remove optical aberrations [61]. The 

free-space optical system and the beam steering system require even more space. The 

steering laser system includes a number of (at least 1 for the very basic setup, see 

section 1.2.2.1 for details) reflection mirrors and an additional scanning mirror so that 

the system can steer at least hundreds of millimeters. If one wants to perform more 



 21

complex dynamic particle trapping, further beam controlling components are 

necessary, such as wave plates [27], spatial light modulators [26], and diffractive 

optical elements [15]; each of them has a size of tens to hundreds of millimeters. The 

large size makes it difficult to integrate objective-based optical tweezers with the 

emerging lab-on-a-chip systems. This is a barrier for its wide-scale application, since 

the objects one needs to deals with are in the micrometer scale or nanometer scale. 

iii). Objective-based optical tweezers are not “robust” to environmental fluctuations. 

Free-space optics needs a well controlled environment to achieve best focus quality. 

A lot of issues might influence the free-space optics, such as varying temperature and 

humidity, air flow, particle density in air, and vibration of mirrors or other nominally 

stationary components [7]. For example, random air currents can introduce air density 

fluctuations that can perturb the position of a laser beam. These disturbances will 

increase the aberration of focusing, and degrade the trapping performance. In order to 

eliminate these influences, objective-based optical tweezers need to be used in a clean 

and protected environment, which adds another restriction to their working conditions. 

 

  
Figure 1.10. Limited working distance of objective-based optical tweezers. 

 

iv). Objective-based optical tweezers have limited working distances. 
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Currently, high NA water immersion lenses are not widely used for optical tweezers. 

Most optical tweezers still use oil immersion objectives, as shown in Figure 1.10. The 

mismatch between the refractive indices of oil (~1.55) and water (1.33) causes 

spherical aberration, which becomes even worse as the focal depth increases. This 

aberration smears out the focus and causes instability and stiffness decrease of the 

optical trap [18]. As a result, optical tweezers using an oil immersion objective have a 

working distance limited within a couple of tens micrometers from the cover-glass 

surface [16]. Even though water immersion objectives are used, the working distance 

is still limited to several hundreds of micrometers from the cover-glass surface, due to 

its high NA. To the best of our knowledge, the longest working distance that has been 

achieved is 220 µm [17]. If one wants to use optical tweezers to assemble a 

micromachined gear to a position 500 µm away from the coverglass, it is currently 

impossible with a high NA objective unless one switches to a low NA objective [62] 

or adds another objective to build up a counter-propagation optical tweezers [33]. 

However, with a low NA, one cannot achieve a stable 3D trap, while using two 

objectives makes the system even more complex. 

v). Objective-based optical tweezers require a clean, glass substrate to obtain good focus. 

First, a transparent substrate is needed for the laser to pass through in order to obtain 

a focus on the other side. Second, the oil-immersion objective is designed to work 

with oil between the front lens and the coverglass [63]. If a substrate with a refractive 

index different from that of glass, spherical aberration will be induced, as discussed 

above in iii). Therefore, only glass (or materials with the same refractive index) can 

be used in order to get a good-quality trap, although glass may not be the most 
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preferred substrate for other components. For example, silicon is a commonly used 

substrate for fabricating microfluidic channels [41]. At the wavelength between 780 

nm and 1330 nm, silicon has a refractive index between 3.5 and 3.7 [64], which is 

different by more than a factor of 2 from the refractive index of glass (~ 1.5). Due to 

the large refractive index difference between silicon and glass, optical tweezers with a 

wavelength within this range does not work well in a microfluidic system with a 

silicon substrate although most optical tweezers use wavelengths in this range due to 

the minimal optical damage to biological specimens [7]. Moreover, the substrate 

should be clean enough to allow the laser beam to pass without significant distortion. 

Apparently the possibility of using objective-based optical tweezers in vivo 

practically diminishes due to the requirement of a clean glass substrate. 

 

1.2.3. Fiber optical tweezers 

 

1.2.3.1. Advantages of optical fiber trapping systems 

 

Despite the above disadvantages, objective-based optical tweezers still play a very important role 

in today’s research. However, fiber optical tweezers can resolve or potentially address the 

aforementioned problems associated with objective-based optical tweezers. It has been widely 

accepted that optical fibers are biocompatible, mechanically robust, and free of electromagnetic 

interference [21]. Some of the advantages of fiber optical tweezers are summarized as follows. 

i). Fiber optical tweezers are inexpensive. 
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The use of optical fibers greatly simplifies the optical trapping system. Optical fibers 

are inexpensive compared to the high quality mirrors and lenses required by 

objective-based optical tweezers. In an optical fiber tweezers system, the expensive 

and bulky beam steering system of objective-based optical tweezers can be replaced 

with micromachined actuators or fiber optic intensity/phase modulators. Fiber optical 

tweezers are thus much less expensive compared to objective-based optical tweezers. 

 

 
Figure 1.11. The optical fiber (left) is much smaller than the objective 
(middle) and readily to be integrated. 

 

ii). Fiber optical tweezers can be readily integrated with MEMS systems. 

Optical fibers are compatible with MEMS devices, since the diameters of optical 

fibers have similar geometrical scale as MEMS devices [22]. Optical fiber tweezers 

need only optical fibers with a 125 µm diameter to work with instead of objectives 

with diameters of tens of millimeters. In Figure 1.11, the comparison of an optical 

fiber to a microscope objective is shown. In addition, optical fibers serve as additional 

spatial filters to ensure a good spatial mode (TEM00) quality. In this case, all the free 
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space optical components including mirrors, lenses, and spatial light filters can be 

removed from the optical trapping system, which results in much less cost as well as 

smaller size of the trapping system. 

iii). Fiber optical tweezers are much less sensitive to environmental disturbance. 

An optical fiber serves as a good waveguide protected by a polymer coating. It 

effectively reduces the noise induced by environmental disturbances such as humidity, 

temperature variation, and air flow. The mirrors in objective-based optical tweezers 

however suffer from the noise due to acoustic noise and mechanical vibration of the 

optical mounts [7]. This feature allows fiber optical tweezers to be more compliant 

with working conditions. For example, the optical stretcher based on a fiber optical 

trapping system [65] illuminated by a fiber-coupled laser diode can work 

independently without attachment to an optical table. By contrast, an objective-based 

optical tweezers system with similar functions can hardly work properly without an 

optical table to mount the mirrors [47]. 

iv). Fiber optical tweezers have less limitation on working distances. 

Optical fibers are light in weight and small in diameter. They are flexible and can be 

moved technically anywhere inside the solution, no matter how far it is from the 

coverglass (if there is one). Therefore, the optical traps can also be moved anywhere 

in the solution, and they are not limited to a thin layer of 20 µm from the coverglass. 

This feature is important for micrometer-scale applications that require the trapped 

particles to be moved far from the coverglass; for example, the assembly of a 

micromachined gear onto a tall shaft. For the study of biological molecules, a trap far 

from the substrate can reduce the wall effect [7]. 



 26

v). Fiber optical tweezers require no substrate for focusing. 

Fiber tweezers do not need oil or coverglass for focusing. There are no constraints on 

the substrate. This is an obvious advantage when a substrate is not available or the 

substrate material cannot be freely chosen, such as experiments in vivo.  

 

(a)         (b)  

Figure 1.12. Degradation of focus quality in a colloid. (a) Optical fiber 
tweezers and (b) objective-based optical tweezers. Less degradation due to 
light travels a smaller distance in the solution. 

 

vi). Fiber optical tweezers enable good focus quality in a turbid solution. 

The focus quality of fiber optical tweezers is less distorted in a turbid solution, when 

compared with that of objective-based optical tweezers. In fiber optical tweezers, the 

focal length, which is referred to as the distance between the focus and the fiber 

surface, is the length in which disturbance of the beam focus by the colloid occurs. 

The focal length of a tapered fiber (from OZ Optics Ltd.) is around 10 µm. The 

disturbance does not get worse no matter how far the fiber is away from the substrate. 

However, in objective-based optical tweezers, the disturbance gets worse when the 

optical trap moves away from the coverglass, as illustrated in Figure 1.12. Therefore, 

in turbid solutions, fiber optical tweezers are expected to have less performance 
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degradation [66]. This is important because studies of colloidal solutions are one of 

the major applications of optical tweezers [7, 11]. In physics, optical tweezers are 

needed to measure miscellaneous colloidal dynamics and interactions, such as 

diffusion, hydrodynamic interactions and electrostatic interactions [9]. In biology, 

milk and blood are examples of colloids. 

 

Based on the aforementioned features, fiber optical tweezers have the potential to be integrated 

to an implantable device and used for in vivo applications. 

 

1.2.3.2. Single fiber optical tweezers 

 

Taguchi et al. [67] proposed and demonstrated fiber optical tweezers by using a single fiber in 

1997. An inclined single-mode fiber with a tapered spherical end was inserted into a reservoir, 

and a two-dimensional (2D) trap was formed near the focus, as shown in Figure 1.13(a). Both 

dielectric beads and yeast cells were trapped on the reservoir bottom. They also calibrated the 

escape velocity versus transverse offset in some later work [68, 69]. In 2005, Hu et al. [70, 71] 

used a similar system to demonstrate manipulation and arrangement of yeast cells. The beam 

diameter at the focus was 3.7 µm. Experimental calibration of the trapping efficiency by using 

both static and dynamic method was carried out. In 2007, Abedin et al. [72] employed a bismuth 

fiber, instead of a common silica fiber, with a tapered end to manipulate and rotate liquid crystal 

drops. Because bismuth has a larger refractive index than silica, the beam had a tighter focus, but 

still the focus size is on the order of micrometers. In 2006, a polystyrene sphere with a diameter 

of 10 µm was glued to the fiber end as a focusing lens, as shown in Figure 1.13(b) [73]. The 
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optically cured resin filled the gap between the bead and the fiber end to fix the bead and reduce 

beam distortion. A focus diameter of 1.8 µm was achieved. Gold nanoparticles with diameters of 

40 nm, 100 nm, and 200 nm were trapped in two dimensions (2D) under this microsphere lens. 

An axicon structure was fabricated on the fiber endface using focused ion beam (FIB) milling, as 

shown in Figure 1.13(c). [74] 2D trapping of 2-µm polystyrene beads was achieved using the 

Bessel beam created by the axicon structure. 

 

(a) 

 
 

(b) 
 

(c) 

Metal Coating 

Bare Fiber 
Surface 

 
(d) 

 
(e) 

 
(f) 

Figure 1.13. Single fiber optical tweezers by using a fiber with (a) tapered spherical end 
[71], (b) dielectric sphere glued on the cleaved fiber end [73], (c) axicon lens [74], d) 
annular exposed end [66], (e) sharply tapered end [75], and (f) two cores [76]. 

 

Generally single fiber tweezers cannot achieve a strong focusing due to the limited aperture size 

of the fiber, such as the systems introduced above. However, different configurations of single 

fiber optical tweezers have been attempted to overcome such limitations by using fibers with an 

engineered end face. A partially metalized fiber end face with a hollow tip was fabricated to 

replace the regular tapered end, as shown in Figure 1.13(d) [66]. An annular rim (~1 µm in 
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diameter and ~750 nm in thickness) of the fiber surface was exposed with all of the other areas 

on the end face coated with aluminum. Thus, a ring-shaped optical field emitted from the fiber 

end face and the ring diameter did not increase much within several micrometers of propagation. 

A 2 µm diameter glass bead was trapped in 3D. Since there was no strong focusing effect, the 

restoring force that balanced the scattering force was the electrostatic force, rising from the 

negative-charged bead and the induced positive charge on the metalized fiber end. To be precise, 

this is a combination of one dimensional (1D) electrostatic trap and a 2D optical trap. This 

system requires a large charge density on the surface of the trapped bead [66], which is not 

always allowed especially for biological particles. Another configuration presented by Liu et al. 

[75] in 2006 used a thinned tapered fiber to confine the beam size emitting at the fiber end, as 

shown in Figure 1.13(c). Heating and drawing method was used to thin the fiber diameter from 

125 µm to about 10 µm. According to the simulation results, the beam size was decrease to 0.5 

µm due to the small core size of the fiber end. A 3D stable trapping of a yeast cell was 

demonstrated. Although this system can achieve a 3D trap with a single fiber, it has significant 

power loss due to the greatly tapered fiber tip. A laser with a power of 120 mW [75] was used, 

while typical single fiber tweezers only need a couple of milliWatts [71]. Similar approach was 

carried out for a twin-core fiber by the same group [76], as shown in Figure 1.13(f). The taped 

twin-core fiber can achieve 3D trapping of ~6-µm cells with an output power of 5 mW. For the 

systems using such sharply tapered fibers, one can hardly obtain a repeatable, uniform, and 

controllable size of the fiber end by using the heating and drawing methods [77]. Moreover, the 

spot size cannot be too small (close to diffraction limit), otherwise the power loss will be 

significant [78].  
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As a summary of single fiber tweezers, most current single fiber tweezers can only achieve a 2D 

trap. 3D trap with a single fiber can be achieved by tapering the fiber tip to a small size, but there 

are considerations of power loss and controllability. 

 

1.2.3.3. Dual fiber optical tweezers 

 

Dual fiber optical tweezers were demonstrated even before the invention of single fiber optical 

tweezers, since it is intuitive to use two counter-propagating beams to balance the scattering 

forces, and hence, to realize a 3D optical trap. Constable et al. [79] proposed and demonstrated 

the first dual fiber optical tweezers built with two opposite cleaved fibers in 1993, as shown in 

Figure 1.14(a). Polystyrene beads with diameters between 0.1 µm and 10 µm as well as living 

yeast cells were trapped in 3D with a output power of 7 mW from both fibers.  Two years later, 

Lyons et al. [80] replaced the two cleaved fibers with two tapered fibers. Using tapered fibers 

enables larger divergence angles, and hence, higher transverse trapping efficiency. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1.14. Dual fiber optical tweezers with (a) two cleaved fibers [81], (b) two 
trapping fibers (one probing fiber to excite and one detection fiber to sense 
fluorescence) [82], and (c) two inclined fibers [86]. 
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Compared with single fiber optical tweezers, stable 3D traps are much easier to obtain with 

opposite dual fibers. Moreover, due to the illumination from multiple directions which spreads 

the optical power, the transverse trapping force without inducing photodamage of the trapped 

samples is larger for dual fiber tweezers. For this reason, dual fiber tweezers have been used in 

more applications than single fiber optical tweezers [81, 82, 83]. Jensen-McMullin et al. [82] 

introduced another fiber, perpendicular to the two trapping fibers, to sense the position of the 

trapped beads by collecting the intensity from the scattered light. A fourth fiber was then added 

to the system for fluorescence excitation, as shown in Figure 1.14(b). An excitation laser with a 

proper wavelength was guided by the fourth fiber, and the excited fluorescence from the trapped 

bead was collected by the third sensing fiber. Opposite dual fiber tweezers were also used to 

increase the coupling efficiency between two fibers [83]. A trapped ball lens can center itself 

with respect to the fiber axis, and hence so that the coupling efficiency can be increased by a 

factor of 2. Another important application of dual fiber tweezers is cancer diagnosis, as 

demonstrated by Guck et al. in 2005 [81]. The cancerous cell has a softer membrane compared to 

that of a normal cell. The cell trapped in opposite dual fibers can be stretched due to the gradient 

force. Therefore, the large deformation of the cell membrane in the trap can serve as an indicator 

of a cancerous cell. This method requires no bead attached to the cells and enables a quick and 

simple disease diagnosis.  

 

Although opposite dual fiber tweezers have better stability and greater accessibility for a large 

trapping volume compared to single fiber tweezers [80], the alignment of the two fibers are 

critical [65, 79]. To achieve a precise alignment, the two fibers are always fixed to the substrate, 

by being pressed along a fixed capillary with a large diameter [65, 79] or by being embedded in a 
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V-groove or a substrate [81, 82]. This method actually sacrifices the flexibility of the fiber 

tweezers. The fibers cannot be moved, and more importantly, particles lying on the substrate 

cannot be trapped due to the size of the fiber. Particles to be trapped need to be previously 

suspended in the solution and then flushed into the trapping area along microfluidic channels [65, 

81, 82]. In the work of Taguchi et al. [84, 85], dual fiber tweezers with two inclined fibers were 

developed, as shown in Figure 1.14(c); this can help address the limitations of the dual fiber 

tweezers with counter propagating beams. Levitation and 3D trapping of 6-micrometer 

microspheres were demonstrated. Later in 2002, the influence of tapered end radius to the 

trapping efficiency was numerically investigated [86]. More recently in 2006, an actuation 

method using intensity modulation was presented by the same group [87]. However, the trapped 

particles were staying on the substrate when being actuated. Currently, this system has not been 

studied thoroughly. 3D actuation and experimental calibration of the trapping efficiency have not 

been carried out. 

 

1.2.3.4. Other fiber optical tweezers 

 

In addition to the single fiber tweezers and dual fiber tweezers, other work on fiber optical 

tweezers has also been reported. Tam et al. [88] employed a fiber bundle to form an optical trap 

array. Each fiber can form a single fiber tweezer if a laser beam is coupled to it. Similar to fiber 

imaging but in an opposite direction, by selecting some fibers in the bundle to couple the light 

while blocking other fibers, a desired array of optical traps can be achieved and controlled. In 

another effort, Collins et al. [89] combined two opposite dual fiber tweezers into one system and 

proposed a set of four fiber tweezers. The system has a similar configuration as that shown in 
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Figure 1.14(b), but all four fibers emit light. The position control of the trapped particles was 

demonstrated in two dimensions by using intensity modulation.  

 

Recently a 3D optical trap was realized using a four-fiber configuration. [90] The four fibers are 

parallelly bounded in a glass tube, with an inclined slit etched into each fiber’s endface, as shown 

in Figure 1.15. The slits serve as mirrors to bend optical beams towards the optical axis. Large 

inclination angles (~70°) of the light beams can be achieved, equivalent to the focusing effect 

with a high NA objective. 3D trapping of 10-µm polystyrene beads was achieved with a power 

of 7 mW from each fiber. This fiber trapp is strong for trapping microscale particles, but cannot 

be used to trap submicron-size particles due to the large beam sizes (> 7 µm). The alignment of 

the four slits may be an issue during the fabrication process. The transverse size of the probe is 

twice larger than the size of a single fiber. 

 

 
Figure 1.15. Reflection-based four-fiber optical tweezers. [90] 

 

1.2.3.5. Limitations of current fiber optical tweezers 
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Based on the above review, most of current optical tweezers can be classified into two categories, 

single fiber tweezers and dual fiber tweezers. With most of single fiber tweezers, one has 

difficulties in forming a stable a 3D trap due to the large focus size.  Single fiber tweezers that 

can achieve 3D trapping have problems of controllable spot size and power loss. Dual fiber 

tweezers usually use the configuration of opposite fibers, due to which, one sacrifices the 

versatility of fiber optical tweezers and cannot levitate particles lying on the substrate. Dual fiber 

tweezers with inclined fibers can overcome these limitations. However, this system has not been 

investigated thoroughly and is far from being mature for applications. 

 

1.3. Motivation for this doctoral research 

 

Objective-based optical tweezers has been an important tool for physical and biological studies. 

[1, 7, 11, 12, 13] Optical tweezers have been proposed to be combined with the emerging lab-on-

a-chip technology for future individual molecule studies [20]. Scaling down to chip level devices 

can have many advantages, such as low cost, better accessibility, little chemical waste, and 

reduced synthesis time. Based on discussion provided in Section 1.2.2.3, the limitations of 

objective-based optical tweezers become important when the whole system needs to be scaled 

down. Objective lens and free-space optics can hardly be integrated due to their large sizes. Free-

space optics makes the optical trapping system sensitive to environmental disturbances. The 

requirement of a clean, glass substrate for the objective imposes many constraints to the working 

conditions of optical tweezers. The limited working distance (within several hundreds of 

micrometers) and spherical aberrations for large working distances (over 100 µm) allow for even 

less flexibility in the use of these optical tweezers. 
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Fiber optical tweezers can potentially overcome the abovementioned limitations of the objective-

based optical tweezers. This is due to the following reasons: i) optical fibers are inexpensive and 

can be readily integrated; ii) optical fibers serve as a perfect waveguide and spatial light filter so 

that free-space optics is not needed; iii) optical fibers are biocompatible, mechanically robust, 

and free of electromagnetic interference [21]; iv) fiber optical tweezers have less limitations in 

terms of working distance, and they do not have any constraints on the substrate; and v) fiber 

optical tweezers suffer less from the focus distortion when used in a high-density colloidal 

solution. Therefore, fiber optical tweezers are very appealing for scaled-down applications. 

 

However, current research on fiber optical tweezers is far from being complete. The focusing of 

the beam emitted from an optical fiber is weaker than that from an objective. Hence, the trapping 

efficiencies of fiber optical tweezers are lower. Single fiber optical tweezers are difficult to 

achieve 3D traps, so most fiber optical tweezers employ opposite (counter-propagating) dual 

fibers. With this configuration, one sacrifices the flexibility of the optical fibers, since the fibers 

need to be fixed to the substrate in order to ensure a good alignment. Moreover, counter-

propagating dual-fiber tweezers cannot lift particles lying on the substrate due to the physical 

size of the optical fiber. In addition, because of the cumbersome configurations, the counter-

propagating dual-fiber tweezers cannot be used to realize complex functionalities; they are 

currently only used to move particles along the common optical axis or to apply forces to stretch 

particles. 
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The most important limitations of the existing fiber optical tweezers are summarized as follows, 

which pose great challenges to the development of fiber optical tweezers. 

 

i) Lack of fundamental understanding of some highly potential fiber optical trapping 

systems. Some highly potential fiber trapping systems have not been investigated thoroughly. 

The inadequate knowledge prevents these systems from being widely used. As some capabilities 

offered by these systems cannot be provided by other existing fiber optical tweezers, it is 

imperative to achieve an enhanced understanding of these systems. 

 

ii) Limited functionalities. Existing fiber optical tweezers cannot be used to realize a complex 

3D pattern of multiple particles with adjustable separations, which has been achieved by using 

objective-based optical tweezers. The abilities of 3D particle stacking and separation have not 

yet been demonstrated with the existing fiber optical trapping systems. These functionalities are 

desirable in many applications such as creating artificial crystalline structures with controllable 

material properties and study of colloidal interactions. Therefore, it is worthwhile to investigate 

how to create multiple traps and realize versatile functionalities with fiber optical tweezers. 

 

iii) Weak trapping strength. Although existing fiber optical tweezers are much more compact 

in size compared with objective-based tweezers, due to the weak focusing effect from the fiber 

based devices, fiber optical tweezers produce much weaker trapping forces. The weak trapping 

force of fiber optical tweezers has severely hindered their applications in many fronts. 
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1.4. Objectives and scope of dissertation 

 

The overall goal of this dissertation work is to achieve a fundamental understanding of the 

inclined dual-fiber optical tweezers system and to develop novel fiber optical trapping systems 

with enhanced trapping capabilities for micro-/nano-scale manipulation and force sensing. 

Specific objectives include the following: 

i) Develop and enhanced understanding of the inclined dual-fiber optical trapping systems. 

ii) Study multiple 3D traps created with the inclined dual-fiber optical tweezers. 

iii) Develop novel techniques to improve the focusing effect of optical fiber devices. 

iv) Improve the performance (such as trapping efficiency, stability, controllability and 

flexibility) of fiber optical tweezers. 

v) Explore new applications of fiber optical tweezers in emerging research fields. 

 

To achieve these objectives, three major research thrusts are carried out in this dissertation work. 

 

Research Thrust 1: System development, experimental study, and modeling of the 3D trap 

created with the inclined dual fiber optical tweezers. This thrust addresses Specific Objectives 

1 and 4. 

 

Research Thrust 2: Experimental study and modeling of multiple traps and multiple 

functionalities realized with the inclined DFOTs. This thrust addresses Specific Objectives 1, 

2, 4, and 5. 
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Research Thrust 3: Development of fiber-based surface plasmonic (SP) lens to achieve far-

field superfocusing effect and study of trapping efficiency enhancement with SP lensed 

fiber tweezers. This thrust addresses Specific Objectives # 3, 4, and 5. 

 

The rest of this dissertation is organized as follows. In Chapter 2, inclined dual-fiber optical 

tweezers system is introduced, followed by thorough experimental and numerical study of the 

system for 3D manipulation of a single particle. In Chapter 3, multiple traps created with the 

inclined DFOTs are investigated. Multiple functions enabled by the multiple traps are also 

studied. In Chapter 4, a surface plasmonic lens on a fiber endface is designed, experimentally 

demonstrated, and numerically studied. 3D trapping of bacteria is demonstrated with SP lensed 

fiber optical tweezers. The trapping efficiency enhancement achieved by using SP lensed fiber 

trapping system is also studied here. In Chapter 5, the dissertation work is summarized and 

contributions are discussed, followed by suggesting the future work. 
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Chapter 2. Inclined Dual-fiber Optical Tweezers: System 

Development, Modeling, and Experiments 

 

In this chapter, the inclined dual-fiber optical tweezers (DFOTs) system is thoroughly 

investigated. In addition to demonstration of 3D trapping in experiments, a model based on ray 

optics is developed to help achieve enhanced understanding of the inclined DFOTs system. 

Based on this model, parametric study of the inclined DFOTs on manipulation of various sized 

silica beads as well as yeast cells is carried out. The chapter is organized as the following. First, 

the inclined DFOTs system setup is introduced, followed by the trapping principle of the 3D trap. 

The trapping efficiency of the inclined DFOTs versus particle displacement was experimentally 

calibrated, which is the first time for this system, with both the drag force method and the power 

spectrum analysis method. Second, the influence of the system parameters on the trapping 

performance is investigated in simulations. Third, robustness to fiber misalignments of the 

inclined DFOTs is discussed and compared with that of the counter-propagating DFOTs. In 

addition, 3D trapping of yeast cells is demonstrated and the trapping efficiency depends on the 

shape of the particle is investigated. 

 

2.1. System development of inclined DFOTs 

 

The experimental setup of the inclined DFOTs is shown in Figure 2.1(a).  An 808 nm laser diode 

(FMXL808-080SA0B, Bluesky Research) with a maximum power of 70 mW was used as the 

light source. A 1×2 fiber coupler (Gould Fiber Optics) was employed to split the laser beam into  
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 (a)  

(b)         (c)   

Figure 2.1. (a) Experimental setup of the inclined DFOTs system. (b) Close-up showing 

the optical trap built from the two beams emitted from lensed fibers. (c) Microscope 

image showing two auras due to the beam scattering. 

 

two lensed fibers (OZ Optics). The optical beams exiting from the lensed fibers had Gaussian 

profiles and formed an optical trap. Each lensed fibers was clamped on a fiber holder so that the 

suspended fiber length is 10±2 mm. The optical power emitted from the lensed fiber end was 

measured by using a free-space powermeter (PM144, Thorlabs). All the fibers and the coupler 

are single-mode at the wavelength of 808 nm. Imaging was carried out by using a microscope 

(CKX41, Olympus Inc.) with an oil-immersion objective (PlanC N 100×/1.25, Olympus Inc.). 

Auras due 
to scattering 
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Since the objective is not required to form the optical trap, it can be adjusted freely to visualize 

different horizontal planes. A CCD camera (Moticam 1000, Motic) was used to capture the 

videos. For the purpose of calibration, a position sensitive detector (PSD) (DL 100-7PCBA3, 

Pacific Silicon Sensor Inc.) was utilized to provide position detection of the trapped beads. 

 

The close-up of the optical trap is shown in Figure 2.1(b). Two lensed fiber were attached to a 

board via two 3D translation stages (3D Stages 1 and 2) to facilitate fiber alignment, which was 

achieved by examining the positions of the optical beams at different focal planes. Due to the 

scattering, the auras of the optical beams can be seen from the microscope images, as shown in 

Figure 2.1(c). When the objective moves along the z axis, the aura of each beam will move along 

a line parallel to the y axis. The x-axis fiber alignment was achieved when both auras moved 

along a common line, while the z-axis alignment was realized when the distances between the 

auras and the corresponding fiber tips were the same. 

 

 

After the fiber alignment was achieved, Stages 1 and 2 were fixed so that the board containing 

the two fibers can be moved as a whole block by adjusting a common stage (3D Stage 3). The 

optical beam emitted from the lensed fiber has a waist radius of 1.35±0.25 µm, which is located 

12±2 µm from the end face of the fiber, according to the data provided by the manufacture. The 

fibers were arranged to have an inclination angle θ = 50º. This inclination angle can be adjusted 

so that the influence of the inclination angle on the trapping performance can be investigated 

experimentally. The separation between the two fibers was arranged to be 45 µm along the y 

axis. It is noted that the beam intersection was located around 17 µm downstream below the 

beam focuses, rather than at the focuses where a stronger trap can be achieved. This is due to the 
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limitation of the fiber tip geometry, which has a cone shape with an opening angle of around 90 

degrees, as shown in Figure 2.2(b). If the fibers are arranged so that the beam intersection (where 

the trap is) is at the two focuses, the fiber tip geometry will prevent the intersection from 

reaching the substrate, and hence beads lying on the substrate cannot be picked up. A coverglass 

with a water drop containing silica beads (Bangs Laboratories, Inc.) was placed on a two-

dimensional stage, which was attached to a one-dimensional motorized stage (UTM50MVTP, 

Newport Corp.) to achieve a constant moving speed for calibration purpose. 

 

Silica beads of four different sizes ranging from 3.01 to 4.74 µm in diameter were trapped in the 

experiment. The silica beads have a density of 2.0 g/cm3 and a refractive index of 1.45 according 

to the data provided by the manufacturer. Beads solution was first diluted with distilled water by 

600 times. To reverse bead aggregation, a glass beaker containing the diluted bead solution was 

immersed in ultrasonic bath for 15 minutes. One drop of the bead solution was then added onto 

the coverglass, where the trapping experiment was carried out. The thickness of the water drop 

was controlled to be 3~4 mm. To prevent the water on the coverglass from drying up under the 

illumination light, water was added to the coverglass frequently. 

 

2.2. Trapping principles of inclined DFOTs 

 

For typical single-fiber optical tweezers (SFOTs) built with lensed fiber shown in Figure 2.2(a), 

the trapped particle reaches equilibrium only when there is a normal force N from the substrate. 

If there is no substrate, the particle will be pushed away. Therefore, SFOTs can only achieve two 

dimensional (2D) optical trapping.  
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Figure 2.2. Illustration of forces applied to a trapped particle in (a) SFOTs and (b) 

DFOTs. Fs represents the axial net force of the scattering force and the gradient force and 

Fg denotes the transverse gradient force.  

 

In the case of the inclined DFOTs as shown in Figure 2.2(b), there are two transverse gradient 

forces (Fg1 and Fg2) and two net axial forces (Fs1 and Fs2) applied by the two beams, respectively. 

When the four forces are balanced, the particle is three-dimensionally trapped. The equilibrium 

position is below the intersection of the two beams, and thus, the distance between the trap and 

the fibers is large enough to manipulate particles of tens of micrometers without any physical 

contact. It is noted that the gravity and buoyancy are not considered here, whereas in practice to 

determine whether a 3D trap can be formed, they are important to consider.  

 

A special case of the inclined DFOTs is when the inclination angle of the fibers (θ in Figure 

2.2(b)) is 90º; i.e., the two fibers are arranged to share the same beam axis, which is known as 

the counter-propagating DFOTs. In most counter-propagating DFOTs, cleaved fibers are used 

[65] and the distance between the fiber ends is usually larger than 100 µm. The particle is drawn 
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by the gradient forces to the optical axis where the transverse gradient forces disappear, and the 

scattering forces balance each other to enable a 3D optical trap. 

 

 
Figure 2.3. Silica bead with a diameter of 4.74 µm manipulated in three 
dimensions by the DFOTs. The arrows indicate the next movement direction of 
the coverglass. (a) Initial positions of free beads with the coverglass moved along 
+y. (b)-(c) The coverglass moved along +x with Bead 1 trapped. (c)-(e) The 
coverglass moved along +y, -x, and then -y. Bead 2 was moved out of the view 
field and another free bead, Bead 3, was brought in. (e)-(f) The trap together with 
Bead 1 moved out of focus along +z. (f)-(h) The coverglass moved downwards 
(+x) with Bead 3 moved freely below Bead 1. 

 

2.3. Experimental study of inclined DFOTs for manipulation of silica Beads 

 

2.3.1. Three-dimensional trapping ability 

 

To demonstrate the 3D trapping ability, a silica bead in water was manipulated in three 

dimensions using the inclined DFOTs, as shown in Figure 2.3. The two black shadows in the 

pictures were the fiber tips. The bead (Bead 1) that initially lay on the coverglass was trapped 

and then lifted by raising the trap. It is noted that the focal plane of the observing objective was 

fixed and all the pictures in Figure 2.3 were captured on the same vertical plane while the trap or 
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the water was moved. When Bead 1 was trapped, the coverglass can be moved freely along the x 

or y direction (Figure 2.3(b)-(f)), and another bead (Bead 3 in Figure 2.3(f)-(h)) can move below 

Bead 1 without interfering the trap. 

 

2.3.2. Calibration of trapping efficiency with drag force method 

 

2.3.2.1. Basic principles of drag force calibration 

 

In order to use the inclined DFOTs for force sensing, the trapping efficiency and the spring 

constant must be calibrated. Here, the drag force method [7] was used to obtain the trapping 

stiffness. After trapped, the bead was lifted to at least 50 µm (about 10 times the bead diameter) 

above the substrate in order to reduce side wall effects in the drag force calculation. The water 

was moved with a constant speed by using a motorized stage, so that the bead could be displaced 

by the drag force, as shown in Figure 2.4. To measure the bead displacement, a video was 

captured with a CCD video camera from the beginning of the motion. The bead displacement at 

each frame was obtained by performing image correlation. A mean value of displacements after 

the bead reached equilibrium was consequently obtained as the equilibrium position, which 

depends on the water speed. The optical force exerted on the bead was calculated by the drag 

force, which can be expressed as [91] 

, 6 ,drag beadF vrπµ= . (2-1)

where µ is the dynamic viscosity ( 48.9 10  Pa s−× ⋅  for water), v is the speed of the water (along 

the x axis), and r is the radius of the bead. By varying the water speed, the dependence of the 

optical forces on the displacements of the trapped bead was obtained.  
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v

Fdrag,bead = 6 vr

Optical fibers

Foptical = -kx

x

      

Figure 2.4. Schematic of the drag force calibration for obtaining the trapping 
efficiency. 

 

2.3.2.2. Evaluation of the fiber tip deflection due to the drag force 

 

In order to ensure that the measurement of the bead displacement was faithful, the fiber tip 

deflection due to the drag force needs to be estimated. According to the equation derived by 

Lamb [91], when the Reynolds number is small compared to 1, the drag force exerted on a 

cylinder that has only translational motion in the water with its axis perpendicular to the flow 

direction can be expressed as 

,
4 ,

0.5 ln( )
4

c
drag cyl

vlF vD
πµ

ργ
µ

=
− −

 

 
(2-2)

where lc is the length of the cylinder, γ is the Euler-Mascheroni constant (~0.577), ρ is the 

density of the water, and D is the diameter of the cylinder. For a stripped optical fiber, D = 125 

µm, rendering a Reynolds number of 0.073.  The maximum flow speed of 80 µm/s and the fiber 

immersion length of 10 mm were used to calculate the fiber tip deflection. Based on Eq. (2-2), 
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the drag force exerted on the fiber can be obtained ( ,drag cylF = 1540 pN). If the fiber is considered 

as a clamped pure silica (Young’s modulus of 46 GPa [92]) cylinder with a suspension length of 

15 mm, and it is subject to a concentrated load ( ,drag cylF ) at the free tip (where the largest 

deflection can be induced by the load), a deflection of 0.19 nm at the free tip can be obtained. It 

is noted that all the parameters have been chosen to ensure a safe estimation. Since this estimated 

fiber tip deflection is three orders of magnitude smaller than the bead displacement (in sub-

micrometers), it is safe to neglect the fiber tip deflection due to the drag of the flow. 

 

2.3.2.3. Drag force calibration results 

 

Image correlation was performed to determine the equilibrium of the displaced particle. The 

reference image with the trapped bead was taken when the water stayed still. The water was 

actuated to reach a constant speed and then stopped. During the process, a video clip was 

captured, and the image at each frame was correlated with the reference image to obtain the 

displacement of the trapped bead. In Figure 2.5 an example of image correlation is shown, which 

was used to obtain the data points at 12.5 second in Figure 2.6. The bead displacement as a 

function of time obtained with the drag force calibration is shown in Figure 2.6. The bead 

reached the equilibrium at around 1.2 second after the water was actuated (at ~2.5 second), and 

the bead was pulled back to the trap slowly after the water movement was stopped (at ~10.2 

second). The water was actuated only along the x axis, so that the y displacements were close to 

0 during the whole process. It was noticed that the Brownian motion as well as the misalignment 

of the camera with respect to the motorized stage can cause slight changes to the y 

displacements, as shown in Figure 2.6. However, within the time period of 4~9 second, the bead 
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can be considered to be in equilibrium when subjected to both the drag force and optical forces. 

Averaging over this time period can thus help remove the errors induced by the Brownian 

motion. 

 

 

Figure 2.5. An example of image correlation that is used to determine the bead 
displacement. The image to the right shows the correlation of the two left images. 

 

 

Figure 2.6. The bead displacement data obtained from a video clip at a laser 
power of 15.3 mW from the source. The water movement was initiated at around 
2.5 s, and then at around 3.7 s, it reached a constant speed of 25 µm/s. The water 
movement was stopped at around 10.2 s. The triangle and the square data points 
correspond to the vertical (y-axis) and horizontal (x-axis) displacements, 
respectively. 
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To compare the optical forces obtained with respect to different optical powers, trapping 

efficiencies were calculated, which describes the efficiency of transferring the momentum from 

the light to the trapped object. The trapping efficiency is defined as [93] 

,FcQ
nP

=  
(2-3)

where F is the optical force, c is the speed of light in vacuum, P is the optical power, and n is the 

refractive index of the medium (here in the water, n = 1.33).  
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Figure 2.7. Calibration curves of x-axis trapping efficiencies obtained with 
different laser powers. The experiments were carried out with silica beads of 4.74 
µm in diameter. The optical powers shown are the total powers from both fibers. 

 

The experimentally obtained trapping efficiencies at different optical powers are shown in Figure 

2.7. Every single data point is the mean value of the displacements obtained from video clips 

with duration of at least 5 seconds. 
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According to the calibration results shown in Figure 2.7, the trapping efficiency is linearly 

dependent on the displacement within the range of −1 µm to +1 µm, which bestows the DFOTs 

an ability to carry out force sensing. Moreover, the superposition of the trapping efficiencies at 

different optical powers implies that the trapping efficiency does not depend on the optical 

power, which is intuitive and can be explained by its definition. 

 

2.3.3. Calibration of trapping efficiency with power spectrum analysis 

 

In addition to the drag force calibration, the power spectrum analysis method [7, 94] was used to 

obtain both the x- and y-axis spring constants. This method is chosen because the power 

spectrum of trapped beads can also be used to diagnose possible problems of the optical tweezers, 

such as alignment errors and other system noise, which cannot be provided by other calibration 

techniques such as the equipartition method. [7]  

 

2.3.3.1. Basic principles of power spectrum analysis 

 

The Brownian motion of a bead in a harmonic trapping potential (along the x direction) can be 

described by the Einstein-Ornstein-Uhlenbeck theory with the form of the Langevin equation: 

[94] 

( ) ( ) ( ) ( ) ( )1 2
0 02 ,x Bmx t x t k x t k T tγ γ η+ + =&& &  (2-4)

where x(t) is the trajectory of the particle along the x axis, m is the mass, γ0 is the friction 

coefficient, kx is the spring constant of the trap, and the ( ) ( )1 2
02 Bk T tγ η  term represents the 
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Brownian forces from a random Gaussian process at an absolute temperature T, with kB denoting 

the Boltzmann’s constant. For any t and t’, ( )tη  satisfies 

( ) ( ) ( ) ( )0;      ' 't t t t tη η η δ= = − , (2-5)

where the angle brackets denote an average over time t. Following Eq. (2-1), the Stokes friction 

coefficient is expressed as 

0 6 rγ πµ= . (2-6)

After performing Fourier transform of Eq. (2-4) and averaging over time, the expected two-sided 

power spectrum is obtained as [94] 

( ) ( ) 2 2
0

2 2

2
B

xx
msr c

k T
x f

P f
T f f

π γ
= =

+

%
,  f >0. 

 

(2-7)

Here ( )x f%  is the Fourier transform of x(t), Tmsr is the total recording time, and f is the frequency. 

fc in Eq. (2-7) is called the corner frequency [94], or the rolloff frequency [7], which is related to 

the trapping stiffness by 

2
02 12

x x
c

k kf
rπγ π µ

≡ = . 
(2-8)

 

There are a couple of important issues about Eq. (2-7) worth noting here. The first issue, which is 

the most important one, is that the expected power spectrum has an exponential distribution 

instead of a more common Gaussian distribution. Data with an exponential distribution cannot be 

fitted with least-squares fitting, and this brings difficulties into data processing of the 

experimentally recorded data. [94] The solution to this problem will be discussed later in this 

section. The second issue is that the power spectrum in Eq. (2-7) is a two-sided power spectrum. 
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In some literature [7, 95], single-sided power spectra are used, and the corresponding expression 

of the power spectrum differs from that in Eq. (2-7) by a factor of 2. In the experiment, one 

should be careful on whether a two-sided or single-sided power spectrum is being recorded, 

because the latter introduces an additional factor of 0.5 to Eq. (2-7). If Labview is used as an 

interface to obtain data and calculate power spectra, two-side power spectra will be obtained 

instead of single-sided ones. The third issue is the power spectrum in Eq. (2-7) cannot be directly 

obtained from the experimentally measured data. The direct output data of a PSD are voltages (to 

be discussed in Section 2.3.3.2), but ( )xxP f  in Eq. (2-7) has a unit of µm2/Hz. Therefore, 

another power spectrum ( )vvP f  needs to be introduced, which can be obtained from the Fourier 

transform of the output voltages instead of the bead displacements. The two power spectra can be 

related with each other by the linear sensitivity of the PSD, ρ (in Volt/µm): [7] 

( ) ( )
2

vv
xx

P fP f
ρ

= . 
(2-9)

If ( )vvP f  is used instead of ( )xxP f  in Eq. (2-7), the expression of the power spectrum directly 

obtained from the experiment can be written as: 

( )
( )

2

2 2vv
msr c

V f DP f
T f f

= =
+

%
,  f >0, 

(2-10)

where ( )V f%  is the Fourier transform of the voltage output from the PSD, and D is expressed as 

2

2
02

Bk TD ρ
π γ

= . 
(2-11)

 

The right-hand side of Eq. (2-10) is a Lorentzian function. To understand how the parameters D 

and fc influence the power spectrum ( )vvP f , ( )vvP f  with respect to different D and fc are shown 
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in Figure 2.8. There are two distinct regions for each curve. The plateau of each curve 

corresponds to the region where f << fc. The height of the plateau, or the amplitude of the signal, 

is determined by 2
cD f . The linear region happens when f >> fc, and the slope is always -1. fc 

determines where the two regions intersect, and that is why it is called the corner frequency. It is 

noted that both axes are in logarithmic scales. This determines what type of data compression 

should be used, and will be explained below. 

 

 

Figure 2.8. The influence of D and fc to Pvv(f). D determines the height of the 
plateau, while fc determines where the “corner” is located. 

 

The experimental data are well characterized by the Lorentzian in Eq. (2-10). Two parameters, D 

and fc, can be determined with each curve fitted to a set of experimental data. Consequently, both 

the detector sensitivity and the trapping stiffness (spring constant) can be determined 

independently. Therefore, the errors in calibrating the detector sensitivity will not be 
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accumulated into the calibration of the spring constant. This is one of the advantages of the 

power spectrum analysis over the equipartition method. [7]  

 

As mentioned previously, the power spectrum ( )xxP f  as well as ( )vvP f  is exponentially 

distributed. Least-squares fitting can be applied for a set of data under two conditions: i) the data 

points are statistically independent, and ii) the distribution of the data is Gaussian. [94] The 

power spectrum ( )vvP f  does not satisfy the second condition because it is exponentially 

distributed, as discussed above. In order to apply least-squares fitting to the data, proper 

preprocessing, namely data compression, must be performed to convert the data distribution from 

exponential to Gaussian. [94] There are two methods of data compression that can be used: 

windowing and blocking. Windowing is to apply window functions to the signal so that the data 

after windowing will have a Gaussian distribution, provided that the number of windows used is 

large. However, the compressed data from windowing are always equidistant in the linear scale 

of the frequency, and thus it is not preferable when the logarithmic scale is used. Blocking is 

another way to compress the data. In blocking, multiple data points are replaced (blocked) by a 

single point that is the mean value. Gaussian distributed compressed data can also be generated 

by blocking if the number of blocked data points is large. Since different numbers of blocked 

points can be chosen at different regions, the data obtained after the compression can be 

equidistant in the logarithmic scale. 

 

The above mentioned power spectrum analysis method is expected to have a reasonable error 

(~10% according to [94]). To further decrease the error, other issues such as anti-aliasing filters 

and the PSD’s frequency-dependent sensitivity [94] need to be considered. In this work, since 
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other noise sources such as the power fluctuation from the laser source and the fiber movement 

can result in even larger errorsno further efforts will be undertaken to further decrease the errors 

in the power spectrum analysis. The x-axis spring constant can be calculated from the fitted 

values of fc by 

212 .x ck rfπ µ=  (2-12)

The detector sensitivity can also be calibrated from the fitted values of D, although in this work it 

is not of interest. The y-axis spring constant follows the same equation as Eq. (2-12).  

 

2.3.3.2. Experiments with the PSD 

 

A PSD is a device that can be used to measure the transverse movement of an optical beam 

centroid. A PSD has better linearity and a larger linear area compared with a quadrant 

photodiode. Prior to the calibration experiment, the PSD was first tested in the experimental 

setup shown in Figure 2.9. The laser beam from a source of 675 nm (S1FC675, Thorlabs) was 

coupled to one end of an optical fiber. The other end of the fiber was mounted on a two-

dimensional stage and the output beam was registered directly on the sensitive area of the PSD. 

The PSD used in the experiment works under a DC voltage of 20 V and a bias voltage of 0 ~ -10 

V. The four voltage ouputs (say Va, Vb, Vc, and Vd) of the PSD are proportional to the intensity 

sums along the x axis and y axis and the intensity differences along the x axis and y axis, 

respectively. The x and y positions of the beam centroid can be expressed as c

a

V L
V

 and d

b

V L
V

, 

where L is the dimension of the PSD sensitive area. As discussed in Section 2.3.3.1, the absolute 

amplitude of the signal is not related to the corner frequency fc and the trapping efficiency. 
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Therefore, only c

a

V
V

 and d

b

V
V

 were used as the output signals in the experiment, and the spring 

constant calibration obtained from the power spectrum will not be influenced. The orientations of 

the x and y axes of the PSD were calibrated by sweeping the fiber across the PSD, and this was 

important for determining the orientation of the PSD when it was mounted onto the microscope 

platform. 

 

 

Figure 2.9. Experimental setup for testing the PSD. The fiber guiding a red laser 
beam was mounted above the sensitive area of the PSD. 

 

The PSD was then mounted on the camera port of the microscope. The vertical position of the 

PSD should be adjusted so that the sensitive area of the PSD is conjugate to the focal plane of the 

objective. The PSD position can be determined by the position of the camera chip when the 

trapped particle is in focus. A home-made adapter, as shown in Figure 2.10, was used to mount 

the PSD at the required position by adjusting the vertical distance between the PSD sensitive 

area and the outer surface of the microscope C-mount. The orientation of the PSD should be 

aligned with respect to the setup of the inclined DFOTs system, so that the PSD outputs can be 

used for trapping force calibration along the x and y axes shown in Figure 2.2(b). A Labview 

Laser source Voltage source Multimeters 

Optical fiber 

PSD Outputs 
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program was written to collect both the time-domain and frequency-domain data in the 

experiment. 

 

 

Figure 2.10. Picture of the PSD holder with the PSD attached. 

 

Before recording any data, the errors from the system setup must be identified and removed from 

the measurements. As mentioned previously, the power spectrum analysis can be used to 

diagnose possible system errors since the obtained power spectrum should be fitted nicely by a 

Lorentzian, as shown in Figure 2.8. The common errors are discussed as follows based on the 

experience gained in the experiments. The common sources of errors include the mechanical 

vibrations of the systems (both the trapping and the detection systems) at their natural 

frequencies and electrical noise at particular frequencies introduced by the voltage source. These 

errors can induce spikes in the power spectrum. To identify the sources for these spikes, the 

system setup must be carefully examined. The mechanical resonances generally result from long 

suspending length of the poles/fibers in the experimental setup. More common sources of 

vibrations including the microscope and the optical table, however, are easier to be ignored. The 

optical table should be supported on compressed air (also called “air springs”) in order to be able 

Holder 

PSD sensitive area 

PSD outputs 
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to isolate the ambient vibrations. The microscope must be bolted down to the optical table to 

decrease the vibration amplitude and increase the natural frequency of the system. As an 

example, the power spectrum without bolting down the microscope is shown in Figure 2.11. The 

high spikes at ~30 Hz disappeared after the microscope was bolted down, as shown in Figure 

2.12. The voltageas well as the PSD must be grounded. The bias voltage applied to the PSD 

should be adjusted accordingly based on the real measurement results. Even though using a high 

absolute value of the bias voltage can help improve the linearity of the PSD, this can result in a 

higher noise level and a lower sensitivity. Therefore, in the experiment, zero bias voltage was 

used to increase the sensitivity and reduce the noise level. Even with all the spikes removed, the 

experimentally obtained power spectrum always deviates from the Lorentzian fitting at the high 

frequency region. This is clearly visible because the slope of the recorded data changes at high 

frequencies. This deviation is believed to be due to the anti-aliasing filters used in the PSD. [94] 

Anti-aliasing filters are needed to remove the aliasing due to the finite sampling rate, and they 

are typically added to commercial data acquisition electronics. However, since the original 

signals are multiplied by the characteristic functions of all the anti-aliasing filters, the output 

signals will be changed. The effects of the anti-aliasing filters are more prominent at the 

frequencies close to the highest recording frequency, as shown in Figure 2.11. To solve this 

problem, a sampling frequency of 10 kHz was used and the obtained frequency-domain signals 

were chopped at 2 kHz. By doing this, the deviation from the Lorentzian is greatly decreased, as 

shown in Figure 2.12. 
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Figure 2.11. Power spectrum shown the resonance peaks of the microscope body 
at 30~40 Hz. The power spectrum was recorded when the microscope was placed, 
but not bolted, on the floated optical table. After the microscope was fixed, the 
above peaks disappeared. 

 

2.3.3.3. Results obtained from power spectrum analysis 

 

In the experiments, the power spectra were obtained by collecting the light scattered by the 

trapped bead using the PSD. In order to minimize the sidewall effect, a bead was trapped in three 

dimensions and then lifted up to around 35 µm above the coverglass. The PSD output data were 

collected within a time period of 5 seconds at a sampling frequency of 10 kHz. This sampling 

frequency is much larger than the measured corner frequencies (less than 20 Hz) so that faithful 

results can be obtained. The power spectra were blocked before the curve fitting by replacing 

100 consecutive data points with the averaged data point at the corresponding mean frequency. 

This is necessary because the power spectra obtained from the experiment are exponentially 
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distributed. After data averaging with a sufficient large number of blocking points, the power 

spectra approach Gaussian distribution and the least-squares fitting can be used [94]. Curve 

fitting of the experiment data with Eq. (2-10) was carried out within the frequency range of 1 Hz 

to 2 kHz.  The spring constants were calculated from the fitted corner frequency fc according to 

Eq. (2-12). As an example, a fitted x-axis power spectrum obtained with a bead size of 4.74 µm 

and the optical power of 18.9 mW is shown in Figure 2.12. The spring constant obtained from 

the power spectrum analysis (2.82 pN/µm) compares well with that obtained from the drag force 

calibration at the same power (2.98 pN/µm). 

 

 

Figure 2.12. Lorentzian fitting of experimentally measured power spectrum. 
Here, the corner frequency fx is 11.3 Hz, which gives a spring constant kx of 2.82 
pN/µm. 

 

It is noted that the trapped bead was not imaged onto the PSD plane. Since the trapped bead was 

close to the intersection of the two laser beams but off-axis, not all the optical power was 

scattered. If the bead center were conjugate to the PSD plane, the scattered light could be 

overwhelmed by the unscattered light, and Lorentzian fitting of the experimental data could fail. 

To solve this problem, the objective was lowered by a proper distance so that the images of the 

two optical axes were further away from the bead center, resulting in less unscattered light 
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registered at the PSD. However, the objective could not be lowered too much. Otherwise, the 

scattered light collected by the PSD was not strong enough and a good fitting could not be 

achieved, either. In the experiments, proper distances to lower the objective were found to be 

within 50 µm to 75 µm in order to minimize the influence of the unscattered light. Since the 

optical axes were located in the yz plane, y-axis power spectra were influenced more than x-axis 

power spectra. 

 

Table 2.1. Spring constants obtained with beads of different sizes. 
 

Bead 
diameter 

(µm) 

Experiment Simulations 

kx (pN/µm) ky (pN/µm) kx (pN/µm) ky (pN/µm) 

4.74 2.82 1.86 2.35 1.01 

3.93 1.71 1.16 1.64 0.66 

3.50 1.38 0.74 1.05 0.43 

3.01 1.21 0.34 0.70 0.17 

 

Both x- and y- axis spring constants of four beads of different sizes were calibrated under the 

power of 18.9 mW. The results are summarized in Table 2.1. The simulation results shown in 

Table 2.1 will be discussed further in Section 2.4.3. It can be seen that the larger the bead, the 

higher the spring constants. The x-axis spring constants were always larger than the y-axis spring 

constants. This is intuitive since no scattering forces appear along the x axis while along the y 

axis, and the scattering forces prevent the bead from being trapped (see Figure 2.2(b)). 

 

The calibration results along with the experimental results obtained in Section 2.3.2 demonstrate 

that the inclined DFOTs can serve as both a 3D actuator that is able to pick up particles lying on 

the substrate and a force sensor. By detecting the displacement of the trapped particle, the 

external forces applied on the particle can be measured. 
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2.3.4. Influence of the fiber inclination angle θ 

 

In addition to the influence of the optical power, the trapping performance with respect to 

different fiber inclination angles θ is also investigated. At a total power of 8.05 mW, θ was 

decreased with a decrement of 5° while keeping the same fiber distance. The reason for choosing 

this optical power is that the trap was the weakest amongst the four different power levels that 

were used in the experiments. When the trap is weaker, it is more sensitive to the influences of 

the parameters including θ, and thus the consequence of changing parameters becomes easier to 

observe. 

 

The beads could not be lifted up when θ ≤ 45º in the experiments, but they can still be trapped in 

two dimensions along the x and y directions. For θ ≥ 50º, the bead can be lifted up, and thus 

trapped in three dimensions. Given the same optical power, the DFOTs exhibit a stronger z-

direction trap for a larger θ value. These results imply that the trapping performance along the z 

direction also depends on the inclination angle. The 3D trapping degrades into a 2D trapping 

when the inclination angle is below a critical value, which was obtained to be between 45º and 

50º in the experiments. 

 

2.4. Modeling of trapping forces of inclined DFOTs 
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2.4.1. Ray optics model 

 

It is assumed in the model that the optical beam emitted from the lensed fiber has a Gaussian 

profile (i.e., operating on the fundamental transverse mode (TEM00 mode)) and the beam is 

unpolarized. When the particle size is larger than the wavelength, the forces exerted on the 

particle can be derived based on a ray-optics model including the Gaussian beam profile. [96] 

The incident optical beam can be considered as a stream of photons carrying momentum. The 

refraction and reflection on the surface can result in the direction change of the photon 

momentum, which, according to the Newton’s second law of motion, implies that the optical 

beam applies a force to the surface of the particle. The direction and intensity of the incident 

beam are determined by using Gaussian beam propagation. For a laser beam propagating along 

the z axis with the beam waist located at 0z = , the incident direction at a point P(x, y, z) on the 

particle surface is perpendicular to the wavefront. In Figure 2.13(a), a geometric sketch for 

calculation of the incident direction is shown. R is the radius of wavefront curvature at Point P. 

The distance dz and R can be obtained by solving the following equations: 

20

2 2 2 2

( ) 1 ( ) ,

( ) ,

zR z dz
z dz

R R dz x y

 = + × + + 

= − + +

 
 

(2-13)

where
2

0
0z πω

λ
= , 0ω is the beam waist, and λ  is the wavelength in vacuum. The incident 

direction can be expressed as ( , , )in CQ x y R dz= −
uv uuuv

. The incident light intensity at P(x, y, z) is 

2 2
0
2 2

2 2( )( , , ) exp[ ]
z z

P x yI x y z
πω ω

− +
= , 

(2-14)
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where P0 is the total laser power, and ωz is the spot size at the position z, which can be expressed 

as 

2
0 01 ( / )z z zω ω= + . (2-15)

 

(a)      (b)  

Figure 2.13. (a) Geometric sketch for the incident direction calculation at Point Q and (b) 
incident condition at the interface. 

 

For a small area dS illuminated by the laser beam, which is centered at the point P(xt, yt, zt), the 

number of incident photons, Nt, can be expressed as  

( , , )( )
t

I x y z i n dtdSN
hc λ

− ⋅
=

v v
, 

 
(2-16)

where dt is the time interval, h is the Planck constant, and c is the light speed in vacuum. The 

factor ( )i n−
v v
i  indicates that the effective light intensity is the intensity component along the 

normal direction to the interface. The vectors n
v

, i
v

, r
v

, and f
uv

  represent the unit vectors along the 

interface normal direction, the incident direction, the reflected direction, and the refracted 

direction, respectively, as shown in Figure 2.13(b). The refractive indices of the incident medium 

and the refractive medium are n1 and n2, respectively. The numerator of Eq.  
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(2-16) represents the total incident optical energy while the denominator is the energy of a single 

photon. The momentum change of each photon can be expressed as 

1 2 1( )t
hdM N n R r n T f n i
λ

= ⋅ + ⋅ −
uuuv v uv v

, 
(2-17)

where R and T are the Fresnel reflection and refraction coefficients, respectively. If the beam is 

not polarized, the Fresnel coefficients are 

2 2

2 2
1 tan ( ) sin ( )
2 tan ( ) sin ( )

R θ θ θ θ
θ θ θ θ

 ′ ′− −
= + ′ ′+ + 

, 1T R= − . 
 

(2-18)

Here, θ  is the incident angle and θ ′  is the refraction angle. Thus, the optical force exerted on the 

small region dS can be obtained as 

0
1 1 2

( , , ) ( )( )tN dMdM I x y zdF n i n Rr n T f i n dS
dt dt c

= = = − − −
uuuuvuuuvuuuv v v uv v v

i . 
(2-19)

The vector integral of all the force elements for each illuminated small surface region dS gives 

the total optical forces on each of the particles: 

all region
F dF= ∫
uv uuuv

. (2-20)

In the next several sections, the trapping force of the dual fiber tweezers will be obtained by 

summing the optical force vectors obtained for each fiber. This technique will be applied to 

spherical, spheroidal particles for investigating their performance and trapping efficiency with 

the proposed dual fiber tweezers systems. 

 

2.4.2. Trapping force along the z direction 
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Since the main difference between the SFOTs and the DFOTs is the z-axis trapping ability, the 

optical force obtained with the DFOTs along the z-axis is studied first. The z-axis optical force as 

a function of the bead displacement along the z axis is shown in Figure 2.14 when the total 

optical power is 8.05 mW. The origin of the displacement is at the beam intersection. The results 

obtained with different fiber inclination angles are compared here.  
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Figure 2.14. The simulation results of optical force versus bead displacement 
along z axis with different θ values. G is the gravity and Fb is the buoyancy of the 
trapped silica bead. The optical force should be larger than G-Fb in order to trap 
the bead in the z direction. The total optical power emitted from both fibers is 
8.05 mW. The bead size is 4.74 µm in diameter. 

 

In order to lift up the bead, the optical force should be larger than the gravity minus buoyancy 

(G-Fb), which is illustrated as the horizontal dashed line in Figure 2.14. It can be seen that 

levitation can only be realized when θ ≥ 50°. A larger θ provides a higher +z optical force, and 

hence a stronger z-axis trap. In the case when θ ≤ 45°, the DFOTs fail to lift up the bead along +z 



 67

direction. This indicates that the critical angle θ for levitation is between 45° and 50°, which 

matches the value observed in the experiments.  

 

It is noted that the equilibrium position of the trapped bead is not at the beam intersection but 

somewhere below the intersection and that it varies with respect to the value of θ and the optical 

power. The equilibrium position can be obtained from Figure 2.14 as the right intersection 

(where a restoring force exists) of the optical force curve and the G-Fb line. For example, for a 

given θ of 50°, the equilibrium position is 1.88 µm below the beam intersection when the optical 

power is 8.05 mW, while the value changes to 1.03 µm at a power of 15.3 mW. This is intuitive 

because a lower power renders a lower optical force at the same position. Therefore, if the power 

decreases, the equilibrium position of the trap will be even lower to the beam intersection so that 

enough optical force can be obtained to enable a lift-up of the bead. When the power becomes 

too low, the bead will eventually escape from the trap.  

 

The simulation results also indicate that there is a tradeoff between the z-axis stability and 

flexibility of the trapping system. A larger θ is beneficial for obtaining better trapping stability. 

However, a larger θ also requires a larger horizontal span of the setup and brings the bead 

equilibrium closer to the optical axes, which makes it more difficult to pick up beads from lying 

on the substrate due to the physical size constraint of the fiber. 

 

The influence of the bead size on the z-axis trapping ability is shown in Figure 2.15. The short 

dash-dot curve shows the results obtained with one of the bead sizes (4.74 µm) used in the 

experiments. It can be seen that larger particles are more difficult to lift up with the same DFOTs 
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setup. At an optical power of 8.05 mW, beads with sizes equal or larger than 6 µm cannot be 

lifted up, whereas smaller beads with sizes of 4.74 µm and 4 µm can. Actually, the beads with 

the sizes between 3.01 µm and 4.74 µm were lifted up in the experiment. The reason can be 

explained as that the gravity of the bead increases more quickly with the increasing bead size 

than the optical force does. Therefore, in order to trap larger particles, either the optical power or 

the inclination angle needs to be increased. The equilibrium z position is not strongly dependent 

on the bead sizes. Theoretically, smaller beads (in the micron size range) are easier to trap due to 

their smaller gravities. However, in the real experiment, beads smaller than 3 µm were difficult 

to trap due to the fiber misalignment along the x axis. 
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Figure 2.15. The simulation results of optical force versus bead displacement 
along z axis with different bead sizes. G is the gravity and Fb is the buoyancy of 
the trapped silica bead. For each bead sizes, G-Fb is expressed with a horizontal 
dashed line with the same color as the optical force curve. The total optical power 
emitted from both fibers is 8.05 mW. The inclination angle θ is 50º. 
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2.4.3. Trapping forces along the x and y directions 

 

The trapping forces versus the displacements along the x and y axes are shown in Figure 2.16. 

The bead size of 4.74 µm and the optical power of 15.3 mW are used in order to compare with 

the experimental results. The influence of inclination angles on the x- and y-axis trapping forces 

is investigated. It is noted that the z coordinate is fixed to be 1.03−  µm, 0.59−  µm, 0.39− µm, 

0.17− µm, and 0.10− µm for the curves with the inclination angle of 50º, 55º, 60º, 75º, and 90º, 

respectively. These values of the z coordinate correspond to the equilibrium positions of the bead 

located on the z axis, which are obtained by finding the intersections of the z-axis optical force 

curves with the horizontal G-Fb lines. Here, only the cases when a 3D trapping is formed are 

studied, i.e., the inclination angles θ ≥ 50º. 

 

According to the x-axis optical forces obtained from the DFOTs shown (see Figure 2.16(a)), both 

the simulation and the experimental results exhibit the existence of a restoring force when the 

bead is displaced from the equilibrium. The slope of the x-axis optical force curves in the vicinity 

of the origin (i.e., the spring constant) can be obtained with curve-fitting. The spring constant 

obtained from the experiments (2.68 pN/µm) and the simulations (1.90 pN/µm) are in the same 

order of magnitude. If the drag force keeps increasing from 0, the displacement of the bead from 

the trap will increase until a maximum displacement is reached, which corresponds to the 

displacement at the peak or in the valley of the x-axis optical force curve obtained from the 

simulations. A larger displacement cannot be obtained experimentally as the bead will escape 

from the trap. The maximum displacement obtained in the simulations (±2.0 µm) compares well  
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Figure 2.16. The dependence of optical forces on bead displacements along (a) 
the x axis and (b) the y axis for different fiber inclination angles. The total optical 
power emitted from both fibers is 15.3 mW. The bead size is 4.74 µm in diameter. 
The fiber separation along the y axis is 45 µm. 

 

with that observed in the experiment ( 1.6−  µm along –x and +1.7 µm along +x). The x-axis 

simulation results obtained with different fiber inclination angles (θ) implies that the larger the 

inclination angle θ, the larger the x-axis optical force (or the spring constant). This is because the 
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z-axis equilibrium position and the beam waist position change with respect to different 

inclination angles. For a larger θ, the bead is trapped to a position closer to the beam intersection, 

where the optical intensity is the highest. Furthermore, as the fiber separation is fixed, the beam 

waists are closer to the beam intersection for a larger inclination angle. Both factors contribute to 

the increase of the x-axis optical force when the fiber inclination angle increases. 

 

The spring constant obtained from the drag force experiments is larger than that obtained from 

the simulations. The sources of errors include the error in the measurement of the fiber 

inclination angle θ, misalignment of the two fibers, and the beam profile being non-Gaussian and 

partially polarized. In the experiment, θ measurement error was ±2º. According to the results 

shown in Figure 2.16(a), the x-axis optical force with θ = 55º is 1.5 times larger than that with θ 

= 50º. The error in the measurement of θ may result in the error between the simulation and the 

experimental results. The alignment of the two fibers in the xy plane is realized under the 

microscope objective, which has a good accuracy (~ 1 µm). However, it is difficult to achieve 

exactly the same height along the z axis for the two fibers. In this case, the z-axis misalignment 

may result in errors of the simulation results, which are obtained when assuming no 

misalignment occurs. The polarization is also a possible source of errors, since the light emitted 

from the lensed tip might still be partially polarized. 

 

The optical forces along the y-axis verses the y-axis displacements with different inclination 

angles are shown in Figure 2.16 (b). It should be noted that these curves are obtained at fixed, 

non-zero z coordinates, i.e., the bead motion is considered to be parallel to the y axis. This is only 

valid for small (in submicrons) y displacements. Since the two optical beams are located in the yz 
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plane, the y-axis bead displacement is inevitably confined by the two optical beams. For 

example, at an inclination angle of 50°, the experimentally obtained y-axis displacement was 

within -1 µm and 1 µm in order to maintain a 3D trap. In this sense, y-axis trapping has a less 

displacement allowance, and hence is less stable compared with the x-axis trapping. However, it 

is worth emphasizing that, since the experimental calibration with the power spectrum method 

was carried out only for small y displacements, Figure 2.16(b) does reflect the condition in the 

experiment. Therefore, the spring constants obtained from Figure 2.16(b) are valid in the vicinity 

of y = 0 and can be used to compare with the experimental results. According to the results 

shown in Figure 2.16(b), the y-axis optical force as well as the spring constant around the z axis 

first increases and then decreases as θ is increased from 50º to 90º. The maximum spring 

constant occurs when θ is around 60º.  When θ = 90º, the DFOTs becomes a counter-propagating 

configuration, and the spring constant is positive, which means the equilibrium on the z axis is no 

longer stable. This result agrees with the previous work of Sidick et al. [97], in which the center 

position in the counter-propagating DFOTs was found to be unstable when the beam waists were 

set to be close to each other. 

 

The x and y-axis spring constants of beads with different sizes (3.01 µm, 3.50 µm, 3.93 µm, and 

4.74 µm) at a power of 18.9 mW were obtained from simulations. The results are included in 

Table 2.1. The simulation results are consistent with the experimental results obtained from the 

power spectrum analysis, indicating that larger beads have larger spring constants. In addition to 

the fiber misalignments and errors in θ measurements discussed above, the influence of the 

unscattered light can also contribute to the differences between the experimental and the 

numerical results. Since the ray optics model can serves as a good approximation only when the 
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bead size is much (>10 times) larger than the wavelength. The fact that the bead sizes are not 

much larger than the wavelength may cause discrepancy between the experimental and 

simulation results, especially for small bead sizes (3.01 µm and 3.50 µm). 

 

2.4.4. Robustness of the DFOTs to z-axis misalignment 

 

In a practical system setup, fiber misalignment is inevitable for both inclined DFOTs (θ < 90º) 

and counter-propagating DFOTs (θ = 90º). Since the y-axis misalignment corresponds to the 

variation of the fiber separation, only the misalignments along the x and z directions are of 

interest. If an x-axis misalignment exists, inclined DFOTs and the counter-propagating DFOTS 

will exhibit similar robustness to such misalignment. The tolerances of the two configurations to 

z-axis misalignments are important to investigate since it can help determine whether a 3D 

trapping capability can be maintained. In Figure 2.17, the 2D force fields are obtained for both 

configurations when there exists a misalignment of 1 µm along the z direction (the right fiber is 

higher than the left fiber). For counter-propagating DFOTs, the misalignment of 1 µm is a 

practical value when the two fibers are embedded in the V-grooves of a substrate. [98] The 

misalignment may be caused by the environmental influence on the adhesive and by the 

uncontrollable adhesive thickness between the fiber and the inclined walls of the V-groove. In 

the inclined DFOTs, the heights of the fiber tips along the z axis are measured based on the 

distance between each optical beam (the auras in Figure 2.3) and the corresponding fiber tip 

along the y axis. The precision level of 1 µm is readily achievable in the inclined DFOTs setup 

since the smallest feature size of the objective images is below 1 µm. In the simulations, each 
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fiber is considered to emit a power of 7.65 mW, and the fiber separation is 45 µm along the y 

axis for both the inclined and the counter-propagating DFOTs. 

 

Figure 2.17(a) shows the results obtained from the inclined DFOTs when θ = 50º. The two 

beams still have an intersection despite of the existence of a z-axis misalignment. According to 

the force directions, it can be seen clearly that a 3D trap exists in the vicinity of the point (0, -1 

µm). Moreover, the trap position moves to the right of the z axis instead of staying on the z axis 

when there is no misalignment. This is due to the asymmetry introduced by different beam waist 

positions with respect to the beam intersection. The beam waist of the left fiber is closer to the 

beam intersection, and hence it can induce larger optical forces applied to the bead, if the bead is 

moved on the z axis. In order to balance this asymmetry, the bead will be trapped closer to the 

beam emitted from the left fiber, which is to the right of the z axis. The dashed curve in Figure 

2.17(a) defines the region where the bead will be trapped. If the bead is located above this curve, 

it will be trapped in three dimensions. The optical force is not strong enough to lift up the bead if 

it is below this curve. If the bead is to the right or the left of the curve, it will be trapped by a 

single optical beam and pushed downstream. 

 

The results obtained from the counter-propagating DFOTs are shown in Figure 2.17(b). The 

force field is “twisted” counter-clockwise in the vicinity of the origin, which means that there is 

no effective trapping region where all the surrounding forces are pointing inside. Instead of being 

trapped at a stable position, the bead will circle around the origin, if the bead is close (i.e., < 2 

µm) to the origin. If the bead is far (i.e., > 4 µm) from the origin, SFOTs become dominant and 

the bead will be pushed away and moved along the optical axis of one fiber. 
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Figure 2.17. Simulation results of the forces applied on a 4.74-µm bead in the yz 
plane with a misalignment of 1 µm along the z axis for (a) the inclined DFOTs (θ 
= 50º) and (b) the counter propagation DFOTs (θ = 90º). The dash-dotted lines 
indicate the optical axes of the two fibers. It is noted that the forces are the net 
forces of optical forces, gravity, and buoyancy applied on the beads. 

 

By comparing the force fields of the two systems with respect to z-axis misalignment, it can be 

seen that, with the same fiber separation, the inclined DFOTs are more robust to the 

misalignment along the z direction. Although z-axis fiber misalignment in the inclined DFOTs 



 76

influences the trapping efficiency as mentioned previously, its 3D trapping capability is retained. 

However, the counter-propagating DFOTs will lose the 3D trapping capability even with a 1-µm 

misalignment due to the twisted force field. When the z-axis misalignment increases, the twisting 

effect of the counter-propagating DFOTs becomes even worse and the trapping becomes more 

difficult. By contrast, simulation results show that the inclined DFOTs can still achieve a stable 

3D trap with a z-axis misalignment of 8 µm.  

 

When a much larger fiber separation or cleaved fibers instead of lensed fibers are used, the 

counter-propagating DFOTs will suffer less from the z-axis misalignment. In this sense, large (> 

100 µm) fiber separations and cleaved fibers are preferable for the counter-propagating DFOTs 

to obtain stable trapping of particles. By contrast, for the inclined DFOTs, lensed fibers and 

smaller fiber separations are preferable to increase the trapping efficiency and to ensure the 3D 

trapping ability. 

 

As for the limitations of the inclined DFOTs compared with the counter-propagation DFOTs, the 

inclined DFOTs have a longer fiber suspension length, and hence the stability of the trap is more 

susceptible to the movement of the fibers, which may be induced by the flow passing through the 

fibers. In addition, although the block containing two fibers (the board with two attached fibers 

in Figure 2.1(b)) provides the inclined DFOTs flexibility, the complexity of the system is 

inevitably increased by introducing another surface for attaching the block besides the substrate. 

Therefore, the counter-propagating DFOTs are simpler and can provide stable traps if fibers are 

properly aligned, whereas the inclined DFOTs are more flexible and more robust to the fiber 

misalignment. 
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2.5. Optical trapping of yeast cells with inclined DFOTs 

 

2.5.1. 3D Cell trapping 

 

Yeast cells have been successfully trapped by using the inclined DFOTs. The images of the 3D 

motion of a yeast cell manipulated by using the dual fiber tweezers are shown in Figure 2.18. 

The trapped cell (the cell in the center of the images) is levitated above the coverglass so that it is 

located at a higher level than the other cells. Other cells are out of focus and blurred. The dark 

circle identifies the reference cell in all the photographs, which stays still when the trapped cell is 

moved. Arrows and circles with crosses or dots are used to show the direction of the cell 

movement. The cell is first moved downward in the focal plane (Figure 2.18(A)-(C)), then to the  

 

 

 

Figure 2.18. Images of 3D yeast cell manipulation by using inclined DFOTs, obtained 
with an Olympus 100*/1.25 oil-immersed objective. 
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right (Figure 2.18(C)-(D)). In Figure 2.18(E), as the optical trap is removed by switching the 

laser off, the cell escapes along the vertical direction toward the coverglass. Once the laser is 

turned on again, the cell is retrapped back to the focal plane (Figure 2.18(F)). Finally, it is again 

moved to the right within the trap (Figure 2.18(G)). 

 

2.5.2. Spring constant calibration of yeast cell trapping 

 

Since the cells are spheroids rather than spheres, the average lengths of the long and short axes 

are represented by the radius r in Eq. (2-1). As the drag force due to a low Reynolds number flow 

is not sensitive to the shape of the particles [99], it is reasonable to make such an approximation. 

Two cells in the optical trap are used for calibration of the effective spring constants. Here, only 

the drag force method (discussed in Section 2.3.2) was used to calibrate the trapping force on 

yeast cells. The power spectrum method is not suitable for cell measurement because it relies on 

the detection of the scattered light. Since the internal structures of cells are not uniform, the 

scattered light is unpredicted when cells perform the Brownian motion. In this sense, the 

advantages of power spectrum method, namely high measurement resolution and well 

characterized detection signals, do not exist any more. In the experiments, the distance between 

the two fibers is 27 µm and the inclination angle of each fiber is 45º. About 3 mW laser power is 

coupled into each optical fiber. 

 

The first calibrated cell (Cell 1) is shown in Figure 2.19(a). The experimental results and fitted 

curve of the optical forces and the cell displacements (F-x) relationship are shown in Figure 

2.19(b). The maximum displacement of the cell before escaping from the trap varies from 0.7 
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µm to 0.8 µm. Based on the curve fitting, the effective spring constant of the optical trap for Cell 

1 is obtained as 1.49 pN/µm. For comparison, another cell (Cell 2) was also manipulated and the 

experimental results are shown in Figure 2.20. In this case, the maximum displacement before 

the cell escapes from the trap was found to be larger, ranging from 1.3 µm to 1.5 µm. The spring 

constant obtained from the fitted F-x curve is 0.70 pN/µm for Cell 2, which indicates a 

difference in the spring constants between Cell 1 and Cell 2. 

 

a)    b)  
Figure 2.19. (a) Photograph of Cell 1 and (b) experimental results and fitted curve of the 
relationship between optical forces and cell displacements in the optical tap. 

 

a)    b)  

Figure 2.20. (a) Photograph of Cell 2 and (b) experimental results and fitted curve of the 
relationship between optical forces and cell displacements in the optical tap. 
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According to the cell-manipulation results, the dual fiber tweezers are capable of manipulating 

cells in three dimensions. Because fibers have better flexibility than microscope objectives, 

ideally, it is possible to manipulate cells at any location of the solution, not limited by the 

working distance of the objective. Furthermore, one can levitate cells from a surface, which 

helps overcome the limitation of the counter-propagating fiber tweezers. The calibration results 

(Figure 2.19(b) and Figure 2.20(b)) show that there is a linear relationship between the optical 

forces and cell displacements, which enables the use of the fiber tweezers system as a biological 

force sensor. However, the spring constant is different for different cells although the 

arrangement of fiber tweezers remains unchanged. It is possible to calibrate the spring constant 

for each cell before working with it, but this can be time-consuming. Dielectric beads can also be 

used as handles to manipulate cells. In this case, a constant spring constant can be obtained 

before working with cells, since the dielectric beads have identical size. However, using beads 

will introduce other issues such as interference with cells. 

 

 

Figure 2.21. Schematic of round cell and prolate cells in optical traps.  
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According to the calibration results, an interesting observation is that the spring constants for the 

two cells differ by a factor of two. The cell with round shape has smaller spring constant, and 

thus it has higher sensitivity for force measurements. A possible reason can be described as 

follows. The prolate cell always aligns its long axis along the optical axis (y direction in Figure 

2.21) with the cell center on the optical axis in equilibrium. When the displacements (distance 

between the two broken lines) along the x direction for the two cells are the same, the optical 

axis is closer to the x pole of the prolate cell. Therefore, the incident angle is also larger for the 

prolate cell (β>α in Figure 2.21). The larger incident angle leads to a larger gradient force 

(discussed in the next section), which results in a larger spring constant for the prolate cell.  

 

2.5.3. Simulation results on ellipsoidal particle trapping 

 

As can be seen in Figure 2.19 and Figure 2.20, the yeast cells used in the experiments are 

actually ellipsoidal rather than spherical. Therefore, a prolate spheroid particle is used as a 

trapped object in the simulations of the inclined DFOTs. The model used for carrying out the 

simulations has been discussed previously in Section 2.4. For a prolate spheroid, 
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for the polar angle [ ]0,θ π∈ and the azimuthal angle [ ]0, 2ϕ π∈ . Here, a is the polar radius, b is 

the equatorial radius, and a>b. Therefore, the normal vector can be obtained by  
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Figure 2.22. Simulation of the optical force versus the displacement for a spheroid 
particle with the same size as Cell 1 in Figure 2.19. Experimental results are also plotted 
for comparison. 

 

The parameters used in the simulation are listed as the following. The inclination angle for the 

two fibers is π/4. Each of the Gaussian beams has a waist of 2 µm in diameter and a power of 3 

mW, as measured in the experiments. The separation of the two laser beams along the y axis is 

19 µm. The refractive index of the water is 1.33, and the refractive index of the yeast cell is 1.5 

[71]. It is noted that in the simulations the displacement of the particle is always along the x 
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direction (see Figure 2.2(b)), and that the polar axis a is along the y axis, similar to the situation 

in the experiment. The optical forces acting on two spheroids with the same sizes as the two cells 

calibrated in experiment are plotted as a function of the displacements in Figure 2.22 (Cell 1) and 

Figure 2.23 (Cell 2). Experimental results are also included in these figures for comparison. It 

can be seen that the prolate cell has a larger spring constant than the round cell.  
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Figure 2.23. Simulation for the optical force versus the displacement for a spheroid 
particle with the same size as Cell 2 in Figure 2.20. Experimental results are also plotted 
for comparison 

 

It can be seen that the simulation results coincide with experiments well for Cell 2, but more 

error exists for Cell 1. The errors might come from the calculation of the drag force for the 

spheroidal cell. To get the optical forces from the experimental results, a sphere is used to 

calculate the drag force by the water flow. The radius of the sphere is estimated by averaging the 
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polar radius and the equatorial radius. This estimation may introduce errors to the spring 

constants obtained from the experiments.  

 

2.6. Summary 

 

In this chapter, experimental study and numerical investigation of the inclined DFOTs system 

have been carried out in order to obtain a fundamental understanding of the system. 3D trapping 

ability of the inclined DFOTs has been demonstrated with both silica beads and yeast cells. For 

the first time, the trapping efficiency of particles with different sizes has benn experimentally 

calibrated on the xy plane with two methods: drag force method and power spectrum analysis. 

The influence of the particle size and the fiber inclination angles over the trapping performance 

in three dimensions has been investigated with numerical simulations based on the ray optics 

model. Mapping of the optical forces on the yz plane has also been carried out. The simulation 

results indicate that the inclined DFOTs are more robust to the z-axis fiber misalignments 

compared with commonly used counter-propagating DFOTs, which makes the inclined DFOTs 

easier to set up. In this chapter, an enhanced understanding of the inclined DFOTs system was 

achieved, which is an important contribution of this dissertation work. 
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Chapter 3. Multiple traps created with inclined DFOTs 
 

In this chapter, three optical traps, one 3D and two 2D, created with the inclined DFOTs system 

are studied both experimentally and numerically. This is the first time that multiple traps at 

different vertical levels with adjustable separations are realized with fiber optical tweezers. 

Moreover, multiple functionalities are realized with the multiple traps, including particle 

separation, particle grouping, and particle stacking, both in two dimensions and in three 

dimensions, rod alignment, rod rotation, and optical binding of beads and rods. The mechanisms 

of these functionalities are studied numerically by mapping the optical forces and optical torques. 

The multiple functionalities achieved with the inclined DFOTs system can address the problem 

of limited functionalities of the existing fiber optical tweezers. 

 

The rest of this chapter is organized as follows. In Section 3.1, existing multiple optical traps, 

especially those created with optical fibers, are briefly introduced, with their limitations 

summarized and discussed. The experimental setup and working principles of the multiple traps 

are explained in Sections 3.2 and 3.3, respectively. Next, detailed experimental and numerical 

study of multiple functionalities achieved with the multiple traps are carried out for different 

particles, including silica beads in Section 3.4 and glass microrods in Section 3.5. 

 

3.1. Review of existing multiple optical trapping systems 
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Although optical tweezers (OTs) were originally designed to manipulate a single particle at a 

time [88], multiple optical traps that can provide simultaneous manipulation of multiple particles 

are desirable in many applications. Multiple optical traps have been used to characterize the 

interactions of colloidal systems [100], to assemble particles into complex structures [101, 102], 

and to trap and orient delicate particles [103]. Various techniques have been employed to 

generate multiple optical traps, such as one or two objectives with multiple input beams [100, 

104, 16], time-sharing approaches with a scanning laser beam [103], interference of multiple 

beams [34], fringes created with a phase-only rectangular ridge [105], diffractive optics [106], 

and, more commonly, computer-generated holograms [102, 15]. All of these methods make use 

of traditional objective-based OTs, which are bulky, expensive, and hard to integrate. 

 

Particle manipulation methods that can provide multiple traps in parallel and be readily 

integrated in miniaturized systems for biological analysis and diagnostics [104, 20], e.g., lab-on-

a-chip systems, are of great interest. In these integrated and scaled-down devices, the large 

objectives needed to enable optical traps have to be replaced by smaller units. In literature, an 

array of parabolic micromirrors has been used to create multiple traps with each trap formed at 

the focus of a micromirror [107]. Compared with these embedded micromirrors, optical traps 

built with optical fibers provide a more flexible solution towards compact, integrable multiple 

traps. Optical fibers are small in size and biocompatible [21], and therefore can be potentially 

integrated in a lab-on-a-chip system for biological applications. Multiple two-dimensional (2D) 

optical traps have been realized previously with a bundle of optical fibers [88], in which each 

individual fiber forms a separate trap. More recently, counter-propagating dual photonic crystal 

fiber traps have been demonstrated to confine multiple particles in the intensity minima or 
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maxima of the standing waves. [108] In another work, a Bessel beam emitted from a single 

optical fiber with an axicon-shaped fiber tip has been employed to trap multiple particles with a 

low refractive index. [109] For the abovementioned fiber-based multiple traps built with fiber 

bundles and standing waves, the separations between the traps cannot be adjusted. In addition to 

multiple optical traps, optical binding using fiber-based systems has also been exploited to 

confine particles of micrometers or sub-micrometers, such as the single optical fiber with an 

axicon-shaped fiber tip [110] and the counter-propagating dual fiber traps [108, 111]. The optical 

binding effects can be explained as that multiple particles are distributed in a self-organized way, 

due to the interaction between the particles and the optical field, to minimize the energy of the 

whole particle-light system. [111] The fiber-based optical binding introduced above can only 

confine particles in a chain-like one-dimensional structure with fixed particle separations. 

 

In this chapter, multiple optical traps created with an inclined dual-fiber optical tweezers 

(DFOTs) system are investigated. Previously in Chapter 2, the performance of such a system for 

3D trapping of single particles has been investigated both experimentally and numerically. Here, 

three optical traps are formed on different vertical planes, one 3D trap below the beam 

intersection and two 2D traps on the cover glass. The inclined DFOTs system can be controlled 

as a whole block containing two fibers, which enables controllable positions of the three traps 

with a single actuator. The trap separations are readily tunable by changing the vertical position 

of the block. Moreover, it is demonstrated experimentally that the multiple traps can perform 

multiple functions, which will be detailed in Sections 3.4.1 and 3.5.3. 
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3.2. Experimental setup 

 

The experimental setup is similar with that described in Section 2.1, except a block is used here 

to facilitate the position control of the traps, as shown in Figure 3.1. The block contains a 

common board with both of the lensed fibers attached to, so that the whole system can be moved 

as a single module. The total optical power emitted from both fibers was fixed to be 15.3 mW. A 

coverglass with a water drop containing silica beads (Bangs Laboratories, Inc.) and glass rods 

(kindly donated by Prof. Wolfgang Losert at the University of Maryland) was placed on a two-

dimensional stage. The rods are 3.5 µm in diameter and 8-15 µm in length. The silica beads have 

a diameter of 4.74 µm and a density of 2.0 g/cm3. 

 

 

Figure 3.1. Experimental arrangement of the inclined DFOTs for creating 
multiple traps. 
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3.3. Principles of multiple traps created with inclined DFOTs 

 

In the inclined DFOTs shown in Figure 3.2, there are one 3D trap formed at Bead 2 and two 2D 

traps at Beads 1 and 3. It is noted that, in this section, we use only spherical beads to explain the 

working principles of the multiple traps for convenience. The working principles with micro-

rods will be specifically explained later in Section 3.5.2. Bead 2 is trapped by the 3D trap that we 

systematically studied in Chapter 2. The 2D traps at Bead 1 and Bead 3 are similar with each 

other due to symmetry, so here only the trapping of Bead 1 is discussed. The beam from Fiber 1 

is much further away from Bead 1 than that from Fiber 2, so only the optical forces applied by 

the beam from Fiber 2 is considered. When the gradient force (Fg) and the scattering force (Fs) 

reach equilibrium with the normal force (N) applied by the substrate, Bead 1 is trapped on the 

substrate. By moving the two fibers as a block, the separations between the traps as well as the 

trap positions can be adjusted. 

 

 

Figure 3.2. Principle of multiple traps created by using the inclined DFOTs. 
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3.4. Investigation of multiple traps and multiple functionalities with silica 

beads 

 

In this section, experimental demonstration of multiple traps and multiple functions with silica 

beads is presented. Numerical simulations are performed to better understand the experimental 

results. Discussion and guidelines to improve the performance of the system are provided at the 

end of the section. 

 

3.4.1. Experimental demonstration of multiple traps and multiple functionalities with silica 

beads 

 

3.4.1.1. Demonstration of multiple traps and bead separation 

 

The images captured consecutively from a video clip of the multiple traps are shown in Figure 

3.3. There were five beads in the field-of-view, each labeled with a number to track their 

movements. The two shadows on both sides of the pictures are the fiber tips, which are out-of-

focus and blurry. The beam intersection was initially close to the coverglass, which formed an 

aura as can be seen in the center of Figure 3.3(a). With the coverglass moved around, Beads 1, 2, 

and 3 were trapped, as shown in Figure 3.3(b). The three trapped beads were in contact with each 

other due to the position of the beam intersection. Beads 4 and 5 were free reference beads, 

which were lying on the coverglass and could be moved together with the coverglass. When the 
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fiber block was moved along +z direction, the three trapped beads were separated: the separation 

between Beads 1 and 3 increased and Bead 2 was lifted up from the coverglass, as shown in 

Figure 3.3(b)–(d). At this moment, Bead 2 was trapped in three dimensions while Beads 1 and 3 

were trapped in two dimensions on the coverglass. Then, the traps were fixed and the coverglass 

was moved in xy plane (see Figure 3.3(d)–(f)). During this process, all three traps remained 

stable. As the height of the fiber block was increased further, the two 2D traps became weaker 

and weaker. Beads 1 and 3 were found to remain trapped when the height of Bead 2 was up to 30 

µm above the coverglass (the separation between Beads 1 and 3 were around 70 µm). 

 

 

Figure 3.3. Images of beads manipulated in the multiple traps. (a) Three free 
beads on the coverglass. (b) Beads 1, 2, and 3 trapped in contact. (b)-(d) The fiber 
block was moved upward along +z and trapped beads had been separated. (d)-(f) 
The coverglass was moved along +x and then along -y. The arrows in (d) and (e) 
indicate the next movement direction of the coverglass. The xy coordinate system 
is shown at the lower left corner of (a). The bead size is 4.74 µm in diameter. 

 

These experimental results demonstrate that the inclined DFOTs can be used to simultaneously 

manipulate multiple particles at different vertical levels as well as align particles in line. The 

positions and separations of the three traps can be controlled by moving the fiber block. When 
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the fiber block is lifted up, both the height of the 3D trap and the separation between the two 2D 

traps are increased, rendering the ability to separate particles that stick together. Moreover, the 

ability of particle separation can be used to study the interaction forces between the particles in 

colloidal systems.  

 

The multiple traps created with the inclined DFOTs also bestow this setup multiple 

functionalities. In addition to particle separations, the capability of bead stacking, bead grouping, 

and trapping multiple beads in three dimensions, will be detailed in the following from Section 

3.4.1.2 to Section 3.4.1.4. 

 

3.4.1.2. Bead stacking 

 

To better demonstrate particle stacking, four beads were trapped initially by the multiple traps, as 

shown in Figure 3.4(a). At this moment, Bead 2 was trapped in the 3D trap, and the rest of the 

beads were trapped by the two 2D traps, as illustrated in Figure 3.4(d). When the beam 

intersection was brought close to the coverglass by lowering down the fiber block, the 

separations between the four beads became smaller, as shown in Figure 3.4(b) and (e). As the 

fiber block was lowered down further, Beads 1, 2, and 3 became in contact with each other, and 

Bead 4 was stacked up above Bead 3, as shown in Figure 3.4(c) and Figure 3.4(f). Particle 

stacking has been realized both in two dimensions (in contact with the coverglass) and in three 

dimensions (without contacting the coverglass). The 3D particle stacking will be shown later in 

Section 3.4.1.4. 
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Figure 3.4. Experimental demonstration of particle stacking. With the fiber block 
lowered down toward the coverglass, the four beads were (a) first separated, (b) 
then brought into contact, and (c) finally stacked. (a)-(c): pictures captured from a 
video clip; (d)-(f): sketches illustrating pictures (a)-(c), respectively. The bead 
size is 4.74 µm in diameter. 

 

 

Figure 3.5. Experimental demonstration of particle grouping. (a) Six free beads 
were initially lying on the substrate. (b) Beads 1 to 5 were trapped and separated 
into three groups. Bead 6 was free and served as the reference of the coverglass 
movement. (c) The coverglass was move along -y. (d) The laser was switched off 
and all beads returned to the coverglass. (e) After the laser was turned on, Beads 1 
to 5 were separated into three new groups, while Bead 6 remained free. (f) The 
coverglass was moved along –x. The bead size is 4.74 µm in diameter. 
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3.4.1.3. Bead grouping 

 

For particle grouping, five beads (Beads 1 to 5) were first separated into three groups by the 

three traps created by the inclined DFOTs, as shown in Figure 3.5(b). Each 2D trap confined two 

beads in a group and the 3D trap trapped one bead above the other two groups. As the coverglass 

was moved along -y direction (Figure 3.5(c)), Beads 1 to 5 remain trapped in the three groups. 

The laser was then switched off to allow all beads to return freely to the coverglass and to be 

regrouped. After regrouping, one bead (Bead 1) was trapped solely by one of the 2D traps, and 

three other beads (Beads 2, 4 and 5) were trapped in a group by the other 2D trap, with another 

bead (Bead 3) trapped by the 3D trap, as shown in Figure 3.5(e). When the coverglass was 

moved in -x direction (Figure 3.5(f)), the five beads remained trapped in their groups, indicating 

that the traps and grouping were stable. It should be noted that there is an upper limit of the 

number of particles that can be grouped. The number of particles that can be trapped in each trap 

is limited by both the beam parameters (e.g., power, size, and wavelength) and the particle size. 

With the beam parameters and the particle size used in the experiment, the largest number of 

trapped particles in one 2D trap is found to be three. The largest number of particles that can be 

trapped by the 3D trap is also three, which will be shown in Section 2.6. Therefore, as many as 

12 beads can be arranged into 4 groups, with three groups trapped and the rest one untrapped. 

The particles can be grouped in an arbitrary sequence, and hence can be used to group particles 

by their characteristics, such as sizes and materials. 
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Figure 3.6. Experimental demonstration of multiple particles trapped in three 
dimensions. (a) Six free beads were lying on the coverglass. (b) Beads 1, 2, and 3 
were trapped by the 3D trap, and Bead 4 and 5 were trapped by the 2D traps. 
Bead 6 was free and served as the reference of the coverglass movement. (c) The 
coverglass was moved along +x, with the trapped beads staying stable. (d)–(e) 
The objective lens was moved along +z direction. Bead 2 was first brought into 
focus before Beads 1 and 3 (see the media). Beads 1 and 3 were in focus in (e). (f) 
The sketch illustrating the images (d) and (e). 

 

3.4.1.4. Multiple beads trapping and stacking in three dimensions 

 

In addition to 3D trapping of single particles discussed previously in Chapter 2, the 3D trap of 

the inclined DFOTs system was found to be able to trap and stack multiple particles in three 

dimensions. Six free beads stayed rest on the coverglass initially as shown in Figure 3.6(a). 

When the fiber block was lowered down and then lifted up, three beads (Beads 1, 2, and 3) were 

trapped by the 3D trap, as shown in Figure 3.6(b). As the coverglass was moved along the x 

direction, the trapping of the three beads remained stable, as shown in Figure 3.6(c). Each of the 

2D traps was still able to trap two beads with three beads trapped by the 3D trap, as shown in 

Figure 3.6(d). As the objective was moved upwards along the z direction, Bead 2 was brought 
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into focus before Beads 1 and 3, which implies that Beads 1 and 3 were located higher along the 

z direction than Bead 2. Figure 3.6(e) shows that Bead 2 was out of focus when Beads 1 and 3 

were in focus. All the bead groups/stacks are fully translatable across the coverglass. In the 

experiment, the largest number of silica beads that can be trapped simultaneously is nine, with 

three particles in each trap. Multiple particles trapping enables parallel manipulation of a group 

of particles of interest. Particle stacking can be used to create controllable artificial lattice 

structures with certain desirable properties that do not existing in nature [112]. 

 

3.4.2. Numerical study of multiple traps and multiple functionalities with silica beads 

 

Based on the ray-optics model discussed in Chapter 2, numerical simulations are carried out to 

better understand the experimental results. The parameters used to obtain the simulation results 

are consistent with those used in the experiment. 

 

The net force (Fn) of the optical force, gravity, and buoyancy experienced by a bead in the 

trapping area is mapped on the yz plane, as shown in Figure 3.7(a). Each arrow represents the net 

force applied on a bead that is centered at the starting point of the arrow. The arrow direction and 

length indicate the force direction and magnitude, respectively. The optical axes (dash-dotted 

lines) of the two optical beams exiting from the two fibers are plotted in Figure 3.7(a), which 

intersect at the origin of the xyz coordinate system. It should be noted that here, the optical forces 

are obtained under the assumption that only one bead exists in the optical field. However, in the 

real experimental situation that multiple beads are trapped, the distortion of the optical field by 

the upstream beads will influence the optical force applied on the downstream beads. This 
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influence is beneficial to the trapping of downstream beads, because the upstream beads focus 

the light as a lens and the intensity gradient of the light can be increased, resulting in tighter 

downstream traps. 

 

 

Figure 3.7. Simulation results to explain the principles of particle separation. (a) 
The yz plane force field of Fn (the net force of the optical force, gravity, and 
buoyancy, excluding the normal forces between the beads and between the beads 
and the coverglass); (b) free body diagrams of three beads (Beads 1, 2, and 3) at 
three different vertical levels shown in (a): Level A, B, and C. Fni stands for Fn of 
Bead i. Nsi and Nij stand for the normal forces between the substrate (the 
coverglass) and Bead i and between Beads i and j, respectively.  

 

Bead separation observed in the experiment can be explained according to the simulation results. 

Three beads corresponding to Beads 1, 2, and 3 in Figure 3.3 are considered lying on a 

coverglass and located near the beam intersection initially. When the coverglass is moved along 

–z direction, the trajectories of the three trap positions (the dotted curves in Figure 3.7(a)) are 

obtained as the equilibrium positions of the bead centers corresponding to different vertical 

levels of the coverglass. The equilibrium of Bead 2 is always located on the z axis due to the 

symmetry of the system. The free body diagrams of the trapped beads centered at three different 



 98

vertical levels A, B, and C are shown in Figure 3.7(b). According to the simulations (data not 

shown), the 3D trap is located 0.87 µm below the beam intersection (i.e., at point (0, 0, -0.87 

µm)), where the net force (Fn) is zero. It is noted that this 3D trap position is the lowest 

equilibrium position of Bead 2. When the three beads are located above the 3D trap, for example, 

at z = –0.5 µm (Level A in Figure 3.7(a)), i.e., the coverglass is 2.87 µm below the beam 

intersection, the y-components of Fn1 and Fn3 are pointing to the center bead (Bead 2). Therefore, 

the normal forces (N12 and N23) are formed between the three beads. At the same time, the 

coverglass prevents the beads from being pushed down by the z-components of Fn1 and Fn3. This 

corresponds to the experimental results shown in Figure 3.3(b). As the coverglass is moved along 

–z direction, the net force (Fn2) applied to Bead 2 decreases and the normal forces (N12 and N23) 

become smaller. At z = –1.03 µm (Level B), Fn2 reaches zero and the normal force (Ns2) 

disappears, while Beads 1 and 3 are still pushed against the coverglass by Fn1 and Fn3. As the 

coverglass is lowered beyond Level B, Bead 2 is lifted up from the coverglass and Beads 1 and 3 

are pushed towards each other by Fn1 and Fn3, respectively. This explains the reason why the 

trajectories of Beads 1 and 3 curve slightly inside towards the z axis. In the experiment, this 

effect was observed as bead stacking, as shown in Figure 3.4. As the coverglass is lowered 

further, the y-components of Fn1 and Fn3 gradually change their directions and point away from 

the z axis, which results in the separation of Beads 1 and 3. For example, at z = –4 µm (Level C), 

Beads 1 and 3 separate and eventually settle at the positions of y = –6.2 µm and 6.2 µm, 

respectively. These simulation results can be used to explain the experimental results shown in 

Figure 3.3(c)-(f). It is noted that the above discussion are based on the condition that the beads 

fall down from a position above the beam intersection. If, in another case, the beads are 

originally located below the beam intersection with Bead 2 centered on the z axis, Beads 1 and 3 
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will still be trapped in the 2D traps, but the trajectory of Bead 2 will depend on its original 

position, as discussed in Section 2.4.2. If the net force points up at its original position (for 

example, z=-4), Bead 2 will be lifted and trapped by the 3D trap. Otherwise, Bead 2 will be 

pushed downwards along the z axis. Due to the Brownian motion, Bead 2 will move away from 

the z axis randomly (either towards left or right), and eventually it will settle at one of the 2D 

traps. 

 

 

Figure 3.8. The yz plane force field of Fn (the net force of the optical force, 
gravity, and buoyancy, excluding the normal forces between the beads) in order to 
explain the principles of particle stacking in three dimensions. Beads 1, 2, and 3 
are stacked in three dimensions. 

 

Multiple beads 3D trapping can also be explained by the simulation results. Beads 1, 2, and 3 in 

Figure 3.8 correspond to the three 3D trapped beads shown in Figure 3.6. Beads 1 and 3 are 

pushed towards the beam intersection (0, 0) by the optical forces, while the normal forces 

between the beads prevent Beads 1 and 3 from moving along the y and z axes. Bead 2 is pushed 

by the normal forces downward (along -z) from its original equilibrium (0, 0, -0.87 µm), 
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resulting in an upward optical force applied on Bead 2. Bead 2 reaches new equilibrium when 

the optical force balances the normal forces applied by Beads 1 and 3. In this case, all three 

beads are trapped stably in three dimensions. 

 

The experimental results of 2D bead stacking shown in Figure 3.4 can also been explained. 

When the coverglass is close to the beam intersection, the outer beads (Beads 1, 3, and 4) are 

pushed inside by the optical forces. If there is a small perturbation of the z position of Bead 4 due 

to Brown motion, Bead 4 will “climb” over Bead 3, which explains the experimental results 

shown in Figure 3.4. 

 

3.4.3. Discussion of multiple traps with slica beads 

 

It has been demonstrated in both experiments and simulations that the inclined DFOTs have the 

ability to create multiple traps. In the current setup, manual 3D stages are used to fix the fibers 

on the common board. However, the stages can be removed if the board is replaced with a silicon 

wafer with etched V-grooves. In this case, the fibers are aligned automatically along the V-

grooves and the block size can be significantly decreased. The positions of the traps can be 

controlled by controlling the position of the fiber block with a single actuator. The fiber block 

can also be rotated to change the orientation of the plane on which the three traps are aligned. 

Moreover, the separations between the three traps can be adjusted by simply tuning the height of 

the fiber block without bringing in another actuator. As the position of the fiber block is moved 

higher, both the height of the 3D trap and the separation between the two 2D traps can be 

increased. However, because the single actuator on the fiber block cannot provide enough 
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degrees of freedom, the three traps cannot be adjusted independently, like what the holographic 

OTs can achieve [15, 102]. The height of the 3D trap is coupled with the separation between the 

two 2D traps.  

 

The ability of the inclined DFOTs for particle stacking implies that they can potentially be used 

for arranging trapped particles in a 3D particle matrix. As shown in Figure 3.6, seven trapped 

particles are arranged in four layers along the z direction. The created particle structures by 

particle stacking, also called “optical matter” [112], can be analogies to the lattices of natural 

crystals. Since the periods and crystalline structures can be designed, the resulting optical matter 

may serve as artificial materials with unique properties, which are not available in nature. Due to 

the limitation of the current setup, no more than four layers along the z axis can be achieved. 

However, along the x axis, multiple fiber blocks can be introduced to create multiple layers of 

the trapped particles. Due to the physical size of the optical fibers (~100 µm), there will be a 

minimum achievable separation between the adjacent layers. To further reduce the layer 

separation along the x direction, the optical fibers can be thinned with hydrofluoric acid (HF) 

etching. 

 

Although the current single inclined DFOTs setup can only create three traps, it is possible to 

create a large number of traps by integrating multiple inclined DFOTs due to the flexibility and 

compact size offered by this setup. In addition to the potential to be integrated, the fact that 

neither the objective nor the substrate plays a role in forming the traps bestows the inclined 

DFOTs advantages over objective-based OTs. The working distance (the distance that the 3D 

trap can be moved up) of the inclined DFOTs is not constrained by the substrate whereas that of 
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the traps created with an objective is limited by the working distance of the objective, which is 

typically within 20 µm from the substrate for an oil immersion objective [16]. If imaging is not 

considered, the multiple traps created by the inclined DFOTs can work with any substrate, which 

is desirable for chip-based systems that use silicon or other lightproof substrates. It is worth 

noting that compared with the objective-based OTs, the trap quality of the inclined DFOTs is less 

susceptible to the location of the beam waist and the focus strength. This is due to the fact that 

the axial gradient force that is used to balance the scattering force for the objective based OTs is 

strongly influenced by the beam waist location and the strength of the focusing effect [114]. By 

contrast, the inclined DFOTs use the transverse gradient force from the other beam to balance the 

scattering force, and thus are more robust to the beam waist position and focus strength. In fact, 

it was found experimentally that when the beam intersection was around 17 µm downstream 

from the beam waists, the multiple traps were still retained. There is another advantage of the 

inclined DFOTs compared with objective based OTs, which is a higher allowable optical power. 

When used for manipulation of biological particles, because the beam spots at the traps are much 

larger for the inclined DFOTs, they can induce less damage to biological tissues than objective-

based OTs at the same power. According to Reference [65], an optical power as high as 800 mW 

for each beam can be used without optical damage to the trapped cells in the optical stretcher. 

Due to the fact that the gradient forces need to overcome the scattering forces in order to achieve 

a 3D trap, the optical forces induced by the inclined DFOTs in the yz plane are smaller than those 

generated with objective based OTs (on the order of 1 pN per 10 mW [7]). However, one can 

increase the optical power to achieve a larger trapping force. It should also be noted that the x-

axis optical forces of the inclined DFOTs, which are ~8 pN per 10 mW from each fiber (See 

Section 2.3.2), are at the same level as those of the objective based OTs. 
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3.5. Investigation of multiple traps and multiple functionalities with glass 

rods 

 

In this section, the importance and motivation of optical manipulation and optical binding of 

cylindrical particles by using fiber based OTs are introduced, followed by a description of the 

working principles of rod manipulation by using the inclined DFOTs. Multiple functionalities as 

well as optical binding with glass microrods were experimentally demonstrated, with each 

functionality followed by a qualitative explanation. Numerical modeling of the optical force and 

torque fields was performed to obtain a quantitative analysis and to achieve a better 

understanding of the experimental results. At the end of this section, discussion is provided 

regarding the performance and potential applications of the multiple traps. 

 

3.5.1. Motivation of optical manipulation of cylindrical particles 

 

Compared with optical manipulation of multiple spherical particles as discussed in Section 3.4, 

optical manipulation of cylindrical particles in an optical trap is of particular interest due to its 

importance in various fronts, which to date have only been realized by using objective based OTs. 

For example, in biology, a large variety of cells, which can be optically trapped [115], are rod-

shaped by nature [116]. Optical traps have been reported to fold red blood cells into rodlike 

shapes [50] and control the positions and orientations of Bacillariophyceae, a type of algae with 

long cylindrical shapes [117]. In a photonic force microscope [118], an optically trapped 
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cylindrical particle, instead of a regular spherical particle, has been used as a probe to achieve 

more accurate position detection with a better linearity. [119] Moreover, semiconductor 

nanowires have been manipulated and assembled into simple structures in an optical trap. [120] 

However, in literature, trapping of cylindrical particles have not been demonstrated with optical 

fiber based optical tweezers. 

 

On the other hand, optical binding refers to the phenomenon that multiple particles trapped in 

optical tweezers can be distributed in a self-organized way. [110-113] As discussed earlier in 

Section 3.1, the current fiber-based optical binding, including the single optical fiber tweezers 

with an axicon-shaped fiber tip [110] and the counter-propagating dual fiber traps [108, 111], can 

only confine particles in a chain-like one-dimensional structure with fixed particle separations, 

and the observation of optical binding effects was limited to spherical particles. By contrast, we 

report in this section that two-dimensional (2D) structures can be achieved by optically binding 

spherical and cylindrical particles. 

 

3.5.2. Working principles of multiple traps on glass rods 

 

Compared to spherical particles that can be controlled in three degrees of freedom (positions), 

nonspherical particles including rods can be controlled in more degrees of freedom (orientations), 

and thus better controllability and more functionalities can be realized. To control these many 

degrees of freedom, an anisotropic optical intensity field is required to orient as well as trap the 

rods, which is enabled by the inclined DFOTs. First, at the two 2D traps of the inclined DFOTs, 

the beam shapes on the xy plane are elliptical due to the tilt of the incidence. As a result, the 
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elliptical shape of the spots enables the alignment of the rods along the long axis, which is the y 

axis in Figure 3.9. Second, the intensity distribution is not uniform in the elliptical spot: the 

intensity at the inner end (i.e., the left end at Location 3) of the spot is stronger than that at the 

outer end (i.e., the right end at Location 3) because of being closer to the beam waist. The non-

uniform intensity distribution enables the rotation of the rods when they are off axis. Moreover, 

when the two 2D traps are close to each other, the strong intensity on the yz (vertical) plane tries 

to pull outside particles onto the plane, which enables the stacking of multiple rods. These 

functionalities have been demonstrated in experiments and investigated in simulations, as to be 

discussed in later parts of this paper 

 

 

Figure 3.9. Diagram of multiple traps obtained from the inclined DFOTs. Inset is 
the top view of the rod trapped at Location 3. 

 

3.5.3. Experimental investigation of multiple functionalities with glass rods 
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3.5.3.1. Trapping and alignment of glass rods 

 

The multiple traps can be used to manipulate particles with other shapes in addition to the 

spherical shaped particles. By taking the advantage of the oval shaped spots produced by the 

inclined DFOTs, non-axisymmetrical particles can be manipulated to change not only their 

positions but also their orientations. As an example, micrometer-sized glass rods were 

successfully trapped and aligned. In experiment, two free glass rods were brought into the 

trapping area by moving the coverglass, as shown in Figure 3.10(a). Once they were moved close 

to the two 2D traps, the rods were trapped and aligned along the x axis, as shown in Figure 

3.10(b). When the water was moved along the +y axis, the trapped rods stayed stable in the 2D 

traps, while maintaining the same orientation, as shown in Figure 3.10(c). It is noted that the 

glass rods could not be trapped in three dimensions. 

 

 

Figure 3.10. Experimental demonstration of trapping and alignment of glass rods. 
(a) Two free rods were initially lying on the substrate. (b) The two rods were 
trapped and aligned along the y axis. A third free rod (on the top left side) was 
moved into the view field serving as a reference. (c) The coverglass was moved 
along +y. The scale bar is 10 µm in length. The rods are ~3.5 µm in diameter, and 
8~15 µm in length. 

 

Since the elliptical optical fields on the substrate exhibit directionality (with the long axis along 

the y axis), as can be seen from Figure 3.10, this directionality of the optical field enables control 
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of the orientations of glass rods. When a rod is trapped, both its ends will be trapped by the 

strongest intensity, resulting in its axis aligned long the long axis of the optical field (the y axis). 

This explains the results of rod alignment shown in Figure 3.10. The reason that glass rods 

cannot be trapped in three dimensions can be explained as follows. When the coverglass is lifted 

up so that a rod is moved close to the beam intersection, where the 3D trap for beads is located, 

considering the mirror symmetry of the system, the rod will be trapped along the y axis and 

centered at the 3D trap position. Due to the long length of the rod, each end of the rod will reach 

one optical axis of the two beams, where only one beam is dominant. Because the scattering 

force on the beam axis is always larger than the gradient force due to the weak focusing of the 

optical beams, the ends of the rod are pushed along –z direction while the center of the rod is 

pulled along +z direction (by the 3D trap). The 3D trap is not strong enough to balance the 

optical forces at the rod ends as well as the gravity of the rod, and hence no stable 3D trap of the 

rod can be achieved. 

 

3.5.3.2. Rotation of glass rods 

 

If the motion of the water is controlled to have a relatively fast speed, the trapped rods will 

escape from the traps. This phenomenon was found to be useful for rotating a rod in a 

controllable manner (clockwise or counter-clockwise). When the water was moved in -x 

direction, the outer end of the rod escaped earlier than the inner end, resulting in a clockwise 

rotation of about 70°, as shown in Figure 3.11(a)-(b). When the rod was moved back to the 

trapping area by moving the coverglass in +x direction, the end that first came into the trap was 

pushed outside (along -y), as shown in Figure 3.11(c)-(e). The rod was thus rotated clockwise by 
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180° in the entire process. If the process shown in Figure 3.11(a)-(e) is repeated, the rod can be 

continuously rotated. When the water was moved in the opposite direction (first +x, then -x), the 

rod was rotated counter-clockwise by 180°, as shown in Figure 3.11(e)-(h). 

 

 

Figure 3.11. Experimental demonstration of rotating glass rods. The arrows at the 
lower right corner indicate the next movement of the coverglass, and the small 
arrow beside the rod shows the rod orientation. (a)-(b) The rod escaped from the 
trap when the water was moved fast in –x direction. (b)-(e) The rod was re-
trapped and eventually aligned along the x axis, when the water was moved in +x 
direction. The rod was rotated clockwise by 180° in the above process. (e)-(h) 
The process of (a)-(e) was repeated with the opposite direction of water 
movement. The rod was rotated counter-clockwise by 180°. The scale bar is 10 
µm in length. The rods are ~3.5 µm in diameter, and 8~15 µm in length. 

 

The principle that can be used to explain the rods rotation is illustrated in Figure 3.12. Since the 

beams are inclined, the inner ends of the spots have stronger intensity than the outer ends. The 

outer end (End 1 in Figure 3.12(a)) of the trapped rod will escape earlier than the inner end (End 

2) if the drag force from the water is large. After the rod escapes from the 2D trap, it is rotated 

clockwise, as shown in Figure 3.12(b) and Figure 3.12(b). If the water is moved backward to 

bring the rod into the trapping area, End 2 will get trapped first, as shown in Figure 3.12(c) and 

Figure 3.12(c). However, since the scattering force is dominant due to the weakly focused beams, 
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End 2 is pushed outwards so that End 1 will be brought into the trapping area. When the rod is 

finally settled down, it will be aligned along the y axis (Figure 3.12(d)) with an orientation 

opposite to that is formed at the beginning of the process (Figure 3.12(a)). Therefore, during the 

entire process shown in Figure 3.12, the rod is rotated clockwise by 180°, which was observed 

in the experiment. If the water is moved in the opposite direction in each step illustrated in 

Figure 3.12, the rod will then be rotated counter-clockwise by 180° during each cycle. 

 

 

Figure 3.12. Working principle of rod rotation. The arrows at the top left corner 
indicate the next movement of the water. The two ovals illustrate the spots of the 
two beams. 

 

3.5.3.3. Stacking of glass rods 

 

Glass rods can also be stacked using the multiple traps. As shown in Figure 3.13, three glass rods 

can be stacked in three different ways: i) the two bottom rods aligned side by side and the third 

rod on top of the two bottom ones, as shown in Figure 3.13(a), ii) the two bottom rods aligned 

end to end and the third rod on top of the two bottom ones, as shown in Figure 3.13(b), and iii) 

the center rod sandwiched by the two outside rods and orientated vertically, as shown in Figure 

3.13(c). Such stacking can potentially be used to synthesize micro- or nano-structures.  
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Figure 3.13. Experimental demonstration of glass rod stacking. (a)-(c) Images of 
glass rods stacked in different ways. The scale bar is 10 µm in length. (d)-(f) 
Sketches of the stacked rods corresponding to (a)-(c), respectively. The rods are 
3.5 µm in diameter and 8-15 µm in length. 

 

The principle of rod stacking can be explained as follows. If the separation between the two 2D 

traps is small and two rods are trapped, the rods will contact with each other. Since both rods try 

to align their axes along the y axis, their ultimate positions in the traps will depend on their initial 

states. If two rods are brought into the traps along the x axis they will be trapped side by side, as 

shown in Figure 3.13(a). On the other hand, if they are brought into the traps along the y 

direction, they will push each other end to end, as shown in Figure 3.13(b) and (c). If there is a 

third rod in between, it will be squeezed by the two rods from both sides or from both ends, 

resulting in the stacking of the third rod. In most experiments, the third rods stayed parallel to 

and on top of the other two rods, as shown in Figure 3.13(a) and (b). However, in rare cases, 

when the third rod is squeezed, its one end will be trapped by the 3D trap, which is located above 

the substrate, resulting in the rods trapped in a vertical orientation, as shown in Figure 3.13(c). 
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3.5.3.4. Optical binding of silica beads and glass rods 

 

The optical binding arises from the light redistribution induced by the trapped particles. [113] 

When multiple particles are trapped in an optical field, interactions between the particles are 

induced by the optical field. The particles trapped upstream can modify the optical fields and 

influence the behavior of the particles downstream. In this work, optical binding of both 

spherical beads and microrods can be realized with the inclined DFOTs. As shown in Figure 3.14, 

when Bead 1 was trapped in 3D, Bead 2 can be optically bound so that it can be manipulated in 

3D. Compared to the free beads (Beads 3 and 4), Bead 2 was lifted up from the coverglass and it 

was remained at the bound position when the water was moved around. If no bead were trapped 

in the 3D trap, Bead 2 could only be trapped on the coverglass by the 2D trap. Similar optical 

binding effects can also be used to tilt glass rods. As shown in Figure 3.14, two glass rods (Rods 

1 and 3) were tilted up due to the optical binding. The optically bound rods stayed stationary 

when the water was moved around. The up-tilting of the glass rods cannot be achieved without  

 

 

Figure 3.14. Experimental demonstration of optical binding of silica beads. The 
arrows at the lower right corner indicate the next movement of the coverglass. 
Bead 1 was trapped in 3D. Bead 2 was optically bound to Bead 1, so it was out of 
focus and not contacting the substrate. Beads 1 and 2 remained in the trapped and 
bound positions, respectively, when the water was moved in +y ((a)-(b)) and +x 
((b)-(c)) directions. The scale bar is 10 µm in length. (d) A sketch of the three 
beads on the yz plane. The beads are 4.74 µm in diameter. 
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Figure 3.15. Experimental demonstration of optical binding of glass rods. (a) The 
three free rods lay on the coverglass, and the silica bead was trapped by the right 
2D trap. (b) The bead was trapped by the 3D trap. It can be seen that the light 
beams were refocused by the bead. (c) Rod 1 and 3 were tilted up by the optical 
binding, while Rod 2 remained free. The optical binding helped Rods 1 and 3 
remain stationary while the water was moved in +x ((c)-(d)) and –y ((d)-(e)) 
directions. The scale bar is 10 µm in length. (f) Sketch shows the optical bound 
rods on the yz plane. The rods are ~3.5 µm in diameter, and 8~15 µm in length. 
The silica bead is 3.5 µm in diameter. 

 

the bead in the 3D trap. It is noted that the optical binding effects described here created a 2D 

structure, which is different from 1D chain-like structure created by previously published work. 

 

In the experimental results of optical binding, the bead in the 3D trap served as a lens, which can 

be used to refocus both of the light beams. This focusing effect can be seen by comparing the 

spot sizes with (Figure 3.15(b)) and without (Figure 3.15(a)) the bead being trapped. A similar 

refocusing effect was studied and verified in an earlier work [113]. The refocusing increases the 

intensity gradient downstream, and hence the gradient force that is needed to overcome the 

scattering force is increased. The increase in the gradient force is necessary to keep the bead 

being trapped in 3D after the first trapped bead. It seems that the particles downstream are bound 

to the bead upstream, which explains why it is called optical binding. Owing to the optical 
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binding effect, the downstream beads and rods can be lifted up as shown in Figure 3.14 and 

Figure 3.15. Without the 3D trapped bead, only 2D trapping can be realized, which does not have 

the ability to lift up beads or glass rods. 

 

The experiments discussed above demonstrate that the inclined DFOTs have the ability of 

trapping cylindrical particles and performing multiple functionalities. With two fibers assembled 

on a block, control of the positions as well as the separations of the traps can be realized easily. 

With a single actuator, in this case, a 3D translational stage, attached to the fiber block, optical 

alignment, rotation, stacking, and optical binding of microscopic glass rods can be achieved. 

 

3.5.4. Numerical investigation of multiple functionalities with glass rod 

 

Although the experimental results on rod manipulations have been explained qualitatively in the 

Section 3.5.3, to achieve an enhanced understanding of the experimental results, numerical 

simulations on the optical forces and torques are carried out based on a ray-optics model 

discussed previously in Section 2.4.1. Different from the case of a spherical particle, the 

incidence of a beam pencil on the sidewall of a cylindrical particle should be treated differently 

from that on the cylindrical endface. Five successive reflections of the beam pencil are calculated 

after each beam pencil enters the cylindrical particle. For a cylindrical particle, both optical 

forces and optical torques are calculated for a specific location and a specific orientation of the 

cylinder centroid. 
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The parameters (the optical power, wavelength, beam waist and location, fiber separation and 

inclination angle, and rods diameter and refractive index) are chosen to be the same as those used 

in the experiments. The rods used in the simulations are considered to have perfect flat ends and 

a length of 10 µm. The vertical distance between the beam intersection and the rod plane is 3.36 

µm in the simulations. Note that some simulation parameters such as rod length, end face shape, 

and height of the beam intersection are difficult to determine due to the fact that these parameters 

were either constantly changed within a range or hard to measure in the experiments. The 

influence of these parameters will be discussed at the end of this section. Since all the rods in the 

experiments lied on the substrate except those in the optical binding experiment, the axes of the 

rods considered in our modeling always lie in the xy plane. 

 

3.5.4.1. Optical force and torque fields of a single 2D trap applied on a y-oriented rod 

 

As seen in Figure 3.10~Figure 3.15, the rods were always aligned along the y axis. In the 

simulations, it is considered that the rod is initially oriented along the y axis, and further it is 

assumed that only a single 2D trap (Trap 3 in Figure 3.9) takes effect. This is true when the two 

2D traps are far (>10 µm) from each other. It is noted that the influence of the rod orientation 

and the forces when two 2D traps exist in the same area will be studied later in this paper. 

 

The optical force field applied on a single y-oriented rod by a single 2D trap is obtained, as 

shown in Figure 3.16(a). It can be clearly seen from Figure 3.16 that a 2D trap of the rod exists 

near the beam axis, which is located on the yz plane and intersects the xy plane at (0, 0). By 

plotting the optical force along the y axis (data not shown), the trap is found to be at (0, 0.074 
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µm). The fact that the trap is slightly shifted from the beam axis toward +y direction is because 

the gradient force needs to have a –y component to balance the scattering force, which always 

along the beam propagation direction and has a +y component. The same reason can be used to 

explain why the trapping force is stronger in –y direction than in +y direction. When the rod is 

located in the –y area, both the gradient force and the scattering force have +y components and 

hence contribute to the trapping force. However, if the rod is located in the +y area, the gradient 

force has a –y component, but the scattering force still has a +y component that pushes the rod 

away from the trap, resulting in weaker trapping forces. 

 

 

Figure 3.16. Simulation results of (a) the optical force field and (b) the z-axis 
optical torque field of a single 2D trap (Trap 3 in Figure 3.9). Each arrow in (a) 
stands for the optical force applied on a glass rod when the center of the rod is 
located at the start point of the arrow. The origin of the coordinate system is 
located at the intersection of the optical beam axis and the horizontal plane 
passing the rod center. The rod is 3.5 µm in diameter, 10 µm in length, and 
oriented along the y axis. The optical power is 7.65 mW.  

 

The optical torque field applied on a single y-oriented rod is shown in Figure 3.16(b). As 

discussed in the previous section, the elliptical shape and the non-uniform intensity distribution 
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can cause torques on the rod. Depending on the position of the rod, it will be rotated clockwise 

(by the negative torques) or counter-clockwise (by the positive torques). Since the intensity field 

is symmetric about the y axis, there is no torque when the y-oriented rod is located on the y axis. 

On the other hand, the intensity field is not symmetric about the x axis (with stronger intensity in 

the –y area). As a result, the optical torque is not zero on the x axis, unless the rod is far from the 

optical beam so that it does not feel the optical intensity. 

 

3.5.4.2. Optical torque field of a single 2D trap applied on an arbitrarily oriented rod 

 

In order to fully understand the principles of rod trapping and alignment, the relationship 

between the optical torque and the rod orientation is obtained and shown in Figure 3.17. Here, 

we consider a rod with an arbitrary orientation and located at three positions (0, -1 µm), (0, 0.074 

µm), where the rod is stably trapped, and (0, 1 µm). It is noted that the angle θ (See Figure 3.9) 

increases when the rod is subject to a positive z-axis torque. There are four orientations, namely 

θ = 0, π/2, π, and 3π/2, with zero optical torques. The orientations of θ = π/2 and 3π/2 are not 

stable. If the rod rotates slightly away from, for example, θ = π/2, due to the Brownian motion, 

the optical torque will drive the rod further way from π/2 until it reaches θ = 0 or π, depending 

on the direction in which the rod initially deviates. However, at θ = 0 or π, the restoring torque 

will pull the rod back when it rotates slightly away. In another word, θ = 0 or π are potential 

wells while θ = π/2 and 3π/2 are potential hills. The stable orientations of θ = 0 or π correspond 

to the conditions in which the rod axis is aligned with the y axis. Although only three positions (y 

= -1 µm, 0.074 µm, and 1 µm) are shown in Figure 3.17, the stable orientations are always 0 and 
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π as long as the rod is located on the y axis and not too far away (<10 µm) from the beam axis 

(data not shown). 

 

 

Figure 3.17. Simulation results of the dependence of the z-axis optical torque on 
the orientation of a rod. The torque is applied by a single 2D trap (Trap 3 in 
Figure 3.9). θ is the angle between the rod axis and the y axis, as shown in Figure 
3.9. The rod is 3.5 µm in diameter, 10 µm in length at located on the y axis (x=0). 
The optical power is 7.65 mW. 

 

3.5.4.3. Optical force and torque fields of two 2D traps applied on a y-oriented rod 

 

When two 2D traps are close to each other, the force field will change from that with a single 2D 

trap. The optical force and torque fields on a y-oriented rod applied by two 2D traps are shown in 

Figure 3.18(a) and (b), respectively. Here, the vertical distance between the beam intersection 

and the rod plane (xy plane) is 3.36 µm, and the corresponding separation between the two 
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intersections of the beam axes and the xy plane is 8 µm. It is noted that, different from Figure 

3.16 and Figure 3.17, the origins of coordinate systems in Figure 3.18 is located right below the 

beam intersection, with equal distances from the two 2D traps. It can be seen from Figure 3.18 

that the trap position is at the origin, which is in between the two 2D traps. Due to the symmetry 

of the system about both x and y axes, the optical torque is zero on both the x and y axes. 

 

 

Figure 3.18. Simulation results of (a) the optical force field and (b) the z-axis 
optical torque field of two 2D traps (Traps 2 and 3 in Figure 3.9). Each arrow in 
(a) stands for the optical force applied on a glass rod when the center of the rod is 
located at the start point of the arrow. The origin of the coordinate system is 
located at the center of the line segment connecting the two traps. The 
intersections of the optical beams and the xy plane are at (0, -4 µm) and (0, 4 µm). 
The rod is 3.5 µm in diameter, 10 µm in length, and oriented along the y axis. The 
optical power is 7.65 mW from each fiber. 
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3.5.4.4. Explanation of optical trapping, alignment, rotation, and stacking of glass rods 

 

Combining the simulation results shown in Figure 3.16 and Figure 3.17, we can quantitatively 

explain the experimental results of the rod trapping and alignment. If a y-oriented rod is located 

off the y axis, it will be pushed toward the y axis (See Figure 3.16(a)), while being rotated under 

the optical torque with a direction depending on its initial position (See Figure 3.16(b)). Once the 

rod reaches the y axis, it will quickly settle down at the stable position of (0, 0.074 µm) (See 

Figure 3.16) as well as align itself along the y axis (See Figure 3.17). After it is trapped, although 

the Brownian motion or the moving water causes the rod to deviate from the stable position and 

orientation, the restoring force and torque retain the stable trapping and alignment of the rod, just 

as the experimental results shown in Figure 3.10. 

 

If the water is moved along the +x axis at a speed fast enough to drag the rod away from the trap, 

the rod will be rotated clock-wise by a negative torque (See Figure 3.16(b)). When the rod is 

brought back to the trapping area by the moving water, it will be further rotated clock-wise, and 

will align its axis again along the y axis. This process is the same as the one shown in Figure 

3.11(a)-(e). It is noted that the rotation directions in Figure 3.16(b) and Figure 3.11 are opposite. 

This is because the simulation results shown in Figure 3.16(b) are obtained with Trap 3 (See 

Figure 3.9), while the experimental rotation results shown in Figure 3.11 were obtained with 

Trap 2. 

 

If there are two rods in the optical field formed by two 2D traps, according to Figure 3.18, both 

rods are pushed toward the origin. The rods still try to align themselves along the y axis, and 
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hence they will tend to stay on either x or y axis, where the torque is zero (See Figure 3.18(b)). 

Depending on their initial positions, the two rods can be pushed against each other along the x 

axis (side by side) or along the y axis (end to end). This explains why the bottom two rods in the 

experiment were either side by side (See Figure 3.13(a)) or end to end (See Figure 3.18(b)). If 

there is a third rod existing in the optical field, it will also be pushed towards the origin. However, 

since there is no enough space left for it to stay on the xy plane, it will be stacked onto the first 

two rods by the force field with its axis aligned along the y axis (See Figure 3.18). When the 

third rod was sandwiched by the other two rods along the y axis, the third rod can be lifted up by 

the forces coming from both sides, and maintain this orientation by the support of the two rods 

on both sides, as shown in Figure 3.18(c) 

 

3.5.5. Discussion of multiple traps with glass rods 

 

There are some parameters used in the simulation that do not match exactly the ones in the 

experiments. The influence of these parameters is discussed here. The rods used in the 

experiments have different length ranging from 8 µm to 15 µm. In simulations, only a rod length 

of 10 µm is used. If a different rod length is used in the simulations, the results shown in Figure 

3.16~Figure 3.18 would change slightly. For example, the stable trapping position will be 

displaced by a small amount (<0.5 µm), and the amplitude of the optical forces and torques will 

also change slightly. However, the important conclusions and the behaviors of the rods in the 

optical trap, such as alignment along the y axis and stable trapping positions located on the y axis, 

will not change. As a result, the understanding of the experimental results through the simulation 

results will still hold for slightly changed rod lengths. Another issue that was not considered in 



 121

the simulation is influence of the end face shape of the rods. As seen in the experimental results, 

most of the rods do not have a perfect flat end face. However, since the end faces have much 

smaller areas than the sidewall, the optical forces applied on the end faces are much smaller than 

those on the sidewalls. Therefore, the end face shapes will have little influence on the simulation 

results as long as the rod length is much larger than its radius. This issue of the influence of end 

face shapes has also been studied by previous work. [121] The height of the beam intersection 

with respect to the xy plane (the rod plane) is another parameter that constantly changed in the 

experiments. In our simulations, the value of 3.36 µm is used, while the height of the beam 

intersection ranged from 0 to 20 µm in the experiments. According to our experience in the 

experiments, the effects of two 2D traps (rods trapped in between the 2D traps as shown in 

Figure 3.18) are dominant if the beam intersection is close (<3 µm) to the xy plane. With a higher 

beam intersection, the distance between the two 2D traps is larger. In this case, the influence of 

the other beam on the rods trapped by one beam is smaller, resulting in more profound effects of 

a single 2D traps (rods trapped separately by one of the 2D traps as shown in Figure 3.16 and 

Figure 3.17). To facilicate different functionalities, proper beam intersection height might be 

chosen. A high beam intersection is preferable in the case of rod alignment, while a low beam 

intersection is necessary for rod stacking. 

 

Furthermore, the trapped rods were not perfectly aligned along the y axis in the experiments (See 

Figure 3.11(h) and Figure 3.13) while a perfect alignment is predicted in the simulations. This is 

mainly because there always exists an error of the fiber alignment in the experiments. It is 

difficult, if not impossible, to align the two optical beams in exactly the same plane. This 
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alignment error can cause the force field shown in Figure 3.16 to be twisted (data not shown), 

resulting in an imperfect alignment of the rod along the y axis. 

 

It has been demonstrated that the inclined DFOTs have the ability to control both the orientations 

and the positions of the microscopic glass rods. The inclined DFOTs system can be used as a 

system block in a microfluidic system. In the current setup, manual 3D stages are used to fix the 

fibers on the common board. However, the stages can be removed if the board is replaced with a 

silicon wafer with etched V-grooves. In this case, the fibers can be aligned well along the V-

grooves and the block size can be significantly decreased. The position control of the trapped 

glass rods can be realized by controlling the position of the fiber block with a single actuator. 

The separations between the trapped glass rods can be adjusted by tuning the height of the fiber 

block. The orientations of the glass rods can be adjusted by rotating the fiber block about the z 

axis. However, because the single actuator on the fiber block cannot provide enough degrees of 

freedom, the trapped glass rods cannot be adjusted independently. They are both oriented along a 

line while lying on the substrate, unless they are tilted by the optical binding effects. Although 

multiple rods cannot be rotated independently, the ability to rotate the glass rods makes it 

feasible to control the orientation of the multiple rods simultaneously. Moreover, by controlling 

the motion of the fibers, the rods can be controlled to rotate by a fixed angle (e.g., 180° in an 

entire cycle and 90° in half a cycle) 

 

The ability of aligning, positioning, stacking, and optically binding cylindrical particles, as well 

as spherical particles discussed in Section 3.4, makes it possible to create periodical structures 

with each node being one particle. These artificial lattice structures are also called “optical 
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matter,” [112] which are in analogy with the lattices of natural crystals. Since the periods and 

crystalline structures can be designed, the resulting optical matter may serve as artificial 

materials with unique properties, which are not available in nature. Along the x axis, multiple 

fiber blocks can be introduced to create multiple layers of the trapped particles. However, there 

will be a minimum achievable separation between the adjacent layers due to the physical size of 

the optical fibers. To further reduce the layer separation along the x direction, the optical fibers 

can be thinned with hydrofluoric acid (HF) etching. In this sense, it is possible to realize a large 

number of traps by integrating multiple inclined DFOTs thanks to the flexibility and compact 

size of this setup. Moreover, unlike the objective-based OTs that require thin, transparent 

substrates, the multiple traps created by the inclined DFOTs can work with any substrate, 

including silicon or other lightproof substrates. 

 

3.6. Summary 

 

In this chapter, a new phenomenon of multiple traps, one 3D and two 2D, has been discovered 

during the experiments carried out with the inclined DFOTs setup. The traps have been created at 

different vertical levels. The block, including the two inclined fibers and the common board, 

enables the system with multiple traps to be used as a module in a microfluidic system. The 

positions and separations of the traps can be readily controlled by a single actuator attached to 

the block, instead of one actuator for each trap. Investigations into the multiple traps revealed 

that the inclined DFOTs can perform multiple functionalities, which has been achieved for the 

first time with fiber optical tweezers. Beads separation, beads grouping, 2D and 3D beads 

stacking, rod alignment, rod rotation, and optical binding of beads and glass rods have been 



 124

demonstrated experimentally. These functionalities are studied carefully either by carrying out 

numberical simulations based on the models we developed. In summary, the following original 

contributions have been achieved in this chapter: discovery of multiple traps with the inclined 

DFOTs system and realization of multiple functionalities with the inclined DFOTs system. 
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Chapter 4. Trapping Efficiency Enhancement for Fiber Optical 

Tweezers 

 

The most important disadvantage of fiber optical tweezers is that the gradient force is not as 

strong as that obtained by using a high NA objective [66, 75]. This is due to the weak focusing 

effect of the commonly used spherical lensed fibers. In order to improve the gradient force 

obtained from fiber optical tweezers, new methods need to be developed to obtain a smaller 

focus from an optical fiber-based divice. Liu et al. [75] demonstrated single fiber 3D optical 

tweezers by reducing the fiber end diameter to confine the output optical beam size. However, 

the heating and drawing method they used may cause difficulty to control the shape of the 

abruptly broken fiber end. Furthermore, the smallest spot size is located right on the endface of 

the fiber, because of which physical contact with the trapped particles is inevitable. Most 

importantly, the power loss issues limit how small the focal size can be obtained, although the 

power loss was not reported in ref. [75]. The transmission scales as (r/λ)4 for a small (r < λ) 

aperture with an infinitesimal thickness, with r being the aperture size and λ the wavelength. 

[122] The transmission is even smaller for an aperture with a depth. [122] Despite these 

limitations, the work reported in ref. [75] proves that as long as the beam emitted from an optical 

fiber can be focused small enough, fiber optical tweezers can also achieve a strong axial gradient 

force to overcome the scattering force, which currently can only be achieved by using objectives 

with a high NA. Therefore, the development of more controllable and effective methods to 

reduce the beam size would be a key solution to enable stronger fiber optical traps, and hence to 

significantly enhance the capabilities of fiber optical tweezers. 
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In this chapter, for the first time, the smallest focal size achievable with a high NA objective is 

experimentally realized by using an optical fiber with a planar surface plasmonic (SP) lens 

directly fabricated on the fiber endface. The fiber-based SP lens, therefore, provides a potential 

solution to significantly enhance the trapping capability of fiber optical tweezers as well as to 

bridge the optical signals and powers between the nanophotonic systems and the macroscale 

optical devices. Trapping of a live bacterium is successfully demonstrated in three dimensions 

with a power lower than any objective-based optical tweezers reported in literature. To the best 

of our knowledge, this is also the first time that bacteria have been successfully trapped in 3D by 

using fiber optical tweezers.  

 

The rest of this chapter is organized as the following. In Section 4.1, the model and the designs 

to achieve superfocusing by using a fiber-based SP lens are described. The experimentally 

measured 3D intensity distribution from two fiber-based SP lenses are presented and discussed. 

The focusing effect is studied by the numerical simulations via the finite-difference time-domain 

(FDTD) method. The data obtained in the experiment and the simulation are compared and 

discussed. In Section 4.2, the trapping ability enhancement of the fiber optical tweezers are 

demonstrated by 3D trapping of a sub-micrometer-size bacterium with a low power. Parametric 

study of the optical trapping forces on Rayleigh particles are performed by using two analytical 

models. The 3D force fields of the SP fiber tweezers are mapped according to the experimentally 

measured intensity profiles. 
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4.1. Superfocusing with fiber-based surface plasmonic lenses 

 

As mentioned earlier, in order to improve both axial and transverse gradient force of fiber optical 

tweezers, it is critical to obtain a tightly focused spot when the light is emitted from an optical 

fiber. However, it is not possible to design and fabricate a set of high NA, low aberration 

dielectric lenses on a fiber end face, as what has been done for microscope objectives [61]. 

Therefore, one has to seek new techniques to overcome this barrier. In this dissertation, 

“superfocusing” refers to achieving a focus with a size close to the diffraction limit that is not 

achievable using common focusing technologies. One way to achieve superfocusing is to use 

near-field optics, such as particle-lens [123], near-field ball lens [124], and near-field scanning 

probes [125]. However, the focus created with near-field optics is usually located at a distance of 

nanometers to sub-micrometers from the optical component surface [124]. To build a fiber 

optical trap, the focus must be far enough from the optical fiber to enable effective particle 

manipulation while avoiding any physical contact. Therefore, the optical trap (i.e., the focus) 

must be at least one micrometer away from the fiber end for fiber optical tweezers.  

 

Recent development on surface plasmonic lenses provides a solution to solve this problem [126-

131]. Surface plasmons (SP) propagate along the interface of a metal and a dielectric material as 

a combination of electromagnetic waves and surface charge density waves [129]. In general, 

light cannot pass through a subwavelength hole due to significant diffraction loss; transmission 

decreases significantly with a rate of 4( )r
λ  as the aperture radius r decreases [78]. However, 

SPs have been found to increase significantly (orders of magnitude) when light is transmitted 

through subwavelength apertures on a metal surface [132, 133]. SP components have been used 
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as waveguides and lenses [127, 130], and focusing with the SP lens has been achieved and 

investigated in one dimension [134], as shown in Figure 4.1. A modification to the dispersion 

relationship is proposed to be used in a 2D cylindrical SP lens. [135] Very recently, Fu et al [136, 

137] experimentally achieved 2D superfocusing with the SP lens on a quart substrate illuminated 

with a free-space laser beam, as shown in Figure 4.2. The smallest spot size defined by a full-

width at half-maximum (FWHM) of 260 nm was achieved using a wavelength of 532 nm. 

However, the superfocusing achieved in ref. [137] is too close to the substrate (500 nm), which is 

not preferable for optical trapping. Moreover, an effective design model has not been provided 

for the two dimensional SP lens. Thus far, superfocusing with an optical fiber based on SP lens 

has not yet been reported. Since the optical fiber can serve as a perfect waveguide and it is 

compatible with MEMS systems, it is advantageous to develop a fiber-based SP lens rather than 

a SP lens on a substrate that requires illumination from a free-space optical beam. 

 

 
Figure 4.1. One-dimensional focusing using the SP lens on a fused silica substrate. [134] 
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(a)          (b)      

(c)  

Figure 4.2. Two-dimensional focusing using the SP lens on a quartz substrate. [137] (a) 
Topography of the SP lens measured with atomic force microscopy (AFM). (b) Intensity 
distribution at the focus. (c) Intensity profile of the SP lens on the xz plane.  

 

In this section, a model used for designing a 2D SP lens on a fiber end face is first introduced. 

Two sets of design parameters are then provided. Experimentally measured intensity 

distributions obtained from two SP fiber samples are presented, demonstrating the superfocusing 

effect achieved with fiber-based SP lenses. Simulation results obtained by using the FDTD 

method are compared with the experimental results, and good agreements are achieved in terms 

of the transverse spot sizes. The reasons for the differences in the experimental and simulation 

results are discussed. The significance and potential applications of the superfocusing with a 

fiber-based SP lens are discussed. 
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Figure 4.3. Illustration of SP lens fabricated on the endface of an optical fiber. 

 

4.1.1. Modeling and design of fiber-based SP lenses 

 

The SP lens on the endface of an optical fiber is composed of a set of concentric slits removed 

from a gold coating, as shown in Figure 4.3. The slit widths are less than the optical wavelength 

so that only the SP waves can propagate inside the slits.  In Figure 4.4, the schematic of the 

principle of the fiber based SP lens is illustrated. The working principle is as follows. When a 

plane wave initially propagating in a fiber enters the SP lens, the SP waves are excited by the 

incident optical wave. The SP waves can propagate along the slits when the slits are smaller than 

the wavelength [122]. The propagation constants at different slits can be different, depending on 

the slit widths. Therefore, the phase delays associated with the SP wave propagation can be 

different even for the same propagation distance. The SP waves are then converted back to 

optical waves once they exit from the SP lens. The exit of each individual slit can be viewed as a 

source to generate an optical wave. The propagation of these optical waves in the medium is 
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determined by the initial phases of the sources, which can be tuned by adjusting the slit widths 

and the metal thickness. In this case, the planar SP lens can induce a curved wavefront as a 

regular spherical lens does. If the curved wavefront as shown in Figure 4.4 is achieved, a 

constructive interference (focus) will occur at the center of the wavefront; a focus close to or 

even smaller than the diffraction limit size can be achieved. 

 

Next, details on how to design an SP lens are provided. Although there are multiple slits in the 

SP lens, the propagation of SP waves within adjacent slits can be considered to be uncoupled as 

long as the separation is much larger than the skin depth. The skin depth determines how deep 

the SP wave can penetrate into the metal. At the wavelength of 808 nm, the skin depth was 

measured to be around 13 nm. [138] In this work, the slits are designed with separations larger 

than 130 nm, so that the SP wave propagating through each slit can be analyzed individually as if 

there is no interference between the SP waves in the adjacent slits. 

 

 
Figure 4.4. Schematic of the principle of a fiber based SP lens. 
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For a narrow slit surrounded by metallic walls, only the electric field with polarization 

perpendicular to the metallic walls can excite the SP wave. [122] Therefore, only the transverse 

magnetic (TM) mode is useful for SP generation. The dispersion relation is expressed as [139] 
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where wi is the width of the i-th slit, βi the propagation constant of the SP wave, k0 the 

wavelength of the optical wave in vacuum, εd the permittivity of the dielectrics in the slit, and εm 

the permittivity of the metal. For a smaller slit width, the optical part of the SP wave will be 

confined tighter to the surface, and thus more of the mode will penetrate in the metal, resulting in 

a slower propagation speed. [134] For a fixed εd and εm, the smaller the slit width wi, the larger 

the propagation constant βi, and the larger the phase delay for a fixed metal thickness. Compared 

with the phase change at the entrance and the exit of the metal slits, the phase delay associated 

with the SP propagation and the optical wave propagation is dominant [139]. Therefore in this 

work, only such phase delay is considered. In order to achieve constructive interference at the 

designed focal length, f, the phase delays from different slits should differ by integer times 2π, 
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where ri is the i-th slit radius, λ is the wavelength in the medium outside the SP lens, d is the 

thickness of the gold layer, and N is any integer. The first term of Eq. (4-2) stands for the phase 

delay of the metal propagation from the exit side of the SP lens to the focus, and the second 

stands for the phase delay of the SP wave propagation inside the i-th slit.  
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Based on Eq. (4-2), the basic principle of designing the slits of an SP lens can be summarized as 

the following: the phase delay of optical wave propagation in the medium (determined by ri) 

should be compensated by the phase delay of the SP wave propagation in the slits (determined by 

wi and d) so that constructive interference can be obtained at the focus. The desired wavefront in 

the medium is a spherical surface centered at the focal position. Generally this curved wavefront, 

and hence the focusing effect, is achieved by using a curved surface of a lens. In the case of the 

objective lens, it is achieved by a set of carefully designed and fabricated lenses to compensate 

aberrations. [61] However, fabricating a spherical lens with well controlled profile on a fiber end 

face is difficult. Fresnel zone plates with a set of concentric rings have also been used to achieve 

focusing effect [140]. However, due to its large size (~10 µm in diameter for the smallest ring 

[140]), the Fresnel lens is hard to be implemented on fibers. More importantly, the size of the 

focus achieved by using both the curved lens and the Fresnel lens is limited by the diffraction 

limit. By contrast, the SP lens described here can achieve a focus that can potentially overcome 

the diffraction limit [137]. 

 

Two designs of fiber-based SP lenses are obtained following Eqs. (4-1) and (4-2): one with 4 

slits and the other with 3 slits. The design parameters of these lenses are listed in Table 4.1 and 

Table 4.2. The parameters used to obtain the designs are the following: the wavelength λ0=808 

nm, the medium permittivity nd=1.332, the gold layer thickness d=100 nm, the refractive index of 

gold at 808 nm nm=-27.0+1.9i [141], the focal length f=20 µm. It should be noted that the beam 

waist at the fiber endface is 2.8 µm for the fiber used in this work (SM800, Fibercore Ltd.). 

Therefore, the radius of the outer slits should be smaller than 2.8 µm for obtaining enough 

illumination from the laser beam. The design described in ref. [137] is not feasible to be used on 
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the optical fiber due to the large radius of the outer slits (~7 µm). Another issue that needs to be 

considered in the design is that the separations between the adjacent slits should be larger than 

200 nm to prevent the sidewalls from collapsing during the fabrication process. 

 

Table 4.1. Design parameters of 4-slit SP lens. 

Slit # Radius (nm) Width (nm) 

1 300 60 

2 828 72 

3 1074 85 

4 1393 120 

 

Table 4.2. Design parameters of 3-slit SP lens. 

Slit # Radius (nm) Width (nm) 

1 200 53 

2 776 76 

3 1072 120 

 

4.1.2. Development and experimental study of fiber-based SP lenses 

 

A 100-nm-thick gold (Au 99.999%, ACI Alloys) layer was deposited on the cleaved fiber end 

face by E-beam evaporation (BJD-1800, Temescal). A 3-nm-thick titanium coating was used as 

the adhesion layer. Titanium is chosen because of its resistance to corrosion [142]. During the 

early stage of the SP lens development, chromium was also used as the adhesion layer. However, 

due to the heat associated with the optical absorption, vapor bubbles were generated on the SP 
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lens when it was tested in water. Using titanium as the adhesion layer can decrease the 

possibility of the bubble generation. The sidewall of the gold coated fiber was then coated with 5 

nm of gold without adhesion layer. This gold layer is necessary to dissipate the charge 

accumulated in focus ion beam milling (FIB) process. The fiber was mounted on an aluminum 

metal strip (1/4” × 1/2” × 1/16”) by a piece of carbon double-sided tape, and a layer of copper 

single-sided tape was applied on the top to immobilize the fiber. In this way of mounting, the 

fiber endface was gounded with the metal strip to avoid any charging problem associated with 

the FIB fabrication. FIB milling was used to remove the gold in the designed slits. The FIB 

fabrication was carried out using a Zeiss NVision 40 FIB workstation by our collaborators (Dr. 

Xu and Dr. Zhitenev) at the National Institute of Standards and Technology (NIST). 

 

 
Figure 4.5. Schematic of the experimental arrangement for SP lens testing. 

 

The experimental setup for testing the fiber-based SP lens is shown in Figure 4.5. The fiber was 

mounted vertically on the microscope platform, with the SP lens facing the objective lens (Plan 

CN, 100×, 1.25 NA, Olympus). The fiber end with the SP lens was submerged in a water drop 
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(~5 mm thick) on a coverglass. A motorized stage (VP-5ZA, Newport) with a resolution of 100 

nm was used to move the fiber along the vertical direction. A laser beam of 808 nm (the same 

light source used in Section 2.3) was coupled into the fiber. The output beam at the focal plane of 

the objective lens was imaged onto a camera, which can also be viewed by using a monitor. Two 

cameras were used for the measurements: one being the Motic camera (Moticam 1000, Motic) 

with an 8-bit dynamic range and a (nominal) resolution of 50 nm per pixel calibrated using the 

objective lens and the other being the DS camera (DS-Qi1, Nikon) with a 12-bit dynamic range 

and a (nominal) resolution of 60 nm per pixel calibrated using the objective lens. Each pixel of 

the camera served as an individual optical powermeter, and the recorded grayscale value was 

considered to be proportional to the intensity of the corresponding position at the object plane. 

By sweeping the SP lens in the vertical direction, 3D intensity distribution can be reconstructed 

from the images captured. Note that the illumination lamp was turned off during the 

measurements. 

 

4.1.3. Experimental results of fiber-based SP lenses 

 

Two fiber-based SP lenses were successfully fabricated and tested. Strong focusing effect was 

observed from both SP lenses with the focal sizes close to the diffraction limit. The results are 

described and discussed next. 

 

4.1.3.1. Experimental results obtained from the 4-slit fiber-based SP lens (SP1) 
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The sample SP1 is a four-slit SP lens following the design parameters shown in Table 4.1. The 

scanning electron microscope (SEM) image of the SP lens on the fiber endface is shown in 

Figure 4.6.  

 

 
Figure 4.6. SEM image of the sample SP1 on a fiber endface. 

 

SP1 was measured by using the DS camera with a dynamic range of 12 bits (0~4096). The 

experimentally measured intensity distribution on the xz and yz plane is shown in Figure 4.7, 

providing the z axis is the optical axis of the fiber. The bar on the right of the plot shows the 

grayscale of the data, which is proportional to the intensity. The endface of the SP lens is located 

at the z=0 plane. A strong focus is clearly seen at z=3.2±0.1 µm. 
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(a)                                                                         (b) 

Figure 4.7. Experimentally measured intensity distribution from SP1 on two 
orthogonal planes: (a) xz plane and (b) yz plane. The origin of the coordinate 
system is located at the center of the SP lens surface. The optical beam is 
propagating downwards. 

 

To further investigate the focal size, the intensity profiles near the focus along three orthogonal 

directions are obtained, as shown in Figure 4.8 (a)-(c). The spot sizes defined by the FWHM are 

found to be 440±60 nm along the x direction, 500±60 nm along the y direction, and 1.758±0.1 

µm along the z direction. The focal sizes in the x and y directions are slightly different by 60 nm. 

This asymmetry of the intensity pattern can also be seen in the xy-plane image at the focal plane 

shown in Figure 4.8 (d). The slight difference is believed to come from the asymmetry of the 

polarization of the input wave in the single mode fiber, where the guided wave is linearly 

polarized. [143] 
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(a) 

 
(b) 

 
(c) 

 

 

 
(d) 

Figure 4.8. Experimentally measured intensity profile of SP1 at the 
strongest intensity position (z = 3.2±0.1 µm) along (a) x axis, (b) y axis, and 
(c) z axis. (d) The image of the focus at z = 3.2 µm. The scale bar at the 
upper right corner of (d) denotes 600 nm (10 pixels). 

 

4.1.3.2. Experimental results obtained from the 3-slit fiber-based SP lens (SP2) 

 

SP2 is a 3-slit SP lens following the design parameters shown in Table 4.2. The scanning 

electron microscope (SEM) image of the SP lens on the fiber endface is shown in Figure 4.9. 

FWHM = 
440±60 nm 

FWHM = 
500±60 nm 

FWHM = 
1.758±0.1 µm 
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Compared with SP1 shown in Figure 4.6, the slits of SP2 are much smoother. Moreover, the 

interference effects between the slits are much smaller due to the larger slit separations. 

 

 
Figure 4.9. SEM image of the sample SP2 on a fiber endface. 

 

The intensity profile of SP2 was measured with the 8-bit Motic camera with a dynamic range of 

0~256. The experimentally obtained intensity distribution is shown in Figure 4.10. SP2 also 

exhibited a small focus at z = 1.1 µm. It can be seen that the intensity patterns on the xz and yz 

planes are mirror symmetrical. Further quantitative evaluation of the focus can be obtained from 

the intensity profile along three orthogonal directions across the focus, as shown in Figure 4.11 

(a)-(c). The focal spot size (FWHM) is found to be 352±50 nm along the x direction and 533±50 

along the y direction. The focal depth (FWHM) along the z direction is obtained to be 743±100 
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nm. An obvious difference between the x and y direction spot sizes is observed, which can be 

confirmed by the image of the focus shown in Figure 4.11 (d). 

 

   
(a)                                                                       (b) 

Figure 4.10. Experimentally measured intensity distribution from SP1 on two 
orthogonal planes: (a) xz plane and (b) yz plane. The origin of the coordinate 
system is located at the center of the SP lens surface. The optical beam is 
propagating downwards. 

 

4.1.3.3. Discussion of the superfocusing results obtained with the SP lenses 

 

Overestimation of the focal spot size 

 

The spot sizes obtained from the measurements are influenced by two main issues: the resolution 

power of the objective lens and the pixel size of the camera. These two issues cause 

overestimation of the focal spot size of the fiber-based SP lens. The real spot size is expected to 

be smaller than the measured values. Detailed explanation is provided as follows. 

 

The experimentally measured intensity is actually the intensity passing through the objective. It 

is not surprising that the resolution of the measured intensity distribution is limited by that of the 

objective. For each point at the object plane, the image will be enlarged due to the point spread 
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function [144], which limits how small a resolved area at the object plane can be. If two points 

are closer than this limit, their images will be smeared and cannot be distinguished at the image 

plane. [61] This will cause the fine intensity changes filtered out by the objective lens before the 

intensity is measured. In another word, the focus measured in the experiment is the smeared 

version of the real focus, resulting in an overestimation of the spot size. 

 

 
(a) 

 
(b) 

 
(c) 

 

 

 
(d) 

Figure 4.11. Experimentally measured intensity profile at the strongest 
intensity position (z = 1.1±0.1 µm) along (a) x axis, (b) y axis, and (c) z axis. 
(d) The image of the focus at z = 1.1 µm. The scale bar at the upper right corner 
of (d) denotes 500 nm (10 pixels). 

 

The pixel size of the camera also introduces a positive error to the measured spot size. The 

intensity (grayscale) obtained for each pixel was the averaged value over the whole pixel area. 

FWHM = 
352±50 nm 

FWHM = 
533±50 nm 

FWHM = 
743±50 nm 
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This does not influence the edge of the focus, but the highest intensity is underestimated. As an 

example, according to Figure 4.8 (b), it seems that the highest intensity is 4095 (a.u.) located at 

y=0 and y=0.06 µm. However, because of the averaging effect, the real highest intensity might be 

6000 located at y=0.03 µm. Because the spot size was measured as the FWHM, this 

underestimation of the maximum intensity directly results in an overestimation of the spot size. 

If the maximum intensity of 6000 is used, the y-axis spot size in Figure 4.8 (b) would be ~340 

nm instead of 500 nm. Similar overestimations can also rise from the sweeping step of the z axis. 

 

Comparison with the spot size achievable with objective lenses 

 

According the measured spot sizes of SP1 and SP2, the focusing effects of the SP fibers are 

much stronger than that obtained with the lensed fiber used in Chapter 2 and Chapter 3. The spot 

sizes achieved on the fiber endfaces are even comparable to those created with high NA 

objective lenses. 

 

The Abbe’s diffraction limit for the focal spot size is λ/2n, with λ being the vacuum wavelength 

and n the medium refractive index. [145, 146] For the wavelength of 808 nm and the medium of 

water, this limit is calculated to be 304 nm. However, the smallest spot size that can be achieved 

with an objective is larger than the Abbe’s diffraction limit. The FWHM of the smallest spot 

obtained from an objective lens with a numerical aperture of NA is given by [147] 

0.61
objD FWHM

NA
λ

= = . 
 

(4-3) 

The smallest spot size (FWHM) for an objective is 394 nm with NA = 1.25 and 352 nm with NA 

=1.4. The highest NA of commercially available objective lenses is 1.4. It should be noted that 
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the value calculated with Eq. (4-3) is the optimal spot size obtained in an ideal case. Due to some 

practical issues, this limit may not be achievable with a high NA objective lens. First of all, the 

effective NA is lower than the designed value. [144] Secondly, if the free-space optical path is 

not properly adjusted, or if the back focal plane is not filled with the optical power, the spot size 

will be larger. [147] Moreover, high NA objectives usually use oil immersion, which is a must 

for NA=1.4. The mismatch of the refractive index between the immersion oil and the water 

introduces additional aberrations, which will result in a smeared focus, and thus an increased 

spot size. [16] It is noted that although some imaging techniques such as confocal microscopy 

can an imaging resolution smaller than the diffraction limit, they cannot focus the optical power 

into an area below the diffraction limit, which is necessary to increase the trapping efficiency of 

fiber optical tweezers, the reason we intend to investigate superfocusing in the first place. 

 

The x-direction spot size of SP2, which is 350 nm, is comparable to the smallest spot size 

achieved with an objective lens with the highest NA. Considering the overestimation of the spot 

sizes, the real spot size achieved with this fiber-based SP lens is expected to be even smaller. 

Furthermore, the fiber as a perfect waveguide is less susceptible to the noise introduced by the 

environmental factors, and a fundamental Gaussian beam is almost always guaranteed at the 

entrance of the SP lens. Unlike the objective lenses with which the smallest spot size is always 

difficult to achieve, the fiber-based SP lens can readily achieve a small focus close to the 

diffraction limit size. 

 

Even though the spot size was underestimated, focuses close or equal to the smallest focal size of 

objectives have been achieved by using fiber-based SP lenses. It will be demonstrated in Section 
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4.2.1 that this focus can be used to achieve a stronger trap than objective-based optical tweezers, 

which indicates that the real focus should be smaller than the focal size of the objective. 

 

Dependence of focal lengths on the aperture size 

 

The measured focal lengths are 3.2 µm and 1.1 µm for SP1 and SP2, respectively, which are 

significantly bigger than the designed focal length of 20 µm. This level of mismatch has also 

been reported and discussed in ref. [134]. The major cause of this mismatch is believed to be the 

aperture size. The aperture size plays the most important role in limiting the effective focal 

length and elongating the focal depth [148]. The smaller the lens aperture, the stronger 

diffraction effect at the lens edge, and the larger the difference between the real focal length and 

the designed value. This can also be observed from the results obtained in this dissertation: the 4-

slit SP1 has a focal length of 3.2 µm while the 3-slit SP2 has a focal length of 1.1 µm. As 

discussed previously, the spot size of the fiber limits the aperture of the SP lens. Therefore, the 

real focal length is always smaller than the designed value. The diffraction effect also makes the 

focus longer in the longitudinal direction compared with the transverse directions. [148] This 

effect has also been observed from the results obtained by using the fiber-based SP lenses. 

 

In addition to the aperture effects, other issues can also cause the focal length to vary from the 

designed value. One reason is the resonance of the SP wave in the slits. Each slit can be viewed 

as an optical resonator. The SP wave propagating inside may travel multiple trips before exiting 

the slit. This effect is not considered in the design model. The resonance effect can change the 

phase delay and hence cause focus shift. Power differences between the optical waves emitted 
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from the slits also introduce differences to the designed parameters. Since the power distribution 

in different slits is not considered in designing the SP lens, the output optical powers from 

different slits are expected to be non-uniform. The Gaussian distribution of the light propagating 

in the optical fibers, the different attenuation of the SP wave when passing through the slits with 

different widths, and the varying radius of slits all contribute to the power difference between the 

optical waves from different slits. It is known that the visibility of the interference pattern 

reaches maximum when the incident waves have equal amplitudes. [61] Difference in the 

intensity of incident waves can smear the focus and also cause the focus shift. 

 

Comparisons with the results in ref. [137] 

 

Compared with the superfocusing achieved by the SP lens on a glass substrate [137] as shown in 

Figure 4.2, the intensity distribution of the fiber-based SP lens (see Figure 4.8 and Figure 4.11) is 

much sharper and cleaner on the focal plane, which means more power is focused at one spot 

instead of being distributed over a large area. The SP lenses developed in this dissertation work 

only consist of 3 or 4 rings and have radii of less than 1.5 µm in radius, compared with a much 

larger (~6 µm), 6-ring SP lens in ref. [137]. Moreover, the fiber-based SP lenses have the longer 

focal lengths of 1.1 µm and 3.2 µm, while the focal length achieved in ref. [137] is 0.5 µm. Most 

importantly, the superfocusing achieved in this dissertation work is with a fiber-based SP lens, 

which can fully take the advantages of a large variety of mature technology associated with 

optical fibers. 
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4.1.4. Modeling of fiber-based SP lens: FDTD simulations 

 

As discussed in Section 4.1.3.3, there are some issues that are not considered in the design model. 

However, these issues can be considered in numerical simulations using finite-difference 

methods. [134] In this section, a commercial software, FDTD Solutions, is used to model the 

optical wave emitted from the SP lenses, which is useful for achieving a better understanding of 

the superfocusing mechanism of the fiber-based SP lens. 

 

4.1.4.1. Basic principles of FDTD methods 

 

FDTD method is one kind of space-grid time-domain techniques that is widely used in solving 

electromagnetic (EM) problems. [149] In the FDTD method, the space of interest is divided into 

a number of small volumes. Within each small volume, the Maxwell’s curl equations can be 

approximated with finite differences, enabling the solution of Maxwell’s equations in a spatial 

stepping procedure. In this case, the spatial distribution of the EM wave at time t t+ ∆ can be 

obtained by using the previous distribution at time t. This time-stepping continues as the 

numerical wave analogs propagate in the space lattice. The marching-in-time procedure can be 

used to effectively simulate how the EM wave propagates in the space with time going forward. 

Since no assumption is necessary for performing FDTD simulations, providing the calculations 

converge, FDTD is believed to be able to solve a large variety of EM wave interaction problems, 

from radar-guided devices to nanoscale optical resonators. [149] 
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The basic idea of FDTD is to replace the derivatives in the Maxwell’s equations with 

corresponding finite differences. Maxwell’s curl equations in a linear, isotropic and 

nondispersive material are written as [149]: 

*1 1 ( + ),

1 1 ( + ).

t

t

σ
µ µ

σ
ε ε

∂ = − ∇ × − ∂


∂ = − ∇× − ∂

source

source

H E M H

E H J E
 

 
(4-4)

 
(4-5)

where the vectors E and H are the electric field and the magnetic field, ε and µ denote the 

permittivity and permeability in the medium, t is the time, and Jsource and Msource are the electric 

current density and equivalent magnetic current density, which are independent sources of E- and 

H-field, respectively. The symbol ∇  denotes the vector differential operator, 

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

i j k  in a Cartesian coordinate system, where i, j, and k are the unit vectors 

along the x, y and z directions, respectively. The vector components of Eq. (4-4) and (4-5) can be 

written separately: 
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It can be seen that the differentiation of all the components are carried out along the two 

orthogonal directions. For example, Ez and Hz are differentiated along x and y directions, but not 

z direction. Yee [150] presented a special lattice and a set of finite-difference equations to solve 

the Maxwell’s equation. The famous Yee’s lattice is shown in Figure 4.21. Each grid (i, j, k) is 

surrounded by the six components of the EM field. Three electric field components are located at 

the centers of three adjacent edges. Three magnetic field components are located at the centers of 

the three adjacent surfaces. Each component is along the corresponding axis. 

 

 

Figure 4.12. Components of the electric and magnetic fields in a cubic cell of the 
Yee’s lattice. 

 

Applying the central differences 

1 1( ) ( )
2 2
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to Eq. (4-4)~ (4-11), the final equations used for the FDTD method can be obtained in terms of 

the components in the Yee’s lattice shown in Figure 4.21. Here only the final results by applying 

Eq. (4-12) to Eq. (4-4) are given in Eq. (4-13), and other results can be found in ref. [149]. 
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Here, x∆ , y∆ , and z∆  are the lengths of the lattice cube along the x, y, and z axes, respectively, 

and t∆  is the time step. Each field component has one superscript for the number of the time 

step and three subscripts for the numbers of the spatial steps along three axes. A semi-implicit 

approximation is usually used to estimate the field components at time n t∆ : [149] 
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H H
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(4-14) 

 

According to Eq. (4-13) and Eq. (4-14), the field components at any time can be directly 

obtained from the field components of previous times. Therefore, the FDTD method is a 

marching-in-time procedure with the help of Yee’s lattice to simulate the EM wave propagation 

by solving Maxwell’s equations. 
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4.1.4.2. FDTD simulations carried out with FDTD Solutions 

 

FDTD Solutions (Lumerical, Inc) is a powerful FDTD simulation software that provides a 

computer aid designing (CAD) interface and high calculation efficiency. The procedure of 

carrying out the FDTD simulations with FDTD Solutions is shown in Figure 4.13. 

 

 

Figure 4.13. Procedure of FDTD simulations. 
 

The setup of a model and the input of the parameters can be realized by four modules in the 

software: Structures, Simulation, Sources, and Monitors. The model of the fiber-based SP lens is 

drawn with the CAD interface in the Structures module. The number of the slits (rings), the 

radius and width of each slit, and the gold layer thickness can be adjusted. Other parameters such 
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as the refractive indices of the medium, the fiber, and the metal can also be modified. There are 

different dispersion models for determining the permittivity of dispersive materials. If the models 

used are inappropriate, the simulation results can be unstable (divergent). Appropriate models 

thus should be chosen by comparing the values provided by the models and those available in the 

databases.  

 

The settings of the simulation region are then specified in the Simulation module. The simulation 

region size determines the space in which the simulation should be performed. The simulation 

region mesh size is actually the size of Yee’s lattice cube, which controls the grid size of the 

whole simulation region. If there are regions with fine structures or sharp changes of the material 

properties, the override mesh can be used to create a finer grid within that region. Since FDTD 

Solutions use EM pulse to simulate the EM behavior, the simulation time determines the total 

number of time steps to be calculated, which should be set long enough so that the majority of 

the optical power leaves the simulation region. Long simulation time requires more 

computational resources (more memory usage and longer calculation time). Boundary conditions 

(BCs) are also very important for the simulations to work properly and efficiently. The 

symmetric and antisymmetric BCs can make the simulation region two-fold or four-fold smaller. 

The perfectly matched layer (PML) is a type of BCs that can absorb all the incident EM waves. 

When the simulation region is in an open space, the PML is used outside the whole simulation 

region to avoid the EM wave reflecting back to the region. The stability of the simulation 

depends largely on the settings of the PML, such as the number of PML layers, PML types, and 

the relative position of the PML type. In addition, the time stability factor also helps achieve a 
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convergent simulation. These settings have to be properly adjusted via a trial-and-error 

procedure. 

 

The Sources module defines the properties of the incident wave. The parameters of the sources 

can be input here, including the source shape, wavelength span, source inject position and 

direction, and source polarization. Generally these parameters do not affect the convergence of 

the simulation. Modifications are necessary only when different beam parameters are tested. 

 

The monitors elaborate the data to be recorded after the simulation. This module determines 

what data should be kept for viewing while removing other unnecessary data from the simulation. 

Large sizes and large number of monitors can significantly increase the required memory during 

the simulation as well as the file size. Different types of monitors are available for evaluating the 

simulation results. 

 

After the settings of all the modules are finished, the simulation can be started by running with 

the built-in FDTD codes. The running time ranges from 2 hours to 12 hours, depending on the 

settings. The simulation results can be checked from the data saved in the Monitors module. 

  

4.1.4.3. FDTD simulation results of SP1 

 

FDTD simulations are carried out to obtain the intensity distribution of the designed fiber-based 

SP lenses. The incident beam is set to have a flat wavefront and a Gaussian intensity profile with 

the beam waist of 2.8 µm, which is consistent with the wave in an SM800 single model fiber. 
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The polarization is considered to be along the x axis and the wavelength is 808 nm. The beam is 

incident from a glass medium with a refractive index of 1.458, which is the value of the fiber 

core refractive index. The beam waist is set to be at the interface between the glass and the gold 

layer. The gold layer is 100 nm thick according to the experimentally measured value described 

in Section 4.1.2. The parameters of the SP lenses used in the simulations are the same as those 

listed in Table 4.1.  

 

     
(a)                    (b) 

Figure 4.14. Intensity distribution obtained from the simulations of SP1 on two 
orthogonal planes: (a) xz plane and (b) yz plane. The origin of the coordinate 
system is located at the center of the SP lens surface. The optical beam is 
propagating downwards. 

 

The intensity distributions along the two orthogonal planes are shown in Figure 4.14. According 

to the simulation results, the focus (the strongest intensity) is located at z = 2.29 µm on the 

optical axis. The intensity profiles at the strongest intensity position along different directions are 

obtained in the simulations, as shown in Figure 4.15. The focal size (i.e., FWHM size) obtained 
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from the simulation is 544 nm along the x direction, 520 nm along the y axis, and 3.42 µm along 

the z axis.  

 

(a)   (b)  

(c)  

Figure 4.15. Intensity profile at the strongest intensity position (z = 2.42 µm) 
along (a) x axis, (b) y axis, and (c) z axis. 

 

4.1.4.4. FDTD simulation results of SP2 

 

The intensity distribution of SP2 is also obtained by using FDTD Solutions. The design 

parameters shown in Table 4.2 are used in the simulations. The intensity distributions along the 

xz and yz planes are shown in Figure 4.16. It is found that the focus is located at z=1.47 µm on 
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the optical axis. The 3D intensity profile at the focus is shown in Figure 4.17. The focal size is 

obtained to be 404 nm along the x axis, 364 nm along the y axis and 3.20 µm along the z axis. 

 

(a)         (b)   

Figure 4.16. Intensity distribution of SP2 obtained from the simulations on two 
orthogonal planes: (a) xz plane and (b) yz plane. The origin of the coordinate 
system is located at the center of the SP lens surface. The optical beam is 
propagating downwards. 

 

4.1.4.5. Discussion of the simulation results of the SP lenses 

 

Symmetry of the intensity distributions 

 

The simulation results of both SP lenses exhibit non-rotational symmetry: differences between 

the intensity distributions of xz and yz planes and differences in the spot sizes along the two 

transverse directions. Although the fiber-based SP lens is rotationally symmetric, the linear 

polarization of the incident optical beam induces a difference in the intensity distributions along 

the two orthogonal transverse directions. This non-rotational symmetry has also been seen in the 
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experimental data of the spot sizes and the intensity distributions obtained from SP2. However, 

many other issues in the experiment (e.g., lens misalignment, blocked slits, and etc.) can result in 

the difference between the x and y directions, which may influence the intensity distributions and 

spot sizes even more than the effect of the linear polarization. This explains why the difference 

between the intensity distributions on the xz and yz planes is apparent for SP2, but not obvious 

for SP1. For SP2, the intensity distributions are symmetric on both the xz and yz planes, which 

indicates that there is no serious misalignment of the SP lens exists. The intensity patterns on the 

xz and yz planes are different from each other due to the linear polarization. However, in the case 

of SP1, the misalignment between the SP lens and the fiber does exist, which can be seen from 

the asymmetry of the intensity distributions on both the xz and yz planes. The effect of the 

misalignment dominates that of the linear polarization, resulting in the intensity patterns on both 

the xz and yz planes are similar to each other. 

 

(a) (b)  
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(c)  

Figure 4.17. Intensity profile at the strongest intensity position (z = 1.47 µm) 
along (a) x axis, (b) y axis, and (c) z axis. 

 

Spot size 

 

Comparison of the spot sizes obtained from the simulation results and those measured in the 

experiment are summarized in Table 4.3. It should be noted that the x and y directions defined in 

the experiments are not the same as those defined in the simulation, because the polarization 

directions in the experiment are unknown. 

 

Table 4.3. Spot sizes (FWHMs) of SP1 and SP2. 

 SP1 SP2 

 Simulation Experiment Simulation Experiment 

x axis (nm) 520 440 364 352 

y axis (nm) 544 500 404 533 

z axis (µm) 3.42 1.758 3.20 0.743 

 

It can be seen from Table 4.3 that the experimental obtained spot sizes agree well with those 

obtained in simulation. The maximum discrepancy (~130 nm in diameter) is found to be in the 
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transverse spot sizes (FWHMs) obtained with SP2 along the y direction. Considering the camera 

pixel size of ~60 nm, this discrepancy is reasonable. However, the discrepancy in the z direction 

focal depth is much larger. The reason is still unclear and further investigation is needed. 

 

Focal length 

 

In the simulation, the focal lengths are obtained to be 2.29 µm and 1.47 µm for SP1 and SP2, 

respectively. As discussed in Section 4.1.3.3, the smaller the aperture, the shorter the focal length. 

This has been observed in the experimental data, and now confirmed in the simulation results. In 

the experiments, the focal lengths were measured to be 3.2 µm and 1.1 µm for SP1 and SP2, 

respectively, which are comparable to the values obtained in the simulations. 

 

4.1.5. Discussion of the differences between the experimental and simulation results 

 

It is believed that the difference is mainly due to the errors associated with the SP lens 

fabrication. First, it is hard to obtain a precision of 10 nm in fabricating nanoscale slits with the 

FIB milling. The widths of the fabricated slits may vary for different samples even with the same 

metal thickness and the same settings in the FIB software. Second, the method used to determine 

the dimensions of the fabricated slits can also introduce random errors on a level of 10 nm. 

Currently the dimensions (widths and radii) are determined by counting the pixel numbers of the 

SEM images. However, the edges of the slits on the SEM images are not sharp due to the slanted 

sidewalls. Due to the high aspect ratio (1.5~2) of the slits, it is different to determine the slit 

dimensions from the SEM images. In addition, the exact thickness of the gold layer is also 
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difficult to determine. In the experiment, when the gold layer was evaporated, the fibers were 

mounted opposite to the target, and a wafer was mounted close to the fiber ends for calibration of 

the evaporated gold layer thickness. It was difficult to place the wafer at the same vertical 

position, and this might cause the difference in the coating thickness on the wafer and the fiber 

ends. The measurement of the gold layer thickness can also give different results ( ± 30 nm at the 

largest) at different positions of the wafer. All the abovementioned issues can result in 

differences between the fabricated devices and the designed ones. 

 

In addition to the fabrication errors, there are many other factors that are not considered in the 

simulations, which can also result in the discrepancy of the simulation results and experimental 

results. First, the nanoscale slits fabricated with FIB have slanted sidewalls, while in the 

simulations the slits are considered to have straight sidewalls. Second, the dose used in the FIB 

fabrication was always more than enough to make sure all the gold inside the slits were totally 

removed. In this case, undercutting of the glass endface of the fibers was inevitable. Third, the 

Ga ions used in the FIB may be implanted into the glass substrate, which can change the 

refractive index and thus distort the incident beam. All these issues are difficult to quantify, but 

can certainly contribute to the discrepancy in the results. 

 

4.1.6. Significance of the superfocusing achieved with fiber-based SP lenses 

 

To the best of our knowledge, the results presented in this dissertation are the first demonstration 

of superfocusing with fiber-based devices. The optical fiber is an excellent waveguide with low 

cost and low loss, and is widely used in fiber communication industry. The fiber-based SP lens 
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can play an important role in bridging the nanoscale devices and macroscale light sources and 

detectors.  

 

Compared with free-space optical components, optical fibers are much less susceptible to the 

noise introduced by the environment (temperature change, air flow, ambient light, and so on). A 

fundamental Gaussian beam can be readily available at the entrance of the SP lens. Once the SP 

lens is fabricated on the fiber endface, no additional alignments between the optical beam and the 

SP lens are needed. Therefore, the performance of the fiber-based SP lens is much more robust 

than that involving free-space optics, which reduces the efforts to build up and maintain the 

system.  

 

Compared with the focuses achieved with the objectives, those of fiber-based SP lenses can 

potentially overcome the diffraction limit. [137] The focusing task that often requires bulky and 

expensive objectives can now be accomplished by using a much smaller and cheaper system. 

The small and cost-effective configuration makes the fiber-based SP lens highly competitive 

especially in microscale systems. The fiber-based SP lens can find applications in nanoscale 

fluorescence detection, nanoscale lithography, and power supply of nanoscale photonics, in 

addition to the optical trapping, which will be discussed in the next section. 

 

4.2. Optical trapping ability enhancement with fiber-based SP lenses 

 

It has been demonstrated in Section 4.1 that the fiber-based SP lens can be used to create a focus 

size comparable to that obtained with a high NA objective. Here, the small focus from an SP 
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fiber is used to perform fiber-based optical trapping with an enhanced trapping efficiency. The 

rest of this section is arranged as the following. In Section 4.2.1, experimental study of trapping 

of a sub-micrometer-size bacterium in three dimensions is presented. The optical trapping of 

particles with sizes smaller than the wavelength is investigated using two models in Section 

4.2.2. The methods to enhance trapping forces are explored through a parametric study. In 

Section 4.2.3, mapping of the 3D optical forces is carried out for both SP1 and SP2 using the 

experimentally measured intensity distribution. The significance of the SP fiber optical tweezers 

is briefly discussed in Section 4.2.4. 

 

4.2.1. Experimental demonstration of enhanced trapping ability achieved with fiber-

based SP lenses 

 

4.2.1.1. Experimental results of bacteria trapping with SP fiber tweezers 

 

To experimentally demonstrate the enhanced trapping ability by using fiber-based SP lenses, a 

bacterium was successfully trapped in three dimensions with SP2.  

 

The laser source used here is the same one that has been described in Section 2.3. A couple drops 

of tap water were added onto the coverglass on the microscope stage. The illumination light of 

the microscope was turned on with the maximal intensity. Bacteria could be seen after 20 

minutes of illumination. The bacterium trapped in the experiment is a cylindrical particle with a 

diameter of ~0.5 µm and lengths of ~2 µm. The successive images captured from a video clip are 
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shown in Figure 4.18. The bright spot is the focus created with SP2. A free bacterium was 

trapped when the laser was turned on, as shown in Figure 4.18 (a)-(c). After being trapped, the 

bacterium tried to swim away but did not succeed due to the strong optical trap. When the fiber 

was lifted up, the bacterium was moved together with the trap so that it was gradually out of 

focus, as shown in Figure 4.18 (d)-(f). When the focal plane was brought up to the bacterium, it  

 

 

Figure 4.18. Images showing 3D trapping of a bacterium with SP2. The white 
arrows point to the bacterium, and the black arrows show the location of a 
reference silica bead. (a-c) A free bacterium was trapped by the focus created with 
SP2. (d-f) The bacterium was lifted up in the vertical direction while the focal 
plane is on the coverglass. (g) The focal plane was brought to the plane where the 
bacterium is located. In (g-h), the water is moved in the x direction, and in (h-i), 
the water is moved in the y direction with the bacterium remaining trapped. The 
optical power measured outside the SP lens was 0.91 mW. 
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can be seen from Figure 4.18 (g) that the bacterium remained trapped. The water was then 

moved in the x and y directions and the bacterium still stayed stable in the trap, as shown in 

Figure 4.18 (h) and (i). The optical power emitted from the fiber-based SP lens was 0.91 mW, 

which was measured with a free-space powermeter (PM144, Thorlabs). The moving speed of the 

water was more than 10 µm/s in both transverse directions and the bacterium remained trapped, 

which indicates that a strong 3D optical trap was enabled with a power of power of 0.91 mW. 

 

The transmission efficiency of the system is ~5.5%, which is the ratio of the power transmitted 

through the SP lens to that of the light source. The power loss includes the losses at the FC/PC 

connectors, the splicing losses, and the losses due to the absorption and reflection at the metal 

layer of the SP lens. It is noted that the absorption of the optical power can create thermal flow 

near the SP lens, which has the same direction as the scattering force, and thus, it prevents the 

bacteria from being trapped in three dimensions. After a bacterium was trapped in the 3D trap, 

the power at the focus was decreased to ~0.8 µW for 20 seconds, and the bacteria remained 

trapped. 

 

The bacteria are believed to be either E. coli or Legionella. E coli are 0.2~0.8 µm in diameter and 

a couple of micrometers in length [151, 152], while Legionella are 0.3~0.9 µm in diameter and 

2~20 µm in length [153]. The bacteria size observed in the experiment is within the range of both 

types. Both of these two types of bacteria are rod-shaped and can be found in tap water [152, 

153]. For these reasons, it is believed that the bacteria trapped here are one of these two types of 

bacteria. Ashkin and Dziedzic [48] have also trapped these bacteria with objective-based optical 
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tweezers in his experiment since he found these bacteria can be easily obtained in the water kept 

around for a couple of days. 

 

4.2.1.2. Discussion of the trapping force enhancement demonstrated by using the SP lensed 

fiber tweezers 

 

It should be noted that trapping bacteria is challenging even with conventional objective-based 

tweezers. [154] This is due to the fact that the bacteria have a low refractive index, small 

dimensions (sub-micrometers in diameter), and fast motility. The refractive index of bacteria is 

1.38 over the visible range of frequencies [154, 155], which is smaller than that of the 

polystyrene beads (1.58~1.60 [156]) and that of the silica beads (1.45) used in this work. 

Considering the water has a refractive index of 1.33, the bacteria are much more difficult to trap 

than the polystyrene or silica beads with the same sizes, and this has been verified by other 

researchers [155]. The bacteria observed in the experiment are ~0.5 µm in diameter and a couple 

of micrometers in length. Trapping of particles smaller than 1 µm requires highly focused laser 

beams and, to the best of our knowledge, has not been realized with fiber optical tweezers. 

Moreover, living bacteria have ability to swim by rotating their flagella as propellers [157]. 

When they are trapped by optical tweezers, they will struggle to escape [48], which makes it 

even more difficult to trap them compared with nanoscale dielectric beads. 

 

Compared with the bacteria trapping achieved by using objective-based tweezers, the fiber 

tweezers based on the SP lens can achieve a stable 3D trap with a lower power. Generally in 

order to achieve a stable 3D trap of bacteria with objective-based optical tweezers, the required 
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optical powers are tens of milliWatts (18 mW in ref. [158], 50 mW in ref [159]) or even 100 mW 

[160]. The lowest optical power reported is a couple of milliWatts (6 mW in ref. [158], 3~6 mW 

in ref. [48]). It should be noted that with these low power levels, 3D traps were not very stable. 

[158] If the power is decreased further, the bacteria can only be trapped in two dimensions. [48] 

In this dissertation work, the 3D trapping of bacteria was achieved by using SP lensed fiber 

tweezers with a power of 0.91 mW at the focus. At this power level, it was found that the water 

can be moved at a speed of ~20 µm/s without losing the bacteria from the 3D trap, which 

indicates that the trap was very stable. Since a lower power is required for realizing a stable trap 

with SP lensed fiber tweezers, it is believed that the fiber tweezers with a SP lens enables a 

stronger trap than that of conventional objective-based tweezers. This is also the first work to 

demonstrate trapping of sub-micrometer sized particles with fiber optical tweezers 

 

The experimental results of 3D bacteria trapping with a low power have demonstrated that using 

the SP lens can indeed significantly improve the trapping ability of fiber optical tweezers. The 

trapping efficiency of the fiber optical tweezers can be comparable and even stronger than 

objective-based tweezers.  

 

4.2.2. Modeling of enhanced trapping efficiency with fiber-based SP lenses 

 

In this section, two models used to obtain the trapping forces in the Rayleigh regime are 

introduced and discussed, with the detailed derivations of one model presented. Based on these 

models, parametric studies of Rayleigh trapping forces are carried out. This is the first attempt to 
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compare the two models in parametric studies. The comparison helps one to select a valid model 

to analyze the Rayleigh trapping forces. 

 

4.2.2.1. Models for obtaining trapping forces on Rayleigh particles 

 

The optical trapping theory is available in two extreme cases: Mie particles (a >>λ) and Raleigh 

particles (a <<λ). [7] For Mie particles, ray-optics approximation is valid, and optical forces can 

be calculated by the photon momentum change due to reflection and refraction, as described in 

Section 2.4.1. By contrast, Rayleigh particles can be considered as induced dipoles in the time-

harmonic electromagnetic fields, and the optical forces are essentially the forces that the 

electromagnetic fields apply to the induced dipoles.  

 

In principle, the optical forces can be obtained by integrating the Maxwell’s tensor on a closed 

boundary surface that encloses the particles [161]. However, the scattered optical field should be 

known in advance in order to calculate the Maxwell’s tensor at each spatial point, which 

significantly increases the complexity and difficulty. [162] A simple expression of the optical 

forces that only depend on the incident fields and the particle material properties is desirable. 

There are currently two different analytical solutions [7] for the optical forces on Rayleigh 

particles: those of Harada and Asakura (HA model) [163] and Chaumet and Nieto-Vesperinas 

(CN model) [164]. Details of these models are introduced as follows. 

 

HA model 
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The time averaged trapping force on Rayleigh particles can be separated into two parts: the 

scattering force and the gradient force. The scattering force is given by [7, 163] 

m
scatt

I nF
c

σ
= , 

 
(4-15) 

where I is the intensity of the incident light, nm is the refractive index of the surrounding medium, 

c is the speed of light in vacuum, and σ is the effective scattering cross section of the sphere. For 

a sphere with a refractive index of ns and a radius of a, σ can be expressed as  
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where λm is the wavelength in the medium and nr is the relative refractive index (ns/nm). The 

scattering force is always along the propagation direction of the light. On the other hand, the 

vector gradient force is given by 
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where the polarizability α0 is [163] 
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Note that Eq. (4-17) was cited in ref. [7], but in a wrong form. It can be seen that the gradient 

force is along the direction of the intensity gradient. The derivations of Eqs.  

(4-15) and (4-17) are given in details in ref [163]. The derivation is briefly summarized as 

follows. The scattering force is derived from the momentum change of the EM field, which 

results from the EM waves scattered or radiated from the induced dipole on the particle. The 

gradient force is derived from the Lorentz force applied by the incident EM field onto the 

induced dipole. 
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For the HA model to hold, the size of a particle should be electrically much smaller than the 

wavelength. The validity size of particles will be discussed later in this section. 

 

ii) CN Model 

 

The time-averaged force on a sphere in the Rayleigh regime of the Gaussian unit system, can be 

expressed as [7, 164] 
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1 Re
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l j

j l

E
F E

x
α
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< >=  

∂  
∑ , 

 
(4-19) 

where l=1, 2, and 3, correspond to the three coordinate axes, Ej is the complex amplitude of the 

incident electric field (trapping optical field), *
jE  is the complex conjugate of Ej, and α is a 

generalized polarizability given by [164, 165] 

3
0 0

2(1 )
3 mikα α α= − , 

 
(4-20) 

Here, α0 is the static polarizability of the sphere, given by Eq. (4-18), km is the wave number of 

the trapping laser in the medium, and i is an imaginary number equal to 1− . The generalized 

polarizability has an additional damping term (imaginary part), which corresponds to the 

scattering force. [164] 

 

Eq. (4-19) describes the net optical forces along the three axes without distinguishing the 

scattering forces and gradient forces from each other. Therefore, the forces applied on a Raleigh 

particle by an arbitrary optical field can be obtained. Moreover, this result presents a much 
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simpler form compared with HA model, and it can be applied to analyze optical trapping forces 

on larger particles. [164] 

 

Derivation of optical forces in CN model 

 

Here, detailed derivations of Eq. (4-19) as well as the associated assumptions are provided. 

Although Eq. (4-19) can be found in ref [164], the derivations are not given explicitly, nor are 

they straightforward, as can be seen from the following. The knowledge of the derivation process 

is essential to understand the physical principles involved in the CN model, which can help 

explain the differences between the results obtained from the two models, as can be seen later in 

Section 4.2.2.3 and 4.2.2.6. It is also important to know what assumptions are involved in order 

to determine the validity size range of Eq. (4-19) for the trapping force calculation, which will 

also be discussed later in this section. Moreover, it was found that the conventions used in the 

derivation process of the CN mode are different from those used for the HA model. Proper 

modifications are necessary to make for the CN model in order to get comparable results, and 

these modifications will be discussed in Section 4.2.2.2. 

 

The model used to derive Eq. (4-19) is described as follows. When a polarizable Rayleigh 

particle is placed in an EM field, a dipole is induced due to the time-harmonic EM field. The 

induced dipole is subject to the EM force, which is of interest due to the interactions with the EM 

field. Note that the EM forces and the optical forces refer to the same forces: forces applied by 

the optical (EM) fields. Using the phasor representation, the time-harmonic EM fields can be 

written as 



 171

°( , ) Re( ( ) )i tt e ω= ⋅E x E x  and °( , ) Re( ( ) )i tt e ω= ⋅B x B x . (4-21) 

For simplicity, ( )E x and ( )B x are used instead of °( )E x and °( )B x in the following derivations to 

denote the field phasors. Following the convention, the bold letters and the underlined letters 

denote vectors. The induced dipole momentum on a particle is 

( ) ( )α=p x E x . (4-22) 

Note that the dipole is also time-harmonic and it always has the same direction (but not the same 

phase due to the imaginary part of α) as the electrical field. The EM field varies in such a high 

frequency (this is especially true in the optical frequency range) that only the time averaged 

forces can be observed. The goal is therefore to find the time averaged EM forces applied on the 

induced dipole. 

 

A dipole can be viewed as a pair of electrical charges with equal magnitudes and opposite signs: 

q d= ⋅p r , (4-23) 

where q is the charge magnitude and dr  is the vector separation between the two charges, as 

shown in Figure 4.19. Here x is omitted because the dependence of both p and r on x is taken for 

granted.  

 

Figure 4.19. An electric dipole. 
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In the Gaussian unit system, the EM force applied on a dipole takes the form of a Lorentz force 

[166] 

1( ( )d
c dt

 = + ×  
F p E p Bi . 

 
(4-24) 

The first term is the gradient force, which is related to the gradient of the electrical field. The 

second term is the scattering force, which comes from the changes of the dipole momentum 

either by rotating the dipole or by varying the strength of the dipole. 

 

A time averaged Lorentz force can be written as 

( ) 1Re d
c dt

 < >= < > + < × > 
 

F p E p Bi . 
 

(4-25) 

Here <> denotes the time average. Time average of scalar products is to take one-half of the real 

part of the product of one complex quantity with the complex conjugate of the other [161]. 

Therefore, it can be obtained that 
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(4-26) 

Introducing the Levi-Civita tensor, [167] 
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and the Kronecker delta [167] 
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The vector cross product can be expressed with the Levi-Civita tensor as 
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where ei is the unit vector along the xi axis, and pj and Bk are the components of p and B along xj 

and xk axis, respectively. According to Eqs. (4-26) and (4-29), the component of < >F along the 

xi axis (i = 1, 2, 3) as 
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(4-30) 

With three variables, p, B, and E, in the formulation, the number of variables is to be reduced 

next. According to Eq. (4-22), p can be replaced by E and B is related to E through the 

Maxwell’s Equation 

c
iω

= ×B E . 
 

(4-31) 

Using the Levi-Civita tensor, it is found that 
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By substituting Eqs. (4-22) and (4-32) into Eq. (4-30), it yields 
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Note that j
j

dE
i E

dt
ω= − . Further simplification of Eq. (4-33) requires the relationship between 

the Levi-Civita tensor and the Kronecck delta [167] 
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By applying Eq. (4-34), the second term on the right-hand side of Eq. (4-33) can be transformed 

to 
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By substituting Eq. (4-35) into Eq. (4-33), the final expression of the EM force can be obtained 

as 
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(4-36) 

This is the same result as Eq. (4-19), which was first presented in ref. [164]. According to the 

derivation discussed above, the only assumption is that the particle is electrically small 

(compared with the wavelength) and can be polarized by the external electrical field following 

Eqs. (4-18) and (4-20). It can be seen from Eq. (4-36) that the optical forces on trapped particles 

depend on the polarizability, the electrical field, and the gradient of the electrical field. Eq. (4-20) 

cannot be further written in terms of the intensity because of the imaginary part of α. Although it 
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is not mentioned in ref. [164], it is worth noting that Eq. (4-19) provides a result using the 

Gaussian units, which can be seen from the above derivations. The modifications will be made to 

the CN model in Section 4.2.2.2 to obtain comparable results from both the CN model and the 

HA model. 

 

Particle size range for the HA and CN models 

 

The two models are valid for similar particle size ranges. The reason is that both models are 

derived starting from the Lorentz force on dipoles (Eq. (4-24)) with no further assumption added. 

An immediate conclusion that one can draw is that the models work for particles that can be 

viewed as single electrical dipoles (a << λ). However, they can be applied to particles larger than 

this size range. Simulation results have shown that the HA model is valid for particle diameters 

up to ~2w0 (w0 = the beam waist) in the transverse force calculation and ~0.4λ in the axial force 

calculation. [163] As mentioned above, the CN model should be valid for the same particle size 

range. It should also be noted that the validity size range in the transverse direction is found to be 

up to ~w0 in diameter in ref. [7], which was cited incorrectly from ref. [163], although ref. [7] 

has been cited for much more times than ref. [163]. 

 

4.2.2.2. Modifications to the CN model following the conventions used in the HA model 

 

There are different conventions to express the electromagnetic waves due to historical reasons, 

among which one typical example is the electromagnetic unit systems [161]. The expressions of 

the same physical principle under different conventions can be distinct. There are two differences 
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in the conventions used in the HA model and CN model, namely the unit systems and the plane 

wave expressions. In this dissertation, the conventions used in the HA model will be adopted. 

The CN model will be modified in order to obtain results comparable with those obtained with 

the HA model. The conventions used in the CN mode were not explicitly pointed out in the 

published literature, and here, these differences in the conventions are found out by comparing 

the derivation of the two models. 

 

Expression of the CN model under the SI unit system 

 

The electric field in Gaussian units can be transferred to those in SI units by multiplying a factor 

of 04πε  [161]. In order to compare with the HA model, which is in SI units, the optical forces 

obtained with the CN model in SI units can expressed as 
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(4-37) 

 

Modification of the generalized polarizability 

 

The expression of a plane wave propagating along +z direction also have two different 

conventions: [ ]exp ( )mi k z tω−  and [ ]exp ( )mi t k zω − . These two expressions have the same real 

parts but opposite imaginary parts. Equations involving the imaginary parts of EM waves will 

have different results following different conventions. Errors may occur when the results 

following two conventions are combined [168]. Unlike the simple translation between the unit 

systems, the errors resulting from this type of conventions are difficult to check and correct. The 
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generalized polarization Eq. (4-20), which is used by the CN model, uses the convention of 

[ ]exp ( )mi k z tω− , while the HA model uses [ ]exp ( )mi t k zω − .  

 

Next, following the derivation of Eq. (4-20) in ref [165], the modified expression will be 

provided when the EM wave of [ ]exp ( )mi t k zω −  is used. The “radiation reaction” electric field 

Erad, which comes from the radiation of the induced dipole P, can be written as 

32
3rad m jik= −E P . 

 
(4-38) 

Note Eq. (4-48) is different from the similar equation in ref. [165] by a factor of -1, which comes 

from the different expression conventions of the EM wave. The induced dipole is determined by 

both Erad and the incident wave, Eext by 

0 ( )j ext ext radα α= = +P E E E , (4-39) 

Here α is the generalized polarizability and α0 is the conventional polarizability defined by Eq. 

(4-18). By substituting Eq. (4-38) into Eq. (4-39), the modified generalized polarizability for 

plane waves expressed as [ ]exp ( )mi t k zω −  can be obtained as 

3
0 0

2(1 )
3 mikα α α= + , 

(4-40) 

The modified polarizability definition enables the results obtained with the CA and HA models 

to be comparable with each other. 

 

4.2.2.3. Summary and comparisons of the HA and CN models 
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The HA model separates the gradient force from the scattering force, and only the intensity 

information is required from the incident optical fields. The optical forces in the HA model are 

derived from two different physical principles: the gradient force from the Lorentz force applied 

on the induced dipole, and the scattering force from the changes of the EM momentum by an 

effective scattering area. The CN model encapsulates both the gradient force and the scattering 

force into one simple expression and only the electrical fields are required for the calculation of 

the forces. The force in the CN model originates only from the Lorentz force, as can be seen in 

the abovementioned derivation process.  

 

It first appears that the CN model misses the scattered fields, which is considered by the HA 

model. Actually the information of the scattered fields is considered in the CN model because it 

uses a different definition of the polarizability. The CN model uses a generalized polarizability in 

Eq. (4-20), which is essentially adding an imaginary modification to the polarizability used by 

the HA model (Eq. (4-18)). This correction of the imaginary part is equivalent to the scattering 

force considered in the HA model. [164] However, the transverse gradient forces in both models 

are obtained from the same principle: the Lorentz force, but different definitions of the 

polarizability are used. This surely will cause difference in the transverse forces, as can be seen 

later in Section 4.2.2.6. Fortunately, this difference is not noticeable unless the particle size is 

getting close to the beam waist. Therefore, the CN model is essentially the same as the HA mode 

in the transverse directions, although they have distinct expressions. For large particles, the CN 

model deviates from the HA mode even in the transverse directions due to different polarization 

definitions. All these differences will be discussed along with some simulation results in Sections 

4.2.2.6 and 4.2.3. 
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The complexity of the two models depends on what information is available. When multiple 

known optical fields are overlapped, it might be complicated to calculate the intensity resulting 

from the interference effects. The CN model should be used in this case without the necessity for 

finding the intensity distribution. On the other hand, if the intensity of an irregularly shaped 

optical field is measured, the HA model should be used, since the CN model cannot be used 

without the knowledge of the electrical fields.  

 

4.2.2.4. Stability of optical trapping versus particle sizes in the Rayleigh regime 

 

Due to the complexity of the generalized polarizability (Eq. (4-20)), the dependence of optical 

forces on the particle size is not straightforward for the CN model. However, the HA model 

provides a clear knowledge of this dependence. According to the HA model, the scattering force 

is proportional to a6, while the gradient force is proportional to a3, under the assumption of a 

fixed intensity distribution. It seems that smaller particles are easier to trap because the scattering 

force decreases much faster with decreasing particle sizes than the gradient force while the 

gradient force contributes positively to a 3D trap. However, this is not true in the experiment. 

Dielectric particles under 300 nm are difficult to trap. [169] The major reason is that the 

Brownian force (thermal random force) remains the same with decreasing particle sizes. [170] 

When the particle size shrinks to hundreds of nanometers, the optical force cannot overcome the 

Brownian force to achieve a stable trap, although the gradient force dominates the scattering 

force. In addition to the Brownian force, the difficulty of imaging under a microscope also makes 

it harder to trap small particles. 
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4.2.2.5. Electric fields of fundamental (TEM00) Gaussian beams 

 

Zeroth-order Gaussian beams are generally used to characterize the laser beams focused by an 

objective lens (TEM00 mode). A zeroth-order x-polarized TEM00 beam that propagates along +z 

direction can be expressed as [163] 
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where w0 is the beam waist, E0 is the electric field at the center of the waist, and the origin of the 

coordinate system is at the center of the beam waist. It is intuitive to normalize the coordinates 

by the focal sizes along the Cartesian directions, because the characteristics of a Gaussian beam 

are determined by the beam waist in the transverse directions and by the focal depth (kw0
2) along 

the longitudinal direction. By introducing normalized coordinates [171] 
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where 2 2ρ ξ η= +  and 1
2

Q
i ζ

=
+

. The nondimensional parameter s, which can describe the 

focusing strength, is given by [171] 
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The intensity at an arbitrary position can be expressed in terms of the magnitude of the electric 

field at the same place [163] 
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with ε0 being the vacuum permittivity (8.85×10-12 F/m). 

 

The components of the gradient of the electric field are also given as the following 
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It should be noted that there is an error associated with the expression in Eq. (4-43) for large s 

values (tightly focused laser beams). The expression of zeroth-order Gaussian beams is valid for 

moderately focused beams where the paraxial approximation holds. [172] However, when the 

beam waist shrinks close to the diffraction limit, the paraxial approximation fails, and the 

Maxwell’s equations are not precisely satisfied by the zeroth-order expression. For example, if 

the waist decreases to 0.32 µm (~ diffraction limit), s is about 0.3, and the associated error with 

the TEM00 mode is 15.3%. [171] Despite the existence of this error, the use of Eq. (4-43) still 
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provides reasonable predictions and analyses for trapping forces using highly focused laser 

beams, and good agreements between the simulation and experimental results have been 

observed previously [155, 173]. Therefore, the zeroth-order TEM00 mode (Eq. (4-43)) will be 

used in this dissertation work to model the focused beam exitting from the objectives. 

 

4.2.2.6. Parametric study of Rayleigh particle trapping  

 

Matlab codes based on both the CN model and the HA model are developed. To compare the 

results obtained by using the two different models, examples given in published literature are 

revisited. The first example is the force mapping along the x axis (transverse direction) and the z 

axis (longitudinal direction) on a Rayleigh particle. The parameters used in the simulations are 

the same as those given in ref. [163]: the vacuum wavelength λ0=0.5145 µm, waist w0=5 µm, 

power P=100 mW, bead refractive index ns=1.592, bead radius a=10 nm, and medium refractive 

index nm=1.332. 

 

As shown in Figure 4.20, the results obtained here with the HA model match perfectly with those 

provided in ref. [163], both in the x direction and the z direction, which verifies the correctness of 

codes developed for the HA model. Furthermore, the results obtained with the CN model match 

very well with the HA model results in the x axis, while discrepancy is observed for the z axis 

results from the two models. This can be explained by tracing the differences between the two 

models. As discussed in Section 4.2.2.3, the transverse forces of both models are based on the 

Lorentz force but with different definitions of polarization. Such difference is not noticeable for 
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small particles (a<<λ), and thus, a good match is observed in Figure 4.20 (a). However, the two 

models use different principles to determine the longitudinal (scattering) forces, and this 

contributes to the differences observed in Figure 4.20 (b). This difference can be explained by 

the errors associated with the estimation of the effective scattering cross section (Eq. (4-16)) in 

the HA model and the generalized polarization (Eq. (4-40)) in the CN model. Although the CN 

results and the HA results are different by a factor of ~1.4 according to Figure 4.20 (b), the shape 

of the longitudinal force curves and the position of maximum forces are the same for both 

models. 

 

(a)     (b)  

Figure 4.20. Comparison of results obtained with both HA and CN models. (a) 
The x-axis transverse force versus the x position for the bead coordinates of y=0 
and z=0. (b) The z-axis longitudinal force versus the z position along the optical 
axis (x=0 and y=0). The diamond data points are the results provided in ref. [163]. 

 

It is noted that the length scales along the x and the z directions are different. Due to the weakly 

focused laser beam, the waist of the beam is 5 µm while the focus depth is around 400 µm. 

Therefore, the different scales (with two orders of magnitude difference) of the transverse and 

longitudinal directions are used so that the trends of the forces can be seen. The stronger the 

focusing, the less the scale difference of these two directions, which can be seen from Eq. (4-42). 
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Next, the parametric study will be performed to find out the influence of some important 

parameters to the trapping forces, including the particle size, the beam waist, and the particle 

refractive index. It is taken for granted that the optical force is proportional to the optical power 

along every direction, so the dependence of the trapping forces on the power is not considered. 

 

i) Particle size 

 

Another example from the published literature is revisited here, which is used to carry out the 

parametric study. The parameters used for the simulation are obtained from the ref. [155] as the 

following: the beam waist w0=0.44 µm, the vacuum wavelength λ0=1064 nm, the power P=1W, 

the refractive index ns=1.38 (for biological particles), the medium refractive index nm=1.33. The 

particle radius a changes from 0.03w0 (~13 nm) to w0 (440 nm). The escape force, defined as the 

maximum transverse force, is used to characterize the strength of an optical trap. For a TEM00 

mode beam, the escape force can be obtained at the transverse plane at z=0. The results of the 

escape force obtained using both the CN and HA models are plotted in Figure 4.21.  

 

The data (diamond points in Figure 4.21) from ref. [155] are calculated with the generalized 

Lorentz Mie theory (GLMT). The GLMT provides a general and complete solution for the 

scattering field around the trapped particles, and the optical forces can be obtained in an arbitrary 

particle size regime. [155] However, it is much more difficult to implement the GLMT compared 

with the Rayleigh regime trapping models used in this dissertation. Moreover, the GLMT is a 

numerical method similar with the FDTD. However, unlike the Rayleigh models, the GLMT 
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cannot provide an analytical insight into the understanding of the trapping principles. Here, the 

data calculated with the GLMT is only used to verify the simulation codes for the HA and CN 

models and provide comparison with the results obtained from these models. 

 

 

Figure 4.21. Dependence of the x-axis escape force on the particle size. The 
escape force is determined by the maximum x-axis force with the particle 
coordinates of y=0 and z=0. The diamond data points are the results provided in 
ref. [155]. 

 

It can be seen that the results obtained from both HA and CN models match well with those from 

the reference for the particle size range of a<0.4w0, but discrepancy starts to increase for larger 

particles beyond this range. It is not surprising because the Rayleigh models are valid in the 

Rayleigh regime where a<<λ. The HA results and CN results match with each other perfectly for 

a<0.6w0, as can be observed in Figure 4.20. For large particles, the difference due to the 
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polarizabilities used in these two models start to show up in the results, which has been discussed 

in Section 4.2.2.3. These results again have proved the validity of the simulation codes. 

 

As can be seen in Figure 4.21, the relationship between the escape force and the particle size is 

linear in the logarithmic scale. This can be explained by using Eqs. (4-17) and Eq. (4-18) of the 

HA model. The transverse force is proportional to the polarizability and hence to the cubic of the 

particle radius. Therefore, the curve of transverse force versus the particle size in the logarithmic 

scale should have a slope of 3, which can be verified in Figure 4.21.  

 

With the same set of parameters, the influence of the particle radius to the z-axis trapping force is 

also studied, as shown in Figure 4.22. This has not been studied in ref. [155], so no results from 

the GLMT can be used for comparison. Because the beam is propagating in the +z direction, a 

stable 3D trap is possible only when negative restoring forces exist for +z displacements. This is 

always difficult compared with –z displacements, because the scattering force is always along +z 

direction, preventing the bead from being pulled back to the focus. It is noted that the forces 

shown in Figure 4.22 are the minimum forces along the z direction with +z displacements. 

Therefore, a 3D trapping can only be achieved for those particle sizes that enable negative 

restoring forces. As can be seen in Figure 4.22, the results obtained with the HA and CN models 

agrees well with each other for a<100 nm. The errors between the HA and CN model can be 

seen for large particle sizes again, which is due to the different principles used in their force 

derivations. However, based on both models, the maximum bead size that can be trapped in three 

dimensions can be determined. 
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Figure 4.22. Dependence of the z-axis restoring force on the particle size. Here 
the forces indicate the maximum restoring forces (or minimum scattering forces). 
The optical wave is propagating along +z direction. A 3D trap is possible only 
when there exists a negative restoring force. 

 

ii) Beam spot size 

 

The beam spot size is one of the most important parameters of the optical tweezers. For specific 

particles of interest, it is not possible to change the bead size and refractive index. In this case, 

beam spot size is the most important parameters that can be tailored to improve the performance 

of the optical tweezers. The dependence of x-axis escape force on the beam waist is shown in 

Figure 4.23. The particle is assumed to be a sphere with ns = 1.38. The results of three different 

particle sizes are shown: a=50 nm, 100 nm, and 150 nm. The laser has a wavelength of 808 nm 

and a power of 1 W. As can be seen in Figure 4.23, results obtained with the CN model and HA 

model match well with each other for all three particle sizes. The results demonstrate that 

decreasing beam waist can increase the magnitude of the optical force. Especially in the small 

beam waist region, even a small decrease in the beam waist (for example, from 0.2 µm to 0.18 

µm) can significantly improve the optical force (from 68 pN to 92 pN for a=100 nm). The 
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smaller the particles, the weaker the trapping force at the same power, which confirms the results 

shown in Figure 4.21. 

 

 

Figure 4.23. Dependence of the x-axis escape force on the beam waist. The 
optical power is 1 W. The particle is a sphere with a refractive index of ns=1.38. 
The results of three particle sizes are obtained, a=50 nm, 100 nm, and 150 nm. 

 

The z-axis restoring forces as a function of the beam waist are also obtained with the same 

parameters, as shown in Figure 4.24. The CN model and the HA model agree with each other, 

with the forces obtained from the CN model stronger than the HA model. It is clearly seen that 

only small focus sizes can enable 3D trapping of biological particles with a radius within the 

range of 50~100 nm. Smaller particles are more difficult to be trapped in 3D, due to the weaker 

optical forces. The optical force obtained in Figure 4.24 is based on an optical power of 1 W. In 

the real case, this level of power will easily kill biological particles [160]. If the allowed power is 

smaller to avoid optical damages, the optical force is proportionally smaller, which makes 

smaller focus sizes more valuable for 3D trapping. As the beam waist (~0.2 µm) gets close to the 
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particle size, the discrepancy between the HA and CN increases. This is because the particle size 

should be smaller than the beam waist in order to get valid results from both models. 

 

 

Figure 4.24. Dependence of the z-axis restoring force on the beam waist. The 
negative z-axis force is a restoring force that enables a 3D trap. The optical power 
is 1 W. The particle is a sphere with a refractive index of ns=1.38 and a radius of 
a=50 nm, 75 nm, or 100 nm. 

 

It is noted that for large beam waists (w0>0.4 µm), the results in Figure 4.24 show the restoring 

force to be close to 0. This does not mean the particle will stay at an equilibrium position. For 

large beam waists, the z-axis optical force is always positive due to the weak focusing, which 

will push the particle downstream. Therefore, for large beam waists, there are no negative 

restoring forces (no 3D trap enabled) and the particle is pushed away from the waist. 

 

iii) Particle refractive index 



 190

 

The dependence of x-axis escape force on the particle refraction index is shown in Figure 4.25. 

The particle is assumed to be a sphere with a refractive index of 1.38 and a size a=50 nm, 100 

nm, and 150 nm. The laser has a wavelength of λ0=808 nm and a beam waist of 0.44 µm. The 

laser power is P=1 W. The CN model and HA model agree well with each other. The results 

demonstrate that the higher refractive index of the particle, the larger the optical force. The 

dependence of the optical force on the refractive index is close to a linear relationship. Therefore, 

particles with a higher refractive index are always easier to be trapped. The smaller the particle, 

the smaller the trapping force, and the better the HA and CN models match with each other. 

 

 

Figure 4.25. Dependence of the x-axis escape force on the refractive index. The 
optical power is 1 W and the beam waist is 0.44 µm. The particle is a sphere with 
a radius of a=50, 75, or 100 nm. 
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According to the results shown in this section, the CN model and HA model matches well in the 

transverse directions. In the longitudinal directions, the forces from the CN mode are larger in +z 

direction. This difference is believed to be due to the different principles associated with the two 

modes. However, the two models still show the same tendency of the optical forces in the 

longitudinal direction. 

 

4.2.3. 3D Trapping force fields of the SP fiber optical tweezers 

 

Since the electric fields cannot be experimentally measured for the SP fiber, CN model cannot be 

used to calculate the optical forces of the SP lensed fiber optical tweezers. Therefore, only the 

HA model will be used to calculate the optical forces from the SP fiber based on the 

experimentally measured intensity profiles.  

 

The following method is used to determine the optical power. Since the measured intensity is 

pixelated, each data point is assumed to be the averaged intensity value over the whole area of 

the pixel. Therefore, the optical power is estimated as the pixel area times the sum of the 

grayscale values of all the pixels around the focus, while the grayscale values are directly used as 

the intensities. 

 

The parameters used here for mapping the optical forces are as the following: the optical power 

P = 1 W, the vacuum wavelength λ0 = 808 nm, the bead radius a = 100 nm, the bead refractive 

index ns = 1.38, and the medium refractive index nm = 1.33. 
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(a)     (b)  

Figure 4.26. Force mapping in the (a) xz and (b) yz planes of SP1. The optical 
power is 1 W and the wavelength is 0.808 µm. The particle is a sphere with a 
radius of a=100 nm and a refractive index of 1.38. 

 

4.2.3.1. 3D force mapping of SP1  

 

The force maps in both the xz and yz planes for SP1 are shown in Figure 4.26. A stable 3D trap is 

clearly seen at z=3.4 µm on the z axis. To further evaluate the position of the trap and the force 

levels, the optical forces along three dimensions are plotted in Figure 4.27. The restoring forces 

exist along the three directions at x=0, y=0, and z=3.4 µm, where the 3D trap is located. The 

maximum x-axis trapping force is 3.65 pN at x=0.24 µm, y=0, and z=3.2 µm. The maximum y-
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axis trapping force is 3.57 pN at x=0, y=-0.18 µm, and z=3.2 µm. The maximum z-axis restoring 

force is 1.13 pN at x=0, y=0, and z=4 µm. 

 

(a)  (b)  

(c)  

Figure 4.27. Optical forces along three orthogonal directions for SP1. (a) x-axis 
optical force versus the x displacement for y=0 and z=3.2 µm. (b) y-axis optical 
force versus the y displacement for x=0 and z=3.2 µm. (c) z-axis optical force 
versus the z displacement for x=0 and y=0. The forces are calculated according to 
the intensity profile measured in the experiment. The optical power is 1 W and the 
wavelength is 0.808 µm. The particle is a sphere with a radius of a=100 nm and a 
refractive index of 1.38. 

 

4.2.3.2. 3D force mapping of SP2  
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The trapping forces for SP2 are mapped in three dimensions, and the results in the xz and yz 

planes are shown in Figure 4.28. A stable 3D trap is located at the position of z=1.3~1.4 µm on 

the optical axis. The optical force along three dimensions are plotted across the focus point at 

z=1.1 µm, as shown in Figure 4.29. The maximum x-axis trapping force is 2.60 pN at x=-0.15 

µm, y=0, and z=1.1 µm. The maximum y-axis trapping force is 1.91 pN at x=0, y=-0.2 µm, and 

z=1.1 µm. The maximum z-axis restoring force is 1.67 pN at x=0, y=0, and z=1.5 µm. 

 

   
(a)                                                                                    (b) 

Figure 4.28. Force mapping in the (a) xz and (b) yz planes of the SP 2. The optical 
power is 1 W and the wavelength is 0.808 µm. The particle is a sphere with a 
radius of a=100 nm and a refractive index of 1.38. 
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(a)   (b)  

(c)  

Figure 4.29. Optical forces along three orthogonal directions for SP2. (a) x-axis 
optical force versus the x displacement for y=0 and z=1.1 µm. (b) y-axis optical 
force versus the y displacement for x=0 and z=1.1 µm. (c) z-axis optical force 
versus the z displacement for x=0 and y=0. The forces are calculated according to 
the intensity profile measured in the experiment. The optical power is 1 W and the 
wavelength is 0.808 µm. The particle is a sphere with a radius of a=100 nm and a 
refractive index of 1.38. 

 

4.2.3.3. Discussion of the calculated trapping force fields 

 

Comparison of the optical forces between the two SP fibers 

 

The maximum trapping forces for SP1 and SP2 are summarized in Table 4.4. Both samples have 

the maximum trapping forces of a couple of picoNewtons. For both SP fibers, the x-axis force is 
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larger than the y-axis force. This is because the x-axis focus is smaller than the y-axis focus (See 

Table 4.3). However, the z-axis restoring force of SP2 is larger. This is due to the large intensity 

gradient of the SP2 along the z direction, which can be seen by comparing Figure 4.8 (c) with 

Figure 4.11 (c). 

 

Table 4.4. Maximum forces of SP1 and SP2. 

 SP1 SP2 

x-axis force (pN) 3.65 2.60 

y-axis force (pN) 3.57 1.91 

z-axis negative 
restoring force (pΝ) 

-1.13 -1.67 

 

Underestimation of the optical forces 

 

It is noted that the optical force from the simulations are underestimated. The major reason is the 

overestimation of the optical power. As mentioned in Section 4.2.3, the sum of the grayscale 

over the whole image was used to estimate the power. However, due to the dark reading, the 

camera does not have a “0” grayscale output even when there is no intensity incident onto the 

CCD chip. For example, all pixels in the black areas in Figure 4.15 (d) and Figure 4.17 (d) have 

a dark reading. For the 12-bit DS camera with the saturation grayscale of 4096, the dark reading 

is ~100. For the 8-bit Motic camera with the saturation grayscale of 256, the dark reading is ~10. 

These dark readings are all summed up to estimate the power, resulting in overestimation of the 

power. Since we calculate the trapping forces at a unit power (1 W), the overestimation of the 

optical power directly results in the underestimation of the trapping forces. The real trapping 

forces are expected to be larger than the values listed in Table 4.3. It can also be seen that the 
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Motic camera suffers more from the dark reading than the DS camera. In another word, the 

power overestimation is more serious for SP2 than for SP1. This explains why the x-direction 

focus of SP2 is smaller but the x-direction trapping force of SP2 is weaker. 

 

In addition to the overestimation of the optical powers, the errors related with the intensity 

measurements (discussed in Section 4.1.3.3) can also cause the optical forces to be 

underestimated.  Because the intensity is averaged over each pixel area, the sharp changes of the 

intensity are not recorded, resulting in a smaller intensity gradient in the measurements. The 

large measurement step (0.1 µm) may also cause the loss of the information of the real intensity 

maximum and thus underestimate the intensity gradient. 

 

The overestimation of the optical powers can be alleviated by two methods. One is to use a 

confocal microscope with a photon counter to measure the intensity at the object plane point by 

point, as used in ref. [134]. Photon counters have very small dark readings and thus can reduce 

the overestimation due to the dark reading. However, the diffraction limit of the objective in the 

confocal microscope still limits the resolution of the intensity measurement. The underestimation 

of the spot size due to the objective resolution still exists, resulting in underestimations of the 

trapping forces. The other way to reduce the overestimation of the optical powers is to use 

scanning near-field microscopy (SNOM) to measure the intensity distribution of the SP lenses, as 

used in ref. [137]. However, the probe of the SNOM may significantly distort the original 

electric fields so that the measured fields are distinct from the real ones [174]. In addition to the 

problems discussed above, both the two solutions, namely, the confocal microscopy and the 

SNOM, are based on the scanning methods that measure the intensity serially. It will take a much 
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longer time to carry out the scanning measurements. The optical fiber may drift during the long-

time measurement process, causing the measurement to fail. Compared with the scanning 

methods, the method used in this dissertation is a parallel measurement, and the drift of the fiber 

position does not influence the measurement as much. 

 

Trapping force enhancement compared with lensed fibers 

 

Although the trapping forces are underestimated, the calculated forces of the SP lenses are still 

larger than those of the lensed fibers used in Chapter 2 and Chapter 3. The lensed fiber with a 

tapered lens has a beam waist of 1.35 µm. According to the results shown in Figure 4.23 and 

Figure 4.24, the transverse escape force on the same particle (a=100 nm, ns=1.38) with the same 

power (1 W) is 0.22 pN and no 3D trap exists due to the weak focusing. The comparison of the 

trapping forces along the three directions are shown in Table 4.5. The fiber-based SP lens 

improves the transverse trapping forces by one order of magnitude compared with the 

commercial lensed fibers, and a 3D trap can be enabled by the former but not by the latter. 

 

Table 4.5. Comparisons of optical forces obtained using the fiber-based SP lens and the 
tapered fiber lens. 

 

 SP2 Tapered fiber lens 

x-axis escape force (pN) 2.60 0.22 

y-axis escape force (pN) 1.91 0.22 

z-axis negative restoring 
force (pΝ) 

-1.67 
(3D trap enabled) 

not exist 
(no 3D trap enabled) 

 

Trapping force compared with objective-based optical tweezers. 
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As previously discussed, the smallest beam waist from an objective is determined on the NA. 

Following Eq. (4-3), the smallest beam spot size (FWHM) for an objective is 394 nm with NA = 

1.25 and 352 nm with NA =1.4. If the beam is described by a TEM00 mode, the corresponding 

beam waist, which is different from FWHM, is 335 nm with NA = 1.25 and 299 nm with NA 

=1.4. The corresponding optical forces are, according to Figure 4.23, ~12 pN and ~20 pN, 

respectively.  

 

However, these forces calculated for the objective-based optical tweezers only provide an upper 

limit of the achievable forces. They are not achievable even when every component in the optical 

path is perfectly aligned. As discussed in Section 4.1.3.3, the smallest spot size obtained with Eq. 

(4-3) is generally not achievable due to the lower effective NA and aberration, which are 

inevitable for high NA objectives. Considering the trapping forces for the SP lensed fiber 

tweezers are underestimated, the trapping ability of the SP lensed fiber tweezers is expected to be 

comparable or even stronger compared with their counterpart based on objective lenses. This has 

been confirmed with the previously described 3D bacterium trapping with SP lensed fiber 

tweezers at a lower power. 

 

4.2.4. Significance of the enhanced trapping ability with the SP fiber optical tweezers 

 

The trapping strength of fiber optical tweezers has been improved to be close to or even stronger 

than that of objective-based tweezers. This indicates that it is possible to replace the conventional 
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optical tweezers systems based on microscope objectives with the fiber trapping systems that are 

compact in size and less expensive, while keeping their strength. 

 

Currently one of the biggest barriers of optical tweezers is their accessibility due to the high price. 

[60] The less expensive SP lensed fiber optical tweezers will greatly improve the accessibility of 

optical tweezers both as a research tool and a diagnostic instrument. New ideas and more 

applications will show up once the optical tweezers with the same strength become readily 

available for a vast number of researchers. Furthermore, the much smaller while equally strong 

version of the optical tweezers has great potential to be used to perform high-resolution sensing 

as well as high-strength manipulation in microfluidic chips. 

 

4.3. Summary 

 

In this chapter, superfocusing with a planar surface plasmonic lens on the fiber endface has been 

experimentally demonstrated. This is the first time that superfocusing is realized by using a fiber-

based SP lens. The numerical simulation with the FDTD method has been carried out, which can 

help understand the superfocusing effect, and the obtained focus sizes are similar to those 

measured in the experiments. By taking the advantage of the superfocusing of the fiber-based SP 

lenses, optical trapping of a sub-micrometer-size bacterium in three dimensions has been 

successfully demonstrated. The power used in the 3D trapping is smaller than any power used by 

objective-based optical tweezers reported in the published literature, which indicates the SP fiber 

optical tweezers have stronger trapping efficiency. The optical trapping of a Rayleigh particle is 

investigated through parametric studies. It is shown that decreasing the focal spot size can 
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significantly increase the trapping forces. Moreover, the 3D trapping forces are mapped for the 

two SP fibers based on the experimentally measured intensity distributions. In this chapter, the 

following contributions are achieved: i) superfocusing on a fiber endface with a planar SP lens 

successfully achieved and ii) trapping ability enhancement by SP lensed fiber optical tweezers 

successfully demonstrated. 
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Chapter 5. Summary and Future Work 

 

5.1. Summary and contributions of the dissertation work 

 

Thanks to their ability of probing single molecules with high precision, optical tweezers (OTs) 

have been used to facilitate new scientific findings as well as benchmark single-molecule studies 

[7]. In the coming decade, more great discoveries in biology and physics are expected to be made 

with the help of OTs. [60] One of the next level applications using OTs is expected to be medical 

diagnostics [60], where parallel manipulation, sorting, and diagnosis of large number of 

biological particles with OTs will make the current clinical procedures quicker and cheaper. 

 

Most of current OTs are based on objective lenses, which are bulky, expensive, and hard to 

integrate. The high price and bulkiness have become issues that limit the applications of OTs. 

[60] Moreover, objective-based OTs have other limitations coming from the objective lens and 

the free-space optics, which include being susceptible to environmental perturbations, having 

limited (~100 µm) working distance, and having restrictions on the substrate. 

 

OTs based on optical fibers have great potential to solve the abovementioned limitations. Fiber-

based OTs are compact in size, less expensive, and readily integrable. No free-space optics and 

objective lenses are needed to generate optical traps. However, fiber-based OTs have much 

weaker trapping efficiency compared with objective-based OTs, which greatly limits their 

applications. In addition to the weak trapping efficiency, other problems of the existing fiber-
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based OTs include difficulty to achieve 3D traps (for single fiber tweezers), cumbersome system 

configurations (for counter-propagation fiber OTs), and limited functionalities (for all the 

existing fiber OTs). 

 

This doctoral research attempts to provide solutions to overcome the limitations of current fiber-

based OTs, with the objective of achieving fundamental understanding and improving the 

performance of fiber-based OTs. Based on the research work described in the previous chapters, 

the contributions of this dissertation work are summarized as follows. 

 

Contribution 1: An enhanced understanding of the inclined dual-fiber optical tweezers 

(DFOTs) system has been developed. The 3D trapping ability of inclined dual fiber optical 

tweezers (DFOTs) system has been carefully investigated through thorough experimental study 

and modeling. Experimental calibrations have been carried out via two methods, namely, the 

drag force method and the power spectrum analysis method, to evaluate the force-displacement 

relationship. This is the first time that such a system has been experimentally calibrated. The 

calibration results enable the inclined DFOTs to be used as force sensors.  Furthermore, a 

theoretical model based on ray optics has been developed and parametric studies based on the 

model have been carried out to enhance the understanding of the inclined DFOTs. Through the 

parametric studies, the influence of the system parameters on the 3D trapping performance has 

been thoroughly studied, which can help achieve a better system design of the inclined DFOTs. 

In addition, modeling of the system has helped reveal a new finding that the inclined DFOTs are 

more robust to the fiber misalignments compared with the commonly used counter-propagation 

DFOTs. This is the first time that the inclined DFOTs have been systematically investigated. 
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Contribution 2: Multiple traps created with the inclined DFOTs system have been 

discovered and investigated for the first time. During the experimental study of the inclined 

DFOTs system, a new phenomenon has been discovered; multiple traps can be created with the 

inclined DFOTs system. Three traps, two 2D and one 3D, located at different vertical levels with 

controllable separations, have been successfully created. Furthermore, the force field of the 

inclined DFOTs system has been studied in numerical simulations to fully understand the 

multiple traps. The fiber-based multiple trapping system can be used as a building block that is 

readily integrable in microfluidic systems. Different from multiple traps created with other fiber-

based OTs, only one actuator is required to adjust both the positions and the separations of the 

traps. This is the first time that a controllable multi-trap fiber optical tweezers system has been 

achieved.  

 

Contribution 3: Multiple functionalities have been realized with the inclined DFOTs system 

for the first time. The discovery of multiple traps enables the inclined DFOTs system to 

perform complex functionalities that cannot be realized by using other fiber-based OTs. Multiple 

functions have been experimentally demonstrated for the first time with fiber-based OTs, 

including particle separation, particle stacking, particle grouping, parallel manipulation, rod 

alignment, rod rotation, rod stacking, and optical binding between beads and rods. The ability of 

performing versatile functionalities will help the inclined DFOTs system find new applications in 

many fronts including medical diagnosis and biological/physical research. 
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Contribution 4: A novel fiber based surface plamonic (SP) lens has been developed and far-

field superfocusing effect has been demonstrated for the first time with the fiber based SP 

lens. A planar SP lens with nanometer-scale concentric ring patterns has been designed on the 

endface of an optical fiber. With the help of SP wave propagation through nanometer scale 

structures, far-field superfocusing has been realized for the first time with a fiber based SP lens.  

Focii with sizes close to the diffraction limit have been experimentally obtained with fiber-based 

SP lenses. The focus size of the fiber-based SP lens has reached that of the smallest achievable 

focus of a high NA (1.4) objective. The fiber based SP lens can serve as a useful tool to bridge 

macroscale sources/detectors and nanoscale devices. In addition to optical trapping, the 

superfocusing achieved with fiber-based SP lenses can open up many other applications, 

including coupling power into nanophotonic devices, superresolution fluorescence detection, and 

subwavelength imaging.  

 

Contribution 5: Trapping efficiency enhanced with fiber-based SP lens has been 

successfully demonstrated. The fiber-based SP lens greatly enhances the trapping efficiency of 

fiber OTs.  For the first time, 3D trapping of a submicron-size bacterium has been successfully 

demonstrated in experiment by using fiber OTs built with the fiber-based SP lens. The power 

used for such 3D trapping has been found to be lower than that used in any reported objective-

based OTs. Furthermore, optical trapping of Rayleigh particles has been studied numerically 

based on two popular electromagnetic models: HA model and CN model. For the first time, 

investigation has been carried out to compare the two models in a parametric study to find out 

their applicability in terms of particle sizes.  Based on the HA model, the 3D force fields of SP 

lensed fiber OTs have been mapped by using experimentally measured intensity distributions of 
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the fiber-based SP lenses. Despite of the underestimation of the trapping forces, the trapping 

efficiency has been enhanced by an order of magnitude compared with that of the OTs built with 

lensed fibers. 

 

5.2. Future work 

 

The ultimate goal of developing fiber OTs with performance comparable with objective-based 

OTs is far from being realized. However, this dissertation work has provided a framework that 

can lead to many exciting directions towards the goal. To further improve the fiber OTs, the 

suggested future work is summarized as follows. 

 

i) Suggestions to overcome the limitations of the current inclined DFOTs setup 

The current setup of the inclined DFOTs still uses two manual stages to perform the 

fiber alignments. However, the positions of the manual stages drift with time, resulting 

in misalignments of the fibers. This is the main reason why 3D trapping of silica beads 

smaller than 3 µm is difficult to achieve with the current setup. A possible solution is to 

fix the fibers in V-grooves etched in a silicon wafer with epoxy. The challenge is that 

the epoxy thicknesses may be different for the two fibers, introducing fiber 

misalignments. 

 

The conical tips of the lensed fibers used in this dissertation work have large cone 

angles, which prevent two lensed fibers from being brought close to each other. In this 

case, the focuses of the optical beams are not located at the beam intersection in the 
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inclined DFOTs setup. If a sharper fiber tip with a smaller opening angle is used, the 

beams may intersect at the focuses so that the trapping efficiency of the inclined 

DFOTs can be stronger. 

 

ii) Suggestions to overcome the limitations of current SP lensed fiber OTs 

One of the limitations of the SP lens is the short focal length. It is difficult to trap 

particles lying on the substrate due to the physical size of the regular fiber. One 

possible solution is to increase the number of slits or slit radii because a larger aperture 

of the SP lens will result in a longer focal length. However, there are two constraints 

that limit the aperture size: the fiber-guided beam size (2.8 µm in radius) and the 

minimum separation between the adjacent slits. With the current design parameters (the 

gold thickness, the radius, and the width of the smallest slit), the slit width increases 

faster than the slit radius when the radius is larger than ~1.3 µm, resulting in overlap 

between the adjacent slits for a slit radius larger than ~1.5 µm. 

 

The misalignments and the blocking of the fabricated slits in the fiber-based SP lens 

have been the issues that limit the success rate of the SP lens fabrication. To address 

the misalignments, a marker can be milled on the fiber endface prior to the gold 

evaporation, and the marker should be still visible under the FIB with the gold coating. 

The mechanism of the blocking of the patterns during the FIB fabrication is still not 

clear so far, which need to be further investigated in future work. 
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The design model give in this dissertation is for a planar waveguide (metal-insulator-

metal structure) with an infinite thickness. The dispersion of the SP wave in a 

cylindrical structure is different from that in a planar one, which has not been studied 

yet. The dispersion relationship in a cylindrical structure will enhance the 

understanding of the SP wave propagation in the fiber-based SP lens. 

 

The better mesurement of the intensity distributions of the SP lenses is necessary, in 

which the dark readings of the photodetectors should be removed. Single-photon 

counting detectors (such as PCD100, Newport) with very low dark readings are 

suggested to carry out the intensity measurements. Photon counting detectors measure 

the intensity at a single point at one time, so a measurement setup should be designed 

to enable the scanning of the probe with a small step size. The small aperture of the 

probe should also be designed so that the fine features of the intensity can be resolved. 

The SNOM probe is an option to be used as the scanning probe, but it will distort the 

electric field, which can cause the measured data unfaithful. 

 

iii) Experimental calibration of SP fiber tweezers 

The experimental calibration data using SP fiber tweezers would be a tangible proof 

that the fiber OTs can have equal or stronger trapping efficiency compared with 

objective-based OTs. However, due to the immature fabrication process, such 

calibration has not been achieved yet. Refinement and modification of both the SP lens 

design and the fabrication are suggested in future work.   
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iv) Intensity and phase modulation in inclined DFOTs 

By taking the advantage of the high performance intensity and phase modulation 

devices that are widely used in fiber optic communication industry, the dynamic 

trapping position control can be achieved. This can enable the study of the dynamics of 

small particles in an ultra fast time scale.  

 

v) Inclined DFOTs built with SP lenses 

If SP lenses are used, the inclined DFOTs can retain the flexibility and functionality 

while having significantly increased the trapping strength. Longer focal lengths should 

be realized with the fiber-based SP lens so that enough space between the focus and the 

fiber end can be obtained for the inclined DFOTs setup. 

 

vi) Integration of inclined DFOTs 

The setup of inclined DFOTs has the potential to be miniaturized and used as a module 

in integrated microscale systems. It is envisioned that an integrated system that can 

separate and sort cells, and probe the properties of the selected ones,  will be developed 

in the future.  This integrated system can open up many  new applications in medical 

diagnosis. One of the issues to be addressed is to find a way to image and monitor the 

traps, which can totally remove the microscope and objective from the system. 
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APPENDIX A: MATLAB CODES 
 

A.1. Matlab codes for trapping force calculation with ray optics 
 
% To test the error that different distances along the optical axis gives 
different signs of the spring coefficient. 
  
  
format long; 
  
clear all; 
n1=1.33; %input('the refractive index of water=');  
n2=1.45; %input('the refractive index of the bead (beads)='); 
c=3e8; 
wavelength=0.808;%input('wavelength (um)') 
  
W=15.3e-3;%input('laser power=(W)');  %at 90 mA 
r0=1.35;%input('radius of waist (um)') 
Sr=2.37;%input('bead/half of long axis of cell='); 
  
alpha = 50/180*pi;   % inclination angle of fiber relative to the normal to 
the coverslip surface 
             % this angle definition has been checked to be correct 
z0=n1*pi*r0*r0/wavelength; 
D=45; 
L0=D/2/sin(alpha)-14; % beam waist position   
to_real = [1 0 0; 0 cos(alpha) -sin(alpha); 0 sin(alpha), cos(alpha)];  
%transformation matrix from calculation coordinate (x'y'z') to real system 
(xyz) 
 
from_real = [1 0 0; 0 cos(alpha) sin(alpha); 0 -sin(alpha) cos(alpha)];  
%transformation matrix from real coordinate xyz to calculation coordinate 
x'y'z' 
 
beamcenter_real = [0 0 0]; %when (0,0,0) is at the waist center 
beamcenter_cal = [0 0 0]; %when (0,0,0) is at the waist center in calculation 
coordinate sys x'y'z' 
beaminter_cal = [0 0 -L0]; % beam intersection coordinates in calculation 
coordinate system 
beaminter_real = (to_real * beaminter_cal')'; 
  
z_origin = -1.0342; % the z position where Fz=0; for 70 mA, this value is -
1.88 
 
 pos=[-6 -5 -4 -3.5 -3 -2.5 -2.2 -2 -1.8 -1.5 -1 -0.5 0]; 
 pos_num=length(pos); 
  
  
forcex = 1 : pos_num; 
forcey = 1 : pos_num; 
forcez = 1 : pos_num; 
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 for i= 1:pos_num % different bead position 
    %i=5;  %5:-1 or 7:1 
    beadcen_relato_beaminter_real = [pos(i) 0 z_origin]; 
  

beadcen_relato_beaminter_cal = (from_real *… 
beadcen_relato_beaminter_real')'; 

    beadcenter_real = beadcen_relato_beaminter_real + beaminter_real; 
    beadcenter_cal = beadcen_relato_beaminter_cal + beaminter_cal; 
      
    lA=20; %lr is division of spherical angle, or, how many pieces are in 

pi/2 (half a longitude) 
    la=20; %la is division of circle angle, or, how many pieces are in 2*pi 

(a whole laitude)  
    dA=pi/lA; 
    da=2*pi/la; 
    F=[0 0 0]; 
  
    %start force calculation 
     for j=1:lA                   % cut the half sphere along latitude 
        %j=3; 
        dr1 = Sr*sin(dA*(j-0.5));             
        dz1 = Sr*cos(dA*(j-0.5));  % z coordinate relative to bead center in 

real coord 
         
         for k=1:la 
            dS = Sr*dr1; % *da*dA will be multiplied at last 
            dx1 = dr1*cos(da*(k-0.5)); dy1 = dr1*sin(da*(k-0.5)); % x y 

coordinates relative to bead center 
            dpoint_real = [dx1 dy1 dz1];     %coordinate of calculated point 

on bead surface relative to bead center, or, normal 
vector of bead surface in real coord 

            point_real = dpoint_real + beadcen_relato_beaminter_real + 
beaminter_real;  %coordinate of calculated point relative to                

waist center (in calculation coordinate system) 
            normal_real = dpoint_real/norm(dpoint_real); 
  
            point_cal = (from_real * point_real')'; % calculated point  

coord in calculation coord sys relative to beam center 
            normal_cal = (from_real * normal_real')'; 
            in_cal = inci_dir(point_cal,beamcenter_cal,z0,-1); 
            judge = dot(normal_cal,in_cal);  % if this area illuminated? 
             
            dF=[0 0 0]; 
            if(judge < 0)  % Yes, illuminated 
                % all the calculation should be within calculation  

coord sys 
                rr=sqrt((point_cal(1))^2+(point_cal(2))^2); % distance  

from calculated point to optical axis 
                Ir=intens(r0,W,point_cal(3),wavelength,rr); 

                
[reflect,refract,dF,R,T]=ref(in_cal,normal_cal,n1,n2,Ir); 

   F=F-dF*dS*judge; %negative sign comes from judge being  
negative;  
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                in_cal=refract; % next incident direction 
                Ir=Ir*T; 
                for l=1:5 

                    
rpoint_cal=ptsphere(point_cal,in_cal,beadcenter_cal,Sr); %
rpoint is the next incident point while point is the 
current one 

                    rpoint_relato_beadcen = rpoint_cal - beadcenter_cal; 
                    normal_cal = -… 

rpoint_relato_beadcen/norm(rpoint_relato_beadcen); 
                    
[reflect,refract,dF,R,T]=ref(in_cal,normal_cal,n2,… 

n1,Ir); 
                    judge_temp=dot(normal_cal,in_cal); 
                    if judge_temp>0 

                      disp('wrong when calculation multiple reflection 
inside bead, judge>0 !'); 

                    end 
 

F=F-dF*dS*judge; %negative sign comes from judge being 
negative; use the same "judge" and "dS" as the 
first incidence 

                    Ir=Ir*R; 
                    in_cal=reflect; 
                    point_cal=rpoint_cal; 
                 end  
            end % end for if 
          end % end for k 
      end %end for j 
    F_real=(to_real*F')'; 
     forcex(i)=F_real(1)*da*dA; 
     forcey(i)=F_real(2)*da*dA; 
     forcez(i)=F_real(3)*da*dA; 
end % end for i 
  
plot(pos, forcex*1e12, '-rs'); 
 
 
A.2. Matlab codes for investigation of trapping robustness to the fiber 
misalignments 
 
% To test the error that different distances along the optical axis 
% gives different signs of the spring coefficient. 
  
  
format long; 
  
clear all; 
n1=1.33;%input('the refractive index of water=');  
%http://www.answers.com/refractive%20index 
n2=1.45; %input('the refractive index of the bead (beads)='); 
c=3e8; 
wavelength=0.808;%input('wavelength (um)') 
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W_left=7.65e-3;%input('laser power=(W)'); 
W_right=7.65e-3; 
r0=1.35;%input('radius of waist (um)') 
Sr=2.37;%input('bead/half of long axis of cell='); 
  
alpha = 50/180*pi;   % inclination angle of fiber relative to the  
%normal to the coverslip surface 
               % this angle definition has been checked to be correct 
z0=n1*pi*r0*r0/wavelength; 
D=45; 
L0=D/2/sin(alpha)-14; % beam waist position (line distance from the  
%bead center (beam intersection) to the waist when the bead is located  
%on optical axis); 
  
%real is respect to the spheroid (xyz); calculation is respect to the  
%beam axis (x'y'z') 
to_real_left = [1 0 0; 0 cos(alpha) -sin(alpha); 0 sin(alpha), cos(alpha)];  
from_real_right = to_real_left; 
%transformation matrix from calculation coordinate (x'y'z') to real  
%system (xyz) 
%this is to_real for fiber 1 (left), from_real for fiber 2 (right) 
%[x y z]=(to_real*[x' y' z']')' 
  
from_real_left = [1 0 0; 0 cos(alpha) sin(alpha); 0 -sin(alpha) cos(alpha)];  
to_real_right = from_real_left; 
%transformation matrix from real coordinate xyz to calculation  
%coordinate x'y'z' 
%this is from_real for fiber 1 (left), from_real for fiber 2 (right). 
  
z_misalign = 1; 
delta_L0 = z_misalign/sin(2*alpha)*sin(alpha); 
  
beamcenter_real_left = [0 0 0]; %when (0,0,0) is at the waist center 
beamcenter_cal_left = [0 0 0]; %when (0,0,0) is at the waist center in  
%calculation coordinate sys x'y'z' 
beamcenter_real_right = [0 0 0]; 
beamcenter_cal_right = [0 0 0]; 
beaminter_cal_left = [0 0 -L0+delta_L0]; % beam intersection  
%coordinates in calculation coordinate system 
beaminter_cal_right = [0 0 -L0-delta_L0]; 
beaminter_real_left = (to_real_left * beaminter_cal_left')'; 
beaminter_real_right = (to_real_right * beaminter_cal_right')'; 
  
  
 pos=[-6 -4 -3 -2 -1.5 -1 -0.5 0 0.5 1]; 
 pos_num=length(pos); 
  
forcex = 1 : pos_num; 
forcey = 1 : pos_num; 
forcez = 1 : pos_num; 
  
  
 for i= 1:pos_num % different bead position 
    %i=5;  %5:-1 or 7:1 
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    beadcen_relato_beaminter_real = [0 0 pos(i)]; 
%both the left and the right use the 
same %beadcen_relato_beaminter_real 

             
    %left 

beadcen_relato_beaminter_cal_left = (from_real_left ... 
* beadcen_relato_beaminter_real')'; 
beadcenter_real_left = beadcen_relato_beaminter_real ... 
+ beaminter_real_left; 
beadcenter_cal_left = beadcen_relato_beaminter_cal_left ... 
+ beaminter_cal_left; 

     
    %right 

beadcen_relato_beaminter_cal_right = (from_real_right ... 
 * beadcen_relato_beaminter_real')'; 
beadcenter_real_right = beadcen_relato_beaminter_real ... 
 + beaminter_real_right; 
beadcenter_cal_right = beadcen_relato_beaminter_cal_right... 
 + beaminter_cal_right; 

     
lA=20; %lr is division of spherical angle, or,  

% how many pieces are in pi/2 (half a longitude) 
la=20; %la is division of circle angle, or,  
%how many pieces are in 2*pi (a whole laitude)  

    dA=pi/lA; 
    da=2*pi/la; 
    F_left=[0 0 0]; 
    F_right=[0 0 0]; 
  
    %start force calculation at specific bead position 
     for j=1:lA                         

% cut the half sphere along latitude 
        %j=3; 
        dr1 = Sr*sin(dA*(j-0.5));             
        dz1 = Sr*cos(dA*(j-0.5));       

% z coordinate relative to bead center in real coord 
         
         for k=1:la 
            dS = Sr*dr1; % *da*dA will be multiplied at last 
            dx1 = dr1*cos(da*(k-0.5)); dy1 = dr1*sin(da*(k-0.5));  

% x y coordinates relative to bead center 
            %both the left and the right use the same dpoint_real  

%andnormal_real 
            dpoint_real = [dx1 dy1 dz1];      

%coordinate of calculated point on bead surface relative to  
% bead center, or, normal vector of bead surface in real  
% coordinate 

            normal_real = dpoint_real/norm(dpoint_real); 
  
            %left 

point_real_left = dpoint_real + beadcen_relato_beaminter_real + 
beaminter_real_left;  %coordinate of calculated point relative to 
waist center  
%(in calculation coordinate system) 

            point_cal_left = (from_real_left * point_real_left')';  
% calculated point coord in calculation coord sys relative to 



 215

beam center 
            normal_cal_left = (from_real_left * normal_real')'; 

in_cal_left = ... 
inci_dir(point_cal_left,beamcenter_cal_left,z0,-1); 

            judge_left = dot(normal_cal_left,in_cal_left);   
% if this area illuminated? 

            %right 
point_real_right = dpoint_real + beadcen_relato_beaminter_real + 
beaminter_real_right; 
%coordinate of calculated point relative to waist center  
%(in calculation coordinate system) 
point_cal_right = (from_real_right * 
point_real_right')'; %calculated point coord in calculation coord 
sys relative %to beam center 

            normal_cal_right = (from_real_right * normal_real')'; 
            in_cal_right = inci_dir(point_cal_right, ... 

beamcenter_cal_right, z0,-1); 
            judge_right = dot(normal_cal_right,in_cal_right);   

% if this area illuminated? 
             
            %left 
            dF_left=[0 0 0]; 
            if(judge_left < 0)  % Yes, illuminated 
                % all the calculation should be within calculation  

%coord sys 
                
rr_left=sqrt((point_cal_left(1))^2+(point_cal_left(2))... 
^2); % distance from calculated point to optical axis 
                
Ir_left=intens(r0,W_left,point_cal_left(3),wavelength,... 
rr_left); 
                
[reflect_left,refract_left,dF_left,R_left,T_left]= ... 
ref(in_cal_left,normal_cal_left,n1,n2,Ir_left); 

                F_left=F_left-dF_left*dS*judge_left; %negative sign  
%comes from judge being negative;  

  
                in_cal_left=refract_left; % next incident direction 
                Ir_left = Ir_left*T_left; 
                for l=1:5 

                    
rpoint_cal_left=ptsphere(point_cal_left,in_cal_ ... 
left,beadcenter_cal_left,Sr); %rpoint is the 
next %incident point while point is the current one 

                    rpoint_relato_beadcen_left = rpoint_cal_left - ...  
beadcenter_cal_left; 

                    normal_cal_left = -rpoint_relato_beadcen_left ... 
/norm(rpoint_relato_beadcen_left); 
                    
[reflect_left,refract_left,dF_left,R_left,T_left]... 
=ref(in_cal_left,normal_cal_left,n2,n1,Ir_left); 

                    judge_temp_left=dot(normal_cal_left,in_cal_left); 
                    if judge_temp_left>0 

disp('wrong when calculation multiple ... reflection 
inside bead, judge>0 !'); 

                    end 
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                    F_left=F_left-dF_left*dS*judge_left;  

%negative sign comes from judge being negative;  
% use the same "judge" and "dS" as the first  
% incidence 

                    Ir_left=Ir_left*R_left; 
                    in_cal_left=reflect_left; 
                    point_cal_left=rpoint_cal_left; 
                 end  
            end % end for if 
             
            %right 
            dF_right=[0 0 0]; 
            if(judge_right < 0)  % Yes, illuminated 
                % all the calculation should be within calculation ... 

coord sys 
                
rr_right=sqrt((point_cal_right(1))^2+(point_cal_... 

right(2))^2); % distance from calculated point to ... 
optical axis 

                
Ir_right=intens(r0,W_right,point_cal_right(3),... 

wavelength,rr_right); 
             [reflect_right,refract_right,dF_right,R_right, ... 

T_right]=ref(in_cal_right,normal_cal_right,n1,n2, ... 
Ir_right); 

                F_right=F_right-dF_right*dS*judge_right; %negative ... 
sign comes from judge being negative;  

  
                in_cal_right=refract_right; % next incident direction 
                Ir_right = Ir_right*T_right; 
                for l=1:5 

                    
rpoint_cal_right=ptsphere(point_cal_right,in_cal_... 
right,beadcenter_cal_right,Sr); %rpoint is the ... 
next incident point while point is the current one 

                    rpoint_relato_beadcen_right = rpoint_cal_right ... 
- beadcenter_cal_right; 

                    normal_cal_right = -rpoint_relato_beadcen_right ... 
/norm(rpoint_relato_beadcen_right); 

                    [reflect_right,refract_right,dF_right,R_right,... 
T_right]=ref(in_cal_right,normal_cal_right,n2,n1,... 
Ir_right); 

                    judge_temp_right=dot(normal_cal_right,in_cal_right); 
                    if judge_temp_right>0 
                        disp('wrong when calculation multiple... 

reflection inside bead, judge>0 !'); 
                    end 
%                     dS=Sr*sqrt(Sr^2-rpoint_relato_beadcen(3)^2); 
                    F_right=F_right-dF_right*dS*judge_right; %negative sign 

comes from judge being negative; use the same "judge" and 
"dS" as the first incidence 

                    Ir_right=Ir_right*R_right; 
                    in_cal_right=reflect_right; 
                    point_cal_right=rpoint_cal_right; 
                 end  
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            end % end for if 
          end % end for k 
      end %end for j 
     F_real=(to_real_left*F_left')'+(to_real_right*F_right')'; 
     forcex(i)=F_real(1)*da*dA;  
     forcey(i)=F_real(2)*da*dA; 
     forcez(i)=F_real(3)*da*dA; 
end % end for i 
  
  plot(pos, forcez*1e12, '-rs'); 
 
 
A.3. Matlab codes for power spectrum analysis 
 
% function psfitting_real_lin3(filename) 
function psfitting_real_lin4 
  
  
format long eng; 
% this code is to use Lorentzian to fit the experimental power spectrum 
% data; it loads data from a file containing the experimental data  
% obtained from a labview program.  
  
% It considers Phydro (aliased Lorentzian with corrected drag force). 
  
%The blocked point will be evenly distributed along linear frequency  
%scale. 
  
%before using this program, make sure: 
%1. data points separation along f axis is 0.2; otherwise, change 0.2  
%in the code. 
%2. spectrum scale (y-axis data) has a unit of dB. 
  
%parameters can be changed below 
  
Tmsr = 50; %total time of sampling 
fstep = 1/Tmsr; %step on frequency 
fsampling = 10e3; % sampling frequency 
  
startHz=1; 
endHz=2000; 
  
R=2.37; 
% R=1.965; %radius of bead with a unit of um 
 
height = 45;  %height of bead center above the glass with a unit of um 
  
f3db=257e3; % f3dB of electronics 
  
mu = 0.89e-3; %unit: Pa.s; mu=nv*rho; dynamic viscosity of water at  
%25oC. data from http://www.thermexcel.com/english/tables/eau_atm.htm 
rho = 0.997e3; %unit: kg/m^3 
nu = 0.893e6;       % kinematic viscosity of water; unit: um^2/s. This  
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%is what we will use here 
gama0 = 6*pi*mu*R*1e-6; %friction coeffient of the bead in SI unit 
  
% data1=loaddata(filename);  %data is a n*m matrix, while n is data  
%number. 
  
load '060403'; 
%   load '301 aver x';  % ps y axis is in linear scale; see change in  
%  line 22 
  
[n,m]=size(data1); 
 powerspec=data1(:,2); % power spectrum in dB scale 
  linearpower=10.^(powerspec./10);  
% power spectrum in linear scale(arb. unit) 
%  linearpower = powerspec; 

  
frequency=(fstep*(1:n))';  
%for unknown reason, the values of data(n,1) is always  
%ingeter for a large n, such as 1e5; before using this program,  
%make sure to change 0.2 to the exact separation of data points. 
  
%blocking start 
m=100; %data number of each blocking 
  
% determine the start and of frequencies for the Lorentzian fitting 
   
%total blocks required 
startno=startHz/fstep; 
endno=endHz/fstep; 
nprime2=fix((endno+1-startno)/m);  
%number of data points used for fitting 
newf=1:nprime2; 
newpowerspec=1:nprime2; 
  
%blocking 
for i=1:nprime2 
    startn = startno + m*(i-1); 
    endn = startno + m*i -1; 
    newf(i)=mean(frequency(startn:endn)); 
    newpowerspec(i)=mean(linearpower(startn:endn)); 
end 
  
plot(newf,newpowerspec,'rd'); 
hold on; 
  
%calculate the values of fc and D by curve fitting 
  
fv = nu/(pi*R^2); %unit Hz 
fm = 0.9*fv;     % it is different from the value give in the paper  
%(2004 apl), because our bead has a density of 2.0g/cm^3 
  
  
start_point = [2e-6 14];  %start values for D and fc, respectively 
model = @Pexpected; 
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opts1 = optimset ('MaxFunEvals',1e5); 
opts2 = optimset('maxiter',1e5); 
options = optimset(opts1,opts2); 
[estimates, fval, exitflag] = fminsearch(model, start_point,options); 
  
% this is the Phydro provided by the paper 
    function [sse Paliased] = Pexpected(params) 
        D = params(1); 
        fc = params(2); 
        Paliased = D./(fc^2+newf.^2); 
        ErrorVector = (Paliased - newpowerspec)./Paliased; 
        sse = sum(ErrorVector .^ 2);   
    end 
  
D=estimates(1); 
fc=estimates(2); 
  
%calculate the errors of fc 
xmin = startHz/fc; %x1 
xmax = endHz/fc;   %x2 
u = 2*xmax/(1+xmax^2) - 2*xmin/(1+xmin^2) + 2*atan((xmax-xmin)/(1+xmax*xmin)); 
v = 4/(xmax-xmin)*(atan((xmax-xmin)/(1+xmax*xmin)))^2; 
Sfc = sqrt(pi/(u-v)); 
sigma_fc = fc*Sfc/sqrt(pi*fc*Tmsr); %error of fc 
  
[sse, FittedCurve] = model(estimates); 
plot(newf,FittedCurve,'-b'); 
  
hold off; 
  
  
k = 2*pi*gama0*fc; 
sigma_k = 2*pi*gama0*sigma_fc; 
disp(['The fitting range is from' blanks(1) num2str(startHz) 'Hz to' ... 
blanks(1) num2str(endHz) '. The number of data points after blocking ... 
is' blanks(1) num2str(nprime2) '.']); 
disp(['Linear axis equidistance blocking, m =' blanks(2) num2str(m) ... 
 '(' num2str(m*fstep) blanks(1) 'Hz).']); 
disp(['The error of curve fitting sub(((Pfit-Pexp)/Pfit)^2) is' ... 
blanks(1) num2str(fval) '. The exitflag is' blanks(1) num2str(exitflag)]); 
disp(blanks(3)); 
disp(['The fitted D is D =' blanks(2) num2str(D)]); 
disp(['The fitted fc is fc =' blanks(2) num2str(fc) blanks(1) '+-' ... 
blanks(1) num2str(sigma_fc)  blanks(1) 'Hz.']); 
disp(['The fitted k is k =' blanks(2) num2str(k*1e6) blanks(1) '+-' ... 
blanks(1) num2str(sigma_k*1e6) blanks(1) 'pN/micron.']); 
  
end 
 
 
A.4. Matlab codes for x-axis Rayleigh trapping force simulation with the CN 
model 
 
function CNtrap00x 
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format long; 
% to calculate the trapping force according to CN model 
  
%parameter to change 
w0=0.44e-6;  % beam waist 
lambda=0.808e-6; % wavelength in vacuum 
n = 1.33; % refractive index of medium 
ns = 1.38;  % 1.578 for ps; 1.45 for silica; 1.38 for biological particles 
a=1e-7; 
  
  
nlist = 1.33:0.01:1.7;  % bead radius; 
epsilon0 = 8.85e-12; 
c=3e8; 
nl=length(nlist); 
esccn=[]; 
  
for j=1:nl 
     
    ns=nlist(j); 
     
    km = 2*pi.*n./lambda; % k in medium 
    s = 1./(km.*w0); 
    nr=ns./n; % relative refractive index 

sigma = 128*pi^5*a^6/3/(lambda/n)^4 * ((nr^2-1)/(nr^2+2))^2; %scattering 
crosssection 

    alpha0 = n^2 * a^3 *(nr^2-1)/(nr^2+2); %polarizability 
    alpha = alpha0/(1+2/3*1i*km^3*alpha0); 
  
    x = (-1.5:0.001:1.5)*1e-6;   % x positions 
    y = 0; 
    zpos = 0e-6; 
     
    dx=0.001e-6; 
    dz=0.01e-6; 
             
    Exx=[]; 
    dExx=[]; 
    dExy=[]; 
    dExz=[]; 
  
    z=0; 
 
    xi = x./w0;  % greek letter Xi: nomalized x 
    eta = y./w0;  % greek letter Eta: nomalized y 
    zita = z./(km*w0^2);  % greek letter zeta: nomalized z 
     
    Q = 1./(2.*zita+1i); 
    rho = sqrt(xi.^2 + eta.^2); 
    psi = 1i.*Q.*exp(-1i.*rho.^2.*Q); 
     
    Ex = psi.*exp(-1i.*zita./s.^2); 
    dExdx = Ex .* (-2i.*Q.*xi)./w0; 



 221

    dExdy = Ex .* (-2i.*Q.*eta)./w0; 
    dExdz = Ex ./ (km.*w0.^2) .* (-1i./s^2 + 2i.*rho.^2.*Q.^2); 
     
    Exx=[Exx;Ex]; 
    dExx=[dExx;dExdx]; 
    dExy=[dExy;dExdy]; 
    dExz=[dExz;dExdz]; 
     
    Fxt = alpha .* (Exx.*conj(dExx)); 
    Fyt = alpha .* (Exx.*conj(dExy)); 
     
    Fx = 1/2*real(Fxt); 
     
  
    P_HA = pi*w0^2*n*epsilon0*c/4;  % power under SI units 
    P_CN = 1/16*n*c*w0^2;           % power under gaussian units 
    FFx = Fx./P_CN; 
     
    Fmax_temp=max(FFx); 
    esccn=[esccn,Fmax_temp]; 
  
end 
     
plot(nlist,esccn*1e12,'-b','LineWidth',3); 
 
 
A.5. Matlab codes for Rayleigh trapping force simulation with the HA model 
 
function HAtrap00x 
  
format long; 
% to calculate the trapping force according to CN model 
  
%parameter to change 
  
% w0=0.44e-6;  % beam waist 
lambda=0.808e-6; % wavelength in vacuum 
n = 1.33; % refractive index of medium 
ns = 1.38;   
% 1.578 for ps; 1.45 for silica; 1.38 for biological particles 
a=1e-7; 
  
  
startw=175e-9; 
endw=1.5e-6; 
  
wlist=[startw:1e-9:endw];  % bead radius; 
  
epsilon0 = 8.85e-12; 
c=3e8; 
  
wl=length(wlist); 
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escha=[]; 
  
for j=1:wl 
     
    w0=wlist(j); 
    %%% end input parameters 
  
    km = 2*pi*n/lambda; % k in medium 
    s = 1/(km*w0); 
    nr=ns/n; % relative refractive index 

sigma = 128*pi^5*a^6/3/(lambda/n)^4 * ((nr^2-1)/(nr^2+2))^2;  
%scattering crosssection 

    alpha0 = n^2 * a^3 *(nr^2-1)/(nr^2+2); %polarizability 
    alpha = alpha0/(1+2/3*1i*km^3*alpha0); 
  
    x = (-1.5:0.001:1.5)*1e-6;   % x positions 
    y = 0; 
    zpos = 0e-6; 
     
    zt =(-0.005:0.001:0.005)*1e-6 + zpos; 
     
    dx = 0.001e-6; 
    dz = 0.001e-6; 
             
     
    %##### temporary codes start 
    lz=length(zt); 
    I= []; 
    Ext=[]; 
     
for i=1:lz 
    z=zt(i); 
    %## temporary codes end 
    xi = x./w0;  % greek letter Xi: nomalized x 
    eta = y./w0;  % greek letter Eta: nomalized y 
    zita = z./(km*w0^2);  % greek letter zeta: nomalized z 
     
    Q = 1./(2.*zita+1i); 
    rho = sqrt(xi.^2 + eta.^2); 

P = 1./(km.*w0.^2).*(-2./(2.*zita +1i) + 1i*2.*rho.^2./ ... 
(2.*zita +1i).^2 - 1i.*km.^2.*w0.^2); 

    psi = 1i.*Q.*exp(-1i.*rho.^2.*Q); 
     
     
    %############## start to calculate the electric field 
  
    Ex = psi.*exp(-1i.*zita./s.^2); 
     
    Ix = epsilon0*n*c/2 * (Ex.*conj(Ex)); 
  
     
    I=[I;Ix];         % I when E0 = 1 
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    Ext=[Ext;Ex]; 
end 
    %############HA model 
  
      
    [Igradx,Igradz] = gradient(I,dx,dz); 
    Fgradx = 2*pi*alpha0/c/n.*Igradx;  % 11*201, from -0.5 to +0.5 
    Fgradz = 2*pi*alpha0/c/n.*Igradz; 
     
    P_HA = pi*w0^2*n*epsilon0*c/4;           %P when E0=1 
    Fgradx = Fgradx/P_HA;   %force x 
    Fgradz = Fgradz/P_HA; 
     
    Fscat = I.*sigma.*n./c;  % always along +z direction 
    Fscat = Fscat./P_HA; 
    Fztotal = Fscat + Fgradz;  %force z 
     
    escha=[escha,max(Fgradx(6,:))]; 
end 
     
    plot((wlist)*1e6,escha.*1e12,'-.r'); 
     
 
 
 
A.6. Matlab codes for Rayleigh trapping force calculation for SP2 based on 
the measured intensity distribution 
 
function HAtrap00xzsp1 
  
format long; 
 
%parameter to change 
load('xz for force field.mat');  % to load the measured intensity 
Inten = interestedData; 
P=135373*(5e-8)^2;   % power measured experimentally 2584760 
lambda=0.808e-6; % wavelength in vacuum 
n = 1.33; % refractive index of medium 
ns = 1.38;  % 1.578 for ps; 1.45 for silica; 1.38 for biological particles 
nr=ns/n; % relative refractive index 
  
a=1e-7; 
  
epsilon0 = 8.85e-12; 
c=3e8; 
  
km = 2*pi*n/lambda; % k in medium 
  
sigma = 128*pi^5*a^6/3/(lambda/n)^4 * ((nr^2-1)/(nr^2+2))^2; %scattering 
crosssection 
alpha0 = n^2 * a^3 *(nr^2-1)/(nr^2+2); %polarizability 
alpha = alpha0/(1+2/3*1i*km^3*alpha0); 
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x = (-5:0.05:5)*1e-6;   % x positions 
z =(-0.5:0.1:5)*1e-6; 
     
dx = 0.05e-6; 
dz = 0.1e-6; 
 
[Igradx,Igradz] = gradient(Inten,dx,dz); 
Fgradx = 2*pi*alpha0/c/n.*Igradx;  % x force 
Fgradz = 2*pi*alpha0/c/n.*Igradz;  % z force 
Fgradx = Fgradx./P;   %force x 
Fgradz = Fgradz./P; 
     
Fscat = Inten.*sigma.*n./c;  % always along +z direction 
Fscat = Fscat./P; 
   
Fx = Fgradx; 
Fz = Fscat + Fgradz;  %force z 
     
dispdx=1; 
dispdz=1; 
dispxin=91:dispdx:111; 
dispzin=11:dispdz:26; 
     
dispx = x(dispxin); 
dispz = z(dispzin); 
dispFx = Fx(dispzin,dispxin); 
dispFz = Fz(dispzin,dispxin); 
 
% get start pts and end pts for arrow3 command 
startp = []; 
endp = []; 
  
scale = min(dispdx*dx,dispdz*dz)/max(max(max(dispFx)),max(max(dispFz))); 
stpt=zeros(length(dispz),2); 
endpt=zeros(length(dispz),2); 
  
for i=1:length(dispx) 
    stpt(:,1) = ones(length(dispz),1)*dispx(i);        % x coordinate of 
start pts 
    stpt(:,2) = dispz';                                % z coordinate of 
start pts 
    endpt = stpt + [dispFx(:,i),dispFz(:,i)].*scale; 
     
    startp=[startp;stpt]; 
    endp=[endp;endpt]; 
end 
  
figure(2); 
arrow3(startp*1e6,endp*1e6,'|2',0.7,1,0.4); 
  
axis equal; 
axis tight; 
set(gca,'YDir','reverse') 
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colorbar; 
  
ARROW3 UPDATE 
  
figure(4); 
maxFx=Fx(17,:); 
plot(x*1e6,maxFx*1e12); 
  
figure(5); 
  
axFz2=Fz(:,100); 
plot(z*1e6,axFz2*1e12,'-b'); 
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APPENDIX B: PUBLICATIONS 
 
Journal Publications 
 
§ Yuxiang Liu and Miao Yu, “Optical manipulation and binding of microrods with multiple 

traps enabled in an inclined dual-fiber system”, Biomicrofluidics, Vol. 4, Art. No. 043010 
(2010). 

 
§ Yuxiang Liu and Miao Yu, “Investigation of inclined dual-fiber optical tweezers for 3D 

manipulation and force sensing,” Optics Express, Vol. 17, No. 16, pp. 13624-13638 (2009). 
(Selected for publication in the Virtual Journal for Biomedical Optics, Editor: Gregory W. 
Faris, Vol. 4, Iss. 10, Oct. 2, 2009). 

 
§ Yuxiang Liu and Miao Yu, “Multiple traps created with an inclined dual-fiber system,” 

Optics Express, Vol. 17, pp. 21680-21690 (2009) (Selected for publication in the Virtual 
Journal for Biomedical Optics, Editor: Gregory W. Faris, Vol. 4, Iss. 13, Dec. 2, 2009). 

 
§ X. M. Zhang, Yuxiang Liu, H. Bae, C. Pang, and M. Yu, “Phase modulation with 

micromachined resonant mirrors for low-coherence fiber-tip pressure sensors,” Optics 
Express, Vol. 17, pp. 23965-23974 (2009). 

 
§ Yuxiang Liu, Hua Xu, Felix Stief, Nikolai Zhitenev, and Miao Yu, “Far-field superfocusing 

with an optical fiber based surface plasmonic lens made of nanoscale concentric annular 
slits”, Applied Physics Letters (in revision). 

 
§ Yuxiang Liu and Miao Yu, “Fiber optic network for simultaneous strain and pressure 

measurements”, Applied Optics (to be submitted). 
 
 

Conference Proceedings 
 
§ Yuxiang Liu and Miao Yu, “Inclined dual-fiber optical tweezers: modeling and 

experiments,” in Optics + Photonics: Nanoscience + Engineering (San Diego, CA, August 20, 
2009), Proc. of SPIE, Vol. 7400, Article No. 740027 (2009). 

 
§ Yuxiang Liu and Miao Yu, “3D Optical Force Field of Inclined Fiber Optical Tweezers,” in 

Conference on Lasers and Electro-Optics (CLEO) (Baltimore, MD, June 2 2009), OSA 
Technical Digest (CD) (Optical Society of America), Paper No. JTuD60 (2009). 

 
§ Yuxiang Liu, Alexander Lacher, Gang Wang, Ashish Purekar, and Miao Yu, “Wireless fiber 

optic sensor system for strain and pressure measurements on a rotor blade,” in Optics East 
(Boston, MA, September 9, 2007), Proc. of SPIE, Vol. 6770, Article No. 67700Y (2007). 

 
§ Yuxiang Liu and Miao Yu, “Fiber Optical Tweezers for Cell Manipulation and Force 
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Sensing,” in Conference on Lasers and Electro-Optics (CLEO) (Baltimore, MD, May 6, 
2007), Paper No. CMAA6 (2007). 

 
§ Yuxiang Liu and Miao Yu, “Three-dimensional fiber optical trap for cell manipulation and 

force measurement,” in Smart Structures and Materials & Nondestructive Evaluation and 
Health Monitoring (San Diego, CA, March 18, 2007), Proc. of SPIE, Vol. 6528, Article No. 
65280Z (2007). 

 
§ Zhong Chen, Yuxiang Liu, He Li, and Miao Yu, “Real-time demodulation scheme based on 

phase-shifting interferometry with error compensations for miniature Fabry-Perot acoustic 
sensors”, in Smart Structures and Materials 2006 (San Diego, CA, February 26, 2006), Proc. 
of SPIE, Vol. 6167, Article No. 61670N (2006). 

 
§ Yuxiang Liu, Anding Zhu, and Wenhao Huang, “Theoretical calculation of light-induced 

forces and torques on complex microrotors, ” in Photonics Asia 2004 (Beijing, China, 
November 8, 2004), Proc. of SPIE, Vol. 5641, pp. 255-263 (2004). 
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