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When it opened to pedestrian traffic in the year 2000, London’s Millennium 

Bridge exhibited an unwanted, large, side-to-side oscillation which was apparently 

due to a resonance between the stepping frequency of walkers and one of the bridge 

modes. Models for this event, and similar events on other bridges, have been 

proposed. The model most directly addressing the synchronization mechanism of 

individual walkers and the resulting global response of the bridge-pedestrian system 

is one developed by Eckhardt et al. This model treats individual walkers with a phase 

oscillator description and is inherently high dimensional with system dimensionality 

(N+2), where N is the number of walkers. 

In this thesis we use a method proposed by Ott and Antonsen to reduce the 

Eckhardt et al. model to a low dimensional dynamical system, and we employ this 

reduced description to study the global dynamics of the bridge-pedestrian interaction. 

More generally, this treatment serves as an interesting example of the possibility of 

low dimensional macroscopic behavior in large systems of coupled oscillators. 
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Chapter 1: Introduction 

 

In recent decades there has been a trend towards improved mechanical 

characteristics of materials used in footbridge construction. This has enabled 

engineers to design lighter, more slender and more aesthetic structures. As a result of 

these construction trends, many footbridges have become more susceptible to 

vibrations when subjected to dynamic loads. 

 
One of the most recent examples is the Millennium Bridge in London. As an 

eager crowd streamed onto the bridge for the opening celebration, the bridge 

developed large amplitude side-to-side oscillations, and the crowd simultaneously 

began to fall into step.  

 
Some models were developed to understand this phenomenon. The most 

recent one is by Eckhardt et al. [3]. It models the bridge and the pedestrian movement 

as a coupled oscillator system. This model gives substantial insight about the problem 

and what happened on the opening day.  The limitation of this model is that it is 

difficult to track analytically. 

 
In this work, we study the dynamics of the model from Ref. [3] by employing 

a technique developed in Ref. [18] that allows us to provide an exact reduction of the 

original high dimensional dynamical system to a low dimension description. This low 

dimensional model enables us to study the bridge instability analytically and, in 

addition, greatly facilitates the numerical investigation. 



 2 
 

1.1 Thesis Navigation 

In chapter 2 we introduce the Millennium Bridge stability problem including a 

brief description of measurements and tests performed by the company (Arup) that 

designed the bridge. 

 
In chapter 3 we review existing models for the Millennium Bridge problem 

and their limitations. 

 
 In chapter 4, we analytically reduce the model of Ref. [3] to an equivalent 

lower dimensional model, and we present analysis of our reduced model. 

 
Numerical simulation results are presented in chapter 5, along with a 

comparison between our results and Arup’s measurements. 

 
Finally, we present conclusions and further discussion in chapter 6. 
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Chapter 2: The Story of the Millennium Bridge 
 

 

2.1 Introduction 

The London Millennium Footbridge is a pedestrian steel suspension bridge 

crossing the River Thames in London, England, linking Bankside with the City. The 

southern end of the bridge is near the Globe Theatre, the Bankside Gallery and Tate 

Modern, the north end is next to the City of London School below St Paul's 

Cathedral. The bridge alignment is such that a clear view of St Paul's south facade is 

presented from across the river, framed by the bridge supports, thus providing a 

scenic view of the cathedral, see Fig. 2.1. 

 

 
 

Figure 2.1: The Millennium Bridge with St. Paul’s Cathedral on the left [4]. 
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2.2 The Opening Day 

On opening day and as an eager crowd streamed onto the bridge for the 

opening celebration, pedestrians experienced a large lateral wobbling of the bridge. 

The wobbling increased as more and more people streamed onto the bridge. This 

phenomenon apparently was due to a resonance between a low order bridge mode and 

the natural average stepping frequency of human walkers. 

 
City authorities closed the bridge two days after its opening. During the 

following 18 months, the designer company, Arup, developed a system of dampers 

aimed at eliminating the unwanted wobble. In the next sections we will review Arup’s 

measurements and solution. 

 

2.3 Arup’s Controlled Tests 

After the bridge was closed, Arup initiated a series of experiments to better 

determine the number of pedestrians necessary to destabilize a given span of the 

bridge. These tests were administered by having Arup employees enter the north span in a 

controlled fashion, so that the size of the crowd was known, while accelerometers 

recorded the resulting vibrations. Further walkers were added to the span in groups. 

 
The solid plot in Fig. 2.2 shows the time evolution of the bridge vibration 

versus time. The dashed line is the number of people walking on the bridge. This 

starts with around 50 walkers, further walkers are added to the span in groups of 

around 10 people. 
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Arup’s engineers concluded from this experiment that, the north span is stable 

with 156 people but with just 10 more people the movements increase suddenly and 

synchronous lateral excitation occurred. More details on the correctness of these 

conclusions will be discussed in chapter 3 and chapter 5. 

 
Figure 2.2: A time trace of lateral acceleration of the bridge deck and the number of 

pedestrians (taken from Arup’s measurements [5]). 
 

 

2.4 Arup’s Solution 

There are two fundamental ways to limit dynamic excitation. The first is to 

stiffen the structure, so the natural lateral oscillation frequency of the bridge becomes 

very different from the stepping frequency of pedestrians. The second is to add 

damping to absorb the energy of lateral oscillation. 

 
Arup concluded that stiffening the bridge to change its frequency was not a 

feasible option. The bridge would need to be at least tenfold stiffer laterally to move 

its frequency out of the excitation range, and the additional structure required to do 

this would dramatically change the appearance of the bridge. 
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It was decided to adopt a damping solution, either active damping or passive 

damping. Active damping uses powered devices to apply forces to the structure to 

counteract vibrations. Passive damping relies on harnessing the movements of the 

structure to absorb energy. 

 
Active dampers are commonly used in other engineering fields such as 

aeronautics and buildings. However, no previously designed systems were 

sufficiently developed for a more complex multimodal system such as the bridge. 

Maintenance requirements were also a cause for concern. Following discussions with 

manufacturers, Arup reached the conclusion that active damping was too complex 

and expensive and that production times were too long for this to be a viable solution 

in this instance. 

 
The bridge deploys passive damping to reduce bridge movement. Figure 2.3 

shows a passive viscous damper that was employed to reduce lateral motion. 

 

 
 

Figure 2.3: Illustration of a viscous damper implemented in the Millennium Bridge. 
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These Viscous dampers are located under the deck, around the piers and the 

south landing to control the lateral motions. They function in a similar way to shock 

absorbers. Each damper dissipates energy by the movement of a piston passing back 

and forth through a fluid. Distinctive new chevron steelwork transfers the bridge 

movements to the under deck viscous dampers. 

 
In addition to viscous dampers used to damp lateral motion, tuned mass 

dampers are also located beneath the deck and reduce vertical movements. Tuned to a 

specific frequency these inertial devices, simplistically weights on springs, are 

attached to discrete points on the structure. Although no excessive vertical movement 

occurred on the Millennium Bridge, these were added as a precaution, since some 

researchers suggested that synchronous pedestrian vertical loading is also possible 

and has been observed elsewhere. Figure 2.4 shows the positions where dampers were 

added to the bridge. 

 

 
 

Figure 2.4: Elevation of the bridge showing the dampers’ positions [4]. 
 

2.5 Other Bridges 

The Millennium Bridge oscillation is different from that which lead to the 

destruction of the Tacoma Narrows Bridge. In particular, for the Millennium Bridge 

there is no mechanical bridge resonance near the frequency of vortex shedding 

induced by wind nor are there vibrations of the empty bridge both of which occurred 
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in the case of the Tacoma Bridge. There was no swaying with few moving people or 

with people standing still. The Millennium Bridge oscillation happened when the 

number of moving pedestrian crossed a critical number. 

 
It appears that little in the way of lateral phenomena has been previously 

recorded for other footbridges. A documented case is that of a footbridge in Japan 

connecting a sports facility to a bus terminal. The bridge suffered strong lateral 

motions when crowds crossed it at the end of an event [7] 

 
More recently, lateral vibrations were among several reasons behind the 

closure of the new Solferino Bridge in Paris, Fig. 2.5, immediately after its opening in 

December 1999. The 100 year-old Alexandra Bridge in Ottawa, Fig. 2.6, experienced 

strong lateral vibrations in July 2000, when subjected to abnormal crowd loading, in 

this case by spectators of a fireworks display. 

 

 

 
Figure 2.5: Pont du Solferino, Paris, France 
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Figure 2.6: Alexandra Bridge, Ottawa, Canada 

 
 

2.6 Bridge Parameters 

The data relevant to opening day is limited to some archival video footage. Peak 

crowd densities can be estimated from the videos and from published Arup statistics at 

about 1.3-1.5 persons per square meter, or about 450 total walkers on the north span [4, 5]. 

 
Because the majority of published experimental data pertains to the fundamental  

lateral mode of the north span, we have used those parameters in most of the calculations 

presented in the following chapters. Table 2.1 presents a summary of the published data 

for the three spans of the Millennium Bridge. 

Table 2.1:  Millennium Bridge parameters for the fundamental lateral mode on the north 
span, center span, and south span. Data comes from [4, 5]. The ‘damping ratio’ in this table is 

the same as what we define as ε  in Sec. 4.2 
 North span Central span South span 
Length [m] 81 144 108 
Modal mass [kg x 103] 113 128-130 160 
Resonant frequency [Hz] 1.03 0.48 0.80 
Damping Ratio [%] 0.6-0.8 0.765 0.6-0.8 
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The resonant frequencies of various footbridges are presented for comparison 

in Fig. 2.7 (from [5]). It is interesting to note that a substantial number of these 

footbridges have resonance in the dangerous region near 1 Hz. 

 
 

 
 
Figure 2.7: Natural frequencies of footbridge spans of varying lengths composed of different 

materials.  (Taken from [5]). 
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Chapter 3: Millennium Bridge Models 

 
In this section, we review existing theories of the lateral vibration on the 

Millennium Bridge. 

3.1 Arup’s Model 

Arup engineers published a series of papers [4, 5, 6] in which they describe the 

experiments they carried out and the theory that they developed to explain the onset of 

lateral oscillation 

 
The key modeling assumption of this work is that pedestrians act like negative 

damping. Thus they formulate a model, where the correlated lateral force per person F  

is proportional to the local lateral bridge velocity V, i.e., F kV= . The proportionality 

constant k was measured empirically to be about 300 kg/s (see Fig. 3.1).  The lateral 

correlated force was estimated in experiment by measuring the gain in kinetic energy 

per cycle, under the assumption that the work done must have come from the difference 

between pedestrian forcing and known damping. 

 
Arup found a formula for the critical number of pedestrians by solving for the 

point at which the bridge damping is exactly counteracted by pedestrians’ effective 

negative damping. 
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Figure 3.1: Typical lateral force versus velocity. Experimental results based on Arup’s 
controlled tests conducted after closure of the Millennium Bridge [5]. 

 

The primary disadvantage of Arup’s model is the empirical nature of the 

description of pedestrians.  The linear relationship between F and V, if indeed correct, 

should be explained by the model, rather than assumed. 

 
Also, the empirical law does not address why pedestrians act like a negative 

damping, nor address the issue of pedestrian walking synchronization. Video footage 

from opening day clearly shows that pedestrian stepping synchronization occurred 

and was related to the unwanted wobble. 

 
Another downside to this approach is that the predicted critical number of 

pedestrians depends only on the damping, and is independent of the natural frequency 

of the bridge.  Different bridges have different critical thresholds.  The crucial effect 

of the walker frequency distribution is also not considered in this model 

 
Finally, the steady state amplitude for bridge motion cannot be predicted, as it 

is due to nonlinearities that are not modeled in Arup’s system 
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3.2 Newland’s Model 

In 2003, Newland published a two parts paper relating to the Millennium 

Bridge problem [16]. 

 
In his first part he defined a transfer function for the effect of forces on the 

bridge and another for the feedback on the people. He then assumes, based on the 

empirical evidence of Arup’s tests, that the pedestrians naturally tend to shift their 

phases such that they maximally destabilize the bridge (a worst-case scenario). By 

solving for the phase in the feedback transfer function at which the bridge is maximally 

destabilized, he claims to show that pedestrians do indeed act like negative dampers 

(i.e., their force leads bridge displacement by π/2 in phase) under such assumptions 

 
In the second part, he explores the problem with the approach of a delayed 

differential equation, assuming that pedestrian motion ( )z t  is smaller in amplitude 

than the bridge motion ( )y t and delayed by a value ∆ , i.e., ( ) ( )z t y tα= −∆  where α 

is positive. A steady oscillatory state assumption ( ) i ty t Y e ω=  results in a stability 

condition for the bridge damping. It is assumed that only some fraction β  of the 

population locks into synchronization with the bridge. Both β  and α  are estimated 

from Arup’s experimental data and found to be α ≈ 2/3 and β ≈ 0.4. 

 
The model assumes that 40% of the walkers are locked to the bridge frequency 

regardless of that natural frequency and regardless of the amplitude of motion. The model 

does not account for differences in walker frequency distributions, and does not address the 

question of steady-state amplitude of bridge motion. 
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3.3 Roberts’ Model 

In the 2003 paper Ref. [19] by Roberts, the bridge was modeled using partial 

differential equations. The pedestrians were assumed to have a sideway acceleration 

proportional to the interaction force, which is assumed sinusoidal with a frequency different 

from the bridge eigenfrequencies.  

 
The model assumes that pedestrians will synchronize so as to destabilize the 

bridge; it does not describe the underlying cause of the synchronization. Because of that,  

it cannot describe the onset of the synchronization/vibration, and therefore cannot  

explain Arup’s empirical law for linearity between pedestrian forcing and bridge  

velocity. 

 

3.4 Nakamura’s Model 

Nakamura’s work [15] starts from the model by Arup, but includes the 

additional assumption that a pedestrian response to bridge motion will saturate at 

large amplitudes.  That is, he assumes that Arup’s F kV=  is only valid for small 

bridge velocities. 

 
Nakamura’s predictions match those of Arup for onset of the instability. The 

difference in his work is that the steady state amplitude may be predicted, although no 

algebraic solution is given, only numerical results are presented. 

 
Synchronization is assumed but not explained, and the critical number of 

pedestrians, implicit in Nakamura’s model, is independent of the natural frequency of the 

bridge. 
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3.5 Fujino’s Model 

Motivated by an earlier observation of wobbling on a footbridge in Japan, the 

1994 paper of Fujino et al. [7] start by modeling the bridge as a damped harmonic 

oscillator, driven sinusoidally by a crowd of identical walkers whose phases are 

initially randomly distributed.  The implied predictions for steady-state amplitude are 

too small, so the authors review movie footage of a case of synchronous lateral 

excitation, and find that approximately 20% of the crowd is phase-synchronized. Using 

that assumption, they modify their predictions and find that the steady-state 

amplitudes in their model with 20% synchronization are reasonable 

 
Fujino et al. predict that about 20% of the walkers on a laterally vibrating 

bridge will synchronize in phase. The steady state amplitude that they predict comes from  

the steady state behavior of a sinusoidally driven damped harmonic oscillator. 

 
The model proposed by Fujino et al. does not predict any sudden transition to a 

vibrating bridge state; rather it yields a continuous increase in the vibration amplitude 

as the number of walkers increases. This conflicts with Arup’s experiments made on the 

Millennium Bridge 

 
Also, Fujino’s model uses the empirical value of 20% synchronization without 

providing a theoretical basis. It does not indicate what causes that partial 

synchronization to occur, or at what amplitude it begins to happen 
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3.6 Eckhardt’s Model 

Eckhardt et al. [3] modeled the bridge lateral oscillation as a damped 

harmonic oscillator forced by the motion of the pedestrians, 

 2

1
2 ( )

N

i
i

My M y M y f tε
=

+ + Ω =∑   (3.1) 

where ( )y t is the modal bridge displacement, Ω  is the angular eigenfrequency 

associated with the relevant mode, M is the equivalent modal mass, ε  is the damping 

rate, and the dots on y denote time derivatives. The lateral modal force exerted on the 

bridge by pedestrian i  is ( )if t , where i=1,2, . . . ,N, with N the number of pedestrians 

on the bridge. 

In order to model the dynamics of the bridge-pedestrian system, the model 

attempts to incorporate the dynamics of the different responses of individual 

pedestrians as they adjust their stepping under the influence of the bridge motion.  

 
A fundamental difficulty is that there does not currently exist a well-

developed, generally accepted, physiological model of human walking dynamics and 

its response to external inputs [3]. 

 
The model considers the response of walkers to small bridge displacements, 

and assumes that the walker response is approximately linear in the bridge 

displacement. In addition, the following hypotheses are employed: 
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1. The effect results solely from an interaction between the bridge and the 

walkers and not from visual or other communication between the walkers, i.e., 

people-people interactions are not included in the model. 

 
2. The only significant bridge variable sensed by the walkers is that due to the 

side-to-side force felt by the walkers in the moving frame of the bridge [i.e., 

the walkers directly sense only the side-to-side bridge acceleration, ( )y t ]. 

 
3. The dynamics of a walker’s response to small amplitude bridge motion is 

describable within the phase oscillator framework, 

 
( )
( )

0( ) co s ( ) ,

cos ( ) ,
ii i

i i i

f t f t

by t

θ

θ ω θ

=

= −



 (3.2) 

where b is a coupling constant, 0i
f  is the peak lateral force applied by the 

walker, and iω  is the stepping frequency of walker i. (Note that a complete 

cycle consists of both left and right steps. More details on the walker 

frequency and force will be discussed in the next section). 

 

3.7 Walker’s Model 

Modeling the pedestrian walking is harder than modeling the bridge response. 

First of all, very few studies have been done on the properties of pedestrians. One 

study [13, 14] has been done on pedestrians walking on a platform simulating the 

dynamics of a bridge. However, the pedestrian response dependency on the frequency 

of the forcing was not measured, and the phase relationship between the walker and 

the oscillating platform was not monitored. 
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3.7.1 Walkers Frequency 

A statistical description of normal walking frequencies was first given by 

Matsumoto et al. [11, 12] who investigated a sample of 505 persons. They concluded 

that the frequencies approximately follow a normal distribution with a mean pacing 

rate of 2.0 Hz and standard deviation of 0.173 Hz. The result is shown in Fig. 3.2. 

 
 

 

Fig 3.2: Distribution of pacing frequencies for normal walking (from [21]). 
 

The book by Bachmann and Ammann [1] also discusses the loading from 

human motions, distinguishing between slow walking, walking, fast walking, jogging, 

and running. Table 3.1 shows the pacing frequency and the lateral frequency of each 

of the previous human motion types. 
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Table 3.1: Walking and running from Bachmann and Ammann [1] 
 Pacing Frequency (Hz) Lateral Frequency (Hz) 
Slow walk 1.7 0.85 
Normal walk 2.0 1.0 
Fast walk 2.3 1.15 
Slow running 2.5 1.25 
Fast running >3.2 >1.6 
 
 

3.7.2 Walkers Force 

Several statistical studies assess the pedestrian applies dynamic forces to the 

surface on which he/she walks. The variation in the vertical force component is 

estimated to be 40% of the walker’s body weight. The lateral component is applied at 

half the footfall frequency and on a stationary surface is about 10% of the vertical 

component; i.e., 4% of body weight [2, 21]. 
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Chapter 4: Low Dimensional Description of the Millennium 

Bridge Dynamics 

 
In this chapter we will introduce a low dimension model for the Millennium 

Bridge problem. We start with a review of coupled oscillator system properties. Then 

a review of Eckhardt’s et al. [3] model limitation is discussed. Then using the notion 

of order parameter, we will derive a low dimensional model for bridge stability. A 

detailed analysis of the bridge stability is carried out using this model. 

 

4.1 Coupled Oscillators 

Systems consisting of large number of coupled oscillators can be found in 

many significant applications. Examples are the synchronous flashing of groups of 

fireflies, coordination of oscillatory neurons governing circadian rhythms in animals 

[20], entrainment in coupled oscillatory chemically reacting cells [9], bubbly fluids 

[8], etc. A key contribution in this area was the introduction of the following model 

by Kuramoto [10], 

 ( ) ( )( )
1
sin

N

i i j i
j

K t t
N

θ ω θ θ
=

= + −∑  (4.1) 

where the state of oscillator i is given by its phase ( )i tθ , ( 1, 2, , )i N=  , iω is the 

natural frequency of oscillator i, and the coupling constant K specifies the strength of 

the influence of one oscillator on another. It has been shown in Ref. [17] that in the 

N →∞  limit there is a continuous phase transition such that, for K below a critical 

value ( )cK K< , no coherent behavior of the system occurs (i.e., there is no global 



 21 
 

correlation between the oscillator phases), while above the critical coupling 

strength ( )cK K> , the system displays continuously increasing global cooperative 

behavior (i.e., partial or complete synchronization of the phases). 

 
The Millennium Bridge problem is somewhat more complicated than the 

situation envisioned for the applicability of Eq. (4.1), where the oscillators interact 

directly with coupling constant K. In contrast, the oscillators (walkers) in the 

Millennium Bridge problem interact through their mutual effect on a separate 

dynamical unit (the bridge). Nevertheless, these two models have in common their 

characterization of the oscillator state by a single simple scalar variable, ( )i tθ . 

 

4.2 Eckhardt’s Normalized Model 

In order to simplify the analysis, the model neglects the variation of the 

walker’s weights. Hence we assume that 0 0i
f f=  for all i. This assumption could, 

without too much trouble, be lifted, i.e., the model framework could be easily 

generalized to include a distribution of the walker weights. However, we do not 

expect any important consequence due to a distribution of walker weights, and so will 

not attempt to include that complicating factor. 

 
A dimensionless formulation of the model will be used through the rest of the 

chapter. Dimensionless quantities will be distinguished by a tilde over the 

corresponding symbols, as follows, 

 /t t= Ω  (4.2) 
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 0
2

N fy y
M

=
Ω

  (4.3) 

 i iω ω= Ω  (4.4) 

 ε ε= Ω   (4.5) 

and the normalized version of the model in Eqs. (3.1) and (3.2) becomes 

 
1

12 cos
N

i
i

y y y
N

ε θ
=

+ + = ∑ 

    (4.6) 

 cosi i ibyθ ω θ= − 

   (4.7) 

where b is called the coupling coefficient and is given by 

 0

0

,N fb
Mgτ

=
Ω

 (4.8) 

where 0g  and τ  are constants defined in [3] characterizing the human walker 

response. The value of τ  can be roughly estimated but has considerable uncertainty. 

 

4.3 Eckhardt’s Previous Work 

Eckhardt, et al. in [3], developed the above-given bridge model, and they used 

it to understand the bridge oscillation phenomena. They assumed that the distribution 

of the walker’s frequency is Gaussian 

 ( )
( )20

22
2

1
2

g e
ω ω
σω

πσ

− −

=
 

  (4.9) 

for which they obtained extensive results. 

For example, for 0 1ω = , analytical results were obtained for the critical 

number of people above which oscillation occurs, 
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( )

0

0

24
1c
gN M

g f
τε

π
 

= Ω  
 

 (4.10) 

where ( ) ( ) 1
1 2g σ π

−
=  . 

 
In the next section we will introduce a solution of the problem based on the 

technique introduce in Ref. [18]. Using this technique we can analytically reduce the 

dimensionality of the ODE model (4.6) and (4.7) from (N+2) ODE’s to 4 ODE’s and 

we can analytically investigate the reduced system. 

 

4.4 Bridge Instability Low Dimension Model  

In this section we will use the technique of Ref. [18] to establish a lower order 

model of the Millennium Bridge problem. Defining   

 
1

1
i

N
i

i
R e

N
θ

=

= ∑  (4.11) 

Eq. (4.6) becomes 
 
 2 Re( )y y y Rε+ + = 

    (4.12) 

The “order parameter” R reflects the collective behavior of the coupled 

oscillator system. 

 
In order to analyze the behavior of the system for large N, it is useful to take 

the N →∞  limit. That is, we consider a continuum of oscillators which we 

characterize by a distribution function ( , , )f tθ ω 

 such that ( , , )f t d dθ ω θ ω

   is the 

fraction of oscillators whose phase angles lie between θ  and dθ θ+  and whose 
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natural frequencies lie between ω  and dω ω+  . Thus, 1f d dθ ω ≡∫∫  . The natural 

oscillator frequencies distribution is given by 
2

0

( )g f d
π

ω θ= ∫ . 

Since the number of oscillators is conserved we can write, 

 0 .f f f
t t t

θ ω
θ ω

∂ ∂ ∂ ∂ ∂   + + =   ∂ ∂ ∂ ∂ ∂   



  



 (4.13) 

This equation is similar to that for particle conservation in a compressible fluid, 

where f  plays the role of the fluid density, and ( ),θ ω  plays the role of spatial 

coordinates of a fluid element. For our problem, the natural frequency of an oscillator 

does not change with time / 0d dtω = and /d dtθ  is given by (4.7). Thus, the 

equations describing the N →∞  continuum limit are 

 { }cos 0i
f by f
t

ω θ
θ

∂ ∂  + − = ∂ ∂


 



 (4.14) 

 ( )
2

0

iR t e f d d
π

θ θ ω
∞

−∞

= ∫ ∫

  (4.15) 

Following Ref. [18] we expand ( ), ,f tθ ω 

 in a Fourier series in θ , 

 
1

( ) 1 ( , ) . . .
2

in
n

n

gf f t e c cθω ω
π

∞

=

  
= + +  

  
∑





  (4.16) 

where c.c stands for complex conjugate. Substituting this series expansion into (4.14) 

gives 

 [ ]1 1 0 .
2

n
n n n

f bi n f y f f
t

ω + −

∂  + − + = ∂  


 



 (4.17) 

 

We now consider a restricted class of ( , )nf tω 

  such that [18] 
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 ( )( , ) ( , ) ,n
nf t tω α ω= 

   (4.18) 

where ( , ) 1tα ω ≤  to avoid divergence of the series. Substituting this series expansion 

in (4.17) we get  

 2 1 0.
2
bi y

t
α ωα α∂   + − + =  ∂  



 



 (4.19) 

 
Using (4.15) and (4.18) we obtain 

 *( ) ( ) ( , )R t g t dω α ω ω
∞

−∞

= ∫ 

    (4.20) 

 
To proceed further, we will assume walker’s frequency distribution ( )g ω  to 

be Lorentzian with mean 0ω  and width ∆ , 

 
( )2 2

0

1( ) .g ω
π ω ω
∆

=
− + ∆







 

 (4.21) 

 
 To do the integral in (4.20) we analytically continue ω  into the complex 

plane. We assume that ( ), tα ω 

  is analytic in ( )Im 0ω <  and that ( ), 0tα ω →  as 

( )Im ω → −∞  (see [18]). The integral in (4.20) can then be done by closing the 

integration path with a large semicircle in the lower half ω  plane. The integral is 

given by the residue of the pole at 0 iω ω= − ∆  , 

 *
0( ) ( , ) .R t i tα ω= − ∆ 

  (4.22) 

 
Thus by setting 0 iω ω= − ∆   in (4.19), we obtain 
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2

*
* *

0( ) ( , ) 1 0 ,
2

dR bi i R y R t
dt

ω ω  + − ∆ − + =   




 



 (4.23) 

which together with (4.12) constitutes our closed low dimensional description. 
 

Note that this description involves a single complex equation (4.23) for the 

order parameter ( )R t  characterizing the pedestrians, coupled to a second order 

equation (4.12) for the bridge displacement ( )y t . Thus this model exists in a four 

dimensional (real) state space. 

4.5 Linear Analysis 

In this section we examine the linear stability problem for the bridge-

pedestrian system using (4.23) and (4.12).  

The linearized equivalent model is given by 

 0 0r
I r

dR R R
dt

ω+ + ∆ =





 (4.24) 

 0 2
I

r I
dR bR R y
dt

ω− + ∆ = − 

 



 (4.25) 

 2 ,ry y y Rε+ + = 

    (4.26) 

where r IR R iR= +  

Assuming time variations proportional to ste  , the previous linear system becomes 

 0 0( ) 0r r Is R R Rω ω+ ∆ + + =   (4.27) 

 2
0( )

2I r
bs R R s yω+ ∆ − = −   (4.28) 

 2( 2 1) rs s y Rε+ + =   (4.29) 

Nontrivial solution for R  and y  occur when s satisfies the characteristic equation  
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 ( )2 2 2 2
0 0( ) 2 1

2
bs s s sω ε ω + ∆ + + + =    (4.30) 

To obtain the critical value of b (denoted cb ) at the onset of instability, we set 

0( )Is i ω δ= + and cb b=  in (4.30). Furthermore, noting that for the Millennium 

Bridge the dimensionless quantities ε , 0 1ω − , ∆  are small, we introduce the 

ordering, 

 0 1 1.I cbω ε δ− ∆ <<

 
     (4.31) 

Utilizing this in (4.30) and expanding to lowest order in the small quantities, the real 

and imaginary parts of (4.30) give the following equations for cb  and Iδ , 

 ( )01 I Iω δ ε δ∆ − − =

   (4.32) 

  ( )01 / 8I I cbδ ω δ ε− + + ∆ =

   (4.33) 

Solving (4.32) for Iδ  and substituting into (4.33), we obtain the critical value cb , 
such that for cb b>  there is instability, 

 
2

0 18 1cb ωε
ε

 − = ∆ +  ∆ +   











 (4.34) 

For the worst case, 0 1ω = , the critical b value is given by 

 8cb ε= ∆   (4.35) 

Figure 4.1 shows the relationship between cb  and 0ω . 
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Figure 4.1: Relationship between walker’s average frequency 0ω  and cb  

 
For the case 0 1ω = , Eq. (4.30) evaluated to lowest order in the small 

quantities previously given, yields 

 ( )2 / 8bγ ε γ ε+ ∆ + + ∆ = 

   (4.36) 

where we have defined s i γ= + . Equation (4.36) yields 

 ( ) ( ) ( )21 1
2 2 cb bγ ε ε
 

= ∆ + + − − ∆ + 
 

 

   (4.37) 

which is positive, corresponding to instability, for 8cb b ε> = ∆  , and negative, 

corresponding to exponential damping, for cb b< . 
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4.6 Nonlinear Steady State Solution 

In this section we study the steady state behavior of the system model for the 

worst case 0 1ω = , i.e., when the walkers’ frequency matches the bridge 

eigenfrequency. In the steady state case, the oscillation observed on the opening day 

can be modeled as 

 ( ) co s( ) .y t A t=   (4.38) 

Taking the order parameter in the steady state to be 

 ( ) itR t iR e∞≅ 

  (4.39) 

where R∞  is real , and substituting with (4.39) in (4.23) we get 

 ( )( ) ( )( )2 21 1 0
4

it it it it itbR e i i iR e A e e R e− − − −
∞ ∞ ∞

 − + − ∆ − + + − + =  
    

  (4.40) 

Which consists of terms varying as ite−  , ite  , 3ite−  . Consistent with our approximation 

(4.31) we ignore the components varying as ite   and 3ite−  . Thus setting the coefficient 

of the ite−   term to zero, we obtain, 

 2

4 .
1

Rb A
R
∞

∞

∆
=

−
 (4.41) 

Substituting (4.39) in (4.12), we get 

 .
2
RA
ε
∞=  (4.42) 

Equations (4.41), (4.42), and 8cb ε= ∆ , yield 

 1 cbR
b∞ = −  (4.43) 
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Figure 4.2 shows the relationship between the steady state amplitude A and 

the b value. We will subsequently verify the accuracy of the approximations used 

above by comparing Eq. (4.41) with numerical solutions of the full system. 

 

 
 

Figure 4.2: Steady state amplitude A versus b value. 
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Chapter 5:  Numerical Simulations 
 
 

In this chapter we will conduct several simulations to verify the results in 

chapter 4, as well as to obtain additional results and to compare our results with 

Arup’s experiments. 

 

5.1 Simulation Program 

We wrote a program to solve the bridge reduced ODE system derived in 

chapter 4. The Runge-Kutta method is implemented to the forth degree to solve the 

ODE system. 

 

5.2 Simulation Parameters 

The following parameters are used in all the simulations in this chapter except 

when explicitly mentioned. 

 

Table 5.1: Simulation parameters used throughout the chapter. 
 
 Symbol Value Reference 
Bridge model M  3113x10 Kg  [4] 

ε  0.0075 [4] 
τ  1.9 sec  [3] 

0g  20.3 /m s  [3] 
Ω  2π /s [4] 

Pedestrian model 0f  25 N  [21] 
σ  0.09  [21] 
∆  0.072  Assumed 

Initial conditions (0)y  310−  Arbitrary 
(0)y  0 Arbitrary 
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5.3 Time Evolution of the System for Constant Coupling Coefficient b 

 
In this section we will examine the system time evolution when the coupling 

coefficient b is not varied with time. This is the case of a fixed number of walkers. 

 
Two cases will be examined, one with cb b> , and one with cb b< . In each 

case, we will solve the ODE system, Eqs. (4.23) and (4.12), and plot the normalized  

bridge displacement y  versus time and the magnitude of the order parameter R  

versus time. 

 

5.3.1 Case I:  b > bc 

In this case we will use 1.25 cb b= . Figure 5.1 shows the time evolution of the 

bridge normalize oscillation amplitude. Starting from a small value of y , the bridge 

started to build up oscillation until it reached the steady state with peak oscillation 

amplitude of 2.25 (dimensionless). 

 
Figure 5.2 is a magnification of a part of Fig. 5.1. It shows the initial 

approximate exponential growth of the bridge oscillation. 
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Fig. 5.1: Normalized amplitude versus time for the case cb b> . 1.25 cb b=  is used. 

 
 

Figure 5.2: Magnification of a part of Fig. 5.1, showing the bridge oscillation buildup. 
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Figure 5.3 shows a semilog plot of the time evolution of R . We see that the 

pedestrian forcing started increases exponentially exponential rate until it reached a 

steady state value of 0.44R∞ = . 

 
Figure 5.3: Order parameter R  versus time for the case cb b> . 1.25 cb b=  is used 

 

5.3.2 Case II:  b < bc 

To illustrate this case, we used 0.75 cb b= . Figure 5.4 shows the time 

evolution of the normalized bridge oscillation amplitude y . Starting from a small y, 

the bridge oscillation damps exponentially toward zero. 
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Figure 5.4: Normalized amplitude versus time for the case cb b< . 0.75 cb b=  and 

( ) 30 10R −=  are used. 
 
 

Figure 5.5 shows the time evolution of  R . The pedestrian force decreases 

exponentially with time. 

 



 36 
 

 
Figure 5.5 Order parameter R  versus time for the case cb b< . 0.75 cb b=  and 

( ) 30 10R −=  are used 
 

 

5.4 Validation of the Non-Linear Model 

In this section we will compare our analytical results, Eqs. (4.34), (4.35), 

(4.37), (4.42), and (4.43) from section 4.6, with the solution of the ODE system. 

 
In the following simulations we scanned all the b values from startb ε= ∆   to 

16endb ε= ∆   with step size 0.1 ε∆  . 

 
Figure 5.6 shows the normalized amplitude A versus the b value. A sudden 

change in the normalized amplitude can be notice at 8b ε= ∆  . Before this value, the 

bridge is considered to be stable and after it, the bridge started to oscillate. We note a 
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small discrepancy between the theory and the numerical solution (the x’s). This is 

probably due to the approximations in Eq. (4.41). 

 
 

Fig 5.6: Effect of varying the coupling coefficient b on the normalized steady state oscillation 
amplitude (A). Solid line is the analytical solution and the (x-marker) is the simulation. 

 
Figure 5.7 shows R∞  verses the coupling parameter b. The synchronization 

can also be noticed at 8b ε= ∆  . 

 
Figure 5.6 and 5.7 verifies the accuracy of Eqs. (4.42) and (4.43) the non-

linear steady state amplitude A and the steady state walker forcing R∞ . 
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Fig 5.7: Effect of varying the coupling parameter b on the order parameter steady state R∞ . 
Solid line is the analytical solution and the (x-marker) is the simulation. 

 
 

In the third simulation we want to verify the growth rate equation as well as 

the critical coupling coefficient cb  value. Because we are interested in the stability 

condition, we scanned the b values around cb and not all the cb  range as we done in 

the previous simulations. 

 
Figure 5.8 shows the growth rate γ  verses the coupling coefficient b. We can 

see how the simulation (x’s) matches the analytical solution [Eq. (4.37)] especially 

for the value of cb . The zero crossing occurs at 8.02cb ε= ∆   which matches the 

analytical value 8cb ε= ∆  . 
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Fig 5.8: Effect of varying the coupling coefficient b on the growth rate of R . Solid line is 
the analytical solution [Eq. (4.37)] and the (x-marker) is the simulation. 

 

5.5 Effect of Different Mean Walker Frequency 

In the previous sections, we assumed that the walker’s frequency matches the 

bridge eigenfrequency, i.e. 0 1ω = . 

 
Now we investigate what happens if 0 1ω ≠ . In this section we will verify the 

result in section 4.5, using simulations. 

 
The program starts by setting 0 [0.8,1.2]ω ∈ . For a given 0ω  value, we change 

b from startb ε= ∆   to 16endb ε= ∆   with step 0.1 ε∆  . For each b value the 

corresponding growth rate is recorded. After we finish scanning all the b values, the 
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growth rate data is then fitted to a linear model and the corresponding cb  is 

determined as in section 5.5. This procedure is repeated for each 0 [0.8,1.2]ω ∈  with 

step size 0.5. 

 
Figure 5.9 shows the results of the simulation and the analytical solution given 

by (4.34).  

 

Figure 5.9: Effect of varying the walker’s mean frequency 0ω  on the critical coupling value 
(which corresponds to the critical number of walkers) 

 
 

The match between the analytical solution and the simulation shows the 

accuracy of the approximations used in obtaining the analytical result. 
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5.6 Time Variation of the Number of Walkers  

Following the discovery of the walker-induced wobble of the Millennium 

Bridge, the bridge builder company (Arup) conducted a controlled test as discussed in 

chapter 2. We now wish to adapt our formulation to simulate those tests. Since we 

regard the newly introduced walkers to initially be randomly distributed in phase at 

the time of introduction, we will allow for a different Lorentzian distribution function 

for each group of walkers. Adapting our previous formulation to this consideration, 

we have in place of  (3.1) 

 ( )
( )

2
0

1
2 Re ,

J t

j j
j

My M y M y f N R tε
=

 + + Ω =  ∑   (5.1) 

where jN  walkers are introduced onto the bridge at the time jt , the number ( )J t  of 

groups on the bridge at time t is defined by 

 1 ,J Jt t t+ > ≥  (5.2) 

and the complex quantity ( )jR t  characterizes the distribution of walkers in group j. 

for jt t≥ , ( )jR t  satisfies Eq. (4.23) with the initial condition, 

 ( ) 0,j jR t =  (5.3) 

corresponding to the walker phases being randomly distributed at the time when they 

first enter the bridge. Thus, by virtue of their different times of entry, Eq. (5.3) 

implies a different distribution of oscillator phases for each group. 

 

 In this simulation we simulated a total number of 200 walkers divided on 20 

groups; i.e. 10 walkers/group. We used equal time intervals of 1 minute between each 

group and its predecessor. 
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 Figure 5.10 show three plots. The first plot is the number of walkers versus 

time. The second plot is the maximum amplitude of the bridge lateral oscillation 

versus time. The third plot is the system order parameter defined as 

 
( )

1

1
20

J t

j
j

R R
=

= ∑  (5.4) 

versus time (note: 20 is the number of groups). 

 
These plots show the same general behavior as that in Fig. 2.2 for the Arup 

experiment; i.e., there is little oscillation until the pedestrian number build up, and 

then the oscillation rapidly increases. 
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Figure 5.10: Effect of adding more walkers to the bridge as a function of time. The first plot 

is the number of walkers versus time. The second is the maximum oscillation amplitude 
versus time. The third is the system order parameter versus time. 
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Chapter 6:  Conclusions 
 
 

The Eckhardt et al. model addresses the synchronization mechanism of 

individual walkers and the resulting global response of the bridge-pedestrian system. 

Using the method in [18], we were successful at reducing the complexity of this 

model from (N+2) state space dimensionals to just 4 for the case of fixed number of 

walkers. The same method was also used to simplify the treatment of different groups 

of walkers entering the bridge at different times.  

 
Numerical simulations, in chapter 5, agreed with analytical solutions 

presented in chapter 4. The simulation time of the low dimensional order system was 

much less than that for the original Eckhardt et al. model. 

 
More generally, our work serves as an interesting example of the potential for 

low dimensional macroscopic behavior in systems consisting of many coupled 

oscillators. 
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