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An assessment has been undertaken to identify the state-of-practice for 

prognostics and health management of electronics.  Based on a review of the 

prognostic approaches, case studies, publications, and the extent of intellectual 

property of numerous organizations, I identified the companies, universities, and 

government branches that are currently researching, developing, and/or implementing 

prognostics for their products and systems.  Next, I developed a sensor selection 

process such that an optimal sensor system can be chosen prior to in-situ life cycle 

monitoring of electronic products and systems.  I developed a questionnaire that can 

be used to understand the monitoring requirements of a particular PHM application, 

and identified criteria that one needs to consider in the sensor selection process in 

order to make the relevant tradeoffs.  Finally, I provided guidelines on sensor 

selection to help a user validate their final selection.  The process was demonstrated 

for two circuit card assemblies inside an avionics unit. 
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Chapter 1: Introduction 

 

1.0 Prognostics and Health Management (PHM) 

Prognostics and health management (PHM) is the process of estimating a 

product’s remaining life based on current and historic conditions in terms that are 

useful to the maintenance decision-making process and the improvement of product 

design and reliability.  PHM permits the reliability of a product to be assessed and 

predicted in its actual application conditions.  If one can measure the life cycle 

conditions of a product in-situ, this data can be used to 1) provide advanced warning 

of failures; 2) minimize unscheduled maintenance, extend maintenance cycles, and 

maintain effectiveness through timely repair actions; 3) reduce life cycle cost of the 

product by decreasing inspection costs, downtime, and inventory; and 4) assist in the 

design and logistical support of fielded and future products [1].   

1.1 Literature Review 

The concept of PHM is not entirely new.  In fact, PHM methods have been 

used to estimate equipment life in applications such as nuclear power plant equipment 

[2], actuators [3][4], engines [5][6], gearboxes [7], and other mechanical structures 

[8]-[10], and there is extensive literature available for these types of applications.  

The possibility of applying PHM to electronic products and systems has become more 

real in recent years, as evidenced by the increasing amount of literature published in 

both refereed journals and conference proceedings.   
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There are three general methods for conducting prognostics and health 

management of electronic products and systems.  The methods have been categorized 

by Vichare, et al., [1] as: (1) monitoring of precursors to failure, (2) using canary 

devices (structures that have equivalent circuitry but are calibrated to fail at a faster 

rate than the actual product), and (3) modeling accumulated damage based on 

physics-of-failure and in-situ monitoring of the environmental and operational 

conditions experienced by the product. 

1.1.1 Monitoring of Precursors to Failure 

Monitoring of precursors to failure is a method in which sensors are attached 

to the electronic product to monitor and analyze parameters (e.g., performance and 

defects) that are indicative of impending failure.  Since there are numerous different 

failure mechanisms in electronic devices, it follows that there are a lot of possible 

precursors to failure and it is even possible for one failure mechanism to have 

multiple precursors. 

Born, et al., [11] conducted a study to investigate the feasibility of detecting 

incipient failures of several electronic parts by measuring changes in critical 

parameters that can be correlated with subsequent failures.  Methods for monitoring 

failure precursors were identified for switching power supplies, cables and 

connectors, CMOS integrated circuits, and voltage-controlled oscillators.  In 

switching power supplies, for example, deterioration of rectifier I-V characteristics 

were found to be a primary indicator of device degradation 1eading to eventual 

failure. High temperature coupled with forward current stressing causes a decrease in 

the reverse breakdown voltage and an increase in the reverse leakage current. 
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Vinnakota [12] demonstrated that dynamic power dissipation can be used as a 

precursor to failure of CMOS circuits.  When a fault alters a circuit’s functionality, it 

changes the way internal signals respond to input transitions.  As a result, the energy 

consumption and power dissipation of a circuit are modified by a fault.  Both logic-

level and transistor-level faults in CMOS circuits, which do not change static 

dissipation, change the dynamic power dissipation.  In many cases, a fault also alters 

the shape of the Fourier spectrum of the power supply current.  This permits detection 

in the frequency domain. 

Zhang, et al., [13] introduced a prognostic approach for predicting the 

remaining useful life of electronic assemblies using resistance of solder joint 

interconnects as a precursor to intermittent failure.  The test board used to 

demonstrate their approach consisted of complete electronic components, but with 

special test silicon die, each independently daisy-chained to facilitate resistance 

monitoring during testing.  Using the in-situ measurements of daisy-chain resistances, 

their prognostic algorithm predicted the onset of failure for all components on the test 

board. 

  Kanniche, et al., [14] developed an algorithm that combines discrete wavelet 

transform (DWT) and fuzzy logic to detect and identify transistor open-circuit faults 

and intermittent misfiring faults of pulse width modulation voltage source inverters.  

Current waveforms were monitored and continuously analyzed using DWT to 

identify faults that may occur due to constant stress, voltage swings, rapid speed 

variations, frequent stop/start-ups, and constant overloads.  After fault detection, “if-

then” fuzzy rules were used for fault diagnosis to pinpoint the fault device. The 
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algorithm was demonstrated to detect certain intermittent faults under laboratory 

experimental conditions. 

Urmanov, et al., [15][16] have developed a failure precursor approach for 

early fault detection and prediction of computing servers.  Multiple variables such as 

temperature, voltage, and current are monitored in-situ by sensors distributed 

throughout the server.  After the data is collected from sensors, it is processed by 

online pattern recognition algorithms, such as Multivariate State Estimation 

Technique (MSET) and Sequential Probability Ratio Test (SPRT), to look for signal 

degradation that is usually a primary indicator of failure for most types of 

mechanisms that cause failures in servers.  During its training phase, MSET learns the 

signal correlations and can then produce a model from which the value of any signal 

at time t can be estimated.  A signal from a component that is degrading over time 

will be easy to detect through a disagreement between the MSET estimate and actual 

value of a signal [17]. 

Hughes, et al., [18] proposed new algorithms for the SMART (Self 

Monitoring and Reporting Technology) failure prediction system, which is currently 

implemented in hard disk drives (HDD).  SMART uses failure precursor algorithms 

to detect anomalies in HDD by monitoring operating parameters, including the flying 

height of the head, error counts, variations in spin time, temperature, and data transfer 

rates [19]. Experimental data was collected from drive design reliability testing of 

two different Quantum Corporation disk drive models.  The accuracy of the existing 

“SMART” failure warning algorithm in drives was compared with the improved 
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algorithm.  The improved algorithm gave 3-4 times higher correct prediction accuracy 

than error thresholds on will-fail drives, at 0.2% false alarm rate. 

Lall, et al., [20]-[22] also demonstrated a methodology for PHM of electronics 

using damage precursors for assessment of product damage.  In this study, several 

package elements were investigated including, first-level interconnects, dielectrics, 

chip interconnects, underfills, and semiconductors.  Phase growth rate and interfacial 

shear stress at the chip interface were identified as damage precursors.  A 

mathematical relationship was developed between phase growth rate and time-to-1% 

failure.  The relationship was used to provide an assessment of life consumed based 

on phase growth rate and a forward-estimate of residual life. 

1.1.2 Using Canary Devices 

Using canary devices is another method in which structures are installed in the 

electronic product and are calibrated to fail at a higher rate than the actual product 

when subjected to the life cycle conditions.  Calibration of the failure rate is typically 

accomplished through scaling.  Scaling is a technique whereby the canary circuit is 

weakened by reducing the area of the current carrying path so that the current density 

is increased.  As the current density increases, the internal heating of the canary 

circuit is increased, resulting in increased stress.  Over time, the increase in stress 

causes the canary circuit to fail, thereby providing an advanced warning of failure for 

the actual electronic product. 

Mishra, et al., [23] studied the use of a pre-calibrated semiconductor cell 

(canary) that is co-located with the actual circuit on a semiconductor device.  Major 

semiconductor failure mechanisms that can be monitored using pre-calibrated cells 
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include time-dependent dielectric breakdown, electromigration, and hot-carrier aging, 

and radiation damage.  These prognostic cells are used along with a software 

algorithm to calculate the accumulated damage of the actual circuit.  By providing 

early failure prediction, the prognostic cells can help in scheduling maintenance at the 

proper time.      

Anderson, et al., [24] studied the use of canaries for predicting failures of 

components at the board-level.  In this study, the canary circuits were used to assess 

two different failure mechanisms, including low cycle fatigue of interconnects and 

corrosion.  The test device for corrosion included electrical circuitry that was 

susceptible to various corrosion-induced mechanisms.  Impedance spectroscopy was 

proposed for identifying changes in the circuits by measuring the magnitude and 

phase angle of impedance as a function of frequency.    

Goodman, et al., [25] designed a prognostic chip to monitor the time 

dependent dielectric breakdown (TDDB) of MOSFET transistors. The self-stressing 

integrated MOSFETs that are monitored by the prognostic chip act as the TDDB 

aging sensors for the host application.  The monitored MOS transistors are identical 

to those used in the host IC, to insure that the extracted data accurately represents the 

condition of the key components of the host IC.  Since TDDB breakdown is caused 

by oxide charge trapping, acceleration of the breakdown of an oxide can be achieved 

by applying a voltage higher than the supply voltage, to increase the electric field 

across the oxide.  When the test monitor device fails, a certain fraction of the circuit 

lifetime has been used up. The fraction of useful circuit life that has been used up is 
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dependent on the amount of over-voltage applied and can be estimated from the 

known distribution of failure times.   

1.1.3 Modeling Accumulated Damage 

Modeling accumulated damage based on physics-of-failure and in-situ 

monitoring of the environmental and operational conditions involves the collection of 

actual life cycle loads that can be used in conjunction with damage models to assess 

the degradation due to cumulative load exposures.  Life cycle loads are the conditions 

that a product is exposed to throughout its lifetime.  The typical phases of a product’s 

life cycle include manufacturing, storage, handling, operating and non-operating 

conditions.  There are many different types of loads that can cause damage to an 

electronic product throughout its life cycle.  Some examples include temperature, 

humidity, vibration and shock, solar radiation, electromagnetic radiation, pressure, 

chemicals, sand, and dust.  To model the accumulated damage from a combined 

loading, one or more sensors are attached to the electronic product to measure the 

loads which pose the highest risk to the reliability of the product. 

Searls, et al., [26] conducted a health and usage monitoring study on desktop 

and notebook computers.  Temperature was monitored in-situ on the heat sink, inside 

the case, and outside the case, during various usage environments.  Each sample’s 

temperature profile was analyzed for number of temperature changes.  This study 

gave an indication of the number of temperature cycling a system typically sees as a 

function of the temperature cycle’s magnitude. 

Vichare, et al., [27] also demonstrated health and usage monitoring for a 

notebook computer.  Processing of the raw sensor data during in-situ monitoring was 
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presented as an effective method to reduce the on-board memory requirements and 

power consumption of the sensor.  Vichare, et al., also presented a method for load 

parameter extraction prior to input for damage models, which enables data reduction 

and simplification without loosing the relevant load information.         

Ramakrishnan, et al., [28] developed a methodology based on virtual 

reliability assessment for estimating the remaining life of electronic products.  This 

prognostic approach, called Life Consumption Monitoring (LCM), combines in-situ 

measured loads with physics-based stress and damage models for assessing the life 

consumed.   

Several case studies have been presented to demonstrate the LCM 

methodology.  Shetty, et al., [29] applied the LCM methodology for conducting a 

remaining life assessment of the end effector electronics unit (EEEU) inside the 

robotic arm of the space shuttle remote manipulator system (SMRS). In this study, a 

life cycle loading profile for thermal and vibrational loads was created for the EEEU 

boards. Using physics-based mechanical and thermo-mechanical damage models, a 

damage assessment was conducted. Using a combination of damage models, 

inspection, and accelerated testing, a remaining life estimate showed that there was 

little degradation in the electronics and they could be expected to last another twenty 

years. 

Mishra, et al., [30] applied the LCM methodology to an electronic 

component-board assembly placed under the hood of an automobile and subjected the 

assembly to normal driving conditions.  In this study, the test board included eight 

surface-mount leadless inductors soldered onto an FR-4 substrate using eutectic tin-
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lead solder.  The dominant failure mechanism was identified as solder joint fatigue.  

Temperature and vibrations were measured in-situ on the board in the application 

environment.  Using this monitored environmental data, stress and damage models 

were developed and used to estimate the consumed life. 

Mathew, et al., [31] applied the LCM methodology in conducting a prognostic 

remaining life assessment of circuit cards inside a space shuttle solid rocket booster 

(SRB).  In this study, vibration time history recorded on the SRB from the pre-launch 

stage through splashdown was used as input for physics-based models to assess the 

damage caused due to vibration and shock loads.  Using the life cycle profile of the 

SRBs, the remaining life of the components and structures on the circuit cards were 

predicted.  It was determined that an electrical failure was not expected within 

another forty missions. 

Simons, et al., [32] performed a physics-based prognostic assessment for a 

gull-wing lead power supply chip on a DC/DC voltage converter PCB assembly. 

Three-dimensional finite element analyses were performed to determine macro-

strains in the solder joint due to thermal or mechanical cycling of the component.  

The macro-strains were used to set boundary conditions for a probabilistic micro-

model to explicitly simulate initiation and growth of cracks in the microstructure of 

the solder joint.  Based on the growth rate of the cracks in the solder joint, estimates 

of the cycles to failure for the electronic component were made. 

Nasser, et al., [33] demonstrated the feasibility for using conventional sensing, 

combined with thermal modeling, to predict solder degradation due to thermal cycling 

as a means to predict electronic power supply system reliability.  Nasser, et al., 

 9 
 



 

proposed that the material damage accumulated in the power supply was essentially a 

function of the initial state (manufactured state which has processing variability) and 

the usage state (flight and operational loadings).  This project simulated the flying of 

two separate aircraft, one that flew a less aggressive mission profile and another one 

that flew a more aggressive mission profile.  The probability of component failure 

was predicted for each mission up to the 9000th flight for both aircraft.   

Bounds [34] proposed a method for determining fatigue life consumption 

based on measured environmental and operational loads for tactical wheeled vehicles.  

The procedure for fatigue life consumption consisted of three steps: (1) calculate 

component loading using sensor and vehicle bus data in algorithms based on 

instrumented testing and dynamic simulation; (2) estimate strain time history using 

algorithms based on fatigue models; and (3) perform peak-valley editing, rainflow 

cycle counting and fatigue life estimate using estimated strain data.     

Gu, et al., [35] developed a methodology for monitoring, recording, and 

analyzing the life cycle vibration loads for remaining life prognostics of electronics. 

Strain gauges were used to monitor the response of printed circuit boards (PCB) to 

vibration loading in terms of bending curvature.  Strain values at the interconnects 

were then calculated from the measured PCB response and used in a vibration failure 

fatigue model for damage assessment.  Damage was accumulated linearly using 

Miner’s rule and a remaining life estimate was made.  The methodology was 

demonstrated for remaining life prognostics of a test board.  The prognostic results 

were validated against actual time-to-failure data using resistance measurements. 
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Tuchband, et al., [36] presented the use of prognostics for a military line 

replaceable unit (LRU) based on measured life cycle loads.  This study demonstrated 

the integration of wireless monitoring devices, remaining life prognostics, and web-

enabled databases for enabling cost-effective maintenance and replacement of parts.  

The web-enabled database was used to provide an effective means for maintaining a 

history of LRU use, tracking degradation of the LRU, and enabling a user to decide 

whether to keep the LRU in service and continue monitoring or to remove the system 

for maintenance. 

1.2 Objectives of Thesis 

Based on the literature review, there are numerous studies that have been 

conducted on the application of PHM to electronic products and systems, including 

space shuttle electronics, power supplies, inverters, computer servers, 

semiconductors, transistors, desktop/notebook computers, vehicles, and line 

replaceable units.  To date, there has been few attempted studies to identify the state-

of-practice in prognostics and health management of electronics.  Furthermore, 

studies which used modeling of damage accumulation based on measured life cycle 

loads have not included a procedure on how to select an optimal sensor system for in-

situ life cycle monitoring of electronic products. 

The broad objective of this thesis is to determine the state-of-practice of PHM 

for electronics.  Three specific research areas have been identified: i) Identify the 

organizations that are currently researching, developing, and/or implementing PHM 

for electronics; ii) Determine the core challenges for prognostics research that 

currently exist; and iii) Develop and demonstrate a sensor selection process for PHM 
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implementation, which can be integrated into the life consumption monitoring 

methodology. 

1.3 Overview of Thesis 

The state-of-practice for PHM of electronics is presented in Chapter 2.  A 

sensor selection process for integration with the life consumption monitoring 

methodology is presented in Chapter 3.  In Chapter 4, the sensor selection process is 

demonstrated for electronics inside an avionics unit.  The contributions of this 

research are listed in Chapter 5. 
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Chapter 2: Assessment of State-of-Practice for PHM of 

Electronics  

 

2.0 Introduction 

This chapter presents an assessment of research and development on 

prognostics and health management in industry, government, and academia.  

Research and development on PHM is currently broken up into two general 

categories: (1) sensor systems and sensor technologies for in-situ life cycle 

monitoring, and (2) prognostic models and algorithms for remaining life prediction.  

Due to the shrinking size and increasing portability of electronic devices, it is 

becoming more of a challenge to use traditional sensors, which are often bulky in size 

and require wired data transmission, to monitor their environment.  Therefore, new 

wireless, miniature sensor systems are being developed by industry specifically for 

in-situ monitoring of electronic products and systems.  At the same time, research on 

various types of models and algorithms is being conducted by industry to provide a 

prognostic capability for their electronic products and systems. 

It is intended that the state-of-practice in PHM of electronics be used by 

industry, government, and academia to identify the critical investment opportunities 

that currently exist for R&D so that funding and other resources are strategically used 

to advance the state-of-practice.     
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2.1 PHM State-of-Practice Assessment 

The assessment of the state-of-practice for PHM is based on a review of the 

prognostic approaches, implementation case studies, technical publications, and the 

extent of intellectual property of numerous organizations.  The assessment includes 

companies in the commercial and defense industries, organizations within the federal 

government, and universities. 

In order to conduct the state-of-practice assessment, I wrote a summary for 

each of the organizations based on information that was publicly available.  This 

includes e-mails, presentations, websites, and articles from both journals and 

conference proceedings.  After writing a summary for a particular organization, I sent 

it to the key contacts at that organization and asked them to review and/or modify the 

summary.  Finally, after receiving the updated summary from the organization, I 

verified any new information that was added. 

However, since the field of PHM is evolving ever-rapidly, the results of this 

assessment may not cover every single organization involved in PHM.  Furthermore, 

this assessment represents the information that I have collected as of May 2007.    

The first objective of the assessment was to identify those organizations that 

are currently researching, developing, and/or implementing PHM in electronic 

products and systems, and to identify which methods or approaches are being 

employed to enable PHM of electronics.  In particular, the assessment looked at two 

main attributes of an organization: (1) the PHM methods; and (2) the applications 

where PHM is being used.   
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The PHM methods refer to the specific models and algorithms that the 

organization is utilizing to detect and predict impending failures of their products and 

systems.  The applications refer to the products and systems that an organization is 

applying PHM methods towards.   

The results of the assessment are shown below in Table 1, Table 2, and Table 

3.  The first column shows the organizations that are currently involved in PHM 

research and development.  The second column shows the specific divisions of each 

organization that was assessed.  The third column shows the PHM methods that each 

organization is using.  The last column reveals the specific applications (products and 

systems).   

Table 1. PHM state-of-practice assessment results - industry 

Companies Divisions PHM Methods Applications 
ARINC All business units Proprietary Airplane landing gears 

[37] 
BAE Systems Advanced 

Technology Center 
Uses the changes in 
vibration characteristics 
and engine speed as 
failure precursors 

Aircraft engines 
[38][39] 

The Boeing Company Commercial 
Airplanes, Integrated 
Defense Systems 

Uses a database of past 
trends and outcomes, 
real-time acquisition of 
flight data, and built-in 
decision support tools 

Fighter jets, helicopters, 
commercial airplanes, 
composites, aircraft 
wiring [40]-[42] 

European Aeronautic 
Defence and Space 
Company 

Airbus, Eurocopter Uses life consumption 
monitoring by 
measuring engine data 
in-situ and combining it 
with physics-based 
damage models 

Aircraft engines [43]-
[45] 

Emerson Astec Power Uses I2C bus to 
continuously monitor 
voltage, current, and 
temperature and 
disables output when 
internal temperature 
exceeds safe operating 
range 

AC/DC power supplies 
[46] 
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Companies Divisions PHM Methods Applications 
Expert Microsystems All business units Compares historical 

sensor readings with 
current sensor readings 
to estimate expected 
values of observed 
parameters, which are 
used to determine a 
pattern of agreement or 
disagreement with the 
normal state of 
equipment 

Computer integrated 
manufacturing, power 
plants, hazardous gas 
control systems [47]-
[49] 

General Dynamics Advanced 
Information 
Systems, 
Development and 
Integration Systems 

Uses motion of the 
engine blade tip as 
failure precursor 

Military vehicles, gas-
turbine engine blades, 
aircraft wiring [50] 

GMA Industries All business units Uses embedded, 
molecular-sized, self-
diagnosing integrated 
circuits, which measure 
voltage, current, and 
other electrical 
parameters, to provide 
visual indication of 
impending failure 

Avionics circuit boards 
[51]-[53] 

Honeywell Aerospace, 
Automation and 
Control Systems 

Uses regression 
trending of engine 
performance data to 
provide early warning 
of impending failure 

Jet engines, drive trains,  
gearboxes, helicopters, 
airplanes, spacecraft 
[54]-[56] 

Impact Technologies All business units Uses life consumption 
monitoring by 
combining sensed 
parameters, which 
correlate with failure 
progression, with 
physics-based damage 
models 

Avionics, GPS systems, 
switch-mode power 
supplies, flight control 
actuators, gas turbine 
engine bearings [57]-
[59] 

Intelligent Automation 
Inc. 

All business units Uses the combination of 
Fast Fourier Transform, 
Principal Component 
Analysis, and Fuzzy 
Cerebellar Model 
Arithmetic Computer to 
detect circuit anomalies 
in real-time 

Gearboxes, liquid 
propellant engines, 
unmanned aerial 
vehicles, satellite 
communications [60] 

Lockheed Martin Aircraft & Logistics 
Centers, Integrated 
Systems & Solutions 

Proprietary JSF aircraft, radar 
systems, flight control 
actuators [61]-[63] 

Northrop Grumman Newport News 
(Aircraft Carrier 
Systems), Integrated 
Systems, Electronic 
Systems 

Proprietary JSF aircraft, legacy 
aircraft, helicopter 
transmissions, shipyard 
facility diesel engines, 
spacecraft [64]-[66] 
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Companies Divisions PHM Methods Applications 
Raytheon Integrated Defense 

Systems, Missile 
Systems, Space and 
Airborne Systems, 
Network Centric 
Systems 

Proprietary Radars, missiles, 
satellites, processors, 
fire control systems, 
infrared systems, 
communication systems 
[67] 

Ridgetop Group All business units Uses canary cells that 
are pre-calibrated and 
co-located with the host 
circuit on an IC to act 
as early warning 
sentinels of upcoming 
device failure 

Power converters 
(MOSFETS), 
semiconductors 
[68][69] 

Rockwell Rockwell 
Automation, 
Rockwell Collins 
(Defense Systems 
and Commercial 
Systems) 

Uses vibration 
monitoring of rotors, 
infrared thermography, 
and oil data collection 
and analysis; Uses 
canary cells mounted on 
host product to provide 
early warning of 
failures due to low 
cycle fatigue of solder 
joints and corrosion 

Rotors, oil,  motors 
[70][71] 

Scientific Monitoring All business units Uses physics-based 
damage models 
combined with neural 
networks and reasoning 
algorithms to detect and 
forecast impending 
failures 

Engines, motion control 
and fluid power 
systems, aircraft, 
industrial equipment 
[72]-[74] 

Sentient All business units Uses physics-based 
damage models for 
predicting the 
remaining useful life of 
bearings and other 
components that fail 
due to contact fatigue 

Bearings, rotating 
machinery [75] 

SmartSignal All business units Compares real-time 
data collected from 
equipment with a model 
of the expected values 
and uses the residuals to 
detect early possible 
signs of equipment 
malfunction 

Industrial equipment 
[76][77] 

Smiths Aerospace Electronic Systems, 
Mechanical Systems 

Uses combination of 
Singular Value 
Decomposition, 
Principal Components 
Analysis, and Neural 
Networks for non-linear 
multivariate analysis 
and anomaly detection 

Aircraft subsystems 
including avionics, 
helicopters subsystems 
including rotors, 
engines, transmissions, 
gearboxes [78]-[80] 
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Companies Divisions PHM Methods Applications 
Sun Microsystems San Diego Physical 

Sciences Research 
Center 

Compares real-time 
sensor data collected 
from servers with a 
model (Multivariate 
State Estimation 
Technique ) of the 
expected values and 
uses a Statistical 
Probability Ratio Test 
to monitor the residuals 
to detect early possible 
signs of equipment 
malfunction 

Enterprise computing 
servers, software [81]-
[83] 

VEXTEC All business units Uses physics-based 
damage models for 
predicting the 
remaining useful life of 
electronic boards by 
evaluating fatigue 
failures at the 
interconnects 

JSF aircraft, power 
supplies [84]-[86] 

 

 

Table 2. PHM state-of-practice assessment results – government 

Government Divisions PHM Methods Applications 
National Aeronautics 
and Space 
Administration 

Ames Research 
Center (Intelligent 
Systems Division) 

Uses fault detection 
algorithms such as 
Gaussian Mixture 
Models, Hidden 
Markov Models, 
Kalman Filtering, and 
Virtual Sensors to 
characterize nominal 
behavior in order to 
detect off-nominal 
situations 

Spacecraft, actuators, 
aircraft wiring 
insulation, power 
converters, batteries 
[87]-[89] 

Sandia National 
Laboratories 

Optimization and 
Uncertainty 
Estimation 
Department, PHM 
Center of Excellence 

Proprietary Gearboxes [90] 

U.S. Air Force Air Force Research 
Laboratory 

Proprietary Aircraft flight control 
actuators [91] 
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Government Divisions PHM Methods Applications 
U.S. Army Army Logistics 

Integration Agency, 
Army Materiel 
Command Army 
Research Office, 
Army Materiel 
Systems Analysis 
Activity, Army 
Research Laboratory 
Vehicle Technology 
Directorate / NASA 
Glenn Research 
Center 

Uses Artificial Neural 
Networks, rule-based 
algorithms, and 
predictive trend 
analyses to diagnose 
and predict failures 

Composite structures, 
bridges, weapon 
systems, tanks, gas 
turbine engines, 
aircraft, helicopters 
[92]-[95] 

U.S. Navy Naval Surface 
Warfare Center, 
Naval Air Systems 
Command 

Compares sensor data 
collected from 
equipment to 
established engineering 
performance criteria to 
assess whether actual 
performance violates 
specified limit 

Propulsion systems, 
power-drive systems, 
aircraft, submarines, 
nuclear aircraft carriers 
[96][97] 

 

 

Table 3. PHM state-of-practice assessment results – academia 

Universities Divisions PHM Methods Applications 
Auburn University Mechanical 

Engineering 
Department 

Uses physics-based 
damage models 
combined with failure 
precursor data 

Various electronics, 
MEMS [98]-[100] 

Georgia Institute of 
Technology 

Intelligent Control 
Systems Laboratory 

Uses fuzzy logic and 
wavelet neural network 
algorithms for fault 
diagnosis and 
remaining useful life 
prediction 

Space station thermal 
control systems, 
textiles, ships, 
rotorcraft, gearboxes, 
oil coolers, engine 
disks/blades, 
automotive electrical 
systems, unmanned 
aerial vehicles 
[101][102] 

Pennsylvania State 
University 

Applied Research 
Laboratory 

Uses multiple sensors 
combined with artificial 
intelligence and  neural 
networks to identify 
faults in 
electromechanical 
systems   

Rotating components, 
weapons systems, 
machinery networks 
[103][104] 
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Universities Divisions PHM Methods Applications 
University of 
California at Los 
Angeles 

Nondestructive 
Evaluation Research 
Group 

Uses acoustic emission 
and modal data to 
calculate the frequency 
response function from 
which damage 
correlation indices are 
developed and 
compared to 
measurements from 
undamaged structures 

Beams, plates, 
composites [105] 

University of Maryland Center for Advanced 
Life Cycle 
Engineering 

Uses life consumption 
monitoring by 
combining monitored 
parameters with 
physics-based damage 
models to compute 
damage accumulation 
and estimate remaining 
life; Uses IDDQ 
trending as a failure 
precursor; Uses 
Mahalanobis Distance 
and Principal 
Component Analysis to 
identify deviation from 
expected normal state 
of equipment 

Space shuttle 
electronics, autonomous 
robotic ground vehicles, 
avionics, power 
converters (MOSFETs, 
IGBTs), 
notebook/desktop 
computers, various 
electronics [1] 

University of 
Tennessee 

Nuclear Engineering 
Department 

Uses Bayesian 
methods, Neural 
Networks, non-linear 
Partial Least Squares, 
Auto-Associative 
Kernel Regression, and 
Multivariate State 
Estimation Technique 

Motor-operated valves, 
steam generators, heat 
exchangers, nuclear 
power plants [106]-
[108] 

University of North 
Carolina 

Center for Logistics 
and Digital Strategy 

Uses data mining tools 
to identify the 
relationship between 
anomaly occurrences 
and external historical 
conditions in order to 
predict the likelihood of 
another occurrence of 
the anomaly 

Aircraft [109] 

Vanderbilt University Institute for Software 
Integrated Systems 

Uses forward 
propagation signatures 
(Taylor’s series 
expansion) to predict 
future behavior of 
measurement variables 
in response to a fault 

Aerospace [110] 
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In general, I found that all three approaches to prognostics, as identified by 

Vichare et al. [1], are currently being used in industry.  BAE Systems uses the 

changes in vibration characteristics and engine speed as failure precursors of aircraft 

engines [38][39].  Ridgetop Group uses canary cells that are pre-calibrated and co-

located with the host circuit on an IC to act as early warning sentinels of upcoming 

device failure [68][69].  Impact Technologies uses life consumption monitoring by 

combining sensed parameters, which correlate with failure progression, with physics-

based damage models for predicting failures in avionics, GPS systems, and power 

supplies [57]-[59]. 

However, I found that some organizations are currently exploring other 

techniques for prognostics that are beyond the approaches identified by Vichare et al. 

[1].  Smiths Aerospace uses the combination of Singular Value Decomposition, 

Principal Components Analysis, and Neural Networks for non-linear multivariate 

analysis and anomaly detection in aircraft and rotorcraft subsystems [78]-[80].  

NASA Ames Research Center uses fault detection algorithms such as Gaussian 

Mixture Models, Hidden Markov Models, Kalman Filtering, and Virtual Sensors to 

characterize nominal behavior in order to detect off-nominal situations in spacecraft 

[87]-[89].  Vanderbilt University uses forward propagation signatures (Taylor’s series 

expansion) to predict future behavior of measurement variables in response to a fault 

in aerospace systems [110]. 

In regard to the applications, many of them are shared by multiple companies 

in industry.  Common applications include both mechanical/structural systems (i.e., 

aircraft/rotorcraft engines, gearboxes, actuators) and electronic systems (avionics, 
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power converters, wiring).  Next, if we look at the state-of-practice in government, 

application of PHM to aircraft subassemblies appears to be a common theme among 

all the government organizations.  Finally, if we look at the state-of-practice in 

academia, the applications for PHM are really spread out across the board, ranging 

from composite structures to notebook/desktop computers to space station thermal 

control systems. 

In general, industry is not currently developing hybrid approaches that 

combine physics-of-failure based prognostics with data-driven prognostics.  Another 

area of prognostics that is currently lacking in industry is a method to assess the 

return on investment (ROI) for PHM. 

2.2 Core R&D Challenges for PHM of Electronics  

The second objective of this assessment was to identify the core research and 

development (R&D) challenges that currently exist in the field of PHM, so that 

recommendations can be made on where funding and other resources may be directed 

to help promote the state of research.  From this assessment, several challenges have 

been identified.  They include assessing uncertainty in remaining useful life 

prediction, detection of intermittent failures, in-situ monitoring of life cycle data, 

assessing the return-on-investment of PHM, defining thresholds for abnormal system 

performance, building physics-based damage models for electronics, and integration 

of PHM with legacy electronic systems. 
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2.2.1 Assessing Uncertainty in Remaining Useful Life Prediction 

The uncertainty of a measurement is stated by giving a range of values which 

are likely to enclose the true value.  Uncertainty analysis is required when 

implementing prognostics for electronics because an understanding of the uncertainty 

enables the prediction to be more realistic.  By using uncertainty analysis, a 

prediction can be given as a distribution rather than a single point estimate, and the 

prediction can incorporate a failure probability.  However, there are several 

challenges to implement the uncertainty into prognostics. 

The first challenge for uncertainty assessment is to identify the source of 

uncertainty.  There are many different sources for uncertainty and it is difficult to 

collect all the information one needs for proper identification.  Some sources of 

uncertainty that have been identified include measurement uncertainty, parameter 

uncertainty, failure criteria uncertainty and future usage uncertainty.  However, many 

electronic component datasheets, especially for legacy components, do not include 

variations on their specifications, which is needed to quantify parameter uncertainty.   

It is also difficult to determine which uncertainty source(s) contribute the most to the 

final uncertainty prediction. This information is necessary because computational 

limitations place restrictions on the ability to monitor only the critical parameters as 

input to uncertainty computations.  

Another challenge for uncertainty assessment is the lack of models to assess 

the uncertainty quantitatively. Although some methods for uncertainty assessment 

using physics-based damage models have been developed [120], data-driven methods 

have not been strongly investigated, and little research has addressed such uncertainty 
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analysis.  Training data is required in order to describe the healthy state of a system, 

and the quantity and quality of this data effects the uncertainty involved in 

predictions.  Therefore, more consideration needs to be given to the effect of the 

training data in uncertainty calculations. 

Finally, the third challenge for uncertain assessment is that it’s difficult to 

make maintenance and logistics-related decisions based on predictions when the 

uncertainty range is wide.  Unfortunately, this is often the case for the physics-of-

failure (PoF) based approach to prognostics because the uncertainty will accumulate 

along with the damage accumulation [120].  For example, if the final prediction result 

indicates that the product will fail between 10 and 100 hours, how does one make a 

decision for when to schedule maintenance?  One possible solution is to identify the 

just-in-time (JIT) point to optimize the prediction and help with the decision-making 

process.  Engel [121] proposed selecting the 5% risk failure probability point as the 

JIT point.  This point is primarily chosen based on the tradeoff between risk and 

maintenance cost-savings.  The challenge is to decide on the usefulness of the 

uncertainty calculations and more importantly on how to make a decision based on 

them.   

One possible way to reduce the uncertainty is to narrow down the root or 

source of the uncertainty.  For example, increasing the sensor measurements, 

improving the manufacturing process, and improving the damage models are all 

helpful ways to reduce uncertainty in remaining life calculations. 
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2.2.2 Detection of Intermittent Failures 

Intermittent failures are those failures that cannot be verified, replicated at 

will, or attributed to a specific failure site, mode and mechanism.  Various terms are 

used to report this kind of failure, including cannot duplicate (CND), no fault 

indicated (NFI), no fault found (NFF), no trouble found (NTF), and re-test OK 

(RTOK).  Between 40 to 85 percent of all the observed field failures in avionics are 

CND.  This accounts for more than 90 percent of all the maintenance costs [114].   

Intermittent failures occur when an electronic system that was observed to fail 

in the field is later found to function properly during fault detection testing [114].  

This is due to the transient behavior of the failure that remains undiscovered until 

field testing [116].  One possible reason for this behavior may be insufficient test 

duration.  The impact of intermittent failures is that it is not possible to determine the 

root cause of the failure.  This can lead to an increase in warranty costs for a 

manufacturer.  

One of the most frequent causes of intermittent failures and other abnormal 

electronic system behavior is corrosion in the junctions of the signal-carrying 

connectors.  This is an especially insidious problem because inspection of these 

connectors can temporarily wipe away corrosion during the process of unmating and 

remating the connectors [117].  

Currently, precursors to intermittent failures are not well understood.  The 

damage caused by load conditions may sometimes be unpredictable using the existing 

physics-based damage models [114].  There might be sharp spikes in the response of 

failure precursors to loads.  This intermittent or transient change in behavior might 
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sometimes be seen as a precursor to failure making the identification of actual 

precursor to failure difficult.  Further research is needed to identify precursors of 

intermittent failures in electronics and develop a physics-based damage model for 

these kinds of systems to make the application of PHM for intermittent failures 

possible. 

2.2.3 In-situ Monitoring of Life Cycle Data 

One of the challenges of in-situ monitoring for electronics is to identify the 

life cycle parameters that need to be monitored to provide useful data for prognostics.  

Electronic systems often contain a large number of components and each component 

may have several measurable performance parameters.  Thus, there are a large 

number of potential failure sources.  Furthermore, different components have very 

complex performance correlations in electronics products. This makes it difficult to 

monitor an electronic system at the component level.  The challenge is to identify the 

life cycle parameters to monitor that best represent the entire system. 

Another challenge of in-situ monitoring of life cycle data results from 

limitations in sensor system technology.  During PHM implementation, continuous 

monitoring of life cycle loads is needed so that critical data is not missed.  To enable 

continuous monitoring, however, the sensor system either needs to transmit the 

collected data to a base station in real-time, or contain an onboard memory that is 

large enough to store all the data for a period of time.  If the memory capacity is not 

large enough, data simplification algorithms can be utilized to compress the size of 

the data onboard.  However, onboard processors with embedded computational ability 
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consume a substantial amount of power and may significantly reduce battery life of 

the sensor system.   

A third challenge is that there is limited space available on printed circuit 

boards to mount sensor systems. For new electronic systems, the monitoring and 

detection strategies can be considered early in the design process so that the circuit 

board layout takes into consideration space for mounting sensor systems. However, 

for legacy electronic systems, which are already in production, sensor attachment is a 

challenge.  In many cases, the space on the circuit board is smaller than the size of the 

sensor system.  Furthermore, the effect of sensors on the reliability of the monitored 

electronic system is still not very clear. The presence of sensor systems can change 

the performance characteristics of the host system. 

Finally, in order to implement PHM, a user usually needs to be able to analyze 

multiple parameters at the same time.  The challenge is collecting data from different 

variables and fusing the information together into a single timeline of events. 

2.2.4 Assessing the Return-on-Investment of PHM 

PHM of electronics can provide useful information such as the estimation of 

remaining useful system life. However, additional information is often necessary to 

form a decision or to determine a corrective action [111].  One aspect of the decision-

making process is the determination of when it makes good business sense to 

schedule a corrective action.  This process, called return-on-investment (ROI), is an 

analysis of the savings associated with the planned implementation, less the entire 

cost of the implementation, divided by the investment required [112][113].  ROI can 

also be expressed as: 
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ROI = (Savings – Implementation Costs) / (Investment Required) 
 

One of the challenges of determining the ROI in PHM of electronics is that it 

is difficult to construct a business case to show the usefulness of PHM approaches for 

electronic systems.  Part of the reason for this is because research and development 

into PHM of electronics is immature.  Although a significant amount of progress has 

been made recently in the fundamental PHM technologies and methodologies, there 

have been very few real case studies to help transform the scientific development to 

practical application.  Existing PHM approaches for electronic systems will need to 

be validated and verified before an evaluation of their usefulness can be made.  An 

example of when it doesn’t make good business sense to use PHM in electronic 

systems is “use and throw” products.  Consumer electronics, including cell phones, 

MP3 players, digital cameras, and camcorders, all fall into this category.  Within this 

category, the replacement cost of a part that has failed is comparable to the cost of a 

new product.  Thus, the application of prognostics to these types of electronics is 

neither practical nor makes good business sense. 

Another challenge of determining ROI in PHM of electronics is that it is 

difficult to quantify the benefits of PHM results.  Standard measures of performance, 

often called metrics, need to be well-defined in order to assess and justify the ROI.  

For example, possible metrics for PHM of electronics may include the number of 

man-hours saved as a result of reduced maintenance actions, the cost savings as a 

result of reduced maintenance actions, the number of lives saved, and/or the number 

of system failures avoided.  Nonetheless, PHM metrics should be such that they 
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clearly indicate the positive or negative effects of implementing prognostics in 

electronic systems on total life cycle costs.  

Finally, a balance of the implementation costs associated with PHM versus the 

cost avoidances associated with PHM needs to be assessed in order to determine the 

ROI.  The investment in a PHM system should not cost more than the return on the 

investment.  This may seem trivial but in order to make this balance, the actual costs 

associated with each side need to be identified.  A list of possible implementation 

costs and cost avoidances associated with PHM are provided in Table 4 [111]. 

Table 4. Implementation costs and cost avoidances associated with PHM 

Implementation costs  
associated with PHM 

Cost avoidances  
associated with PHM 

  

• Development costs (e.g., hardware, 
software, and integration) 

• Failures avoided (e.g., minimizing 
unscheduled maintenance, increasing 
availability, reduced risk of system 
loss and increased safety) 

  

• Product manufacturing recurring costs 
(e.g., hardware, testing and 
installation) 

• Minimizing the loss of remaining life 

  

• Infrastructure costs (e.g., 
documentation, training and changing 
the logistics/maintenance culture) 

• Reduction in logistics footprint of the 
system (e.g., better spares 
management, minimization of 
external test equipment) 

   

• Sustainment costs (e.g., data 
collection, data archiving, logistics 
footprint of the PHM structures and 
the cost of false positives) 

• Reduction in repair costs (e.g., better 
fault isolation, reduced collateral 
damage during repair) 

  

• Financial costs (e.g., cost of money) • Reduction in redundancy 
  

 • Reduction in no-fault-founds 
  

 • Reduced waste stream costs 
  

 • Reduced liability 
  

 • Eases design and qualification of 
future systems 
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2.2.5 Defining Thresholds for Abnormal System Performance  

Electronic systems contain numerous components that are highly interactive 

and can influence the performance of one other.  A small change in performance in 

one parameter can result in changes in other parameters, making it difficult to 

establish hard thresholds on each parameter.  Defined thresholds for abnormal system 

performance that do not take into consideration the interaction between multiple 

parameters may lead to incorrect decisions for PHM, and problematic components 

may go undetected.  This underlines the importance to study and understand the cross 

component interaction.  However, since different types of components can have a 

range of specifications within different environmental and operating settings, 

studying their interactions becomes a challenge. 

Furthermore, electronic systems may encounter many different environmental 

and operational conditions during their life cycle.  One threshold limit might not be 

sufficient to capture the variability of system parameters in different usage scenarios.  

Several different threshold limits might be needed to capture the variability.  

Therefore, establishing a baseline for normal system performance is difficult for 

electronic systems. 

To be able to define thresholds for use in prognostics, it is essential to 

understand the performance and life cycle profile for each component in different 

environmental and usages conditions.  However, it is difficult to simulate all 

scenarios and determine the end of useful life for each component separately.  The 

complexity of the system and its usage under different environmental conditions 

underlines the difficulty in defining a threshold limits for prognostics. 
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2.2.6 Building Physics-Based Damage Models for Electronics 

Failure mechanisms are the processes by which specific combinations of 

physical, electrical, chemical and mechanical stresses induce failure [116].  Failure 

mechanisms are determined based on combinations of potential failure modes and 

causes of failure [118], as well as the selection of appropriate available mechanisms 

corresponding to the failure mode and cause.  Failure mechanisms are typically 

categorized as being either overstress or wearout mechanisms. Overstress failure 

mechanisms are those that arise because of a single load (stress) condition.  Wearout 

failure mechanisms, on the other hand, involve a failure that arises as a result of 

cumulative load (stress) conditions.  

One of the challenges in using the physics-of-failure based approach to 

reliability assessment is that failure mechanisms may be limited by the availability 

and accuracy of models for quantifying the time to failure of the system.  It may also 

be limited by the ability to combine the results of multiple failure models for a single 

failure site and the ability to combine results of the same model for multiple stress 

conditions [119].  If no failure models are available, the appropriate parameters to 

monitor has to be selected based on an empirical model developed from prior field 

failure data or models derived from accelerated testing. 

2.2.7 Integration of PHM with Legacy Electronic Systems 

One of the challenges for implementing PHM in electronic systems is the 

integration into legacy systems.  A legacy system is a system that continues to be 

used because of the prohibitive time and/or cost of replacing or redesigning it, and 

often despite its poor competitiveness and compatibility with modern equivalents.  
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Existing infrastructure is not always set up to provide prognostics analysis with the 

necessary data input.  In legacy electronic systems such as old aircraft avionics, the 

modes and mechanisms of failure are potentially ill-documented, untested or 

unknown.  In addition, the lack of expertise in the specific applications of the legacy 

systems leads to immature and ineffective prognostic modeling in PHM algorithms 

for such systems.   

Another challenge for PHM integration with legacy systems is the difficulty in 

combining various technologies in a manner that is compatible.  A PHM system can 

consist of sensors, electronics, computers, and software, which most likely are 

commercial-off-the-shelf (COTS) products.  These COTS products often have 

specific requirements about the operating environment, input parameters, and usage 

conditions.  A PHM system needs to first overcome integration roadblocks with its 

own sub-systems before it can be integrated with electronic products.  

2.3 Conclusions 

The current driver of PHM R&D appears to be the increasing usage of 

electronics in military vehicles and weapon systems.  Development of health 

management systems for aircraft/rotorcraft, weapons, electronic power supplies, and 

computer systems represent the majority of PHM-related research in industry and 

government at this time.  Development of prognostic algorithms for detecting 

deviation from normal performance of electronic systems represents the majority of 

PHM-related research in universities and research institutions. 

The toughest challenges that currently exist for PHM R&D are assessing the 

uncertainty in remaining life predictions and detecting intermittent failures in 
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electronics.  Therefore, it is recommended that organizations direct their R&D 

funding towards these opportunities to get the most value for their money. 

In addition to challenges for R&D, there exists yet another barrier to PHM 

implementation which cannot be overcome through research.  This is called the 

psychological barrier.  Prognostics is often referred to by skeptics as the “scientific 

crystal ball”.  There is due to the widespread belief that electronic failures are not 

predictable because they are happen randomly.  Case studies that demonstrate 

accurate prognostics for real system applications are the only way to effectively 

dispel this myth.  Data produced by these experiments will be used to generate a more 

definitive set of correlations linking environmental and operational stresses to 

resulting degradation rates and failure prognostics.   

Another psychological issue that remains as a barrier to PHM implementation 

is going against the “status quo”.  People tend to want to keep things the way they 

presently are, until a newer way of doing things becomes more commonplace.  Again, 

a greater number of case studies that bring out the benefits of prognostics are needed 

in order to change the mindset of people. 

 

 33 
 



 

Chapter 3: Sensor Selection for PHM of Electronics 

 

3.0 Introduction 

The ability to design a product for prognostics and health management 

implementation can enable cost-effective maintenance and reduce the life cycle cost 

by decreasing inspection, downtime, and inventory costs.  One type of prediction for 

remaining life is made by modeling the accumulated damage due to measured 

environmental and usage exposure.  However, for new products, it is not a priori 

known which loads need to be monitored.  As a result, the selection of sensor systems 

for in-situ life cycle monitoring is not a simple task. 

In prognostics and health management, sensor systems are the devices which 

collect information about a product’s environment or operational state, and store or 

communicate that information to a computer or human for health assessment.     

In this chapter, a new process for sensor selection is presented as an 

improvement to life consumption monitoring of electronic products and systems.  The 

new process includes guidelines on the selection of an appropriate sensor system for 

PHM using several criteria.  Using these guidelines, the process enables a user to 

make the necessary tradeoffs for selecting a sensor system for a particular PHM 

application. 
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3.1 Background 

A method to enable PHM for electronic products was proposed by 

Ramkrishnan and Pecht, 2003 [28].  This method, referred to as life consumption 

monitoring (LCM), is a process that combines a study of the different failure modes 

and mechanisms of the product under consideration, monitoring of relevant 

environmental and/or operational parameters, and use of physics-of-failure models to 

assess the damage and ultimately predict remaining life.  For application of this 

approach to electronic assembly, Mishra et al., 2002 [30] and Ramakrishnan and 

Pecht, 2003 [28] monitored the temperature, humidity, vibration and shock loads 

experienced by an electronic assembly operated in automotive under-hood 

environments.  This monitored data was applied in conjunction with physics-of-

failure models to estimate damage and predict remaining life.  The PHM 

methodology was shown to accurately predict remaining life in the application 

environment. 

The LCM approach consists of three main steps: monitoring, signal 

processing, and condition assessment.  However, one of the major drawbacks of this 

approach is that there is no procedure or guidelines for the selection of sensor systems 

for life cycle monitoring.  In my work, I have focused in on the monitoring step to 

enable prognostics and health management of a new product by providing guidelines 

on sensor selection using several criteria. 

 35 
 



 

3.2 Overview of Sensor Selection Process 

The sensor selection process is a new process step that improves the LCM 

methodology (see Figure 1).  Like the original methodology, this approach utilizes 

failure modes, mechanisms, and effects analysis and virtual reliability assessment to 

identify the critical failure sites and failure mechanisms of the product, however, 

before monitoring the appropriate parameters, a questionnaire supplemented with 

guidelines are used to select the appropriate sensor system for life cycle monitoring.  

The next few sections will discuss in detail the sensor selection process. 
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Step 1: Conduct failure modes, mechanisms, and effect analysisStep 1: Conduct failure modes, mechanisms, and effect analysis

Step 6: Perform damage assessment and damage accumulationStep 6: Perform damage assessment and damage accumulation

Continue 
monitoring
Continue 

monitoring
Is the remaining 
life acceptable?

No

Yes

Step 5: Conduct data simplification for model input Step 5: Conduct data simplification for model input 
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Figure 1. Improved LCM methodology with sensor selection process 

3.3 Questionnaire for Sensor Selection 

In order to provide guidelines on sensor selection for PHM of electronics, the 

specific application needs to be broken down.  A list of questions can be used to 

determine the needs of the application and from this, the sensor selection criteria and 

relevant tradeoffs can be assessed to enable a user to select the appropriate sensor.  
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The following questions can be used to breakdown an application for sensor 

selection: 

Table 5. Questionnaire for Sensor Selection 

1. What is the expected environmental/operational range for monitoring?    
a. Temperature 
b. Vibration/Shock 
c. Humidity 
d. Radiation 
e. Pressure 
f. Strain 
g. Current 
h. Voltage 

2. What is the desired size, weight, and form factor for the sensor system? 
a. Size (length, width, height) 
b. Weight (including batteries, if necessary) 
c. Form factor (round, rectangular) 

3. How does the sensor system need to be attached to the host product? 
a. Glue 
b. Adhesive tape 
c. Velcro 
d. Magnet 
e. Screws 
f. Embedded in component 

4. How will the sensor system be powered? 
a. Powered by host product 
b. Powered by battery 
c. Powered by environment (vibration, solar) 

5. What type of power management is needed for the sensor system? 
a. Auto on/off 
b. Sleep/wake modes 
c. Programmable threshold monitoring 
d. None required 

6. How long does the product need to be monitored for? 
a. Days 
b. Weeks 
c. Months 
d. Years 
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7. How often will the data be collected? 
a. Slower than 1 Hz  
b. 1 Hz to 500 Hz 
c. Faster than 500 Hz 

8. Is signal processing software needed to simplify/compress the raw data? 
a. No 
b. Yes 

9. Does the sensor system need to be purchased from a particular type of 
supplier? 

a. Approved domestic suppliers 
b. Approved foreign suppliers 
c. No preference 

10. What is the maximum allowable cost for the sensor system? 
a. Less than $100 
b. $100-$500 
c. $500-$1,000 
d. $1,000-$5,000 
e. More than $5,000 

 

3.4 Sensor Selection Criteria and Tradeoffs 

Once the application is broken down and understood, there are several criteria 

that one must consider before selecting an appropriate sensor system for their life 

cycle monitoring application.  The following criteria should be considered when 

selecting an appropriate sensor system for PHM: 

• Ease of integration (size, weight, attachment) 

• Power management 

• Data storage 

• Data transmission 

• Signal processing software 

• Cost 
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• Reliability 

• Availability 

While there are eight criteria listed here, there were a total of ten questions in the 

questionnaire.  The reason for this discrepancy is because a few of the criteria are 

associated with multiple questions.  For example, in order to consider a sensor 

system’s ease of integration, both question 2 and question 3 needs to be answered.        

3.4.1 Ease of Integration (Size, Weight, Attachment) 

As electronic components and systems continue to decrease in size, sensor 

systems to monitor their environment and operation will also need to be smaller and 

weigh less in order to be integrated into the system.  The fabrication of micro-electro-

mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS) in 

silicon and other materials will offer significant advantages because of batch 

fabrication, potential for integration with electronics, fabrication of arrays of sensors, 

and small size of individual devices [122]. In addition, sensors fabricated using 

MEMS and NEMS technologies will lead to drastic cost reduction [123].   

In electronic product applications, the size of the sensor system may become 

the significant selection criteria due to limited space available for mounting it or due 

to the inaccessibility of locations to be sensed.  Additionally, the weight of the sensor 

system may be critical in certain applications such as vibration and shock 

measurements using accelerometers, since the added mass can change the system 

response.  In the case where a fixture is required to mount the sensor system, the 

added mass of the sensor and fixture may change the system characteristics.  Users 
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should consider the entire weight of the sensor system, which includes the battery and 

other accessories such as communication antennas or cables. 

The tradeoffs for small size and low weight of a sensor system include higher 

cost and lower commercial availability.  Currently, the smallest sensor systems that 

are commercially available are about the size of a U.S. dime.  While this form factor 

is good for electronic system applications, there are very small number of sensor 

systems with this size that are commercially-available. 

3.4.2 Power Management 

Another factor to consider in sensor selection is the ability to control the 

power consumed by the sensor system.  Sensor systems can be divided into two main 

categories with respect to their powering:  non-battery powered sensor systems and 

battery powered sensor systems.  Non-battery powered sensor systems are typically 

either wired to an external AC power source or use power from an integrated host 

system.  For example, temperature sensors are often integrated within the 

microprocessors on motherboards inside computers and utilize power from the 

computer.  Battery powered sensor systems, on the other hand, are equipped with an 

onboard battery.  Regarding their power, no interaction is required with the outside 

world, so they are able to monitor autonomously on a continuous basis.     

In addition, replaceable or rechargeable batteries are preferable for battery-

powered sensor systems because the sensor’s useful life needs to be longer than the 

estimated lifespan of the components/subsystems it is intended to monitor [122].  

Batteries that are replaceable or rechargeable allow the sensor system to operate 
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continuously, without needing to replace the entire system.  Rechargeable lithium-ion 

batteries are commonly used in battery-powered sensor systems. 

  Furthermore, the power consumed for sensing varies depending on the 

parameter being monitored.  Periodic sensing can consume less power than 

continuous monitoring; however there is a risk of missing critical data.  Power 

consumption is also controllable by making measurements at events triggered by 

defined thresholds.  In the case of battery-powered sensors, maximum energy is 

expended in communication, which involves both the transmission and reception of 

data. 

One type of strategy to manage the onboard power of sensors is to remotely 

control the sensors from a base station as required by the specific application.  Using 

the base station, commands can be sent to an idle (inactive) sensor system to 

essentially wake it up only when it is needed to collect data.  Examples of these 

commands include [124]: 

• Wake up, listen for commands, log or send data as commanded (or back to 

sleep) 

• Wake up, log information when an event or threshold crossing is detected 

• Wake up, transmit data periodically, go back to sleep 

These commands essentially enable the sensor system to carry out the intended 

functions while reducing its power consumption at the same time. 

Since batteries exhibit a shelf life of 5-10 years [124], many PHM 

applications require elimination of batteries altogether because the application 

requires that they cannot be replaced.  Non-battery powered sensors that are wired to 
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an external power source can transmit data in real time but they have limitations.  

Installing and maintaining the wires is costly and labor-intensive.  Wires degrade and 

are prone to interference from electromagnetic signals. Also, wires themselves might 

get damaged and effect the reliability of the sensor system itself.         

3.4.3 Data Storage 

Effective utilization of memory is also a factor to consider in the selection of 

sensor systems for PHM.  For battery-powered sensor systems, the data is typically 

stored in an onboard memory.  Memory requirements are generally affected by the 

monitoring interval and frequency.  In selecting the monitoring frequency, the user 

has to ensure that the relevant loads are recorded and, at the same time, the memory is 

not flooded by irrelevant load data. 

In general, there are two types of memory which are used to store data: 

volatile memory and non-volatile memory.  Volatile memory is memory that requires 

power to maintain the stored information.  An example of volatile memory is random-

access memory (RAM).  Non-volatile memory, on the other hand, is memory that can 

retain the stored sensor data even when not powered.  Examples of non-volatile 

memory include read-only memory (ROM), flash memory, most types of magnetic 

computer storage devices (e.g. hard disks, floppy disk drives, and magnetic tape), 

optical disc drives, and early computer storage methods such as paper tape and punch 

cards. 

Non-volatile memory is usually the preferred memory for both non-battery 

and battery operated sensor systems because of their ability to retain the collected 

data in the case of an accident, where power is suddenly lost.  This allows a user to go 

 43 
 



 

back to the point in time leading up to the accident and identify the conditions that 

were present. 

In some sensor systems, the user is able control the amount of data that is 

stored in memory.  One way to do this is to define threshold values for measurements.  

Appropriate setting of thresholds can facilitate efficient data collection.  For example, 

measurements can be recorded or a scan can be triggered only if the stimulus meets 

the set threshold.  Events can be set to trigger above or below an absolute value, for 

example, recording acceleration levels above 2g or humidity levels above 80% R.H.   

Users can also set thresholds based on the value of the slope (positive or 

negative) of the curve formed by the measurements made by the sensor.  This strategy 

allows usage-based data recording, which can result in a substantial saving in disk 

space and extend the battery life of the equipment.   

Other means of memory utilization involve effectively dividing the memory 

between periodic measurements and threshold based measurements.  A strategic 

combination of measurement intervals (for periodic measurements) and thresholds 

can enable recording a higher number of relevant measurements.   

3.4.4 Data Transmission 

Data transmission is closely linked to power management, but still warrants its 

own separate consideration for sensor selection.  Data transmission is generally 

categorized by either the use of cables or wires to transmit data or wireless data 

transmission.  Wireless data transmission refers to the transmission of information 

from sensor to sensor or from sensor to base station without the use of a wired 

connection.  Many new sensor systems now use wireless data transmission.   
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Wireless monitoring has emerged in recent years as a promising technology 

that can impact in-situ life cycle monitoring.  Wireless sensor systems can be used to 

remotely monitor inhospitable and toxic environments.  Since wireless sensor systems 

do not depend on extensive lengths of wires for the transfer of sensor measurements, 

installation and maintenance costs are significantly reduced.  The real benefit from 

wireless sensor systems can be achieved by embedding micro-controllers to improve 

the data analysis capabilities. 

Methods of wireless data transmission include Ethernet [125], radio frequency 

identification (RFID) [126], vicinity cards (ISO 15693) [127], personal area network 

(IEEE 802.15) [128], Wi-Fi (IEEE 802.11) [129], and proprietary communications 

protocols. When selecting which type of wireless data technology to use for a 

particular application, one should consider the range of communication, power 

demand, and ease of implementation. 

The use of portable devices (such as PDAs and tablet computers) in 

conjunction with battery powered sensor systems can enable efficient fault diagnosis 

and prognostics by integrating more complex algorithms in the hand-held device.  

Customized processing and reporting tools can be programmed on portable devices 

for efficient maintenance activities.  For example, the data collected by a Bluetooth-

enabled accelerometer system can be downloaded on a hand-held device by 

maintenance technicians and can be processed further using Fast Fourier Transforms 

(FFT) embedded on the hand-held device. 
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3.4.5 Signal Processing Software 

Signal processing software is another factor to consider in the selection of 

sensors for PHM.  Signal processing enables the simplification of raw data.  The raw 

environmental data from sensors is usually not in a form that is compatible with 

physics-of-failure models and reliability prediction models.  As a result, for further 

analysis of the acquired data, it is essential to simplify the raw sensor data to a form 

that is compatible with the input requirements of the selected models. 

By using information that is most relevant to the failure models, an efficient 

data reduction method should [130]: 

• Permit gains in computing speed and testing time 

• Condense load histories without sacrificing damage characteristics   

This, in turn, enables transmitting fewer amounts of data (processed instead of 

raw data) to the base station, and hence results in lower power consumption.  In the 

case of a large number of sensor systems working in a network, this would allow 

decentralization of computational power and facilitate efficient parallel processing of 

data.  

Additionally, sensors with embedded signal processing software can also 

facilitate efficient data analysis for PHM applications.  Embedded computations can 

be set to provide real time updates for taking immediate action such as powering off 

the equipment to avoid accidents or catastrophic failures, and also for providing 

prognostic horizons for conducting next repair and maintenance activities. 

Power consumption and non-volatile memory of the microprocessor may limit 

computationally intensive algorithms to be embedded with onboard processors.  
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However, even using simple algorithms and routines to process the raw sensor data 

can achieve significant gains for in-situ analysis [131].  Some examples of simple 

data simplification algorithms for PHM of electronics include [132]: 

• Conversion of irregular temperature history into a regular sequence of 

peaks and valleys for thermal fatigue analysis 

• Conversion of temperature reversals into relevant temperature cycle 

information 

• Conversion of acceleration data in time domain to power spectral density 

in frequency domain 

3.4.6 Cost 

The selection of the proper sensor system for a given application also includes 

an evaluation of the cost of the sensor system.  A sensor system should be evaluated 

in terms of its total cost of ownership, not just the purchase cost.  In fact, initial 

purchase costs can be less than 20% of the product’s lifetime costs.  Consider the 

experience of an airline who went with “an affordable” choice only to find out 15 

months later that the sensors were surviving for only 12 months on average and 

needed to be replaced annually.  The replacement sensor system selected did cost 

20% more but was available off-the-shelf and was previously qualified for aircraft use 

[133]. 

In battery-powered sensor systems, the cost is generally determined by the 

size of the memory for data storage.  Sensor systems with onboard memory capacity 

in the range of kilobytes typically cost on the order of hundreds of dollars.  As the 
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size increases, the cost goes up as well.  Sensor systems with onboard memory 

capacity in the range of megabytes can cost as much as several thousand dollars.        

3.4.7 Reliability 

Many sensor systems operate only in specific environments, so if a user 

decides to mix sensor systems and environments without forethought, they may end 

up with a ruined sensor system and no data.  Sensor systems are generally limited to 

some degree by noise and the surrounding environment, which vary with operating 

conditions, environmental conditions, and other factors. 

To reduce the risk of sensor system failure, the user needs to consider the 

sensor’s operating range and determine if that suits their particular application.  The 

packaging of the sensor system should also be considered as it can shield the unit 

from unwanted effects such as humidity, sand, mechanical forces, and other 

environmental conditions [134]. 

Another way to reduce the risk of sensor system failure is to use sensor 

validation methods.  Sensor validation is used to assess the integrity of the sensor 

system and adjust or correct it as appropriate.  This functionality checks the sensor 

performance and ensures that the sensor system is working correctly by detecting and 

eliminating the influence of systematic errors.  Self-diagnostics, self-calibration, and 

sensor fusion are a few methods that can be applied to achieve this functionality. 

Another strategy to improve the reliability of sensor systems is to use multiple 

ones (redundancy) to monitor the same product or system.  By using multiple sensor 

systems, the risk of losing critical data due to sensor system failure is minimized.   
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While it is essential to consider the reliability of sensor systems, it is equally 

necessary to consider the effects of the sensor system on the reliability of the product 

it is intended to monitor.  Sensor systems that are heavy may reduce the reliability of 

circuit boards when attached to the surface over time.  In addition, the method of 

attachment (soldering, glue, screws) can reduce the reliability of the product if the 

attachment material is incompatible with the materials on the surface of the product. 

3.4.8 Availability 

Availability of the sensor system is another factor that should be considered in 

the sensor selection process.  The sensor availability can generally be assessed in two 

ways.   

First, a user should determine whether the sensor system is commercially-

available.  This means that the sensor system has gone from its development phase 

into production and is being sold on the market.  The production volume can then be 

used as a measure of the sensor system’s availability.  Since sensor technology is 

always changing, there are many sensor systems which are advertised and promoted 

in publications and websites, but are not commercially-available.  These sensor 

systems are generally prototypes and are not available for others to purchase. 

Second, a user should look at the supplier of the sensor system.  The supplier 

will be either foreign or domestic.  Depending on the particular needs and application, 

a user may be required to select a sensor system from a domestic supplier due to 

security reasons.  This information is typically not found in product datasheets, but 

can be verified through simple communication with the supplier.  
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3.5 Sensor Selection Guidelines 

With the questionnaire and sensor selection criteria, one can decide which 

sensor system best meets one’s requirements.  However, there is no general consensus 

that establishes which sensor system is the best for a given application.  As a result, 

the information that follows contains some guidelines that can also be helpful in 

making the final selection of a sensor system. 

Table 6. Sensor Selection Guidelines 

1. The chosen sensor system should have an environmental operating range greater 
than the life cycle environment it is intended to monitor. 

2. The chosen sensor system should be sufficiently small in size and low in weight 
such that it is easily attachable to the monitored product. 

3. For portable applications, the chosen sensor system should operate autonomously 
using onboard batteries to supply its own power. 

4. For portable applications, the battery of the chosen sensor system should be easily 
replaceable and/or rechargeable; otherwise, the battery should have an expected 
lifetime of at least the same period of time between normal service intervention. 

5. For stationary applications, the chosen sensor system should be able to function 
continuously and reliably for a period of time. 

6. For wireless applications, the sensor system should be chosen such that its 
memory capacity is large enough to be able to store all of the data prior to data 
transmission. 

7. The cost of the chosen sensor system should be such that the return-on-investment 
of the sensor system is justifiable. 

8. The chosen sensor system should be commercially-available and sold by a 
reputable supplier who can be approved as per company-specific supplier 
selection criteria. 
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3.6 Summary 

The selection of appropriate sensor systems for monitoring the life cycle of 

electronic products and systems is an essential step in prognostics and health 

management.  There are many criteria that one needs to consider in order to select the 

right sensor for a particular application, including ease of integration, power 

management, data storage, data transmission, signal processing software, cost, 

reliability, and availability.   

In addition to the general criteria one needs to look at, guidelines on sensor 

selection were presented to help a user to select the optimal sensor system for their 

application.  Using these guidelines and the general criteria for sensor selection, one 

is able to make the tradeoffs necessary to ultimately decide which type of sensor 

system is best for their application.  In the next chapter, the sensor selection process 

presented here is demonstrated with a case study for an avionics unit. 
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Chapter 4:  Sensor Selection for an Avionics Unit 

 

4.0 Introduction 

An application of the sensor selection process is presented for an avionics unit 

to be used in aircraft/rotorcraft systems.  The objectives of this study were to provide 

a plan for implementation of PHM for two circuit card assemblies (CCAs) located 

inside the avionics unit.  The steps taken to achieve this objective included: 

• Virtual reliability assessment performed to determine the critical failure 

mechanism/model, and approximate time of failure of the component 

interconnects at the printed wiring board assembly level. 

• Selection of an optimal sensor system to be integrated with the avionics unit 

for in-situ monitoring of the life cycle loads to enable prognostics and health 

management. 

4.1 Description of Avionics Unit 

The two CCAs located inside the avionics unit are called the Control and 

Communications processors, and are being developed by L-3 Communications – 

WESCAM.  They are used for high resolution, multi-spectral imaging.  These 

systems are designed to provide image stability and long-range magnification from a 

wide variety of moving platforms, including rotary and fixed wing aircraft, unmanned 

vehicles, and ships.  This functionality is supported by up to six high-performance 

payload sensors, including a high magnification infrared thermal imager with 4-step 
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zoom, a color daylight camera with zoom lens, a night camera with spotter lens, a 

laser illuminator, and a laser rangefinder.  These imaging systems make target 

identification possible from longer standoff ranges, enabling safer, more covert 

operations. 

4.2 Virtual Reliability Assessment for Avionics Unit 

The virtual reliability assessment in this study was conducted on the two 

circuit card assemblies, Control and Communications.  The assessment involved 

identification of the expected life cycle profile, design model creation, load 

transformation and validation, and failure risk assessment to identify the potential 

failure sites and failure mechanisms.  The software that was used to conduct the 

virtual reliability assessment is CalcePWA, which has been developed by the Center 

for Advanced Life Cycle Engineering at the University of Maryland [135].   

4.2.1 Expected Life Cycle Profile 

In this study, an expected thermal profile was provided for a fixed wing 

aircraft, as shown in Figure 2.  This profile is based on aggregated values of 

temperature from years of experience in military avionics.  While it is an ideal profile, 

it is only representative of the actual conditions.  In practical application, PHM will 

tell a user what the actual profile is. 
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Figure 2. Expected thermal profile for the avionics unit 

Vibration testing was also performed on the Control and Communications 

CCAs to determine the input vibration loading.  A vibration shaker table was used to 

produce random vibrations and accelerometers were placed at the support points on 

each assembly to measure the input.  The measured input was in the form of power 

spectral density (PSD) versus frequency.  An example of PSD input for qualification 

of the Communications CCA is shown in Figure 3. 
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Figure 3. Expected vibration profile for the avionics unit 
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4.2.2 Design Model Creation  

The Control CCA is a 12 layer, double-sided circuit board supporting 559 

components belonging to 137 part types.  The Communications CCA is a 14 layer, 

double-sided circuit board supporting 718 components belonging to 154 part types.  

In the design model, a part represents a specific part number whereas a component 

represents an instance of a part occurring within the design.  The two circuit boards 

are manufactured with high-temperature FR-4 substrate, and the solder joints are 

made of eutectic tin-lead solder paste.  The design models of the top surfaces of the 

Control and Communications CCAs are shown in Figure 4.   

 

 

 

Figure 4. Design model of the top surfaces of the Control processor (left) and the 

Communications processor (right) 

4.2.3 Load Transformation and Validation 

For the thermal stress analysis of both CCAs, the analysis conditions used 

were natural convection with horizontal board orientation and venting of air.  For 
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boundary conditions, the edges of the CCAs were assumed to be insulated.  It was 

also assumed that the fluid pressure is 1atm for all temperatures in the life cycle 

profile except those which exhibited a lower relative atmospheric pressure due to a 

higher altitude.  For these high altitude temperatures, the fluid pressure was assumed 

to be 0.5atm. 

To validate the results of the thermal stress analysis, photographs were taken 

of the Control and Communications CCAs while they were powered on using a 

thermal infrared (IR) camera.  The procedure for taking the IR images was as follows: 

(1) subject the unit to an ambient temperature of 23°C; (2) power on the unit; (3) 

when thermal equilibrium is reached, lift up the cover and take a picture of each 

CCA.  When the cover was lifted off, the top surface of the Control CCA was 

photographed, and since the Communications CCA was attached to the underside of 

the cover, its bottom surface was photographed (see Figure 5).  The results of the 

thermal stress analysis were deemed acceptable as compared to the IR images. 
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Figure 5. Thermal infrared images of top surface of Control processor (left) and 

bottom surface of Communications processor (right) at ambient temperature 
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Next, for the vibration stress analysis, the boundary conditions are based on 

how the boards are fastened to the whole structure.  The Control CCA was fastened at 

22 support points, which were assumed to be simply supported.  Two additional 

supports were added to the model to account for the stiffening effect from a daughter 

card that was attached on top.  The Communications CCA was fastened at 38 support 

points.  In addition, the compliance of the board was assumed to increase from the 

peripheral to the center.  This was modeled by adjusting the spring constant values of 

the springs.   

The vibration stress analysis results showed that the first three natural 

frequencies of the Control board were approximately 618, 771, and 951 Hz, and 

maximum displacement was at the center of the board.  Likewise, the natural 

frequencies and displacement of the Communications board were found.  The results 

of the vibration stress analysis were validated against measured values of the first 

three natural frequencies. 

4.2.4 Failure Risk Assessment 

Simulation of the avionics design model was performed to evaluate the 

thermal and vibration stress conditions for each component and determine the 

dominant failure mechanisms and corresponding failure sites.  The simulation 

revealed minimal damage due to random vibration on both processor boards; all 

components on both boards passed life requirement of 5 years with an estimated life 

of greater than 30 years.  Resistance to vibration-induced failure was expected 

because the processor boards exhibited a high natural frequency, and accumulated 
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damage due to random vibration is inversely proportional to the square of natural 

frequency. 

However, the simulation results indicated a failure risk due to thermal fatigue 

at several locations, two on the Control processor and four on the Communications 

processor.  For these high risk components, an evaluation of their sensitivity to 

interconnect geometry parameters was performed to determine if modification of 

solder joint parameters would result in failure avoidance.  Three input parameters 

were varied: standoff height, solder joint height, and solder joint bond area.   

Based on the sensitivity analysis, suggestions for risk mitigation were 

recommended and implemented.  After the suggestions were implemented, the top 

three high risk failure sites for each CCA were identified (see Table 7 and Table 8).  

For all components, the failure sites were located at the solder joint interconnect.  The 

actual parts are listed in the first column of each table.  The rationale used to select 

only the top 3 high risk failure sites was because there was a large gap between the 

third and fourth failure sites on each design.           

Table 7. Results of virtual reliability assessment for the Control CCA 

Top 3 high risk failure sites, mechanisms, and times 

Failure site: 
(interconnect) 

Failure 
mechanism: 

Life estimation: 
(life requirement = 588 days) 

Leadless thick film chip 
resistor array Thermal fatigue 602 days 

C-lead transient voltage 
suppressor Thermal fatigue 975 days 

Leadless power inductor Thermal fatigue 982 days 
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Table 8. Results of virtual reliability assessment for the Communications CCA 

Top 3 high risk failure sites, mechanisms, and times 

Failure site: 
(interconnect) 

Failure 
mechanism: 

Life estimation: 
(life requirement = 588 days) 

Leadless clock oscillator Thermal fatigue 606 days 

Leadless Ethernet transceiver Thermal fatigue 613 days 

Leadless thick film chip 
resistor Thermal fatigue 642 days 

 

 Since all of the failure mechanisms are found to be thermal fatigue of the 

solder joint interconnect due to thermal cycling, the load parameter which is needed 

for input to this model is temperature.  The locations of the high risk failure sites can 

also be determined using the results of virtual reliability assessment.  The locations on 

the Control CCA and Communications CCA are shown in Figure 6 and Figure 7, 

respectively.    

 High risk failure sites

Top surface Bottom surface

  High risk failure sites

Top surface Bottom surface  

Figure 6. High risk failure sites on the Control CCA 
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High risk failure sites

Bottom surfaceTop surface

High risk failure sites

Bottom surfaceTop surface  

Figure 7. High risk failure sites on the Communications CCA 

4.3 Sensor Selection for In-situ Temperature Monitoring 

The next task is to search for the optimal sensor system that that can be used 

for in-situ monitoring of temperature loads on the circuit boards inside the avionics 

unit.  First, to understand the needs of this application, the questionnaire created for 

sensor selection was filled out.  The questionnaire results are shown below. 

Table 9. Questionnaire Results for Avionics Unit 

1. What is the expected environmental/operational range for monitoring? 

• Temperature: -55°C to +70°C 

2. What is the desired size, weight, and form factor for the sensor system? 

• Less than 1 inch in height, less than 10 grams, no preference in shape 

3. How does the sensor system need to be attached to the host product? 

• Mounted to circuit board using plastic plate 

4. How will the sensor system be powered? 

• Powered by battery (autonomously) 
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5. What type of power management is needed for the sensor system? 

• None required 

6. How long does the product need to be monitored for? 

• 1 month trial  

7. How often will the data be collected? 

• Slower than 1 Hz (~1 sample/minute)   

8. Is signal processing software needed to simplify/compress the raw data? 

• No 

9. Does the sensor system need to be purchased from a particular type of 
supplier? 

• Approved domestic suppliers 

10. What is the maximum allowable cost for the sensor system? 

• Less than $100 

 

Once the needs of the application were understood, the criteria for sensor 

selection were assessed to see where to make the necessary tradeoffs.  Using this 

process, the optimal sensor system was chosen for monitoring the temperature loads 

inside the avionics unit.  The search focused on low cost, small size, low weight, 

portability, and wireless data transmission.  The data for the chosen sensor system 

was collected from the manufacturer’s website and product datasheets. 

The selected sensor system that best matches the needs of this application is 

the SmartButton, which is manufactured by ACR Systems [136].  The ACR 

SmartButton is a single channel temperature logger that costs $39 per unit.  As shown 

in Figure 8, the sensor system is 17 mm in diameter and 6 mm in height, and weighs 

approximately 4 grams.  Due to its small size and low cost, it is possible to purchase 
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six units for multiple-site temperature monitoring of the high risk failure sites on the 

Control and Communications CCAs. 

 

Figure 8. The ACR SmartBut

In addition, using a plastic plate as attachme

mounted to the circuit boards, and can operate auto

onboard battery.  With a desired sample rate of 1 

memory capacity of 2 KB, the collected data can b

one day before being downloaded from the aircraft/ro

temperature data is downloaded to the computer, it 

the damage model for thermal fatigue to calculate th

the avionics unit.        

4.4 Summary of the Case Study 

The PHM implementation methodology was

avionics unit in this study to identify the relevant lif

system for in-situ life cycle monitoring.  Therm

interconnect was identified as the dominant failure m

sites.  Thus, the load parameter that was identified as

temperature.   
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nt, the ACR SmartButton can be 

nomously using a 3 volt lithium 

sample/minute and a maximum 

e stored in the local memory for 

torcraft to a computer.  After the 

can be used in conjunction with 

e remaining cycles to failure for 

 applied to electronics inside an 

e cycle loads and optimal sensor 

al fatigue of the solder joint 

echanism for all high risk failure 

 input for the damage model was 



 

Using the questionnaire created for the sensor selection process, the avionics 

application was broken down to identify the monitoring requirements.  These 

requirements were assessed in terms of the sensor selection criteria to determine if 

tradeoffs needed to be made.  From this, an optimal sensor system was selected for 

monitoring the ambient temperature inside the avionics unit at the six high risk failure 

sites. 
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Chapter 5:  Contributions  

 

1. I assessed the state-of-practice for prognostics and health management of 

electronics.  Based on a review of the prognostic approaches, implementation 

case studies, technical publications, and the extent of intellectual property of 

numerous organizations, I identified the companies, universities, and 

government branches that are currently researching, developing, and/or 

implementing prognostics for their products and systems.  In addition, I 

identified the specific prognostic methods that each organization is using.  I 

used this information to propose the core challenges for prognostics and 

health management research, which can be used as a baseline for the 

development of a technology roadmap.   

 

2. I developed a sensor selection process for integration with the life 

consumption monitoring methodology such that an optimal sensor system 

can be identified prior to in-situ life cycle monitoring of electronic 

products and systems.  I developed a questionnaire that can be used to 

understand the monitoring requirements of a particular PHM application.  I 

identified criteria that one needs to consider in the sensor selection process in 

order to make the relevant tradeoffs.  Finally, I provided guidelines on sensor 

selection to help a user validate their final selection.  The process was 

demonstrated for two circuit card assemblies inside an avionics unit. 
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Appendix I 
 

Publications Originated from Thesis Work 

Books 

• N. Vichare, B. Tuchband, and M. Pecht, “Prognostics and Health Monitoring of 

Electronics,” Handbook of Performability Engineering, ed. K.B. Misra, Springer, 

2007. 

• M. Pecht, B. Tuchband, N. Vichare, J. Gu, V. Sotiris, S. Kumar, and S. Cheng, 

“Prognostics and Health Management of Electronics,” CALCE Press, College 

Park, MD, to be published in July 2007. 

Conference Proceedings 

• B. Tuchband and M. Pecht, “The Use of Prognostics in Military Electronic 

Systems,” Proceedings of the 32nd GOMACTech Conference, Lake Buena Vista, 

FL, March 19-22, 2007, pp. 157-160. 

• B. Tuchband, S. Cheng, and M. Pecht, “Technology Assessment of Sensor 

Systems for Prognostics and Health Monitoring,” Proceedings of the Topical 

Workshop and Exhibition on Military, Aerospace, Space and Homeland Security 

(MASH 2007), Baltimore, MD, May 7-10, 2007, CD-ROM Paper No. 4-4. 

• B. Tuchband, N. Vichare and M. Pecht, “Method for Implementing Prognostics 

on Legacy Systems,” Proceedings of the Topical Workshop and Exhibition on 

Military, Aerospace, Space and Homeland Security (MASH 2006), Washington, 

DC, June 6-8, 2006, CD-ROM Paper No. 4-20. 
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Working Papers 

• B. Tuchband, D. Das, M. Pecht, and D. Heslinga, Prognostics and Health 

Management Implementation Methodology. 

• B. Tuchband and M. Pecht, In-Situ Life Cycle Monitoring of Notebook 

Computers. 
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