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Influenza A virus is a highly infectious agent that cause seasonal epidemics affecting 

5-15% of the world population with mild to severe illness and possibly death. While 

this pathogen represents a significant disease burden to the human population, it can 

also infect a wide range of animals including swine and land-based poultry, which are 

thought to serve as intermediate hosts between the human and natural wild aquatic 

bird reservoir. Here, two viruses, a swine-origin pandemic H1N1 and a seasonal 

human H3N2 are examined for segment fitness during co-infection of in vivo animal 

models. In three independent co-infections, reassortment between seasonal and 

pandemic viruses resulted in the selection of an H1N2 virus with a seasonal PB1 with 

an otherwise pandemic internal gene constellation. Selection for the seasonal PB1 and 

NA as well as the pandemic M segment was observed to occur rapidly during 

segment resolution. As pandemic M gene reassortant strains are being consistently 



  

identified in the field, studies were performed to identify the genetic determinants in 

pandemic M gene selection. Research here shows that both the M1 capsid protein and 

M2 ion channel from the pandemic virus are sufficient to drive the selection of the 

entire M segment. As swine represent an important intermediate host for the 

adaptation of potentially pandemic viruses, including pandemic M gene reassortant 

strains, alternative DNA and recombinant baculovirus-based platforms are 

investigated for their ability to generate influenza viruses from porcine polymerase I 

promoters and serve as potential vaccine candidates. Research here shows that 

influenza A virus can be rescued de novo using the porcine polymerase I promoter in 

an eight plasmid system. Furthermore, a single bacmid can be constructed that 

rescues influenza virus or baculovirus encoding the influenza reverse genetic system 

in mammalian tissue culture or Sf9 cells, respectively. These represent a new 

generation of species-tailored vaccine platforms. 
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Chapter 1: Introduction 

1.1 General introduction and genera 

 Influenza A belongs to the Orthomyxoviridae family of viruses and is the 

causative agent of mild to severe respiratory illness affecting an estimated 5 million 

people every year (1). Together with influenza A, the family is divided into an 

additional five groups: influenza B and C, Thogotovirus, Isavirus, and the recently 

discovered Quaranjavirus (2). As group V viruses under the Baltimore classification 

system, the genome of all genera within this family is composed of single-stranded, 

negative-sense RNA (3). Additionally, their genomes are further divided into multiple 

segments, each encoding at least one protein product. Influenza A, influenza B, and 

Isavirus each contain eight segments (4, 5); influenza C contains seven segments 

while Thogotovirus and the newly described genus Quaranjavirus contain six (6). 

While segmentation of the viral genome introduces an additional level of complexity 

to the replication cycle, segment exchange provides a mechanism to increase both the 

genetic diversity and potentially the host range of these viruses. 

Of the six genera within Orthomyxoviridae, five are known to cause disease in 

humans. Isavirus, the sole exception, primarily infects North Atlantic salmon and 

represents a significant burden to fish farms during epidemic outbreaks (7). Infection 

is associated with anemia due to viral infection of erythrocytes and endothelial 

membranes followed by death or immune deletion of these cells (8-10). The more 

recently classified Thogotovirus and Quaranjavirus genera are distinctive in that ticks 

may function as an intermediate vector. Human infection with these viruses may be 
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severe, resulting in febrile responses and encephalitis, but is rare compared to 

influenza A, B, and C viruses due to the vector mode of transmission, and is not 

known to cause epidemics or pandemics. 

 While group B and C influenza viruses are primarily human pathogens, 

influenza A virus (IAV) is known to infect a wide range of species. Based on 

serological assays, IAV can be further classified into subtypes denoted by the 

hemagglutinin (H or HA) and neuraminidase (N or NA) serogroups as HxNy.  There 

are currently 17 known subtypes for HA and 10 for NA. With the exception of the 

recently discovered H17N10 in bats, wild aquatic waterfowl are believed to be the 

primary reservoir of all influenza HA and NA subtypes (11). Despite the wide range 

of available subtype combinations, only a select few have successfully crossed 

species barriers to establish lineages in humans. In recent history, these have been 

limited to H1N1, H2N2, and H3N2 viruses (12). Whether these subtypes are in some 

way intrinsically special or if other combinations could adapt given time is unknown. 

Current evidence suggests that the latter is possible. 

 Zoonotic infections with influenza subtypes not generally associated with 

seasonal epidemics are not uncommon. Of particular note are highly pathogenic avian 

influenza (HPAI) subtype H5 and H7 viruses. While human-to-human transmission 

has not been observed with these subtypes, sporadic infections of humans with these 

viruses lead to high morbidity and mortality. Currently, the WHO recognizes 637 

confirmed cases of H5N1 with 378 associated deaths. While H7N7 has only resulted 

in one known death in the Netherlands, this virus and others within the H7 clade 

contain genetic markers of particular concern should sustained transmission be 
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achieved. In addition to H5 and H7 viruses, avian H9N2 viruses are known to cause 

infection not only in swine, but also in humans. The disease phenotype is much less 

severe compared to H5 and H7, but attention to pandemic preparedness is given due 

to its ability to replicate well in humans and a large number of intermediate host 

species. 

 While predicting the next influenza pandemic is nearly impossible, work has 

been done with many of these high-risk subtypes to determine the associated genetic 

markers of a pandemic virus. These gain-of-function studies allow scientists to 

compare what a pandemic virus might look like to what is currently circulating in 

nature. To this end, many groups have adapted high-risk, prototypical viruses to the 

ferret model to obtain an aerosol transmissibility phenotype in these animals (13-15). 

Generally regarded as the gold standard, the ferret has long been used as an animal 

model to study influenza virus infection, pathogenesis, and transmission and in many 

respects may recapitulate disease phenotypes observed in human cases (16, 17). 

While ferrets have been indispensable to modeling these aspects of influenza in 

humans, little has been done in this model to understand how genetic exchange 

between viruses affects these factors. 

 In addition to humans, IAV also represents an enormous burden to swine 

producers, resulting in decreased feed efficiency and decreased weigh gain from 

infected animals due to loss of appetite and lethargy. The infection in swine is often 

acute and subclinical, but disease signs such as coughing, fever, and labored 

breathing may be observed. While the primary method to control is biosecurity in the 

animal facilities, vaccination using commercially available products may also be 
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effective (18). Vaccine efforts, however, are complicated by the circulation of 

multiple, antigenically diverse subtypes. To better match strains circulating within 

individual facilities or regions, autogenous inactivated vaccines are often produced 

(19). 

1.2 Structure, genome organization, and gene products of influenza A virus 

The structure of IAV ranges from spherical particles that are approximately 80-100 

nm in diameter to elongated filamentous particles that exceed 1 µm in length (20). 

Electron micrographs of section virions reveal a host cell-derived viral membrane 

studded in protein spikes corresponding to HA trimeric and NA tetrameric surface 

glycoproteins (for example, see (21)). Electron density under the viral envelope 

corresponds to matrix protein 1 (M1), which coats the inner leaflet (22). The core 

contains the genetic content of the virus, arranged in eight electrodense bundles 

composed of the viral polymerase and RNA and wrapped around nucleocapsid 

multimers, with minor amounts of a nuclear export protein (NEP) (21, 23, 24). While 

not visible by TEM, the viral membrane is penetrated by the M2 ion channel protein 

tetramer, which is composed of a small external domain, a larger internal domain, and 

a transmembrane domain (25, 26). 

The genome of IAV is approximately 14 kb in length with individual 

segments ranging from 890bp to 2.3kb (4). Each segment contains two untranslated 

regions flanking at least a single coding sequence. The first 13 and last 12 nucleotides 

of the viral RNA (vRNA) are highly conserved with a single, segment specific 

polymorphism in the latter sequence (27-29). These untranslated regions are partially 
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complementary and form intrastrand base pairing (30). Once paired, the RNA is 

thought to form either a panhandle or corkscrew structure, which is recognized as a  

  

 
Figure 1.1: Schematic diagram of the influenza A virion. HA and NA major 
surface glycoproteins stud a host cell membrane derived envelope. Spanning the 
membrane is the M2 ion channel with a small external and a larger internal 
domain. Coating the inner leaflet of the envelope is the M1 matrix protein. Within 
the virion are eight RNA segments, which are coated in NP and bound by a 
heterotrimeric polymerase complex to make up the vRNP. NEP is bound to the 
vRNP to facilitate nuclear export (not shown). 
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promoter by the viral polymerase (30-33). Additionally, each vRNA segment is 

encapsulated in nucleoprotein trimers (NP), the primary transcript from segment 5, 

which binds the negatively charged vRNA phosphate backbone through basic amino 

acids in an RNA binding grove (34, 35). Binding of vRNA to NP induces 

oligmerization of NP to form a helical capsid that is bound by the viral polymerase. 

Together, the polymerase complex and the NP coated RNA is known as the viral 

ribonucleoprotein (vRNP), which is tightly associated with M1 in the viral particle 

(36, 37). 

The three longest segments of IAV encode the viral polymerase proteins as 

their primary transcripts: Polybasic 2 (PB2), Polybasic 1 (PB1), and Polyacidic (PA). 

PB2 and PA bind PB1 through its C-terminus and N-terminus, respectively, to form a 

heterotrimer (38-43). Although all subunits are required, the polymerase activity 

required for replication and transcription is associated with the PB1 polymerase 

subunit (44, 45). Until recently, the roles of the PB2 and PB1 subunits were unclear. 

Influenza messenger RNAs (mRNA) are translated in a cap-dependent manner, yet 

the polymerase itself is unable to synthesize a cap structure for its transcripts. Instead, 

the viral polymerase associates closely with the c-terminal domain of host RNA 

polymerase II where cellular capping occurs. Capped host mRNAs are bound by the 

viral polymerase, cleaved into short primers, and used by the viral polymerase to 

prime transcription (46). As such, all viral transcripts have host-derived sequence on 

their 5’ end. Cap-binding activity and nuclease activities had long been ascribed to 

PB2 and PB1, respectively, with PA playing an unknown function (47, 48). 

Supporting these ideas were studies showing that antibodies against PB2 could inhibit 
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transcription. Furthermore, antibodies directed against PA showed no inhibition of 

this process (49). Capped primer cross-linking also suggests that the nuclease domain 

resides within the PB1 subunit (47). However, these results were recently challenged 

by a pair of studies conclusively demonstrating that the endonuclease domain resides 

within the N-terminal region of the PA subunit. These new results were based on 

structural homology and biochemical activity, reconciling previous results by 

showing a close proximity of cross-linked residues in PB1 to the active site of PA 

(50, 51). 

 The HA surface glycoprotein is encoded by segment four, and functions for 

both receptor binding and membrane fusion. It is synthesized as a type I 

transmembrane homotrimer with a short cytoplasmic tail. The bulk of the protein is in 

the extracellular domain, and has two predominant features—a long stalk domain and 

a globular head. HA requires maturation by proteolytic cleavage to be fusion 

competent (52, 53). This occurs most frequently at a monobasic cleavage site 

composed of a single arginine or, more rarely, at a lysine, separating HA1 and HA2 

fragments that are held together by a single disulfide bond. Maturation most often 

occurs in the lung and intestinal extracellular spaces by tissue specific trypsin-like 

proteases (54, 55). However, this tropism can be expanded by the acquisition of 

multiple basic residues within the cleavage site, allowing maturation of the 

hemagglutinin to occur within the Golgi network by the ubiquitous furin protease 

(56). In chickens and other domestic poultry, the polybasic cleavage site allows the 

virus to spread systemically to sites other than intestine and lung tissues, including the 

brain, liver, kidneys, spleen, and heart. Moreover, infection with these viruses may 



 

 8 
 

result in the rapid death of the animal in a time frame ranging from hours to days. 

This single genetic variation in the cleavage site can alter the pathogenic phenotype 

of a virus, transforming low pathogenic viruses into highly pathogenic viruses (57). 

 Segment 6 encodes the NA surface glycoprotein, a lipid raft associated type II 

transmembrane homotetramer. Enzymatically, NA functions to destroy viral receptors 

by cleaving sialic and neuraminic acids from the host cell surface and the surrounding 

environment (58-60). The protein is composed of a large extracellular domain with a 

globular head and a long stalk (61). The cytoplasmic domain is short and composed 

of about 29 amino acids (62). Like HA, the cytoplasmic tail interacts with M1 to 

enhance the membrane association of the capsid protein with the budding platform 

(63). 

While M1 capsid is the primary transcript from segment 7, nuclear replication 

allows the virus to expand its coding capacity in this segment by utilizing the 

spliceosome to produce an additional transcript. M2 is a 97 amino acid integral 

membrane protein with a small and highly conserved 24 amino acid ectodomain, a 19 

amino acid transmembrane domain, and a larger, 54 amino acid endodomain that 

forms an amphipathic helix running parallel to the viral membrane (26, 64, 65). The 

protein forms a homotetramer in the membrane that is known to have ion channel 

activity, and serves primarily to conduct protons from the luminal compartment of the 

endosome to the interior of the virus (66). 

Segment 8 of IAV is also known to produce two protein products. The first is 

non-structural protein 1 (NS1), which is produced from an unspliced transcript 

starting from the initial start codon. About 10% of the primary transcript undergoes 
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splicing and produces the nuclear export protein (NEP) (67). NEP is known to bind 

both the vRNP and the nuclear export receptor, Crm1, the functional consequences of 

which will be discussed later (68). 

NS1 is the most abundant, the most studied, and perhaps the most functionally 

diverse of all non-structural proteins produced by IAV (69, 70). The primary function 

of NS1 is to act as an antagonist to the innate immune system, specifically the 

interferon α and β (IFN-α/β) antiviral response (71-73). The protein is small a 

homodimer, being composed of only about 230 to 237 amino acids depending on 

strain, and can be divided into an RNA-binding domain, an effector domain, and a 

disordered tail. NS1 mainly localizes to the nuclei of infected cells, although it may 

also be found in the cytoplasm (74). Studies have shown the NS1 can indirectly 

inhibit the activation of NFκB, IRF-3, and c-Jun/ATF-2 transcription factors of IFN-β 

(75, 76).  

Although the ten protein products discussed so far are required for efficient 

replication of all IAVs, some strains express one or two additional proteins. The first 

is expressed from an additional typically 87 amino acid open +1 reading frame (ORF) 

found in segment 2, termed PB1-Frame 2 (PB1-F2) (77). Truncations and extensions 

of the ORF are common in other strains. Discovered as part of a CD8+ T-cell epitope 

screen, initial characterization within the A/Puerto Rico/8/1934 (H1N1) suggested 

that the protein localized to the mitochondrial membrane and induced apoptosis in 

monocytes (77). Little difference was observed in the growth kinetics of a variety of 

other cell types in the presence or absence of this ORF. The in vivo relevance of this 

protein, however, has been the subject of intense debate. Effects have been found to 



 

 10 
 

be largely strain and host specific, suggesting that the observed phenotypes associated 

with PB1-F2 may rely on polygenetic markers (78, 79). 

In addition to PB1-F2, a second protein product has been recently identified in 

segment 3. Termed PA-X, it was putatively identified bioinformatically and encodes 

the N-terminal endonuclease domain of PA fused to an additional -1 ORF that is 

accessed by ribosomal frameshifting (80). While little is currently known regarding 

the function of this protein, mice infected with PA-X deletions or truncations in the 

reconstructed A/Brevig Mission/1/1918 (H1N1) background showed an increase in 

disease, suggesting that PA-X modulates the pathogenicity of this virus in vivo. 

1.3 Life cycle and genomic replication, gene transcription 

 The life cycle of IAV begins with HA recognition of terminal sialylated 

glycans on the surface of host cells. Sialic acid conjugates to galactose exist as two 

stereoisoforms, alpha-2,3 and alpha-2,6 linked. Alpha-2,3 linked sialic acids (α2,3 

SA) are highly enriched in the intestine of wild ducks, and viruses of these animals 

display a high binding preference to this conformation (81, 82). By contrast, influenza 

viruses of humans generally recognize carbohydrates terminating in the alpha-2,6 

(α2,6 SA) conformation which are highly expressed in the upper airways. 

 Once HA has bound to sialic acid on the cellular surface, the virion is 

internalized into the early and eventually late endosome (83). A hydrophobic fusion 

peptide is released from HA and intercalates into the endosomal membrane to form a 

pre-fusion complex (84, 85). As the pH of the endosome decreases, a number of pH-

dependent processes occur. The M2 ion channel acidifies the internal compartment of 

the virion, which initiates the dissociation of the vRNP complexes from the M1 
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capsid (86, 87). Additionally, HA undergoes a conformational change that fuses the 

viral and endosomal membranes together, exposing the internal compartment of the 

virion and the eight vRNPs to the cytoplasm (85). 

 Although the viral polymerase is responsible for mRNA transcription, the 

process relies heavily on host nuclear machinery. Caps for viral mRNAs are obtained 

directly from host RNA polymerase II, and the spliceosome is strictly required to 

process primary transcripts from segments 7 and 8 into mRNAs encoding M2 and 

NEP, respectively. As such, all eight vRNPs must translocate from the cytoplasm into 

the nucleus for RNA transcription to occur. Nuclear translocation of the vRNPs is an 

active process, relying on the host transport machinery to pass the complexes through 

the nuclear pore. Although each protein component of the vRNP contains at least one 

nuclear localization signal (NLS), the unconventional NLS located at the N-terminus 

of each NP in the vRNP complex was found to drive import into the nucleus through 

the nuclear pore (88-90).  Import is facilitated by karyopherin α1 (importin α) that 

binds to the NLS on NP (89). Karyopherin β is then thought to bind the importin α 

subunit its cargo to a nucleoproin for Ran-GDP import into the nucleus (91-93). 

 Many isoforms of importin α exist and they vary widely in sequence identity. 

This variation not only is observed between isoforms, but also between species. As a 

result, different isoforms may not be functional equivalents between their paralogs or 

interspecies orthologs. A recent study investigated the ability of an avian virus and its 

mammalian-adapted counterpart to replicate in importin α silenced cells and knockout 

animals (94). Findings suggest that IAVs circulating in different hosts may be 
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adapted to utilize different isoforms of importin α, which may represent a significant 

barrier to virus exchange between reservoirs. 

 Once in the nucleus, the viral polymerase must make three different RNA 

species. Protein production is the first priority, and mRNA is transcribed from 

template vRNA using host-derived, m7G capped RNA primers as previously 

described. As mRNA transcription proceeds, the 3’ end of the viral RNA is threaded 

through the active site to form a loop structure with the 5’ end still bound to the 

polymerase. The loop closes during transcription until the polymerase can progress no 

farther on its template due to the steric hindrance of the RNA wrapped around the 

polymerase. Conserved at the 5’ end of the viral RNA is a stretch of uracils upon 

which the polymerase is thought to repeatedly slip to incorporate a growing number 

of adenosines into the mRNA transcript. Viral derived mRNA is then either processed 

further by the spliceosome or exported out of the nucleus to be translated on the 

ribosome. 

 During this initial phase of replication, protein products for new virions must 

be sorted correctly. All components of the vRNP contain nuclear localization signals, 

and are concentrated in the nucleus after synthesis until later phases of the cycle. A 

growing field of evidence suggests that PB2 enters the nucleus alone, and that PB1 

and PA must dimerize in the cytoplasm before the two proteins can enter the nucleus 

(95-97). Once in the nucleus, PB2 must bind the PB1-PA dimer to form the 

replication competent complex (42). Adaptation of viruses from an avian to a 

mammalian host has been shown to generate allelic variations in these proteins that 

modulate the interactions and inhibit nuclear trimerization of the polymerase complex 
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(98). These and other factors modulating viral protein-protein interactions may serve 

to inhibit genetic exchange between reservoirs (99, 100). 

 HA, NA and M2 are all translated on the endoplasmic reticulum for 

expression, and each contains apical targeting signals. HA begins to fold co-

translationally in the ER and forms homotrimers rapidly thereafter (101). Prior to 

being transported to the Golgi complex, the signal peptide is trimmed from HA0 and 

select asparagine residues are glycosylated. Six disulfide bonds are formed between 

twelve conserved cysteine residues in the HA ectodomain, one of which covalently 

joins what will become HA1 and HA2 post-cleavage (102). Although cleavage of 

most human influenza viruses historically has been thought to occur extracellularly in 

the respiratory tissues, recent evidence suggests that these tissue specific proteases 

may cleave HA within the Golgi complex prior to HA expression on the cell surface 

(54). The HA protein and precursors are acid sensitive and must be protected from 

premature activation before the next infection cycle (103, 104). The pH of the Golgi, 

measured as low as 6.4 at a resting state, is neutralized by the concurrent expression 

of M2 (105, 106). While this has been shown to slow the transport of proteins through 

the secretory pathways, it also protects HA0 and HA from early pH-triggered 

activation. 

 After transport to the cell surface, HA and NA associate with detergent-

resistant raft domains to form an assembly platform from which the virus will 

ultimately bud (107, 108). M2 is only found in these domains during the course of a 

viral infection and is excluded when expressed in cells alone, suggesting a role of 

other viral proteins in the recruitment of M2 to the lipid rafts (109). M1, like M2, 
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does not directly associate with the lipid raft but is thought to bind the cytoplasmic 

tails of HA, NA, and M2 (108, 110, 111). The remaining structural viral proteins are 

located in the nucleus and require export to the assembly site before budding can 

continue (112). 

 At late stages of the infection cycle, M1 and NEP bind the vRNP complex 

within the nucleus; both are essential for mediating export of the vRNP from the 

nucleus to the cytoplasm (68, 113). The vRNPs are bound by nuclear M1 through its 

C-terminal domain (114). In turn, NEP is thought to bind and obfuscate the NLS 

present on the N-terminal M1, thus preventing re-import of the vRNP-M-NEP 

complex (115). Finally, NEP binds to Crm1 cellular export complex through its N-

terminal leucine-rich nuclear export signal for transport through the nuclear pore to 

the cytoplasm (116). Formation of the vRNP-M-NEP complex, however, is not 

sufficient to mediate nuclear export, as an external stimulus is required. Cells treated 

with inhibitors of the Raf/MEK/ERK MAPK signaling cascade retain vRNPs in their 

nuclei during viral replication (117). Furthermore, accumulation of HA in the 

cytoplasmic membrane has been shown to activate this cascade (118). This suggests 

that HA accumulation may trigger export of the vRNP from the nucleus to the 

cytoplasmic assembly platform for incorporation into budding virions. 

 In order to be infectious, new progeny must contain a copy of each of the 

eight vRNPs. While existing data supports the existence a selective mechanism for 

the packaging of all eight vRNPs over random incorporation, the precise mechanism 

by which packaging occurs is largely unknown. Thin-section electron tomography 

has shown the structure of vRNPs within the virion with each docked to the distal 
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terminus of the budding virus, possibly coming into contact with each other at this 

point (27). The location of these possible contacts suggests the interaction of 

sequences near the 5’ and 3’ termini of each RNA segment, and may correspond with 

regions previously identified as containing segment-specific packaging signals (28, 

58, 64, 73, 80, 108). Using a similar technique, other research has identified possible 

RNA tethers between the vRNPs at other sites (76).  Despite these inroads to 

understanding the mechanism of vRNP packaging, it remains largely unknown – and 

yet it is of immense consequence to viral diversity and public health. 

 The final phase of the infectious cycle is the budding and release of infectious 

particles from the apical membrane. While HA and NA are both able to initiate bud 

formation, M1 is thought to be the primary driving force behind the process (119). 

M1 is known to induce curvature to the membrane and can produce virus-like 

particles (VLP) in the absence of other viral proteins (120, 121). Despite this, VLP 

production is most efficient when HA, M1, and M2 are all present, and it is unknown 

if the mechanisms of budding in single or subset protein studies are analogous to the 

process in vivo (122).  

 Membrane scission and subsequent release of the virus particle from the host 

cell is thought to be mediated by M2. Studies have shown that M2 is not only capable 

of altering membrane curvature through a highly conserved amphipathic alpha helix 

in its cytoplasmic tale, but also that it accumulates at the neck of the budding virus 

and facilitates scission in vitro and in vivo (123). This is consistent with observations 

showing M2 localization around the extremities of the lipid assembly raft, 

presumably at the interface of the budding neck and the non-raft membrane (123). 
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 Release of the budded virion is finally mediated by NA digestion of sialic 

acids from the membrane surface (59). This function is absolutely required as virus 

replication is severely attenuated in the absence of NA or in the presence of 

neuraminidase inhibitors (124, 125). Electron micrographs of NA deficient or 

inhibited viruses show the budded virions attached to one another due to HA 

recognition of sialic acids on the viral and cellular surface. The attenuated phenotype 

can be rescued by the removal of inhibitors or the addition of exogenous bacterial 

neuraminidase (125). Once released, the virus particle repeats this infection cycle by 

entering into a new, uninfected cell. 

1.4 Control of influenza virus infections 

Influenza A virus is highly infectious among humans and swine. In both of 

these groups, the virus is thought to spread through direct contact, respiratory droplet 

transmission, and fomite transmission. While each mode may play an important role, 

their respective contributions to efficient transmission may vary between groups. 

Spread of the virus is most effectively limited where strict biosafety and biosecurity 

measures are observed. In humans, this means isolation of sick individuals and 

decontamination of hands and touched surfaces. In swine production facilities, 

biosecurity practices generally limit the people allowed to enter the operation, 

monitoring employees for flu-like symptoms and restricting them from work if 

symptoms exist, vaccinating employees against influenza, enforcing the use of 

personal protective equipment, and strict entry and exit procedures (126). 

In humans and in swine production facilities, biosafety and biosecurity, 

respectively, remain the most effective means to prevent the spread of influenza virus. 
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Failing this, however, vaccination may help lessen the severity and reduce clinical 

signs and symptoms associated with infection. Influenza vaccines are most effective 

against the strains used in their formulations, and may provide partial protection 

against closely related viruses. Due to antigenic drift and shift, however, vaccine 

formulations must be re-evaluated annually to remain efficacious against current 

circulating strains. 

There are currently three types of IAV vaccines approved for human use in 

the United States. Inactivated vaccine viruses represent the majority of those 

administered, followed by live-attenuated and protein subunit vaccines (127). The HA 

and NA surface antigens are determined by the WHO, who makes recommendations 

for candidate strains based on the current circulating subtypes and their cross-

reactivity to prior vaccines (128). The WHO, however, is frequently required to 

update its recommendations due to antigenic divergence of the HA, which is driven 

by immunological pressure. Perhaps the best visual depiction of this process is 

observed by using antigenic cartography.  This method maps the antigenic relatedness 

of similar strains within a lineage and places them on a 2D or 3D map surface with 

more related strains mapping more closely together. Using this technique, H3N2 

viruses from the previous 30 years have been shown to cluster into groups, which 

generally correlated with vaccine efficacy during the seasonal epidemics of those 

periods (129). 

Inactivated influenza vaccines are almost exclusively used in swine. These are 

designed to match the most common circulating strains and subtypes, and limited 

protection is commonly observed due to the antigenic and genetic diversity of 
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influenza viruses circulating in pig populations (130-132). Furthermore, continued 

use of these commercial vaccines will most likely result in immune pressure and 

antigenic divergence of circulating viruses, necessitating the reformulation of 

commercial vaccines.  For these reason, many swine producers have turned to 

autogenous vaccines to better match strains circulating within their own herds. The 

use of autogenous influenza vaccines has grown rapidly in recent years due to the 

diversity of viruses circulating in United States pig populations (19). While they are 

not yet approved for use in swine, live-attenuated influenza vaccines (LAIV) have 

been shown to provide significant protection to homo- and heterosubtypic challenge 

in both human and swine models (132-136).  While both autogenous and LAIV could 

fill an efficacy void left by commercial vaccines, their production still relies heavily 

on virus growth in eggs or tissue culture systems. 

 Antivirals may also be used as prophylaxis to control an infection and limit 

the severity of the symptoms, especially when no vaccine is available. For current 

circulating seasonal strains, the FDA has approved the use of two antiviral drugs in 

humans, oseltamivir and zanamivir. Both of these drugs act as selective 

neuraminidase inhibitors and limit viral growth by inhibiting detachment after 

membrane secession (137). Although viruses with resistant mutations exist, zanamivir 

is effective against the current seasonal H1N1 (post-2009), H3N2, and influenza B 

strains. Only the seasonal H3N2 and influenza B viruses are sensitive to oseltamivir, 

as resistant mutations have arisen within the seasonal H1N1 virus (138). Older drugs, 

such as M2 ion channel inhibitors amantadine and rimantadine, , are no longer 
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effective against circulating strains because overuse has rapidly selected for resistant 

mutations. 

 Many other vaccine and antiviral strategies are currently being investigated. 

Next generation vaccines aim at providing universal or broad-spectrum protection 

against many different HA subtypes. One example is influenza vaccines aimed at 

producing protective B-cell responses toward the structurally conserved 

hemagglutinin stalk domain (139-142). Other universal vaccine strategies target the 

small, external domain of the M2 ion channel, but these have not been shown to be 

very effective (143, 144). 
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Chapter 2: Genomic reassortment: A literature review 
 

2.1 Genomic reassortment 

 Copy-choice RNA recombination is thought to be very rare in influenza A 

viruses and does not appear to contribute greatly to their genetic diversity. Due to 

their segmented genome, however, two viruses that have infected the same cell can 

theoretically generate 254 (28-2) progeny that are genetically distinct from either of 

the parental strains. This process, known as reassortment, can greatly increase the 

genetic diversity of these viruses and may even expand their host range. A direct 

consequence of the latter is the introduction of novel antigens, primarily HA and NA, 

into serologically naïve populations, resulting in an antigenic shift away from 

circulating immune epitopes and potentially precipitating the emergence of a 

pandemic virus. 

The past century has seen the emergence of five pandemic influenza viruses, 

at least three of which have been the result of reassortment. The first pandemic virus, 

and perhaps the only one not thought to result from reassortment, was the H1N1 virus 

that started to circulate in the spring of 1918. Initially presenting as a mild respiratory 

disease in humans, subsequent waves later in the fall and during the spring of 1919 

were significantly more virulent with a mortality rate estimated at 2.5% (145). During 

these two periods, an estimated 500 million people were infected with 50 to 100 

million deaths attributed to this virus (146, 147). While the origins of this virus 

cannot be determined for certain, strong evidence suggests that this virus transmitted 

and adapted to humans from the avian reservoir (148-150). While not thought to be a 
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product of reassortment itself, the 1918 influenza virus established human and swine 

lineages that would be the foundation of all subsequent pandemics. 

In 1957, a new pandemic virus was observed in humans that was found to be 

immunologically unrelated to previously circulating strains (151). Thought to have 

emerged from Southern China, this “Asian influenza” appears to have been a 

reassortant between an avian H2N2 virus and the previously circulating H1N1 (152). 

The avian strain is thought to have donated the H2 HA, the N2 NA, and the PB1 gene 

to the pandemic virus as well (153). Interestingly, the emergence of this new 

pandemic virus eradicated the epidemic H1N1 (12, 154). It is speculated that this may 

be due to cross-reactive antibodies against the group 1 conserved HA stalk, which 

served to lessen the severity of the pandemic infections while eradicating the 

epidemic strain (154). 

Eleven years later, the H2N2 was replaced by the emergence of an H3N2 

pandemic virus. First detected in Hong Kong, this new virus was found to be a 

reassortant between the current circulating H2N2 virus and an H3 virus from the 

avian reservoir. In addition to the H3 hemagglutinin segment, the pandemic virus also 

contained the avian PB1 segment (152, 153). As before, the emergence of the 

pandemic H3N2 coincided with the extinction of the epidemic strain (12, 154). 

The forth pandemic of the last century was not the result of a reassortment 

event, but was most likely due to accidental release. Oligonucleotide mapping of the 

1977 Russian H1N1 flu isolates revealed surprising similarities to isolates obtained in 

1950 but not to later isolates, suggesting that this virus remained in stasis for 27 years 

(155). Curiously, the emergence of a new subtype did not result in the extinction of 



 

 22 
 

the previously circulating strain as before. Instead, H3N2 and H1N1 viruses 

continued to co-circulate until the emergence of the next pandemic virus in 2009.  

The natural history of the 2009 swine-origin pandemic virus (S-OIV) is 

complex, and is the result of multiple reassortant events. Despite being of an H1N1 

subtype, little to no cross-reactivity had been observed with seasonal H1N1 viruses 

circulating since 1977 (156). H1N1 viruses became established in pig populations 

following the 1918 pandemic lineage and continued to circulate as “classical swine” 

viruses until the mid-1990s. In 1998, a triple reassortant (tr) event between csH1N1, 

human H3N2, and North American avian strains generated a trH3N2 virus. These 

viruses contained a triple reassortant internal gene (TRIG) cassette composed of avian 

PB2 and PA; human PB1; and swine NP, M, and NS genes that became prolific in 

swine. Further reassortment of the trH3N2 with csH1N1 generated trH1N1 and 

trH1N2 viruses, all with the conserved TRIG cassette. Finally, a subsequent 

reassortment event between a trH1N1 virus and a Eurasian swine H1N1 disrupted the 

TRIG cassette with donation of the NA and M from the Eurasian virus (157). This 

resulted in the 2009 pandemic virus. 

Despite its importance, the mechanism by which influenza viruses reassort 

and select progeny constellations is poorly understood. At its core, however, the 

process is predicated on the ability of two viruses to infect not only the same host, but 

also the same cell. Once inside, both viruses must be able to replicate and package 

their genomes into new virions for reassortment to occur. A recent study using two 

phenotypically identical yet genotypically distinct viruses demonstrated that, in the 

absence of selective pressures, reassortment occurs readily in vivo and can approach 
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mathematically expected frequencies (158). As expected, the frequency of 

reassortment increased with dose and decreased if the co-infection was delayed. 

Natural reassortment does not, however, occur under ideal conditions for both 

viruses. Reproductive capacity, tissue tropisms, infectious dose, and the time of co-

infection may vary significantly, thus reducing the probability of reassortment (158). 

Segment incompatibilities between viruses may even prohibit the production of 

specific constellations (159). While these factors are difficult to study in a laboratory 

setting, determining which reassortant strains are highly favored and the phenotype of 

these strains in the context of disease is of immense importance to human health. 

Co-infection of the same cell initially requires that both viruses recognize the 

sialic acid conformations expressed on the cellular membrane surface. While avian 

viruses recognize terminal sialic acids in an α-2,3 conformation and human viruses 

recognize those in an α-2,6 conformation, both conformations are expressed in 

varying proportions throughout many different tissue types in both avian species and 

in human airways (160, 161). Although it is these conditions under which viruses 

may move from the avian to the human reservoir, direct transmission between these 

reservoirs, as observed during the 1918 pandemic, is thought to rarely occur. Instead, 

exchange of viruses from the avian to the human reservoir is thought to most 

efficiently occur through intermediate hosts such as land-based poultry or swine. 

These hosts exhibit a strong overlap of both avian and human-like sialic acid 

receptors within their respiratory tracts, allowing viruses to adapt their sialic acid 

binding preferences to human-like receptors (162, 163).  
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2.2 Genomic packaging 

Once co-infection has occurred, and assuming that all 16 segments are 

replicated within the nucleus of the infected cell, reassortment can then take place as 

segments are packaged into newly formed, budding virions. In order for a single 

virion to be infectious, it must contain each of the eight segments. While packaging is 

known to occur, the mechanism by which segments are incorporated into budding 

virions is unknown. Random and selective mechanisms have been proposed to 

account for vRNP incorporation.  

The random model for vRNP incorporation suggests that a mechanism exists 

to bring each vRNP to the budding site, but that each is randomly incorporated into 

the virion. Evidence suggesting that segments may compete for incorporation serves 

to bolster this theory (164). Additionally, this may account for the low infectivity of 

influenza virus particles, in which the ratio of infectious to non-infectious particles 

has been measured at around 10% (165). While the probability of randomly 

incorporating eight distinct vRNPs into a virion is very low, the probability of 

forming infectious virus increases if additional segments are incorporated or if 

multiple defective yet complementary viruses bud and enter a new cell (166-168).  

Evidence for a selective mechanism that can discriminate vRNPs from one 

another for incorporation into new virions has grown significantly over the past 

decade. The initial evidence for this mechanism was gleaned from observations in 

which viral RNAs are present at roughly equal molar amounts within purified virions 

despite a disparity of species within the infected cell (4, 169, 170). Additionally, it 

was observed that defective interfering RNAs, composed of UTR and small amounts 
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of coding sequence, diminished the incorporation of progenitor, full-length RNAs 

(171). The identification of DI RNA species supported the idea that RNA within the 

coding sequence contained information required for packaging. Experiments followed 

to identify the minimal coding sequence in each segment that was sufficient to 

package a foreign gene into virus particles (172-177). While the precise mechanism 

remains unclear, these studies elucidated a platform upon which influenza viruses 

could differentiate segments from one another and package them into virions in a 

selective manner. 

Perhaps the best evidence for the selective incorporation theory has emerged 

in recent years using both thin-layer electron micrographs depicting the internal core 

of the virion and single-molecule fluorescent in situ hybridization (smFISH). First, by 

sectioning the budding surface, eight electron-dense regions were identified within 

the majority of particles, which are hypothesized to be the eight vRNPs (21). Given 

that the majority of particles in the study contained no more than eight segments, a 

non-selective mechanism does not account for the observed infectivity of influenza 

virus particles. This study does not, however, show that each vRNP is a separate 

segment. Comparing serial sections suggested that the internal core of the virion is 

composed of parallel rod-like structures, some of which are of different lengths, but 

the resolution was insufficient to show the precise lengths of each segment (21). 

When the internal core of the virion was observed with electron tomography or 

scanning transmission EM tomography, the length of each vRNP was measured with 

more accuracy to show that one of each segment is likely to reside in the virion, 

lending even further credence to a selective mechanism for vRNP incorporation (178, 



 

 26 
 

179). The most conclusive evidence for this model was gathered by Chou et al. by 

immobilizing single viruses on a glass slide and the genetic content interrogated with 

RNA-hybridization probes to each segment. It was found that the majority of viruses 

contained a single copy of each segment, an observation that cannot be accounted for 

by a random incorporative mechanism (180). 

While the growing body of evidence supports a selective model, the specific 

mechanism remains unknown. Direct RNA-RNA interactions may play a role in 

segment discrimination, but no structures and few sequences has been identified as 

playing a crucial role, apart from the relatively large packaging signals on each 

segment (181). Mutational analysis of the identified packaging signal regions 

suggests that specific residues, and not the entire region, may play a role in the 

incorporation of the mutated segment as well as other segments within the virion, 

indicating that there is cross talk between the segments (182-185). 

The majority of work to identify packaging signals has been performed in 

model influenza viruses such as A/WSN/1933 (H1N1) or A/Puerto Rico/8/1934 

(H1N1). Both of these strains are lab adapted, and may not be representative of 

environmental strains. The regions that comprise the identified packaging signals may 

be relatively conserved among circulating viruses, especially for many of the internal 

genes. This may not be the case, however, for the highly divergent viruses or the HA 

and NA surface genes, which are under strong immunological pressure, or within NS, 

in which multiple clades have diverged (181). Studies investigating the role of 

packaging signals in the context of reassortment are therefore limited, and it is 

unclear whether the mechanism is conserved among all influenza viruses. To answer 
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this question in part, a recent study identified two highly divergent viruses, one from 

a human H3N2 and the other from an avian H5N2, whose isolation dates were nearly 

a decade apart (186). It was found that the M segment for both viruses could drive 

incorporation of their cognate HA. Additionally, when chimeric HA proteins were 

constructed using identified HA packaging signals from the other virus, HA 

incorporation could be rescued with a mismatched M gene. The study went on to test 

the putative packaging signals found in the M gene and similarly observed that the 

incorporation of a mismatched HA could be rescued in the presence of a chimeric M 

segment. The authors speculated that selection of HA is driven by the packaging 

signals present in both HA and M, but it is impossible to attribute the selection 

primarily to RNA sequence when the protein sequence is divergent between the two 

viruses present in these regions. This study highlights a difficulty encountered by all 

reassortment studies, especially when considering RNA packaging: the balance 

between investigating relevant strains and using well studied models. While regions 

required for packaging have been studied for a select number of highly adapted 

strains, it is impossible to know if the underlying mechanism is conserved in other 

relevant models. Despite these difficulties, it is upon the platform of packaging in 

which genetic reassortment between to viruses occurs. Further understanding of this 

process may make it possible to predict the outcome of co-infection, and aid in 

preparedness prior to the emergence of a pandemic virus.  

2.3 Laboratory methods to generate reassortant viruses 

Perhaps the most difficult barrier to studying reassortment under a lab setting 

is the number of genetically distinct progeny that are possible upon the mixing of two 
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viruses. Prior to the advent of influenza reverse genetics, reassortment, classically 

known as recombination, was achieved by co-infection and yielded a high frequency 

of reassortant viruses (187-189). Isolating specific genotypes could, however, be 

cumbersome. Live-attenuated and inactivated vaccine viruses are still made through 

classical reassortment by co-infection with a wild-type virus and a “master donor” 

strain, typically a cold-adapted A/Ann Arbor/6/60 (H2N2) virus or a high-yielding 

strain such as A/Puerto Rico/8/1934 (H1N1) (190). Selection of HA and NA genes 

from the non-donor strain can then be accomplished by supplementing growth media 

with sera directed against the donor strain (191). Further analysis is required to 

identify allelic frequencies of each segment population and the genetic constellation 

of individual viruses resulting from the co-infection. 

Co-infection remains a useful tool for studying reassortment in vitro and in 

vivo, and has many advantages over other models. Co-infection with two viruses 

ensures that each set of eight genes is appropriately represented and introduced into 

infected cells. Entry into target cells, nuclear replication, and export for packaging 

occurs naturally since the vRNPs are already packaged in a virion, and replication 

only depends on the susceptibility of the target cell to the virus. The degree and 

temporal separation of co-infection can also be controlled to more closely mimic a 

natural co-infection. Studies have shown that reassortment depends heavily on both 

factors—decreasing with the disparity of virus inoculates and increasing with a larger 

interval between co-infection times (158). 

An alternative approach has become available in recent years with the advent 

of reverse genetic systems for influenza viruses. Each of the eight genes can be 



 

 29 
 

cloned out of the virus and into a reverse genetic vector. The virus can then be 

reconstituted by transfection of these eight plasmids into an appropriate cell line (68, 

192-194). With each viral segment encoded in a separate plasmid, homogenous 

populations of custom reassortant strains can be generated and grown by mixing 

plasmids from different viruses without the need to purify and screen many colonies 

for the constellation of interest. Many studies have used reverse genetics to identify 

potentially significant reassortants, but the large number of possible combinations 

that exist between two viruses makes such an approach very difficult and time 

consuming if all 254 reassortant strains are to be generated. By constraining the 

parameters of the study, for example by considering only reassortants containing one 

HA, the number of viruses required to be produced for a study can be significantly 

decreased (195). While generating all possible combinations resulting from a 

reassortment event between two viruses may be the most straightforward method to 

isolate different constellations, this relies heavily on the efficiency of virus rescue 

from plasmids and growth in primarily MDCK cells. Furthermore, these studies 

generally identify high growth constellations in vitro, which may not be 

representative of viral fitness in vivo. Regardless of the drawbacks, these “brute 

force” methods have contributed greatly to pandemic preparedness by showing that 

reassortment alone may be insufficient to produce a pandemic-like virus in the 

absence of host adaptation (99, 195, 196). 

Transfection-based inoculation (TBI) is a hybrid of the two approaches, in 

which reverse genetic plasmids encoding genes from multiple viruses are transfected 

into permissible cells. This method allows for the complex selection of reassortant 
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viruses to occur in a manner similar to co-infection but also permits stoichiometric 

control of each gene segment. Additionally, TBI has been applied to both in vitro and 

in vivo selection models for the purpose of identifying biologically relevant 

reassortants that could either increase the pathogenicity of circulating viruses or 

introduce viruses from the avian reservoir to humans (197, 198). 

2.4 Pandemic preparedness 

Given that reassortant viruses have caused the majority of pandemics in the 

past century, much attention has recently been given to pandemic preparedness and 

the identification of biologically significant reassortants prior to the emergence of 

those strains. Although the H1, H2, and H3 subtypes are the only ones known to 

cause human pandemics, other subtypes have been identified as having pandemic 

potential—most notably H5, H7, and H9 subtypes that have been able to cross species 

barriers and infect humans—but lack the ability for sustained transmission. It is also 

speculated that a new pandemic will most likely arise from a reassortment of a 

circulating strain with one of these potentially pandemic strains, as was the case with 

the 1957 and 1968 pandemics. For this reason, most studies involving co-infection 

focus on reassortment between these H5, H7, and H9 subtypes and current circulating 

strains.  

Interest in the pandemic potential of HPAI H5N1 viruses, which are H9N2 

reassortants themselves, has followed the 1997 outbreak in China that produced 18 

reported infections and 6 fatalities (199, 200). The mortality associated with these 

viruses was not isolated to the outbreak; since 2003 alone, there have been 648 

confirmed human cases from H5N1 with 384 deaths (201). Although the virus infects 
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humans and is capable of causing severe disease, respiratory droplet (aerosol) 

transmission from human to human contacts has not been observed. In order to 

identify whether reassortments between a HPAI H5N1 and a prototypical H3N2 were 

genetically compatible and could produce reassortants capable of efficient respiratory 

droplet transmission, studies were performed in which some or all possible H5N1 

constellational combinations were generated by reverse genetics. Although 

transmission studies in ferrets failed to identify transmissible constellations with wild-

type genes, it was found that there is a high degree of genetic compatibility between 

genes of the two subtypes (99, 195). Furthermore, many constellations exhibited 

highly virulent phenotypes in the mouse pathogenicity model, which further 

underscored the need to identify potentially pandemic mutations or reassortants from 

this subtype (195). Despite the effort invested to produce custom constellations, 

transmissible H5N1 reassortants were not identified. Additionally, testing the 

transmissibility of each constellation in in vivo transmission models, such as the ferret 

or guinea pig, would be cost prohibitive. Whether a constellation exists that would 

confer a transmissible phenotype to an H5N1 virus remains unknown. 

Since their emergence, H5N1 viruses have diversified into many different 

clades and subclades that are not necessarily antigenically cross-reactive with one 

another (202). Although previous studies have been unable to identify transmissible 

viruses within this subtype, two recent studies found that a transmissible phenotype 

can be achieved with mutations alone or in combination with reassortment in clade 1 

or clade 2.3.2 viruses (14, 15). The reassortment study used only a single 

constellation to test for transmission, and it is possible that many others could also 
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result in a transmissible phenotype between these two viruses. Given the great 

diversity between the clades, these studies highlight the need to continue research in 

H5N1 pandemic preparedness in order to identify the features that may contribute to 

transmissible viruses, and from which clades any potentially pandemic viruses may 

arise. 

 Although not as pathogenic as some of the H5N1 HPAI viruses, some H9N2 

viruses have transmitted to humans, raising the possibility that these strains may 

become pandemic (203-205). In agreement with reported human cases, a panel of 

H9N2 viruses was observed to replicate in directly inoculated animals with a subset 

transmitting to direct contact animals. Although no transmission was observed in the 

respiratory contact animals, directed reassortment of an H9N2 virus with the internal 

genes of a seasonal, human H3N2 was shown to increase transmission to direct 

contact animals, highlighting an advantage to the virus of reassortment (196). 

Respiratory droplet transmission was only observed with this reassortant virus after 

serial passage and adaptation in the ferret model (13). With only a single gene 

constellation being tested in this study, however, it is important to note that other 

constellations could contribute to a transmissible phenotype as well. When the 

transmissible H9N2 surface genes were individually tested on the H1N1 pandemic 

backbone, an alternative constellation comprised of the transmissible H9 HA on an 

otherwise pandemic backbone was shown to be more transmissible than a virus with 

the H9N2 HA and NA on an otherwise pandemic backbone (206). Furthermore, when 

complex mixtures of reassortant viruses were challenged against one another through 

TBI, the H9 HA and pandemic NA pairing remained consistent in in vivo models, 
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suggesting that this combination is highly favored (197). While the seasonal and 

pandemic studies are not directly comparable, they suggest that the use of complex 

virus mixtures instead of a custom made constellation may produce a more 

transmissible virus. 

This last study also highlighted an important distinction between in vitro and 

in vivo reassortment models. The same mixture that was used for constellation 

selection in the in vivo ferret model was also used to purify constellations by limiting 

dilutions in vitro. While both models selected for pandemic NP and NA genes, 

selection for PB2, PB1, PA, and NS was inconsistent (197). These data strongly 

suggest that different selective pressures are present in the in vivo and in vitro models, 

and calls into question the biological relevance of in vitro selection models used for 

the combinatorial, “brute force” methods of generating virus constellations in the 

laboratory setting. 

The potential risk of an H7 pandemic virus has increased significantly since 

2013 with the avian H7N9 outbreak in China. Similarly to the HPAI H5N1 viruses 

isolated since 1997, the H7N9 is a reassortant with the six internal genes derived from 

an avian H9N2 virus (207). Since its introduction into poultry, 137 people have been 

infected with 45 deaths as of October 2013 (208, 209). Although the H7N9 outbreak 

has garnered significant attention, these are not the first cases of human infection with 

H7 viruses. Some H7 viruses have acquired multibasic cleavage sites similar to those 

found in the HPAI and are highly pathogenic in poultry species (145). During some 

poultry outbreaks, H7 viruses have been known to infect humans. This was the case 

during an H7N7 outbreak in the Netherlands in 2003 in which 86 people were 
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confirmed to have been infected. Of these, a single person succumbed to acute 

respiratory distress syndrome and died. Although sustained transmission of this virus 

was not observed, transmission to three family members of infected individuals was 

observed to have occurred (210, 211). Zoonotic transmission of an HPAI H7N3 virus 

to humans during an outbreak in British Columbia has also been observed. In this 

case, there was neither contact transmission nor deaths associated with infection 

(212). Whether reassortment with circulating human or swine strains could increase 

the transmissibility of these viruses in humans is unknown. Nevertheless, viruses 

within this subtype have been identified as having pandemic potential and pose a 

significant threat to human health.  

If past influenza pandemics hold any clues for future outbreaks, they are that 

reassortment with current circulating strains is most likely to contribute to the 

generation of influenza viruses with pandemic potential. Efficient and reproducible 

methods of generating these reassortants in biologically relevant models are required 

to identify these viruses. The studies herein examine reassortment from co-infection 

of seasonal strains with an emerging pandemic virus to produce complex populations 

of viral constellations. Population dynamics and constellation selection are then 

observed in a relevant animal model without artificial selection in vitro. Using these 

findings, the genetic elements required for gene selection are identified within a 

model segment observed to be under strong purifying selection. Using competitive 

mixture modes, two genes have been identified that promote selection of the entire 

model segment in the competition assays. Additionally, specific mutations in one of 

the genes were found to be sufficient to promote segment selection. Further analysis 
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of each gene within the model segment suggests possible mechanisms behind the 

fitness of the pandemic segment. 
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Chapter 3: In vivo selection of H1N2 influenza virus 
reassortants in the ferret model 

3.1 Introduction 

Influenza A viruses (IAV) belong to the family Orthomyxoviridae, the 

genomes of whichare composed of eight, negative-sense, single-stranded RNA 

segments, all of which must be packaged into budding virions to form an infectious 

particle (145). IAVs have multiple strategies to increase their genetic diversity. For 

one, the error-prone viral RNA polymerase can introduce mutations into the viral 

genome through nucleotide misincorporation. While the majority of mutations are 

expected to be deleterious, some may provide the virus with an adaptive advantage. 

This process of drift evolution is the driving force behind the selection of immune 

escape mutants. As protective humoral responses are generally directed against the 

HA glycoprotein, most of the variability observed in influenza viruses is within the 

antigenic sites of this protein. Due to their segmented genomes, the genetic diversity 

of these viruses may also be increased through reassortment, in which multiple 

viruses infecting the same cell exchange their genomic content. 

While the rapid antigenic drift of influenza viruses necessitates the frequent 

reformulation of vaccines, partial cross-reactivity and protection can be observed 

between adjacent formulations and seasons. Reassortment events, however, have 

historically introduced antigenically distinct subtypes for which there has been little 

cross protection from contemporary vaccine formulations. In 1957, reassortment 

between an avian H2N2 and the circulating H1N1 virus precipitated an H2N2 

pandemic. The virus underwent further reassortment with an avian H3 virus to 

generate the H3N2 pandemic in 1968; in both cases, the avian PB1 gene segment was 
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donated to the pandemic virus. The swine-origin 2009 pandemic H1N1 virus 

(H1N1pdm) evolved via a complex series of reassortment events between classical 

swine H1N1, human H3N2 (H3N2s), and avian influenza viruses that is thought to 

have occurred in swine approximately 15 years prior to the outbreak in humans. In 

each of these three cases, reassortment led to the generation, selection, and 

establishment of viruses with internal gene cassettes containing segments from 

previously circulating viruses, indicating a contribution of these segments to viral 

fitness. 

Reverse genetics has enabled the investigation of many, if not all, possible 

gene constellations existing between two viruses, but the combinatorial problem 

(28=256) of generating and characterizing each arrangement makes this approach 

heavily time consuming. Nevertheless, these studies usefully indicate that particular 

constellations may not be favored in vitro. Of more complex approaches, some have 

investigated reassortants arising from the transfection of multiple reverse genetic 

virus sets, while others have used co-infection to allow the viruses to reassort in a 

more natural way in vitro.  While the significance of these experiments should not be 

understated, selection may largely depend on the ability of specific constellations to 

rescue and replicate in vitro and may not mimic the reassortment capacity and fitness 

of viruses in vivo.   

With the rapid spread of the 2009 pandemic virus and its continual co-

circulation and reassortment with seasonal human and swine strains, I investigated 

whether the ferret could be used to recapitulate reassortment events similar to those 

occurring in nature. Here, the reassortment potential arising from direct co-infection 
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of wild-type and reverse genetic reassortant viruses was examined. I report the 

generation of reassortant viruses between the 2009 pandemic and seasonal H3N2 

viruses in the ferret model through co-infection and serial passage. 
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3.2 Materials and methods 

 
Cells and Viruses 
 
MDCK cells were cultured in Dulbecco’s modified Eagle medium (Sigma-Aldrich, 

St. Louis, MO), supplemented with 25 mM HEPES (Sigma-Aldrich), 2 mM 

glutamine (Sigma-Aldrich), 10 mM HEPES (Invitrogen, Grand Island, NY), and 10% 

fetal bovine serum (FBS; Sigma-Aldrich), and were grown at 37 °C under 5% CO2. 

HEK 293T cells were cultured in Opti-MEM (Sigma-Aldrich) with 10% FBS and 

grown at 37 °C under 5% CO2. Viruses were titrated in tissue culture by endpoint 

dilution assays using the Reed-Muench method in Opti-MEM at 35°C (213). Viruses 

containing genes from A/Memphis/14/98 (H3N2) and A/Netherlands/602/2009 

(H1N1pdm) were generated as previously reported (193). Virus stocks were produced 

in MDCK cells and sequenced with BigDye Terminator, version 3.1, Cycle 

Sequencing Kit 1 on a 3500XL Genetic Analyzer (Applied Biosystems, Carlsbad, 

CA) to confirm the gene constellations. 

Porcine Plasmid and Bacmid Construction 

The porcine RNA polymerase I promoter sequence was synthetically constructed 

from published sequence through Genetec and flanked with convenient restriction 

sites on the 5’ and 3’ ends, respectively (See Appendix Figure S1). The synthetic 

construct was subcloned into pDP-GLuc (NS) by digest with NotI and BstEII 

restriction enzymes to replace the human RNA polymerase I promoter to make 

pPIGv-GLuc(NS). 

Growth Kinetics 
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MDCK cells were seeded at 8x105 cells per well in a 6-well plate. Viruses were 

diluted to 8x102 TCID50/mL in media and overlaid onto cells. After 1 hour at 37˚C, 

the inoculum was removed, and the cells washed three times with PBS. 

Animal Studies 
 
Prior to infection, animals were confirmed negative for influenza virus by 

nucleoprotein (NP)-blocking enzyme-linked immunosorbent assay (ELISA; 

Synbiotics Co., San Diego, CA). Infection and transmission studies were carried out 

as previously described (196). Briefly, 5- to 7-month-old ferrets were inoculated 

intranasally with 1x106 50% tissue culture infective doses (TCID50) of each surface 

reassortant virus in 500 µl and monitored for temperature and body weight daily. 

Nasal washes were performed daily, and infection was monitored using a Flu Detect 

Antigen Capture Test (Synbiotics Co.). Nasal turbinate, trachea, and lung tissues were 

harvested from two co-infected animals at 4 days postinfection (dpi). Tissues were 

homogenized in phosphate-buffered saline (PBS) (1:1, wt/vol) on a TissueLyser LT 

(Qiagen, Gaithersburg, MD). Additional samples were cut into 5-µm-thick sections 

and processed by Histoserv, Inc. (Germantown, MD), using a standard hematoxylin 

and eosin (H&E) staining protocol. During passages 2 to 7, ferrets for each lineage 

were housed in individual isolators and sampled daily for 5 days. 

Nasal washes from 3 dpi of each passage were diluted 1:5 in PBS in a total volume of 

500 µl and used to infect subsequent ferrets as before. For transmission studies, 

ferrets (n=2) were again inoculated intranasally with 1x106 TCID50 of virus in 500 µl. 

At 1 dpi, naïve animals (n=2 for each group) were placed in direct contact (DC) or 
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barrier-separated respiratory droplet contact (RC) with the infected animals. Animal 

studies were performed under protocols approved by the University of Maryland 

Institutional Animal Care and Use Committee. 

Quantitative RT-PCR 

Viral RNA was extracted from infected ferret nasal washes with a MagnaPure RNA 

HP II kit (Roche, Indianapolis, IN), per the manufacturer’s recommendations. 

Reverse transcription was performed with avian myeloblastosis virus (AMV) reverse 

transcriptase (Promega, Madison, WI). Sample cDNAs were diluted 1:5 in EB buffer, 

and 2 µL of each were used for quantification. Sixteen minor groove binder (MGB) 

TaqMan assays were designed for each segment of the donor viruses using AlleleID 7 

(Premier Biosoft, Palo Alto, CA) (214). Primers (Invitrogen) and TaqMan MGB 

probes (Applied Biosystems) were ordered from their respective manufacturers. 

Quantitative real-time PCR for each segment was performed on a LightCycler 480 

(Roche) with the 2X TaqMan Universal PCR Master Mix (Applied Biosystems) with 

1µM each primer and 250 nM probe in a final volume of 20µL (Table S4). Samples 

were heated at 50˚C for 2 min and then 95˚C for 10 min. Cycling proceeded as 

follows: 95˚C for 15 secs, 55˚C for 15 secs, 60˚C for 1 min, 72˚C for 1 sec for 45 

cycles. Allelic copy numbers for either the seasonal or pandemic segment was 

determined by comparison to a plasmid based standard curve, which was generated 

for each assay.  
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3.3 Results 

3.3.1 Reassortant influenza viruses carrying seasonal H3N2 and H1N1pdm gene 

segments replicate and transmit in ferrets 

The pandemic H1N1 virus spread rapidly following its initial identification in 

mid-2009 and co-circulated with both seasonal H1N1 and seasonal H3N2 strains 

already present in the human population (Figure 3.1). The emergence of pandemic 

viruses in the 20th century was generally followed by reassortment with, and 

extinction of, the previously circulating strains (1957 and 1968), or co-circulation 

with these strains (1977).  To determine if the H1N1pdm virus had a biological 

advantage over either of the seasonal strains or gained such a phenotype by 

reassortment with them, ferrets were co-infected with the H1N1pdm 

(A/California/04/2009) virus and one of two seasonal strains (A/Brisbane/59/2007 

(H1N1) or A/Brisbane/10/2007 (H3N2)). At one day post infection, naïve contacts 

were introduced in both direct contact (DC) and barrier separated (aerosol contact, 

AC) to the infected animals. All cohorts (H1N1s::H1N1pdm, H3N2s::H1N1pdm) of 

infected, DC (Figure 3.2: A and B) and AC (Figure 3.2: C and D) animals shed virus 

for 5 to 7 days. Viral RNA from the directly infected and respiratory droplet contact 

animals was purified from ferret nasal washes on the first day and final day of 

shedding, respectively. Segment and virus specific primers for RT-PCR were then 

designed to amplify a region of one gene from a single virus in the co-infection pair. 

This was done for all 16 pairings (H1N1s vs H1N1pdm and H3N2s vs H1N1pdm). 

RT-PCR performed on the directly infected animals shows the presence of all 16 

segments, 8 from each virus, indicating that these animals were successfully co- 
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Figure 1.1: Surveillance data before and after the 2009 H1N1pdm outbreak. 
Seasonal H1N1 (Blue) dominance is observed prior to the outbreak followed by a 
period of co-circulation with the pandemic virus (orange) and extinction after the 
outbreak. The outbreak allowed for an expansion of the seasonal H3N2 virus (red), 
which was lost towards the end of the season. FluView, CDC. 
 



 

 44 
 

  

 
Figure 3.2: Transmission of seasonal and pandemic viruses following co-infection. 
A and B) Virus titers from directly inoculated (left) and direct contact (right) 
animals. C and D) Virus titers from respiratory droplet contact animals. A and C) 
Transmission groups of ferrets co-infected with the seasonal H1N1 and the 
pandemic H1N1. B and D) Transmission groups of ferrets co-infected with the 
seasonal H3N2 and the pandemic H1N1. N=2. 
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infected (Figure 3.3: C and F). Using the same method, the genetic composition of 

viruses shed from the respiratory droplet contacts was investigated to identify the 

most fit virus populations arising from co-infection. All animals in each virus pairing  

yielded the same result with a fully pandemic virus transmitting to respiratory droplet 

contacts preferentially to either seasonal or reassortment thereof (Figure 3.3: A,B and 

D,F). These results indicate that the pandemic virus has an apparent biological 

advantage over either of the seasonal strains used in this study in the ferret model. 

Additionally, the absence of seasonal segments in the respiratory droplet contacts 

suggests either a biological disadvantage to such reassortments or a limitation in the 

methods used to identify them. Variations in tissue and cell tropisms between the two 

strains may preclude reassortment. Reassortants arising from a co-infected cell are 

also expected to be in the minority compared to the inoculums. A moderate increase 

in fitness gained by reassortment may not be sufficient to overcome the dose and 

temporal advantage of the wild-type viruses to transmission.  

Despite these observations, reassortment strains have sporadically been 

identified between viruses of the pandemic lineage and multiple others, mainly 

classical swine H1N1 and triple-reassortant swine H3N2 in swine. To reconcile these 

observations and our own reverse genetics were used to create recombinant 2:6 

influenza viruses carrying two surface gene segments from one strain and six internal 

gene segments from another strain. To this end, a virus carrying the surface gene 

segments from the seasonal A/Memphis/14/98 (H3N2) strain and the six internal gene 

segments from the pandemic A/Netherlands/602/09 (H1N1pdm) was generated. In 

addition, a second virus carrying the H1N1pdm surface genes and the  
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Figure 3.3: RT-PCR of viruses in respiratory droplet contacts for nasal wash 
genotyping. Genetic composition of respiratory droplet contacts from the A and B) 
H1N1s::H1N1pdm and D and E) H3N2s::H1N1pdm co-infections. C and F) 
Genetic composition of the directly infected animals on 1dpi, respectively. (a) 
denotes non-specific binding confirmed by sequencing the PCR product to 
eliminate suspicion of reassortment. 
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internal gene segments of the H3N2s using the strains mentioned above was made. 

These viruses are referred to as 2M98:6pdm and 2pdm:6M98, respectively (Figure 

3.4). 

The wild-type and reassortant viruses were then compared in a multiple-step 

infection cycle in vitro. MDCK cells were infected at a low multiplicity of infection 

(MOI of 0.001). While the wild-type H3N2s grew to significantly higher titers than 

the H1N1pdm virus, there was no discernible difference in peak titers (106.9 to 107.4 

TCID50/ml) between the reassortant 2M98:6pdm and 2pdm:6M98 viruses. 

Interestingly, the initial growth kinetics of each reassortant virus mimicked that of the 

donor strain from which the internal genes were derived (Figure 3.4). 

In order to test whether these viruses would replicate and transmit efficiently 

in ferrets, naïve animals were infected with 1 × 106 TCID50 of either reassortant. At 1 

dpi, additional animals were introduced in both direct and barrier-separated contact 

with the infected animal (13). Nasal washes were collected daily starting at 1 dpi,  

and sampling continued until the animals were negative by Flu Detect for 2 days. 

Directly infected animals shed for 5 to 6 days and transmitted to both direct contact 

and respiratory droplet contact animals equally well, suggesting no growth 

impairment of either virus in ferrets. Interestingly, transmission to respiratory droplet 

contact animals occurred more consistently with the 2M98:6pdm virus than with 

2pdm:6M98 (Fig. 1.5A and B). 
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Figure 1.4: In vitro and in vivo characterization of parental viruses compared to 2:6 
reassortants. A) Schematic diagram of 2:6 surface reassortant viruses. Black and 
white boxes indicate segments contributed from A/Netherlands/602/09 (pH1N1) and 
A/Memphis/14/98 (H3N2s), respectively. B) Multistep growth kinetics in infected 
MDCK cells (MOI=0.001) followed over time.  

* 
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Figure 1.5: Transmission of parental 2:6 reassortant viruses. Ferrets (n=2/virus) were 
inoculated (Inf) with 1x106 TCID50

 of either 2M98:6NL602 (H3N2) (A) or 2NL602:6M98 
(pH1N1) (B). Direct contact (DC) and respiratory droplet contact (RC) animals (n=2/virus) 
were introduced at 24 hpi. Each curve represents a single ferret and its levels of virus 
shedding in nasal washes. 
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3.3.2 Selection of an H1N2 reassortant virus after serial passage in ferrets 

 

To simulate a natural co-infection, naïve ferrets (n = 6) were inoculated with a 

mixture containing 1 × 106 TCID50 of each surface reassortant virus. Sampling was 

performed as before. Although all animals shed virus for 5 to 6 days following 

infection, only moderate viral titers were observed in the nasal washes. To confirm 

that the ferrets were indeed infected with both viruses, sera were collected at 14 dpi 

and assayed for inhibitory antibodies against both donor hemagglutinin genes. While 

all animals seroconverted to both strains, each animal had consistently higher titers 

against the pandemic surface reassortant virus (2pdm:6M98) (Table S1). Whether this 

indicates that the 2pdm:6M98 pandemic reassortant has a replicative advantage or 

that it is simply more immunogenic is unknown. Viral RNA was then isolated from 

three of the infected animals at 3 dpi and genotyped with quantitative real-time 

reverse transcription-PCR (rRT-PCR). Importantly, genomic RNA for all 16 

segments was isolated from each animal tested (Figure 3.6). Taken together, these 

data indicate that the co-infection was successful and both reassortant viruses were 

replicating in the infected animals. 

As reassortment events occur in single cells within the infected host, the initial 

progeny resulting from an event may not represent a significant proportion of the total 

virus population, regardless of the fitness of the progeny relative to that of the 

parental viruses. We therefore reasoned that transmission could impose an 

unreasonably high selective barrier to small but biologically relevant initial 

populations of reassortant viruses. To that end, virus populations from the three  
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Figure 3.6: Passage schema and allele quantification over passage. A) Schema for passage 
and genotyping of co-infected nasal washes. Following infection, ferrets were sampled 
until 5 dpi. Nasal washes from 3 dpi were used to infect the subsequent passage. Animals 
comprising lineages A, B, and C were kept separate throughout the course of the 
experiment. B) Viral RNA from lineages A, B and C was purified from ferret nasal 
washes at 3 dpi from passage 1, 3, 5, and 7. Each of 8 segments from the 2 parental 
viruses was quantified by real-time RT-PCR with segment and virus specific Taqman 
MGB assays. The identification number for each ferret (F) is provided. Black bars 
represent relative amounts of pH1N1-origin copies for each particular segment, whereas 
white bars represent relative amounts of H3N2-origin copies for the same segment. 
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genotyped nasal washes were serially and independently passaged in ferrets directly 

from nasal washes of the preceding passage to create three lineages (A, B, and C) of 

passaged viruses (Figure 3.6A). This allowed for multiple rounds of replication, 

reassortment, and selection within the ferret based on constellation fitness without the 

loss of emerging and potentially better-fit constellations. Animals in each passage 

were infected with nasal washes (3 dpi) from the previous passage, housed in separate 

isolators, and sampled independently until 5 dpi. After 7 passages for each lineage 

had been completed, viral RNA from passages 3, 5, and 7 was obtained for further 

study (Figure 3.6B). Each allele for the 8 gene segments from the selected passages 

was quantified by real-time PCR to determine the ratio of the alleles in each. While 

both alleles for each segment were present in passage 1, all eight gene segments 

resolved to a single dominant allele by passage 7 (≥90%), with the extinction of 

several alleles below limits of detection (Figure 3.6B). The dominant genotype of the 

virus population at passage 7 was unique from both parental constellations. 

Moreover, all three lineages resolved to the same genotype, incorporating seasonal-

origin PB1 and neuraminidase (NA) gene segments in an otherwise pandemic virus 

constellation despite being passaged independently from one another (Table S2). 
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3.3.3 Molecular changes associated with emergence of the dominant H1N2 

reassortant viruses 

 
To determine if the selection of an H1N2 virus was significantly favored, the 

dominant alleles of the passage 7 viruses were sequenced. The consensus sequences 

for all genes except HA remained unchanged after 7 serial passages in ferrets. The 

consensus sequences for HA, however, revealed mutations unique to each of the 

lineages whose emergence could be traced back to earlier passages within that lineage 

(Table S3). These results indicate that the H1N2 reassortant populations arose 

independently and consistently in each of the three lineages. 

While endpoint genotyping of the populations selected in vivo at the end of 

multiple passages describes the most “fit” constellations to arise from co-infection, it 

yields little information on the population dynamics and selective pressures involved 

in reaching that endpoint. We therefore sought to examine segment fitness as a 

function of passage. While the majority of genes gradually resolved to the dominant 

alleles between passages 1 and 7, strong selection was observed for the seasonal 

neuraminidase and pandemic matrix gene segments. The seasonal neuraminidase 

accounted for 96% (A), 100% (B), and 99% (C) of segment 6 present in virus  
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Figure 7: Virus shed into ferret nasal washes over passage. Ferret nasal washes 
from each lineage at 2 dpi are shown, and were generally representative of peak 
viral shedding for each passage. 
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populations at passage 3, while the pandemic matrix accounted for 94% (A), 100% 

(B), and 97% (C) of segment 7 present in the same passage. Although the seasonal-

origin PB1 gene segment appears to be the dominant species in passage 7, its 

accumulation is not marked with a rapid extinction of the alternative allele (Figure 

3.6B). A trend for an increase in infectivity was also observed during passage, 

concurrent with segment resolution (Figure 3.7). Despite a large initial infectious 

dose in passage 1, peak virus titers measured at 2 dpi remained low relative to levels 

at subsequent passages. While the infectious doses for passages 2 through 7 were 

generally 10- to 100-fold lower than the initial inoculant, peak shedding generally 

increased 100-fold over passage 1. Altogether, these results suggest strong selection 

for virus constellations and/or mutations that favor increased growth within the host. 
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3.3.4 Airborne transmission of the H1N2 reassortant virus 

 
As both wild-type constellations have been shown to transmit efficiently in 

ferrets via respiratory droplets to contact animals (20, 21), we sought to determine 

whether serial passage without a transmission barrier resulted in selection for high-

growth constellations to the detriment of transmissible species. To that end, two 

groups of ferrets were inoculated with passage 7 viruses. Lineages A and C were 

combined because rRT-PCR results determined that they were of similar genetic 

compositions. At 1 dpi, additional animals were introduced in direct and respiratory 

contact as before. In both groups, lineages A/C and B, infected animals shed to high 

titers for 6 to 8 dpi. Additionally, both groups transmitted to direct as well as 

respiratory droplet contacts efficiently (Figure 3.8). 

At 4 dpi, lung, trachea, and nasal turbinate were collected for virus isolation 

and tissue pathology, and compared to samples from the initial co-infection 

experiment. Similar pathologies were observed in both co-infected and passage 7 

infected animals, with moderate edema of the tracheal epithelium and moderate 

inflammation and infiltration in lung tissues (Figure 3.9A to F). Additionally, general 

similarity was observed in titers obtained from nasal turbinate, trachea, and lung 

tissues between the co-infection and passage 7 samples (Figure 3.9G). 
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Figure 8: Transmission of Passage 7 viruses. Ferrets (blue lines, left panels) were 
inoculated with 1x106 TCID50 of either a passage 7 lineage A/C mixture (A) or 
lineage B (B). Direct contact (DC, red lines, left panels) and respiratory droplet 
contact animals (RC, black/grey lines, right panels) were introduced at 1 dpi. 
Levels of virus shedding in ferret nasal washes are shown over days post 
infections (left panels) or days post contact (right panels). 
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Figure 9 Tracheal and lung pathology in infected ferrets. Tracheal (A-C) and lung 
sections (D-F) from ferrets infected with P7 Lineage A/C mixture or P7 Lineage 
B, respectively. Tissues were collected at 4 dpi and treated for H&E staining as 
described in materials and methods. G) Virus titers in ferret nasal turbinates, 
tracheal, and lung tissues harvested from infected ferrets at 4 dpi. N=2. 
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3.4 Discussion 

A relevant animal model to study reassortment could potentially provide 

information on gene segments especially adept for selection during influenza 

pandemics concurrent with established circulating strains. This study details the co-

infection of ferrets to generate a reassortant virus with a constellation distinct from 

either parental strain. Real-time RT-PCR was used to determine the celerity of 

temporal selection on segment populations during a co-infection and subsequent 

serial passage. Our findings suggest not only that the ferret can be used to study 

reassortment but also that the ferret model can rapidly select for constellations 

currently being observed in nature. 

The ferret has long been used as an animal model to study influenza virus 

infection, pathogenesis, and transmission and may in many respects recapitulate 

disease phenotypes observed in human cases (16, 17). Additionally, many novel 

laboratory-generated constellations are often tested in ferrets as a marker for these 

traits (99, 159). However, how best to generate these constellations has been the 

subject of rigorous debate. While reassortment studies performed in vitro may shed 

light on constellations compatible for high replicative fitness, combinations well 

suited for replication and transmission in the host may be underrepresented or lost 

entirely in these systems. In vivo co-infection studies using relevant animal models 

have been limited. In one of the few examples, inoculation of ferrets with a highly 

pathogenic H5N1 virus and a seasonal H3N2 virus demonstrated that reassortment in 

vivo occurred, but the experiment was unable to produce constellations capable of 
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transmission in this model (159). Reassortment between two viruses relies on 

infection of not only the same host in general but also the same tissues and cells 

within that host. If cell tropisms between the viruses differ in the host, the probability 

of generating reassortant viruses is diminished regardless of constellation fitness in 

tissue culture. The selection of H1N2 viruses in the ferret suggests an overlap in 

tropisms between the seasonal and pandemic strains used in this study in a manner 

that is difficult to reproduce in vitro. 

Reassortment in swine between the 2009 pandemic virus and a variety of 

other strains has been widely reported. Most relevant to this study are those strains 

identified between the pandemic H1N1 and swine-lineage H3N2 strains in pigs that 

have shown sporadic transmission to humans. Of note are the H3N2 variant (H3N2v) 

lineage viruses, which have been shown to replicate efficiently and transmit in both 

swine and ferrets (215, 216). These strains specifically contain the pandemic M 

segment and the swine H3N2 lineage PB1 and N2, which were donated from an 

H3N2s virus in the 1990s. 

While many of the other pandemic reassortant isolates contain a wide variety 

of constellations, the vast majority have been found to harbor the pandemic M 

segment (215, 217-219). Rapid selection for the M segment of the pandemic virus, 

while encouraging for the model, was not entirely unexpected. In tissue culture 

selection systems, it has been shown that this M segment reproducibly outcompetes 

the seasonal H3N2 counterpart after serial passage through limiting dilutions (198). 

While the selection was not as strong, this system also identified seasonal PB1 and 

NA segments as genetically fit progeny resulting from a mixed transfection. This may 
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indicate a selective pressure in the host that is not present in vitro and may not be 

indicative of constellation compatibility. Other studies have shown through directed 

reassortment that the pandemic matrix segment increases contact transmission in 

cooperation with the pandemic N1 in swine and ferret models (220, 221). Speculation 

on the role of the pandemic M1 suggests a morphological advantage to aerosol 

transmission. Despite this, pandemic M reassortants were consistently generated by 

direct serial passage without the introduction of an aerosol transmission barrier, 

indicating that other interactions may play a significant role in the selection of this 

segment. While the precise mechanism of segment selection remains unclear, the 

advantages of the process to the virus are evident. The rapid selection of specific gene 

segments in our study highlights the utility of the ferret as an in vivo model to study 

the viral and host factors contributing to reassortment. In addition to other indicators, 

this model could also facilitate the risk assessment of potentially pandemic viruses. 
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Chapter 4: Role of the pandemic M1 and M2 genes in segment 
selection 
 

4.1 Introduction 

We and others have previously shown that the M gene from the 2009 swine-

origin pandemic virus is favored in reassortment upon co-infection with a 

prototypical seasonal H3N2 in the ferret, a model for human pathogenesis and 

transmission (198, 222). Others have shown that the pandemic M gene increases 

transmission in swine in cooperation with the neuraminidase gene (221). With the re-

introduction of the pandemic virus into swine, the pandemic M gene has been 

introduced into other influenza strains, most notably the H3N2v viruses (215). Given 

these observations, our current interest is in understanding the genetic basis for 

pandemic M gene selection during reassortment. 

The M segment encodes for at least two proteins. The first encodes for the M1 

viral capsid protein and is produced from the primary transcript. The second protein 

encodes for the M2 ion channel and is the product of mRNA splicing. Both genes are 

translated from the same start codon and share eight amino acids on their N-terminal 

end. There is an additional overlap of 42 nucleotides in each open reading frame after 

the M2 donor site before M1 is terminated. While strong selection was observed for 

the pandemic M segment in co-infection studies, the contribution of each gene 

encoded within that segment is unclear. 

While M1 has been reported to modulate the morphology and transmissibility 

of influenza viruses, little has been done to show which contributions, if any, M2 

makes to viral fitness in the context of transmission or reassortment. Here, the role of 
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the pandemic M1 and M2 in segment selection is investigated in the context of a co-

infection. I have found that both the pandemic M1 and M2 genes are independently 

sufficient to promote selection of the entire M segment in vitro and in vivo against a 

seasonal M segment. Single, pandemic-like mutations in the seasonal M2 gene were 

also found to promote selection of the entire segment in a competitive mixture against 

the wild-type seasonal M segment. Further examination of the pandemic M1 suggests 

that it may contribute to neuraminidase activity. As the pandemic M segment has 

been shown to increase the pathogenicity and transmissibility of reassortants in 

cooperation with NA, it is imperative for pandemic preparedness to understand the 

underlying mechanism by which this segment is selected for during reassortment. 
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4.2 Materials and methods 

Cell Culture and Virus Infection 

MDCK and PK(15) cells were cultured in Dulbecco’s modified Eagle medium 

(Sigma-Aldrich, St. Louis, MO) supplemented with 25 mM HEPES (Sigma-Aldrich), 

2 mM glutamine (Sigma-Aldrich), 10 mM HEPES (Invitrogen, Grand Island, NY), 

and 10% fetal bovine serum (FBS; Sigma-Aldrich) and were grown at 37 °C under 

5% CO2. HEK 293T cells were cultured in Opti-MEM (Sigma-Aldrich) 

supplemented with 10% FBS and 1% Antibiotic/Antimycotics solution 

(OptiMEM+AB, Sigma) and grown at 37 °C under 5% CO2. For co-infections, 

MDCK cells were seeded into 6-well plates at a density of 8x105 cells/well in Opti-

MEM+AB and incubated at 37˚C for 24 hours. Prior to infection, cells were washed 

with PBS in triplicate, and infected at 1x105 TCID50/virus in 1mL. For viral growth 

kinetics and limiting dilutions, 96-well plates were seeded at 2.4x104 cells/well in 

OptiMEM+AB and incubated at 37˚C for 24 hours. Serial, 10-fold dilutions were 

made in OptiMEM+AB. Of these, 200µL of each dilution were transferred to the 96-

well plate in quadruplicate. For each infection scheme, cells were incubated at 37˚C 

for 72 hours before the supernatant was harvested or assayed. 

Virus Rescue 

Transfections for virus rescue were performed in co-culture, either HEK293T/MDCK 

(4:1). Cells were seeded in DMEM in the presence of serum 24 hours prior to 

transfection. Transfection mixtures were generally prepared with 1µg 

DNA/plasmid/gene segment in OptiMEM and TransIT-LT1 (2µL/µg DNA, Mirus, 

Madison, WI) in a total volume of 200µL, and incubated for 30 minutes. For 
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example, 6µg of DNA was transfected for a plasmid encoding 6 reverse genetic 

cassettes. Media would be exchanged for 1mL OptiMEM+AB, and the transfection 

mixture would be added drop wise to each well. At 6 hours post transfection (hpt), the 

transfection mixture would be replaced with 1mL OptiMEM-AB. At 24 hpt, 2mL of 

OptiMEM-AB supplemented with 3µg TPCK-treated Trypsin (Worthington 

Biochemical, Lakewood, NJ) would be added to each well of the transfection. Unless 

otherwise noted, all transfections were incubated at 37˚C under 5% CO2. 

Ferret Co-infections 

Ferrets in this study were 8- to 10- months old, and obtained from Triple F 

Farms (Sayre, PA).  Animals were co-infected at 1x105 TCID50/virus in a total 

volume of 500µL. Nasal washes were performed daily, and infection was monitored 

using a Flu Detect Antigen Capture Test (Synbiotics Co.) until 3dpi. Nasal washes 

from 3 dpi of each passage were diluted 1:5 in PBS in a total volume of 500 µl and 

used to infect subsequent ferrets as before. For transmission studies, ferrets (n=2) 

were again inoculated intranasally with 1x106 TCID50 of virus in 500 µl. At 1 dpi, 

naïve animals (n=2 for each group) were placed in direct contact (DC) or barrier-

separated respiratory droplet contact (RC) with the infected animals. Animal studies 

were performed under protocols approved by the University of Maryland 

Institutional Animal Care and Use Committee. 

Sanger sequencing of M gene amplicons 

 RNA was isolated from 200µL tissue culture supernatant using the RNeasy 

isolation kit according to the manufacturer’s recommendations. Transcription of 

cDNA was performed using AMV reverse transcriptase (Promega) with 10µM Uni12 
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primer (AGCAAAAGCAGG) in a final volume of 20µL. The entire M segment was 

amplified using M-1F and M-1027R as previously described (223). PCR products 

were gel purified and sequenced using the BigDye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems). 

Deep Sequencing of M Gene Amplicons 

 RNA was isolated from ferret nasal washes and purified on the MagnaPure 

LC as before. Transcription of cDNA was performed with Superscript III Reverse 

Transcriptase using 10µM of primer M13-M 681F. A portion of the M gene then 

amplified with GoTaq 2X Green Master Mix (Promega) using 500nM barcoded 

primers Lib-L M13-GS Fwd and Lib-L M Rev (See Table S5). Cycling conditions 

were as follows: 95˚C for 2 mins, 35 x (95˚C for 20 secs, 56˚C for 15secs, 72˚C for 3 

mins), and 72˚C for 10 mins. The 316bp Amplicons were gel purified, and 340ng 

(1x1012 copies) of each was pooled together in a total volume of 10x(number of 

libraries) to a final concentration of 1x1011 copies/µL. The pooled library was diluted 

down to 1x106 copies/µL. An aliquot was heat denatured at 95˚C for 2 mins before 

being snap cooled on ice. A final volume of 20µL of the library was loaded onto 

DNA capture beads, 2 copies/bead. An emPCR was then prepared with the capture 

beads following the manufacturer’s recommendations in the emPCR Amplification 

Method Manual, Lib-L (Roche). Following the sequencing run, reads mapped against 

4 references: M98_WT (cgaatgggGgtgcagatgcaAcgattcaagtgaCccGctTgt), 

NL602_WT (cgaatgggAgtgcagatgcaGcgattcaagtgaTccTctCgt), M98-NL602 

(cgaatgggGgtgcagatgcaAcgattcaagtgaTccTctCgt), or NL602-M98 (cgaatgggAgtg 
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cagatgcaGcgattcaagtgaCccGctTgt). Percent composition for each sample was then 

determined from the output in the Reference Status file. 

Virus-based Neuraminidase Activity Assay 

 Neuraminidase activity assays were performed essentially as previously 

described with minor modifications (224). Briefly, 96-well plates were coated in 

fetuin (20µg/mL, Sigma-Aldrich, St. Louis, MO) in PBS, 100µL/well and incubated 

overnight at 4˚C. The following day, plates were blocked with PBST-BSA (PBS, 

0.05% Tween-20, 0.5% BSA) for 1 hour at room temperature. Excess BSA was 

removed by washing twice with PBST-High (PBS, 0.5% Tween-20). After viruses 

were were titer normalized to 1x106TCID50/mL, two-fold serial dilutions were made 

in PBST-BSA supplemented with CaCl2 and MgCl2, 1mM each. To the fetuin-coated 

plate was added 100µL of each virus dilution. Cleavage of the fetuin substrate was 

allowed to occur for 18 hours at 37˚C and then washed 6 times in PBST-High. HRP-

labeled lectin from peanuts (Sigma-Aldrich) was diluted to 2µg/mL in PBST-Low 

(PBS, 0.05% Tween-20) and 100µL added to each well following the incubation. The 

lectin was allowed to bind cleaved substrate for 2 hours at room temperature followed 

by 6 washes to remove unbound lectin. One 8mg OPD (o-Phenylenediamine 

dihydrochloride, Sigma-Aldrich) tablet was was dissolved in 25mL OPD buffer 

(50mM dibasic sodium phosphate, 25mM citric acid) and supplemented with 10µL 

30% hydrogen peroxide.  The peroxidase reaction was initialized by adding 100µL of 

the OPD buffer to each well and allowed to proceed for 20 minutes at room 

temperature. The reaction was quenched by the addition of 100µL 1M sulfuric acid. 

NA activity was determined by reading the OD490 of each well. 
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M2 Activity Assay 

M2 activities were determined as previously described with modifications (225). 

Briefly, 293T were seeded in 96-well plates at a density of 7.1x104 cells/well and 

allowed to recover at 37˚C overnight. A 10X common buffer (CB) was prepared from 

NaCl (1.4M), KCl (53mM), MgSO4 (5.5mM), CaCl2 (18mM), and D-glucose 

(55mM) in 500mL. Low and High pH buffers (1X) were prepared by adding MES or 

HEPES to a final concentration of 15mM and adjusted to pH 5.5 or 7.4, respectively. 

Cells were washed with 100µL High Buffer and imaged at pH=7.4. The buffer was 

then exchanged to adjust the pH to 5.5, and each well was imaged continuously for 8 

minutes. The mean change from initial fluorescence was then calculated for each M2, 

and the rate and plateau were calculated for each.  
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4.3 Results 

4.3.1 Pandemic M segment results in better replication over the seasonal 

segment 

In previous reports, we have identified a selective advantage of the pandemic 

M segment during co-infection studies with a seasonal H3N2 virus. The M segment 

of IAV encodes for two proteins: M1, the primary transcript, and M2, a splice variant. 

To determine the effects of each gene on viral replication, a panel of viruses was 

generated containing either wild-type seasonal and pandemic M segments, or 

chimeras of the two in the H1N2 background selected for in ferret co-infections 

(222).  To create these, the M1 open reading frame from NL602 (pandemic) was 

fused to the downstream M2 sequence from M98 (seasonal) by overlapping fragment 

extension (Figure 4.1). The resultant segment produced a chimeric vRNA species 

containing a 5’ and 3’ end of pandemic and seasonal origins, respectively (Chimera 

A, Figure 4.3A). Additionally, the inverse configuration was cloned containing an M1 

of seasonal origin and the M2 from the pandemic virus (Chimera B). 

 To determine if increased growth kinetics could be responsible for the 

competitive advantage of the pandemic M segment, MDCK were infected at an 

MOI=0.001 (8x102 TCID50) with either wild-type or chimeric M segment viruses, and 

time points were taken at 10, 24, 48 and 72 hours post infection. Although all viruses 

grew to high titers, the wild-type pandemic M segment virus grew to significantly 

higher titers over the course of the experiment compared to the wild-type seasonal M 

segment virus. Although not significant, viruses with chimeric M segments grew to 

intermediate titers (Figure 4.2). This may suggest that both M1 and M2 from the 
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pandemic segment contribute in some way to increased replication in this virus 

background. 
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Figure 4.1: Construction of chimeric M segments. Fragments for either M1 or M2 
were amplified with overlapping primers. Each fragment was used as a template to 
amplify a full length, chimeric M segment by fragment extension. 

 

 
Figure 4.2: Growth kinetics of wild-type and chimeric M segment viruses. 
Multistep growth kinetics (MOI=0.001) in MDCK cells over 72 hours. N=3. 2-
way ANOVA statistical analysis shown. 
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Figure 4.3: Competitive mixture model to identify segment fitness. A) Chimeras 
constructed from seasonal and pandemic M segments differ in the genetic origins 
of their M1 and M2 genes. B) In this example, viruses rescued from either wild-
type pandemic or chimera A M segments in an otherwise identical segment 
composition are mixed together and used to co-infect MDCK cells or ferrets (not 
shown). Both M segments encode for the pandemic M1 gene (red) and differ in the 
genetic origin of the M2 gene. C) Viruses are allowed to grow for 72 hours and 
then passaged two subsequent times, allowing for segment competition effectively 
between the pandemic and seasonal M2 genes. D) The composition of each M 
segment, represented by the non-identical gene, is quantified either by Sanger 
sequencing SNP analysis or 454 sequencing of tissue culture supernatant or ferret 
nasal washes, respectively. 
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4.3.2 Segments containing either the pandemic M1 and M2 outcompete the 

seasonal alleles in vitro 

In previous studies, selection for the pandemic origin M segment was 

observed to occur rapidly in in vivo co-infection experiments. As the origins of each 

gene within the M segment may play a role in viral replication, competitive co-

infections between viruses with wild-type and chimeric M segments were performed 

to identify which gene contributed to segment selection in vitro. MDCK cells were 

infected with 1x105 TCID50 of each virus pair in triplicate. At 3 dpi, supernatant from 

each well was passaged by serial dilution in MDCK cells to select for the most 

abundant population. The last positive dilution for each replicate was identified by 

RBC hemagglutination, and sequenced to identify the origin of the M2 gene segment. 

Co-infection of a wild-type seasonal M gene with a chimera containing the M2 from 
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the pandemic virus resulted in the selection of the chimeric gene segment (Table 3, 

group A). Alternatively, co-infection of a wild-type pandemic M gene with a chimeric 

virus encoding a seasonal M2 resulted in the selection of the wild-type pandemic 

segment (Table 3, group B).  

The reciprocal experiment was also performed in which the M1 alleles were 

compared while holding the M2 gene constant.  Selection was observed for the 

pandemic M1 chimeric segment when co-infected with a wild-type seasonal M virus 

(Table 3, group C). Conversely, co-infection of a wild-type pandemic virus with a 

chimeric M1 seasonal virus selected for the wild-type pandemic M segment (Table 3, 

group D). Altogether, these results suggest that both M1 and M2 genes from the 

pandemic virus confer a selective advantage to reassortant viruses in vitro.  

 

4.3.3 Segments containing the pandemic M1 and M2 genes outcompete the 

seasonal alleles in vivo 

 

To confirm these in vitro findings, ferrets were used to determine if the same 

phenotype was observed in vivo. Five ferrets were co-infected with 1x105 TCID50 of 

each virus pair as described (Figure 4.3A and table 3), and nasal washes were 

collected for 3 days. At 3dpi, nasal washes from infected ferrets were diluted 1:5 and 

serially passaged into 5 additional animals. This was repeated again for a total of 3 

independent passages and 9 total days of virus replication for each virus pair. Viral 

RNA was extracted from ferret nasal washes, and M gene cDNA was prepared from 

each sample. A region spanning the M1/M2 gene overlap was barcoded with 454 lib-
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L compatible primers and amplified for sequencing. Reads were reference mapped in 

order to identify the major M segment population and the overall percent composition 

of each M segment allele. Although an attempt was made to co-infect at equivalent 

doses by titer, the percent composition identified in the inoculum was skewed for all 

virus pairs, possibly due to inaccuracies in viral titrations or differences in the 

infectivity of each virus. Despite this, co-infection of wild-type M segment viruses 

with chimeras differing in either M1 or M2 yielded interesting results for the role of 

the these genes in M segment selection. Over the course of the 9-day infection, ferrets 

co-infected with a wild-type seasonal M segment virus and chimera A selected for the 

chimera, which contains the pandemic M1 gene (Figure 4.4A). Conversely, ferrets 

co-infected with a wild-type pandemic M segment and chimera B, containing a 

seasonal M1, selected for the wild-type segment (Figure 4.4B). Although the M 

segment population quickly resolved, these data may indicate a selective 

disadvantage of the seasonal M1 allele and suggest that the pandemic M1 allele is 

sufficient to drive selection of the entire M segment during a co-infection. The 

inverse experiment was also performed to determine the contributions, if any, of the 

M2 origin to segment selection using competitive mixtures of wild-type and chimeric 

M segment viruses. Ferrets co-infected with a wild-type seasonal M segment virus 

and the chimera B segment virus, selected for the chimeric virus, which contained the 

pandemic M2 allele (Figure 4.4C). Conversely, ferrets co- infected with a wild-type 

pandemic M segment virus and the chimera A segment virus, containing the seasonal 

M2, selected for the wild-type pandemic allele (Figure 4.4D). Although the initial 

composition of  
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Figure 4.4: M gene allele selection in vivo. Ferrets were co-infected with viruses containing wild-type 
and chimeric M segments. Nasal washes were collected every day during 3 passages composed of 3 
days each. Days post co-infection cover three passages, and are depicted as a single replication cycle.  
Percent composition of the wild-type allele in each co-infection was determined by 454 deep 
sequencing of an M gene amplicons. A and B) M1 contribution to M gene selection. C and D) M2 
contribution to M gene selection. 
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each virus in each co-infection was skewed in the inoculum, the selection favored the 

minor initial population. These data indicate a strong and consistent selective 

preference for the pandemic M2 allele, and suggest that this allele is sufficient to 

drive the selection of the entire segment independent of the M1 gene origin. 

 

4.3.4 Pandemic M genes overcome initial disadvantage to outcompete seasonal 

alleles 

To overcome the difficulties in correlating virus titer to segment copy number, each 

virus pair in table 3 were mixed 1:1 at a calculated titer of 1x105 TCID50/mL. Viral 

RNA was again extracted, and cDNA was transcribed as previously described (223). 

The full length M gene was then amplified with universal primers, and the M1/M2 

boundary was sequenced with a conserved, upstream primer. The ratio of each virus 

in the mixture was determined from the peak area of sequenced polymorphisms in the 

M genes using the polySNP software (226). To confirm previous results, the ratio 

generated from polySNP was used to repeat the co-infection at a ratio of 9:1 

unselected to selected M segment based off of previous results. Once again, the 

inoculum was sequenced to determine the percent composition of each virus pair. 

Supernatant was harvested at 3 dpi and passaged two additional times at a dilution of 

1:100 of the previous passage. The percent composition of M segments in each group 

at 3dpi for all three passages were determined by sequencing as before. In each case, 

the relative proportion of the previously selected segment in the inoculum was much 

less abundant than the previously unselected segment, and within a range of 16 to 26 

percent of the overall M segments within the mixture (Figure 4.5). This is particularly 
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important in the M1 challenge groups where the more pandemic like segments were 

selected after being inoculated at a high starting frequency. As expected, all groups 

resolved to the genotypes previously observed both in vitro and in vivo, with either 

chimeric segment outcompeting the wild-type seasonal M segment, and the wild-type 

pandemic M segment outcompeting either chimeric. Taken together, these data 

suggest that selection of the pandemic M gene, at least in this constellation, is driven 

by both M1 and M2.  

 

4.3.5 Both genes from the pandemic virus contribute to the selective advantage 

of the entire segment 

To examine the relative contributions of either the pandemic M1 or M2 gene, viruses 

encoding either chimera were mixed at a 1:1 ratio as determined by titer. As before, 

these were used to co-infect both MDCK cells and ferrets. In cells, co-infection with 

each chimera resulted in the selection of the virus with the pandemic M1 and seasonal 

M2 (Table 3, group E), suggesting that a stronger selective contribution may exist for 

the pandemic M1. The same virus mixture was, however, used to co-infect ferrets, 

and the ratio of each chimera in the mixture was subsequently quantified. Deep 

sequencing of the mixture showed that the initial ratio of the pandemic M1/seasonal 

M2 chimera constituted a much higher proportion of the inoculum at 92%, placing the 

seasonal M1/pandemic chimeric segment at a significant disadvantage to selection 

(Figure 4.6B). This may have resulted in the observed frequencies of this chimera in 

tissue culture, and may not be indicative of a selective advantage of the   
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Figure 4.5: Quantified M gene allele selection in vitro with polySNP normalization. MDCK cells 
were co-infected with viruses containing wild-type and chimeric M segments. Supernatant was 
harvested at 72 hours post infection for quantification and additional virus passage. Percent 
composition of the wild-type allele in each co-infection was determined by Sanger sequencing of the 
M gene and polySNP. A and B) M1 contribution to M gene selection. C and D) M2 contribution to M 
gene selection. 
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pandemic M1/seasonal M2 chimera. Serial passage of this inoculum in ferrets, 

however, failed to extinguish the seasonal M1/pandemic M2 chimeric segment, which 

successfully recovered to 26% of the population by the end of the third passage in 

ferrets. The in vitro selection assay was repeated having quantified the chimeric 

viruses for co-infection with Sanger sequencing and polySNP. Interestingly, the 

percent composition of either chimera remained relatively static over three passages 

in MDCK (Figure 4.6A). Combined, these data suggest that neither chimera has a 

competitive advantage over the other, and that both the pandemic M1 and M2 genes 

contribute to the fitness of the entire segment. 
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Figure 4.6: Chimeric M segment competitive mixtures. A) In vitro competition 
between chimeric M segment viruses normalized with polySNP. Inoculum and 
passages were quantified with polySNP. B) In vitro competition between chimeric 
M segment viruses normalized by titer (1x105 TCID50 each). Inoculum and ferret 
nasal washes were quantified with 454 deep sequencing. 
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4.3.6 Characterization of the segment 7 dependence of NA activity 

 Since its emergence, the pandemic M segment has reassorted with swine 

lineage triple-reassortant H3N2 viruses between 4 to 10 times, suggesting an 

advantage in the field (227). Multiple in vitro and in vivo studies have also identified 

a preference for related neuraminidase genes to segregate with the pandemic matrix 

segment (198, 222). Furthermore, it has been suggested that these two segments 

cooperate to increase the transmissibility in swine (221). To further investigate the 

contribution of different M segment alleles to neuraminidase function, viruses were 

rescued with constellations similar to those produced by serial passaging in ferrets 

(Table 2), but with M segments originating from either a seasonal H3N2 

(A/Memphis/14/1998) or the pandemic virus (A/Netherlands/602/2009) which had 

been previously selected for during reassortment and passaging. Although the identity 

of the N2 NA gene remained consistent throughout the experiment, viruses containing 

the pandemic M segment exhibited about a 4-fold higher NA activity compared to 

those containing a seasonal M segment (Figure 4.7A). To determine the genetic origin 

contributing to the difference in NA activity between these viruses, viruses containing 

M gene chimeras with M1 from a seasonal or pandemic origin and an M2 from the 

opposite origin of the M1 gene were examined. Although the NA activities were 

generally lower for these viruses, a 4-fold difference was also observed between the 

two viruses with the pandemic M1 gene conferring a higher NA activity (Figure 

4.7B). These findings suggest that the pandemic M segment, and more specifically 

the pandemic M1, confer increased neuraminidase activity.  
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Figure 4.7: N2 NA dependence on M segment identity. Two-fold dilutions of 
viruses encoding either wild-type (A) or chimeric (B) M segments were incubated 
on plates coated with fetuin for 18 hours. After the incubation, the cleaved fetuin 
was bound by a peroxidase labeled peanut lectin, treated with the OPD substrate, 
and imaged on a spectrophotometer (N=3).  
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4.3.7 Characterization of M2 genes in seasonal and pandemic viruses 

 The M2 gene from the pandemic virus has been shown to undergo positive 

selection upon co-infection with a virus carrying the seasonal homolog. The 

underlying mechanism, however, remains unclear. Fifteen mutations exist between 

the seasonal and pandemic M2 genes that could speak to a possible mechanism, 

eleven of which occur after the overlapping reading frames between M1 and M2. To 

identify mutations that contribute to the selection of the pandemic M2 gene, the 

pandemic alleles corresponding to these eleven mutations, occurring in the 

transmembrane ion channel domain and the c-terminal domain, were engineered 

individually into an otherwise wild-type seasonal M segment. Of these, eight were 

viable for virus rescue. As before, these “pandemic-like” mutant viruses were 

challenged in a competitive mixture model in MDCK cells against viruses containing 

the wild-type seasonal M segment at an attempted ratio of 4:1, respectively. After 72 

hours post infection, 300µL (1:10) of tissue culture supernatant was serially passed 

into MDCK cells. After 3 total passages, the percent composition of each segment 

was quantified for the inoculum and each passage using Sanger sequencing and 

polySNP. Of the eight mutations that were viable, those corresponding to L43T, 

H57Y, and K78Q resulted in the greatest increase in mutant segment percent 

composition over three passages (Figure 4.8). 

The L43T mutation occurs within the transmembrane alpha helix of M2 near 

the proton gate. To determine if there were significant differences in the basic proton 

conductance activity of the two channels, the M2 ORF was cloned out of segment 7 

into a protein expression plasmid, and its activity assayed using fluorescent  
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Figure 4.8: Mutant M segment competition model. Seasonal M segment viruses 
with the indicated mutations in M2 were mixed with viruses containing a wild-
type seasonal M segment and serially passaged in MDCK cells. Each passage 
represents 72 hours of growth. Indicated is the proportion of mutant segment as a 
percentage of the total segment population. 
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quenching of EYFP as an intracellular pH sensor (225, 228).  Plasmids for EYFP and 

M2 from either the seasonal or pandemic M2 genes was transfected into 293T cells. 

After 24 hours, the cells were washed with HEPES buffered saline at a pH of 7.4 and 

the fluorescence was quantified. The buffer was exchanged for MES buffered saline 

at a pH of 5.5, and the fluorescence was read every eight seconds for eight minutes 

until the signal stabilized (Figure 4.9). Both treatments lead to a decrease in 

fluorescent signal from EYFP compared to pH 7.4 controls, however cells transfected 

with the seasonal M2 lead to a more dramatic decrease in the intracellular pH 

compared to the pandemic M2. Although this is an indirect measurement of channel 

activity, it would suggest that the proton conductance activity of the seasonal M2 is 

higher than that of the pandemic M2. 

The M2 protein has also been shown to slow protein traffic along the 

secretory pathways and stabilize HA during intracellular transport in a manner 

dependent on proton pump activity (106, 229, 230). To determine the effects of M2 

on the secretion, cells were transfected with plasmids expressing a secreted Gaussia 

luciferase and M2 ion channels from either the seasonal or pandemic viruses. At 24 

hours post transfection, both M2 proteins significantly decreased the expression of the 

secreted reporter gene compared to the empty vector control. The pandemic M2, 

however, decreased the total expression and secretion of GLuc to a greater extent. If 

the correlation between activity and protein expression through the secretory 

pathways is correct, these data would suggest, in contrary to the M2 activity assays, 

that the pandemic M2 conducted protons to a greater extent than the seasonal.  
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Figure 4.9: Characterization of M2 alleles. A) Plasmids encoding M2 genes from 
either the pandemic (red) or seasonal (blue) viruses were transfected into 293T 
cells along with pcDNA3-EYFP. At 24 hours post transfection, the pH of the 
media was adjusted to 5.5 with MES buffered saline, and the fluorescent intensity 
of each well was measured on a luminometer. B) Plasmid encoding M2 alleles 
were transfected into 293T cells together with pGLuc-NS, a secreted luciferase 
reporter. At 24 and 48 hours post transfection, luciferase activity was determined. 
Mock is empty vector (pcDNA3).  
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4.4 Discussion 

 
 Since its emergence, the 2009 pandemic virus has replaced the previously 

circulating H1N1 virus as the seasonal strain in humans, and is no longer observed by 

in the population through surveillance. Furthermore, the vaccine recommendations 

for trivalent and quadravalent vaccines no longer contain a 1977 “Russian Flu” 

lineage H1N1 strain in their formulations. A larger pool of immune susceptible hosts 

to the pandemic virus combined with immunological cross-reactivity of conserved H1 

HA and N1 NA domains may account for the extinction of the seasonal H1N1, our 

work here and previously show that the pandemic HA and M are consistently selected 

for over seasonal strains in the absence of immune pressure suggesting a selective 

advantage of these genes. 

 The pandemic M gene has been found to cooperate with NA in transmission 

models, and confer increased activity NA activity in general (221, 231). Whether this 

is due to NA content, localization, or changes in viral morphology modulating both is 

unknown. Also unknown is whether the effect is strain or subtype specific. In our 

model, the M1 protein from the pandemic virus was sufficient to select for the entire 

M segment in competition assays with a seasonal allele. An increase in NA activity 

due to the pandemic M1 and not M2 was also found. An increase in sialidase activity 

would result in more efficient virion release from the plasma membrane post 

infection. This may contribute to higher replication kinetics, allowing the virus to 

spread more efficiently.  
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In addition to M1, the pandemic M2 protein was found to be sufficient for the 

selection of the entire M segment when challenged against a seasonal allele. 

Functional, albeit partially conflicting differences between the two M2 alleles were 

found. While an indirect activity assay indicates that the seasonal allele conducts 

protons more efficiently than the pandemic allele, the greater attenuation of the 

pandemic M2 protein on reporter secretion suggests the opposite. The lower level of 

proton conductance observed in the indirect activity assay may be the result of 

decreased surface expression of the pandemic M2 due to its effects on secretory 

pathways. Alternatively, the differences in observed activities could be attributed to 

different localization patters between the two proteins. 

Several amino acid variations exist between the seasonal and the pandemic 

M2 proteins. Of note are the L43T, H57Y, and K78Q mutations, which gave mutant 

seasonal M segments a competitive advantage over the wild-type seasonal segment. 

The L43T mutation may play a role in ion channel conductance activity. Although not 

investigated here, it may influence a second proposed amantadine binding site on the 

lipid face of the transmembrane alpha helix by stabilizing the structure of the channel 

(232). Interestingly, this mutation is almost exclusively found within the pandemic M 

gene with few strains lacking it. The H57Y mutation completes the consensus for one 

of M2’s CRAC motifs, however, mutation of this tyrosine has not been found to be 

detrimental to virus replication (233, 234). The K78Q occurs within a region of M2 

that is important for viral assembly (235). Independently, these latter two mutations 

rescue very efficiently compared to some of the other M2 mutants (not shown), and 

together, they may modulate protein localization and viral budding. 



 

 90 
 

Despite the functional characteristics described here for the pandemic M1 and 

M2 proteins, it is also entirely possible that the primary vRNA sequence of the 

pandemic M segment may contribute to the observed selective fitness of the 

pandemic segment, and not the gene products themselves. Large portions of the M 

segment coding sequence have been shown to be required for vRNA packaging into 

virions (183). Essere et al. showed that some silent mutations within the M1 

packaging sequences and some non-silent mutations within M2 could affect the 

incorporation of other segments into the virion; however, mutational effects on M2 

splicing, expression, and function were not performed to exclude a protein 

contribution to this phenotype (186).  

Identification of the genetic determinants and mechanisms behind M segment 

selection is not purely academic. In addition to disrupting the classical TRIG cassette 

during the evolution of the 2009 pandemic virus, the segment has survived 

reassortment with swine H3N2 viruses to define a new lineage in pigs that has been 

reported to transmit to humans (215). Understanding the contributions that this 

segment lends to viral fitness could have a significant impact to human health and 

pandemic preparedness. 
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Chapter 5: Towards in vivo reverse genetics: A recombinant 
bacmid rescue system for influenza virus in porcine cell types 

5.1 Introduction 

Swine influenza was first recognized in pigs following the emergence of the 

1918 “Spanish Flu” pandemic, and was first isolated in 1930 by Richard Shope (236). 

This “classical” swine virus (cH1N1) continued to circulate and evolve in pigs until 

the mid-1990s when a triple reassortant (tr) between a North American avian, a 

human H3N2, and the cH1N1 was identified (237). This new trH3N2 virus quickly 

reassorted again with the cH1N1’s to produce a wide range of subtype constellations 

(H3N2, H1N1, H1N2, etc.), all with the same triple reassortant, internal gene cassette 

(TRIG) composed of avian-origin PB2 and PA genes, human-origin PB1, and swine-

origin NP, M, and NS genes. The diversity of this virus pool has since been increased 

with the introduction and establishment of human-origin H1N1 and H1N2 viruses 

containing the TRIG cassette in United States swine populations (19). 

The virulence of these viruses varies widely, but infection may result in fever, 

anorexia, and abortion in pregnant sows resulting in an overall decline in pork 

production for affected farms. A number of methods have been employed, however, 

to control this burden. Vaccination and biosecurity have become the most common 

method to prevent the spread of influenza and to ease the disease burden on the 

population. Today, inactivated influenza vaccines are commonly available and are 

designed to match the most common circulating strains. While these commercial 

vaccines are available, limited protection is observed in practice due to the antigenic 

and genetic diversity of influenza viruses circulating in pig populations (130-132). 

Furthermore, continued use of these commercial vaccines will most likely result in 
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immune pressure and antigenic divergence of circulating viruses necessitating the 

reformulation of commercial vaccines.  For these reason, many swine producers have 

turned to autogenous vaccines to better match strains circulating within their own 

herds. The use of autogenous influenza vaccines have grown rapidly in recent years 

due to the diversity of viruses circulating in US pig populations (19). While they are 

not yet approved for use in swine, live-attenuated influenza vaccines (LAIV) have 

been shown to provide significant protection to homo- and heterosubtypic challenge 

in both human and swine models (132-136).  While both autogenous and LAIV could 

fill an efficacy void left by commercial vaccines, their production still relies heavily 

on virus growth in eggs or tissue culture systems. 

In order to increase the speed at which vaccines can be made available, a new 

system has been developed to deliver influenza reverse genetic cassettes encoding the 

virus into the host cell for expression. This system using recombinant baculovirus 

transducers is a “Trojan horse” approach to deliver reverse genetic cassettes encoding 

an influenza virus into host cells for expression and rescue. 

Reverse genetic systems for generating influenza, and indeed many other 

negative sense viruses, have been available for many years. Transcription of the 

mRNA for these four viral proteins required for transcription and replication is 

typically done from a plasmid encoding a RNA polymerase II (pol II) promoter 

element upstream of cloned cDNA in a manner similar to host mRNA synthesis. 

Synthesis of the negative-sense, single-stranded, uncapped vRNAs can be 

accomplished by inserting a T7 RNA polymerase promoter directly upstream of viral 

cDNA cloned in the negative sense. The 3’ end of the vRNA is formed by HDV 
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ribozyme cleavage (238). An alternative method to generate the uncapped vRNA 

utilizes host RNA polymerase I (pol I). RNA pol I is used by eukaryotic cells to 

produce uncapped ribosomal RNA. Transcription is terminated with the murine RNA 

polymerase I terminator (mTerm) to produce an RNA species with a defined start and 

stop, making it an attractive tool to generate influenza vRNA. As such, transcription 

of the eight vRNAs from a human pol I promoter, together with the previously 

mentioned protein expression plasmids, allows for the generation of influenza in 

293T and a variety of other human derived cell types (192, 194). Bidirectional vectors 

have been made that contain both pol II and pol I promoters to drive expression of 

both RNA species from the same plasmid, thus eliminating the need for a 12 plasmid 

transfection (193). While efficient, the generation of influenza viruses by a pol I 

approach is thought to be species specific requiring a species match between the pol I 

promoter and the cell type (239).  Although the porcine pol I promoter has been used 

to transcribe a viral-like reporter RNA (240), its utility as a reverse genetic platform 

remains unexplored. Herein, we describe the use of the previously reported porcine 

RNA pol I promoter (241) to produce an influenza reporter gene and  influenza 

viruses in porcine cell types from a bidirectional vector. 
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5.2 Materials and methods 

Plasmids 

 The NS 3’UTR-porcine RNA polymerase I promoter construct was 

synthesized from Genscript (Piscataway, NJ) with NotI and BstEII terminal sites for 

cloning (See appendix Figure S1). pPIG-GLuc(NS) was produced directly from pDP-

GLuc(NS) by subcloning the synthetic construct into the NotI and BstEII sites, 

effectively replacing the human pol I promoter with the porcine pol I promoter. To 

make the generic reverse genetic vector pPIG2012, the vector portion of pPIG-

GLuc(NS) was amplified with ATATCGTCTCGTCCCCCCCAACTTCGGAGGT 

CG and TATTCGTCTCGATCTACCTGGTGACAGAAAAGG and digested with 

BsmBI. A small double stranded oligonucleotide insert was generated by mixing 

/5Phos/GGGACGAGACGATATGAATTCTATTCGTCTCG and /5Phos/AGATCG 

AGACGAATAGAATTCATATCGTCTCG together and incubating at 95˚C for 1 

minute, followed by a slow cool down to room temperature. This was then ligated 

into the digested PCR-generated vector. Viral segments from A/turkey/OH/ 

313053/2004 (H3N2) were amplified and cloned into pPIG2012 in essentially the 

same manner as described in Hoffmann et al. (193, 223) with alternative reverse 

primers (See Appendix Table S6). 

 To generate the p∆Fast-P6 construct, gene cassettes comprising the pCMV 

promoter, mTerm, cloned DNA, porcine pol I promoter, and bovine growth hormone 

polyadenylation signal were amplified from the individual reverse genetic plasmids 

with CMV Fwd ([RS]TGCCAAGTACGCCCCCTATTG) and BGH Rev ([RS]TGG 
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CCGATTCATTAATGCAGCTG) where [RS] represents one of the restriction 

enzymes used to clone into p∆Fast (See Figure 5.6). 

Cells and Tissue Culture 

MDCK and PK(15) cells were cultured in Dulbecco’s modified Eagle medium 

(Sigma-Aldrich, St. Louis, MO) supplemented with 25 mM HEPES (Sigma-Aldrich), 

2 mM glutamine (Sigma-Aldrich), 10 mM HEPES (Invitrogen, Grand Island, NY), 

and 10% fetal bovine serum (FBS; Sigma-Aldrich) and were grown at 37 °C under 

5% CO2. HEK 293T cells were cultured in Opti-MEM (Sigma-Aldrich) with 10% 

FBS and grown at 37 °C under 5% CO2.  

Virus Rescue 

Transfections for virus rescue were performed in co-culture, either HEK293T/MDCK 

(4:1) or PK(15)/MDCK (4:1) as indicated. Cells were seeded in DMEM in the 

presence of serum 24 hours prior to transfection. Transfection mixtures were 

generally prepared with 1µg DNA/plasmid/gene segment in OptiMEM and TransIT-

LT1 (2µL/µg DNA, Mirus, Madison, WI) in a total volume of 200µL, and incubated 

for 30 minutes. For example, 6 µg of DNA was transfected for a plasmid encoding 6 

reverse genetic cassettes. Media would be exchanged for 1mL OptiMEM 

supplemented with 1X Antibiotics/Antimycotics Solution (OptiMEM-AB, Sigma), 

and the transfection mixture would be added drop wise to each well. At 6 hours post 

transfection (hpt), the transfection mixture would be replaced with 1mL OptiMEM-

AB. At 24 hpt, 2mL of OptiMEM-AB supplemented with 3µg TPCK-treated Trypsin 

(Worthington Biochemical, Lakewood, NJ) would be added to each well of the 
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transfection. Unless otherwise noted, all transfections were incubated at 37˚C under 

5% CO2. 

Deep Sequencing of Bacmids 

 Bacmids encoding Ty04 were sequenced essentially as described in the 

manufacturer’s protocol for Lib-L chemistry with minor exceptions. Briefly, 500ng of 

bacmid DNA was nebulized to an upper fragment limit of ~1250bp. Barcoded 

adapters were obtained from IDT for RL014 and RL015. These were prepared 

following Roche TCB No. 2010-010 to a working stock concentration of 

50µM/adapter. Following end repair of nebulized bacmids, adapters were ligated onto 

each fragment library. Samples were then size selected to a lower limit of ~500bp on 

Ampure XP beads (Beckman Coulter, Sykesville, MD). The quality of each library 

was determined using the FlashGel system (Lonza, Walkersville, MD). Libraries 

were quantified based on the 6FAM label on each adapter, and diluted to 1x107 

fragments/library. Finally, libraries were loaded into the emPCR reaction at a 

concentration of 3 fragments/bead. Following the sequencing run, reads were de novo 

aligned and reference mapped to expected sequences, and compared to known 

sequence for the bacmid and influenza reverse genetic inserts. 

Isolation of Baculovirus DNA 

 Genomic DNA was isolated from baculovirus stocks using a modified TRIzol  

protocol. First, 250µL of baculovirus stock was treated with 20U DNaseI (NEB, 

Ipswich, MA) and incubated at 37˚C for 1 hr. Following digest, 750µL of TRIzol 

reagent (Life Tech) was added to each sample, mixed, and incubated at RT for 5 

minutes. Added to each sample was 150µL of chloroform. Samples were shook 
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vigorously for 15 seconds, incubated at RT for 3 minutes,  and spun at 12,000 x g for 

30 minutes for phase separation. The aqueous upper phase was discarded, and 350µL 

of Back Extraction Buffer (4M guanidine thiocyanate, 50mM sodium citrate, 1M tris 

base) was added to each sample and centrifuged again at 12,000 x g for 30 minutes 

(242). The aqueous phase was removed to a new tube and precipitated with 250µL 

isopropanol at 12,000 x g for 15 minutes. The pellet was washed with 500µL 70% 

ethanol and precipitated at 12,000 x g for 15 minutes. Finally, the ethanol was 

removed and the pellet was allowed to air dry for 10 minutes before being eluted in 

50µL of EB. 
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5.3 Results 

5.3.1 Construction of a porcine pol I-driven uni- and bidirectional reverse 

genetic platform  

A secreted Gaussia luciferase (GLuc) reporter construct has previously been 

developed within our lab to assay IAV polymerase function in 293T cells (243). The 

vector is composed of a human pol I promoter that expresses a negative sense clone 

of a GLuc ORF that is flanked by segment 8 terminal noncoding regions. 

Transcription is terminated immediately thereafter by a murine RNA pol I 

termination sequence. The viral-like RNA that is produced is recognized by the IAV 

polymerase as an influenza segment. In order to test the ability of a porcine RNA pol 

I promoter to drive expression of a similar viral-like RNA species in swine cells, the 

human promoter from the GLuc report vector was replaced with the porcine RNA pol 

I promoter (Figure 5.1). Porcine kidney cells (PK15) were then transfected with the 

porcine pol I IAV reporter plasmid along with RNA polymerase II expressed PB2, 

PA, and NP plasmids. As a control for IAV amplification, transfections were 

performed with or without the addition of a plasmid expressing PB1. As early as 12 

hours post transfection (hpt), expression of the reporter gene was significantly greater 

in the presence of the full IAV polymerase compared to the negative control (Figure 

5.2). These results suggest a viral-like RNA was efficiently transcribed from the 

porcine pol I promoter, which was then recognized and amplified by the IAV 

polymerase. RNA polymerase I promoters have been reported to be species 

specific. Indeed, little sequence homology exists between the human promoter used in  
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Figure 5.1: Schematic representation of porcine pol I-based influenza reverse 
genetic system. The murine polI termination signal and a GLuc reporter, flanked 
by NS noncoding regions (black boxes), was subcloned from the human pol I 
vector pDP-GLuc (NS) and placed in front of the porcine pol I promoter to 
construct a viral RNA expression vector, pPIGv-GLuc (NS). This cassette was 
then subcloned between a RNA pol II promoter and bovine growth hormone 
polyadenylation signal to construct a bidirectional vector, pPIG-GLuc (NS). 



 

 100 
 

  

 
Figure 5.2: IAV amplification of vRNA-like reporter gene expressed from porcine RNA 
pol I promoter. 1x106 PK(15) cells were transfected with 1µg pPIG-GLuc (NS) together 
with 1 µg of each plasmid expressing IAV PB2, PA, and NP. As a control for IAV 
amplification, transfections were done with or without the addition of PB1. Luciferase 
values represent fold change mock. p values < 0.001 at each time point. 
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pHW2000-like vectors and the porcine promoter used in this study. To examine the 

species specificity of the porcine promoter in multiple cell types, GLuc expression of 

the human and porcine pol I reporter vectors was determined in their cognate and 

reciprocal cell types. Surprisingly, both the human and porcine pol I reporters 

functioned well in both 293T and PK(15) cells. As expected, however, the human pol 

I promoter and the porcine pol I promoter functioned significantly more efficiently in 

the human and swine derived cell types, respectively (Figure 5.3). These results 

suggest that while a specific cell type may be preferred, an in vivo reverse genetic 

platform may be functional in more than the intended target. 

 Four proteins are sufficient and required to generate IAV from cloned cDNA; 

PB2, PB1, PA, and NP. The remainder of the genes need only to be expressed as 

vRNA in order for the polymerase complex to recognize, replicate, and perform 

mRNA transcription. Expression of these four proteins from “helper” plasmids in 

trans to replicate eight, co-transfected, pol I-derived, vRNA-like transcripts is 

common practice to generate IAV in tissue culture in a so called 12 plasmid (8 pol I + 

4 pol II) system (192). Alternatively, cloned cDNA can be inserted into bidirectional 

vectors expressing the negative sense or positive sense, vRNA or cRNA from a RNA 

pol I promoter and the mRNA from an RNA pol II promoter (193, 244). This system 

requires that only eight plasmids be transfected in order to generate IAV de novo, and 

is the backbone of our rescue platform. To that end, the pCMV (RNA pol II) 

promoter and the bovine growth hormone polyadenylation signal (BGH polyA) were 

cloned upstream of the mTerm sequence and downstream of the porcine pol I cassette 

respectively to construct pPIG-GLuc(NS) (Figure 5.1). Efficient expression of mRNA  
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Figure 5.3: RNA Polymerase I activity in human and swine cell types. HEK293T 
or PK(15) cells were transfected with influenza-amplifiable GLuc vRNA reporter 
genes expressed from either a human (Hu) or Swine (Sw) RNA polymerase I 
promoter. The viral replication complex was reconstituted with PB2, PB1, PA, and 
NP expressed from pcDNA3.1 vectors. Luciferase activity was assayed at 24 
(white) and 48 (black) hours post transfection. All transfections normalized to 
SEAP.  
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in eukaryotic cells requires the presence of both a 5’ cap and a 3’ polyadenylated tail. 

Proteins recognize both structures and each other through adapters to make a circular 

transcript that is read by the ribosome. The absence of either structure signals that the 

transcript may be regarded as foreign, and should be degraded by the cell. To  

determine if the mRNA expression cassette was functional, PK15 cells were 

transfected with the pol I reporter vector lacking a RNA pol II promoter, the reporter 

vector with the addition of the pCMV RNA pol II promoter, or the reporter vector 

containing both the pCMV promoter and the BGH polyA signal in the absence of the 

IAV polymerase. Expression of the reporter gene was increased by about 72-fold over 

the negative control in the presence of the CMV promoter, and by about 1000-fold 

with the addition of a polyadenylation signal (Figure 5.4). These results strongly 

suggest that the GLuc reporter gene is being expressed in the cell via a cap dependent 

manner, and that the mRNA expression cassette on the plasmid is functioning 

properly. 
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5.3.2 An eight plasmid, porcine pol I-driven rescue of influenza A virus in tissue 

culture 

 Having generated a bidirectional, porcine pol I-driven reverse genetic vector, 

we wanted to determine if a full influenza virus could be rescued from this vector in 

tissue culture. A/turkey/OH/313053/2004 (Ty/04), a swine-origin, triple reassortant 

H3N2 virus, has been characterized and attenuated in our lab to server as a master 

vaccine backbone (243). In addition to rescuing well from human pol I reverse 

genetic platforms, the wild-type virus induces a febrile response, macro- and 

microscopic pneumonic lesions, and severe clinical signs in inoculated pigs, making 

it an ideal candidate as a proof of principle for the porcine pol I rescue system. To 

facilitate the insertion of cloned IAV cDNA into the vector, the flu-amplifiable GLuc 

reporter was replaced with BsmBI cloning sites similar to those used in the pHW2000 

vector. Each of the eight segments from Ty/04 were cloned into this porcine pol I, 

influenza reverse-genetic vector, pPIG2012 (Figure 5.5A). The full set of plasmids 

encoding Ty/04 were then transfected into PK15/MDCK co-culture to determine if 

this reverse genetic platform could in fact launch infectious virus in vitro. Following 

the addition of TPCK-treated trypsin at 24 hpt, a dramatic increase in viral replication 

was observed in transfected cells throughout 72 hpt (Figure 5.5B). 
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Figure 5.4: Contributions of the CMV early promoter and BGH polyadenylation 
signal to reporter expression. PK(15) cells were transfected with either the pPIGv-
GLuc (NS) reporter containing only the RNA polymerase I promoter (red), an 
intermediate plasmid encoding both the RNA pol I and pCMV promoters (orange), 
or pPIG-GLuc (NS) containing the RNA polI, pCMV, and the BGH 
polyadenylation signal (blue). All results are normalized to background. 
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5.3.3 Construction of a bacmid and baculovirus vectored porcine pol I-driven 

influenza reverse genetic platform 

 Baculoviruses have been used to provide a platform for the expression of 

foreign proteins in large quantities for many years. Commercially available kits 

provide a rapid way to insert genes of interest into baculoviruses for expression in 

insect cells. To make these recombinant bacmids, foreign genes are inserted into a 

donor vector under the transcriptional control of the polyhedron promoter. The 

expression cassette, located within a mini-Tn7 element, is then transposed into a 

bacmid encoding the mini-attTn7 attachment site with the aid of a helper plasmid. 

The bacmid, bMON14272, encodes the genome of Autographa californica nuclear 

polyhedrosis virus (AcNPV), and is capable of launching infectious virus in insect 

cells. AcNPV baculoviruses have also been shown to be powerful transducers of 

foreign genes into a wide range of mammalian cell types (245, 246). This system was 

used with modification as the basis of a “Trojan horse” approach for the rescue of 

influenza virus in vivo.  
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Figure 5.5: Swine based influenza reverse genetics. Schematic diagram of eight 
segments from A/turkey/Ohio/313053/2004 (trH3N2) cloned in between the murine 
termination sequence (mTerm) and the porcine polymerase I promoter in pPig2012 
swine reverse genetics vector. These eight plasmids were transfected into 
PK(15)/MDCK co-culture which rescued virus to high titers after 72 hours (N=3). 
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The internal genes from Ty/04 were used as the backbone in this proof of 

principle. The virus rescues well in tissue culture, and causes mild to moderate 

disease signs in infected pigs, which may serve as disease signs for in vivo rescue.  

Additionally, the attenuated strain protects very well in homo- and heterologous 

challenge. To construct the backbone donor vector, reverse genetic cassettes from 

each individual pPIG2012 plasmid (PB2, PB1, PA, NP, M, and NS) were amplified 

from the start of the pCMV promoter to the end of the BGH polyA signal, and cloned 

into one of the restriction sites in the p∆Fast donor vector (Figure 5.6). As the donor 

vector became more and more unstable with the addition of more influenza cassettes, 

construction was done in two parts, cloning PB2, PB1 and PA in to one vector 

(p∆Fast-P1), and NS, NP, and M into another (p∆Fast-P2). The latter cassettes were 

then subcloned into the former vector as one large piece to generate a p∆Fast-P6 

(Ty04) donor vector containing the six internal genes of Ty04 (Figure S1). 

 Although the individual reverse genetic plasmids are stable in bacteria, the 

addition of each gene cassette into p∆Fast resulted in a higher occurrence of unstable 

clones. To confirm that each plasmid during the construction process was stable, each 

was tested for functionality. With the exception of M, the activity of the internal 

genes cloned into p∆Fast can be assayed with a minireplicon system. Each p∆Fast 

construct was transfected into PK(15) cells with the porcine Gaussia luciferase 

reporter, pPIG-GLuc(NS), and supplemented with individual plasmids required for  
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influenza segment replication (PB2, PB1, PA or NP). For example, p∆Fast-P1.2 

contains reverse genetic cassettes for PB2 and PB1. The minireplicon was restored 

with the addition of pPIG-PA and pPIG-NP. Each construct was assayed for activity 

at 24 and 48 hours post transfection. In each case, constructs exhibited significant 

activity above the negative control, indicating that the encoded reverse genetic 

cassettes were functional (Figure S4). Additionally, when a construct containing the 

NS cassette was transfected into cells, the resultant luciferase activity increased 

significantly over the transfections that lacked NS. This increase in activity in the 

presence of the NS plasmid suggests that amplification of the reporter gene is 

mediated by the viral polymerase, as NS1 has been shown to stimulate viral mRNA 

gene expression at the detriment to host cell messages (247). 

 In order to generate a plasmid encoding the six internal genes of Ty04, the 

fragment encoding the NS, M, and NP cassettes was subcloned into p∆Fast-P1.3. This 

plasmid was termed p∆Fast-P6, and contains the reverse genetic cassettes required for 

the expression of the backbone segment mRNAs and vRNAs. To test for the proper 

expression of internal genes, this construct was transfected into PK(15) cells along 

with the flu amplifiable GLuc reporter. After 24 hours post transfection, the 

polymerase expressed of the p∆Fast-P6 promoter expressed GLuc to comparable 

levels compared to those produced by the transfection of six pPIG reverse genetic 

plasmids encoding the same genes (Figure 5.7A). The same experiment was 

performed in which PK(15)/MDCK co-cultures were transfected with the p∆Fast-P6 

plasmid, supplemented with pPIG plasmids encoding HA and NA to test for virus 

rescue. As expected, virus was rescued at comparable levels to the positive control in 
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which cells had been transfected with eight individual reverse genetic, pPIG plasmids 

(Figure 5.7B). This data suggests that the internal genes from Ty04, cloned into the  

  

 
Figure 5.7: Characterization of p∆Fast-P6 (Ty04) backbone vector. A) PK(15) 
cells were transfected with either 6 µg p∆Fast-P6 (Ty04) or the copy number 
equivalent genes in pPIG2012. At 24 hpt, supernatant was harvested and assayed 
for luciferase activity (N=2). B) Virus rescue of 6 µg p∆Fast-P6 (Ty04) or 
equivalent genes in pPIG2012 complemented with pPIG-HA and pPIG-NA in 
PK(15)/MDCK co-culture (4:1 ratio, N=3). Aliquots from 4 time points were 
titrated by TCID50 in MDCK cells. 
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baculovirus entry vector, functionally produce mRNA and vRNA for each gene from 

a single plasmid. 

 The majority of vaccines currently produced use only the HA and NA of the 

circulating strain, and the internal genes generally come from a master donor strain.  

For human influenza vaccines, these strains are either A/PuertoRico/8/1934 (H1N1) 

for the inactivated vaccines, or A/AnnArbor/6/60 (H2N2) for the live-attenuated 

vaccines. To enable the rapid exchange of surface antigens in the baculovirus system, 

the p∆Fast-P6 plasmid was further modified by the insertion of a constitutively 

expressed thymidine kinase gene flanked by lambda phage attR1 and attR2 sites 

(p∆Fast-P6Tkatt, ~19.6 kbp), enabling this vector to be compatible with the Gateway 

cloning system. The HA and NA reverse genetic cassettes from Ty04 were subcloned 

into pENTR-1A in a similar manner as the remaining genes into p∆Fast. The 

complete reverse genetic system containing all eight genes for Ty04 was 

subsequently generated through recombination of the pENTR-HANA Gateway 

cassette into p∆Fast-P6TKatt. This p∆Fast-P8 plasmid was about 26 kbp in size, and 

efficiently rescued influenza virus after transfection into PK(15) cells (Figure 5.9). 

The Bac-to-bac baculovirus system offers a convenient method of generating 

recombinant baculoviruses quickly from inserts cloned into the pFastBac vector and 

its derivatives, such as p∆Fast. The system is based on the bMON14272 baculovirus 

shuttle vector, which encodes a modified AcMNPV genome containing a mini-F 

replicon and an attachment site for the Tn7 transposon (248). To generate the 

recombinant bacmid encoding the complete reverse genetic system for Ty04, p∆Fast-

P8 (Ty04) was transfected into DH10Bac, which contained the shuttle vector together 
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Figure 5.8: Amplification of the influenza genome from Bcmd-P8. Each of the 
eight genes from A/turkey/Ohio/313053/2004 (trH3N2) were amplified with 
universal primers and separated on a 0.75% agarose gel. The negative panel shows 
the results of PCR without template. Initial lane in each panel contains 1kb Plus 
DNA latter. 
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with the components required for Tn7 integration. Bacmids containing the Tn7 insert 

from pFast-P8 (Ty04) were selected for on kanamycin and gentamycin LB agar 

plates. PCR of the bacmid indicates that each influenza gene from Ty04 is present in 

the transposed bacmid (Figure 5.8). To determine the stability of the viral sequence, 

454 libraries were prepared from the bacmid, and the influenza gene inserts were 

sequenced in their entirety. Each gene was found to be present in the bacmid by 

sequencing, and no high confidence mutations were observed to have been introduced 

between the initial pPIG2012 vectors and the final bacmid (Table 4).  Additionally, 

no deletions were observed to have occurred suggesting that the final bacmid product 

is stable despite the highly repetitive promoter regions of the reverse genetic 

cassettes. 

 Bacmid DNA (Bcmd-FluRG) was transfected into mammalian tissue co-

culture to determine whether the reverse genetic cassettes were functional for virus 

rescue. The DNA copy numbers of the bacmid and the p∆Fast-P8 plasmid were 

normalized to that of pPIG-PB2 (Ty04), which contains 1.76x1011 copies / µg. This 

corresponded to 31.5µg and 4.94µg of the bacmid and p∆Fast-P8 plasmid DNA, 

respectively. Supernatant from each transfection was titrated every 24 hours for 3 

days. Although the bacmid DNA was delayed in its amplification, virus titers in the 

supernatant recovered to similar levels as the controls by 3 days post transfection 

(Figure 5.9). It should also be noted that the bacmid transfection was hindered by 

DNA precipitation and a high toxicity due to the amount of transfection reagent used. 

Regardless, the bacmid encoding Ty04 reverse genetic cassettes is competent for the 

rescue of influenza in tissue culture. 
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Table 4: Sequencing statistics of bacmid cloned influenza genes 

 
PB2 PB1 PA HA NP NA M NS 

Coverage 100% 100% 100% 100% 100% 100% 100% 100% 
Percent Identity1 100% 100% 100% 100% 100% 100% 100% 100% 
Number of Reads 7325 6941 6385 4904 5239 4459 3411 3007 
Average Depth2 412 398 382 372 416 391 379 379 
 
1 Compared to sequence of pPIG2012 plasmids 
2 Depth of unique reads 
   

 
Figure 5.9: Rescue kinetics of complete reverse genetic constructs. 293T/MDCK 
co-cultures were transfected with either eight pPIG2012 plasmids (blue), a single 
p∆Fast plasmid encoding all eight influenza gene cassettes (red), or a bacmid 
containing all eight influenza gene cassettes (black) from Ty04 under the control 
of the swine polymerase I vector (N=3). Copy numbers of plasmids (each gene) 
and bacmids were normalized to the amount of pPIG-PB2 in 1µg. 
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 Rescue of influenza virus from eight plasmid systems are efficient, and has 

become routine in many labs. DNA in the transfection generally reaches 105 copies of 

each plasmid per cell. This ensures that cells receive, on average, many copies of 

each plasmid in the eight-plasmid set.  As a single bacmid contains the complete 

complement of gene cassettes required to rescue influenza virus, we reasoned that 

transfection of the bacmid and subsequent virus rescue would be more efficient than 

the standard eight-plasmid transfection scheme. To do this, transfections were 

performed as before, but 2.8x1010 copies of either the bacmid DNA or each of the 

eight pPIG2012 plasmids encoding Ty04. This represents a 6.4x reduction in the 

amount of DNA previously used, and is about the limit at which virus can be 

consistently rescued from the bacmid. For the bacmid, this transfection consists of 

5µg total DNA while the individual plasmids range from 159ng (pPIG-PB2) to 115ng 

(pPIG-NS) depending on the length of the influenza gene insert. Similar peak titers 

were observed for both the bacmid transfection and the pPIG2012 transfection. 

Although the difference was not significant, the bacmid tended to grow to higher 

titers than the eight-plasmid transfection (Figure 5.10). Rescue of the bacmid was also 

more consistent with the bacmid with 3/3 replicates rescuing virus compared to the 

eight-plasmid transfection, which only had 2/3 replicates rescue. These results may 

suggest that while the bacmid contributes a complete reverse genetic, any gain in 

efficiency may be modulated by other factors such as transfection efficiency or 

nuclear transport of such a large DNA molecule. 
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Figure 5.10: Low copy rescue of influenza virus. Bacmid or eight pPIG2012 
plasmids were transfected into 293T/MDCK co-culture at 2.78x1010 copies of 
either the bacmid or each plasmid. Supernatant was harvested every 24 hours for 
128 hours and titrated on MDCK. N=3. 
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Bcmd-FluRG also contains the information required to rescue AcNPV 

baculovirus in insect cell culture. This allows for an additional mode of reverse 

genetic competent DNA entry into target cells as baculoviruses have been shown to 

be strong transducers of mammalian cell types (245). To determine if the Bcmd-

FluRG DNA could indeed generate baculovirus, bacmid DNA was transfected into 

Sf9 insect cells. At 96 hours post transfection, the supernatant was collected, clarified 

with low speed centrifugation, and treated with DNaseI to remove any contaminating 

bacmid DNA from the transfection. DNA protected within virions was then purified, 

and each of the eight influenza genes encoded within the baculovirus genome was 

amplified with full-length primers (Figure 5.11A). The transfected cells were also 

fixed and stained for gp64, a baculovirus surface glycoprotein (Figure 5.11B). 

Baculovirus was passaged 4 subsequent times, and DNA prepared as before. Again, 

PCR amplification indicates the presence of all eight influenza reverse genetic 

cassettes within the genome of the baculvirus (Figure 5.11A). Together, these data 

indicate that the Bcmd-FluRG bacmid is competent for the rescue of baculovirus 

containing the reverse genetic cassettes required for the rescue of influenza virus, and 

that these cassettes are stable over multiple passages. 
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Figure 29: Rescue of rBV-P8 baculovirus encoding influenza reverse genetic 
cassettes. A) PCR amplification of baculovirus vectored influenza reverse genetic 
cassettes using full length, gene specific primers. DNaseI control is growth media 
spiked with 1µg bacmid DNA. B) Immunofluorescent staining of baculovirus 
gp64 on the surface of insect Sf9 cells. 
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5.4 Discussion 

 
Evidence suggests that swine play a major role in the adaptation of influenza 

viruses from the avian reservoir into the human population. This is indeed the case in 

the most recent pandemic in which viruses from the classical swine H1N1, 1967-

derived H3N2 human, and North American avian lineages converged in swine to 

produce the 2009 swine-origin pandemic virus. It is therefore reasonable to assert that 

swine health and human health are intimately intertwined, and that protection of 

swine heard from influenza viruses may have a direct influence on emerging 

pandemic viruses in humans. While biosecurity and vaccination provide the best 

means of protection in production facilities, a high degree of antigenic diversity 

within currently circulating and emerging strains complicate vaccination efforts. 

Vaccines must be produced quickly and reliably without changing the antigenicity of 

the seed strain. Although the advent of reverse-genetics for influenza virus has 

enabled vaccines to be produced much more quickly, seed stocks must ultimately be 

propagated in traditional substrates such as tissue culture or embryonated eggs. 

Vaccine candidate viruses also may not be well adapted for growth in these non-

natural substrates, as was the case for the 2009 human H1N1 vaccine, and adapting 

for high growth strains may adversely affect the intended antigenicity of the vaccine 

stock (249). Despite the experience with traditional vaccine production and access to 

more recent technology, vaccination of humans during the 2009 pandemic did little to 

significantly ameliorate the impact of the pandemic. Next generation vaccines must 

be able to be produced rapidly, in high yields, and with high antigenic fidelity to the 

circulating strains. Here, we propose either a DNA or a baculovirus-based vaccine for 
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the production of influenza viruses in swine cells with the intent of producing an in 

vivo reverse genetic vaccine. Cloned cDNA from a triple reassortant swine virus, 

Ty04, was introduced into a reverse genetic vector and transcribed into a viral-like 

RNA species under the control of a porcine RNA polymerase I promoter. The reverse 

genetic cassettes for each of the eight segments, consisting of the RNA polymerase II 

promoter, the cloned cDNA segment, the porcine RNA polymerase I promoter, and 

the bovine growth hormone polyadenylation signal, were serially cloned into a single 

shuttle vector and transposed into a bacmid encoding the AcNPV genome. We have 

shown that this bacmid is capable of rescuing both influenza and baculovirus in 

mammalian and insect cell culture, respectively. 

Single plasmid rescue strategies have been described previously in the 

literature (250). In our experience, these large plasmids with repetitive promoter 

sequences are unstable in E. coli, and the cassettes are often lost. Bacterial artificial 

chromosomes (BACs), such as bMON14272 used here, are based off of the F factor 

and are maintained at low copy numbers thus increasing the stability of the DNA 

(251). Our strategy also allows for the rapid exchange of surface antigens by using 

the Gateway cloning system, and doesn’t require ligations into large vectors. Given 

the higher cloning capacity of the BAC compared to traditional plasmids, we can 

envision the introduction of additional genes to act as immune modulators, increasing 

the response to the rescued virus. 
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Chapter 6: Conclusions and future prospectives 
 

Influenza A virus continues to circulate in human, swine, and avian reservoirs 

as well as many others. Understanding how these viruses share information between 

these reservoirs to create new strains is a vital part of not only influenza research, but 

also to pandemic preparedness. The four IAV pandemics and many of the outbreaks 

during the past century have highlighted the need for this understanding, and require 

further research to determine which gene constellations and mutations favor 

transmission and expansion of new viruses to and through a new reservoir, and 

ultimately into the human population. In this dissertation, we have used the ferret 

animal and competitive co-infection models to identify genes of significant interest 

during reassortment between two model viruses from two important genetic lineages. 

First, ferrets were co-infected with two wild-type viruses to identify highly favored 

constellations arising from reassortment. While reassortant strains were not identified 

in this study, we were able to conclude that the virus from the 2009 swine-origin 

pandemic had a significant fitness advantage during transmission to respiratory 

contact animals over either the seasonal H1N1 or H3N2 viruses. In fact, the latter two 

viruses could not be identified at all in the nasal washes of respiratory contact animals 

by RT-PCR. Although reassortants were not identified either, we suspect that they 

were present at such a low level to preclude their transmission to contact animals in 

the background of a wild-type, pandemic infection. Their relative fitness to the 

pandemic virus may have been obscured by the methods used to perform the 

transmission study. 
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 Given the apparent fitness advantage of the pandemic virus over the seasonal 

strains, we next sought to determine if reassortment between these viruses was 

possible. We hypothesized that if the pandemic virus truly had a fitness advantage 

over the seasonal strains, and if reassortment was possible in the ferret model then co-

infection of reverse genetic “surface” reassortants would regenerate a fully pandemic 

constellation. We also removed the requirement for aerosol transmission which may 

have served as a high selective barrier to the establishment of alternative 

constellations in the first experiment, and serially passaged entire populations of 

replicating viruses from the nasal washes of ferrets. After serial passage, we found 

that reassortment had occurred and that three independent infections had resulted in 

the same H1N2 constellation with seasonal PB1 and NA genes in an otherwise 

pandemic virus. These finding suggest the ferret, traditionally used to model human 

influenza virus infection, can be used to study reassortment. More importantly, the 

selection of the seasonal NA and pandemic M strongly are consistent with viruses 

currently being isolated in the field. 

 Having observed that the pandemic M segment was rapidly selected for 

during co-infections, we wanted to determine the genetic determinants responsible for 

segment selection. Chimeras were made between the seasonal and pandemic M 

segments and rescued in the previously described H1N2 constellation.  Competitive 

co-infections were then performed in vitro and in vivo with viruses encoding either a 

wild-type or chimeric M segment. Using this strategy, we were able to show that both 

M1 and M2 genes from the pandemic virus were sufficient to independently drive 

selection of the entire M segment when challenged against a similar seasonal 
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segment. Additionally, it was observed that a wild-type pandemic segment had a clear 

selective advantage over either of the chimeric segments, which encoded only a 

single pandemic M1 or M2 gene, again suggesting that both M1 and M2 contribute to 

the observed preference for the pandemic M allele in that constellation. Further 

studies of the pandemic M1 and M2 proteins are required to determine the 

mechanisms by which they promote the selection of this gene. Direct measurements 

of the ion channel activities and protein localization studies could shed light on a 

possible mechanism. 

 While the pandemic M and seasonal NA segments have been observed to 

segregate together and cooperate with each other, the responsible mechanisms remain 

unclear (198, 221, 222). We’ve observed through neuraminidase activity assays that 

the M1 protein may operate to increase the apparent activity of the neuraminidase. 

This may not be a direct affect on the enzymatic properties of the protein, but rather 

indirectly through additional NA incorporation into or concentration of NA protein 

within a portion of the virion. 

Swine play an important role in the adaptation of viruses from the avian to the 

human reservoir. Moreover, their increased susceptibility to viruses from both 

reservoirs makes swine an important nexus of reassortment between avian, human, 

and endemic swine viruses. Controlling the introduction and movement of new 

isolates within this species therefore has a direct influenza on human health, and may 

play a role in pandemic prevention. Current inactivated vaccines may not be 

sufficient to protect against newly introduced HA antigens, and current autogenous 

vaccines that protect individual herds may not grow efficiently in egg substrates. 
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Here, we have developed a new vaccine platform that is tailored specifically to swine 

for the purpose of generating virus de novo through either DNA transfection or 

baculovirus transduced introduction of reverse-genetic elements directly into swine 

cells. Our approach does not require virus to be grown in artificial substrates, and can 

rapidly accommodate new HA and NA antigens into an already well characterized 

viral backbone. A new, bi-directional influenza reverse genetic backbone was 

constructed using the porcine polymerase I promoter to drive transcription of a viral 

RNA-like product. We found that influenza virus could be successfully generated in 

tissue culture from an eight-plasmid transfection using this vector.  

Using this reverse genetic vector, we envision a new generation of species 

specific, tailor-made, DNA or baculovirus-transduced vaccines for use in swine. We 

have transferred the eight reverse genetic cassettes required for the rescue of 

influenza virus into a single bacmid. In addition to being stable, HA and NA 

segments can be exchanged rapidly to update the antigenicity of the vaccine. The 

bacmid rescues influenza virus in mammalian cell culture, and baculovirus containing 

the reverse genetic cassettes in insect cell culture. Baculoviruses are currently used to 

produce many vaccines, including FluBlok, which is a protein subunit vaccine 

produced from baculovirus. Here, however, we envision the novel use of the 

baculovirus to transduce porcine cells and generate virus in vivo. Using either a DNA 

or baculovirus vaccine approach could decrease the reliance on classical methods 

used to produce influenza virus vaccines. We have shown that influenza virus can be 

rescued from the recombinant bacmid. We have also shown that the influenza 
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cassettes are stable during baculovirus passage. Further work, however, is required to 

show that influenza virus can be generated from baculovirus transduction. 
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Appendix 
 

Table S1: Hemagglutination inhibition titers following co-infection 
 

 
Seasonal Titers 

 
Pandemic Titers 

 
0 dpi 14 dpi 

 
0 dpi 14 dpi 

Infected <10, <10, <10, <10 
<10†, <10† 

160, 160, 80, 160  <10, <10, <10, <10 
<10†, <10† 

640, 640, 320, 640 

      
      † Animals euthanized on 4 dpi for tissue collection. 
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Table S2: Majority genotype of passage 7 viruses 
  

  
PB2 PB1 PA HA NP NA M NS 

Lineage A 
 

Pandemic Seasonal Pandemic Pandemic Pandemic Seasonal Pandemic Pandemic 

          Lineage B 
 

Pandemic Seasonal Pandemic Pandemic Pandemic Seasonal Pandemic Pandemic 

          Lineage C 
 

Pandemic Seasonal Pandemic Pandemic Pandemic Seasonal Pandemic Pandemic 

       
   Seasonal: A/Memphis/14/98 (H3N2) origin; Pandemic: A/Netherlands/602/2009 (H1N1p) origin 

 Bold indicating segments for which there was strong selection by real-time PCR. 
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Table S3: Lineage consensus sequences of pandemic HA during passage 
 

 
Position Inoculum P1 P3 P5 P7 

Lineage A HA1 137 A A A A/T T 

 
HA2 47 E E E E/K K 

Lineage B HA2 55 I I I I I/V 
Lineage C HA1 252 V V V/M V/M M 

 
 
  



 

 130 
 

 

Table S4: Taqman Primer and MGB Probe Sets for Quantitative RT-PCR of Influenza Gene Alleles 

   
Seasonal Primers 

 
Pandemic Primers 

Gene 
  

(A/Memphis/14/1998 (H3N2)) 
 

(A/Netherlands/602/2009 (H1N1)) 
PB2 Forward 

 
GRGATGGTGGACATTCTTAG 

 
CCAGGAGGAGAAGTGAGA 

 
Reverse 

 
GAAGGATGAGCTGATTCTCA 

 
GCACATTTCCAAGAGAGATG 

 
Probe 

 
6FAM-CCATTGCAGCCTT 

 
VIC-TGCTGACACTGCT 

      PB1 Forward 
 

GGAGTAACAGTGATAAAGAACAA 
 

GCAGAGAGAGGCAAGTTA 

 
Reverse 

 
TCTCCTCTATGGCACCTATA 

 
CTCCTAGCTAAAGTTTCAACAAA 

 
Probe 

 
6FAM-TGGACCAGCAACA 

 
VIC-ATCGCAACACCTG 

      PA Forward 
 

CCAAGACCAATCAAACTTCC 
 

CCGATTTGAGATAATTGAAGGAA 

 
Reverse 

 
CCTTCTCCTTCGTGACTTG 

 
CCTGTTGTGTTACATATACTGTTC 

 
Probe 

 
6FAM-ATCAGCGGTCCAA 

 
VIC-ACCGAATCATGGC 

      HA Forward 
 

CTTCCAAAATAAGAAATGGGAC 
 

TGCTGGATCTGGTATTATCA 

 
Reverse 

 
GGCACATCATAAGGGTAAC 

 
ATCGGATGTATATTCTGAAATGG 

 
Probe 

 
6FAM-AGCCTACAGCAAC 

 
VIC-AGTCCACGATTGC 

      NP Forward 
 

CGGTCTTATGAACAGATGGA 
 

AGTGGGCATGACTTTGAA 

 
Reverse 

 
TGCACATTTGGATGTAGAATC 

 
CTGGGTTTTCATTTGGTCTC 

 
Probe 

 
6FAM-TCGCCAGAATGCA 

 
VIC-TGACCACTTGGCT 

      NA Forward 
 

SAGGAAACTGAAGTCTKGTG 
 

GAGCTGTCCTATTGGTGAA 

 
Reverse 

 
TAGGCATGAGATTGATGTCC 

 
CCATCATGACAAGCACTTG 

 
Probe 

 
6FAM-TGAGCCTGTTCCA 

 
VIC-AGCGACTGACTCA 

      M Forward 
 

GGCAACAACCAATCCATTA 
 

GATGCAGCGATTCAAGTG 

 
Reverse 

 
CCTGACTAGCAATCTCCA 

 
AGACGATCAGTAATCCACAATA 

 
Probe 

 
6FAM-TGCCTGCTCACTT 

 
VIC-TCGTCATTGCAGC 

      NS Forward 
 

AGGCACTTAAAATGACCATG 
 

TCACGAGACTGGTTCATG 

 
Reverse 

 
ACCAGTTTCTTGACAATTCC 

 
GTTCGCTTTCAGTACTATGTTC 

 
Probe 

 
6FAM-TCCACACCTGCTT 

 
VIC-CAATCGCACGCAA 
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Table S5: Primers for M Amplicon Deep Sequencing 
  

      Reverse Transcription Primer 
   M13-M 681F AACAGCTATGACCATGTTGGGACTCATCCTAGCTCCAGT 

      Amplification Primers 
   Lib-L M13-GS Fwd CCATCTCATCCCTGCGTGTCTCCGACTCAG[MID]AACAGCTATGACCATG 
   Lib-L M Rev CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCGTAGAAGGCCCTCTTTTC 

      MID Sequences 
MID001 ACACGACGAC 

 
MID021 CGACGACGCG 

MID002 ACACGTAGTA 
 

MID022 CGACGAGTAC 
MID003 ACACTACTCG 

 
MID023 CGATACTACG 

MID004 ACGACACGTA 
 

MID024 CGTACGTCGA 
MID005 ACGAGTAGAC 

 
MID025 CTACTCGTAG 

MID006 ACGCGTCTAG 
 

MID026 GTACAGTACG 
MID007 ACGTACACAC 

 
MID027 GTCGTACGTA 

MID008 ACGTACTGTG 
 

MID028 GTGTACGACG 
MID009 ACGTAGATCG 

 
MID029 ACACAGTGAG 

MID010 ACTACGTCTC 
 

MID030 ACACTCATAC 
MID011 ACTATACGAG 

 
MID031 ACAGACAGCG 

MID012 ACTCGCGTCG 
 

MID032 ACAGACTATA 
MID013 AGACTCGACG 

 
MID033 ACAGAGACTC 

MID014 AGTACGAGAG MID034 ACAGCTCGTG 
MID015 AGTACTACTA 

 
MID035 ACAGTGTCGA 

MID016 AGTAGACGTC 
 

MID036 ACGAGCGCGC 
MID017 AGTCGTACAC 

 
MID037 ACGATGAGTG 

MID018 AGTGTAGTAG MID038 ACGCGAGAGA 
MID019 ATAGTATACG 

 
MID039 ACGCTCTCTC 

MID020 CAGTACGTAC 
 

MID040 ACGTCGCTGA 
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Figure S1: Sequence of the synthetic porcine RNA polymerase I promoter. The 3’ noncoding region from 
A/guineafowl/HongKong/WF10/1999 (H9N2) NS, NotI, and BstEII restriction sites were added for 
convenience. 
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Figure S2: Luciferase activity of pΔFast constructs. Plasmids containing 1, 2, or 
3 genes from A/turkey/Ohio/313035/2004 (H3N2) were transfected into PK(15) 
cells together with plasmids to complement the full vRNP luciferase amplicon. For 
example,  P1.1 (PB2), P1.2 (PB2, PB1) were complemented with pPIG-PB1 + 
pPIG-PA or pPIG-PA, respectively, together with pPIG-. P1.3 (PB2, PB1, PA) 
required no complementation. All P1 constructs were transfected with pPIG-NP 
and pPIG-GLuc. P2.1 (NP), P2.2 (NP, M), and P2.3 (NP, M, NS) were all 
transfected with pPIG-GLuc and complemented with pPIG-PB2, pPIG-PB1, and 
pPIG-PA. 
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