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Human gait dynamics were studied to aid the design of a robust personal 
navigation and tracking system for First Responders traversing a variety of GPS-
denied environments. IMU packages comprised of accelerometers, gyroscopes, 
and magnetometer are positioned on each ankle. Difficulties in eliminating drift 
over time make inertial systems inaccurate. A novel concept for measuring 
relative foot distance via a network of RF Phase Modulation sensors is 
introduced to augment the accuracy of inertial systems. The relative foot sensor 
should be capable of accurately measuring distances between each node, 
allowing for the geometric derivation of a drift-free heading and distance. A 
simulation to design and verify the algorithms was developed for five subjects in 
different gait modes using gait data from a VICON motion capture system as 
input. These algorithms were used to predict the distance traveled up to 75 feet, 
with resulting errors on the order of one percent.  
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Chapter 1  
 
 
 
 

Introduction 
 
 
 

1.1 Problem Statement  
 
 
 According to the United States Fire Association, on average, nearly 110 

firefighters have lost their lives yearly in active service over the past decade.  

Many of these deaths are preventable, provided that the location and condition of 

the firefighter are known to the incident commander. The program objective is to 

produce a proof of concept for a system capable of tracking a First Responder as 

they travel through a GPS-denied environment. The navigation system must 

function without the use of GPS tracking (in GPS-denied environments) and with 

zero pre-installed infrastructure for tracking, while ensuring accuracy over time to 

within 1 meter of the actual physical position of the first responder. The 

navigation system must be capable of performing in a variety of harsh physical 

environments, including limited and no-visibility, and high heat while accurately 

capturing any physical motion that the first responder may undergo. The 

performance must be evaluated in a variety of locations, such as single-family 

homes, commercial high-rises, underground tunnels or wooded terrain.  

 
 The majority of motions performed by first responders within a burning 

building are on their hands and knees due to limited visibility. Thus, it is crucial 
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for the system to be capable of evaluating and accurately tracking any human 

motion, including, but not limited to: walking, crawling, shuffling, and climbing. In 

addition to the standard inertial and dynamic approaches using a package 

comprised of accelerometers and gyroscopes, a human kinematics and 

dynamics study was conducted to evaluate the performance of a gait-based 

approach. A future goal of the program is to integrate a complete monitoring tool, 

capable of evaluating the physiological status of the subject, as well as 

accurately tracking their attitude in space.  

 
 This work was partially funded by investment from the Department of 

Homeland Security (DHS). A fundamental goal of the DHS program is to 

consolidate the lessons learned by the First Responder community regarding 

personal navigation, to avoid the loss of previous experience, and therefore also 

avoid repeating historically learned tragic lessons. As recently as January 2009, 

the DHS had released a set of requirements for their GLANSER (Geospatial 

Location Accountability and Navigation System for Emergency Responders) 

program, which accepted proposals and entered the first stage of development 

shortly after [1]. The GLANSER program is poised to set the industry standard for 

personal navigation research and development in the technical community. 

Numerous government agencies and significant portions of the private sector 

have a vested interest in the development of similar technology. The National 

Aeronautics and Space Administration developed comparable requirements for 

planetary surface (celestial) navigation technology and continue to pursue and 



 3 

fund similar projects. Countless military and special ops applications exist within 

each branch of the armed forces, including the popular “Future Soldier” initiative. 

 
1.2  Previous Work 

 
1.2.1 Inertial and Integrated Navigation Systems 

 
The use of inertial sensors for personal dead reckoning is an aged 

concept that has been under considerable development over the past decade. 

While a variety of unique approaches have been taken to solve the problem, the 

fundamental issue with the inertial-based solutions stems from the drift of such 

packages over time, which rapidly leads to the build up of an unacceptable decay 

in accuracy. Accelerometer and gyro drift is particularly pronounced in use with 

moving parts that are subject to shock and temperature changes. To minimize 

unnecessary motion, many navigation sensor packages are designed for use as 

close to the subject’s center of mass as possible [2, 3]. In just a matter of 

minutes, the necessary double integration of the raw sensor data accumulates an 

ever-growing error term, which is unacceptable for the purposes of location and 

tracking. A successful navigation system must be capable of locating the subject 

within a one to three meter radius.  

 
Several additional constraints on the technology exist simply because of a 

limit on the expense of the final product. Low-cost inertial sensors come with a 

performance tradeoff and their accuracy suffers more over time than “high-end” 

industrial grade accelerometer packages. High-performance accelerometer 
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packages have a tradeoff between physical size and expense. Thus, what is 

available for use in a personal navigation system is a series of lower 

performance and smaller size inertial packages. The demand for miniature 

accurate inertial packages has spurred significant development in the areas. 

Companies such as Intersense Inc. have shifted focus to commercializing a new 

standard of accelerometer technology, coining the term of “industrial grade 

accelerometers” with their latest technology. However, even with expensive 

technology additional assumptions must be introduced to successfully decrease 

the error terms or incrementally re-zero the sensor drift errors.  

 
A sample technique for dealing with drift errors was introduced by Dr. 

Johann Borenstein of the University of Michigan in the Personal Dead Reckoning 

(PDR) system [4]. In addition to the widely practiced “zero-velocity updates” 

concept which allows the re-zeroing of accelerometer drift every time a heel 

strike is detected in an IMU package, the University of Michigan team introduced 

the use of a straight-line walking assumption. By assuming straight-line 

trajectories in the majority of movement modes, until a drastic heading change is 

detected, the University of Michigan team was able to obtain accuracies to within 

several meters, under certain traveling conditions. A straight line assumption is 

so successful, because the majority of the error term stems directly from the 

rapid declination of the calculated heading from the true heading. Unfortunately, 

the straight line assumption cannot be made under all traveling conditions, and 

gradual turns are commonly found in outdoor applications.  
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Multiple inertial approaches have been marketed over the course of the 

last several years from representative companies such as TRX Systems, Q-

Track and Honeywell. These solutions are based on fusions of sensor packages, 

and have led the charge in creating more accurate sensors, better processing 

algorithms, and new approaches to the problem. TRX Systems developed a 

design concept with some obvious limitations in functionality, as it accurately 

functions only in the most stable of gait modes, such as walking. Honeywell 

focused on designing a complimentary inertial system that couples with an 

existing GPS signal, relying on GPS-updates near windows. Honeywell 

approached the problem with focus on developing better and more expensive 

IMU hardware, where the algorithm design would follow suit. While some of 

these companies have successfully determined the right combination of 

hardware necessary to produce desired results under controlled circumstances 

(such as simple walking), it is clear that an auxiliary system is required to 

augment the IMU approach, if a standalone system is to be capable and robust 

enough to solve the entire problem.  

 
   

1.2.2 RF Navigation 

 
 Radio frequency based solutions to the problem of personal navigation 

require an existing or deployable infrastructure around the incident area, which is 

directly contradicting to the program requirement mandated by the DHS. Such a 

requirement is a steep price to pay, and is often enough of a discouragement 
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away from an RF based approach. Emergency situational responses for 

understaffed first responders would rarely have the luxury for additional setup 

and system calibration time and manpower. These systems have the benefit of 

functioning in an “absolute” reference frame, rather than a part of an estimate 

based on a dead reckoning system. Despite all of these considerations, a 

deployable system was developed and produced as part of an initiative by the 

Worcester Polytechnic Institute [5]. The Precision Personnel Locator Project 

resulted in the design and construction of a rapid deployment antenna and 

transactional RF Fusion system. This system is capable of achieving meter-level 

accuracies in single-family homes and even some multi-floor commercial 

buildings, but is ultimately inapplicable to large capture volumes, tall buildings, 

underground tunnels, or celestial navigation due to the necessary deployable 

infrastructure [6]. A new RF-based time of flight sensor and methodology will be 

introduced in this work to augment existing IMU technology.  

 

 

1.2.3  Alternate technologies 

 
 A wide assortment of capable technology exists for communicating on 

demand information to first responders. Such technology has been in 

development for many decades, but lacks the maturity due to its inherent 

expense, and the lack of a viable supply-demand market [2].  While much of this 

information can be extremely useful for detection and relation of critical mission 

data, it is difficult to integrate into the requirements of the overall navigational 
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package. One such example is a Remote Casualty Location Assessment Device 

(RCLAD) by L3 Communications and CyTerra, a Doppler Radar technology that 

is capable of detecting and measuring the distance to moving and near-

stationary personnel through walls [2]. Integrating such information within the 

overall framework of a personal navigation system would serve as a great 

addition to many rescue initiatives. However, the practical integration to a 

personal navigation system is unlikely in the near future.  

 
An additional technology produced by Q-track uses Near-field 

Electromagnetic Ranging and is capable of determining via its processing 

algorithms how a signal correlates to a particular path2. In essence, the 

technology correlates a live signal to previously stored signals sent by equipment 

located on the personnel, and can thus direct a rescuer along the previous path 

of a downed firefighter. This method also requires deployment of pre-existing 

infrastructure around the operating area and has similar limitations to the RF 

techniques described in the previous section. 

 
 

1.2.4  Human Gait Analysis in Navigation 

 
Human gait is the popular study of human locomotion and is often used in 

a kinesiology setting for injury evaluation and for the advancement of robotic 

locomotion. Human gait properties are very unique and variable between 

subjects due to the incredibly large number of degrees of freedom, yet these 

properties follow the same fundamental physical principles in all subjects [7]. 



 8 

Applying fundamental human gait principles in an engineering setting can help 

deduce a physical foundation for algorithms and sensor packages.  

 
Applying the principle that “the body travels wherever the feet go” it is 

possible to glean some information about the location and state of the subject. A 

review of existing research into human gait properties was conducted, focused 

specifically on interactions involving the feet. It was concluded that only two 

fundamental human gait properties involving the feet were truly deterministic: the 

subject’s stride length and stride frequency [8]. The deterministic nature of these 

quantities allows the construction of individualized gait models for different 

subjects, using the fundamental relationship between stride length and 

frequency. It is important to note that the uniqueness of human gait properties 

between subjects also translates into large variability in gait model 

characteristics. This variability is sensitive to many factors, including footwear, 

type of gait mode, physical boundaries, and payloads. This prompts the question 

of accuracy of human gait models. It is clear that human gait modeling is simply a 

technique of first order accuracy, capable of augmenting existing systems and 

functioning as a form of “sanity check” and akin to simple pedometer concepts 

that are widespread in exercise distance estimation.  

 
 

1.3  Objective of Current Work  

 
The program objective is the study of human kinematics and dynamics to 

aid in the design of a robust personal navigation and tracking system for a variety 
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of physical environments. An important aspect of the program was to develop a 

system by determining an appropriate suite of sensors and signal processing 

algorithms that can determine the user’s position inside of a building or structure 

without GPS or UWB to the accuracy of a meter. This work approaches the 

problem of personal navigation from a physical perspective and tries to gain 

important engineering insight from human gait characteristics. The modeling and 

study of First Responder (human) kinematics are imperative to the design of an 

optimal system for an emergency environment. The evaluation of the accuracy 

and performance of such a system in emergency environments was also a goal. 

The development of the personal navigation was sponsored by the Department 

of Homeland security and thus adhered to a set of requirements developed by 

the DHS. The difference between location (navigation) and tracking must also be 

considered in an overall design setting.   

 
 

1.4  Thesis Outline 

 
 This work is comprised of a set of five chapters and a set of appendices.  

 
 The first Chapter outlines the problem statement, provides a historical 

overview of the work conducted in the field, the different approaches taken to 

solving the problem, and describes the current objectives of this research.  

 
 The second Chapter delves into the details of human biomechanics, as 

these principles are applied to different modes of human locomotion. This 
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chapter also examines the unique characteristics and applications of human gait 

to the problem at hand, beginning with the investigation of simple pedometer 

concepts, and the expansion of these applications to an inertial system.  

 
 The third Chapter discusses a novel approach to determining the step size 

and heading of a human subject via a relative foot-sensor measurement. The 

proposed development of the relative foot sensor concept is outlined, the 

modeling of the sensor performance using both 2-D and 3-D simulations is 

presented, and the expected capability of the sensor is offered along with both its 

shortcomings and advantages.  

 
 The fourth Chapter describes the experimental approach taken toward 

validating the algorithms put forth in the previous Relative Foot Sensing Chapter. 

The algorithms presented in the previous chapter are evaluated using VICON 

motion capture data from a variety of subjects as input. An assortment of gait 

modes was investigated and the results are presented.   

 
 The final Chapter presents a summary of the results in this thesis and 

proposes future work for improving the quality of Personal Navigation packages 

and the accuracy of the gait modeled approach. 

 
Appendix A evaluates the merit of using a differential GPS sensor as a 

platform for testing relative foot sensing concepts, and provides an estimate for 

the potential accuracy of the sensor. 

 
Appendix B provides additional data captured throughout this work. 
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Chapter 2  

 
 
 
 

Human Biomechanics of Walking 
 
 
 

2.1 Modeling of Walking Biomechanics  

 
Modeling and mathematical expression of human biomechanics has been 

a major focus of kinesiology and robotics research over the course of several 

decades. The evaluation of subjects and construction of kinematic models is far 

from a new phenomenon, yet for many years the goal of such models has been 

the analysis and prediction of forces and moments for injury analysis or robotic 

mimicry, rather than predictive capability of distance traveled. Breaking gait 

modeling down into individual, localized variables is a valid approach, and many 

existing models focus on highly specific properties of human gait. The approach 

described in this chapter is a simplification of the entire system and attempts to 

establish fundamental relationships found in the locomotive system in its entirety, 

rather than modeling each degree of freedom separately. This approach attempts 

to characterize deterministic properties of human gait including the stride length, 

stride frequency, and cumulative distance. A VICON motion capture system was 

used to record subjects walking on a treadmill and ground to model their stride 

length vs. frequency [Figure 1]. Firefighter boots were used for each walking test. 

It is clear from comparisons to regular walking and existing pedometry research 
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that boots alter the natural gait in a complicated relationship that limits ankle 

movement and affects the acceleration and deceleration regions of the curve at 

higher frequencies [9]. 

 
It is possible to measure the instantaneous stride frequency of an 

individual using the accelerometer spikes from a synchronized inertial-based 

system. Given a model of stride length vs. frequency, it is then possible to 

calculate an estimated stride length of an individual using the instantaneous 

frequency information from the inertial measurements. This information allows 

the system to verify, to first order, the level of accuracy produced by the inertial 

sensor package.  This approach can, in essence, be regarded as an advanced 

pedometer concept.  

 

 
Figure 1: VICON Data Collection in Motion Capture Area 

 

 

 Motion capture technology allows precise tracking of markers in an 

absolute coordinate frame in space. This technology is extremely popular for 
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obtaining experimental gait data, but quickly becomes expensive for use in large 

capture volumes. Thus, the use of treadmills for gait analysis has been 

popularized with the advent of motion capture technology, as it allows the 

investigation of gait for extended periods of time and distances, while eliminating 

the requirement for a large capture volume [10]. It is well documented that there 

are significant differences between human gait on a treadmill and gait over level 

ground.  Of specific interest is the statistically significant difference in stride 

frequency on treadmills from the natural stride frequency over level ground. From 

the present analysis by Riley et al [11], it is clear that analysis of locomotion on 

treadmills often decreases the natural step size and increases the frequency of 

locomotion. Thus, in order to accurately create a model of natural gait, level 

ground locomotion should be analyzed. It is worth noting that human gait can 

also be affected by the addition of payloads and the introduction of low-visibility 

environments.  

 

 
Figure 2: VICON House of Moves Capture Area 

Runway, 
Distance 

~73 ft 
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 Gait models were constructed using VICON motion capture data of five 

different human subjects. The VICON motion capture data for five separate 

subjects was obtained by outside professional contractors at the House of Moves 

VICON studio in Los Angeles, California [Figure 2, Table 2]. Each subject wore 

Fireman boots in each gait mode trial. The data was transferred to the University 

of Maryland for processing and analysis. No personalized information about the 

subjects is available with the exception of key properties that characterize their 

gait such as height, gender, and weight [Table 1].  

 

Table 1: House of Moves Subject Characteristics 
Subject Gender Shoe size Height Weight 

1 Female 7.5 5’9’’ 115 lbs 

2 Male 11 6’1’’ 165 lbs 

3 Female 5 5’9’’ 110 lbs 

4 Female 7.5 5’7’’ 115 lbs 

5 Male 14 6’7’’ 220 lbs 

 

 

 Each different mode of human locomotion must be modeled separately, 

and thus five unique modes were investigated: normal walking, backwards 

walking, forward shuffling, and crawling on hands and knees, and the army crawl 

on hands and elbows. In order to construct gait models, simple walking was 

investigated first at a range of speeds. This investigation validated basic 

kinesiology principles regarding the acceleration, natural, and deceleration 

sections of human gait, and allowed the focus of research to modeling natural 
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gait properties, as they most accurately represent the average tendencies of the 

subjects over time. Using the treadmill data, a sample gait model of stride 

frequency vs. stride length was produced [Figure 3, Figure 4]. 

 

 

Table 2: Test Matrix at LA House of Moves 
Gait 

Modality 
Title Description Number 

Of Trials 

1 Forward Walk Regular walk along 
a straight line for a 
distance of 75 feet. 

15 

2 Backward Walk Walking backward 
along a straight line 
for a distance of 75 

feet. 

15 

3 Forward Shuffle Shuffling forward 
without lifting up 
heel off of the 
ground for a 

distance of 75 feet. 

15 

4 Forward Crawl Crawling on hands 
and knees for a 

distance of 75 feet. 

10 

5 Army Crawl Crawling on 
stomach, elbows, 
and knees for a 

distance of 25 feet. 

10 
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Figure 3: Treadmill Walking 

 

 

RunWALKING

S
L
O
W

M
E
D

F
A
S
T

RunWALKING

S
L
O
W

M
E
D

F
A
S
T

 
Figure 4: Treadmill Gait Model 
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It was determined through experimental testing and review of existing 

literature that the treadmill gait model was not entirely representative of the 

physical parameters of walking, as the treadmill dictated the frequency of the 

walking behavior, and did not allow the subject to enter their natural gait regime. 

The reasons for this are discussed at length by Riley et al. Treadmill walking can 

produce frequencies that are higher than the natural over ground frequencies at 

the same speeds by an average of 5-10%, to compensate, the corresponding 

stride length is lower by 3-7% [11, 12, 13]. 
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Figure 5: Ground Gait Model 

 

 To address these concerns, an additional investigation was conducted 

ground, in which the subject walked at different speeds over ground. This model 

was found to more accurately represent the distance traveled [Figure 5].  
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 The gait model described above is used to estimate the total distance 

traveled and thereby provides a point of comparison to accelerometer outputs. 

To evaluate the error solely due to the distance calculation, straight line walking 

trials were analyzed for a variety of truth distances and at different walking 

speeds. Using an ideal step detection assumption (that each step is detected), it 

is possible to conclude that a gait model consistently determines the distance to 

within 5% of the true distance traveled. This is a substantial improvement over 

even existing advanced pedometer technology.  

 
While the most obvious cause of most pedometer and gait-related errors 

is miscounted steps, the second leading cause is the misrepresentation of the 

acceleration and deceleration regimes. Simply put, as is evident in both Figure 4 

and Figure 5, there is a non-linear acceleration and non-linear deceleration 

phase in the human gait. In order to account for that phase, a human gait model 

as found above may be used. The non-linear acceleration phase is uniquely 

defined by a large increase in stride frequency and is generally limited to the first 

three steps in normal walking modes. These steps are one half to one third of the 

natural gait stride length. The non-linear deceleration range is similarly 

expressed to the acceleration phase, but with a distinct drop in stride frequency. 

The natural gait regime can potentially be modeled very accurately, and serves 

as the foundation of pedometer technology. 

 
This line of thinking naturally yields a comparison to existing simple 

pedometer technology.  
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2.2 Pedometers 

 
Gauging distance traveled in units of strides, paces, or feet is a historically 

proven foundation for a measurement system, dating back to the ages of the 

Roman Empire [14]. Provided that the number of strides taken and the length of 

the strides are known, there is sufficient information to accurately determine the 

distance that was traversed. Most pedometers function on this principle, by 

counting steps as they are taken, and multiplying by an averaged stride length. 

The idea of mechanical pedometers was first conceived by the thought of 

inventors like Leonardo DaVinci and mechanically implemented by Thomas 

Jefferson [15]. These innovations were driven by a military demand and 

application toward mapping technology.  

 

 
Photo Courtesy of Lenore M. Edman, www.evilmadscientist.com [16]. 

 

Figure 6: Modern Mechanical Pedometer  
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Mechanical pedometers count the number of steps via a pendulum or other 

inertial mechanism. These pedometers are prone to miscounting steps due to 

separate tendencies to over count in active regimes and under count in passive 

ones. Simple mechanical pedometers count only the number of steps and 

multiply this number by an “average human stride length”, generally close to 76 

centimeters in length [17]. An example of a simple pendulum in a modern 

pedometer that closes an electric circuit to count a step is shown in Figure 6. 

 
Advanced digital pedometers use two-axis and three-axis accelerometers 

to measure spikes in acceleration, and software to process the signal via 

predetermined algorithms to decide whether a step has been taken, and the 

length of each step. These pedometers are even capable of personalized 

calibration to individual gait parameters for increased accuracy; however, the 

biggest errors still accumulate due to missing steps. Coupled software systems 

and the advent of software focusing on cadence is moving toward becoming a 

standard – and yet this software does not yet include fully adaptive gait models 

[18]. Even with modern technology, slower walking has always presented a more 

difficult problem to solve, due to the smaller amount of available information for 

detecting a step in the presence of less distinct peaks in accelerometer spikes 

and rhythmic gait patterns.  

 
Accuracy of mechanical and modern pedometer technology has been 

thoroughly evaluated by the research community. The study performed by 

Vincent et al. [19] makes the claim that consistent accuracy in step detection is 
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possible by modern pedometer technology to within 5%. In order to compare the 

developed gait models to existing technology, a Tech4O Accelerator RM1 watch 

and a mechanical waistband Yamax Digiwalker SW700 pedometer were used. 

The Tech4O Accelerator watch contains a three-axis accelerometer and claims 

accuracy above 95%. This particular pedometer has the unique attribute of 

differentiating between running and walking gait, and using separate stride 

lengths to estimate each. The watch was calibrated to the individual gait 

attributes of the subject prior to testing. A walking test was performed on a 

distance of approximately 40 meters at slow, natural, and fast walking speeds.  

 
A long straight hallway of 40 meters was traversed, and the resulting data 

was analyzed using pedometers, two ankle IMUs, and the ground model 

described in Section 2.1. At a natural (moderate) walking speed, on average, the 

subject traversed the hallway in a total of 59 steps.  
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Figure 7: 40 Meter Walk Distance Deviation 
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An ideal mechanical pedometer with 59 steps would therefore yield a total 

traversed distance of 44.84 meters, and an error of 12.1%.  A digital pedometer 

yielded an error range between 5% and 40%, depending on stride frequency.  

Running the acquired data through a stride-length vs. frequency model 

repeatedly generated accuracies near 5%, the best run yielded a traversed 

distance of 41.4 meters (3.5% error). It is important to conclude, therefore, that 

dead-reckoning systems with expensive sensor packages yield accuracies 

between 3% and 5% [20]. 

 
The results found in [Table 3: 40m Walk Prediction Error] for a natural 

(moderate) walking speed conclusively demonstrate that the gait model 

performed better than both mechanical and advanced digital pedometers for all 

walking speeds, assuming that the same number of steps were “missed” due to 

accelerometer insufficiency. However, using peak detection and the relative foot 

sensor concept described in Chapter 3 with the human gait model should 

eliminate a large portion of the accumulated error due to missed steps, and 

further increase the potential system accuracy and robustness. 

 
Table 3: 40m Walk Prediction Error 

Type of Model 
 

Total Distance 
Error  (m) 

Percent 
Error 

Simple Stride Length vs. 
Frequency Model 

1.888 4.72% 

Ideal Pedometer 
 

4.84 12.1% 

Digital Pedometer at 
Optimal Frequency 

-1.83 4.57% 

Digital Pedometer at 
Low Frequency 

-19.71 49.29% 
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It is important to consider that human gait models must be individualized 

to the subject, and their validity can change due to the addition of payloads and 

the physical surroundings. Thus, there are a number of issues that can arise with 

subject base-lining, and the use of gait models alone to represent the distance 

traveled. Thus, the concept of human gait modeling can only be considered as 

an addition to an existing inertial system. 

 
 

2.3 Inertial Measurement Systems 

 
 The University of Maryland’s “Maryland Avionics Package” (MAP) was 

used as the foundation for the personal navigation inertial system. A suite of 

necessary sensors for complete dead-reckoning were selected from the avionics 

package to form the personal navigation system (PNAV), complete with three 

accelerometers, gyros, and magnetometer. The Maryland Avionics Package was 

described and developed in Conroy et al. [21]. The larger and more cumbersome 

PNAV package was later upgraded with the aid of Advanced Medical Electronics 

Corporation and the use of their miniaturization technology. Paul Gibson lead the 

project as primary investigator of "A Wireless Wearable System to Measure 

Adherence to Mind-Body Study Protocols", funded by the National Institutes of 

Health, and produced some of the necessary technology that was used over the 

course of this project by the AME Corp. 
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Figure 8: PNAV Circuit Board 

 

The development of dead-reckoning systems has been well documented, 

and most notably IMU packages fall in ranges similar to Honeywell and its DRM 

class systems. Honeywell claims approximately 2-5% errors for the Honeywell 

DRM 4000 without GPS fix [20]. Thus, in order to be competitive with the industry 

systems, the PNAV system needed to be capable of similar accuracy and 

precision, after the addition of notable filtering and error re-zeroing techniques.  
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Figure 9: PNAV and AME Corp Inertial Sensor Suite 
 

 

The PNAV and AME inertial systems were calibrated through a process of 

bias and scale factor determination on accelerometers, gyroscopes, and 

magnetometer sensors. The resulting data was then used in processing the 

signal and integrating the signals for distance and heading information. 

 

 
Figure 10: Gyroscope Calibration 
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Figure 11: Accelerometer Calibration 

 

A rate table setup, as shown in Figure 12, was used to calibrate the 

sensor suite. The noise characteristics were also sampled to estimate potential 

error and aid in the effective construction of filter techniques. While an onboard 

filtering technique was never implemented with the inertial solution, an alternate 

technology was pursued for development including the analysis of zero-velocity 

updates [22]. Some automatic filtering techniques were briefly investigated in the 

post-processing scheme, to estimate the order of magnitude of the error due to 

drift from the use of an inertial solution alone. It was established that within fifteen 

minutes of operation, the accelerometer and gyro solution would significantly 

degenerate from the true location, when applied to simple walking, in a range of 

6-15% error.  
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Figure 12: PNAV on Rate Table 

 
 

 Integrating unfiltered three-dimensional results of an extended indoor 

walk, combined with stair climbing and multiple direction changes produced an 

overall error close to 15% over 15 minutes. By adding a re-zero velocity update 

technique, the error range could be decreased to 5-7%. The new AME sensors 

were then used as a second generation PNAV board, with an updated sensor 

suite that communicated through Bluetooth with a main station (personal 

computer) that collected the data and produced similar error ranges to the first 

generation PNAV board. It is clear that an inertial solution alone is not sufficient 

to accurately solve the GPS-denied navigation problem. 

 

2.4 Summary 

 
 Successful gait modeling can provide higher order of accuracy and a first 

order validation to inertial based systems. On a straight line walk, 5% error in 
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distance from a gait-based model was determined, as shown in Table 3. This 

result is an improvement upon regular pedometer techniques, and can have a 

wide range of applications. Figure 4 and Figure 5 show the range and 

development of a stride length vs. frequency model. These figures exhibit a large 

vertical spike in stride length at a certain frequency, this frequency is very near 

1Hz, or 6 radians/s. Inaccuracies in frequency measurements in this range can 

significantly increase the accumulated error. This regime requires a higher 

resolution of the behavior and more testing, as this falls into the category of non-

linear gait behavior.  
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Figure 13: Distance Error for Different Methods Over 40m Walk 

 
 
 

The greatest error in pedometer technology still stems from miscounting of 

the numbers of steps taken. Novel gait model analysis techniques can aid in the 

detection of steps with the use of a peak detection algorithm. A real-time peak 

detection algorithm, when synchronized with an inertial system, can help 



 29 

determine the likelihood of a certain mode. In order for this to be accomplished, 

future fuzzy logic algorithms must be developed.  

 
There are drawbacks to gait-modeling, including the need for time-

consuming personalized calibration and privacy concerns regarding the collection 

of personal data from first responders. Some potential scalability applications of 

the human gait models may exist, but require a more statistically sound analysis 

of gait properties in relation to specific body types, in a search for universal 

relationships between height, in-seam length, and stride length [23].  Stride 

parameters (stride length and cadence) are functions of body height, weight, and 

gender. Previous work has demonstrated effective use of such biometrics for 

identification and verification of people [24].  

 
In order to characterize the gait mode that a subject is traveling in and 

more accurately count the number of steps taken, a distance calculating relative-

foot sensor was conceived. Thinking of the gait models expressed in terms of 

stride length, it is natural to expand the principle to attempt measuring the 

distance between the feet in real time. This idea leads directly to the introduction 

of the relative foot sensor. Overall, the human gait model approach has the 

strong potential to aid the accuracy of personal navigation systems, and gives 

birth to a new type of pedometry concept. 
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Chapter 3  
 
 
 
 

Relative Foot Sensing  
 
 
 

3.1 Overview 

 
The research presented in the first two chapters highlights several issues 

with existing sensor concepts and their application to emergency environments. 

Current sensors only infer number of step and coarsely measure the heading, 

and very few sensors produce exactly what is needed. Additional issues arise 

from the kinds of motions that emergency personnel must undergo, for instance, 

the shuffling of feet or side-stepping can easily be interpreted as a full step by 

inertial systems. Crawling motions on knees and belly present an even more 

challenging problem for existing sensor packages. Walking up stairs and climbing 

ladders presents a height informational challenge, as vertical rung steps can be 

interpreted as forward steps. Baro-altimeters are insufficient, as they are 

adversely affected by temperature and pressure in fire environments. The error 

associated with such motions grows rapidly. While gyros and accelerometers can 

be used to determine the proper orientation of the subject, the distance traveled 

becomes difficult to measure. A true dead reckoning sensor that can provide true 

distance and direction information is necessary for an elegant solution to the 

personal navigation problem. This chapter outlines the concept of relative foot 
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sensing and details the algorithms necessary to process its accuracy and 

potential output data to achieve desired Personal Navigation results.  

 
A new sensor to detect accurate stride lengths and incremental headings 

can be designed through the use of a network of wireless sensors in boots, that 

measure distances between each node. Simply demonstrated, Figure 14 shows 

the concept of measuring distance between different locations on the foot.  This 

sensor can solve gait estimation and magnetometer deviation issues. The use of 

RF techniques for distance measurement via time of flight has been extensively 

investigated [25]. 

 
Figure 14: Simple Relative Foot Sensor Concept 

 
 

Attaching multiple sensors on each foot provides the ability to determine 

the distance between each sensor node, such as rAB = rBA, rCD = rDC. These 

distances were assumed to be constant, due to the rigid body assumption for the 

sole of the boot. This assumption does not have to be a limitation of the method, 

as with a large number of nodes, the assumption can be disregarded. The 

determination of heading and stride length turns into a geometric problem. There 
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are multiple options for range determination methods, such as Signal Time of 

Flight (TOF), Magnetic Intensity, or RF Phase Modulation [26]. The most 

practical solution is the positioning of RF receivers and transmitters plus 

processing board in the sole of the boot [Figure 15]. Using unique node 

identifiers, the carrier wave phase is processed for an accurate distance 

determination between two nodes.  

 

Figure 15: Relative Foot Sensor Boot Layout Concept 
 
 

The VICON motion capture system provides absolute coordinates of 

markers located on First Responder boots, as they move through space, while 

the First Responders undergo basic gait motions such as walking, crawling, 

shuffling, etc. It is clear that from the location of these markers it is possible to 

calculate the distance between these markers, and therefore simulate the 

calculation of an incremental heading and stride length as a function of time. A 

geometric stride length is defined as the distance between the two feet when 

they are both on the ground. This method cannot be applied to running, when 
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both feet may be in the air for some period of time [27]. The VICON motion 

capture system is not noise-free, and is capable of tracking its markers to 

millimeter accuracy [28]. Running a simple accuracy analysis for the required 

radio frequency of 2.4 GHz on a simple stride case [Figure 16]:  

 

Figure 16: Simple Stride 
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The assumption is made that foot separation does not change. In addition, 

some simple suppositions about the basic level of step accuracy and stride 

lengths estimates are made to calculate the sensor requirements.  
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Substituting (3.3) into (3.2), an accuracy determination on the order of 

1mm is made in (3.4).  
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If a 2.4 GHz radio frequency is assumed:  
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Thus, measuring 1/250 of the radio wavelength would allow each stride 

length measurement to be accurate within 1 mm. Thus, VICON motion capture 

data taken for subjects in the professional LA House of Moves studio can be 

used to simulate the performance of the Relative Foot Sensor concept. Using this 

information, an elaboration on the algorithms was made to simulate the behavior 

of the system in a two dimensional environment with Random Gaussian Noise, 

the results of this simulation will be further discussed in the next section. 

 
 
3.2 2-D Modeling 

 
The sensor would be responsible for measuring distances rAC, rBD, rAB, 

rBC, rAD, and rCD, thus they are assumed to be known at each step.  The variables 

that require calculation or estimation are denoted with a tilda (~) on the top. A set 

of initial conditions or information from the previous step must be assumed to 

solve the set of linear equations for a full 2-D step, described below in Figure 17.   
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Figure 17: Full Geometry of 2-D Step 

 
 

The stride length and foot separation entities are estimated as simple 

geometric properties of the step:  
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 This can in turn be expanded to an expression. And a series of non-linear 

equations in 3.8 can be constructed for the system.   
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090)()()( =°−++ kCABkTkBA ttt θθψ   (3.8a) 

090)()()( 1 =°−+− − kHkDCkCDB ttt θψθ   (3.8b) 

090)()()( 1 =°−−+− kTkACDkDC ttt θθψ   (3.8c) 

090)()()( =°−−− kHkBAkABD ttt θψθ   (3.8d) 

 
Using the law of cosines: θCAB, θCDB, θACD, and θABD are found:  
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Since the heading from the previous step is always known, this system of 

equations can be solved for the next step stride length LH and separation 

distance SH 

 

)sin( HBDH rL θ=    (3.10a) 

)cos( HBDH rs θ=    (3.10b) 

 
 

Integrating these quantities over time in turn produces the desired x and y 

location with respect to the starting point.  

. 

 Using the past time step estimates provides a good initial guess to the 

next time step solution, to solve the non-linear system of equations that can be 

expressed in the following terms:  
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222

HHBD Lsr +=              (3.11a) 

222 )cos()sin( BABAHBABAHAD rLrsr ψψ +++=  (3.11b) 

22 )sinsin( BABADCDCHAD rrsr ψψ ++=   

2)cossin( BABADCDCH rrL ψψ +−+         (3.11c) 

222 )cos()sin( DCDCHDCDCHAD rLrsr ψψ −++=  (3.11d) 

 

It is important to consider the limitations of this approach. The relative foot 

sensor alone is not capable of differentiating between forward and backward 

motion, or rightward and leftward motion, the integration of an inertial solution for 

directional addition is vital.  

 
A simple transformation of reference frames can also be used to approach 

the problem from an “incremental” heading and stride length point of view. It is 

also important to note that the derivations above use a different frame of 

reference than the collected VICON data, and the entirety of the processing was 

conducted in the VICON xyz coordinate frame.  

 

 

3.3 3-D Modeling 

 
The two dimensional model can be expanded to three dimensions with the 

use of nodes A, B, C, D placed on the ankle or calf of the boot, in the Y-Z plane. 

A similar technique to the one described in Section 3.2 can then be used to 

determine the position of the feet in the vertical direction. Using the same 

derivation pattern as in the previous section, the two solutions can be combined 
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for an X-Z and a Y-Z plane. By combining the X-Y solutions, and the X-Z/Y-Z 

solution, a full three-dimensional solution can be obtained. 

 
Figure 18: Additional Node Locations for 3-D Solution 

 

 The full three dimensional solution has immense benefits, as it eliminates 

the necessity for a magnetometer to successfully determine stair-climbing and 

ladder climbing.  

 

3.4 Predictions 

 
Using these concepts a simple 2-D simulation was coded in Matlab to test 

the effect of random inputted noise on a 4 node system, as described above.  

The simulation was run for ranges of 50-500 randomly varying steps, with an 

average step size of 50 centimeters, and repeated for a range of random error 

magnitudes to determine the necessary accuracy of the sensors. A sample error 

range for a path comprised of 250 steps, and a total truth distance of 125 meters 

is shown in Table 4.  The relative foot sensor nodes must communicate with an 
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accuracy of at least 1mm to achieve the desired accuracy for personal 

navigation. The relative foot sensor level of accuracy can significantly reduce the 

error associated with heading changes and completely eliminate certain errors 

due to the inability to differentiate between steps, as new peak detection 

algorithms can solve those issues.  

 
Table 4: 2-D Simulation Error Range 

Noise Magnitude Percent Error Range Distance Error 

0.001 mm ± 10
-4

 % 0.000125 m 

0.01 mm ± 10
-3

 % 0.00125 m 

0.1 mm ± 10
-2

 % 0.0125 m 

1 mm ± 10
-1

 % 0.125 m 

1 cm ± 1 % 1.25 m 

10 cm ± 10 % 12.5 m 

1 m ± 100 % 125 m 

 

 
A further study of the accuracy of these algorithms with the use of the 

relative foot sensor conecpt will be detailed in conjunction with the VICON data in 

the next Chapter. VICON data represents the exact human motion with an 

addition of a variety of noise characteristics, which makes it ideal for the 

evaluation of the algorithms, including alternate modes of gait such as crawling.  
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3.5 Summary 

 
 The relative foot sensor concept is groundbreaking in its approach to 

human gait and personal navigation, as it provides the ability to accurately 

determine the incremental heading and stride length of the subject with each 

step. Two-dimensional algorithms for finding the stride length and local heading 

angle are presented. The expansion to a three dimensional system is discussed 

by addition of vertical nodes and a similar approach as described in 2-D. A 

qualitative analysis on the expected error term in distance is evaluated. Coupled 

with an inertial approach to personal navigation, this sensor may be able to 

provide an elegant solution for issues in determining heading.  

 
There are multiple challenges to successfully implementing this sensor as 

a solution, from a hardware standpoint. There must be common time 

synchronization across all of the sensor nodes, as well as with the inertial 

navigation framework. The sensor must also be small in size, low in weight, and 

have low power usage for any practical applicability.  

 
A good proof of concept test is the use of differential GPS, which can be 

used to emulate a wireless signal between two nodes. This approach will be 

briefly discussed in Appendix A. The relative foot sensor also provides a new, 

previously unstudied metric of “distance between feet” that can be applied in 

kinesiology toward injury assessment. This metric can also be used for pattern 

recognition and many other applications. 
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Chapter 4 
 
 
 
 

Experimental Testing and Validation 
of Relative Foot Measurements 
 
 
 

4.1 Peak Detection Overview 

 
In order to analyze the VICON motion capture data for the simulation of 

the relative foot sensor, a determination must be made on how to pre-process 

measurement data with the system limitations of power, computer processing 

throughput, and memory size. One approach is to only analyze peaks in the 

relative foot sensor data. When the maximum and minimum separation distances 

between nodes occur, some conclusions can be made about the state of the 

subject. For instance, when the foot separation is at a maximum between heel 

nodes, that distance is likely to correspond well to the subject’s stride length in 

the regular walking mode. While this is not an exact measurement due to unique 

tendencies in subject’s gait, it is a fair estimate in the absence of a time-

synchronized inertial system.  

 
Thus, for processing relative foot sensor data, a decision must be made 

whether peak amplitude of relative foot distance (discrete) or continuous data 

processing is the best approach.  Each approach has distinct advantages and 

disadvantages. Continuous Processing requires significant processer power, but 
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should be capable of much greater robustness, accuracy, and complexity of 

algorithms, since it provides “up to the second” information. Peak detection 

provides only distance information at freeze frames, similar to the way that 

distance and tracking information can be measured from foot-steps in the snow. 

A peak detection system would need to operate at least two steps behind real-

time for successful peak detection and implementation. However, the overall 

navigation system would be simpler and more cost-efficient, while providing a 

first order level of accuracy. Due to the relative simplicity of its algorithms, peak 

detection was investigated first. The challenge in this algorithm, much like other 

pedometer concepts, remains in figuring out how to detect a step or a peak. 

 
As stated previously, VICON data contains a relatively small magnitude of 

noise, which is expected to be on the same order as the noise characterized by 

the relative-foot sensor. Excessive noise prevents easy peak detection and must 

be filtered, but noise filtering requires processing power and proper design to 

maintain accuracy. A variety of cases were recorded and examined for the 

relative foot sensor algorithms:  walking, crawling, ladder-climbing, shuffling, etc. 

A variety of filter strategies could be designed or applied to the motion capture 

data (low-pass, Kalman, Chebyshev, etc). It is important to note that unique 

filtering parameters would be necessary for the data of the actual relative foot 

sensor, as opposed to the filtering technique presented here for the VICON data. 

A vast amount of audio and imaging software exists, featuring built-in, well 

designed filtering capability. Rather than design and test a variety of filters in the 

initial stages of the research, the VICON data was uploaded into an open-source 
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audio editor “Audacity” [29]. This software allowed the simple design, testing, and 

visualization of filtered data, represented as a sound wave in “.wav” format. The 

data was first processed with a low-pass filter and in the majority of trials it was 

found that a single low-pass filter with a threshold of 355 Hz was sufficient for 

achieving the desired results, by eliminating spurious peaks. In the cases where 

spurious peaks prevailed, more information was necessary to determine the type 

of movement that the subject was making in order to make the judgment on 

which peak had physical meaning. If the type of motion that the subject is making 

can be constrained to walking, crawling, shuffling, etc., it is possible to account 

for, and eliminate all spurious peaks in a processing algorithm. In addition, when 

an inertial system is time-synchronized with the relative foot sensor, step 

detection becomes significantly simpler. However, the design of a navigation 

system based purely on a relative foot sensor requires the use of fuzzy logic for 

locomotion mode detection, which will be the subject of future research.   

 
The most telling case, due to its intuitive nature, remains the straight-line 

walk. This case will be analyzed and presented in-depth, with the use the heel 

node as the “primary” node for presented analysis.  
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4.2 Peak Detection in Linear Walking  

 
The initial walking trials were conducted for a distance of 11 feet 

(3.3528m). The overall distance was limited due to the VICON motion capture 

setup and the constrained capture volume for imaging. In the trial presented 

below, the subject took 8 steps to cover that distance. The preliminary walking 

distances were then used to analyze the gait patterns highlighted by the relative 

foot sensor and the filtering techniques that could be successfully applied to the 

data set, as described in Section 4.1 [Figure 19]. This figure also demonstrates 

the potential to break the relative foot sensor data into x, y, and z components in 

a local inertial frame. This is simply possible when using the VICON data, but it is 

also possible using simple geometric properties for the relative foot sensor, given 

a minimum number of four nodes on each foot for full 3-D resolution. This set of 

information is invaluable for gait pattern recognition and will be discussed in more 

detail in a later section.  
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Figure 19: Unfiltered Relative Foot Distance for 11 ft Walk 
 

 
The subject wore both inertial sensors and VICON markers when walking 

this trial.  Figure 19 shows the types of issues that arise without data filtering. For 

simple post-processing and synchronization of these different sensor packages, 

the subject performed fiducial movements prior to the beginning of the trial, and 

at the end of the trial, by moving his feet in the VICON X-Z plane (where the Z 

axis represents the vertical direction and the Y axis is the primary axis of motion). 

The syncrhonization of these packages helped verify that the actual detected 

peaks from VICON data corresponded to the accelerometer spikes featured in 

the inerial package. Applying the same filtering techniques as described above to 

the data, Figure 20 shows a reduction in the presence of spurrious peaks. A 

difference between true stride length values and peak detection values displayed 

an error of approximately 1-2% for a variety of walking trials. 
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Figure 20: Filtered Relative Foot Distances for 11 ft Walk 

 
 
 Transforming the VICON relative foot sensor data into a more 

manageable peak detection algorithm allows the simple verification of distance 

traveled via a summation of the peaks. Summing the detected peaks of filtered 

data in the aforementioned trial, a traveled distance of 10.68 ft was calculated 

with the peak detection algorithm. The resulting error of 2.9% is a massive 

improvement on the constant stride length pedometer model, which would 

estimate a total distance travelled of (.76 meters) * 8 steps = 6.08 meters 

resulting in errors over 40%. This figure is valid provided a one dimensional 

assumption is made, and that the peak motion is directly in the Y-direction, and 

does not undergo any heading change. In reality, there is a small amount of 

heading change due to the imperfect nature of human gait, and therefore the 

addition of a heading term should improve this simple model. This addition and 
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results will be discussed in a further section. Additional improvements are 

expected with the accurate determination of when a step is taken through 

synchronization of combined sensor packages. Since at least 4 nodes will be 

positioned on each of the subject’s feet, the accuracy will also improve from the 

averaged communication of each node to one another.  

  
A more detailed analysis of linear walking was conducted using data from 

the five subjects that were sampled by the LA House of Moves facility, as 

described in Chapter 2. This analysis allowed the construction of more detailed 

human gait models than the previous stride length vs. frequency models covered 

in Chapter 2. While these models can be constructed for all modes, only walking 

and crawling were investigated.    
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4.3 Peak Detection in Turning and Curved Walking 

 
In order to make a change in direction, human mechanics of locomotion 

dictate that a shorter step is generally taken with the leg closer toward the inner 

radius of the turn, and a longer step is taken with the leg on the outer radius of 

the turn. This is evident in Figure 21, as this concept can also be expressed in 

terms stride lengths measured from one footprint to the next, as described in the 

previous sections of this work, thus the first stride length is shortened, and the 

second stride is elongated.  

 

 
Figure 21: A Gradual Turn 

 

Humans tend to slow down when approaching a turn, shortening their 

average stride length and altering their frequency away from natural [8]. This 

behavior corresponds to a drop in stride length, associated with a decrease in 

frequency. There are two types of turns encountered in buildings: a rounded or 

gradual turn, which requires three or more steps to complete, and a sharp corner 

90° turn, which only requires 2 steps to accomplish the full change of direction. A 
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gradual turn exhibits similar behavior. To test the effect of this behavior on 

personal navigation systems, basic testing was conducted.  

 

 A 90° right angle turn was performed at 3 different frequencies with an 

approach distance of 4.5 meters (or approximately 6 steps). The first stride going 

into the turn decreases slightly (by 5-10%), to an average length of 0.72m 

(compared to model values between .75 and .78m) at investigated frequencies 

between 66 and 80bpm (1.1-1.3 Hz). The investigation also yielded that even 

though the subject was asked to walk to a beat, to simulate a certain frequency. 

The subject naturally slowed their gait frequency prior to making the turn and 

increased the frequency back to nominal after completing change in heading. 

The second stride of the turn returns to a normal frequency stride or even 

elongates slightly. The resulting stride lengths at 90° turns were statistically 

consistent with the previously determined model. Note that in these cases, the 

stride length is measured from the impact location of the previous foot.   

 



 50 

Table 5: Peak Detection Results for 90° Turn 
Run Scenario Distance 

Subject 
Instructed 
to Move 

Peak 
Computed 
Distance 

 
Error 

90° Right Turn 14 ft 4.41 m =14.46 
ft 

3.29% 

90° Right Turn 
(2) 

14 ft 4.34 m =14.25 
ft 

1.79% 

90° Left Turn 14 ft 4.39 m = 14.40 
ft 

2.85% 

90° Left Turn 
(2) 

14 ft 4.39 m = 14.40 
ft 

2.85% 

 
 
 

Thus, it is possible to numerically account for the primary human turning 

mechanism with a shortened first step and a corresponding elongated step in the 

human gait model. The difficulty lies in detection of the turning mechanism with a 

combination of the inertial sensor and relative foot sensor. In addition, this 

mechanism has a very small effect on the average stride length vs. frequency 

model developed previously. The stride vs. frequency model should be capable 

of providing accurate distance information even when the subject makes walking 

turns without losing too much velocity. Stationary turning cannot be modeled with 

the same certainty, and relies on the incorporation of the inertial system for 

accurate motion analysis.  
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4.4 Relative Foot Distance for Gait Modeling 

 
The linear walking data was processed for all five subjects, and new 

relationships were established between the novel metric of relative foot sensor 

distance and previously studied stride frequency. The 2-D algorithms for relative 

foot sensor that were developed in Section 4.1 were applied to the data and the 

total distance results can be found in Table 6.  

 
Table 6: Sample 2-D Walking Analysis of Trial for Subject 2 

Trial 
 

Predicted 
Distance 

(ft) 

Actual 
Distance 

(ft) 

Percent 
Error  

 

Distance 
Error  
(ft) 

1 72.14 72.36 0.30 0.22 

2 70.66 72.29 2.25 1.63 

3 70.65 71.12 0.66 0.47 

4 70.66 71.29 0.88 0.62 

5 70.74 72.02 1.78 1.28 

6 70.32 71.86 2.14 1.54 

7 70.77 71.49 1.01 0.72 

8 71.80 71.96 0.22 0.16 

9 71.11 71.48 0.52 0.37 

10 70.99 71.74 1.04 0.75 

11 70.90 71.80 1.26 0.90 

12 71.93 71.81 -0.17 -0.12 

13 72.10 72.42 0.44 0.32 

14 71.92 72.07 0.20 0.15 

15 71.88 72.47 0.81 0.59 

Average 71.24 71.88 0.89 0.64 

  

The results in Table 6 demonstrates that for a traveled distance of 72 feet, 

the average error over 15 trials was less than one percent in linear walking, 

modeled in two dimensions. A linear model was constructed in post-processing 

to account for the residual difference between average stride length and actual 

stride length. The resulting gait model was used extensively in testing and 
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validating the concept of the relative foot sensor. This technique was applied to 

all gait modes and subjects. 

 

 
Figure 22: Relative Foot Distance for 75 ft Walking Trial by Subject 2 

 
 
For reference, a sample trial by Subject 2 is investigated in more depth in 

this section. Specifically this is of greater interest because the two dimensional 

algorithms use angular data that has not been investigated in previous work. The 

heading angle (ϕ, defined in Figure 17) can be monitored continuously, similar to 

the relative foot distance relationship shown in Figure 22.  The heading angle 

data has good correlation to two dimensional ideal values that were calculated 

using the aligned VICON axes along which the subject performed walking trials 

[Figure 23]. The VICON approximation requires the use of a straight line walking 

approximation. This result shows that walking can be considered in two 

dimensions and still produce accurate answers in distance traveled. The exact 

accuracy is discussed further in later portions of this chapter.  
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Figure 23: Heading Angle for Sample 75 ft Walking Trial by Subject 2 

 
 

The relationship between relative foot sensor measurements and the 

frequency of walking is portrayed in Figure 24. This relationship plainly 

demonstrates the concepts described in the previous gait modeling section 

(Section 2.1), with a clearly defined “natural” gait relationship. As long as the 

subject traveled in the natural state, and not in the deceleration or acceleration 

phases, the relationship was linearly deterministic and can be used to 

successfully build a model between the two variables. The modeling of 

acceleration and deceleration phases is a much more complicated and non-linear 

process, and will be the subject of future investigations. The difficulty and 

accumulation of error with the application of these models would manifest itself in 

periods of transition between different phases, and extended periods of exposure 

to non-linear phases.  
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Figure 24: Foot Separation vs. Frequency Distribution for Male Subject 2 
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Figure 25: Gait Models by Trial for Male Subject 2 

  

 

Region of Natural Gait 
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Figure 26: Averaged Gait Model for Male Subject 

 

 

 

Figure 25 depicts the individual gait models for each trial that were then 

averaged into the gait model by step number. When subjects naturally walked a 

linear distance their behavior was able to be modeled and predictable.  

 

It is important to note that the walking algorithms for the gait model 

successfully detected almost every step in all of Subject 2’s trials, resulting in 

such strong correlations. The algorithms only miscounted a total of two steps 

over the course of more than 350 steps, for a sub one percent error. Figure 26 

visually demonstrates that there is a linear region of stride length that is unique 

for each subject. This linear region represents the area of interest that was 

successfully modeled. Figure 27 shows the comparison in stride length models 

for the relative foot sensor between different subjects. It is evident that the 

relationships are unique from subject to subject, and an individual base-lining or 

evaluation is required to produce an accurate system. 

Outliers due to non-
linear deceleration 

region 
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Figure 27: Gait Model Comparisons for Different Subjects 

 
 
 As a formal example, the process of constructing the residual term for the 

gait model for Subject 2 is demonstrated below. The overall average relative foot 

sensor distance for Subject 2 was determined to be λaverage = 897.27 mm, from 

15 different walking trials pictured in Table 6. The linear scaling factor a1 was 

found to be 186.52 and the offset b1 = -273.96.  

 
Table 7: Linear Walking Gait Models 

Subject Average 
Relative Foot 

Distance 
λaverage (mm) 

Average 
Frequency 

 
ω (Hz) 

Linear Scaling 
Factor 

 
a1 

Offset 
 
 

b1 

1 740 1.61 550.95 -892.65 

2 897 1.56  186.52 -273.96 

3 857 1.76 594.66 -1044.66 

4 718 1.72 296.75 -461.44 

5 828 1.63 104.55 -103.96 
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Quantifying the linear relationship between λactual and frequency ω, the 

linear gait region can found and is best described by the following formula; the 

specific numeric characteristics for the walking mode can be found in Table 7:   

 
λlinear model = λaverage + a1*ωstep + b1  (4.1) 

 
It was also determined that individually generated simple peak-detection 

human gait models were capable of producing distance estimates with errors 

below 5% for all subjects, and the linear relative foot sensor gait model added 

notable improvements. The relatively higher percent errors for Subjects 3 and 4 

can be directly attributed to the miscounting or detection of steps with the peak 

detection algorithms. There should be improvement to this error term with the 

addition of a synchronized inertial system in the walking modes.   

 

Table 8: Pedometry Model vs. Linear Gait Model Results for Walking 
Subject Simple Pedometry 

Gait Model Error 
Linear Relative Foot Sensor 

Gait Model Error 

1 2.29 % 0.58% 

2 2.75 % 0.82% 

3 3.11 % 1.01% 

4 4.31 % 1.13% 

5 3.20 % 1.17% 

 
 

 An alternate way of expressing the gait results is through a display of 

instantaneous speed at each step vs. step number expression, as shown in 

Figure 28. This specific depiction shows that the actual speed of walking varies 

directly with right and left foot for certain subjects. In particular, Subject #5, the 
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6’7’’ male, had a very distinct variation in his stride speed. This can be attributed 

to a variety of possibilities, including a difference in leg length or previous injury. 

Unfortunately, this information is unavailable due to privacy concerns and the 

motion capture studio policy. It is also evident that each subject was walking in a 

unique way and at a unique speed.  
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Figure 28: Walking Gait Model Average Speed Comparison 

 
 
 While investigating these relationships in two dimensions is useful for 

simulating level ground walking, it does not give the complete picture for more 

complex scenarios involving stair walking, and other irregular gait behaviors. 

Three-dimensional motion is specifically vital for the recognition of less regular 

and deterministic modes of human gait, such as crawling, as will be discussed in 

the next section. The full expansion and analysis of these methods to three 

dimensions will be the subject of future work.  
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4.5 Peak Detection in Crawling and Other Modes 

 
Applying the two dimensional relative foot sensor gait modeling technique 

described above to the analysis of more complicated modes is not a trivial task, 

and several simplifying assumptions about each behavior must be made. The 

step detection algorithm for crawling modes is currently less robust than the 

walking algorithm, because the crawling mode exhibits more variation in behavior 

and different peak patterns. More research must be conducted in order to 

achieve the necessary level of accuracy with the step detection algorithms and 

pattern detection techniques. 

 

 
Figure 29: Relative Distances for 75 ft Forward Crawl by Subject 2 

 
 

The simplest crawling case that was investigated was the baby crawl, or 

crawling on the hands and knees, this mode is referred to as the “forward crawl” 

throughout this work. Figure 29 demonstrates the relative foot sensor time history 
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for a 75 ft forward crawl. It can be noted in this figure that the forward crawl has a 

significantly different pattern of peaks in the VICON x, y, and z axes. This mode 

also exhibits unique accelerometer spikes due to the impact of the knees and 

feet on the ground. The different orientation of the feet with the toes pointed into 

the ground into the VICON y-x plane or inertial x-y plane, allows for a simpler 

recognition of a crawling mode using the inertial sensor package. The 

fundamental difference in three-dimensional behavior of the mode is also evident 

in Figure 30, where the heading angular data is presented for a crawling mode. 

The heading angles no longer accurately represent the true behavior.  

 

 
Figure 30: Heading Angle for Sample 75 ft Forward Crawl by Subject 2 
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Figure 31: Crawling Gait Model Relative Distance Comparison 

 
 

 
A crawling gait model comparison was conducted between subjects in a 

similar fashion to the walking gait model described in the previous section. The 

results can be found in Figure 27. Here it is determined that there is significantly 

more variation in crawling stride length between steps. The relationship is not as 

well established and therefore results in greater accumulation of error in the long 

term. This error is partially due to the three dimensional nature of crawling that is 

not accounted for in the 2-D algorithms used to process the gait model.    

 

Table 9: Subject 2 Simulated Gait Model Errors 
Run Scenario Runway Distance Model Computed Distance Error 

Straight Line Walk 72 ft 72.51 ft 0.71% 

Backward Walk 72 ft 72.95 ft 1.32% 

Forward Shuffle 74 ft 72.48 ft 2.05% 

Backward Shuffle 74 ft 73.40 ft 0.81% 

Forward Crawl 72 ft 68.12 ft 5.39% 

Army Crawl 25 ft 23.18 ft 7.28% 

 
 
Representing the average quantities of stride length and frequency in 

terms of speed, Figure 28 shows that the average crawling speed for all subjects 

is in fact very similar, yet there is a significant variation in the parameters that 
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determine the way that the subjects crawl. Table 9 shows the unsurprising 

conclusion that crawling occurs at a smaller stride length and lower frequency 

than regular walking.  

 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Step number

A
v

e
ra

g
e

 S
p

e
e

d
 (

m
/s

)

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

 
Figure 32: Crawling Gait Model Average Speed Comparison 

 
 

Table 10: Crawling Gait Model Average Quantities 
 

Subject 
Average  

Stride Length 
λaverage (mm) 

Average 
Frequency 

ω (Hz) 

1 446 1.197 

2 472 1.302 

3 470 1.407 

4 407 1.473 

5 435 1.313 

 
 
Backward walking was explored and was concluded to be nearly identical 

in step detection and accuracy to regular walking. In fact, with the exception of 

certain subjects’ ability to walk in a linear fashion, this mode was not significantly 

different from a relative foot distance stand point. The issue with modeling 

backward walking relates to the fact that this mode is never used in its natural 

form in first responder scenarios. This mode is generally used in limited visibility 
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conditions and constrained spaces, and therefore would produce different results 

than a pre-set runway with no obstructions or changes in direction.  

 
 
 

 
Figure 33: Relative Foot Distances for 75 ft Backward Walk by Subject 2 

 

 
Figure 33 shows the relative foot sensor data and the rhythmic peaks of 

similar magnitude. Of particular interest are the z-axis peaks, as they exhibit a 

closer similarity to the dynamic of forward walking, and would result in the same 

mode of detection. It is therefore no surprise that the gait modeling accuracy is 

similar to that of forward walking.  The backward walking heading information is 

also accurate as found in Figure 34, this heading calculation shows accuracy of 

the same order as the forward walk. 
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Figure 34: Heading Angle for Sample 75 ft Backward Walk by Subject 2 

 
 
 
The more complex army crawl mode was also considered, this mode is 

unique in that it is conducted on the elbows and feet, with the stomach close to 

the ground, and the feet continuously swinging and transitioning between 

different planes of motion. This mode exhibits an even more complex three 

dimensional motion of the feet than the forward crawl [Figure 35]. It is no surprise 

that this mode also results in the greatest error when analyzed with the two 

dimensional methods described in the previous chapter.  This mode also can 

contain double-peaks in the distance detection, as is apparent from the figure 

below. In this case, unlike the previous gait modes, the trials presented in Figure 

35 and Figure 36 are in fact different trials, to better portray the characteristic 

features of the mode. The angular information in Figure 36 demonstrates the 

insufficiency of the two dimensional methods. This mode also provides an added 

challenge for step detection algorithms.  
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Figure 35: Relative Foot Distances for 25 ft Army Crawl by Subject 2 

 
 
 

 
Figure 36: Heading Angle for Sample 25 ft Army Crawl Trial by Subject 2 

 

Shuffling is a form of walking where the foot drags along the ground, 

avoiding the distinct impact that characterizes each walking step in the inertial 
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frame. This motion is associated with slightly shorter steps in most cases, with 

the heel staying nearly fixed along the ground the entire time. However, Subject 

#1 displayed an elongated stride in the shuffle scenarios, similar to the way a 

person would ski or ice skate along the ground. The shuffling mode is closest to 

a truly 2-D form of locomotion, as it minimizes vertical motion (z-axis), as can be 

noted from Figure 37. Multiple types of shuffles were investigated with forward 

motion, backward motion, and side to side motion in a small capture volume 

limiting to a distance of 11 ft. The multi-directional shuffle analysis was used only 

to determine that the relative foot sensor could successfully determine accurate 

distance information in those cases. Additional inertial information is required to 

aid the relative foot sensor to determine which direction the motion occurs. 

 

   
Figure 37: Relative Foot Distances for 75 ft Shuffle by Subject 2 

 
 
Shuffle was determined to be the most stable mode that was analyzed by 

the relative foot sensor motion in Subject 2, as this subject had a particularly 
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linear shuffle mode, and did not exhibit much lateral motion. Other subjects 

exhibited a sort of “ice skating effect”, where their strides extended laterally to the 

side, as well as forward, resulting in slightly longer strides that had to be 

corrected by the heading angle.  This mode would also pose the most difficulty 

for a purely inertial system from the perspective of accurately detecting steps. 

However, this mode was most successful in capturing accurate heading 

information, due to its 2-D nature [Figure 38]. As in the crawl and unlike the 

walking gait modes, Figure 37 and Figure 38 refer to different trials, to capture 

the characteristic features of the mode. 

 
 

 
Figure 38: Heading Angle for Sample 75 ft Shuffle by Subject 2 

 
 
 
A large amount of gait data was received from the VICON motion capture 

studio, due to the scope and limitations of this work only Subject 2 was presented 

in this section in the necessary detail and analyzed in all modes of gait. The 
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results from this analysis demonstrate some difficulties in creating unique 

algorithms for complex gait modes, as well as elegant solutions to others. Other 

sample results for the rest of the Subjects can be found in the Appendix. 

 

 

4.6 Summary 

 
 Peak detection algorithms for a relative foot sensor were presented and 

evaluated with great accuracies for fundamentally two-dimensional motion. 

These algorithms use the peak in distance measurement between nodes to 

determine when a step is taken. Filtering techniques were investigated and a 

low-pass filter with a threshold frequency of 355Hz was successful in eliminating 

noise characteristics in VICON data. Linear walking was investigated in detail for 

all five subjects. Gait models were constructed and enhanced for each subject, 

resulting in distance errors close to 1% for walking 75 feet, in the cases where 

step detection functioned properly. Subjects that were prone to step detection 

miscounts were still producing errors near 5% for simple walking. Peak detection 

algorithms of relative foot distances are very successful in the developed two-

dimensional motions such as linear walking, backward walking, and shuffling.  

 
The five modalities of movement that were investigated in depth at the 

VICON House of Moves studio allowed a summation of each subject’s human 

gait properties. These properties are summarized in this section and the 

histogram figures associated with it. Each mode is presented for all five subjects. 
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While these properties demonstrate significant subject to subject variability, there 

are similar patterns in frequency and relative foot distance across different 

subjects that can be used for the creation of successful mode detection 

algorithms, as will be discussed below.  

 
Linear walking behavior was analyzed using the relative foot sensor 

algorithms in this chapter, and human gait models were constructed for each 

subject. These models demonstrate consistent accuracy on the range of 1-3% in 

evaluating a distance of 75 feet in each subject.  
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Figure 39: Forward Walking Relative Foot Distance 

 
 

 

The simple forward walking cases are summarized first. The primary 

fundamental property investigated in this work is the relative foot distance, or the 
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gait length property as demonstrated in Figure 39. The variance demonstrates 

that in this case the average stride length was fairly constant for the natural 

regime, and only deviated in the acceleration and deceleration stages. The 

frequency result is very similar to the relative foot distance, as a prevalent 

frequency regime dominates natural walking speeds.  
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Figure 40: Forward Walking Frequency 

 
 

  Displaying averaged forward walking speed in Figure 41, for all five 

subjects demonstrates speeds near 3 mi/hr with a small amount of variation. It 

can be concluded from all of these results that walking is a consistent and 

repeatable mode. Finally, the overall percentage of error is summarized in Figure 

42. Some clear outliers exist from the average error of approximately 1%, 

however, the largest values of error can be attributed due to miscounting of 

steps, and can therefore be eliminated in the future with better 3-D algorithms. 
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Figure 41: Forward Walking Speed 
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Figure 42: Forward Walking Percent Error 
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Forward crawling on hands and knees, as well as other fundamentally 

three-dimensional motions, are also evaluated. The crawling motions require 

further expansion of current two dimensional algorithms to three dimensions to 

ensure proper accuracy. This is apparent due to the larger percent error of the 

method, as evident in Figure 46. Simple forward crawling trials for a distance of 

75 feet are evaluated and the summary is presented below, providing an 

overview of the accuracy and error terms across subjects and investigated 

unique gait modality properties.  The main error term for crawling modes 

accumulates from miscounted steps and the two dimensional algorithm of 

heading calculation.  
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Figure 43: Forward Crawl Relative Foot Distance 
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Figure 44: Forward Crawl Frequency 
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Figure 45: Forward Crawl Speed 
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Figure 46: Forward Crawl Percent Error 

 
 
 

 The forward crawl exhibits the same promise with respect to the 

application of relative foot sensing algorithms.  Unique deterministic properties of 

stride length [Figure 43] and frequency [Figure 44] can be used for mode 

detection of individual gait modes.  

 
Please refer to Appendix B.1 for Tables summarizing the results found 

above for each gait modality. Additional gait data for discussion on the backward 

walking mode can be found in Appendix B.2., shuffling mode in Appendix B.3, 

and the army crawl mode in Appendix B.4. 
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Figure 47: Hilbert-Huang Spectrum of Walking Trial for Subject 2 

 

 
Empirical mode decomposition can be used to search for patterns in linear 

gait data. A sample walking trial can be broken into its intrinsic mode functions to 

analyze instantaneous frequency information.  Using a walking trial for Subject 2, 

the methodology is demonstrated to produce a Hilbert spectrum, as seen in 

Figure 47. This spectrum is produced using an iterative method coded by Gabriel 

Rilling of Ecole Normale Supérieure de Lyon, France [30]. It is evident from the 

spectrum that there is a range of “natural frequency” found in natural gait for 

each Subject. The range is between one and two Hertz for Subject 2. Using the 

instantaneous frequency information, decisions can be made to determine what 

mode the subject is traveling in, provided some base-lining tests can be 

conducted on the subject [31].  
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A sample trial of backward walking was also analyzed using EMD. It is 

apparent from Figure 48, that the instantaneous frequency information in this 

mode of walking is even more distinguishable than the natural walking phase, in 

a wider frequency range than regular walking.  

 

 
Figure 48: Hilbert-Huang Spectrum of Backward Walking Trial for Subject 2 
 

 

The human gait mechanism of turning was discussed, specifically as the 

dynamics fit into peak detection algorithms. It is shown that the physical act of 

turning slightly decreases the accuracy of peak detection methods. This effect 

can be countered with the use of two dimensional relative foot sensor algorithms 

developed for multiple nodes to calculate incremental heading. It was also 

demonstrated that crawling and more complicated modes require the use of the 

three dimensional algorithms.  
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Human gait is a unique form of locomotion that is dependent on a variety 

of individualized variables, such as subject height [24]. Some of these 

dependencies are difficult to account for numerically. However, the properties of 

stride length and frequency are deterministic and can be used to enhance the 

accuracy of existing navigation sensor packages. 
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Chapter 5 

 
 
 
 

Conclusion 
 
 
 
5.1 Summary 

 
Avoidable casualties occur in the line of First Responder duty on a regular 

basis. The knowledge of a downed firefighter’s accurate location is an absolute 

necessity during search and rescue missions or even the course of routine 

service. A number of proposed solutions have historically been attempted, and 

most have been incomplete at best. RF Navigation is limited by the necessary 

setup and infrastructure, while inertial-based navigation systems have to deal 

with accumulated heading errors over time.   

 
This work attempts to provide a proof of concept for an enhancement to 

the accuracy of an inertial based GPS-denied personal navigation system.  A 

simple pedometry approach using human gait characteristics has merit due to its 

simplicity and ability to provide a first order verification of the inertial solution. It is 

possible to create models that correspond to human gait characteristics. Human 

gait data was analyzed for 5 subjects from a motion capture studio. Stride length 

vs. frequency models are designed using data from a VICON motion capture 

system. The stride length vs. frequency models exhibit distance errors near 5% 
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and serve as an improvement to existing inertial technology. This work then 

expands the line of thinking on a pedometry centered approach to personal 

navigation with the concept of the relative foot sensor. 

 
The relative foot sensor concept proposes the construction of a network of 

wireless nodes that function as RF receivers and transmitters located in the sole 

of the boot [Figure 15]. Millimeter accuracy in determining distance between 

nodes is expected from carrier wave phase processing. A method for determining 

the location of the feet is derived using geometric properties produced by the 

relative foot sensor concept. This method allows the computing of a stride length, 

heading, and separation distance between the first and second feet based on the 

determined distances; and computing a location for personal responders based 

on the computed stride length, heading, and separation distance. Most 

importantly, the previously accumulating heading error term no longer dominates 

the location computation over time.  

 

5.2 Future Work and Applications 

 
 Though the simple gait models using peak detection and the relative foot 

sensor metric were capable of reasonably predicting the distance traveled in the 

simple gait modes like walking and shuffling through the use of 2-D algorithms 

solving for incremental heading angles, the overall performance of the navigation 

system is incomplete. There remains a significant amount of work and analysis to 
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be undertaken for advancing the human gait modeling and relative foot sensor 

technology to improve the accuracy of a personal navigation system.  

 
 The expansion and future work necessary to complete an accurate three 

dimensional and robust personal navigation system for harsh GPS-denied 

environments to single meter accuracy is detailed below.  

 
� Expand the algorithms of the current human gait models to three 

dimensions to improve estimation accuracy at a variety of gait modes. 

Evaluate the three dimensional performance of the relative foot sensor 

concept with new algorithms. 

 
� Develop the hardware suite for the relative foot sensor. The construction 

and calibration of the sensor must be undertaken in order to evaluate the 

exact, rather than potential, accuracy of the system.  

 
� Synchronize and integrate the PNAV inertial system with the Relative Foot 

Sensor and a processing unit to analyze real-time performance, rather 

than post-processing performance. Analyze the performance of the 

combined system for potential improvements in accuracy. The expansion 

and integration of the relative foot sensor concept within the larger 

framework of a full inertial navigational system must be implemented and 

tested. Use the additional inertial information to determine direction of gait 

motion, as the relative foot algorithms alone cannot produce that result.  
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� Develop estimation models based on empirical data by conducting a more 

statistically representative study of a broad number of human subjects and 

modes, including mode transitions. Evaluate the potential for base-lining 

subjects using unique physical parameters. Specific focus should be 

directed toward the analysis and detection of different gait modes. 

 
� The analysis of running gait has yet to be undertaken using the relative 

foot sensor. Running presents a unique challenge, as both feet are in the 

air for a certain period of time, invalidating a peak detection technique.  

 
� Incorporate multiple redundant relative foot sensor nodes and investigate 

the resulting effect on accuracy.  

 
� Study the applications of relative foot sensor to kinesiology and injury 

assessment via the pattern recognition of different modes.   

 
� Develop a smart-centralized system that analyzes incoming data at a 

command center; integrate this software within a large framework of first 

responder efficiency.  
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Appendix A 
 
 
 
 

DGPS Sensors for Relative Foot Sensing 
 
 
 

A.1 Device Design and Development 

 
 This Appendix presents a sample system for determining relative distance, 

for reference as a proof of concept, constructed and tested by Asterlabs Inc. in 

Minnesota. The system employs differential techniques using GPS receivers to 

validate the approach of a relative foot sensor. 

  

 
Figure 49: Elevated Antennas Platforms for Minimal Multipath Effects 

Slide for moving antennas 
without blocking signals 

12.5 inches 
off ground 
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Two antennas for receiving a GPS signal were used to simulate 

communicating nodes and experimentally determine the distance between them, 

effectively validating an RF approach to the relative foot sensor. The two 

antennas were elevated on platforms in order to increase the strength of the 

signal and minimize the effects of multipath (see Figure 49).  

 
 

 
Figure 50: DGPS Test Layout 
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The test layout with is displayed in Figure 50, with an overview of the 

sample “steps” taken.  The initial static baseline length was 9 inches and the final 

baseline length was 10.6 inches.  A step consisted of sliding the antenna fixture 

across the ground from one marker to the next.  Each step was followed with 

approximately a 10 second pause to sample the GPS signal.  A total of 16 feet 

were "walked" with this method. 

 
The first 10 minutes of the testing were used to measure a static 22.9 cm 

(9 inch) baseline for post-processing. The antenna sensors were “walked” along 

the ground by sliding on level ground. The following 6 minutes of simulated 

walking traversed a distance of 16 feet. The test was concluded with a 2 minute 

static test of a 27.0 cm (10.6 inch) baseline.  

 
 

A.2 Experimental Testing and Results 

 
 Throughout the post-processing of results, the data from two incoming 

satellites were removed. It was discovered that data from satellite 13 was 

unusable due to cycle slip, and data from satellite 28 contained data drop.  To fix 

the integers using the static periods of data, a MATLAB code was used for 

processing. The fixed integers were, in turn, used to playback the entirety of the 

data set. 

 
 The initial baseline length estimate was accurate to within 1 cm.  Figure 51 

shows the captured dynamic step behavior in addition to the 10 second pauses 

between steps.  Additionally the “walking” characteristic decreases, coupled with 
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an apparent increase in baseline length.  The final baseline length was also 

accurate to within 1 cm. 

 

 
Figure 51: DGPS Time History 

 

 
The main result for this single trial provides a good range values as the 

simulated nodes pass by each other and extend to maximum separation. The 

measurement errors within this system are shown to be on the order of ~1 cm, 

and that the errors of RFS solution are less than 0.5 inches from the first "step". 

This is well within the phase center accuracy of the GPS antennas and the "step" 

positioning estimate. 
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Appendix B 

 

 

B.1 Summary of Gait Modality Results  

 

Table 11: Summary of Modalities of Movement 
 Modality Average 

Gait Length 
(mm) 

Average 
Frequency 

(Hz) 

Average 
Speed 
(mi/hr) 

Forward Walking 740 1.609 2.662 

Backward Walking 596 1.600 2.133 

Forward Shuffling 949 0.600 1.273 

Forward Crawl 446 1.197 1.194 

Subject 1 
Female 

5’9’’ 

Army Crawl 434 1.093 1.061 

Forward Walking 897 1.564 3.139 

Backward Walking 792 1.657 2.935 

Forward Shuffling 455 1.399 1.423 

Forward Crawl 472 1.302 1.375 

Subject 2 

Male 
6’1’’ 

Army Crawl 433 .781 0.756 

Forward Walking 857 1.757 3.367 

Backward Walking 640 1.482 2.121 

Forward Shuffling 534 0.978 1.168 

Forward Crawl 470 1.407 1.479 

Subject 3 

Female 
5’9’ 

Army Crawl 667 .627 0.936 

Forward Walking 718 1.739 2.792 

Backward Walking 723 1.877 3.038 

Forward Shuffling 519 1.096 1.271 

Forward Crawl 407 1.473 1.341 

Subject 4 

Female 
5’7’’ 

Army Crawl 581 0.762 0.990 

Forward Walking 828 1.627 3.011 

Backward Walking 737 1.637 2.698 

Forward Shuffling 565 0.844 1.067 

Forward Crawl 435 1.313 1.278 

Subject 5 

Male 
6’7’’ 

Army Crawl 635 0.777 1.103 
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Table 12:  Summary of Errors for Modalities of Movement 
 Modality Average 

Predicted 
Distance (ft) 

Average 
True 

Distance (ft) 

Distance Error 
(ft) 

Percent Error  
  

Forward Walking 72.79 72.31 0.48 0.58% 

Backward Walking 73.53 72.04 1.49 2.06% 

Forward Shuffling 71.14 71.79 0.65 0.91% 

Forward Crawl 71.63 72.46 0.83 1.14% 

Subject 1 

Female 
5’9’’ 

Army Crawl 27.01 25.63 1.38 5.38% 

Forward Walking 72.05 72.65 0.6 0.82% 

Backward Walking 70.65 71.83 1.18 1.65% 

Forward Shuffling 70.62 71.62 1.00 1.39% 

Forward Crawl 75.05 70.9 4.15 5.85% 

Subject 2 
Male 
6’1’’ 

Army Crawl 28.27 24.62 3.65 14.82% 

Forward Walking 73.09 72.37 0.72 1.01% 

Backward Walking 71.85 70.63 1.22 1.73% 

Forward Shuffling 73.95 73.66 0.29 0.39% 

Forward Crawl 73.48 70.63 2.85 4.04% 

Subject 3 

Female 
5’9’ 

Army Crawl 26.26 23.28 2.98 12.80% 

Forward Walking 71.64 72.46 0.82 1.13% 

Backward Walking 71.18 70.25 0.93 1.33% 

Forward Shuffling 72.01 72.33 0.32 0.46% 

Forward Crawl 74.99 70.25 4.74 6.74% 

Subject 4 

Female 
5’7’’ 

Army Crawl 24.78 23.46 1.32 5.64% 

Forward Walking 73.31 72.46 0.85 1.17% 

Backward Walking 71.73 71.32 0.41 0.58% 

Forward Shuffling 71.66 72.36 0.70 0.98% 

Forward Crawl 75.61 71.32 4.29 6.03% 

Subject 5 

Male 
6’7’’ 

Army Crawl 28.18 23.22 4.96 21.38% 
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B.2 Backward Walking  
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Figure 52: Backward Walking Relative Foot Distance Summary 
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Figure 53: Backward Walking Frequency Summary 



 89 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

S
p

e
e

d
 (

m
i/

h
r)

Low 

High

Average

 
Figure 54: Backward Walking Speed Summary 
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Figure 55: Backward Walking Percent Error Summary 

 



 90 

B.3 Forward Shuffle 
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Figure 56: Forward Shuffle Relative Foot Distance Summary 
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Figure 57: Forward Shuffle Frequency Summary 
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Figure 58: Forward Shuffle Speed Summary 
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Figure 59: Forward Shuffle Percent Error Summary 
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B.4 Army Crawl  
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Figure 60: Army Crawl Relative Foot Distance Summary 
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Figure 61: Army Crawl Frequency Summary 
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Figure 62: Army Crawl Speed Summary 
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Figure 63: Army Crawl Percent Error Summary 
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