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Abstract

Automated feature recognition has been attempted through many methodologies for a wide
range of application domains. This survey focuses on its use for geometric reasoning problems
in mechanical engineering. Many of these methods are greatly limited in scope. Often they per-
form on a restricted class of objects with confining feature definitions. Furthermore, problems
with interactions between features can render objects unrecognizable. This survey presents an
overview of many of the works in this area. Included are descriptions of the approaches and
an analysis of their abilities to provide a definition for and solution to the general problem of
recognizing features from a solid model. It is hoped that previous research will provide the gnid-
ance for the development of a feature recognition system that is complete over a mathematically
definable set of objects.

*Funding provided by the National Science Foundation through their support of the Systems Research Center






1 Introduction

Automated feature recognition is the identification of objects of manufacturing interest in a computer
representation of an mechanical part. This survey covers various techiques for feature recognition in
the domain of mechanical engineering and specifically with the design and manufacture of mechanical
parts in a concurrent engineering [Eng91] environment. Concurrent engineering is a philosophy that
has evolved from the desire to improve the efficiency of the design process. The decisions made
by a designer developing a new product have major reprocussions on quality, cost, and time. A
concurrent engineering environment provides active feedback about the manufacturability of the
design during the creative process and promotes robust design [Eng91]. A key component in such a
system is feature recognition.

An automated feature recognition program extracts instances of manufacturing features from an
engineering design, such as in figure 1, done with a computer aided design (CAD) system or solid
modeler!. The feature description then can be used for a variety of purposes including part classi-
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Figure 1: A design of a solid object

fication and generating process plans for manufacturing. The definition of a manufacturing feature
varies widely depending on the approach and application domain [SSR*88]. For most cases, a man-
ufacturing feature is a geometric, topological, or volumetric entity with manufacturing significance.
For example, features are usually defined to be manufacturing entities. As in figure 2, a “hole” can
be viewed as a cylindrical surface with certain properties. Factors such as the location of the hole or
its angle can have a significant effect not only on the ability to recognize a particular hole, but also
on the number of features needed to describe holes in general. When feature definitions attempt to
create rigid links between volumetric or geometric shape and a manufacturing operation, quite often
there will be many ways to manufacture the same shape. When two or more features interact, there
may exist multiple feature interpretations for the object. In many cases the approaches operate in
restrictive domains and their capabilities are inadequate for handling anything that could be called
a realistic object.

1A computer system for the generation and manipulation of 3-dimensional ob, jects. See also [Hof89, Man88, Mor85].
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Figure 2: Definitions for a cylindrical hole from [Van90] and [Hen84].

This survey of feature recognition research includes descriptions of the approaches and an analysis
of their abilities to provide a definition for and solution to the general problem of recognizing features
from a solid model. It is hoped that previous research will provide the guidance for the development
of a feature recognition system that is complete over a mathematically definable set of objects.

2 Survey

Creating a survey of the field of automated feature recognition presents difficulty because attempts
span a wide variety of applications. Research goals, application domain, and technique vary greatly
over the works in the field and leave few bases for comparisons between methods. Motivations
for feature recognition include classification of parts for group technology, generation of paths for
numerically controlled machining, and creation of process plans for part manufacture.

These research projects were groundbreaking attempts to use computer technology in the me-
chanical engineering domain with much of their focus on computer aided manufacturing applications.
Our review of these works focuses what each contributes to the development of a general paradigm
for the feature recognition problem. In most of these cases, the research goals were dictated by the
specific project and did not require the development of universal mathematical formalisms. This
research is interested what issues are commonly found in existing work and what they reveal about
development of a mathematically formal approach to a general problem of feature recognition. This
analysis of previous work is biased in to that end.

We classify these approaches based on the computer science techniques they employ. This section
presents an overview, by no means complete, of many existing approaches. For another summary of
recent work [Kar90].

2.1 Syntactic Pattern Recognition

Extracting features from a 3-dimensional computer aided design model can be viewed as a problem
in pattern recognition. Syntactic pattern recognition [Fu82] uses structural information to create
a description or a classification of the subject we want to reason about. This approach to pattern
recognition has widespread use in vision applications (picture recognition, scene analysis, classifi-
cation of pictorial patterns), speech recognition, natural language processing, and recognition of
written characters.

A variation or extension of a context free grammar [HU79, LP81] forms the core of a syntactic
pattern recognition algorithm. In such a grammar, the terminal symbols usually represent a
primitive element of the application domain. For automated feature recognition, a primitive can be
an edge or face—these being among the fundamental building blocks of every feature. The grammar



Figure 3: The pattern primitives and parse of a chamfered hole from [AHS83].

also contains rules that determine how these fundamental primitives may be combined. There may
be arule S — a that generates a specific type of feature or a rule T — v that generates a
class of similar edge contours. The scene is then parsed—much like a compiler parses a computer
language [ASU86]. During parsing the structural information, such as the existence of depression
in the object, embodied in the rules can be exploited. Utilizing these techniques, algorithms can
recognize features and classify the shape of a solid.

Luc Kypraniou, in his doctoral dissertation [Kyp80], used syntactic pattern recognition to code
parts for group technology classification. He developed an algorithm that identified basic types of
protrusions and depressions in a computer aided design model and from them infered a classification
for the global shape of the object. The algorithm used a grammar based on adjacency relationships
of faces, convexity and concavity of edges, and existence of edge loops to parse the object. Specific
feature structures could be looked for during the parse and, based on the types of features found, a
classification for the part could be generated.

Kypraniou’s objectives did not require that set of classifiable objects be clearly defined and it is
unclear what happens when presented with an unclassifiable object. The method, while restricted
by grammar, has difficulty parsing objects where the necessary structural information is lost due to
interactions among feature types. Kypraniou’s thesis was one of the first in the area of automated
feature recognition and it has served as a fundamental reference in later works.

Ryszard Jakubowski [Jak82, Jak85], using edges as pattern primitives, generated group tech-
nology part codes for mechanical parts based on their 2-dimensional cross-sections. This approach
is concerned only with mechanical part classification and is described for a restricted set of 2%—
dimensional parts. Information is obtained through parsing the edge primitives in the silhouette
of the part. This information and basic manufacturing data are used to categorize the part. In
Jakubowski’s work there is much grammatical formality and little mention of features. Amoung the
practical limitations, for example, the approach addresses only 2%—dimensional parts. Also, the prim-
itives used in this study limit the complexity of a silhouette because there are only a finite number of
2-dimensional edges and rules in the grammar. These limitations and that the method is presented
as a formalism without demonstrated computational viability make this approach impractical for
classification of complex parts and automated feature recognition.

In [SLF85], an approach similar to Jakubowski’s is investigated. The goals of the work are
shape classification for group technology process selection and representation of the volume that
must be machined to create the object. Grammars for generating shape families are presented.
These grammars, like those in [Jak82, Jak85], describe the outline of the part. This work built
on Jakubowski’s, but many of the same limitations still exist: the class of shapes is limited and
it does not allow for the reasoning about geometry and topology necessary for automated feature
recognition.
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Figure 4: The attributed adjacency graph representation for a rectangular hole from [JC88].

[AHS83] use a grammar to classify holes based on how they are manufactured. A 2-dimensional
cross-section is obtained from a 3-dimensional computer aided design database. The grammar is then
used to extract the holes from the cross-section, as illustrated in figure 3. The grammar classifies
the hole based on several hole families. The limitations in this approach are representative of the
limits of all feature recognition systems based on syntactic pattern recognition techniques. The eight
pattern primitives in the grammar are capable of representing small subset of the angles that could
exist in a hole. In addition, there could be ambiguity in the 2-dimensional cross-section caused by
features other than holes (this problem could be eliminated by assuming that a hole is the only type
of feature). Ambiguity could also arise from interactions between holes—what if two perpendicular
holes intersect? What if holes are not perpendicular to the surface of the object? These limitations
do not diminish the significance of the work, which is its contribution to the ability to communicate
with a geometric database on a feature level. However, this communication consists of a small set
of very basic questions and about an extremely restricted set of objects.

2.2 Graph-based Methods

Graph-based feature recognition systems represent the geometric and topological information about
an object using graph structure. Recognition of features can be defined as a search or parse of the
graphical structure. An immediate advantage of graph-based systems is the theoretical foundation
of graph theory [Har69]. This affords the opportunity to exploit the language of graph theory to
define the problem of feature recognition and draw on the multifarious computer science algorithms
that deal with searching, traversing, parsing, or matching graphs [AHU83, BB88, PB85].

2.2.1 Searching

Joshi and Chang [JC88] present a graphical structure called an attributed adjacency graph.
Their goal is to improve machine understanding of design to facilitate the automation of process
planning. The attributed adjacency graph is built from the information contained in the boundary
representation of the solid model. Nodes in the graph represent faces of the object and arcs in the
graph denote edges of the object. Each arc has an attribute indicating the concavity or convexity of
the edge it represents. Figure 4 provides an example of the attributed adjacency graph representation
of a rectangular hole.

An elegant aspect of this approach is that it facilitates clear definitions of the types of 3-
dimensional objects and features it can handle. It also presents the feature recognition algorithm



as a subgraph matching problem. However, while stating the algorithm and the classes of objects
and features, this approach’s limits become evident. There are only six types of features in this
approach and the object class is restricted to polyhedral objects. The feature recognition algorithm
involves heuristic improvements to the NP-hard subgraph isomorphism problem. Attempts are made
to handle feature interactions using rules for two specific types of interaction. These two types of
interactions cover many, but not all, of the interactions possible for the six types of recognizable
features. These drawbacks emphasize the difficulty in developing an elegant and practical approach
to automated feature recognition.

Leila De Floriani [De 89] introduces a graphical structure called a generalized edge-face ad-
jacency graph for recognition of features such as protrusions, depressions, through holes, and
handles (see figure 5). In this scheme, the features and the object are represented using the gener-
alized face-edge adjacency graph in such a way that the features form biconnected and triconnected
graphs. Hence, the problem of feature extraction becomes searching a graph for the biconnected
and triconnected components and classifying them as one of the feature types.

This approach uses graph theory and established, polynomial-time, algorithms to produce a for-
mal feature recognition system. The recognition algorithm avoids the NP-hard pitfalls of the Joshi
and Chang approach because the features are all defined as biconnected and triconnected compo-
nents. Unfortunately, not all desirable features can be described as a biconnected or triconnected
component in the generalized face-edge adjacency graph. The approach ignores most geometric
information about faces, placing little emphasis on shape and location of faces, not to mention how
this approach would fare on shapes with nonplanar faces, nonperpendicular edges, and complex
feature interactions. The algorithm for recognizing the features defines the type of features that
will be recognizable—those that form unique components in the generalized face-edge adjacency
graph. These restrictions are too limiting for this method to be applied to more complex features
and shapes. Other work from the same research group [FG89] uses an approach similar to this to
generate a hierarchical feature structure to represent objects at higher levels of abstraction.

Sakurai and Gossard [SG90] developed a system for recognition of user-defined features based
on a similar graph search strategy. An important contribution of this work is that it emphasized
the separation of the feature definitions and the feature recognition algorithm. Because features
are often domain specific, Sakurai and Gossard advocate a procedure for the user to specify those
features that are important to the application. The features and the object are then represented
with some variation of an attributed adjacency graph. The process of feature recognition is redefined
to a graph search problem. This method is very similar to Joshi and Chang’s [JC88] and shares all
its drawbacks. However, unlike Joshi and Chang, no attempt is made to characterize and deal with
feature interactions. In fact, the approach characterizes features as collections of surfaces and then
“fills in” the volumes when they are recognized. This act of “filling in” the feature volumes can
make what remains of a valid object unrecognizable within the available feature set. Since filling
in one feature will inadvertently fill in part of any other feature that shares its volume. A feature
might require the existence of that shared volume—hence “filling in” that mutually required volume
would make other feature unrecognizable.

2.2.2 Graph Grammars

Research performed at the Engineering Design Research Center and the Robotics Institute at
Carnegie Mellon University [PFP89, SF90] has been directed toward using a graph grammar to
parse a graphical representation of an object. They define objects to be elements in a language
generated by augmented topology graph grammar. The advantage of their graphical structure
1s that it contains both geometric and topological information (unlike [De 89, FG89, JC88, SG90]).
This graphical structure, as in figure 6, can also be used to define general features (a point stressed
in [SG90]). A grammar can be defined to describe the class of objects generatable with a specific
set of features. To recognize the features, the grammar is used to parse the object. This approach



Figure 5: The generalized edge-face graph representation for an object from [De 89].
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Figure 6: The representation of a slot using the augmented topology grammar from [PFP89, SF90].

is more efficient than those of [JC88, SG90] because it relys on parsing a graph grammar instead
of searching a graph structure. The grammar is used to produce the object in much the same way
that a computer language compiler uses a grammar to determine if the program it has been given
is in the computer language [ASU86]. As the object is parsed, information about the features can
be produced. ‘

The method has many elegant points, among them the ability to define the needed features and
the use of a formal graph grammar for describing a language of shapes. However, the use of a
graph grammar to parse an object creates its own computational complexity because of the pattern
searching required for parsing. Here too, feature interactions are ignored. This not only adds to the
computational burden of additional feature instances in the object, but also might render objects
unrecognizable. As for the types of objects that are recognizable, the current scope of the work has
been limited to injection molding.

2.3 Expert Systems

Expert systems are used to automate deductive reasoning tasks requiring expert knowledge. The
idea is to encode the knowledge and experience of an expert into rules. Given a set of facts, the rules
can be used to reason about the domain. A mechanical engineer analyzes a solid object to determine
how to manufacture it; therefore, feature recognition can be viewed as creation of an expert system
to reason about the manufacturability of a solid object.

Mark Henderson, in his 1984 thesis [Hen84], created an expert system in Prolog to perform
feature recognition. In this system, rules are used to define feature instances. For example, a hole
might be defined as “a cylindrical surface with an open top and open bottom.” The feature rules
become a part of an expert system that interacts with the computer aided design database. The
process of feature recognition is performed by applying the rules to the database and letting Prolog’s
theorem prover determine feature instances. This approach was the first to employ an expert system
to perform feature recognition.

An important aspect of Henderson’s system is the attempt to create general rules. The idea was
that the basic concept of “hole” remains unchanged despite the many, possibly infinite, number of
specific instances. The system contained definitions for classes of 2%—dimensional features including
holes, slots, and pockets.

However, as the approach is detailed in the thesis, no attempt is made to deal with the feature
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Figure 7: A particularly nasty interaction

interactions and the system is restricted to only 2%—dimensional parts. The Prolog rules defining

the features rigidly specify each class of feature—hence each new feature type requires adding rules.
Expert systems have proven effective tools for creating systems with large feature vocabularies. As
these vocabularies grow, so does the time needed for Prolog to perform the searching. In order for
expert system based methods to deal with feature interactions, rules need to be given to specify all
types of interactions—including interactions with feature classes and interactions between specific
instances (as in figure 7). Expert systems perform well with limited sets of features and possible
interactions but require large amounts of special-case information to be feasible for more realistic
applications.

Figure 8: A hint for a retangular slot from [Van90].



2.4 Knowledge Based

Research performed by Xin Dong [Don88] pursued the development of feature recognition by frame-
based reasoning to alow computer aided process planning from a computer aided design system.
To address this problem, he presented a prototype frame-based knowledge representation scheme
for features and parts, along with a rudimentary feature description language. With the represen-
tations, algorithms were developed to translate the solid model into the frame representation and
recognize a set of eleven feature types from four feature classes. These eleven feature types are
explicit manufacturing features that can be employed directly in the process planning system. The
significance of this work lies not as much in its contributions as a feature recognition system, rather
in its recognizing of features adequate for interpretation with a process planner. The frame-based
approach is novel, however it remains unclear how feature interactions would affect the systems
ability to find adequate feature information to facilitate process planning.

Jan Vandenbrande’s thesis [Van90] advocates a sophisticated approach to feature recognition
involving a variety of artificial intelligence techniques. The goal of the work is to generate a feature
description of an object that satisfies rigid machinability requirements. The primitive features can
be combined into composite features that have manufacturing significance. Features are built by
searching the object for hints. A hint for a type of feature can be thought of as a byproduct of
the feature being in the object. For instance, a cylindrical surface can be a hint for the existence of
a hole; a slot hint may be two parallel surfaces, as shown in figure 8. If the recognition algorithm
finds a cylindrical surface, it may indicate the existence of a hole. The recognizer collects all the
hints that exist in the object, categorizes them based on how promising they are, and uses a rule-
based approach to build a set of features compatible with the hints. This approach also allows
the recognizer to deal with feature interactions in a more general manner in that hints deal with
the features on a more abstract level; thus interactions can be dealt with based on the hints. The
approach also produces alternate feature interpretations.

This method benefits from dealing with the features at a higher level of abstraction via hints.
However, the hints are actually special cases themselves. To add more features you need more hints
and more rules for combining the hints. The approach is also limited to a small set of 2%—dimensional
features—no provision is made for other alternatives.

3 Conclusions

Feature recognition in mechanical engineering emerges as a problem of how to reason about shape.
In these previous attempts there do not exist clear definitions for the terms that describe feature
recognition. Without a precise statement of the problem it is impossible to judge the effectiveness
of any algorithm.

One may argue that for engineers “producing a manufacturing feature description of an object
for machining” serves as an adequate definition. This cannot be so, for there is no clear definition
of a “manufacturing feature” [SSR*88]. Theoretically, there are infinitely many—just design a new
tool with a previously unheard of shape. The existing techniques attempt to solve specific instances
of the feature recognition problem. Those with rigid feature sets have difficulties dealing with the
large numbers of heuristics and rules needed to define each feature and deal with their interactions.
This tends to create ad hoc solutions with algorithms that are collections of special cases to deal with
each feature and interaction. To add a new feature, all the appropriate special cases must be added
to the algorithm to handle recognition under all possible interactions. In figure 9, for example, a
system may have definitions for holes, recesses, and rectangular holes but may fail because of the way
they interact. Those approaches that have attempted to allow for general or user-defined features
have been more successful; but they cannot handle recognition for complex objects. The inability
to recognize “real” objects is a drawback to all of the approaches; it especially applies to those with
general and user-defined features.
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Figure 9: A object with a non-trivial interaction—possibly requiring additional feature definitions.

Computational complexity is a problem for all of the approaches. As with many other problems
in computational intelligence, the computer time grows tremendously when dealing with realistic
situations. The expense required to maintain the rules or perform the needed searches can be
difficult or impossible to manage. This problem will hinder the ability to handle complex or multiple
objects. Because these will eventually be desirable to represent, it is important to formalize matters
of complexity. Existing methods make mention of it but rarely attempt to classify it. Feature
recognition, even in an abstract form, is computationally expensive. A formalization of the feature
recognition problem will provide a means to explore how computationally expensive the problem
is and where the expense occurs. Reducing the expense is desirable but the nature of the problem
suggests that even the best cases will be costly.
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