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ABSTRACT

Design optimization problems are typically characterized by a large number of inequality
constraints, many of them satisfied as equalities at the optimum. To take advantage of this
fact, we have used an augmented Lagrangian approach together with monotonicity analysis to
optimize the design of spur gear sets. Two examples are included; namely, minimizing the
pinion diameter of a gear set and minimizing the weight of a gear reducer.

INTRODUCTION

The importance of identifying the critical requirements for a design is well recognized by
engineer designers. In design optimization context this corresponds to determining the
active constraints at the optimal solution. An active constraint is an inequality constraint
which is satisfied in the form of equality at the optimum. The method of monotonicity analy-
sis originally proposed by Wilde (1) and developed by Papalambros (2) aims at establishing
rules for constraint activity identification. A summary of the developments in this area is
given by Papalambros and Li (3). Zhou (4) and Azarm (5) developed algorithms for nonlinear
constrained optimization which utilized local monotonicy information. In this paper we pre-
sent an algorithm for constrained nonlinear optimization problems which is based on the local
monotonicity information together with an augmented Lagrangian method. It may be applied to
a problem which is formulated in the following form:

Minimize f(x)
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g =0 J
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where f and g; are (scalar) objective and constraint functions, and x is a n-vector of

design variabqes. The algorithm is similar to the one proposed by Zhou (4) coupled with the
local monotonicity information proposed by Azarm {5). A short description of the algorithm
is presented in the next section. Subsequent sections present two examples involving gear
design. It is appropriate to note that the program should be considered as still under deve-
lopment,
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OUTLINE OF THE ALGORITHM

Here we focus on the basic operation of the algorithm which is based on the local monotoni-
city information together with an augmented Lagrangian method. We use the local monotonicity
information (5) to the problem of Eq. (1) to identify the active constraints. The active
inequalities together with equalities are used to form a penalty function which is then mini-
mized using the augmented Lagrangian method of the Powell-Hestenes (6,7). The solution to
this penalty function is used to estimate a new set of active constraints and thus a new
penalty function is formed and minimized. This operation is repeated until an optimal solu-
tion to the problem of Eq. (1) is obtained.

We can now summarize the basic steps of the algorithm. Consider an initial point x(0) and
set k=1 to begin:

Step 1: Find partial derivatives of the objective and constraint functions.

Step 2: Use local monotonicity (5) to identify the active constraints.

Step 3: Find the minimum of the following penalty function using the Fletcher and Reeves
method (8):



Pty = f(x) - R
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where R is a constant penalty term, x(t) is the multiplier estimate, and J is the total
number of active inequalities and equalities, The multipliers at (t+1)st stage of Step 3 are
formed according to the following rule:

(t+1) (t) (t) .

) = g.{x + A% =1,...,

3 93() A J=1,000,9 (3)
Step 4: Check the termination criteria, if satisfied then stop; otherwise set k = k+1 and go
to Step 1.

EXAMPLES

In this section we present two examples of the design optimization of spur gear sets where
the algorithm was implemented. In the first example which has two design variables, the
objective is to minimize the pinion diameter., In the second example which has seven desiyn
variables, the objective is to minimize the weight of a gear reducer.

Example 1

The model for this example expands the work of Carroll and Johnson (9) by including the AGMA
safety factor considering the overload and load distribution factor. In addition, face width
and standard pitch considerations are taken into account. The design variables for this
example are the pitch (P) and the number of pinion teeth (T1). The objective is to minimize
the pinion diameter, i.e. T1/P, and the constraints for this example are:
Interference (g1). - In order to have correct tooth action, it is necessary for the point of
contact of two mating teeth to lie on the involute profiie. Interference is said to occur
when one of the teeth having a larger addendum comes in contact with non-involute portion of
the mating tooth. For no interference, the maximum allowable addendum circle radius
(Ra(max)) is (10):

R

) = [R§c052¢ + (R,sing + R251n¢)2]1/2 (4)
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Using standard addendum for no interference, we have:

a(max

2R

1 i}
—TI'< Ra(max) - Ry ()

So, this constraint is:

K, - T, <0 ; where Ky = 2/[(G2 + sin2¢(26+1))1/2 - GJ. (6)
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Face Width (gp) - Quite often gear sets which have face width greater than five times the
circular pitch, have nonuniform load distribution (11). Therefore, this constraint is:

57\' . =
F < 7 or T1 - K2 < 0 ; where K2 Su/x. (7)

Bending Failure (g3) - The original model for bending failure developed by lewis is given as
(11):

W
o = (®)

where y is the Lewis form factor. Then ¢, = S,/N., where Ng = KoKpn is used to compute the
safety factor. Based on the AGMA recommeﬁdatign 11) in order to guard against failure we
use n » 2. Therefore, this constraint is:

KgP® - 1,2 < 0 5 where Ky = (792000 HpK K )/ (wNryS). (9)

Pitting Failure (gq) - Pitting failure occurs when excessive compressive stresses are applied
on gear tooth., The Hertz contact stress for a spur gear is given as (11):

oy’ = WL(1/p)) + (1/p,)1C, %/ (Feosy) (10)
%)E)1H?

where Cp = [(1/n)/((1—v12)/E1 + (1-vp“)/E . Since gy and W are not linearly related,
then the permissible transmitted load (wp§ is:



W, = NGN ' (11)
where Ng = KoKmn is used to compute the safety factor. Based on the AGMA recommendation, n >
2 is selected. Note that Wp is derived from Eq. (14) by changing oy to Sy and W to Wp.
Therefore, this constraint is:
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KgP” = TgT," <0 (12)
where K, = (792000 HPEKOKmsin¢)/((l-vz)nZSHszcosz¢) (13)
TB = eB[sin¢ - eBcos¢/(1+G)] (14)
By = [(1+2/T1)2 - cosz¢]1/2/cos¢ - 20/ (15)

Score Failure (gg) - Once pitting starts and gear is kept in operation, the surface of gear
teeth will be worn away; i.e., scoring failure. Scoring failure may even happen before
pitting due to the lack of lubrication. Similar constraint as g4 can be derived for scoring
failure in terms of 6,.:

C
3 3
KgP™ - T.T;° <0 (16)
where Kg = K4 (17)
To = olsing - e.cos¢/(1+6)] (18)
oc = [(1+G)sing - ((G+2/T1)2 - G2c052¢)1/2]/cos¢ {19)

Minimum Pitch (96) - This is a lower bound on pitch; 1 - P < 0
Example 1: Solution

In (9) an optimal design was given f%r an example with G = 5; ¢ = 20 deg; HP = 20; » = 0.25
Sy = 200 ksi; Sg = 60 ksi; E = 30x10° psi; v = 0.25, ky = 1, N = 1260.5 rpm. The optimal
design was given as d = 2,25 (Ty = 36; P = 16). We solved this problem by applying the
algorithm to the newly developed model which accounts for AGMA safety factor including
overload (kg = 1.7) and load distribution factor (ky = 1.5) with the face width and standard
pitch considerations. The result was d = (T} = 36, P = 9) for which constraints g3 and gs
are active, The difference between our result and the result in (9) is due to the intro-
duction of more constraints here., The optimal solution of (9) would be infeasible consider-
ing this model.

Example 2

In this example, the optimal design of a gear reducer for a given application is considered.
This example was modeled by Golinski (12) and solved by several optimization schemes such as
an adaptive optimization approach (13) utilizing five deterministic and stochastic algorithms
and a heuristic combinatorial approach by Lee (14). The solutions obtained for all of the
techniques are given in the cited references, However ail of the reported optimized designs
are infeasible for the given problem parameters. Here we start by simplifying the problem
using monotonicity analysis. We then apply the algorithm to the simplified model. We also
applied GRG2 (15-16) to the problem. The results of all computer runs are in agreement with
each other, and moreover, the obtained solution is feasible., Here only the final model is
presented, The reader may consult the cited references for further information on the origi-
nal model development. The design variables for the example are:

X, = gear face width ; Xy = teeth module ; Xy = number of teeth of pinion ;
Xq = distance‘between bearings of shaft 1 ; x5 = distance between bearings of shaft 2 ;
Xg = diameter of shaft 1 ; X, = diameter of shaft 2.

Model Description, Simplification, and Solution

The problem is to minimize the total weight of gear wheels and transmission shafts., The
constraints used are as follows:

9y : upper bound on the bending stress of the gear tooth due to the
tangential component of the gear load.

9, : upper bound on the contact stress of the gear tooth,



93-9, ¢ upper bounds on the transverse deflection of the shafts,

95-9¢ : upper bounds on the stresses of the shafts.
977953 ¢ dimensional restrictions based on space and/or experience.
9547995 ° design conditions for shafts based on experience,

The nonlinear programming statement for this model is:

minimize f(x) = 0.7854x1x22(3.3333x32 +14.9334x,

43.0934)-1.508x, (x 24x 2)+7.477(x63+x73)

6 "7
"y 0.7854(x4x62+x5x72)
subject to: 9; ¢ 27x11x£2x§1 < 1 ; g, : 397.5x11x£2x§2 < 1 (20)

93 ¢ 1.93x£1x§1x2xé4 < 15 g 1.93x£1x£1xgx;4 <1
9c : A/By ;45;100

A, = [(—;;;342 +16.9a0° 1% 5 B - 0]
9g AZ/BZ <742§0

Ay = [ szi)z + 147.5x10° 12 B, = 020
97 + XoXg < 40
9g * 5 < xl/x2 <12 99 916 7.3 < Xy < 8.3 917
910 2.6 < Xy < 3.6 911 914° 7.3 < Xg < 8.3 919
910° 0.7 < Xy < 0.8 913 990 2.9 < Xg < 3.9 991
914 17 < X3 < 28 P 9oy 5.0 < Xg € 5.5 903
PR (1.5x6+1.9)x;1 < 1 9y (1.1x7+1.9)xg1 < 1

From the monotonicities of the variables for the model the following simplifications were
made (5):

(1) With respect to Xy constraint 99 is active and g, is redundant.
(2) With respect to x_ constraint 9 is active, 9, and 9, are redundant.
(3) With respect to X7 constraint 9% is active, 9 and 9pn are redundant.

We also found that constraints gj-ga, 97, 99, 920 and g22 are redundant (5). We then assume
that g5, g6, and gg are as equalities in the algorithm to solve the simplified problem. The
algorithm found that the constraints gjp, d14, 916, and g5 are also active at the solution
where x = (3.5, 0.7, 17, 7.3, 7.72, 3.35, 5.29) for which the objective function has the
value 2994,

CONCLUSION

An attempt has been made to develop a methodology for solving a general nonlinear programming
problem in the form of Eq. (1). 1In the methodology presented here, an augmented Lagrangian
together with local monotonicity information were used to identify the critical requirements.
The methodology was applied to two examples in gear design optimization. It is a simpie
methodology as it has been implemented on a small personal computer,
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NOMENCLATURE

d diameter of pinion SH surface strength

E elastic modulus T number of teeth

F face width W transmitted

G gear ratio NP permissible load

HP horsepower y form factor

k overload factor fg pinion roll angle to Towest point of

K° load distribution factor single tooth contact

K™ dynamic factor 8. pinion roll angle to lowest point of

NY speed in rpm tooth contact

NG gear safety factor A length to diameter ratio

n AGMA safety factor v Poisson's ratio

P pitch plsp? radii of adenda circle

RI’R pitch circle radii 9 bending stress

SB bending strength oy Hertz contact stress

¢ pressure angle

Subscripts:

1 for pinion; 2 for gear



