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We focus on the interaction of light and matter in atomic and optomechanical

systems. These highly controllable and engineerable systems present access to new

regimes and research opportunities that often do not exist outside the laboratory.

As such, they frequently depart from more commonplace systems which are well

understood. We extend our understanding of thermodynamic phase transitions,

spontaneous symmetry breaking, and quantum-enhanced sensing to new regimes.

Traditionally, phase transitions are defined in thermodynamic equilibrium.

However, inspired by the success of the phase transition paradigm in non-equilibrium

fields, we derive an effective thermodynamics for the mechanical excitations of an

optomechanical system. Noting the common frequency separation between optical

and mechanical components, we study the dynamics of the mechanical modes under

the influence of the steady state of the optical modes. We identify a sufficient set

of constraints which allow us to define an effective equilibrium for the mechanical



system. We demonstrate these constraints by studying the buckling transition in

an optomechanical membrane-in-the-middle system, which spontaneously breaks a

parity symmetry. Having established a thermodynamic limit, we characterize the

nature of the phase transition, which can change order based on system parameters.

We extend our framework, proposing an photonic systems which realizes an SO(N)

symmetry breaking transition of the same nature as the membrane-in-the-middle

system. While we have treated these systems in the classical limit, their open

nature has pronounced effects when other noise sources are suppressed. We study

the canonical optomechanical system to unravel the origin of the semiclassical force

and potential on the mechanics. We find that this force, while conservative with

respect to the mechanics, deeply depends on the quantum back-action due to photon

loss from the cavity.

Additionally, we study the ability of cold atoms to sense rotation. We consider

bosonic atoms confined to a one-dimensional ring. Employing Luttinger liquid the-

ory to study the excitations, we find that in the strongly-repulsive regime, atomic

currents can be manipulated and superposed by controlling a laser barrier. These

superpositions provide a Heisenberg-limited rotation sensing method. When we

include noise, the precision is reduced, but the performance still surpasses the stan-

dard quantum limit. We comment on the applicability of such a sensor for inertial

sensing.
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Chapter 1: Introduction

1.1 Motivation

Frequently in physics there are discoveries of new areas, or advances in tech-

nology, that allow access to never before considered regimes. These new areas may

be described by entirely new theories or extensions of well known standards. In

either case, the notion of analogies is a particularly relevant and useful concept.

When we discover something new about the behavior of physical objects, it adds

to our previous understanding, but also implicitly asks, what can be done with this

understanding? Can one take concepts from other areas which resemble, however

slightly, this new system and implement them? Testing these analogies gives more

insight into the new system and potentially allows for the creation of new technolo-

gies built off of previous results. As an example one can consider the incredibly

successful exploration of matter waves: Louis de Broglie realized that matter could

have wave-like properties in 1924. These properties were soon confirmed (acciden-

tally) by Davisson and Germer [1]. It was only a brief time before these wave-like

properties were utilized to create an entirely new method of observation, the elec-

tron microscope [2]. Electron microscopy quickly blossomed into an important field

which to this day drives understanding of crystal structures and features that are
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smaller than reasonable wavelengths for photon-based imaging. While most analo-

gies are not as successful, the technique of extending our understanding from old

systems to new ones is particularly fruitful. I begin with a description of the history

of optomechanics and atomic physics to set the stage for the analogies we discuss.

1.2 Optomechanics

The fact that photons can exert a force on objects is important over a range

of scales and therefore to many different fields of physics. The force was originally

proposed by Kepler to explain why the tail of a comet always points away from

the Sun. While the magnitude of radiation pressure force is not particularly large,

(at Earth’s orbit, solar radiation pressure is ∼ 10 µN/m2), it is important factor in

astrophysics and has been used to propel satellites as far as Venus [3]. On the surface

of the Earth, other forces overwhelm radiation pressure and its effect is difficult

to quantify. While Maxwell’s equations predicted that electromagnetic radiation

should exert this pressure, it was not until 1900 that it was successfully measured [4,

5]. Over the last century, however, this force has become increasingly important and

experimentally accessible. Since the invention of the laser [6, 7], we have enjoyed

incredible control and engineerability in creating coherent, stable sources of light.

This ability to generate light has been augmented by our ability to create structures

that modify the properties of light for storage, amplification and transmission. In

particular, we focus on the ability to “trap” light in an optical resonator. The

traditional resonator is a cavity composed of two mirrors, at least one of which is
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imperfect, to allow light from the outside to transmit into the cavity. There are

numerous other methods of creating resonator structures, such as those employing

dielectric material (for a review of these, see Ref [8]). Within the resonator, the

boundary conditions determine a resonant set of modes. If the externally coupled

light overlaps with these resonant modes, they will be excited within the resonator.

The modes are generally long lived, with a lifetime set by the cavity decay rate,

κ, which means that driving with even small external power can result in a large

number of excitations within the cavity. This large population, of course, means

many photons can interact with matter, either through the electric field or, in our

case, by imparting momentum to a mechanical object. These combined optical

and mechanical (optomechanical) systems have found a wide range of applicability.

Such systems can form sensors which push the boundaries of measurement, typically

at the nanoscale [9], but including the massive Laser Interferometry Gravitational-

Wave Observatory (LIGO), which recently detected gravitational waves from two

merging black holes [10]. Additionally, the success of optical fiber for information

transmission has increased the need for devices which can interact with guided light,

including the development of optomechanical memory elements [11].

For the first part of the thesis, I focus on processes where the light exerts a

force on mechanical resonators. These interactions can become incredibly impor-

tant within optical resonators and when the mechanical objects are low mass. This

optical force is non-linear, depending on the number of photons, and competes with

mechanical restoring forces. It is sometimes useful to view the interaction not as

a force, but as a modification of the frequency of the resonant modes. Within this

3



framework, it is more obvious how density waves in dielectric material can cou-

ple mechanical oscillations to photonic ones. Typically one considers mechanical

systems with linear restoring forces and while generic systems may have more com-

plicated dynamics, a decomposition to normal modes renders our consideration of

harmonic oscillators fairly general.

Optomechanical interactions can be engineered in numerous optically dense

materials, including gases of cold atoms (e.g., [12–14]), where the optical length of

a cavity now depends on the density of the atomic gas within. The oscillations

of density are nearly harmonic, creating an equivalent system. These systems also

typically feature an enhanced optomechanical coupling due to the fact that all of

the atoms interact with the same light field. Additionally, they can be prepared

at very low temperatures, allowing explorations of quantum effects. Optomechan-

ical systems in the quantum regime have proved remarkably sensitive, providing

measurements of some of the smallest forces to date, [9, 15].

However, optomechanical systems are fundamentally driven and dissipative,

meaning that coupling to the external environment is crucial to their operation.

Due to this external drive and loss, these systems are not in thermodynamic equi-

librium, coupling to at least two reservoirs. Many traditional systems in physics,

and especially within quantum mechanics, are treated as closed, or at equilibrium

with a single reservoir at a well-defined temperature. The absence of a single bath

complicates the picture and invites us to consider whether equilibrium concepts

such as phase transitions extend to these non-equilbrium cases. One interesting fea-

ture of optomechanical interactions is the ability to connect excitations which have

4



resonant frequencies which are very well separated. This ability to transduce exci-

tations from one regime to the other underlies most of the optomechanical sensing

(i.e., reading information about the mechanics from the optical field) and may find

use in transmitting quantum information [16]. The separation in time scales means

we may be able to consider the dynamics of the mechanics assuming that the optical

modes instantaneously reach their steady state. From this point of view, we look

for a new effective equilibrium description of the mechanical system. While phase

transitions exist classically, the ability to cool optomechanical systems invites the

study of such behavior in the quantum realm. However, the introduction of loss

means that, quantum mechanically, information is leaking out of the system, which

potentially has strong effects on the dynamics of the mechanics [13,17,18]. We will

pursue this line of reasoning in Appendix A.

1.3 Quantum gases

As alluded to in the previous section, atomic gases have generated a tremen-

dous interest in the past decades. Arising concurrently and symbiotically with our

ability to create and manipulate light, our understanding of atomic physics has

driven a revolution in the ability to control and manipulate quantum systems. In-

deed, the key ideas of the laser were pursued to allow more precise study of atomic

and molecular states [19]. Nowadays, atomic and molecular systems are used as

state of the art clocks and sensors which continue to push the envelope of precision

(for a review of quantum sensing, see Ref. [20]). Some experiments have even con-
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strained possible additions to the Standard Model [21, 22] and there are proposals

to use cold atomic gases detect gravitational waves [23, 24].

In addition to static electric and magnetic fields, with the advent of the laser, it

was possible to imagine controlling atomic states and motion with coherent light [25,

26]. An important goal at the time was controlling the motion of atoms or ions to

decrease the thermal noise on spectroscopic properties. The absolute limit to this

“laser cooling” for bosonic atoms is the realization of a Bose-Einstein condensate

(BEC). At low temperatures, bosonic atoms lack enough states to occupy thermally

and a macroscopic number of these atoms “condense” into the ground state of the

potential [27]. The creation of BECs (as well as their fermionic counterpart, the

degenerate Fermi gas) has driven an immense amount of research in atomic physics,

opening up an entirely new toolbox of investigation.

1.3.1 Sensing with BECs

In particular, the condensation of many atoms into the same quantum state

provides an avenue for precise sensing. Atoms have many excited states whose

energies depend strongly on external factors, such as magnetic field or rotation. If

one creates a superposition of two states which have different energies in such an

external field, this superposition will gain a phase that depends on the strength

of the field. Reversing the superposition can map this phase into a population

difference between the states, which can be measured if the atom is imaged in a

state selective manner. With a BEC, one can effectively conduct this single atom
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experiment millions of times with a single run. Indeed, such experiments have

provided incredible results in gravitational gradiometry, rotation sensing, and have

promise in detecting gravitational waves [23, 28–30].

However, using a single atom technique in this ensemble manner leads to a

natural noise which grows like
√
N where N is the number of atoms. This noise

forms what is sometimes called the Standard Quantum Limit for sensing, as it

prevents higher precision measurements from being made. The limit is a result of

averaging and can be overcome using quantum correlations, e.g., entanglement [31–

33]. In some cases, quantum systems can correlate in such a way that they respond

as a collective system to an external field. In that case, the state of the system

is not a tensor product of a series of single atom superpositions, but instead a

single superposition of the whole system in two different configurations. The phase

accumulated between the states grows as N while the noise of a single measurement

is constant. This “Heisenberg limit” is the fundamental limit on quantum sensing.

Perhaps unsurprisingly, performing measurements beyond the standard quan-

tum limit has proven difficult, in part due to the strong response entangled states

have to external factors, which can lead to decoherence [33]. Additionally, one

must engineer or exploit interactions between atoms to create the relevant entan-

gled states. While there have been some experimental successes [18, 34–36], even

theoretically studying interacting many-body systems is generically difficult and

common perturbative techniques such as mean field theory are often unable to de-

scribe maximally entangled states. Indeed, an exciting avenue for cold atom physics

is the simulation of systems which are difficult to understand theoretically. However,
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there are some restricted domains which can be studied due to useful approxima-

tions.

In particular, in one-dimension, the restricted motion allows one to consider an

effective theory of phonons and topological excitations (such as currents) known as

Luttinger liquid theory. This theory was originally applied to fermions in confined

nano-wire structures [37] but it was later discovered that, since particles cannot

exchange places without scattering, both bosonic and fermionic systems can be

considered in the same framework [38–40]. This theory opens up a wide range

of interacting systems for analysis and includes many-body superpositions (such

as between two distinct currents) which are necessary for attempting Heisenberg

limited sensing. We explore the possibility of using such systems for rotation sensing.

1.4 Thesis outline

Chapter 2 introduces a generic framework for understanding when optome-

chanical systems can be described as having an effective equilibrium phase transi-

tion. While these systems are typically far from equilibrium, following Ref. [41],

we consider optomechanical systems when the relevant optical frequencies are much

faster than the mechanical ones. This separation allows us to eliminate the optical

modes and focus on the induced dynamics for the mechanical modes. We identify a

sufficient set of constraints that the optical modes must follow defining our thermo-

dynamic limit. Additionally, we note that optically induced forces are generically

non-conservative.
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Building on this framework, we describe a explicit realization of a phase tran-

sition in Chapter 3. We study an optomechanical membrane-in-the-middle system

inspired by the experimental observation of a buckling transition, which we include

as Appendix B [42]. We walk through the previously identified constraints to show

that this system has a well defined thermodynamic limit. Further, we identify an

order parameter and characterize the nature of the phase transition. Additionally,

this introduces the notion of spontaneous symmetry breaking in optomechanical

systems.

In Chapter 4, we broaden our consideration to include systems which break a

continuous symmetry (such as U(1)) instead of the discrete Z2 symmetry described

in Chapter 3. We propose a Hamiltonian based on a reparametrization of our model

of the Z2 system which has an SO(N) symmetry. This Hamiltonian can be realized

with optomechanically coupled photonic nanobeams. We show that this system

has a transition which spontaneously breaks the SO(N) symmetry as the driving

strength increases. We conclude with comments on the constraints necessary for a

thermodynamic limit, as described in Chapters 2 and 3, including commenting on

a related cold atom experiment [43] which spontaneously breaks a U(1) symmetry.

Moving to consider atomic systems more fundamentally, Chapter 5 describes

a proposal for an interaction-enhanced quantum rotation sensor. Here, we assume

the optical fields only dictate the potential landscape for the atoms, which we imag-

ine trapped in a one-dimensional ring. To consider effects beyond mean-field and

into the strongly interacting regime, we use Luttinger liquid theory. We identify a

method to generate and interfere many-body superpositions of atomic current. We
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study the ability of these states to measure rotation, which affects neutral atoms

analogously to the effect of magnetic fields on charged particles. We demonstrate

an improvement beyond the standard quantum limit and comment on potential

applications in sensing and elsewhere.

In Appendix A, we consider how quantum effects, essential to Chapter 5, will

manifest in the systems considered in Chapters 2-4. In particular, non-linear features

like bistability are prohibited by the linearity of quantum mechanics. However, these

optomechanical systems are open, which means the photons leave the system while

carrying information about the mechanical resonator. We seek to understand the

effect of photon loss on the wavefunction of the mechanics by using a quantum jumps

framework [44, 45]. We demonstrate that the standard semiclassical potential used

in optomechanics appears on average from the combination of these photon jumps

and the conservative dynamics of the system.
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Chapter 2: Phase Transitions in Optomechanical Systems 1

2.1 Introduction

Phase transitions provide a remarkably powerful framework to study phenom-

ena in many different regimes. While traditionally phase transitions have been

studied in classical, equilibrium systems, the most fundamental aspect is the non-

analytic behavior of an observable at large system sizes. Looking more generally to

non-analytic behavior, others have considered situations that do not meet the strict

requirements of thermodynamic equilibrium. In particular, phase transitions have

been proposed or observed in systems that are non-equilibrium [46], dissipative [47],

dynamical [48, 49], and even quantum mechanical [50–54]. In non-equilibrium sys-

tems, numerous analogies with traditional equilibrium phase transitions have been

explored, e.g., in lasers [55, 56], the Gunn effect [57], and in tunnel diodes [58, 59].

These analogies are fairly broad in consideration, and are readily generalized to

other non-equilibrium, non-linear systems, such as those studied in optomechanics.

In recent years, scientific advances have enabled the creation of numerous op-

1This chapter appears as part of “Thermodynamic limits for optomechanical systems with

conservative potentials,” by S. Ragole, H. Xu, J. Lawall, and J. M. Taylor in Physical Review B

96 (18), 184106
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tomechanical systems over a range of scales (see Ref. [8] for a review). These systems

combine the engineerability and control of optical systems with the simplicity of a

mechanical harmonic oscillator. Impressive results, including a self-structuring of

atoms [51–54] and a buckling of an optomechanical membrane [42] suggest that sta-

ble structural rearrangements of the mechanical modes can be described by an order

parameter.

Here we show that the dynamics of the slow modes (the mechanics) can

be described by an effective thermodynamic theory despite being an open, non-

equilibrium system. Our approach works provided that the fast modes (the optics)

obey certain properties, analogous to approaching an optical steady state, defining

our thermodynamic limit. This is conceptually similar to integrating out high fre-

quency or short wavelength behavior, but here the process takes a non-equilibrium

problem to an equilibrium one, in contrast to the usual formulation of phase tran-

sitions. Specifically, we construct a sufficient set of constraints that allow the defi-

nition of a thermodynamic limit, and phase transitions, in optomechanical systems.

While the limit we define is possible in some cases, we also show a generic optome-

chanical system may not have such a limit or even be described by a thermodynamic

potential. We illustrate our general approach with an example, a phase transition

following [42], showing along the way that these constraints are satisfied. While

our approach takes into account quantum fluctuations, we do not consider quantum

phase transitions in this work.
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2.2 Identification of Thermodynamic Limit

We will consider a driven, dissipative system comprising many optical modes

coupled to many mechanical modes. Such optomechanical systems have been real-

ized over a wide range of scales, from LIGO to nanoscale resonators or cold atoms [8].

Examples of non-analytic behavior in these systems is depicted in Figure 2.1. These

systems are, however, far from equilibrium. In the limit that the optics respond

instantaneously with respect to the mechanical modes, (i.e., the dynamics for each

optical mode are much faster than any of the mechanical frequencies), we may con-

sider the behavior of the optical steady state. Typically, this is accomplished by

adiabatically eliminating the optical modes and replacing them with steady state

values that depend parametrically on the mechanical modes [41]. Here we show that

we can construct a limit in which the mechanical steady state values are effectively

thermodynamic, and identify order parameters in systems with phase transitions.

To ensure that a thermodynamic description holds, we need the system to

have conservative dynamics, be stable, have optical forces that are at least as large

as mechanical forces and to only couple to bath(s) at a single temperature in the

large size limit. Theses constraints (C1-C6) are enumerated in Table 2.1.

We adopt a Hamiltonian formulation for the system, then follow the usual

conventions to derive Heisenberg-Langevin equations of motion. As such, we will

not specify many of the details of the Hamiltonian, instead focusing on the resulting
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Figure 2.1: Examples of non-analytic behavior in the steady state mechanics of

optomechanical systems. A. Competition between mechanical and optical springs

creates bistability as a function of laser power. The stable (unstable) solution is

shown as a solid (dashed) line. B. A membrane-in-the-middle system shows a Z2

phase transition which has either a first- (with unstable solutions as dashed lines) or

second-order characteristics. C. A cartoon of the generic system with many mechan-

ical (xµ, on the left) and optical modes (ai, on the right) coupled optomechanically

and with laser drive (Ωi) on the optics.
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Table 2.1: The constraints for realizing a thermodynamic limit of an optomechanical

system.

C1 The optical force must have a vanishing curl.

C2 The total cavity detuning must remain negative (red-detuned).

C3 The optical force must be comparable to the mechanical restoring force.

C4 The linearized optical restoring force must remain comparable to the

mechanical restoring force.

C5 The optically induced damping in the linearized equations must vanish.

C6 The optically induced noise in the linearized equations must vanish.

equations of motion. Still, in principle our system plus bath is described by

H = Hopt +Hmirror +Hmech +Hoptbath +Hmechbath , (2.1)

where all terms with optical mode operators are assumed to be bilinear or linear

in such operators, but may also depend upon the mechanical degrees of freedom.

This means that we can write down equations of motion for the optical modes that

have no troubles with commutator order, but the addition of optical loss through

the mirror into the optical bath will lead to an effective, non-Hermitian picture in

the equations of motion approach.

The system obeys the following equations (in the frame rotating with the laser
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drive frequency for each mode):

ȧi = i∆̃ij({xρ})aj − iΩi +
√

κex
ij a

in
j , (2.2)

ẋµ = M−1
µν pν , (2.3)

ṗµ = −Kµνxν − Γµνpν + a†i∂µ∆̃ij({xρ})aj +
√

Γµνp
in
ν , (2.4)

where we use Einstein summation notation, with optical modes, ai, indexed by

Roman indices, coupled to the set of mechanical modes, represented by xµ, pµ,

indexed by Greek indices. ∆̃ij({xρ}) = ∆ij({xρ}) + i
2
κij({xρ}) is the non-Hermitian

matrix, due to Hopt +Hmirror +Hoptbath, which describes the dynamics of the optical

modes in addition to all of the couplings to the mechanical modes. We note that this

generic coupling includes standard dispersive couplings (i = j), beam-splitter-like

terms (i 6= j), and dissipative couplings. Mµν , Kµν , and Γµν are the matrices, due

to Hmech +Hmechbath, giving the effective masses, couplings, and decay rates for the

mechanical modes. Ωi is the laser drive, κex
ij is the decay rate matrix for the optical

baths, and ainj , p
in
ν are the fluctuations of corresponding optical and mechanical

bath fluctuations, respectively. We note that the derivatives of ∆̃ij with respect to

mechanical coordinates correspond to the vacuum radiation pressure force. Thus,

when the optical modes have finite occupation, we will have a finite force.
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2.3 Explicit calculation of constraints around steady state

To separate the steady state effects from the fluctuations, we make the follow-

ing expansion:

ai = Ai + δai , (2.5)

xµ = Xµ + δxµ , (2.6)

pµ = Pµ + δpµ , (2.7)

where the capital letters (Ai, Xµ, Pµ) represent the noiseless, classical variables and

the δ variables are proportional to the fluctuations. We can consider the noiseless

variables in the optical steady state (Ȧi = 0) and study the induced force on the

mechanical modes:

F opt
µ = A†i ({Xρ})∂µ∆̃ij({Xρ})Aj({Xρ}) . (2.8)

2.3.1 Constraints on steady state values

Our first requirement (C1) is that the curl of this force vanishes, ερνµ∂νFµ = 0.

If this requirement holds, then the mechanics can be described by a conservative

potential. This curl has the form:

ερνµ∂νFµ = −ερνµ
(
∂ν∆̃

†
il({Xρ})

1

∆̃†lm({Xρ})
∂µ∆̃mj({Xρ})

+ ∂µ∆̃il({Xρ})
1

∆̃lm({Xρ})
∂ν∆̃mj({Xρ})

)
A†iAj , (2.9)

where we have used the fact that partial derivatives commute. There are many

possible instances where the curl vanishes. Some example cases are if there is only a
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single mechanical mode, a single optical mode, or if ∆̃ij({xρ}) is Hermitian – though

the lack of damping in the optical modes may violate our adiabatic assumption. We

will show a simple case where a non-Hermitian ∆̃ij({xρ}) possesses a potential and

describes a system with a phase transition. Intriguingly, cases with two or more

damped optical modes and multiple mechanical modes generically have a curl, owing

to the matrix nature of ∆̃ij({xρ}) and the inclusion of optical loss. Though these

cases may have interesting dynamics, including potentially topological properties

and limit cycle behaviors, we will not focus on them here.

In the case where the curl vanishes, we need to ensure additional constraints

hold to use equilibrium statistical mechanics to describe our system. We need the

optical modes to remain red-detuned overall (C2) otherwise instability (via gain)

will result. We also require that the optically induced forces remains comparable

to the mechanical restoring force in {Xρ} (C3) and in {δxρ} (C4) otherwise the

system simply becomes mechanical. While C3-C4 are identical in linear systems,

they are distinct in more complicated systems. In stable, open systems considered

here, there are (at least) two baths, one optical and one mechanical. For a well-

defined (single-temperature) thermodynamic limit, we need the mechanical system

to experience a single temperature bath. These restrictions (C5-C6), linked by the

fluctuation-dissipation theorem, mean that both the optically-induced mechanical

damping and optically-induced mechanical noise must vanish in our limit.
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2.3.2 Constraints on linearized fluctuations

To find the optically-induced forces and the corresponding damping and noise,

we study the linearized dynamics of the fluctuations (δai, δxµ, δpµ) which contain the

influence from optical and mechanical noise. To first order, the linearized variables

have the following equations of motion:

δȧi = i∆̃ij({Xρ})δaj + i∂µ∆̃ij({Xρ})δxµAj +
√

κex
ij a

in
j , (2.10)

δẋµ = M−1
µν δpν , (2.11)

δṗµ = −Kµνδxν + A†i∂µ∆̃ij({Xρ})δaj + δa†i∂µ∆̃ij({Xρ})Aj

+ A†i∂ν∂µ∆̃ij({Xρ})δxνAj − Γµνδpν +
√

Γµνp
in
ν , (2.12)

where aini , p
in
µ are the bath-induced fluctuations in the optical and mechanical modes

respectively.

This is a set of linear equations and can be solved. The solution determines

the local stability of the system, and can include both damping and gain, depending

upon eigenvalues of ∆̃ij({Xρ}). We note that this linearized theory is entirely com-

patible with the full quantum system, but may not capture the full phase diagram

of the system outside of our area of focus – particularly in the regime of limit cycle

or oscillator behavior.

We now examine the linear regime in detail. In both the noiseless and lin-

earized equations, we need the optical forces to be comparable to the mechani-

cal forces (C3-C4). Following our steady state assumption for the optical modes,
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Ai = ∆̃ij({Xρ})−1Ωj, we can Fourier transform the equations for the fluctuations,

δai(t) =
∫

dωãi(ω)e−iωt, expanding in ω:

ãi =
−1

ωδij + ∆̃ij({Xρ})

(
Ak∂µ∆̃jk({Xρ})x̃µ − i

√
κex
jk ã

in
k

)
,

≈ −1

∆̃ij({Xρ})

(
Ak∂µ∆̃jk({Xρ})x̃µ − i

√
κex
jk ã

in
k

)
+ ω

1

∆̃ij({Xρ})
1

∆̃jk({Xρ})
∂µ∆̃kl({Xρ})x̃µAl , (2.13)

where we assume the noise fluctuations are small compared to the optomechanical

term
(
|
√

κex
jk ã

in
k | < |Ak∂µ∆̃jk({Xρ})x̃µ|

)
.

Now, inputing the expanded “steady state” optical modes into the Fourier

transform of equation 2.12, we see a coupling to the optical bath which could disrupt

the emergence of a thermodynamic limit. These damping and noise effects from ãi

must vanish for the mechanics to have a single bath (C5-C6). These six requirements,

listed in Table 2.1, form a set of conditions which must be satisfied as the mechanical

modes go to their thermodynamic limit (we envision Xµ ∝ V α, α > 0, where V is

the volume of the mechanical resonator and V → ∞). In Figure 2.2, we show a

simplified view of our approximation and thermodynamic limit process.

2.4 Conclusion

If all of these conditions (C1-C6) are met, then the mechanical modes will ex-

perience a potential modified by the optics but will not have any additional damping

or noise contributions. In this case, the modes will thermalize only to the mechani-

cal reservoir, with no contribution from the optical reservoir. In such a situation, we

20



Figure 2.2: A schematic view of the thermodynamic limit we construct. A. The

original system is a generic, driven optomechanical system with an arbitrary number

of optical and mechanical modes. B. Using our adiabatic assumption, we use the

steady state values for the optical modes, which results in an effective force on the

mechanics, including a dissipative component from the optical bath. C. Following

the constraints, we ensure that the force in B is conservative (C1), stable (C2),

comparable to the mechanical force (C3-C4), and that the optical bath fluctuations

are negligible (C5-C6), resulting in a mechanical system with a modified potential.
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can compute the partition function and upon integration of the mechanical modes,

determine a free energy for an order parameter if one exists in the system.

There are interesting systems which do not meet these conditions, however, we

restrict ourselves to the case where our effective thermodynamic theory applies. In

particular, in the next chapter, we demonstrate the existence of a Z2 phase transition

in the defined thermodynamic limit of an optomechanical membrane-in-the-middle

system.
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Chapter 3: The Thermodynamic Limit for the Z2 System 1

3.1 Introduction

We consider an optomechanical system with two optical modes, a1,2, coupled

oppositely to a single mechanical mode, x, with resonant frequency Ωm, where each

optical mode has equal drive and decay, (Ω1,2 = Ω, κ1,2 = κ),. Explicitly, we de-

fine ∆11 = ∆1 + gx and ∆22 = ∆2 − gx, where ∆1 = ∆2 = ∆ is the detuning of

the modes when x = 0. As an example, one can consider a cavity with a dielec-

tric membrane-in-the-middle [42, 60–62] where we drive two modes with opposite

responses to the membrane motion, depicted in Fig. 2.1B. This system has been re-

alized experimentally and shows the characteristics of a phase transition [42], which

we expand upon.

To demonstrate that such a system has a thermodynamic limit, we need to

determine how the constraints from Chapter 2 (C1-C6) are held. We choose the

“bad cavity limit,” κi � Ωm, γ, such that the optical decay is much faster than

any mechanical frequency. C1 is satisfied immediately because the curl of a one-

1This chapter appears as part of “Thermodynamic limits for optomechanical systems with

conservative potentials,” by S. Ragole, H. Xu, J. Lawall, and J. M. Taylor in Physical Review B

96 (18), 184106
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dimensional force vanishes identically. We expand the variables (a1, a2, x, p) and

imagine that X ∝ V α →∞, as above. We also consider the scaling of the membrane

mass, m = ρV , the coupling, g = ωcd
−1, and the cavity decay, κ = cd−1F−1 where

ρ is the mass density and ωc, d,F are the cavity frequency, length, and finesse,

respectively. We can consider a variety of options for the cavity length, d, and

adjust the other parameters, such as finesse and cavity frequency, to ensure the

following scaling arguments hold. Two options for the cavity scaling are depicted

in Figure 3.1. With C1 automatically satisfied, the rest of the constraints become

a set of scaling relations that determine a region of parameter space in which the

defined thermodynamic limit exists.

To ensure the cavity stays red-detuned (C2) we must impose that ∆ ∝ −|gX|.

Taking the steady state solutions for Ai, ãi as described above, we can derive the

optically induced force, damping, and noise in order to quantify the remaining con-

straints. The optical and linearized optical forces (C3-C4) are:

F opt = − 4~g2∆|Ω|2

(∆2 + κ2

4
)2 + 2g2X2(κ

2

4
−∆2) + g4X4

X , (3.1)

f opt = −
4~g2∆|Ω|2

(
(∆2 + κ2

4
)2 + 2g2X2(∆2 + κ2

4
)− 3g4X4

)
(
(∆2 + κ2

4
)2 + 2g2X2(κ

2

4
−∆2) + g4X4

)2 δx , (3.2)

The optical force must be comparable to mΩ2
mX, while the linearized optical force

must be comparable to mΩ2
mδx. Since mΩ2

m remains finite in 2D, the coefficient

of these optical springs must not vanish. Given the linear nature of the coupling,

C3 and C4 are identical constraints which are satisfied when |Ω|2 ≥ c3|gX|3 and

κ ≤ c4|gX|, where c3, c4 are fixed constants, and we used C2 to achieve this result.

Having established that the force is relevant for the steady state position and
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Figure 3.1: Two possible realization of the thermodynamic limit for the membrane-

in-the-middle system. In the upper figure, we imagine the cavity growing with the

membrane, while the finesse decreases to ensure κ stays large. In the lower figure,

we consider shrinking the cavity, which meets our constraints so long as the finesse

does not increase more quickly than the cavity shrinks. In each case, the power

required to satisfy the other constraints grows.
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its fluctuations, we can consider dissipative effects. The damping and noise will be

carried into the mechanical equations from ã. These terms must vanish if we are to

achieve the desired single temperature bath (C5-C6). The damping is:

γopt = − 4~g2|Ω|2∆κ

m
(
(∆2 + κ2

4
)2 + 2g2X2(κ

2

4
−∆2) + g4X4

)3×(
5g6X6 + g4X4(5∆2 +

9κ2

4
) + 3g2X2(

κ4

16
− 1

2
∆2κ2 − 3∆4)− (∆2 +

κ2

4
)3

)
,

(3.3)

which, following C1-C4, scales at most as Ω2
m

|gX| and thus vanishes as X →∞, satis-

fying C5.

Finally, we consider the optically induced noise (C6). These noise terms have

the form:

bini =
~g|Ω|

√
κaini(

(∆± gX) + iκ
2

)2 , (3.4)

where bini is the noise term in ṗ and i = 1, 2 determines the sign of the gx.

These terms should be considered in relation to the mechanical noise, i.e., we

should compute 〈b
in†bin〉
〈pin†pin〉 where pin is the noise from the mechanical bath. Assuming

the mechanics have an ohmic bath, this ratio is:

〈bin†bin〉
〈pin†pin〉

=
~2g2|Ω|2κ(

(∆± gX)2 + κ2

4

)2

1

2mγkbT
, (3.5)

where the plus (minus) corresponds to b1(2).

Following the scaling from above, this term is proportional to ~Ω2
mκ

2gXγkbT
= Qmqκ

gX
,

where Qmq = ~Ω2
m

γkbT
is the quantum Q for the oscillator. From above, we need
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κ ≤ c4|gX| but we also need to consider how Qmq behaves in the thermodynamic

limit. From the scaling of X, we have Qmq ∝ 1
V 2αγ

which vanishes so long as

γ > c5V
−2α, i.e., if the mechanical noise stays finite, it will overwhelm the optically

induced noise and form the dominant noise contribution.

With this final constraint in place, we have demonstrated that our optome-

chanical system has a well defined potential with only relevant coupling to a single

bath in the thermodynamic limit, which can be described by equilibrium statistical

mechanics.

3.2 Mulitmode generalization of Z2 membrane buckling

We generalize this analysis to include many mechanical modes, such as those

present in a membrane, each coupled to the optics in the same fashion (though,

potentially with different values of g). We compute the partition function for these

membrane modes and the optically induced potential. We will consider a membrane

with the displacement field u(r, t), a mass density ρ, and a Young’s modulus, Y .

As an order parameter, we identify O(t) =
∫

d2xg(r)u(r, t), which appears in the

optical potential, V (O). We can write the classical membrane Hamiltonian and the

full partition function including the optical potential:

H =

∫
d2r

[
π(~r, t)2

2ρ
+ Y (∂µu(~r, t))2 + f(r, t)u(r, t)

]
, (3.6)

Z =

∫
DuDπdOdλe−β(H[u,π]+V (O))eiλ(O−

∫
ddrg(r)u(r,t)) , (3.7)

where f(r, t) is an external force that might break the symmetry, and we have added

the order parameter, O, in as an auxiliary field.
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After transforming to Fourier space and integrating out the membrane mo-

mentum, π, displacement, u, and λ, we can rewrite the partition function (up to

normalization factors) purely in terms of the order parameter O:

Z ′ =

∫
dO exp

−β
1

2

∑
~k

g2
−k

Ω2
mk

−1(
O −

∑
k

gkfk
Ω2
mk

)2

+ V (O)

 , (3.8)

where gk, fk are the Fourier components of the optomechanical coupling and external

forces respectively. From Eqn. 3.8, we can compute the integral and compute the

free energy, F:

F = − 1

β
logZ ′ . (3.9)

Since O grows with system size (and the potential along with it), only the minima

of the effective potential will have finite energy in the thermodynamic limit. These

correspond to the usual saddle points in steepest descent approximations.

3.3 Characterization of the buckling phase transition

The locations of the minima of F change non-analytically as a function of

laser power, resulting in a phase transition in the steady state of the coupled mode.

Intriguingly, the order and onset of the phase transition are strongly dependent on

the detuning of the optical modes from the cavity. To see this behavior, we study

the values of the order parameter O which give zero “force”. Renaming the effective

“spring constant,” k =
(∑

~k

g2
−k

Ω2
mk

)−1

, we compute the zero force condition:

0 = kO

(
1− A

O4 + 2O2(κ
2

4
−∆2) + (∆2 + κ2

4
)

)
, (3.10)
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where we define A = −4~|Ω|2∆
k

, where Ω is the coupling to the laser drive. This quan-

tity is positive since we are considering red-detuning (∆ < 0) and is proportional

to the input laser power. We also note that the second term has even parity, so

solutions with O 6= 0 will appear in pairs, providing the Z2 symmetry of the steady

state solutions anticipated.

The general solution for the non-trivial phase (O 6= 0) is

O2 = ∆2 − κ2

4
±
√
A−∆2κ2 . (3.11)

For the solution to be valid, the right hand side needs to be real and positive.

Enforcing realness, A > ∆2κ2. Recalling that A is proportional to laser power,

this constraint gives the minimum laser power for a transition to occur. To ensure

positivity, we have to consider two cases, |∆| < κ
2

and |∆| > κ
2
. In the first case, the

square root term must be larger than the first two terms, so only the positive root

can be a solution. For that to be the case, we need

A−∆2κ2 >

(
κ2

4
−∆2

)2

,

A >

(
κ2

4
−∆2

)2

+ ∆2κ2 ,

A >

(
κ2

4
+ ∆2

)2

. (3.12)

When this equation is satisfied, there is only one solution for O2. This case cor-

responds to a double well potential where the wells split from O = 0 as power is

increased. The O = 0 solution becomes unstable and represents the peak of the

barrier between the two wells at O = ±Os. However, in the case where |∆| > κ
2
,

once A > ∆2κ2, a triple well develops with minima at O = 0,±Os+, where Os+ is
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the larger solution. We will show below that the smaller solution, Os−, is unstable

and forms the peaks of the barriers.

To study the stability of the solutions, necessary for the steepest descent ap-

proximation, we determine the local curvature of the potential at each of these crit-

ical points by computing the second derivative of the potential, ∂2
OV (O). Defining

u = O2 and D(u) = u2 + 2u(κ
2

4
−∆2) + (∆2 + κ2

4
) for convenience,

∂2
OV (O) = k

[
1− A

D(u)

]
+

kOA

D(u)2
D′(u)2O . (3.13)

The Os = 0 solution is stable but decreasingly so until A
D(0)

= 1 (which is the power

at which as the |∆| < κ
2

case buckles) and the solution becomes unstable.

In the buckled state, we see the mechanical spring constant drops out imme-

diately and the curvature is controlled by the optical response. The sign of the

curvature is determined by D′(O2
s±) = ±2

√
A−∆2κ2. Therefore, when |∆| > κ

2
,

the smaller solutions are unstable, leading to a first order phase transition, while

the outer solutions and the solutions for |∆| < κ
2

are stable with a new, optically

determined, spring constant. Thus, as a function of laser power, the steady state

of the membrane will either experience a 1st or 2nd order phase transitions which

spontaneously breaks the Z2 symmetry of the potential.

3.4 Conclusion

Exploring the thermodynamic limit defined in Chapter 2, we define an op-

tomechanical membrane-in-the-middle system which possesses a phase transition of

either 1st or 2nd order, controlled by the system parameters. Specifically, our theory
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supports the experimental observation of spontaneous Z2 symmetry breaking corre-

sponding to the buckling of the mechanical spring [42]. This experimental result is

included as Appendix B.

We also find, more generally, that optomechanical systems which do not have

conservative dynamics are generic, and are not well understood in our thermo-

dynamic limit. Analysis of these systems may point to topological physics and

connect with other related optomechanical systems, such as those with exceptional

points [63]. While experimental efforts have included the ability to cool the mechan-

ical system to its ground state [64], determining whether our framework for phase

transitions persists at the quantum level will require further analysis to handle the ef-

fects of quantum fluctuations. However, the possibility of observing quantum phase

transitions which spontaneously break symmetry remain quite compelling and will

drive future theoretical work.
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Chapter 4: U(1) and SO(N) spontaneous symmetry breaking in op-

tomechanical systems

4.1 Introduction

Spontaneous symmetry breaking is a fascinating phenomenon where the state

of a system takes on a specific value or range of values that are not determined

entirely by the equations of motion. Some of the simplest examples occur in realiza-

tions of the Dicke phase transition [65–67], where the presence of a small number of

bosonic modes can dramatically change the steady state behavior of atoms or me-

chanical resonators, spontaneously breaking an intrinsic parity symmetry [68, 69].

More complex examples include systems with additional gauge symmetries, and ap-

pear to describe superconductivity [70] and the Higgs mechanism [71–73]. The above

cases are sometimes close to those provided by nature, but we can also study spon-

taneous symmetry breaking in optomechanical systems, where recent advances have

allowed precise engineering of the mechanical modes [74–76], optical modes [77, 78]

and their interaction [79, 80]. Furthermore, the concept is extensible even to open

systems, where non-equilibrium mechanics can give rise to thermodynamic steady

states described by a Gibbs ensemble, as in Ref. [81]. In that work, we demonstrated
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that symmetry-breaking phase transitions can occur in such systems, and provided

as an example the Z2 phase transition, realized in a membrane-in-the-middle cavity

optomechanics experiment [42].

Here, inspired by recent experiments with atomic Bose-Einstein condensates [43],

we generalize our framework to include systems that will show spontaneous symme-

try breaking in more complex ways, involving groups with higher global symmetries,

such as U(1) and SO(N). We note that to generate systems with spontaneously bro-

ken symmetries, one must begin with equations of motion that respect the symmetry

to be broken. This restriction suggests natural systems in which one might imagine

realizing such a symmetry. For instance, systems composed of the clockwise and

counterclockwise whispering gallery modes of a mechanical resonator, excitations

in equivalent optical cavities coupled to a central mode, or left and right circularly

polarized light. These cases can typically have a “natural” symmetry which may be

spontaneously broken.

We will largely follow the same strategy from Ref. [81]: define an optomechani-

cal system where the optics evolve much more quickly than the mechanics, eliminate

the optical modes, and study the steady state properties of the mechanics under the

combined optomechanical potential. We defer a consideration of the damping and

fluctuations in the thermodynamic limit to Appendix B of this chapter. We will

identify cases where for low power, the steady state mechanics are at their mechan-

ical equilibrium, but at high power, the steady state will achieve a new equilibrium

where the squared sum of displacement for the modes is fixed, but the relative dis-

placement of any given mode is free. Therefore, while the Hamiltonian, driving,
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and loss are invariant under a global transformation (generalized rotation) of these

modes, the steady state will have to assume a single value, spontaneously breaking

the symmetry. Our suggested experimental approach takes the basic concept of Z2

breaking and by stacking together several such systems, achieves the higher sym-

metry SO(N). Another key point of our approach: the “spontaneous” part of the

breaking arises from the contact of the system to its bath.

4.2 Symmetries in beam-splitter optomechanics

As our starting point, we consider the Hamiltonian that describes a beamsplit-

ter whose transmittivity depends upon a (mechanical) position variable, as used in

Ref. [81]. Consider two optical modes of a cavity, with annihilation operators aL

and aR, driven by laser detuned equally from the respective cavity resonances. This

system can be recast by transforming to a symmetric/anti-symmetric basis for the

optical modes, which makes the symmetry breaking manifest. Under such a trans-

formation, we have an optomechanical interaction:

Hint = ~ga†0 (xai) +H.c. , (4.1)

where g is the optomechanical coupling, a0(i) is the symmetric (anti-symmetric)

combination of the driven modes, x is the position of the mechanical membrane,

and H.c. is the Hermitian conjugate of the first term. This interaction has the

property that changes in sign of the x degree of freedom can be compensated by a

simultaneous sign change in ai, showing the (in this case Z2) symmetry which can

be spontaneously broken.
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In this form, we assume we only drive the symmetric mode, a0, and the phase

transition corresponds to a population of the ai mode along with a displacement of

the mechanical membrane, where the direction of the displacement and sign of the

ai mode are chosen spontaneously. Inspired by this interaction, we can consider the

generalization to multiple optical and mechanical modes:

Hint = ~ga†0

(
N∑
i=1

xiai

)
+H.c. , (4.2)

where i indexes the multiple mechanical and optical modes coupled to the driven a0

mode. Such a system can no longer be composed of symmetric and anti-symmetric

combinations of cavity modes, however, we can construct the above interaction using

directionally coupled, optomechanical waveguides [82].

If two waveguides approach each other, the dispersion in each waveguide

changes due to evanescent field interactions, potentially strongly, e.g., in “zipper-

cavities” [83, 84]. Excitations in such regions are naturally described by symmetric

and anti-symmetric combinations of waves in each waveguide. We can view an trav-

eling wave in a single waveguide as a superposition in this basis. The phase which

accumulates between the symmetric and anti-symmetric modes over the interaction

region depends on the dispersion modification, which depends on the distance be-

tween the waveguides [85]. Transforming back to the waveguide basis, the total

phase sets the amount of light which transmits from one waveguide into the other.

If we allow the waveguides to move, they act as a mechanically dependent beam-

splitter. We imagine a system engineered such that the beamsplitters are dark if

the mechanical modes are at their equilibrium position. We also imagine that these
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Figure 4.1: A cartoon of a proposed realization with U(1) symmetry. Here the

driven mode, a0 occupies a long photonic nanobeam and is coupled evanescently to

two smaller nanobeams with optical modes, ai. These beams are free to deform and

their displacements, xi, modify the strength of the beamsplitter coupling.

waveguides have reflective boundaries, creating photonic cavities. Thus, we can

construct our system by imagining a large, driven, cavity coupled to several other

cavities in the manner detailed above and depicted in Fig. 4.1. For a more detailed

derivation, see Appendix A of this chapter.

Following our intuition from the Z2 case, we see that such an interaction is

invariant under a simultaneous rotation of the mechanical and optical modes. This

global symmetry is described by the group of rotations in N dimensions, SO(N). As

we show below, it can be spontaneously broken above a threshold laser power. In the

following chapter, we explore the phase transitions of this system. In Appendix B,

we define a thermodynamic limit for this system and in Appendix C we provide some

analysis of the similar spontaneous symmetry breaking in a cavity BEC system [43].
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4.3 Characterizing phases transitions in beam-splitter optomechan-

ics

We show that the above model can realize first- and second-order phase tran-

sitions and readily generalizes to higher dimensions. Following our analysis from

Ref [81], we calculate the steady state values of the optics and determine the dy-

namics of the mechanical modes under the influence of the optical steady state. We

can write down the full system Hamiltonian (in units of the mechanical harmonic

oscillator length, `H.O. = 1, and ~ = 1):

H = −∆0a
†
0a0 + Ω(a0 + a†0) +

∑
i=1,2

ω

2
(p2
i + x2

i )−
∑
i=1,2

∆ia
†
iai −

∑
i=1,2

gxi(a
†
0ai + a†ia0),

(4.3)

where ω is the mechanical frequency, Ω is the external drive, ∆0,∆i are the detunings

for the respective optical modes, and we have transformed to a frame rotating with

the drive laser.

We add fluctuations and dissipative terms in the equations of motion to ac-

count for the open nature of the cavities and dissipation on the mechanical modes.

We also restrict ourselves to the symmetric case, where the detuning, decay, and

damping rates are equal for the non-driven cavities. This leads to the following
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Heisenberg-Langevin equations:

ȧ0 = i(∆0 +
iκ0

2
)a0 + i

∑
i=1,2

gxiai + iΩ +
√
κ0a

in
0 , (4.4)

ȧi = i(∆1 +
iκ1

2
)ai + igxia0 +

√
κ1a

in
i , (4.5)

ẋi = ωpi , (4.6)

ṗi = −ωxi + g(a†0ai + a†ia0)− γpi +
√
γpini , (4.7)

where κ0,1, γ are the damping terms for their respective modes and ain0,i, p
in
i are

fluctuations.

In the limit that the optics are much faster than the mechanical modes, we

expand the variables (a→ A+δa, x→ X+δx), around their steady state, assuming

that the fluctuations will be proportional to the noise. We can find the steady state

for the noiseless variables via solving the resulting matrix equation. With the steady

state values for the optical modes, we can determine the force on the mechanical

modes:

F opt
i = − 2g2Xi∆1|Ω|2

(∆2
0 +

κ2
0

4
)(∆2

1 +
κ2

1

4
)− 2g2(X2

1 +X2
2 )(∆0∆1 − κ0κ1

4
) + g4(X2

1 +X2
2 )2

.

(4.8)

This force has a vanishing curl and thus supports static, steady-state solutions for

the mechanics. We also note the force respects the symmetry of the Hamiltonian,

namely, it depends on the effective radial coordinate, R2 = X2
1 + X2

2 and points in

the radial direction. We can integrate the force in the radial direction to see what
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addition it makes to the total mechanical potential:

V opt(R) =
2∆1|Ω|2 arctan

( κ0κ1
2
−2∆0∆1+2g2R2

∆1κ0+∆0κ1

)
(∆1κ0 + ∆0κ1)

. (4.9)

For red (negative) detunings, the argument of the arctan is negative but the prefactor

is positive, giving the correct form to allow for a symmetry breaking transition. That

is, when |Ω|2 is large enough, the minima of the combined optical and mechanical

potential will not be at R = 0. Example cases of the radial potential at different

driving strengths are displayed in Fig. 4.2. Above the threshold power, the radius

will go to a fixed value, but the angle of the vector, i.e. the relative excitation of

the modes, will be unconstrained, as shown in Fig. 4.3. This free angle results from

the broken SO(2) or U(1) symmetry.

Since the angle is unconstrained, there is a zero energy mode which takes one

steady state to another one with an infinitesimally different angle. We also note

here that the nature of the potential is very similar to the potential in Refs. [42,81]

which means that the order of the phase transition will depend on the relative size

of the detunings and the decay rates. For ∆0∆1 − κ0κ1

4
> 0, the system will have a

first-order transition, with the metastable potential shown in Fig. 4.2 B., otherwise

the transition will be second-order.

4.4 Extending to SO(N) symmetries

This system easily generalizes to higher dimensions. By adding pairs of op-

tical and mechanical modes, while maintaining the same type of interaction and

constraints on the frequencies involved (i.e. the mechanics must be much slower
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Figure 4.2: Examples of the combined mechanical and optical potential in the radial

direction. A. At low power, the mechanical potential dominates and leads to R = 0.

B. At higher powers, a minimum at R 6= 0 develops. If the detunings are large (see

order analysis in main text), R = 0 becomes metastable at intermediate powers.

C. At high powers, the optical effects overwhelm the mechanical effects and there

is only one minimum, located at R 6= 0. In the case without metastability, this

minimum develops at R = 0 and smoothly moves outward as power increases.

40



Figure 4.3: A representation for a specific steady state of the U(1) system. Above

a critical laser power, the steady state squared sum of oscillator positions (R2 =

X2
1 +X2

2 ) will be a fixed, non-zero value (represented by the circle), but the relative

oscillator positions are unconstrained, represented by the angle φ.
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Figure 4.4: We can construct higher dimensional systems by adding more op-

tomechanical, photonic cavities. While we denote each cavity decay rate, we take

κ1 = κ2 = κ3.

than relevant optical time scales), we enlarge the space and, in turn, allow for

higher symmetries to be broken. We imagine experimentally realizing this by ex-

tending the driven photonic cavity and adding additional coupled cavities, as seen

in Fig. 4.4. As we noted before, the interaction is invariant under rotations. Strictly

speaking, we have two vectors, one optical and one mechanical. The nature of the

interaction and our adiabatic elimination means that the optical “vector” is always

parallel to the mechanical one, leaving the symmetry for rotations of a single vector,

as opposed to two. To see this, consider the optical equations of motion in Cartesian

coordinates:

ȧ0 = i(∆0 +
iκ0

2
)a0 + i

∑
i=1,2,3

gxiai + iΩ +
√
κ0a

in
0 , (4.10)

ȧi = i(∆i +
iκ1

2
)ai + igxia0 +

√
κ1a

in
i , (4.11)

We can solve the steady state for the a0 mode and substitute it into the ai equation:
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ȧi = i(∆i +
iκ1

2
)ai +

igxi

∆0 + iκ0

2

(
gxjaj + Ω− i

√
κ0a

in
0

)
. (4.12)

The steady state equation for ai can now be recast as a matrix equation, Mijaj+vi =

0 where Mij = (∆i + iκ1

2
)δij + 1

(∆0+
iκ0
2

)
g2xixj, vi = Cxi, and C =

Ω−i√κ0ain0
(∆0+

iκ0
2

)
is

a constant. Evidently, xi is an eigenvector of Mij, thus also an eigenvector of

M−1
ij . Therefore, when we solve for ai = −C(Mij)

−1xj, we find that ai is always

parallel to xi. This fact results in a force that is always purely radial, preserving the

curl-free condition and rotational symmetry of the mechanical system for arbitrary

dimensions.

For 2 dimensions, when the system has a finite value for the “radial” coordi-

nate, the spontaneous choice of an angle breaks the U(1) symmetry. If we consider

an additional optical and mechanical mode, then the relevant broken symmetry is

SO(3). Continuing to add pairs of optical and mechanical modes, generic SO(N)

symmetry breaking is possible.

To be explicit, we can write down the Hamiltonian for an SO(3) system:

H = −∆0a
†
0a0 + Ω0(a0 + a†0) +

∑
i=1,2,3

ω

2
(p2
i + x2

i )

−
∑
i=1,2,3

∆1a
†
iai −

∑
i=1,2,3

gxi(a
†
0ai + a†ia0) , (4.13)

where again ∆0,∆1 are the detunings for the respective optical modes (assuming

the undriven modes are degenerate) in the frame co-rotating with the drive laser.

We can derive the equations of motion for this system and study the steady state
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Figure 4.5: A representation for a specific steady state of the SO(3) system. Above

a critical laser power, the sum of squared amplitudes of the oscillators (R2 = X2
1 +

X2
2 + X2

3 ) will be a fixed, non-zero value, represented by the wireframe sphere.

The ratios of their excitations relative to each other, i.e., the angles of the vector,

however, are unconstrained.

solutions. Again, the curl-free condition means that steady state solutions will have

no angular momentum. This leaves only the radial degree of freedom, which will

have an identical optical potential:

V opt(r) =
2∆1|Ω|2 arctan

( κ0κ1
2
−2∆0∆1+2g2r2

∆1κ0+∆0κ1

)
(∆1κ0 + ∆0κ1)

. (4.14)

It similarly has first- or second-order transitions as the optical potential contends

with the mechanical spring. Above these transitions, the steady state value of the

radius will be fixed, but now two angular variables will be unconstrained, as shown

in Fig. 4.5.
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4.5 Conclusion

We have generalized the notion of spontaneous symmetry breaking phase tran-

sitions to open systems which allow for an adiabatic elimination of “fast” modes. We

consider optomechanical systems with interactions possessing a natural symmetry.

Following Ref. [81], we adiabatically eliminate the optical modes and focus only on

the dynamics of the mechanics. In particular, we propose a photonic nano-beam

system which enables first- and second-order transitions that spontaneously break

SO(N) symmetry. These systems reduce to the system considered in Ref. [81],

and must follow similar constraints to have a thermodynamic limit. We comment

on the thermodynamic limit of the nanobeam system and a similar cavity BEC

experiment, [43] in the appendices.

While we have primarily focused on realizing systems which spontaneously

breaks a global SO(N) symmetry, we can imagine other systems in which the in-

teraction includes polarization and strain degrees of freedom for the optics and

mechanics respectively. Additionally, if one were to realize the interaction locally,

between the local strain field of a membrane and the electric field at the membrane

surface, the interaction would possess a local symmetry. The spontaneous breaking

of this local symmetry could allow simulation of phenomena more closely related to

high energy or condensed matter physics [70–73]. However, in the optomechanical

case, there is a great deal of control over the structure and dispersion of the fields

involved.
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4.6 Appendix A: Derivation of optomechanical coupling for direc-

tional couplers

Here we give a more detailed derivation of the interaction term for our pro-

posed SO(N) system. We consider two waveguides which are in close proximity for

a small region. Assuming that the interaction between waveguides is weak, we will

use coupled mode theory [85]. That is, we assume that the mode in each waveg-

uide is largely unaltered by the presence of the other waveguide, except for the

amplitude, which becomes a function of the propagation direction (defined as z).

Explicitly, following the conventions from Ref. [85], we assume the electric field in

each waveguide has the form Ei = ai(z)ui(y)e−iβiz where ai(z) is the amplitude,

ui(y) is the transverse mode shape, ni is the index of refraction for waveguide i, and

βi is the phase accumulated per unit length. We assume the waveguides are width

d, separated by a gap of width 2a, which we allow to vary. This gap has an index

of refraction, n.

Following the coupled mode equations from Ref. [85], we arrive at a transmis-

sion matrix, Tij, relating the amplitudes at the beginning of the interaction region,

ai(0), to those at the end, ai(z0): ai(z0) = Tijaj(0). This transmission matrix is

determined by several factors:

Cij =
1

2

(
n2
i − n2

) k2
0

βj

∫
dyui(y)uj(y) , (4.15)

γ2 =
(∆β)2

4
+ C12C21 , (4.16)

where ∆β = β1−β2 is the difference in phase accumulation per unit length between
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the waveguides and k0 is the free space wavenumber.

As we are concerned with the coupling between modes, e.g., from a1(0) to

a2(z0), we focus on the off-diagonal terms. These off-diagonal terms are deter-

mined (up to a phase, which we can absorb) by
Cij
γ

sin(γz0). Here we consider a

phase-matched system. Phase-mismatched systems might also be able to realize this

interaction, but we do not focus on them here.

For phase matched systems, the two waveguides are assumed to be identical.

In this case, ∆β = 0 and C12 = C21 = C, so γ = C. Additionally, we imagine

constructing a coupler such that Cz0 = 2πm where m is an integer. Here we can

engineer the coupling by assuming that the waveguides are allowed to move by some

displacement x, changing the distance between them. This displacement will modify

C:

C =
1

2

(
n2

1 − n2
) k2

0

β1

∫ a+d

a

dyu1(y)u2(y + x) ,

≈ 1

2

(
n2

1 − n2
) k2

0

β1

∫ a+d

a

dyu1(y)u2(y) + x
1

2

(
n2

1 − n2
) k2

0

β1

∫ a+d

a

dyu1(y)u′2(y) ,

≈ C0 + C ′x , (4.17)

where u′2(y) is the derivative of u with respect to y and we have renamed the integral

C ′. Since the unperturbed modes are identical but reflected, u1(y) = u2(−y), we

have a symmetric coupling.

In this case, we can expand the off-diagonal couping, sin (C0z0 + C ′xz0) ≈

C ′xz0. This expansion results in the x-dependent beam-splitter interaction we re-

quire.
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4.7 Appendix B: Thermodynamics of the beamsplitter model

While we have focused on the transition and spontaneous symmetry breaking

in the finite size systems, we can also establish the existence of a thermodynamic

phase transition as defined in Ref. [81] for the beamsplitter case. We demand that

the curl must vanish (C1), the system must remain stable (C2), the optical and

mechanical forces should be comparable in the steady state and linearized regime

(C3-C4), and that the optically induced noise and damping must vanish (C5-C6).

These restrictions define constraints that system parameters need to follow as the

system grows macroscopic. We imagine the size of the optomechanical beams, V →

∞ is growing large in our thermodynamic limit.

As we have seen in the main text, the optical force has a vanishing curl from

the nature of the interaction, which automatically satisfies our constraint C1. To

study the other constraints, we redefine our coordinates in a polar system and rotate

our optical modes (ai → ar,φ). This is a decomposition of the optical modes into

radial and angular excitations coincident with the steady state coordinates of the

mechanics, which can be realized with rotation matrix R:

R =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 . (4.18)

We will include the −iṘR† term to account for the potential of this frame being

non-inertial. However, we know from the Cartesian version that the force has no

curl, thus steady state solutions will have zero angular momentum, meaning the
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frame is inertial. The system can spontaneously break the symmetry by choosing

an angle (or the relative size of excitations in the mechanical modes) but this angle

is fixed once chosen. With this transformation the Hamiltonian becomes:

H = −∆0a
†
0a0 + Ω0(a0 + a†0) +

ω

2
(p2
r +

l2

r2
+ r2)

−∆a†rar − gr(a
†
0ar + a†ra0)−∆a†φaφ − i

ωl

r2
(a†raφ − a

†
φar) , (4.19)

Adding fluctuations and dissipation, we can write the equations of motion:

ȧ0 = i(∆0 +
iκ0

2
)a0 + igrar + iΩ +

√
κ0a

in
0 , (4.20)

ȧr = i(∆1 +
iκr
2

)ar + igra0 +
√
κra

in
r −

ωl

r2
aφ , (4.21)

ȧφ = i(∆1 +
iκφ
2

)aφ +
√
κφa

in
φ −

ωl

r2
ar , (4.22)

ṙ = ωrpr , (4.23)

ṗr = −ωr +
ωl2

r3
+ g(a†0ar + a†ra0)− γpr +

√
γip

in
i −

2iωl

r3
(a†raφ − a

†
φar) , (4.24)

φ̇ =
ωl

r2
− iω

r2
(a†raφ − a

†
φar) , (4.25)

l̇ = −γl
r

+
√
γ′lin , (4.26)

we note that the equations for a0, ar are identical to the transformed equations

from [81]. Of course, there is an extra mode aφ which is coupled by l. We can solve

for the steady state of these modes and find that, due to the curl-free condition,

L = 0. Therefore, we now have exactly the transformed equations from Ref. [81]

and thus can employ identical constraints to define our thermodynamic limit.

The constraints are unmodified, we simply demand that each mode satisfy

them, e.g., ∆0,∆1 ∝ −gR, C2. The other constraints are straightforward, |Ω|2 ≥

c3|gR|3, κ0,1 ≤ c4gR, γ > c5V
−2α. Therefore, we have identified a thermodynamic
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limit in which the mechanical modes experience a modified potential, but thermalize

to a single mechanical bath. As the angular optical mode does not contribute to

dynamics, it needs no additional constraints. However, the addition of noise does

affect the mechanical “angle,” which is free to move through all values. Including

the effects of noise, there will be a random force in the angular direction; φ will

experience a Brownian motion-like trajectory, exploring the full space as a function

of time.

The generalization to SO(3) or generically SO(N) will also follow the same

procedure. A rotation into the proper (hyper-)spherical coordinates will show the

system is simply two optical modes coupled by a radial excitation and other modes

coupled by the angular momentum of the mechanical system. As these generaliza-

tion also have no curl, the angular modes decouple completely and produce the same

constraints as above on the coupled modes.

4.8 Appendix C: U(1) symmetry breaking in an atomic optomechan-

ical system

Transitions which spontaneously break the group U(1) have been recently

observed experimentally with a Bose-Einstein condenstate (BEC) in a cavity sys-

tem [43]. This system served as an inspiration for our generalization. In this ap-

pendix, we analyze this experimental system and comment on the possibility of a

thermodynamic limit. Here, we define our thermodynamic limit with the number

of atoms N going to infinity.
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Figure 4.6: A cartoon of the cavity BEC system from Refs. [43, 86]. A. In the

symmetric phase, there are no photons in either of the crossed cavities and the

atoms occupy a 1D optical lattice generated by the driven central cavity. B. Past

the critical point, photons scatter from the central cavity to the crossed cavities,

simultaneously kicking atoms into the crossed lattices. Here we show a realization

where cavity 1 has a higher occupation than cavity 2.

In the experiment, a BEC is trapped in the space where 3 optical cavities cross,

as shown in Fig. 4.6A. The central cavity is driven externally with a laser, creating

an optical lattice which the atoms occupy in the symmetric phase. However, through

Raman processes, central cavity photons can scatter off of the atoms, populating

one of the crossed cavities and simultaneously exciting the atoms into the generated

lattice of the crossed cavity. When the external drive, λ, is large enough, these

excitations become favorable, and atoms and light will populate the modes of the

crossed cavities, depicted in Fig. 4.6B. However, the relative occupation of one

crossed cavity to the other is undetermined, creating an “angular” degree of freedom
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characteristic of a spontaneously broken U(1) symmetry, which has been probed in

Ref. [86]. We recast this experiment within our framework, adding in mechanical

dissipation [81].

We will begin with the reduced Hamiltonian in Ref. [86], where we consider the

coupling between photonic excitations (a1, a2) in two crossed optical cavities and the

mechanical excitations (c1, c2) of a BEC into the lattices generated by these photons.

We will assume that the driven cavity immediately takes its steady state value and

ignore the effects of pump depletion as these are small compared to typical driving

strengths and to the depletion of the central BEC mode, c0. Finally, we transform

to a frame that is rotating with the driving laser frequency. Therefore, we are left

with a Hamiltonian describing two optical modes and two mechanical modes where

the coupling between them is controlled by the laser power, λ, and the central BEC

mode, c0.

H =
∑
i=1,2

−~∆ia
†
iai + ~ωc†ici +

~λ√
N

(
a†i + ai

)(
c†ic0 + c†0ci

)
, (4.27)

=
∑
i=1,2

−~∆ia
†
iai + ~ωc†ici +

~λc0√
N

(
a†i + ai

)(
c†i + ci

)
,

where N is the total number of atoms, c0 =
√
N −

∑
i=1,2 c

†
ici represents the BEC

occupation in the lattice of the central mode, which is constrained by the fixed

number of atoms in the system, ω is the energy of the crossed lattices, which is set

by the optical frequency, and ∆i = ωp − ωci is the detuning of the cavity from the

pump laser. λ = −gΩp
√
N

2
√

2∆a
is the coupling where g is the vacuum Rabi frequency, ∆a

is the detuning of the pump mode from the atomic resonance, and Ωp is proportional
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to pump power. We will consider the case were the cavities 1, 2 are identical and

therefore drop the subscript on cavity parameters, such as ∆. Here we note that

experimental frequencies for the optical modes are much larger than the mechanical

modes, ∆, κ ∼ 2π × (100− 1000) kHz while ω ∼ 2π × 4 kHz [43]. This separation

of time scales motivates our assumption that the optics will immediately equilibrate

to their steady state values, with respect to the motion of the mechanical modes.

While the membrane-in-the-middle system relied on depletion of the driven

optical modes to create the necessary nonlinearities [42, 81], here the finite number

of atoms imposes a constraint on c0 which plays this crucial role. However, we still

control the transition with the strength of the external laser drive, λ. Having written

the Hamiltonian, we can now derive Heisenberg-Langevin equations of motion:

ȧi = i

(
∆ +

iκ

2

)
ai −

iλc0√
N

(
c†i + ci

)
+
√
κaini , (4.28)

ċi = −iωci −
iλc0√
N

(
a†i + ai

)
− γ

2
ci +
√
γcini , (4.29)

where κ, (γ), aini , (c
in
i ) are the optical (mechanical) cavity loss and noise, respectively.

From Eqn. 4.29, we find that force is curl-free, satisfying C1. Following Ref. [81], we

will make an expansion of these variables, e.g., ai = Ai + δai, where δ variables are

proportional to the noise in the system. Then, we can find the steady state solution

for the optics and find the imposed dynamics of the mechanical modes:
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Ȧi = i

(
∆ +

iκ

2

)
Ai −

iλ
√

(N − C2
1 − C2

2)√
N

(
C†i + Ci

)
, (4.30)

Ai =
λ
√

(N − C2
1 − C2

2)(C†i + Ci)√
N
(
∆ + iκ

2

) , (4.31)

Ċi = −i
(
ω − iγ

2

)
Ci −

iλ
√

(N − C2
1 − C2

2)√
N

(
A†i + Ai

)
, (4.32)

where we have substituted C0 =
√

(N − C2
1 − C2

2) to make the nonlinearity ex-

plicit. These equations are more manageable in their real and imaginary parts,

substituting Ci = 1√
2

(Xi + iPi), one can solve for Pi in terms of Xi and find

an effective force in terms of Xi. Further, to move to coordinates which makes

the symmetry breaking apparent, we define R, φ, such that X1 = R cos(φ) and

X2 = R sin(φ). In this transformed frame, φ vanishes from the equations of motion.

This angle will be spontaneously selected when the system moves to the symme-

try broken phase. We can integrate the effective force to find a “radial” potential,

V (R) = ~ω
2

(
1 + γ2

ω2 + 8λ2∆

ω
(

∆2+κ2

4

)
)
R2− 2~λ2∆(ω2+γ2)

N
(

∆2+κ2

4

)
ω2
R4. Our demand that the cavity

detuning is red (∆ < 0), which satisfies C2, guarantees the stability of the system

by ensuring a confining quartic potential.

The controlling parameter, λ = gΩp
√
N

2
√

2∆a
, naturally grows as

√
N and any at-

tempt to decrease this scaling will result in a vanishing optical coupling. Therefore,

we demand ω = ω0N , to ensure that the mechanical restoring force remains relevant,

satisfying the constraints C3-C4.

Following our expansion, we can calculate the impact of the noise and dis-

sipation induced on the mechanical modes by the optics. The damping has the

54



form:

γopt = −4∆ωλ2 (N −R2)κ

N
(
∆2 + κ2

4

)2 , (4.33)

where we see that our previous stability constraint, ∆ < 0, (C2) now ensures that

this term is damping, γi > 0, and not gain. Meanwhile, the noise has the form:

popt
in =

√
2κλ

√
(N −R2)aini√

N
(
∆ + iκ

2

) . (4.34)

The damping and the correlation of the noise, 〈popt†
in popt

in 〉, both grow linearly with N .

We demand that these quantities be overwhelmed by their mechanical counterparts

to satisfy C5-C6. These constraints mean that the mechanical damping, γ, must also

grow as N . This scaling may be difficult to realize, which could prevent such systems

having a thermodynamic limit within our framework. Thus, while possessing a

transition, such behavior may mesoscopic in nature.
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Chapter 5: Interacting atomic interferometry for rotation sensing ap-

proaching the Heisenberg Limit 1

5.1 Introduction

Cold atomic systems have provided an exciting arena for studying aspects of

quantum mechanics. The ability to coherently manipulate atoms has been employed

to measure the properties of non-inertial frames, e.g. [28,29]. The recent realizations

of toroidal traps [87–93] for atoms have presented the possibility for an atomic ana-

logue of the SQUID and its application as a sensor and qubit, e.g. [94–99]. These

systems are well understood when interactions between particles are comparatively

weak. However, to achieve the maximum advantages in sensing and other applica-

tions, many-body superpositions must be understood and utilized. In this chapter,

we propose a method for the reliable creation and manipulation of superpositions of

many-body states of cold atoms, in particular, the persistent current states of atoms

confined to a 1D ring. As a concrete example, we show how the system’s sensitivity

to rotation can be improved by strong interactions.

Previous approaches to atom interferometric sensing use the ability to trans-

1This chapter appears as “Interacting atomic interferometry for rotation sensing approaching

the Heisenberg Limit” by S. Ragole and J. M. Taylor in Physical Review Letters 117 (20), 203002.
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form phase evolution along different paths into population differences, but treat

atomic interactions as deleterious to sensitivity [100, 101]. In these approaches,

e.g., Ramsey interferometry, single atoms are put into superposition and the rel-

ative phase gained over some time contains information about the quantity to be

measured. The far end of the interferometer converts these phases into measurable

population differences. However, atoms can interact during this process, altering the

phase and leading to a loss of single atom coherence, decreasing the final sensitivity

of the measurement [100,101]. These experiments can be engineered to minimize the

possibility of interaction and they have produced remarkably precise measurements

of gravitation and rotation [28, 29]. This precision comes in part from conducting

a large number of independent single atom measurements simultaneously. These

ensemble measurements have a noise/signal ratio limited by the shot noise of N in-

dependent two-level systems. This noise/signal ratio goes as 1√
N

, known as the shot

noise limit [102]. Sensitivities may be improved even to the limit from Heisenberg

uncertainty, but only through atomic entanglement, such as squeezing [31].

This chapter describes a system designed to explore the effect of atomic in-

teractions on the sensitivity of an atomic interferometer to rotational flux. We

investigate whether there are situations in which atomic interactions can lead to

the correlations necessary to beat the shot noise limit while not being too strongly

dephased to prevent sensitivity improvements. We find that a strongly repulsive gas

of atoms with a weak barrier can be manipulated to create persistent current state

superpositions, which can be used to sense rotation with sensitivity that scales as

N−3/4, below the shot noise limit, but not approaching the Heisenberg limit. Sur-
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prisingly, we do not find that SQUID-like systems with strong barriers are effective

for this sensing technique. Instead, we utilize the atomic analogue of the phase-slip

qubit [103].

5.2 Effective theory for a strongly interacting atomic gas

Strongly interacting systems are famously challenging to analyze. To reduce

the difficulty of this problem, we study only the long wavelength behavior of a gas

of atoms trapped in a ring geometry in the 1D limit. This dimensional reduction

simplifies the physics involved and allows us to consider a variety of interactions and

even statistics, though we focus on the bosonic case. While current experiments are

weakly interacting and, at best, quasi-2D [89–93], 1D linear traps have been achieved

with a range of interaction strengths, e.g., [104,105]. There remains substantial work

to create strongly interacting ring systems described above and by others [106–110],

but there are efforts in progress [111] and this chapter demonstrates an additional

payoff of achieving such systems.

5.2.1 Luttinger liquid theory for cold atoms

Since we consider a wide range of atomic interactions, perturbative methods

are not suitable. Mean-field approximations, such as those underlying the Gross–

Pitaevskii equation, miss a crucial quantum effect: the ability to create superposi-

tions of many-body excitations, which we find to be necessary for interaction-assisted

metrological benefit. Instead, we employ Luttinger liquid theory, an effective field
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theory which universally describes quantum systems in 1D with short-range inter-

actions [38–40].

We require temperatures and time variations that are slow compared to the

Luttinger energy scale, ELL ≈ ~2π2ρ2
0

K
, where ρ0 = 〈ρ〉 is the average number of atoms

per length. K, the Luttinger parameter, encodes the combined effects of statistics

and interactions. For example, K = 1 corresponds to the Tonks–Girardeau gas

(or free fermions) and K → ∞ is the superfluid limit. The interaction strength of

delta function-interacting bosons can be mapped to the Luttinger parameter, which

allows us to consider the range of interactions for a repulsive Bose gas [40]. We find

that K ≈ 1 is ideal for the gyroscope. In this limit, we can express the Luttinger

parameter in terms of the 3D scattering length, as, the transverse confinement, l⊥,

and ρ0: K = 1 +
2ρ0l2⊥

(
1−Cas

l⊥

)
as

, where C ≈ 1.0325... is a constant [40]. This theory

has the following free Hamiltonian (following conventions from [40]):

H0 =
~vs
2π

∫ L

0

dx

[
K (∂xφ(x))2 +

1

K
(∂xΘ(x)− πρ0)2

]
(5.1)

where vs is the speed of sound, L is the circumference of the ring, φ(x) is a local

phase of the underlying field which we are abstracting away. ∂xΘ(x) relates to the

number density, ρ, by ρ(x) = ∂xΘ(x)
π

∑+∞
l=−∞ e

2ilΘ(x). The Luttinger fields φ(x) and

Θ(x) have the following commutation relation, [φ(x),
∂x′Θ(x′)

π
] = iδ(x− x′).
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U0

xb(t)

R =
L

2⇡

Figure 5.1: A cartoon of the system. Atoms are trapped in a 1D ring of length L

with a blue-detuned laser crossing at a single point, xb(t). In the atom frame, the

barrier rotates through the ring at a rate combining the laboratory frame rotation

(ωframe =
2πvframe

L
) and the externally controlled stirring rate (ωstir = 2πvstir

L
).

5.2.2 Adding a laser barrier

To make the system sensitive to rotation, we break rotational symmetry by

adding a blue-detuned laser beam as a localized potential barrier, shown in Fig. 5.1.

We approximate the laser in the long wavelength theory as a (moving) barrier at

a single point (x = xb(t)) on the ring. When the barrier is smaller than ELL, i.e.,

weak, it induces a new term in the Hamiltonian [39,40,112,113]:

V =

∫ L

0

dxU0δ(x− xb(t))ρ(x)

≈ 2NU0 cos(2Θ(xb(t))) (5.2)

where N is the particle number, and U0 is the dipole potential from the laser.

In this expansion, we have kept the lowest harmonics of the density (consistent

with [39, 112, 113]). Though strong laser barriers have been used to create “weak-

links,” in 1D such barriers will destroy persistent current states. The weak barrier
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considered here preserves the character of persistent current states and couples them

perturbatively.

We perform a standard field expansion for periodic boundary conditions [40,

114]. This expansion defines the fields in terms of zero-modes (θ0, φ0), topological

excitations (N, J) and phonons (bq). Explicitly,

Θ(x) = θ0 +
πx

L
N +

1

2

∑
q 6=0

∣∣∣∣2πKqL
∣∣∣∣ 1

2

(eiqxbq + e−iqxb†q) (5.3)

φ(x) = φ0 +
2πx

L
J +

1

2

∑
q 6=0

∣∣∣∣ 2π

qLK

∣∣∣∣ 1
2

sgn(q)(eiqxbq + e−iqxb†q) (5.4)

In this expansion,

H0 =
∑
q 6=0

~ω(q)b†qbq +
ρ0L~ω0

8K2
(N − ρ0L)2 +

ρ0L~ω0

2
J2 (5.5)

where ω0 = 4π2~
ML2 is the rotation quantum for particles of mass M in a ring of

circumference L and we use the relation vsK = ~πN
ML

from Galilean invariance to

achieve this form. We restrict our consideration to a fixed atom number (N =

ρ0L). The current operator, J , has integer eigenvalues and represents the topological

charge associated with persistent current in the ring. The phonon modes, bq, are

bosons with quasimomentum qn = 2πn
L

for n ∈ Z and ω(q) = ~vs|q| for q � ρ0.

5.2.3 Deriving the effective Hamiltonian

Now, we transform to a frame which is co-rotating with the barrier. The

barrier rotates along with the lab frame and can be actively controlled relative to

the lab frame to “stir” the gas. Noting [J, 2θ0] = i and [bq, b
†
q′ ] = δqq′ , we transform
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the Hamiltonian with URF = exp
(
−i
[

2πxb(t)N
L

J +
∑

q 6=0 qxb(t)b
†
qbq

])
.

The free Hamiltonian is invariant under the transformation, while V → 2NU0 cos(2Θ(0)).

We also gain the terms

δH = −i~U †rfU̇rf = −~ωb(t)NJ − ~
∑
q 6=0

qẋb(t)b
†
qbq (5.6)

where ωb(t) = 2πẋb(t)
L

is the angular frequency of the barrier relative to the atoms.

We complete the square for the linear J term and ignore the constant term

produced under our fixed atom number assumption. Thus, the transformation leads

to a shift in the persistent current operator J2 →
(
J − ωb(t)

ω0

)2

. The phonon term is

easily absorbed by defining a new phonon dispersion relation, ω̃(q) = vs|q| − ẋb(t)q.

This shifted frequency confirms the intuition that if the stirring speed, ẋb, grows

larger than the sound velocity, vs, our theory will become unstable.

Adding in a barrier breaks the Galilean invariance, and can couple phonons

and topological excitations to themselves and each other, potentially decohering

topological charge superpositions. We can expand the barrier term using eqn. 5.3

V = NU0

(
e2i(θ0+δθ(0)) + e−2i(θ0+δθ(0))

)
(5.7)

where δθ(0) = 1
2

∑
q 6=0 |

2πK
qL
|(bq + b†q) is the phonon contribution to the field.

5.2.4 Integrating out phonons, renormalizing the barrier

We focus on the coupling of topological charge states, which are most suited

for sensing applications. Thus, we integrate over the phonon modes to determine

62



the effective interaction between the persistent current states. Following [112–114],

we arrive at the following expression for the potential barrier.

V = NU0e
2iθ0〈e2iδθ(0)〉δθ + h.c. (5.8)

= 2NUeff cos(2θ0)

where the brackets denote functional integration over the phonon modes, Ueff =

U0( d
L

)K is the renormalized barrier strength, and d is a short distance cutoff. While

Luttinger liquid theory has a cutoff above which it loses validity (ELL ≈ N2~ω0

4K
),

this renormalization step gives a lower cutoff, Eph = N~ω0

4K
≈ ELL

N
. The new cutoff

generates a timescale below which the renormalized theory is not valid, which will

be important to consider when manipulating the system. Simply put, working

below the lowest phonon mode frequency prevents decoherence but lowers the “max

velocity” for diabatic processes.

The barrier renormalization depends on both the microscopic details and the

Luttinger parameter, K. Here we see the first non-trivial indication of the interac-

tions: in the superfluid limit (K →∞), a barrier will be weakened significantly by

the phononic modes. However, in the strongly repulsive (K → 1) regime, the barrier

will remain finite, allowing mixing between current states. The relevant cut-off for

this regime is d ≈ KL
N

, so Ueff = U0(K
N

)K [114]. In this limit, the strongest constraint

on the barrier is that it must be weak, 2NU0 <
N2~ω0

4K
. This restriction guarantees

that the perturbative and adiabatic constraints will be satisfied, since after renor-

malization 2NUeff = 2N1−KU0K
K < N2−K~ω0

4K1−K < Eph. Fixing the weakness of the
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Figure 5.2: A. The energy spectrum for the perturbed current states, blue (magenta)

represents the ground (excited) state. The weak barrier creates avoided crossings

at rotation ω = 2n+1
2
ω0, n ∈ Z. The arrows represent the proposed “π

2
-pulse:” the

system is adiabatically driven to the avoided crossing (single arrow) and diabatically

returned ω = 0 (double arrow). B. A cartoon of the proposed Ramsey sequence.

The sequence consists two π
2
-pulses with an observation time τobs in between.

barrier sets U0 = UweakN where Uweak <
~ω0

8K
.

This Hamiltonian, similar to the quantum phase-slip junction [103], and is the

dual of the standard superconducting charge qubit Hamiltonian [115]:

HJJ = Ec(n− ng)2 − EJ cos(δ) (5.9)

where n is the number of Cooper pairs on the island, ng is set by the gate voltage,

δ is the phase difference across the junction, and [δ, n] = i. Under the substitution

n → J and δ → −2θ0, the current states form a charge-qubit-like system with

EC = N~ω0

2
and EJ = 2N1−KU0K

K (EJ � EC , since the barrier is perturbative).
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5.3 A Ramsey sequence for many-body superpositions

Since the barrier couples the current state |J〉 to states |J ′〉 = |J±1〉, superpo-

sitions can be formed by precisely controlling the rotation rate of the stirring beam.

Consider preparing the atoms without any rotation, |Ψ〉 = |0〉. Here, only the states

| ± 1〉 will be coupled by the barrier and only mix weakly into the ground state at

ω = 0. We can implement a “π
2
-pulse” in the two steps illustrated in Fig. 5.2a. First,

we adiabatically increase rotation to ω = ω0

2
, where the instantaneous ground state

is 1√
2
(|0〉 − |1〉). Then, the rotation rate is diabatically ramped back to ω = 0 and

barrier turned off. This process will be completed in a time τπ/2 = τadiabatic +τdiabatic.

These times can be determined from a Landau-Zener analysis of the effective two-

level system and will be set by the effective barrier height, τπ/2 ∝ ~
NUeff

.

Having established the charge qubit-like behavior and appropriate sequences

for preparing topological charge superpositions, we now propose a Ramsey interfer-

ometry scheme for rotation sensing, using the persistent current states as the basis.

As described above, we create a superposition of current states, 1√
2
(|0〉 − |1〉), and

turn the barrier off. Then, we expose this superposition to a small rotation rate

(ω � ω0) for a time τobs without the barrier. Over this time, the superposition

will evolve into the state 1√
2
(|0〉 − eiφ|1〉) where φ = Nτobs

(
ω0

2
− ω

)
. This phase

can be converted into a population difference by performing another “π
2
-pulse.” A

cartoon of the process is pictured in Fig. 5.2b. The final state can be read out from

the persistence of a vortex core in time-of-flight imaging. If the state projects to

|1〉, the vortex will be visible as an absence of density in the center of the ring,
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while |0〉 will expand isotropically, filling the central core [90]. As the relative phase

between many-body excitations, the phase scales with the number of atoms while

the vortex shot noise is constant. Therefore, the nominal sensitivity to rotation has

Heisenberg-like scaling in the absence of noise.

The proposed gyroscope is most viable in the strongly interacting limit which

maintains the gap needed to couple persistent current states and keeps τπ/2 short.

While our analysis has only considered a clean system, it is likely that there will be

disorder present in the trap. Disorder leads to localization in 1D for K < 1.5 [39].

Therefore, the optimal K is just above this localization limit. While this limit is

acceptable for simple experiments, a more detailed analysis of trap imperfections

will be necessary for improving future experiments.

5.3.1 Adding noise considerations

We consider realistic sources of noise that could affect the sensitivity. In

particular, we will consider shot-to-shot variation in the atom number. Other sys-

tematic noise issues, such as laser power and trap configuration fluctuations, could

be problematic but can be surmounted with sufficient detuning and laser power.

To compute the effect of shot-to-shot variations in atom number, we assume

that number fluctuations are Poissonian, σN =
√
N . We can consider each individual

run of the experiment as having some fixed signal and a random additional noise.

We define F = ω0

2
−ω and δNi as the noise in atom number. We consider an average
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of many measurements over the noise:

〈eiφ〉 = 〈ei(NFτobs+δNiFτobs)〉

≈ eiNFτobse−F
2σ2
N τ

2
obs (5.10)

While in the absence of noise, longer evolution times would produce higher

sensitivity, the low frequency noise decreases contrast as e−F
2σ2
N τ

2
obs as τobs increases.

With this noise added in, we can calculate the sensitivity of our approach:

S =

∣∣∣∣∂ω Signal

Noise

∣∣∣∣−1∣∣∣∣
ω=0

√
τobs (5.11)

=

∣∣∣∣Nω0τobs sin(NF0τobs + φ0)e−F
2
0 σ

2
N τ

2
obs

2F0

∣∣∣∣−1√
τobs

=
e
ω2

0
4
σ2
N τ

2
obs

N
√
τobs

where in the last line, we have used F0 = F (ω = 0) = ω0

2
. We can optimize τobs and

determine the best sensitivity for the device. Using the optimum observation time,

τ ∗obs = 1
ω0σN

, we calculate, Smax =
e1/4
√
ω0σN
N

.

We see that a Poisson-distributed number of atoms per “shot” changes the

ideal Heisenberg-like scaling for N fixed to N−3/4 scaling. However, this is still an

improvement over the shot-noise limit. It could be further enhanced if the time-of-

flight images from vortex detection are calibrated to give an sub-Poissonian estimate

of atom number, effectively reducing σN .

Using a gas temperature of 100 nK and ring radius R = 19.2 µm [89–91], we

assume a transverse confinement of l⊥ ≈ 200 nm, which gives as ≈ 3600a0, where a0

is the Bohr radius, to set K ≈ 1.6 for N = 105. Estimating σN =
√
N

10
, we find that
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a sensor with N = 105 atoms would have τπ/2 = 0.8 s, τ ∗obs ≈ 4 ms, a sensitivity of

2× 10−4 rad
s
√
Hz

and a bandwidth ≥ 200 Hz. Since the entanglement allows relatively

rapid phase accumulation, the sensor has a higher bandwidth than non-interacting

sensors. To reasonably compare these techniques, we instead consider a sensitivity

per root bandwidth.

5.3.2 Estimating sensitivity

We plot the numerical results for optimum sensitivity as a function of atom

number, N , and compare with the noiseless limit and an equal area atom inter-

ferometer as described in [28], each evaluated for a fixed time τcomp = 2π
ω0

= 0.838

s in Fig. 5.3. This time is set by the circumnavigation time for atoms moving at

the persistent current velocity and is much longer than optimal observation for the

Luttinger system, τcomp ≈ 6×max(τ ∗obs). In the atom interferometer, the atoms will

gain a Sagnac phase of φ = 2M
~ ωA where A = L2

4π
is the area enclosed by the atoms.

This phase can be conveniently rewritten, φ = 2πMR2

~ ω = ωτcomp. The sensitivity

for the comparison non-interacting system will be:

SSA =
1

|∂ω(1
2

cos(ωτcomp + φ0))|

√
τcomp

N
(5.12)

SSAmax =
2√

Nτcomp

The sensitivity is improved in the Luttinger ring system, Fig. 5.3a. The non-

interacting atomic case shows scaling ∝ N−1/2 due to the shot-noise limit. Similarly,

the noiseless Luttinger system shows Heisenberg-like scaling (∝ N−1) while the noisy
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Figure 5.3: A. The sensitivity of our proposed gyroscope (solid) plotted on a log-

log scale as a function of atom number. The dashed (dotted) line represents the

sensitivity for a noiseless Luttinger (atom interferometer) system with an observation

time of τcomp = 0.838 s. B. Solid (dashed) lines: the single-shot sensitivity for the

noisy Luttinger (atom interferometer) system for different observation times, τ , as

a function of atom number.
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case sits in between. The single shot sensitivity, Fig. 5.3b., demonstrates the trade-

offs between longer observation times and atom number.

We note preparing the Luttinger system takes much longer than the ob-

servation time. In our example case, τprep ≈ 0.8s for the π
2
-pulse; so too does

τmeasure ≈ τprep which results in a long time between measurements. Faster prepara-

tion techniques would substantially improve performance. In addition, atom inter-

ferometers can achieve sensitivities much lower than those presented here by using

many more atoms and a large enclosed area as shown in Ref. [28].

5.4 Conclusion

While the system shows limited application for high sensitivity rotational sens-

ing, the size of the system makes it a compelling candidate for inertial tests, such as

inverse-square law tests, where short length scales are difficult to probe [116–118]. In

particular, several high-energy theories predict deviations from Newtonian gravity

at the micron scale [116,119–121]. The ring system described above shows promise

in detecting these deviations. However, designing and optimizing such a test will

require further research and is beyond the scope of this chapter.

A detailed analysis of the limitations on coherent superpositions in Luttinger

liquids will be needed for a complete understanding of this type of gyroscope.

Though we controlled the dominant dephasing mechanism by working slowly enough

to avoid creating phonons, it is not obvious how stable the superposition will be if

particle loss is included. Simulations of superpositions of atoms (N < 10) suggest
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that the strongly repulsive regime considered here (K → 1) may be robust to par-

ticle loss but it is unclear if these results extend to many atoms [108]. Still, the

scheme allows the creation of a many-body superposition with sensitivity to small

rotation rates and shows favorable scaling, even in the presence of noise. In addition

to rotation or inertial sensing, it is possible that creating these superpositions will

have other interesting applications, e.g., for use as qubits. [109,110,122].
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Appendix A: Unraveling the Optomechanical Potential

A.1 Introduction

Optomechanical interactions create a variety of new possibilities for exploring

quantum and classical dynamics. These possibilities include drastic improvements

in sensing that have enabled the detection of gravitational waves [10,123]. Addition-

ally, using cooling techniques, they also allow for the study of mechanical systems in

the quantum domain [124–127]. Experiments in this domain have provided incred-

ibly sensitive measurements of force [9] and allowed for the conversion of quantum

information between channels at drastically different frequencies [128]. While the

majority of this work has focused on optomechanics in the classical regime, the

promise of these new experiments suggests that one needs to deeply examine how

optomechanics operates at the border of the quantum regime.

Frequently, the optical fields are assumed to be in a classical steady state while

the mechanics can be anywhere in the spectrum from classical to fully quantum. This

assumption is well justified when the occupation of the optical cavity (proportional

to the driving strength of the laser) is large. Then, we can simply take the photon

operators to a coherent state, a → α(x) + δa, which depends on other factors in

the system. Similar to our previous work, this approximation is also strengthened
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by the typical separation of time scales between the optics and the mechanics, i.e.,

the optics effectively respond instantaneously to the slow motions of the mechanics.

This assumption allows one to linearize the dynamics around the steady state, as

the fluctuations, δa, are typically small compared to the coherent state. However,

the open nature of the system remains and the effect of information loss (through

photons exiting the cavity) is likely to have an impact, especially in cases where

photon loss is the primary noise mechanism.

In this appendix, we study the quintessential optomechanics interaction, mod-

eled by a cavity with a mirror attached to a spring [8]. First, we walk through the

typical semiclassical approximation and derivation of the optomechanical potential

for the mechanics. Then, we refine our analysis by including the effect of noise and

loss through the quantum jumps method [44, 45]. In this method, the open nature

of the system is treated through random processes, called jumps, combined with

evolution under a Hamiltonian which includes loss (making it non-Hermitian). We

study the evolution of a mechanical coherent state and attempt to reconstruct the

effective forces by averaging over the random events.

A.2 Semiclassical analysis

We begin by defining the Hamiltonian of our system. We have a driven optical

cavity mode, a, where the cavity frequency depends on the position of a mechanical

oscillator, x (similarly, one can understand this interaction in terms of the radiation

pressure on the mechanical oscillator). This system can be realized with a moving
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cavity mirror, or with the membrane-in-the-middle set up studied in Chapter 3.

Moving into a frame with rotates with the driving laser frequency, we arrive at the

following Hamiltonian and equations of motion:

H0 = ~
(
−∆− gx− iκ

2

)
a†a+ ~Ω(a+ a†) +

p2

2m
+

1

2
mω2x2 , (A.1)

ȧ = i(∆ + gx+
iκ

2
)a− iΩ , (A.2)

ẋ =
p

m
, (A.3)

ṗ = −mω2x+ ~ga†a . (A.4)

In the limit that |∆|, κ � ω, we can assume that the cavity mode responds to the

mechanical position instantaneously. In this case, we can find the steady state for

a, (which we call α) and substitute it into the equations of motion for the oscillator:

ȧ = 0→ α =
Ω

(∆ + gx) + iκ
2

. (A.5)

Then the radiation pressure force can be found as:

Frad = ~g|α|2 ,

=
~g|Ω|2

(∆ + gx)2 + κ2

4

. (A.6)

This force is conservative and can be integrated to find a potential, giving the

expected V (x) = −~|Ω|2
κ/2

arctan
(

∆+gx
κ/2

)
potential for an optical spring. Now, one

may consider the properties of the mechanics (classical or quantum) under this

modified potential. We have considered only the optical coherent state amplitude

and largely ignored the quantum nature of the optical field. However, as thermal

noise decreases, photon loss will have effects on the mechanical system through

backaction. To understand these effects, we employ a more sophisticated analysis.
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A.3 Quantum Jumps Approach

To treat the quantum and lossy nature of the system, we employ the quantum

jump formalism [44, 45]. This formalism allows the simulation of individual quan-

tum trajectories. These trajectories evolve under a non-Hermitian Hamiltonian (to

account for cavity decay) and experience noise in which the wavefunction “jumps”

to a state with fewer photons. The non-Hermitian Hamiltonian for our system is:

HQJ = H0 − i~
κ

2
a†a . (A.7)

Along with evolution under this Hamiltonian, there are the random “quantum

jumps,” where the wavefunction is mapped to a system with one fewer photon:

|Ψ〉 → a|Ψ〉
|a|Ψ〉|

, (A.8)

with probability P = 1− 〈Ψ(t)|Ψ(t)〉.

Using this method, one maps out the individual “quantum trajectory” which

can be used to model a specific instance of an experiment, e.g., tracking the pho-

ton number in a cavity by continuous measurement [129]. More commonly, many

trajectories are averaged to find expectation values of operators, which matches the

master equation result.

A.3.1 Similarity Transformation

We consider what happens in this formalism when we transform the photon

operators. As above, we consider an optomechanical cavity driven by a laser field. To
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consider excitations away from the coherent state amplitude that we derived above,

we make a transformation to shift a to α + a. Due to the non-Hermitian nature of

the Hamiltonian, this transformation will be only a similarity transformation, not a

unitary one. Let R = e−α(a†−a), where α ∈ C. R−1 = eα(a†−a), which is not R† due

to the complex nature of α. The creation and annihilation operators transform as:

R−1aR = eα(a†−a)ae−α(a†−a) = a+ α , (A.9)

R−1a†R = eα(a†−a)a†e−α(a†−a) = a† + α . (A.10)

We can then transform the Hamiltonian:

R−1HR = ~
(
−∆− gx− iκ

2

)
(a† + α)(a+ α) + ~Ω(a+ α + a† + α)

+R−1 p
2

2m
R +

1

2
mω2x2 ,

= −~C
(
a†a+ α2

)
+ ~ (Ω− αC) (a+ a†) + 2~Ωα +R−1 p

2

2m
R +

1

2
mω2x2 .

(A.11)

where we have defined C = ∆+gx+ iκ
2

, and we have not evaluated the transformation

on p because we anticipate that α will depend on x. We began our transformation

to eliminate the driving terms on the optical modes. Therefore, we demand α =

Ω
C

= Ω
∆+gx+ iκ

2

. Substituting in this value for α:

H ′ = −~
(

∆ + gx+
iκ

2

)
a†a+

~Ω2

∆ + gx+ iκ
2

+R−1 p
2

2m
R +

1

2
mω2x2 . (A.12)

If we inspect the Hermitian parts of the Hamiltonian, we see that they do not include

the semiclassical arctangent potential, or any close approximation. We will see that

the semiclassical potential must arise through a combination of this potential and
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quantum effects that get averaged over. We return to consider the transformation

on p:

R−1pR = p+ i~R−1R′ ,

= p− i~α′
(
a† − a

)
= p+ i

~gΩ(
∆ + gx+ iκ

2

)2

(
a† − a

)
. (A.13)

Now the momentum has a position dependent part which also couples to the photon

field. However, as we only consider the transformed photon vacuum, this term can

be ignored.

We also compute the probability of a jump, which for small times can be

approximated as:

PJump = 1− 〈Ψ(t)|Ψ(t)〉 ,

= 1− 〈Ψ(0)|E
iH†t

~ E−
iHt
~ |Ψ(0)〉 ,

≈ t

~
〈Ψ(0)|

(
H† −H

i

)
|Ψ(0)〉 , (A.14)

which is just the expectation value of the anti-Hermitian part of the Hamiltonian.

As this will depend on the state we are consider, we delay calculation and specify

our ansatz.

A.3.2 Ansatz Wavefunction and Jump Operator Expansion

To more fully understand the effects of these jumps near the classical limit, we

consider a system in the vacuum of the transformed photon operator and where the

mechanical state is Gaussian wavefunction that is fairly localized in x. With this

ansatz, we can study the effect of jumps on the state. We calculate the probability
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for the jump and approximate the post-jump state as a transformed Gaussian, which

may have a different expectation value of momentum, pwp, position, xwp, and spread,

σ. In the subsequent section, we combine these results with evolution under the

Hamiltonian to understand the full open system dynamics.

Since our wavefunction is localized in space, if we assume that gσ is small

compared to other frequencies, we can expand the jump operator around the center

of the wavefunction, xwp, that is, x = xwp + δx. To aid with the mapping onto

another Gaussian, we expand the logarithm of the magnitude of the jump operator

and re-exponentiate it. Additionally, we expand the phase of the jump operator.

These operations allow us to incorporate the post-jump state into a new Gaussian

wavefunction with new values for xwp, pwp and σ. Explicitly, the post-jump state is:

α(x)|ψ〉 =
Ω

∆ + gxwp + gδx+ iκ
2

exp
(
− δx2

2σ2 + ipwpxwp
~ + ipwpδx

~ + iδ
)

√
σ
√
π

,

=
Ωeiθ√

(∆ + gxwp + gδx)2 + κ2

4

exp
(
− δx2

2σ2 + ipwpxwp
~ + ipwpδx

~ + iδ
)

√
σ
√
π

. (A.15)

We define ∆′ = ∆ + gxwp and w = ∆′2 + κ2

4
.We expand the logarithm:

logα(x) = log

 Ω√
∆′2 + κ2

4
+ 2∆′gδx+ g2δx2

 ,

= log

 Ω√
(∆′2 + κ2

4
)(1 + 2∆′gδx

w
+ g2δx2

w
)

 ,

= log

 Ω√
(∆′2 + κ2

4
)

− 1

2
log

(
1 +

2∆′gδx

w
+
g2δx2

w

)
. (A.16)

The first term will affect the normalization which we ignore for now. We turn
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our attention to the other term which affects expectation value of position, xwp, and

the spread, σ:

−1

2
log

(
1 +

2∆′gδx

w
+
g2δx2

w

)
≈ −1

2

(
2∆′g

w
δx+

(
g2

w
− 2∆′2g2

w2

)
δx2

)
,

≈ −1

2

(
2∆′g

w
δx+

(
g2(w − 2∆′2)

w2

)
δx2

)
. (A.17)

We take the expanded jump operator, multiply it by the pre-jump wavefunc-

tion and rewrite this new post-jump state as a Gaussian.

We can immediately define:

τ 2 =
σ2(

1 +

(
g2σ2(κ

2

4
−∆′2)

w2

)) , (A.18)

which will be the new spread of the wavefunction. Looking at τ as a function of

∆′, we see some squeezing of the spread near resonance (|∆′| < κ
2
), spreading just

outside this region and no change far off resonance. With this new spread, we can

incorporate the linear term to find the shift of the wavefunction center:

2x′wpδx = −2τ 2∆′g

w
δx ,

x′wp = −gτ
2∆′

w
= −

(
∆′gτ

w

)
τ . (A.19)

So the wavefunction gets kicked based on the sign ∆′. If the cavity is directly tuned

to the mechanical position, there will be no kick of the wavefunction center (though

it will still be squeezed). However, away from this point, the wavefunction center

moves. We can view this process, occurring at the jump rate, as a kind of velocity.

Finally, we need to add and subtract
x′2wp
2τ2 , completing the square. This gives us
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wavefunction magnitude:

1√
σ
√
π

Ω√
(∆′2 + κ2

4
)

exp

(
x′2wp
2τ 2

)
exp

(
−

(δx− x′wp)2

2τ 2

)
. (A.20)

Treating the magnitude alters the position and spread of the wavefunction, but

we must also consider the effect that the jumps have on momentum. In coherent

states, the momentum is written into the phase. Since the jump operator is complex,

it will imprint a phase on the state. The phase of α(x) is:

θ = arctan

( −κ
2

∆′ + gδx

)
. (A.21)

In the spirit of the derivation above, we can expand this about δx = 0:

θ ≈ − arctan
( κ

2∆′

)
+

g κ
2

∆′2 + κ2

4

δx+O(g2) . (A.22)

Recalling that the original wavefunction has a phase φ ∝ pwpδx

~ , we can interpret the

linear term as a momentum kick:

δp =
~gκ

2
(
∆′2 + κ2

4

) . (A.23)

Again, we can consider this process as an impulse which occurs at the jump rate,

resulting in an effective force. We see two major effects after a jump, a stochas-

tic velocity and a correlated stochastic force. This correlated noise could lead to

interesting dynamics, but we do not focus on them here.

To complete the equations, we need to calculate the jump rate which will
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simply be the probability of a jump divided by time:

RJump =
PJump

t
≈ 1

~
〈Ψ(0)|

(
H† −H

i

)
|Ψ(0)〉 ,

≈ 1

~
〈Ψ(0)|

(
~κΩ2

(∆′2 + κ2

4
)

)
|Ψ(0)〉 ,

≈ κΩ2

(∆′2 + κ2

4
)
. (A.24)

Having computed both the approximate post-jump state and the rate at which jumps

occur, we can characterize the evolution of our ansatz under quantum jumps. We

now turn our attention to the Hamiltonian dynamics to complete our understanding.

A.4 Comparing Quantum Jumps to Semiclassical approach

Having mapped out the effect of quantum jumps, we are now prepared to make

a comparison to the semiclassical dynamics that we derived above. We recall that

in this limit, the force has the form:

F = −mω2x+ ~g|α|2 ,

= −mω2x+
~g|Ω|2

(∆ + gx)2 + κ2

4

. (A.25)

Taking some guidance from Drude model calculations, we can define the momentum

as the weighted sum of the momentum of the two possible states after a short time,

dt, one where a jump has occurred and one which has simply evolved under the
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Hamiltonian. We can then take the limit as dt→ 0 and find a differential equation:

p(t+ dt) = PNJpNJ(t+ dt) + PJpJ(t+ dt) ,

= p(t) + Fdt+ PJδpJ , (A.26)

ṗ =
p(t+ dt)− p(t)

dt
= F +

PJ

dt
δpJ . (A.27)

where we assume that the jump probability is small and thus PNJ ≈ 1. The con-

servative terms in F arise from the effective Hamiltonian projected onto the new

photon vacuum, which we derive below. The δpJ term is the “kick” from the jump

operator which we calculated in the previous section. There are also higher order

corrections such as the “on-diagonal” Born–Oppenheimer term, i.e., the aa† term

from the shifted p2, but it will be at higher order in g and we ignore it for the time

being.

For the conservative part, we Trotterize the Hamiltonian, where we separate

the effects of the standard harmonic evolution and the non-unitary dynamics from

the transformation:

|Ψ(τ〉 ≈ e
−iV δt

~ e
−iH0δt

~ |Ψ(τ − δt)〉 , (A.28)

where

H0 =
p2

2m
+

1

2
mω2x2 , V =

~Ω2

∆′ + gδx+ iκ
2

. (A.29)

The evolution of a coherent state is simple under H0 so we choose a state that

has instantaneous (t = τ) expectation values 〈p〉 = pwp and 〈x〉 = xwp. To maintain

our ansatz on the coherent state manifold, we expand V in δx, as we did with the
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jump operator before:

V ≈ ~Ω2∆′

∆′2 + κ2

4

− i~Ω2κ

2
(
∆′2 + κ2

4

) + δx

 i~Ω2gκ∆′(
∆′2 + κ2

4

)2 +
~Ω2g

(
κ2

4
−∆′2

)
(
∆′2 + κ2

4

)2

 . (A.30)

Since |Ψ(τ)〉 ≈ e−
iV δt
~ |Ψ〉, we can see that the real terms in V will be a phase

imprint and the imaginary terms will give amplitude decay and a drift in x which

we will discuss later. Reading off the change in momentum from the imaginary term

linear in x, we can write down the conservative force (note the minus sign from −i

in the exponent).

F = −mω2x−
~g|Ω|2

(
κ2

4
− (∆ + gx)2

)
(
(∆ + gx)2 + κ2

4

)2 . (A.31)

As we noted above, we do not arrive at the semiclassical form of the radiation

pressure force and there is a regime where it has the opposite sign from what we

would expect.

However, we also have an effective force from the jumps, which we compute

by multiplying the momentum kick from a single jump by the jump rate:

δFJ =
~gκ

(∆ + gx)2 + κ2

4

Rjump ,

=
~gκ

2
(
(∆ + gx)2 + κ2

4

) κΩ2

((∆ + gx)2 + κ2

4
)
,

=
~gΩ2 κ2

2(
(∆ + gx)2 + κ2

4

)2 . (A.32)

We see that the average dynamics over jumps produces a κ-dependent force

that is twice the size and opposite the sign of the κ-dependent term in the conserva-
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tive force. However, we need to consider evolution under both forces, which results

in:

F ≈ −mω2x+
~gΩ2

(∆ + gx)2 + κ2

4

, (A.33)

which is exactly matches the semiclassical force. Therefore, we see that the semi-

classical force arises from the combination of jumps and conservative dynamics in

the transformed Hamiltonian.

However, there are additional effects in the Hamiltonian dynamics that we

need to consider. We obtain an equation for ∂〈x〉
∂t

by an analogous method. That is,

we write:

x(t+ dt) = PNJxNJ(t+ dt) + PJxJ(t+ dt) ,

= x(t) + vdt+ PJδxJ , (A.34)

ẋ =
x(t+ dt)− x(t)

dt
= v +

PJ

dt
δxJ . (A.35)

Recall from the expansion of V that there is an imaginary term proportional to δx.

This term, when multiplied by the −i in the exponential will result in a drift of the

wavefunction center. Dividing this drift by dt, we interpret it as a velocity.

vNJ ≈
Ω2gσ2κ∆′(
∆′2 + κ2

4

)2 . (A.36)

As we noted in the previous section, there was a similar stochastic drift in the

position from jumps. Following our approach from above, we also treat this as a

velocity, multiplying the drift by the jump rate. We can now consider both effects
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together:

ẋ =
p

m
+ vNJ + vJ ,

=
p

m
+

∆′gσ2κΩ2(
∆′2 + κ2

4

)2 −
∆′gσ2(

∆′2 + κ2

4

) κΩ2(
∆′2 + κ2

4

) ,
=

p

m
. (A.37)

The drift in 〈x〉 from Hamiltonian evolution and the drift caused by the jumps

cancel, which matches the semiclassical behavior seen in experiment. However,

this calculation suggests that effects from the quantum nature of light are present

around these averages and may be accessible in experiment. Further exploration of

the variance of mechanical quadratures could help illuminate these effects.

A.5 Conclusion

We have shown how the semiclassical approach to optomechanics can emerge,

on average, from the combined effects of Hamiltonian evolution and quantum jumps.

In particular, we demonstrate that the lossy nature of the cavity is essential in cre-

ating part of the semiclassical potential, as evidenced by the fact that purely Hamil-

tonian evolution does not reproduce the semiclassical force. We have also quantified

some of the deviations from the semiclassical story, namely a trajectory dependent

deviation from ẋ = p
m

and squeezing on the mechanical position depending on the

relative size of the detuning to the optical loss rate.

While we have only begun to examine the system, it would be interesting to

continue to explore this method, especially in situations where the semiclassical force
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exhibits bistability. The strict linearity of quantum mechanics prohibits the exis-

tence of multi-stability, so there are likely interesting dynamics which allow multiple

solutions to emerge classically. In particular, one could study the optomechanical

spring on the blue-detuned side, or a membrane-in-the-middle system where bista-

bility can occur. Given the competition from Hamiltonian evolution and quantum

jumps, it is likely that systems with interesting steady states are those where one

can have simultaneous eigenstates of the low energy Hamiltonian and the jump op-

erator. However, such studies would necessitate an ansatz that could approximate

potential Schrodinger-cat-like states which could emerge.
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Appendix B: Observation of optomechanical buckling transitions
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O
ptomechanical systems provide a unique connection
between light and mechanical motion1–3 due to both
their conceptual simplicity—radiation pressure force

induces motion in a compliant optical element—and their
practical applications in photonics and sensing4–9. A canonical
example is the modification of the mechanical spring constant via
dynamical effects from the radiation pressure associated with the
optical modes coupled to the mechanical system. This so-called
‘optical spring’ effect10,11 has been employed in the contexts of
gravity-wave detection12, optical trapping of a mirror13, raising
the mechanical quality factor (‘optical dilution’) of a mechanical
oscillator14 and optical cooling15. At the same time, more
complex mechanical elements provide new opportunities.
For example, nanomechanical devices can be used as memory
cells16–18 or as logic gates. A crucial ingredient for these
applications is to develop a robust element that, when driven
electronically or optically, can be set to one of two stable static
states. Bistability induced by radiation pressure was demonstrated
by Dorsel et al.19, using a Fabry–Perot cavity in which the length,
and thus the resonant frequency, was modified by the circulating
optical power. Shortly thereafter, an analogous experiment was
performed in the microwave domain20. This work was followed
by numerous proposals of applications, including the realization
of controllable buckled optomechanical systems21. Somewhat
surprisingly, the only experiments involving optomechanical
bistability reported in the meantime have either involved
additional electrostatic feedback22 or a photothermal mecha-
nism23–25 rather than radiation pressure. Instead, dynamical
effects, necessary for laser cooling and exploration of narrowband
behaviour, have been the focus of researchers in nanoscale
optomechanics in recent years. At the same time, static properties
beyond bistability provide new application spaces for optome-
chanics in sensing and optical information processing21,26. While
some experiments with optically driven, pre-buckled devices have
yielded successes18, the mechanical potential was not optically
modified in those systems.

Here we report the observation of radiation pressure-induced
buckling transitions in an optomechanical system, an effect
predicted several decades ago21. Our approach relies on a
symmetrical optical cavity with a dielectric membrane in the
middle27–29, where the behaviour of the mechanical system can
be fabricated and characterized separately from the optics
necessary to realize an optical cavity of high finesse. Using this
platform, we demonstrate an optomechanical system that realizes
controlled first- and second-order buckling transitions. These
transitions can be understood as arising when the static
optomechanical potential changes smoothly from a single-well
to a multiwell potential as the optical driving power is increased.
Unlike the situation in the pioneering experiment of Dorsel, in
which the bistability was associated with a manifestly asymmetric
optomechanical potential21, our realization results in a sponta-
neously broken symmetry as the optical drive passes through the
transition point. We derive the stability diagram for the buckling
transitions, and we show good quantitative agreement between
theoretical predictions and experiment.

Results
Experimental set-up. A schematic of our apparatus is shown in
Fig. 1a. Two dielectric mirrors, identified as ML and MR, form an
optical cavity with a length of B50 mm. At the centre of the
cavity is the optomechanical element, a tensioned silicon nitride
membrane (see Supplementary Note 4) normal to the cavity
mode with long thin tethers connecting the membrane to its
frame. An image taken with an optical microscope is shown in
Fig. 1b, and a finite element simulation of the fundamental

mechanical mode is shown in Fig. 1c. It has a fundamental
mechanical frequency of om¼ 2p� 80.3 kHz, designed to allow
for substantial optical spring effects at low laser power.
The experiment is performed in the classical regime at room
temperature and pressure.

Our approach relies on two different optical modes, denoted aL

and aR, which have optomechanical couplings of opposite signs.
For small displacements of the membrane to the left, mode aL is
shifted up in frequency while aR is shifted down, and vice versa.
A two-dimensional experimental plot of cavity transmission
versus membrane position and optical frequency is shown in
Fig. 1d; the spectrum is periodic with frequency, so for any
membrane positions x except those corresponding to extrema in
the spectrum, there is a large set of pairs of modes with opposite
optomechanical couplings gL,R (slope of curves in Fig. 1d). The
linewidth (FWHM) k/2p of the cavity modes is B1.8 MHz.
We move the membrane about 55 nm away from an anti-
crossing, where the optomechanical couplings have amplitudes
of gL,R¼±2p� 2.1 kHz pm� 1, and use two such pairs, as
illustrated to the right of Fig. 1d. Conceptually, there are four
laser fields involved in our experiment, as we now describe.

Two independent probe lasers are locked to a pair of
modes with opposite optomechanical couplings by means of the
Pound–Drever–Hall (PDH) method, and denoted PDH1 and
PDH2 in Fig. 1d. The probe fields are actually first-order
sidebands generated by electro-optic phase modulators EOM1

and EOM2, as shown in Fig. 1a, on independent lasers denoted
‘Laser1’ and ‘Laser2’. (A detailed description of how the laser fields
are generated can be found in the Supplementary Note 3 and
Supplementary Fig. 1). Due to the opposite signs of the
optomechanical couplings of the modes to which the probe fields
are locked, the frequency difference between PDH1 and PDH2 is
proportional to the membrane displacement, with twice the
response of either mode alone. We access this frequency
difference by counting the beat signal between the two lasers as
detected with photodetector PD2. At the 2 kHz data acquisition
rate employed in this work, the position measurement resolution
is better than 1 pm.

We supplement the probe fields with additional fields to create
a tailorable, multiwell optomechanical potential. The low
coefficient for the absorption of light in silicon nitride at
our wavelength (l¼ 1,550 nm), combined with the active cooling
provided by the ambient air environment, leaves us dominated by
radiation pressure for the effective potential (see Supplementary
Note 6 and Supplementary Fig. 2). Two strong pump fields,
denoted Pump1 and Pump2 in Fig. 1d, are generated by
combining light from the lasers, amplifying it, and passing it
through phase modulator EOM3. Pump1 has power PL and
(angular) frequency nL and is frequency-offset from probe field
PDH1 by B2 GHz, the sum of the drive frequencies for EOM1

and EOM3, such that it drives mode aL with (at low pump power)
red detuning DL. Pump2 has power PR and angular frequency nR

and is similarly offset from probe PDH2 so as to drive mode aR

with detuning DR. Crucially, the optomechanical coupling of each
pump field is of the opposite sign of the probe field to which it is
frequency-offset. While a rich variety of phenomena is acce-
ssible by taking independent values of PL, DL, PR and DR, the
experiments described here employ the symmetric situation
PL¼PR and DL¼DR.

Theoretical analysis. In the symmetric configuration, there is
only one stable steady state for low to intermediate pump power
levels. At higher powers, however, additional steady states appear.
For the symmetric case we have constructed, the solutions to
the dynamical equations describing these steady states have a
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particularly simple form. The optical fields aL (left-moving)
and aR (right-moving) take the form of coherent states, with
amplitudes

aLðRÞ¼
OLðRÞ

�DLðRÞ � gX
� �

� ik=2
ð1Þ

where OL(R) are related to the incident laser powers by
OL(R)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kPL Rð Þ=‘ nL Rð Þ

p
, and X is the steady state displacement of

the membrane, including the fundamental and higher modes. We
note that the fact that the PDH lock tracks the changes in the
cavity frequencies leads to a shift n-n±gX for the steady state,
effectively enhancing the low-frequency contribution to g by a
factor of 2.

As in the experiment, we only focus on the lowest frequency
mechanical mode and symmetric driving and detuning, OL(R)¼

O, DL(R)¼D. This mode feels a radiation pressure force and a
spring-based restoring force with spring constant k¼mo2

m, and
the steady state is determined by points where the total force is
zero and restorative under small variations in X. Qualitatively, the
membrane’s motion evolves in a potential combining its internal
spring and two competing optical springs. Zeros in the force
(minima and maxima of the potential) occur when

0¼kX 1� A

u2þ 2u k2=4�D2� �
þ D2þk2=4
� �2

 !
ð2Þ

where u¼ (2gX)2 is the square of the frequency shift including
PDH feedback, and the parameter A � � 8‘ g2 Oj j2D

k is proportional
to the pump power.
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Figure 1 | Experimental set-up. (a) Curved mirrors ML and MR form a symmetric Fabry–Perot cavity. Tethered membrane Mem that comprises our

optomechanical resonator is placed in the centre. The two pump and two probe fields used in the experiment are generated and locked to the cavity by

means of independent tunable lasers Laser1 and Laser2, electro-optic phase modulators EOM1–EOM5 and an erbium-doped fibre amplifier (EDFA)

(details are given in the Supplementary Note 3). Light reflected from the cavity is captured by photodiode PD1 to lock the lasers to the cavity, and the beat

signal between Laser1 and Laser2 is captured on PD2 to probe the membrane position. (b) Microscope image of tethered SiN membrane. The central square

is 200mm on a side. (c) Fundamental mechanical mode of membrane determined from finite element analysis; the frequency is 80.3 kHz. (d) Optical

transmission spectrum for membrane position x near the centre of the cavity. Probe lasers PDH1 and PDH2 are locked to adjacent cavity modes whose

resonance frequencies have opposite dependences on membrane displacement. Pump laser Pump1 is rigidly offset to probe PDH1 and detuned to the red of

an adjacent cavity mode by DL; similarly, pump laser Pump2 is detuned to the red of an adjacent cavity mode by DR, as shown. When the membrane is

displaced to the right, Pump1 is brought closer to resonance and Pump2 is driven further from resonance.
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This equation has solutions for u¼ 0 and for u¼uss �
D2�k2=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�D2k2
p

; physical solutions require uZ0. Impli-
citly this requires A4D2k2, so that uss is real. For Dok/2, there is
only one non-zero u solution, and the system continuously goes,
as a function of power, from X¼ 0 to X¼ �

ffiffiffiffi
uss
p

2g . This is in direct
analogy to a second-order buckling transition in a spring, where
the broken left/right symmetry is evident even for arbitrarily
small values of the displacement. For D4k/2, however, there are
two solutions for uss. The smaller corresponds to an unstable
branch, while the larger is stable. This leads to a discontinuous
change of the membrane displacement at the transition radi-
ation pressure, and provides a first-order buckling transition
in the optomechanical system. The overall stability diagram
(see Supplementary Note 1 for derivation), including the
experimentally probed regimes, is shown in Fig. 2. Both first-
and second-order transitions occur, depending upon the detun-
ing, for increasing power. At sufficiently large power levels, the
dynamical effects associated with the radiation pressure provide
mechanical gain, leading to instability if it overcomes the
atmospheric damping. The focus of this work is to study the
system at power levels below this threshold.

Experimental results. We now show the experimental buckling
of the optically sprung membrane for D¼ 2p� 0.4 MHz¼ 0.22k,
where we expect that the dynamics will correspond to a second-
order buckling transition. In the absence of a pump laser, the
membrane experiences a pure mechanical single-well quadratic
potential and fluctuates around the stable position due to both
thermal and technical noise. We record the position of the
membrane at a sampling rate of 2 kHz for 5 s (see Supplementary
Note 5 for position readout); Fig. 3a shows a characteristic subset
of the data for 0.4 s, and Fig. 3b shows a histogram of the com-
plete data set, peaked around zero displacement as expected.
When the pump fields are turned on, with pump power
PL¼ PR¼ 2.2 mW, the membrane fluctuates around two stable
positions, as shown in the time series in Fig. 3c. We attribute the
jumping between stable positions primarily to mechanical noise

in the nanopositioning stage holding the tethered membrane. As
shown in the histogram of the membrane position in Fig. 3d, the
membrane buckles to either left or right. As the pump power is
raised, the dwell times in the buckled states increase. Figure 3e
shows the steady state positions predicted by theory, and implicit
in the stability diagram shown in Fig. 2, as a function of pump
laser power. Corresponding experimental histograms of the
membrane position are shown for the same range of pump
powers in Fig. 3f. Both theory and experiment indicate an
apparent second-order transition in the membrane displacement
X as the pump power is raised.

Accompanying the spontaneously broken spatial symmetry as
the system passes through the buckling transition is a change in
the system dynamics. We observe this by analysing the spectrum
of the PDH signal for frequencies higher than the bandwidth
(B3 kHz) of the servos used to lock the lasers to the cavity.
Figure 3h shows that as the pump power is raised, the frequency
of the optically sprung resonator initially diminishes, and then
rises above the frequency of the bare mechanical resonator as the
system buckles. This is consistent with the picture that the
potential experienced by the membrane evolves from a single well
to a double well, the sum of the mechanical and optical potentials.

Curiously, the frequency of the mechanical mode does not go
all the way to zero at the buckling transition, as might be
expected. This is a consequence of the limited bandwidth of the
feedback electronics used to lock the probe lasers to the optical
resonances. Specifically, the opposite frequency dependence with
position of the pump lasers and their associated probes (Fig. 1d)
results in a doubling of the optomechanical coupling for
displacements within the bandwidth (B3 kHz) of the feedback
electronics, relative to displacements at substantially higher
frequencies. Since the mechanical frequency of the membrane is
far above this cutoff, the optical power required to buckle the
membrane is well below the power required to drive its frequency
to zero in the unbuckled state. Qualitative agreement with the
single mechanical mode theory (including the effect of the
feedback; see Supplementary Note 2) is obtained and shown in
Fig. 3g, but quantitative agreement likely will require inclusion of
the higher mechanical modes whose properties remain challen-
ging to fully characterize in the present set-up.

Based on the theoretical model underlying the stability diagram
of Fig. 2, we expect the buckling transition to be qualitatively
different for detunings DZk/2. Figure 4 shows our examination
of the buckling transition for D¼ 2p� 1.2 MHz¼ 0.67k. Once
again, Fig. 4a,b depicts the noise-induced fluctuations of the
membrane in the absence of pump lasers. Figure 4c,d shows
the time series and histograms of membrane position for
PL¼PR¼ 3.0 mW; this time, the membrane fluctuates
around three stable positions, either remaining unbuckled or
buckling to either left or right. When the pump powers are raised
to 3.8 mW, only the buckled states remain stable, as shown in
Fig. 4e,f.

Theoretical predictions of the steady states as a function of
pump power are shown for our experimental conditions in
Fig. 4g, and the corresponding experimental histograms of the
membrane position are shown in Fig. 4h. In addition to the initial
unbuckled state, two more stable positions appear discontinu-
ously as the pump power is increased, indicating that the
membrane now experiences an effective triple-well potential.
This jump to a finite displacement of the membrane indicates a
non-equilibrium first-order buckling transition. As the power
is raised still further, the steady state at zero displacement
becomes unstable, and the potential becomes a double well. We
note that the strong quantitative agreement of our radiation
pressure model with these results confirms our neglect of
photothermal terms.

|Δ|/(2π) (MHz)

P
 (

m
W

)

4
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0
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Figure 2 | Theoretical stability diagram. Second-order (green) and first-

order (blue) buckling transitions as a function of laser detuning and power

P¼ PL¼ PR are shown. In addition to the stable solutions, the orange overlay

indicates the region where radiation pressure provides mechanical gain,

raising the quality factor of the mechanical oscillator and potentially

causing mechanical instability. Experimental data were taken at detunings

D/2p¼ �0.4 and � 1.2 MHz.
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Examination of the mechanical oscillation frequency, Fig. 4j,
once again reveals that the frequency of the optically sprung
resonator initially diminishes with pump power, but jumps to a
value larger than the bare mechanical frequency in the final,
double-well regime. For a small range of powers, corresponding
to the triple-well regime, the frequency distribution is bimodal.
The corresponding theoretical curve, including feedback as
discussed previously, is shown in Fig. 4i, where it is clear that
different mechanical frequencies are expected in the local
potential minima corresponding to the buckled and unbuckled
states in the triple-well potential regime. We note that the power
levels chosen push into the nominally unstable region of the
stability diagram shown in Fig. 2 for the large detuning data.
Associated limit cycle behaviour leads to deviations in the
experiment from the simple theoretical picture presented earlier,
as the system wanders in a potential landscape with position-
dependent gain and loss. We believe that this fact, coupled with
the feedback and the restriction of our theoretical model to a
single mechanical mode, are responsible for the differences in the
shapes of the experimental data in Fig. 4h,j from their theoretical
counterparts Fig. 4g,i.

Discussion
Our results, which can be generalized to other optomechanical
systems, suggest a variety of applications. For laser power near the
buckling transition, the response of the membrane to external
forces increases dramatically, enabling higher sensitivity for force
or acceleration sensing. At higher laser powers, the membrane
dwells in its local potential well for significant times, enabling
operation as an optomechanical memory, in which the position of
the membrane can be switched between the wells by a single laser
pulse. Jumps between the potential wells seen in this work arise
from technical noise, and may be suppressed by increasing the
laser power, using lower-noise positioning stages, and working at
low temperature. Our system also provides a platform for
studying nonlinear optomechanics and chaotic dynamics, such as
dynamical multistability30. Furthermore, at low temperatures and
with a high mechanical quality factor, a quantum phase transition
may be observable in systems of this nature31. Specifically, an
optomechanical system can be made sufficiently cold—with a
nominal dephasing rate slower than its resonance frequency—and
sideband resolved to be laser cooled to its ground state before
buckling32. Then a rapid increase in pump power bringing the
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Figure 3 | Second-order buckling transition. (a) Real-time data of the membrane position without pump lasers. (b) Corresponding histogram. The
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the positioning stage supporting the membrane. (e) Calculated stable positions as a function of pump laser power. (f) Image of experimental histograms of

the membrane position for increasing pump power. The single-well potential develops smoothly into a double-well potential as the power is raised, showing

the onset of the second-order buckling transition. (g) Calculated mechanical frequency of the membrane for small excursions about the stable positions as

a function of pump power. (h) Image of mechanical power spectral density inferred from experimental data. The frequency drops as the global potential

well initially becomes more shallow, then increases as the membrane buckles into a local potential minimum.
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system across the stability boundary could yield a transition
driven entirely by quantum fluctuations, a macroscopic version of
structural quantum phase transitions such as those in ion
crystals33.

Data availability. Data are stored and saved according to US
government policy, and can be made available by request to the
authors on an individual basis.
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Figure 4 | First-order buckling transition. (a) Time series and (b) histogram of membrane position, no pump. (c) Real-time data and (d) histogram of the

membrane position with detuning D¼0.67k and pump power PL¼ PR¼ 3.0 mW. The membrane fluctuates around three stable positions, resulting from a

triple-well optomechanical potential. (e) Real-time data and (f) histogram of the membrane position with detuning D¼0.67k and PL¼ PR¼ 3.8 mW. The

membrane now fluctuates around just two stable positions, due to a double-well optomechanical potential. (g) Calculated stable positions as a function of

pump laser power. For a small range of pump powers, there are three stable positions, and as the pump power is raised, the unbuckled state becomes

unstable. (h) Image of experimental histograms of the membrane position for increasing pump power. (i) Calculated mechanical frequency of the

membrane for small excursions about the stable positions as a function of pump power. (j) Image of mechanical power spectral density inferred from

experimental data.
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