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Abstract

A computational framework has been developed for step-by-step implementation of global spectral projection

methods used for solving boundary-value problems and analyzing solutions produced using the numerical

techniques of this framework. A set of Matlab-based functions corresponding to each step in a Galerkin dis-

cretization procedure has been developed with emphasis on simplifying the implementation of discretization

methods for nonlinear, distributed-parameter system models in up to three-dimensional physical domains.

A key feature of this computational approach is that a set of object classes were developed to facilitate

implementation of the weighted residual methods (MWR) in an effort to make the connection between the

solution procedures and modeling equations as clear as possible. The utility of the computational procedures

is demonstrated through applications to two-dimensional reaction-diffusion and fluid flow problems, and a

three-dimensional heat transfer problem in semiconductor manufacturing.

1 Introduction

Boundary-value problems (BVPs) in relatively simple geometries define an important class of models de-

scribing chemical engineering process systems. Indeed, one can view this class as falling in between highly-

simplified, lumped-models and those models generated by complete, highly detailed analyses generating

PDEs defined in complex physical domains. In deciding what degree of modeling is necessary for a partic-

ular application, a balance must be struck between the level of detail that is attempted to be captured in

the model under development and uncertainty in the physical and chemical mechanisms defining the model,

and so these “intermediate-level” BVP models can provide a great deal of utility in many engineering appli-

cations. One example is chemical vapor deposition processes for electronic materials manufacturing, where

distributed models are required to describe across-wafer deposition nonuniformity: in many of these systems,

the complexity of equipment design and deposition mechanisms may offset any simulator accuracy gained by

fine-tuning detailed, CFD-type calculations. It is these situations that put a premium on flexible simulation

strategies where models can be easily modified to test modeling assumptions.

The motivation for the research discussed in this paper is the clear connection object-oriented programming

implementations of global spectral methods can create between the BVP model and the MWR used to

solve it. In this paper we focus solely on developing these computational procedures for implementing the

Galerkin projection. Our goal is to make as clear as possible the connection between model development,

discretization, computational implementation, solution interpretation, and application of the simulation

results. The computational approach presented in this paper for implementing global spectral methods
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simplifies rigorous error analysis, makes possible clear distinctions between spurious and true numerical

solutions [2], facilitates implementation of modern model reduction methods [19], and can be integrated

with parameter identification, optimization, and other numerical tools for developing validated, predictive

simulators [8].

1.1 Computational methods for MWR

Well-established computational procedures exist for implementing the collocation and other MWR, based on

both globally and locally defined trial function expansions. Traditionally, (Fortran-based) software developed

to implement these methods tended to fall into the categories of programs written for a specific implementa-

tion of one element of an MWR solution procedure, or software packages based on one of the MWR solution

methods designed for solving a specific problem type. Many of the chemical engineering studies making use

of the orthogonal collocation method of Villadsen and Stewart [29] relied on the collocation discretization

array subroutines of Villadsen and Michelsen [28], software which falls into the first category. Software in

the second category includes the spline-collocation based BVP solver PDECOL by Madsen and Sincovec [14]

and the BVP solver COLNEW by Ascher and co-workers [4, 5].

Recent advances in developing environments for scientific computing (such as Matlab), advances in spectral

filtering [13] and other fundamental numerical methods applicable to global spectral projection methods,

and increased interest in object-oriented programming methods have contributed to a renewed interest in

developing BVP and PDE solvers. Representative software developments include the PseudoPack algorithms

of Don and Solomonoff [11] consisting of discrete differentiation, fast transform, and filtering algorithms, the

object-oriented (C++) PDE solver of Langtangen and Munthe [17], and the Diffpack finite element package

itself [16]. A significant portion of these recent efforts have gone into developing Matlab-based or Matlab-

compatible software for PDE and BVP systems. Examples include the 3D finite-element based commercial

Femlab software package, the 2D Matlab PDE toolbox, the differentiation array suite of Weideman and

Reddy [30], and a number of new functions built into Version 6 of Matlab for solving 1-dimensional BVPs

using collocation on cubic splines [24]. Excellent overviews of Matlab-based numerical techniques for BVPs

can be found in the textbook by Cooper [10] or the spectral methods text of Trefethen [27].

The numerical techniques developed in this work contribute to this body of software in that our goal was

to develop object-oriented computational tools consisting of a common set of numerical techniques for im-

plementing spectral projection methods inside the Matlab computational environment. Our intention was

to identify the numerical elements common to different applications of global spectral projection methods

and then to develop Matlab functions that form a one-to-one correspondence between the subroutines and
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the elemental steps of a solution procedure. Furthermore, we wanted to assess not only the accuracy of

the elements of MWR implementation (such as generating basis function sequences, inner product calcula-

tions, etc.) but also provide tools and techniques for assessing the accuracy of the solutions computed with

these methods. The conceptual goal of making simple weighted inner product computations, computing

eigenfunction sequences, etc., was to provide the next step in a “rapid-prototyping” approach to simulator

development for distributed parameter systems with simple methods to accurately assess discretization error.

2 Quadrature-based projection methods

In general, we are interested in spectral discretization methods in which approximate solutions to a boundary-

value problem are represented by the truncated trial function expansion

ū(x, y, . . .) =
I,J,...∑
i,j,...=1

ai,j,...φi(x)ψj(y) . . . (1)

In the representative case of a two-dimensional physical domain, the basis functions φi(x)ψj(y) are defined

globally in the computational domain

Ω : 0 ≤ x ≤ 1 0 ≤ y ≤ 1

and the basis functions exist in an inner product space defined by

〈f(x, y), g(x, y)〉 =

1∫
0

1∫
0

f(x, y)g(x, y)xα dx dy.

In our computational methods, the one-dimensional basis function components φi(x), ψj(y), are represented

as vectors of the function values at a set of quadrature points x̂, ŷ, respectively (Fig. 1). For example, in

the case of the function sequence {φi(x)}i=1,...,I , the n quadrature points are defined as the combination

of the unit interval endpoints and the n − 2 roots of a shifted orthogonal Jacobi polynomial Jα+1,β+1
n−2 (x),

a polynomial sequence orthogonal with respect to inner product weight xα(1 − x)β where Jα+1,β+1
0 = 1;

α = 0, 1, or 2, and corresponds to the slab, cylindrical, or spherical geometries, respectively (β = 0 in this

work). Equidistant points x̂k = k/n are used for periodic physical domains. In all cases, it is required that

n ≥ I + 2; a more detailed discussion on selecting the value n can be found in Section 2.4.

Numerical computation of the quadrature points can be carried out using several approaches [9]; in this

work, a two-step procedure is employed, consisting of a root-bracketing and linear interpolation procedure

to identify approximate root locations as the first step, followed by Newton iterations to refine the locations

of the roots. Recurrence formulas for the Jacobi polynomials and their derivatives are used in each step and

efficient computational procedures have been developed for very high degree discretizations [9].
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Figure 1: Basis functions represented on the quadrature grid; inter-point values are computed using Lagrange
interpolation.

2.1 Interpolation

Lagrange interpolation is used to represent the basis functions at inter-quadrature point locations (see Fig. 1):

φi(x) =
n∑
j=1

Φj,ilj(x) (2)

where lj(x) =
∏n
k=1,k 6=j(x − x̂k)/(x̂j − x̂k), j = 1, . . . , n. The coefficient Φj,i represents the value of

the function φi(x) at quadrature point x̂j by the definition of the interpolation polynomial (trigonometric

functions are used in the case of periodic physical domains). Lagrange interpolation methods form the

basis by which quadrature weights are computed in the following section. Computational implementation

of interpolation methods is carried out recursively using Neville’s algorithm [22] or directly using discrete-

transform arrays defined with Jacobi polynomial sequences evaluated on the quadrature and interpolation

grids [9].

2.2 Quadrature

Well-known quadrature weight formulas exist for computing ŵ (e.g., [23]) and further modifications to

improve the accuracy for high-degree interpolating polynomials have been discussed in the literature [20].

The Gauss-Lobatto quadrature guarantees that the quadrature weights ŵ used to compute

∫ 1

0

f(x)xαdx = ŵT f̂

result in numerically exact integral evaluations (limited by round-off errors in the computational procedures)

if f is a polynomial with degree less than q = 2n−3. Therefore, in the context of the inner product definition

∫ 1

0

φi(x)φj(x)xαdx = 〈φi, φj〉 , (3)
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the ŵk can be considered as the discrete approximations to the differential element dv = xαdx. For periodic

domains, the quadrature weights are ŵk = 1/n, k = 1, . . . , n.

2.3 Discrete differentiation operations

Explicit formulas exist for derivatives of the interpolation polynomials lj(x) (and the trigonometric functions

used for periodic physical domains). Therefore, it is straightforward to derive discrete-ordinate formulations

of the first-order derivative dT̂/dx = ÂT̂ and Laplacian operator ∇2T̂ = B̂T̂ that give numerically exact

results for polynomial functions defined on the quadrature grid. More accurate and efficient computations of

the discrete differentiation operators are based on the discrete transform and differentiation arrays produced

by Jacobi polynomial recurrence formulas; details are discussed in [9].

2.4 Convergence of functions approximated on the quadrature grid

In our Matlab implementation of the modified numerical techniques, we have found that these computations

can be accurately carried out to over 1000 discretization points. The effect of such finely discretized function

representations is that numerical computations on this grid can be treated as (and under some circumstances

are) exact, within the limits set by the number of discretization points n. In general, we find n = 2(I + 2)

gives satisfactory computational accuracy for quadrature operations. Further details on the computational

methods, accuracy, and computational costs of the numerical methods can be found in [9].

2.5 Basis function sequences

Fundamental to spectral projection methods is the definition of the basis functions. Orthogonal polynomial

sequences can be readily generated on the quadrature grid using recurrence formulas, and subsequently can

be normalized numerically by quadrature. Likewise, we find it convenient to define a basis function sequence

by the solutions to Sturm-Liouville problems over 0 < x < 1 in the form

1
xα

d

dx
xα
dφ

dx
= λφ

subject to

a
dφ(0)
dx

+ bφ(0) = 0

c
dφ(1)
dx

+ dφ(1) = 0.

These functions are orthogonal with respect to the quadrature-based inner product operations and are

typically normalized prior to use. Eigenfunctions of this form are automatically generated in the BFUN

object constructor method described in Section 3.
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2.6 n-dimensional array operations

BVPs defined in three-dimensional physical domains give rise to three-dimensional mode amplitude coeffi-

cient arrays with elements ai,j,k; direct methods for computing the steady-state solution of these systems

subsequently generate Jacobian arrays with six-dimensions. While one can re-index the mode-amplitude,

residual projection, and Jacobian arrays to obtain conventional one- and two-dimensional arrays, we found

implementation procedures were clearer if the variables and equations were left in their original form. This

motivated developing computational methods to generalize matrix multiplication to these higher-dimensional

systems. For example, if

A(L1×L2×...×Lp)×(M1×M2×...×Mq) = AL×M

B(M1×M2×...×Mq)×(N1×N2×...×Nr) = BM×N

implies the generalized matrix multiplication operation

AL×MBM×N = CL×N

where

Cl1,l2,...,lp,n1,n2,...,nr =
M1,...,Mq∑

k1=1,...,kq=1

Al1,l2,...,lp,k1,k2,...,kqBk1,k2,...,kq,n1,n2,...,nr

Given this definition, we can define the generalized transpose operation as
[
AL×M

]T = AM×L, a square array

as AL×M such that L1 = M1, L2 = M2, . . . Lq = Mq, and p = q, the identity array as a square array A with

all zero elements except IL×L : Il1,l2,...,lq,l1,l2,...,lq = 1, and the matrix inverse as
[
AL×L

]−1
AL×L = IL×L.

Because these matrix operations are not found as part of the standard Matlab function library, functions

mdiag.m, mprod.m, and msolve.m were developed to create L × L-dimensional diagonal arrays, to perform

the generalized matrix multiplication, and to solve by Gaussian Elimination systems described by these

high-dimensional arrays.

3 Object classes for MWR

Object-oriented programming concepts can significantly reduce the complexity of implementing the global

spectral projection methods. The object-oriented programming features are implemented in the context of

MWR computations by identifying those data structures that remain unchanged during a solution procedure

and creating a corresponding set of methods that operate on these new objects. In particular, our focus

is on discretization methods applied to problems defined in 2 or more physical dimensions with the goal of

making the Matlab code written in the course of solving the problem as compact and as close in syntax to

how one would normally write the MWR solution procedure steps.
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Our approach to achieving these goals is to define a set of new Matlab object classes. New object classes in

Matlab are defined by extensions of the Matlab STRUCT object class; the new and overloaded methods

of the class are placed in a separate directory (named @class-name) that also contains the constructor

method(s) for that class. As one example, consider the scalar-field object class SFIELD which is used to

define solutions and other functions in the physical space. Objects of this class have two data fields:

S.pd : A QGRID object defining the physical domain
S.val : A DOUBLE array defining the scalar field values at the quadrature points

Having defined the data fields of this object class, constructor, display, plotting, and perhaps most impor-

tantly, weighted inner product methods are defined for this class. Currently, all object classes created for

this project have equal precedence, therefore Matlab will search for the first appropriate method for the

class of objects in the function parameter list, starting from the left-most parameter. The specifics for each

new object class will be discussed in the following sections.

3.1 Physical domain object classes

When solving a problem using quadrature-based projection methods, one must recompute the differentiation

and quadrature arrays if the number of quadrature points is changed. The fixed relationship between the

quadrature points, differentiation and quadrature weight arrays, and coordinate axis names leads naturally

to encapsulating these data into a single object; this motivated developing the QGRID object class. Objects

within this class contain a physical-space grid of quadrature points and the above-mentioned arrays. No

methods were created to modify the data fields of QGRID objects once they are constructed; a new QGRID

object must be created if any changes in geometry or grid size are needed. Methods of this class include

accessor (get.m), grid visualization (plot.m), and constructor methods. QGRID (or QGRIDC objects,

which are defined next) are aggregated into objects of every other class defined in this paper.
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Class name: qgrid

Data fields ({char}) geom ({double}) qp, ({double}) w, ({double}) d,
({double}) dd, ({double}) Q, ({char}) name

Constructor methods (qgrid) A = qgrid( (char) geom, (double) ndisc, (char) name, ... )
(qgrid) A = qgrid( (char) geom, (double) qp, (double) w, (double) d, (double) dd,

(double) Q, (char) name )

New methods display( (qgrid) A )
B = get( (qgrid) A, (char) field, (char) coord )

Overloaded operators none

Overloaded methods plot( (qgrid) A )

In many problems, it is necessary (or more convenient) to set up several physical domains inside or adjacent to

the primary QGRID object (e.g., spherical catalyst pellets inside a tubular chemical reactor). The QGRIDC

object class was created to describe these sub- (child) domains; objects of this class inherit the data fields

and methods of the QGRID class and add several new data fields to describe the relative positions of the

child and parent physical domains.

Class name: qgridc

Data fields Inherits data fields of QGRID object and adds the following:
({double}) shift, ({double}) scale, (qgrid) Y, (char) bcloc

Constructor method (qgridc) A = qgridc( (double) shift, ({double}) scale, (qgrid) Y, (char) bcloc )

Inherited method @qgrid/display( (qgridc) A )

New method none

Overloaded operators none

Overloaded methods B = get( (qgridc) A, (char) field, (char) coord )
plot( (qgridc) A )

3.2 Basis function object class

One of the key elements of implementing a global spectral projection discretization method is defining the

basis functions. The BFUN object class was created to store basis function sequences, eigenvalue arrays (if

the basis functions are eigenfunctions), and the physical domain over which the basis functions are defined (a

QGRID object). Each basis function in each sequence is discretized at the quadrature points of the QGRID

object; the basis functions themselves can be approximate solutions to a Sturm-Liouville problem, can be
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generated from a recurrence relation, or by any other means.

In multidimensional applications, a single BFUN object is used to store all basis function sequence compo-

nents, and this BFUN object is created using the overloaded ∗ operator. For example, if

object Phi = {φi(x)}i=1,...,I

object Psi = {ψj(y)}j=1,...,J

object P = objects Phi ∗ Psi = {φi(x)ψj(y)}i=1,...,I j=1,...,J

Having described methods for creating BFUN objects, the most important method of the class is the weighted

inner product method wip.m. This method is used for projecting scalar field (SFIELD) objects onto basis

function sequences, and for computing inner products of basis function sequences with other sequences;

further information can be found in the table below and in the representative applications found in the

remainder of this paper.

Class name: bfun

Data fields (qgrid) pd, ({double}) fun, ({double}) eigv, ({char}) name

Constructor methods (bfun) A = bfun( (qgrid) X, ({double}) fun, ({double}) eigv, ({char}) name )
(bfun) A = bfun( (qgrid) X, (char) name, (double) a, (double) b, (double) c, (double) d )

New methods (sfield) B = bfun2sfield( (bfun) A, (double) indices )
display( (bfun) A )
(bfun) B = even( (bfun) A )
B = get( (bfun) A, (char) field )
(bfun) B = modes( (bfun) A, (double) modeno )
(bfun) B = odd( (bfun) A )
(bfun) B = truncate( (bfun) A, (double) N )

Overloaded operators (sfield) C = (double) A * (bfun) B
(bfun) C = (bfun) A * (bfun) B
(bfun) B = (bfun) A( (char) xat )

Overloaded methods (double) B = eig( (bfun) A, (double) codir )
plot( (bfun) A, (double) nofun, (char) fname )
(double) C = wip( (sfield) A, (bfun) B )
(double) C = wip( (bfun) A, (bfun) B )

3.3 Scalar field object class

After defining a BFUN object P containing a particular basis function sequence, a state variable or other

function can be reconstructed in the physical space (on the quadrature grid) using the overloaded ∗ operation
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of the BFUN class and a DOUBLE array of mode amplitude (Fourier) coefficients:

F = a ∗ P.

An SFIELD object F is created by this operation; an SFIELD object has data fields consisting of the function

value at the quadrature points and the corresponding QGRID (or QGRIDC) object itself. SFIELD objects

frequently are used to represent residual functions evaluated on the quadrature grid in MWR applications.

Class name: sfield

Data fields (qgrid) pd, (double) val

Constructor methods (sfield) A = sfield( (qgrid) X, (double) val )

New methods display( (sfield) A )
(sfield) B = expand( (sfield) A, (qgrid) pdNew )
(sfield) B = extrapd( (sfield) A, (qgrid) pdNew, (double) center, (double) scale )
get( (sfield) A, (char) field )

Overloaded operators (sfield) C = (sfield) A - (sfield) B
(sfield) C = (sfield) A + (sfield) B
(sfield) C = (sfield) A .ˆ (double) B
(sfield) C = (sfield) A ./(sfield) B
(sfield) C = (sfield) A .*(sfield) B
(sfield) B = (sfield) A( (char) xat )

Overloaded methods (double) B = contour( (sfield) A, (double) (limits)
contourf( (sfield) A)
plot( (sfield) A )
(double) C = wip( (sfield) A, (bfun) B )
(double) C = wip( (sfield) A, (sfield) B )

3.4 Linear operator object class

The final object class created as part of this MWR framework is the LOPER class, defining discretized linear

operators and their corresponding physical domain (QGRID or QGRIDC objects). LOPER objects and the

overloaded ∗ operator are used to differentiate SFIELD and BFUN objects. These operations typically are

found as part of generating residual functions, Jacobian elements, or interpreting solutions (e.g., computing

a diffusive flux).
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Class name: loper

Data fields (qgrid) pd, ({double}) difop, ({char}) name

Constructor method (loper) A = loper( (qgrid) X, (double) difop, (char) name )

New methods B = get( (bfun) A, (char) field )

Overloaded operator (sfield) C = (loper) A * (sfield) B
(bfun) C = (loper) A * (bfun) B
(loper) B = (double) a * (loper) B

Overloaded methods none

3.5 Additional functions

A number of functions were developed for operating on the n-dimensional arrays discussed previously, and

for filtering, inner product, and other operations. Functions used in applications discussed in this paper are

listed below.

Class name: double

New methods (double) A = eigarray( (double) eigv1, (double) eigv2, ... )
(double) A = fsf( (double) p, (double) N )
(double) C = mprod( (double) A, (double) B, (double) p, (double) q, (double) r )
(double) C, (double) Cnorm = msolve ( (double) A, (double) B )
(double) C = msum( (double) A, (double) B )
(double) Ip = wip( (double) f, (double) g, (double) w, (double) dir )

4 An elementary application

The benefits of implementing MWR in an object-oriented framework are illustrated using the trivial numer-

ical problem of computing a solution to the BVP

1
x

d

dx
x
dT

dx
+ 1 = 0

subject to dT (0)/dr = 0 and T (1) = 1. The exact solution, T (x) = (5 − x2)/4, will be used to assess the

accuracy of the numerical methods used to compute solutions and to approximate the discretization error.

An eigenfunction expansion solution is sought in the form

T̄ (x) = 1 +
I∑
i=1

aiφi(x)
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where the basis functions φi(x) are defined as Bessel’s functions of the first kind of order zero, computed as

solutions to the Sturm-Liouville problem

∇2φ = λφ
dφ(0)
dx

= φ(1) = 0

normalized with respect to inner product (3).

Quadrature grid and basis functions

To solve this system, we define a BFUN (trial function) object Phi to store the I = 3 basis functions and

their 30-point quadrature grid X defined by the QGRID object created below:

X = qgrid(’cyln’,30,’x’);
Phi = truncate( bfun(X,’x’,1,0,0,1), 3);

Methods for the BFUN class include weighted inner product computational routines, therefore, the orthog-

onality of the basis function sequence can be checked with the single statement

wip(Phi,Phi)

which produces the array of inner-product values

1.00000000000000 -0.00000000000003 -0.00000000000002
-0.00000000000003 1.00000000000000 -0.00000000000002
-0.00000000000002 -0.00000000000002 1.00000000000000

The mode amplitude coefficients ai are readily computed as

ai = −〈1, φi(x)〉
λi

using the Matlab statements

One = sfield(X,1);
a = -wip(One,Phi)./eig(Phi)

and the temperature field in the physical space is computed using the overloaded ∗ operator

T = One + a*Phi

to create a scalar field (SFIELD) object T. Results are shown in Fig. 2.

Error analysis

The discretization error of truncated basis function expansion solution is expressed in the physical space as

the function

R(x) =
1
x

d

dx
x
dT̄

dx
+ 1
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Figure 2: Trial functions (top left) , approximate vs. true solution (top right), discretization error (bottom
left), and the residual function (bottom right).

We use the LOPER (linear operator) object DDx to compute the residual function R(x) on the quadrature

grid; if the original modeling equation was in dimensional form, plotting R(x) (shown in Fig. 2) would

correspond to the error in the energy balance in terms of W/m3.

DDx = loper(X,’dd’,’x’);
R = DDx*T + One

In summary, we see that by extending the basic library of quadrature operations through the used of the

object-oriented features of Matlab, the implementation of Galerkin projection and other MWR can be

reduced to a minimum amount of Matlab code.
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5 Steady-state 2D catalyst pellet

Consider the problem of determining the steady-state concentration field inside a cylindrical, isothermal

catalyst pellet in which a second-order reaction takes place. If c(r, z) is the reactant species concentration

inside the pellet, the modeling equation can be written as

0 =
1
r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2
− φ2c2 (4)

= ∇2
rc+∇2

zc− φ2c2

subject to boundary conditions

∂c(0, z)
∂r

= 0 c(1, z) = 1 c(r, 1) = 1
∂c(r, 0)
∂z

= 0.

The catalyst pellet-phase concentration profile is expressed in terms of the truncated trial function expansion

c̄(r, z) = 1 +
I,J∑
i,j=1

ai,jηi(r)ψj(z) (5)

where ηi and ψj are computed as the eigenfunctions satisfying λrη = ∇2
rη subject to η′(0) = 0, η(1) = 0 and

λzψ = ∇2
zψ subject to ψ′(0) = 0, ψ(1) = 0.

The physical domain (QGRID object) is set up and the discrete differentiation operation (LOPER) object

is defined using the MWRtools functions:

S = qgrid(’cyln’,42,’r’,’slab’,40,’z’);
DDr = loper(S,’dd’,’r’);
DDz = loper(S,’dd’,’z’);

Then we create a BFUN object P corresponding to (5) by:

I = 14; J = 14; % truncation numbers
P = truncate( bfun(S,’r’,1,0,0,1), I) * ...

truncate( bfun(S,’z’,1,0,0,1), J);

The Galerkin projection solution is implemented by substituting (5) into (4), using the current estimate of

the solution aν to define the residual function R(r, z), and projecting the residual onto each trial function

to generate the I × J array rhs with elements

rhsi,j = 〈R, ηiψj〉 = 0.

Linearizing rhs at the current solution estimate as part of the Newton-Raphson solution procedure gives the

linear system:

0 = rhs(aν) + Jac(aν )[aν+1 − aν ]
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Figure 3: Reactant species concentration in a catalytic pellet at steady state. Trial function truncation
numbers along r and z directions are both 14.

aν+1 = aν − Jac−1 rhs

where Jac is the I × J × I × J Jacobian array with elements defined as

Jaci,j,k,l = 〈∂R/∂ak,l, ηiψj〉 .

Because Gaussian Elimination and a number of other matrix operations are not defined for ndim arrays where

ndim > 2, we use the function msolve.m written specially for this purpose. Additional details regarding

these numerical procedures were discussed in Section 2.6.

The solution is reconstructed in the physical space using c = 1 + a ∗ P where ∗ is the overloaded matrix

multiplication operator that accepts a BFUN object argument. These solution steps take the computational

form:

a = zeros(I,J); % Solution initial guess
One = sfield(S,1);
tm = 4.0; % Thiele modulus

for iters = 1:8
c = One + a*P;
R = DDr*c + DDz*c - tm^2*c.^2;
rhs = wip(R,P);
Jac = wip(DDr*P,P) + wip(DDz*P,P) - tm^2*2*wip(c.*P,P);
update = msolve(Jac,rhs);
a = a - update;
end

The Newton-Raphson procedure above converges within 4 to 8 iterations; representative steady-state solution

results are plotted in Fig. 3.

Error analysis
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Figure 4: Residual function norm plotted as a function of truncation number for the 2-D catalyst pellet
problem comparing the performance of the eigenfunction-based expansion and polynomial basis function
solutions.

The residual function norm corresponding to the converged concentration profile solution is computed using

Rnorm = sqrt(wip(R,R))

The convergence rate of the Galerkin projection solution as a function of basis function truncation number

then can be plotted (Fig. 4) to reveal that while the solution does converge steadily with increasing I, J ,

better performance can be obtained by using polynomial basis functions of the form

ηi(r)ψj(z) = r2(i−1)z2(j−1) cos(πr/2) cos(πz/2).

Plotting the residual function (as was done in Fig. 2) corresponding to solutions computed using the different

basis function sequences reveals that the eigen-basis functions do not approximate the residual function well

in the neighborhood of the outer boundaries, reducing the convergence rate.

6 Stokes flow in a driven cavity

We consider computing solutions to the Stokes flow problem defined by a cavity filled with liquid set in

motion by one cavity wall. This wall is located at x = 1 and moves at unit velocity in the axial direction; the

remaining walls are stationary. Because we assume both velocity components are zero at the stationary walls,

an analytical solution in closed form is not possible due to the jump discontinuity of the boundary conditions

at both outer corners [15]. This problem has been studied in the context of modeling plasma flow between

adjacent red blood cells moving through a capillary blood vessel [18]; other applications include studies

of creeping flow eddy structures and their transitions in rectangular cavities by eigenfunction expansion
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solutions to the stream function formulation of the problem (e.g., [6, 15, 21, 25, 26]). In this paper, we

present an alternative to the stream-function based solution approaches: a quadrature-based eigenfunction

expansion method is investigated where the pressure field is computed from a Galerkin projection of the

continuity equation residual.

The equations governing the fluid motion are written in dimensionless form as

0 = − ∂p
∂x

+
∂2vx
∂x2

+ α2 ∂
2vx
∂y2

0 = −α∂p
∂y

+
∂2vy
∂x2

+ α2 ∂
2vy
∂y2

where α = X/Y is the aspect ratio of a rectangular cavity with infinite spanwise dimension. The continuity

condition is
∂vx
∂x

+ α
∂vy
∂y

= 0.

Boundary conditions are vx = 0, vy = 1 at x = 1 and vx = vy = 0 at all other walls in the rectangular cavity.

6.1 Basis function expansions

The fluid velocity components and pressure field are represented by globally-defined basis function expansions

of the form

vx(x, y) =
MV∑
i,j=1

ai,jφi(x)ψj(y)

vy(x, y) =
MV∑
i,j=1

bi,jφi(x)ξj(y) +
MBC∑
j=1

cjσjx
2ξj(y)

p(x, y) =
MP∑
i,j=1

di,jγi(x)δj(y)

where the trial function components are computed as nontrivial solutions (including nontrivial eigenfunctions

associated with zero-value eigenvalues) to the Sturm-Liouville problems

λφφ =
d2φ

dx2
φ(0) = φ(1) = 0

λψψ =
d2ψ

dy2
ψ(0) = ψ(1) = 0

λξξ =
d2ξ

dy2
ξ(0) = ξ(1) = 0 (6)

λγγ =
d2γ

dx2
γ′(0) = γ′(1) = 0

λδδ =
d2δ

dy2
δ′(0) = δ′(1) = 0.
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The coefficients σj in the axial velocity component basis function expansion are spectral filtering coefficients

used to improve point-wise convergence of the solution. More details on filtering methods can be found in

[1].

We note that while ψi and ξi are computed from the same Sturm-Liouville problem, only odd functions

are used to define the ψi and even for ξi; odd functions are used to define the δi. The trial functions are

orthogonal sequences (and are normalized) with respect to the inner product

〈φiψj , φkψl〉x,y = 〈φi, φk〉x〈ψj , ψl〉y
=

∫ 1

x=0

φi(x)φk(x) dx
∫ 1

y=0

ψj(y)ψl(y) dy.

The computational implementation of the solution procedure begins by setting up a 70× 70 quadrature grid

(QGRID) and discrete differentiation (LOPER) objects in the x and y directions:

S = qgrid(’slab’,70,’x’,’slab’,70,’y’);
Dx = loper(S,’d’, ’x’);
DDx = loper(S,’dd’,’x’);
Dy = loper(S,’d’, ’y’);
DDy = loper(S,’dd’,’y’);

The basis functions are computed as solutions to the corresponding eigenvalue problems listed in (6) and

stored as one-dimensional as BFUN objects; odd and even function sequences are generated using the odd.m

and even.mmethods of the BFUN class, and all are truncated to the appropriate length using the truncate.m

method. Representative results plotted with the overloaded plot.m method and are presented in Fig. 5.

mV = 30; mBC = 8; mP = 24; % truncation numbers

phi = truncate( bfun(S,’x’,0,1,0,1), mV); % for the flow field
psi = truncate( odd( bfun(S,’y’,0,1,0,1) ), mV);
xi = truncate( even( bfun(S,’y’,0,1,0,1) ), mV);

x = get(S,’qp’,’x’); % for nonhomogeneous BC
F = bfun(S,x.^2,[],’x’);

gam = truncate( bfun(S,’x’,1,0,1,0), mP ); % for the pressure field
del = truncate( odd( bfun(S,’y’,1,0,1,0) ), mP);

The basis function sequences defined by the dyadic product of the function sequences in the x and y coor-

dinates is performed using the overloaded ∗ operator:

Bvx = phi*psi;
Bvy = phi*xi;
BvyBC = F*truncate( xi,mBC );
Bp = gam*del;
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Figure 5: Basis functions for the driven cavity fluid flow problem.

6.1.1 Flow velocity components

Substituting the trial function expansions into the momentum balance equations, we obtain for the velocity

component vx
MP∑
i,j=1

di,jγ
′
iδj =

MV∑
i,j=1

ai,j(λφi + α2λψj )φiψj

where the prime denotes differentiation (with respect to x in this case). Solving for the coefficient ap,q by

projecting this residual onto φpψq, we obtain

ap,q =
1

λφp + α2λψq

MP∑
i,j=1

〈γ′iδj , φpψq〉x,y di,j

a = Ad

where the 4-dimensional coefficient array A is computed by first defining the eigenvalue arrays and then

performing the projection operations:

lvx = eigarray( eig(phi), alpha^2*eig(psi) );
A = msolve( lvx, wip(Dx*Bp,Bvx) );

As the first step of determining a solution to the axial velocity component vy, we compute the coefficients
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cj by

cj = 〈1, ξj〉y =
∫ 1

y=0

ξj dy.

and filter the result (using the second-order Fourier-space filter coefficients σj [1]) to reduce the Gibbs

oscillations produced by the boundary condition discontinuity at the upper corners of the physical domain:

one = sfield(S,1);
c = wip( one(’x=1’),BvyBC(’x=1’) );
c = fsf(2,mBC)’.*c;
vyBC = c*BvyBC;

The residual function for the axial velocity component is

α

MP∑
i,j=1

di,jγiδ
′
j =

MV∑
i,j=1

bi,j(λφi + α2λξj )φiξj +∇2vy∂Ω

with ∇2vy∂Ω =
∑MBC

j=1 cj
[
2(β + 1) + α2x2λξj

]
ξj . Projecting this function onto φpξq and solving for the bp,q

gives

bp,q =
α

λφp + α2λξq

MP∑
i,j=1

〈
γiδ

′
j , φpξq

〉
x,y

di,j −
cq

〈[
2(β + 1) + α2x2λξq

]
, φp

〉
x

λφp + α2λξq

which translates to

lvy = eigarray( eig(phi), alpha^2*eig(xi) );
B = msolve( lvy, wip(Dy*Bp,Bvy) )/alpha;
C = - msolve( lvy, wip(DDx*vyBC + alpha^2*DDy*vyBC,Bvy) )/alpha;

Having represented the discretized velocity fields in terms of the still-unknown pressure field, we complete

the computational procedure by substituting both velocity field expansions into the continuity equation and

project the resulting residual onto the pressure-field trial functions to generate a set of linear equations in

d :

Dd = −E

which can be solved directly for d. This procedure is described by the following computational steps,

containing both the solution steps and the procedures for reconstructing the solution in the physical space:

D = mprod( wip( Dx*Bvx,Bp ),A,2,2,2 ) ...
+ alpha*mprod( wip( Dy*Bvy,Bp ),B,2,2,2 );

E = - alpha*mprod( wip( Dy*Bvy,Bp ),C,2,2,0 ) ...
- alpha*mprod( wip( Dy*BvyBC,Bp ),c,2,2,0 );

d = msolve(D,E)

press = d*Bp
vx = mprod(A,d)*Bvx;
vy = (mprod(B,d)+C)*Bvy + c*BvyBC;



Objects for MWR 22

Representative results are presented in Fig. 6.
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Figure 6: Driven cavity flow problem velocity field (left) and pressure field (right).

7 Heat transfer in CVD

Chemical vapor deposition (CVD) is a unit operation in semiconductor processing used for conformal depo-

sition of thin films of electronic materials. Important considerations in CVD processes include the spatial

uniformity with which films are deposited, and run-to-run consistency of the deposited films. These issues

have motivated a number of model-based control, sensing, and process optimization studies to meet the uni-

formity challenges associated with increasing substrate (wafer) sizes and the continuous reduction of device

length scales.

As one example of such processes, we consider modeling gas-phase heat transfer in a single-wafer tungsten

CVD system. Model development for this system was motivated by the large discrepancy found between the

single thermocouple available on the commercial CVD system and measurements taken with an instrumented

wafer [8], prompting the development of a dynamic model relating the limited available process measurements

to the temperature profile of the wafer during a processing cycle. In experimental studies performed with

this system, inert gas of varying composition was flowed through the reactor at low pressure (0.5 Torr); a

diagram of the reactor chamber is shown in Fig. 7. It has been shown through previous analysis [7] and

verified by experiments [8] that the rate of heat transfer in this system under typical operating conditions is

relatively insensitive to the details of the gas flow field. Therefore, the assumptions of fully developed and

temperature-independent velocity field can be justified, resulting in the dimensionless modeling equation:

∂2vy
∂x2

+ αv
∂2vy
∂z2

=
1

〈vy〉 (7)
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subject to no-slip boundary conditions at z = 0, 1 and x = 0, 1. The definition of the dimensionless states

and parameters found in this model are listed in Table 8.

Figure 7: Three-dimensional CVD chamber geometry and gas velocity and temperature profiles (displayed
in 43K temperature contour increments).

The solution procedure begins by defining the truncated trial function expansion used to represent the gas

velocity field

vy(x, z) =
I,J∑
i,j

di,jφi(x)ηj(z) (8)

where
d2φ

dx2
= λφφ φ(0) = φ(1) = 0

d2η

dz2
= ληη η(0) = η(1) = 0

The quadrature grid and basis functions defined above are computed using

XZ = qgrid(’slab’,40,’x’,’slab’,40,’z’);
Bflow = truncate(bfun(XZ,’x’,0,1,0,1),20) ...

* truncate(bfun(XZ,’z’,0,1,0,1),20)

Substituting (8) into (7) gives a simple eigenvalue problem that can be solved immediately by projecting the

resulting residual function onto each basis function and solving for d:

di,j =
〈1, φi(x)ηj(z)〉
λφi + αvλ

η
j

.

This solution is computed using the following computational steps

lam = eigarray(eig(Bflow,1),av*eig(Bflow,2));
Bvfield = sfield(XZ,1);
d = msolve(lam,wip(Bvfield,Bflow));
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X = 0.3 m reactor width
Y = 0.4 m reactor length
Z = 0.1 m reactor height〈

v∗y
〉

= 0.23 m/s mean gas velocity for a feedrate of 250 sccm
Tw = Tref = 600 K wafer (reference) temperature

R = 0.05 m wafer radius
k = 0.0168 gas thermal conductivity W/m/K

x = x∗/X
y = y∗/Y
z = z∗/Z
vy = v∗y/

〈
v∗y

〉
T = T ∗/Tw
αv = X2/Z2 = 9
κ = k/ρCp = 0.025 m/s2

βgt = κY/X2/
〈
v∗y

〉
= 0.48

γgt = κ1/Y/
〈
v∗y

〉
= 0.27

δgt = κY/Z2/
〈
v∗y

〉
= 4.31

Figure 8: Parameters and dimensionless variable definitions for the CVD reactor.

The (dimensional) solution is reconstructed in the physical space using the following commands and results

are presented in Fig. 9:

Vmean = 0.23;
V = d*Bflow;
V = Vmean/wip(V)*V

7.1 Gas temperature field

With the gas flow field vy in hand and under the assumption that gas properties do not depend on gas

temperature, the chamber gas dimensionless temperature T (x, y, z) equation and boundary conditions are

written as

βgt
∂2T

∂x2
+ γgt

∂2T

∂y2
+ δgt

∂2T

∂z2
= vy(x, z)

∂T

∂y
(9)

T = 0 on ∂Ω1, T = Tw on ∂Ω2,
∂T

∂y
= 0 on ∂Ω3

where

∂Ω2 : z = 0, (x∗ −X/2)2 + (y∗ − Y/2)2 < R2;

∂Ω3 : y = 1, 0 < x∗ < X, 0 < y∗ < Y ;
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Figure 9: Velocity field contours in the x−z plane (m/s) computed using an eigenfunction expansion method.

∂Ω1 : remaining boundaries.

Two physical domains must be defined for this system: the primary physical domain Q defining the physical

region occupied by the reactant gas field and the circular region S (∂Ω2) defined by the heated wafer:

Q = qgrid(’slab’,40,’x’,’slab’,40,’y’,’slab’,40,’z’);
S = qgrid(’cyln’,30,’r’,’peri’,31,’s’);

Furthermore, we must specify the relationship between the two domains: that the wafer region S has radius

R and is located at z = 0, centered at x = 0.5, y = 0.5 (in dimensionless coordinates). We store this

information in a QGRIDC object:

S = qgridc(S,[0.5 0.5],[R/X R/Y],Q,’z=0’);

Differentiation operations are now defined for this system:

Dy = loper(Q,’d’ ,’y’);
Dz = loper(Q,’d’ ,’z’);
DDx = loper(Q,’dd’,’x’);
DDy = loper(Q,’dd’,’y’);
DDz = loper(Q,’dd’,’z’);

We express the solution for T in terms of the truncated global basis function expansions

T (x, y, z) =
I,J,K∑
i,j,k=1

ai,j,kφi(x)ψj(y)ηk(z) +
I,J∑
i=1

bi,jφi(x)ψj(y)(1− z)2

= Thm + Tbc (10)

where the φi(x) and ηk(z) are the same as the trial function sequences used to compute the gas flow velocity
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Figure 10: The computational domain; wafer domain appears distorted due to Y/X 6= 1 aspect ratio in the
physical domain.

field and
d2ψ

dx2
= λψψ ψ(0) =

dψ(1)
dy

= 0.

We refer to Thm as the homogeneous contribution to the trial function expansion and Tbc as the nonhomo-

geneous contribution. The basis function objects are set up as follows:

L = 7; M = 18; N = 18; % truncation numbers

Phi = even(bfun(Q,’x’,0,1,0,1));
Psi = bfun(Q,’y’,0,1,1,0);
Eta = bfun(Q,’z’,0,1,0,1);

z = get(Q,’qp’,’z’);
F = bfun(Q,(1-z).^2,[],’z’);

Phm = Phi * Psi * Eta; % Homogeneous basis functions
Pbc = Phi * Psi * F; % Inhomogeneous at z = 0;

Phm = truncate(Phm,[L M N]);
Pbc = truncate(Pbc,[L M 1]);

The nonhomogeneous contribution to the temperature field basis function expansion is computed by

bi,j = 〈Tw (r(x, y), θ(x, y)) , φi(x)ψj(y)〉 i = 1, . . . , I, j = 1, . . . , J

which translates to

Tw = sfield(S,1);
b = wip(Tw,Pbc);



Objects for MWR 27

in our computational framework. Note how the projection of the wafer temperature defined on physical

domain S in polar coordinates is automatically projected onto the z = 0 boundary of QGRID object Q

in this procedure; this is made possible by the information stored in QGRIDC object S specifying the

relationship between the two physical domains. The nonhomogeneous contribution to the temperature field

(10) is reconstructed in the three-dimensional physical space using

Tbc = b*Pbc;

The solution procedure then reduces to minimizing the residual function formed by substituting (10) into

(9)

βgt
∂2(Thm + Tbc)

∂x2
+ γgt

∂2(Thm + Tbc)
∂y2

+ δgt
∂2(Thm + Tbc)

∂z2
− vy(x, z)

∂(Thm + Tbc)
∂y

= 0.

Because the basis functions of Thm are defined as eigenfunctions of the Laplacian operator, projecting the

residual function above onto the basis functions of Thm gives

(
βgtλ

φ
p + γgtλ

ψ
q + δgtη

η
r

)
ap,q,r −

〈
vy(x, z)

∂Thm
∂y

, φp(x)ψq(y)ηr(z)
〉

=
〈
−βgt ∂

2Tbc
∂x2

− γgt
∂2Tbc
∂y2

− δgt
∂2Tbc
∂z2

+ vy(x, z)
∂(Thm + Tbc)

∂y
, φp(x)ψq(y)ηr(z)

〉

for p = 1, . . . , I, q = 1, . . . , J , r = 1, . . . ,K. The computational procedure follow an analogous path of

forming a residual function from the nonhomogeneous contribution to the solution, projecting it on the basis

functions of the homogeneous contribution, and solving the linear system:

R = bgt*DDx*Tbc + ggt*DDy*Tbc + dgt*DDz*Tbc - V.*(Dy*Tbc);
Rproj = wip(R,Phm);
Jproj = eigarray( bgt*eig(Phm,1),ggt*eig(Phm,2),dgt*eig(Phm,3) ) - wip(V.*(Dy*Phm),Phm);
a = - msolve(Jproj,Rproj);

7.2 Solution analysis

The gas temperature field is reconstructed in the physical space using

T = a*Phm + b*Pbc;

A representative solution is shown in terms of constant-x and y gas temperature contours in Fig. 7; the gas

temperature SFIELD object for x = 0.5 is created from the SFIELD object T simply by evaluating

T(’x=0.5’)

Nonuniform gas/wafer heat transfer is one mechanism leading to nonuniform wafer temperature and poten-

tially nonuniform deposition profiles. We compute the heat transfer rate between the wafer/floor and gas
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phases by

qflux =
k

Z

∂T

∂z

∣∣∣∣
z=0

Results are displayed in Fig. 11 showing the increased heat transfer rate in the region the wafer leading edge;

we note this plot correctly reflects that energy is transferred from the heated gas phase to the chamber floor

downstream of the wafer and near the wafer edge (this is represented by negative flux values). We note that

this plot corresponds to a total gas flow rate of 1000 sccm, which is four times the reactant gas flow normally

used in experiments conducted with this system; the heat transfer rate is significantly more uniform for a

feed gas total flow rate of 250 sccm, a result consistent with experimental observations.
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Figure 11: Heat transfer from the wafer/floor to the gas phase.

8 Concluding remarks

An object-oriented approach to implementing global spectral projection methods in the Matlab computing

environment was developed and applied in solving several two- and three-dimensional BVP-based modeling

problems. It was shown that the computational implementation of these MWR in this framework can be

carried out using very compact Matlab scripts; however, because the emphasis in developing this numerical

approach was based on the idea of creating computational techniques that have a direct correspondence to

each step in an MWR procedure, use of this library requires some knowledge of implementing the MWR.

While this flexibility may be important in research applications, such as developing model reduction methods

for distributed parameter systems, currently we are studying whether a graphical user interface would simplify

many of the implementation steps.

Additional research is underway in defining object classes that facilitate solving problems consisting a set

of BVPs in multiple, connected physical domains, such as those encountered in spectral element method
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applications. Likewise, recent research on inexact Newton methods [12] promises to eliminate the difficult,

and computationally and memory intensive step of explicitly computing Jacobian arrays.

Additional documentation, sample scripts, and the library of functions can be found at the project website

http://www.ench.umd.edu/software/MWRtools.
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