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Abstract

The random key graph, also known as the uniform random in-
tersection graph, is a random graph induced by the random key
predistribution scheme of Eschenauer and Gligor under the assump-
tion of full visibility. We show the existence of a zero-one law for
the appearance of triangles in random key graphs by applying the
method of first and second moments to the number of triangles in
the graph.

1 Introduction

Eschenauer and Gligor [4] have recently proposed the following random key
predistribution scheme for wireless sensor networks(WSNs): Before network
deployment, each sensor is independently assigned K distinct cryptographic keys
which are selected at random from a pool of P keys. These K keys constitute
the key ring of the node and are inserted into its memory. Two sensor nodes
can then establish a secure link between them if they are within transmission
range of each other and if their key rings have at least one key in common; see
[4] for implementation details.

Under the assumption of full visibility, namely that nodes are all within
communication range of each other, two nodes can communicate securely if their
key rings share at least one key. This notion of adjacency induces the random
key graph K(n; (K, P )) on the vertex set {1, . . . , n} where n is the number of
sensor nodes; see Section 2 for precise definitions.

In search of an indication for the feasibility of EG scheme in the context of
WSNs, most of the research so far has focused on the connectivity properties
of random key graphs. Setting aside the fact that random key graphs are not
equivalent to Erdős-Renyi graphs [3], Eschenauer and Gligor [4] transferred the
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well-known results for connectivity of Erdős-Renyi graphs to random key graphs
by matching the corresponding graphs by identical link assignment probabili-
ties. The validity of this transfer was later established at the cost of increased
technicalities in [1], [2], [13]. In light of this success, it is natural to wonder
whether this transfer from Erdős-Renyi graphs to random key graphs applies
more generally to other graph properties.

Interestingly enough, random key graphs have appeared in application areas
as diverse as clustering analysis [6], [7] and recommender systems [10], and their
study is therefore of interest beyond the context of WSNs. The recent results
in [1], [2], [13] settling the graph connectivity problem, we shift the focus in
this paper towards other properties of random key graphs by considering the
subgraph containment problem.

In the literature of random graphs, it has been of interest [3], [9] to look
for thresholds for the containment of certain subgraphs, the most popular and
simplest one being the triangles. Given the fact that the number of triangles
in the graph is related to the clustering properties, this problem also bears
practical importance.

We manage to show that random key graphs admit a zero-one law for the
existence of triangles and we identify the corresponding critical thresholds. As
we compare this threshold with the one obtained for Erdös-Rényi graphs, we
see that the random key graphs evolve in a way such that the triangles start to
appear earlier than in the case of Erdös-Rényi graphs. In fact, for the parame-
ter range that is practically interesting in the context of WSNs, the threshold
obtained for random key graphs turns out to be much smaller than the thresh-
old for Erdös-Rényi graphs. Also, in that range it is easy to conclude from the
results of this paper that the expected number of triangles is much larger in
random key graphs compared to Erdös-Rényi graphs; a fact that was also ob-
served in [2] via simulations. This prompts us to conclude that transferring the
results for Erdös-Rényi graphs to random key graphs by matching them with
identical link assignment probabilities can be quite misleading in some cases.

The paper is organized as follows: In Section 2 we formally introduce the
class of random key graphs while in Section 3 we present the main results of the
paper summarized as Theorem 3.1 and Theorem 3.2. These results are then used
in Section 4 to compare random key graphs with Erdös-Rényi graphs in terms of
their behavior for triangle appearance. In Section 5, we compute the expected
value of the number of triangles in random key graphs and the asymptotic results
that will be used in the proofs of the main results are collected in Section 6. In
Section 7.1, we give a proof of the zero law (Theorem 3.1) while an outline for
the proof of the one law (Theorem 3.2) is given in Section 7.2. Final parts of the
paper (Sections 8 through 11) are devoted to completing the proof of Theorem
3.2.

A word on the notation and conventions in use: All limiting statements,
including asymptotic equivalences, are understood with n going to infinity. The
random variables (rvs) under consideration are all defined on the same proba-
bility triple (Ω,F ,P). Probabilistic statements are made with respect to this
probability measure P, and we denote the corresponding expectation operator
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by E. The indicator function of an event E is denoted by 1 [E]. For any discrete
set S we write |S| for its cardinality.

2 Random key graphs

The model is parametrized by the number n of nodes, the size P of the key pool
and the size K of each key ring with K ≤ P . We often group the integers P
and K into the ordered pair θ ≡ (P, K) in order to simplify the notation. Now,
for each node i = 1, . . . , n, let Ki(θ) denote the random set of K distinct keys
assigned to node i and let P be the set of all keys. The rvs K1(θ), . . . ,Kn(θ)
are assumed to be i.i.d. rvs, each of which is uniformly distributed with

P [Ki(θ) = S] =
(

P

K

)−1

, i = 1, . . . , n (1)

for any subset S of P which contains exactly K elements. This corresponds to
selecting keys randomly and without replacement from the key pool.

Distinct nodes i, j = 1, . . . , n are said to be adjacent if they share at least
one key in their key rings, namely

Ki(θ) ∩Kj(θ) 6= ∅, (2)

in which case an undirected link is assigned between nodes i and j. The result-
ing random graph defines the random key graph on the vertex set {1, . . . , n},
hereafter denoted K(n; θ).

For distinct i, j = 1, . . . , n, it is easy to check that

P [Ki(θ) ∩Kj(θ) = ∅] = q(θ) (3)

with

q(θ) :=





0 if P < 2K

(P−K
K )

(P
K) if 2K ≤ P ,

(4)

whence the probability of edge occurrence between any two nodes is equal to
1− q(θ). The expression given in (4) is a simple consequence of the often used
fact that

P [S ∩Ki(θ) = ∅] =

(
P−|S|

K

)
(

P
K

) , i = 1, . . . , n (5)

for every subset S of {1, . . . , P} with |S| ≤ P −K. Note that if P < 2K there
exists an edge between any pair of nodes, so that K(n; θ) coincides with the
complete graph Kn. Also, we always have 0 ≤ q(θ) < 1 with q(θ) > 0 if and
only if 2K ≤ P .

For simplicity of exposition we refer to any pair of functions P,K : N0 → N0

as a scaling provided the natural conditions

Kn ≤ Pn, n = 2, 3, . . . (6)

are satisfied.

3



3 The main result

Pick positive integers K and P such that K ≤ P . Fix n = 3, 4, . . . and for
distinct i, j, k = 1, . . . , n, define the indicator function

χn,ijk(θ) := 1 [Nodes i, j and k form a triangle in K(n; θ)] .

The number of (unlabelled) triangles in K(n; θ) is simply given by

Tn(θ) :=
∑

(ijk)

χn,ijk(θ) (7)

where
∑

(ijk) denotes summation over all distinct triples ijk with 1 ≤ i < j <

k ≤ n. The event T (n, θ) that there exists at least one triangle in K(n; θ) is
then characterized by

T (n, θ) := [Tn(θ) > 0] = [Tn(θ) = 0]c. (8)

The main result of the paper is a zero-one law for the existence of triangles
in random key graphs. To state the results we find it convenient to make use of
the quantity

τ(θ) :=
K3

P 2
+

(
K2

P

)3

. (9)

The zero law is given first.

Theorem 3.1 For any scaling P, K : N0 → N0, we have the zero law

lim
n→∞

P [T (n, θn)] = 0 (10)

under the condition
lim

n→∞
n3τ(θn) = 0. (11)

The one law given next assumes a more involved form.

Theorem 3.2 For any scaling P, K : N0 → N0 for which the limit limn→∞ q(θn) =
q? exists, we have the one law

lim
n→∞

P [T (n, θn)] = 1 (12)

either if 0 ≤ q? < 1 or if q? = 1 under the additional condition

lim
n→∞

n3τ(θn) = ∞. (13)

Theorem 3.1 and Theorem 3.2 will be established by the method of first and
second moments, respectively [8, p. 55]. The first step in doing so is taken in
Section 5 by computing the first moment of the count variables defined at (7).
In what follows we compare the random key graph to a related Erdös-Rényi
graph [3] in terms of their behavior for the existence of triangles.
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4 Comparison with Erdös-Rényi graphs

For each p in [0, 1] let G(n; p) denote the Erdös-Rényi graph on the vertex set
{1, . . . , n} with link assignment probability p and let T (n; p) denote the event
that there is at least one triangle in G(n; p). As we set

τ?(p) = p3, (14)

the (well-known) zero-one law for the existence of a triangle in Erdös-Rényi
graphs takes the following form:

Theorem 4.1 For any scaling p : N0 → [0, 1], we have

lim
n→∞

P [T (n; pn)] =





0 if limn→∞ n3τ?(pn) = 0

1 if limn→∞ n3τ?(pn) = ∞.
(15)

It has been noted in [1], [2], [13] that pn is analogous to K2
n

Pn
under certain

conditions as both expressions give the probability of link assignment; see Sec-
tion 6 for details. Following this, we refer to an Erdös-Rényi graph G(n; p) as
being matched to a random key graph K(n; θ) if pn ∼ K2

n

Pn
. In that case, we have

τ(θn)
τ?(pn)

∼ 1 +
Pn

K3
n

, (16)

whence

lim
n→∞

τ(θn)
τ?(pn)

=





1 if limn→∞ Pn

K3
n

= 0

∞ if limn→∞ Pn

K3
n

= ∞.
(17)

This suggests that the threshold ensuring the existence of a triangle is always
reached earlier in the evolution of a random key graph compared to the case of
an Erdös-Rényi graph matched to it.

In the context of WSNs, it is desired to select the EG scheme parameters
Kn and Pn such that the induced random key graph is connected. In fact,
considering the tradeoff between connectivity and security [2], it is desirable to
keep K2

n

Pn
as close as possible to the connectivity threshold log n

n ; see [1], [2] and
[13] for details. Therefore, in the case

K2
n

Pn
∼ log n

n
(18)

we have
τ(θn)
τ?(pn)

∼ 1 (19)

only if
Kn À n

log n
. (20)
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Given the limited memory and computational power of the sensor nodes, such
key ring sizes are obviously not practical. Also they will lead to high node
degrees which in turn will decrease the resiliency of the network against node
capture attacks. Indeed, the criterion to ensure security in a WSN was suggested
in [2] as selecting Kn and Pn such that

Kn

Pn
∼ 1

n

which then leads to
Kn ∼ log n (21)

via (18). With (18) and (21) in effect, we find

τ(θn)
τ?(pn)

∼ 1 +
n

(log n)2
→∞. (22)

Hence, for practical WSN scenarios the induced random key graph has a much
smaller threshold for triangle appearance than the matched Erdös-Rényi graph.
Therefore, transferring the well-known results for Erdős-Rényi graphs to ran-
dom key graphs by matching them with identical edge assignment probabilities
might be misleading for some graph properties. This shows that Erdős-Renyi
graphs are not adequate in modelling the EG scheme, calling instead for a direct
investigation of random key graphs in this context!

5 Computing the first moment

With positive integers K and P such that K ≤ P , define

β(θ) := (1− q(θ))3 + q(θ)3 − q(θ)r(θ) (23)

where we have set

r(θ) :=





0 if P < 3K

(P−2K
K )

(P
K) if 3K ≤ P .

(24)

Direct inspection shows that
r(θ) ≤ q(θ)2 (25)

whence
β(θ) ≥ (1− q(θ))3 > 0. (26)

Lemma 5.1 For positive integers K and P such that K ≤ P , we have

E [Tn(θ)] =
(

n

3

)
β(θ), n = 3, 4, . . . (27)
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To help deriving (27) we introduce the events

A(θ) := [K1(θ) ∩K2(θ) 6= ∅] ∩ [K1(θ) ∩K3(θ) 6= ∅] (28)

and

B(θ) := [K1(θ) ∩K2(θ) 6= ∅] ∩ [K1(θ) ∩K3(θ) 6= ∅] ∩ [K2(θ) ∩K3(θ) 6= ∅]
= A(θ) ∩ [K2(θ) ∩K3(θ) 6= ∅]. (29)

The event A(θ) captures the existence of edges between node 1 and the pair of
nodes 2 and 3, respectively, in K(n; θ), while B(θ) is the event where the nodes
1, 2 and 3 form a triangle in K(n; θ).

Lemma 5.2 The probability of the event A(θ) is given by

P [A(θ)] = (1− q(θ))2. (30)

In the proof of Lemma 5.2 (as well as in other proofs) we omit the explicit
dependence on θ when no confusion arises from doing so.

Proof. Under the enforced independence assumptions we note that

P [A(θ)] =
∑

|S|=K

P [K1 = S, S ∩K2 6= ∅, S ∩K3 6= ∅]

=
∑

|S|=K

P [K1 = S]P [S ∩K2 6= ∅]P [S ∩K3 6= ∅]

= (1− q(θ))2 (31)

as we make use of (5) with
∑
|S|=K P [K1 = S] = 1.

In many of the forthcoming calculations we make repeated use of the fact
that for any pair of events, say E and F , we have

P [E ∩ F ] = P [E]− P [E ∩ F c] . (32)

In particular, we can now conclude from Lemma 5.2 that

P [K1(θ) ∩K2(θ) = ∅, K1(θ) ∩K3(θ) 6= ∅]
= P [K1(θ) ∩K2(θ) 6= ∅, K1(θ) ∩K3(θ) = ∅]
= q(θ)(1− q(θ)) (33)

and
P [K1(θ) ∩K2(θ) = ∅, K1(θ) ∩K3(θ) = ∅] = q(θ)2. (34)

These facts will be used in computing the probability of
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Lemma 5.3 With β(θ) given at (23) we have

P [B(θ)] = β(θ). (35)

Proof. Repeated use of (32) yields

P [B(θ)] = P [K1 ∩K2 6= ∅, K1 ∩K3 6= ∅]
− P [K1 ∩K2 6= ∅, K1 ∩K3 6= ∅, K2 ∩K3 = ∅]

= P [A(θ)]− P [K1 ∩K2 6= ∅, K2 ∩K3 = ∅]
+ P [K1 ∩K2 6= ∅, K1 ∩K3 = ∅, K2 ∩K3 = ∅]

= (1− q(θ))2 − q(θ)(1− q(θ)) + P [K1 ∩K3 = ∅, K2 ∩K3 = ∅]
− P [K1 ∩K2 = ∅, K1 ∩K3 = ∅, K2 ∩K3 = ∅]

= (1− q(θ))2 − q(θ)(1− q(θ)) + q(θ)2

− P [K1 ∩K2 = ∅, K1 ∩K3 = ∅, K2 ∩K3 = ∅] (36)

as we recall (30), (33) and (34).
By independence we get

P [K1 ∩K2 = ∅, K1 ∩K3 = ∅, K2 ∩K3 = ∅]
= P [K1 ∩K2 = ∅, (K1 ∪K2) ∩K3 = ∅]
=

∑

|S|=|T |=K,S∩T=∅
P [K1 = S, K2 = T ]P [(S ∪ T ) ∩K3 = ∅]

=
∑

|S|=|T |=K,S∩T=∅
P [K1 = S, K2 = T ] · r(θ)

= P [K1 ∩K2 = ∅] · r(θ) (37)

by invoking (5) (since |S ∪ T | = 2K under the constraints |S| = |T | = K and
S ∩ T = ∅). Thus,

P [B(θ)] = (1− q(θ))2 − q(θ)(1− q(θ)) + q(θ)2 − q(θ)r(θ),

and the desired result follows upon noting the relation

(1− q(θ))2 − q(θ)(1− q(θ)) + q(θ)2 = (1− q(θ))3 + q(θ)3.

The proof of Lemma 5.1 is now straightforward: Fix n = 3, 4, . . .. Exchange-
ability yields

E [Tn(θ)] =
(

n

3

)
E [χn,123(θ)] (38)

and the desired conclusion follows as we make use of Lemma 5.3.
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6 Some useful asymptotics

In this section we collect a number of asymptotic results that prove useful in
establishing some of the results derived in this paper. The first result, already
obtained in [13], will be key to our approach.

Lemma 6.1 For any scaling P, K : N0 → N0, we have

lim
n→∞

q(θn) = 1 (39)

if and only if

lim
n→∞

K2
n

Pn
= 0, (40)

and under either condition the asymptotic equivalence

1− q(θn) ∼ K2
n

Pn
(41)

holds.

Since 1 ≤ Kn ≤ Kn
2 for all n = 1, 2, . . ., the condition (40) implies

lim
n→∞

Kn

Pn
= 0 (42)

and
lim

n→∞
Pn = ∞. (43)

so that for any c > 0, we have

cKn ≤ Pn (44)

for all n ∈ N0 sufficiently large (dependent on c).
The proof of Lemma 6.1 is based on the following elementary bounds, whose

proofs are available in [13],

Lemma 6.2 For positive integers K, L and P such that K + L ≤ P , we have

(
1− L

P −K

)K

≤
(
P−L

K

)
(

P
K

) ≤
(

1− L

P

)K

. (45)

These bounds also form the basis for deriving the following asymptotic equiv-
alence.

Proposition 6.3 For any scaling P, K : N0 → N0 satisfying (39)-(40), we have
the asymptotic equivalence

β(θn) ∼ τ(θn) (46)

provided (13) holds.
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Proof. From (23), we get

β(θn) = (1− q(θn))3 + q(θn)3
(

1− r(θn)
q2(θn)

)

Under the enforced assumptions Lemma 6.1 already implies

(1− q(θn))3 ∼
(

K2
n

Pn

)3

,

and
q(θn)3 ∼ 1.

It is now plain that the equivalence (46) will hold if we show that

1− r(θn)
q(θn)2

∼ K3
n

P 2
n

. (47)

This key technical fact is established in Appendix A.

The final result of this section also relies on Lemma 6.1, and will prove useful
in establishing the one law.

Proposition 6.4 For any scaling P, K : N0 → N0 satisfying (39)-(40), we have

lim
n→∞

n2(1− q(θn)) = ∞ (48)

provided the condition (13) holds.

Proof. Consider a scaling P, K : N0 → N0 satisfying (39)-(40). By Lemma
6.1 the desired conclusion (48) will be established if we show

lim
n→∞

n2 K2
n

Pn
= ∞. (49)

As condition (13) reads

lim
n→∞

n3

(
K3

n

P 2
n

+
(

K2
n

Pn

)3
)

= ∞,

we immediately get (49) by virtue of the trivial bounds

n3

(
K2

n

Pn

)3

=
(

nK2
n

Pn

)3

≤
(

n2K2
n

Pn

)3

and

n3 K3
n

P 2
n

≤ n4 K4
n

P 2
n

=
(

n2K2
n

Pn

)2
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valid for all n = 1, 2, . . ..

Proposition 6.4 will be used as follows: Pick a > 0 and b > 0, and consider
a scaling P,K : N0 → N0 satisfying (39)-(40). For each n = 2, 3, . . ., we get

1
n2
· (1− q(θn))a

β(θn)b
≤ 1

n2
· (1− q(θn))a

(1− q(θn))3b

=
1

n2 (1− q(θn))
· (1− q(θn))a−3b+1

. (50)

Therefore, under condition (13) Proposition 6.4 yields

lim
n→∞

1
n2
· (1− q(θn))a

β(θn)b
= 0 if a− 3b + 1 ≥ 0 (51)

as we make use of (39)-(40).

7 Proofs of Theorem 3.1 and Theorem 3.2

7.1 A proof of Theorem 3.1

Fix n = 3, 4, . . ., An elementary bound for N-valued rvs yields

P [Tn(θn) > 0] ≤ E [Tn(θn)] , (52)

so that

P [T (n, θn)] ≤
(

n

3

)
β(θn). (53)

The conclusion (10) follows if we show that

lim
n→∞

(
n

3

)
β(θn) = 0 (54)

under (11).
The condition limn→∞ n3τ(θn) = 0 implies limn→∞ τ(θn) = 0 and (40)

automatically holds. By Proposition 6.3 we conclude β(θn) ∼ τ(θn), whence
n3β(θn) ∼ n3τ(θn), and condition (11) is indeed equivalent to (54) since

(
n
3

) ∼
n3

6 .

7.2 A proof of Theorem 3.2

Assume first that q? satisfies 0 ≤ q? < 1. Fix n = 3, 4, . . . and partition the
n nodes into the kn + 1 non-overlapping groups (1, 2, 3), (4, 5, 6), . . ., (3kn +

11



1, 3kn +2, 3kn +3) with kn = bn−3
3 c. If K(n; θn) contains no triangle, then none

of these kn + 1 groups of nodes forms a triangle. With this in mind we get

P [Tn(θn) = 0]

≤ P

[
kn⋂

`=0

[
Nodes 3` + 1, 3` + 2, 3` + 3 do not form

a triangle in K(n; θn)

]]

=
kn∏

`=0

P
[

Nodes 3` + 1, 3` + 2, 3` + 3 do not form
a triangle in K(n; θn)

]
(55)

= (1− β(θn))kn+1

≤ (
1− (1− q(θn))3

)kn+1
(56)

≤ e−(kn+1)(1−q(θn))3 . (57)

Note that (55) follows from the fact that the events
[

Nodes 3` + 1, 3` + 2, 3` + 3 do not form
a triangle in K(n; θn)

]
, ` = 0, . . . , kn

are mutually independent due to the non-overlap condition, while the inequality
(56) is justified with the help of (26). Let n go to infinity in the inequality (57).
From the constraint q? < 1 we conclude that limn→∞ P [T (n, θn)c] = 0 since
kn ∼ n

3 so that limn→∞(kn + 1)(1− q(θn))3 = ∞. This establishes (12).
To handle the case q? = 1, we use a standard bound which forms the basis

of the method of second moment [8, remark 3.1, p. 55]. Here it takes the form

E [Tn(θn)]2

E [Tn(θn)2]
≤ P [Tn(θn) > 0] , n = 2, 3, . . . (58)

It is now plain that (12) will be established in the case q? = 1 if we show the
following result.

Proposition 7.1 For any scaling P, K : N0 → N0 satisfying (39)-(40), we have

lim
n→∞

E
[
Tn(θn)2

]

E [Tn(θn)]2
= 1 (59)

under the condition (13).

The remainder of the paper is devoted to establishing Proposition 7.1. As
will soon become apparent this is a bit quite more involved than expected.

8 Computing the second moment

A natural step towards establishing Proposition 7.1 consists in computing the
second moment of the count variables (7).
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Proposition 8.1 For positive integers K and P such that K ≤ P , we have

E
[
Tn(θ)2

]
= E [Tn(θ)] +

((
n−3

3

)
(
n
3

) + 3

(
n−3

2

)
(
n
3

)
)
· E [Tn(θ)]2 (60)

+
(

n

3

)(
3
2

)(
n− 3

1

)
· E [χn,123(θ)χn,124(θ)]

for all n = 3, 4, . . . with

E [χn,123(θ)χn,124(θ)]

= −(1− q(θ))5 + 2 (1− q(θ))2 β(θ)

− 1
q(θ)

(
β(θ)− (1− q(θ))3

)2
+

K∑

k=0

ck(θ)− q(θ)4 (61)

where we have set

ck(θ) :=

(
K
k

)(
P−K
K−k

)
(

P
K

) ·
((

P−2K+k
K

)
(

P
K

)
)2

, k = 0, 1, . . . , K. (62)

As explained in Appendix B we have the probabilistic interpretation

ck(θ) = P [|K1(θ) ∩K2(θ)| = k, (K1(θ) ∪K2(θ)) ∩Ki(θ) = ∅, i = 3, 4] (63)

for each k = 0, 1, . . . , K.

Proof. Consider positive integers K and P such that K ≤ P and fix n =
3, 4, . . .. By exchangeability and by the binary nature of the rvs involved we
readily conclude that

E
[
Tn(θ)2

]
=

∑

(ijk)

∑

(abc)

E [χn,ijk(θ)χn,abc(θ)]

= E [Tn(θ)]

+
(

n

3

)(
3
2

)(
n− 3

1

)
E [χn,123(θ)χn,124(θ)]

+
(

n

3

)(
3
1

)(
n− 3

2

)
E [χn,123(θ)χn,145(θ)]

+
(

n

3

)(
n− 3

3

)
E [χn,123(θ)χn,456(θ)] . (64)

Under the enforced independence assumptions the rvs χn,123(θ) and χn,456(θ)
are independent and identically distributed. As a result,

E [χn,123(θ)χn,456(θ)] = E [χn,123(θ)]E [χn,456(θ)] = β(θ)2

13



so that (
n

3

)(
n− 3

3

)
E [χn,123(θ)χn,456(θ)] =

(
n−3

3

)
(
n
3

) · E [Tn(θ)]2 (65)

as we make use of the relation (27).
On the other hand, we readily check that the indicator rvs χn,123(θ) and

χn,145(θ) are independent and identically distributed conditionally on K1(θ)
with

P [χn,123(θ) = 1|K1(θ) = S] = P [χn,123(θ) = 1] = β(θ), S ∈ PK .

A similar statement applies to χn,145(θ) and therefore the rvs χn,123(θ) and
χn,145(θ) are independent and identically distributed so that

E [χn,123(θ)χn,145(θ)] = E [χn,123(θ)]E [χn,145(θ)] .

As before this last observation yields
(

n

3

)(
3
1

)(
n− 3

2

)
E [χn,123(θ)χn,145(θ)] = 3

(
n−3

2

)
(
n
3

) · E [Tn(θ)]2 (66)

bu virtue of (27).
The evaluation (61)–(62) of the moment E [χn,123(θ)χn,124(θ)] is rather lengthy,

although quite straightforward; details are given in Appendix B. Reporting
(61)–(62), (65) and (66) into (64) establishes Proposition 8.1.

In preparation of the proof of Proposition 7.1 we note that Proposition 8.1
readily implies

E
[
Tn(θ)2

]

E [Tn(θ)]2
=

1
E [Tn(θ)]

+

((
n−3

3

)
(
n
3

) + 3

(
n−3

2

)
(
n
3

)
)

(67)

+
3(n− 3)(

n
3

) · E [χn,123(θ)χn,124(θ)]
E [χn,123(θ)]

2

for all n = 2, 3, . . . as we make use of (38).

9 A proof of Proposition 7.1

Consider any scaling P,K : N0 → N0 satisfying (39)-(40). By Proposition 6.3
we have limn→∞ n3β(θn) = ∞ under the additional condition (13), whence

lim
n→∞

E [Tn(θn)] = ∞

by virtue of (38).
As pointed out earlier the equivalent conditions (39)-(40) imply

3Kn ≤ Pn (68)

14



for all n ∈ N0 sufficiently large. On that range (67) is valid with θ replaced by
θn. Letting n go to infinity in the resulting expression, we note that

lim
n→∞

((
n−3

3

)
(
n
3

) + 3

(
n−3

2

)
(
n
3

)
)

= 1 and

(
n
3

)

3(n− 3)
∼ n2

18
.

It is plain that the convergence (59) will hold if we show that

lim
n→∞

1
n2

E [χn,123(θn)χn,124(θn)]
E [χn,123(θn)]2

= 0. (69)

In order to establish (69) under the assumptions of Proposition 7.1 we pro-
ceed as follows: Recall from Lemma 5.1 that

E [χn,123(θn)]2 = β(θn)2 ≥ (1− q(θn))6 , (70)

and from (61) observe that

1
n2
· E [χn,123(θn)χn,124(θn)]

(E [χn,123(θn)])2

= − 1
n2
· (1− q(θn))5

β(θn)2
+

2
n2
· (1− q(θn))2

β(θn)

− 1
n2
· 1
q(θn)

(
β(θn)− (1− q(θn))3

β(θn)

)2

+
1
n2
·
∑Kn

k=0 ck(θn)− q(θn)4

β(θn)2
(71)

for all n = 3, 4, . . ..
Let n go to infinity in (71). Using (51) (once with a = 5 and b = 2, then

with a = 2 and b = 1), we get

lim
n→∞

1
n2
· (1− q(θn))5

β(θn)2
= 0 (72)

and

lim
n→∞

2
n2
· (1− q(θn))2

β(θn)
= 0. (73)

The convergence

lim
n→∞

1
n2
· 1
q(θn)

(
β(θn)− (1− q(θn))3

β(θn)

)2

= 0 (74)

is immediate since
∣∣∣∣
β(θn)− (1− q(θn))3

β(θn)

∣∣∣∣
2

≤ 1, n = 2, 3, . . .

and limn→∞ q(θn) = 1. Consequently the proof of Proposition 7.1 will be com-
pleted if we show
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Proposition 9.1 For any scaling P, K : N0 → N0 satisfying (39)-(40), we have

lim
n→∞

1
n2
·
∑K

k=0 ck(θn)− q(θn)4

β(θn)2
= 0 (75)

under the condition (13).

The proof of Proposition 9.1 will proceed in two steps:

10 A reduction step

We start with an easy bound.

Lemma 10.1 With positive integers K and P such that 2K ≤ P , we have

c1(θ) ≤ 1− q(θ). (76)

Proof. Specializing (63) with k = 1 we get

c1(θ) = P [|K1(θ) ∩K2(θ)| = 1, (K1(θ) ∪K2(θ)) ∩Ki(θ) = ∅, i = 3, 4]
≤ P [|K1(θ) ∩K2(θ)| = 1]
≤ P [|K1(θ) ∩K2(θ)| ≥ 1]

and the conclusion is immediate as we identify

P [|K1(θ) ∩K2(θ)| ≥ 1] = P [K1(θ) ∩K1(θ) 6= ∅] = 1− q(θ).

Lemma 10.2 With positive integers K and P such that 3K ≤ P , the mono-
tonicity property

c1(θ)
c0(θ)

≥ c2(θ)
c1(θ)

≥ . . . ≥ cK(θ)
cK−1(θ)

(77)

holds.

Proof. Fix k = 0, . . . , K − 1. From the expression (62) we note that

ck+1(θ)
ck(θ)

=

(
K

k+1

)(
P−K

K−k−1

)(
P−2K+k+1

K

)2

(
K
k

)(
P−K
K−k

)(
P−2K+k

K

)2

=
1

k + 1
· (K − k)2

P − 3K + k + 1
· P − 2K + k + 1
P − 3K + k + 1

(78)

and by considering each factor in this last expression we readily conclude that
the ratio ck+1(θ)

ck(θ) decreases monotonically with k.
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Lemma 10.3 For any scaling P,K : N0 → N0 satisfying (39)-(40), we have

c2(θn)
c1(θn)

≤ 1− q(θn) (79)

for all n ∈ N0 sufficiently large.

Proof. Pick a scaling P, K : N0 → N0 satisfying (39)-(40) so that (68)
eventually holds. On that range replace θ by θn in (78) with k = 1 according
to this scaling, yielding

c2(θn)
c1(θn)

=
1
2
· (Kn − 1)2

(Pn − 3Kn + 2)
· Pn − 2Kn + 2
Pn − 3Kn + 2

. (80)

It is now plain that

lim
n→∞

Pn

K2
n

· c2(θn)
c1(θn)

=
1
2

by making use of the consequences (42) and (43) of the assumption (39)-(40).
From the equivalence (41) this last limiting fact can be rewritten as

c2(θn)
c1(θn)

∼ 1
2

(1− q(θn))

and the desired conclusion follows.

Combining Lemma 10.1, Lemma 10.2 and Lemma 10.3 will lead to the fol-
lowing key bounds.

Lemma 10.4 For any scaling P,K : N0 → N0 satisfying (39)-(40), we have

ck(θn) ≤ (1− q(θn))k
, k = 1, 2, . . . , Kn (81)

for all n ∈ N0 sufficiently large.

Proof. Pick a scaling P, K : N0 → N0 satisfying (39)-(40). For each n =
2, 3, . . ., we can use Lemma 10.1 and Lemma 10.2 to conclude that

ck(θn) =
k−1∏

`=1

c`+1(θn)
c`(θn)

· c1(θn)

≤
(

c2(θn)
c1(θn)

)k−1

· c1(θn)

≤
(

c2(θn)
c1(θn)

)k−1

· (1− q(θn)) (82)
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with k = 1, . . . , Kn. The desired conclusion is now a simple consequence of
Lemma 10.3.

We are now in a position to take the first step towards the proof of Propo-
sition 9.1.

Proposition 10.5 For any scaling P, K : N0 → N0 satisfying (39)-(40), we
have

lim
n→∞

1
n2
·
∑Kn

k=5 ck(θn)
β(θn)2

= 0 (83)

under the condition (13).

Proof. Pick an admissible scaling P, K : N0 → N0 satisfying (39)-(40). From
Lemma 10.4 it follows that

Kn∑

k=5

ck(θn) ≤
Kn∑

k=5

(1− q(θn))k

≤
∞∑

k=5

(1− q(θn))k

=
(1− q(θn))5

q(θn)
(84)

for all n ∈ N0 sufficiently large. Letting n go to infinity in this last inequality
we readily obtain (83) as an immediate consequence of Proposition 6.4, to wit
(51) (with a = 5 and b = 2).

11 The second step

It is now plain from Proposition 10.5 that the proof of Proposition 9.1 will be
completed if we show the following fact.

Proposition 11.1 For any scaling P, K : N0 → N0 satisfying (39)-(40), we
have

lim
n→∞

1
n2
·
∑4

k=0 ck(θn)− q(θn)4

β(θn)2
= 0 (85)

under the condition (13).

Fix positive integers K and P such that 3K ≤ P . We start by writing

18



4∑

i=0

ck(θ)− q(θ)4 (86)

=

(
P−K

K

)(
P−2K

K

)2
+ K

(
P−K
K−1

)(
P−2K+1

K

)2
+

(
K
2

)(
P−K
K−2

)(
P−2K+2

K

)2

(
P
K

)3

+

(
K
3

)(
P−K
K−3

)(
P−2K+3

K

)2
+

(
K
4

)(
P−K
K−4

)(
P−2K+4

K

)2

(
P
K

)3 −
(
P−K

K

)4

(
P
K

)4

:=
F (θ)
G(θ)

where we have

F (θ) (87)
= [P . . . (P − 3K + 1)] [(P − 2K) . . . (P − 3K + 1)]

+ K2 [P . . . (P − 3K + 2)] [(P − 2K + 1) . . . (P − 3K + 2)]

+
K2(K − 1)2

2
[P . . . (P − 3K + 3)] [(P − 2K + 2) . . . (P − 3K + 3)]

+
K2(K − 1)2(K − 2)2

6
[P . . . (P − 3K + 4)]×

× [(P − 2K + 3) . . . (P − 3K + 4)]

+
K2(K − 1)2(K − 2)2(K − 3)2

24
[P . . . (P − 3K + 5)]×

× [(P − 2K + 4) . . . (P − 3K + 5)]
− [

(P −K)4 . . . (P − 2K + 1)4
]
.

and

G(θ) :=
K−1∏

`=0

(P − `)4. (88)

Next, we write F (θ) as a polynomial in P (of order 4K):

F (θ) = a0(θ)P 4K + a1(θ)P 4K−1 + . . . + a4K−1(θ)P + a4K(θ) (89)

where the coefficients depend on θ only through K. We now compute the first
six coefficients:

Proposition 11.2 With positive integers K and P such that 3K ≤ P , we have

a0(θ) = a1(θ) = a2(θ) = 0 (90)

and
a3(θ) = K4 (91)
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whereas
a4(θ) = −6K6 + 6K5 −K4 (92)

and

a5(θ) = − 1
120

K10 +
1
6
K9 +

199
12

K8 − 34K7 +
1207
120

K6 +
161
6

K5 (93)

− 209
6

K4 + 20K3 − 24
5

K2.

The proof of Proposition 11.2 is tedious and is given in Appendix C. For the
remaining coefficients, we rely on the bounds obtained next:

Proposition 11.3 With positive integers K and P such that 3K ≤ P , we have

|ai(θ)| ≤ 2 · (12K2)i, i = 6, 7, . . . , 4K. (94)

Proof. Pick positive integers K, P such that 3K ≤ P . The first term in (87)
is a polynomial in P with order 4K and leading coefficient 1. Therefore, it
contributes to the all of the coefficients a1(θ), . . . , a4K(θ) in the expression (89)
and for each i = 1, 2, . . . 4K, its contribution to ai(θ) can be determined by the
products of i of its roots summed over all

(
4K
i

)
possible i − uple of roots. In

fact, we have

ai,1(θ) = (−1)i

(4K
i )∑

l=1

i∏

j=1

r1,l,j , i = 1, 2, . . . , 4K

where for each l = 1, . . .
(
4K
i

)
, {r1,l,j}i

j=1 is a sequence of i distinct roots of the
first term in (87) and ai,1(θ) stands for the contribution of that term to ai(θ).
As all roots of the first term is bounded in absolute value by 3K, it is now a
simple matter to conclude that

|ai,1(θ)| ≤
(

4K

i

)
(3K)i

, i = 0, 1, . . . , 4K.

Similarly, with ai,2(θ) representing the contribution of the second term of
(87) to ai(θ), we have

|ai,2(θ)| ≤ K2

(
4K − 1
i− 1

)
(3K)i−1

, i = 1, 2, . . . , 4K

since the second term in (87) defines a polynomial in P with order 4K − 1.
Proceeding in a similar manner for the 3rd, 4th, 5th and the 6th terms of (87),
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we readily obtain

|ai(θ)|
= |ai,1(θ) + ai,2(θ) + ai,3(θ) + ai,4(θ) + ai,5(θ) + ai,6(θ)|
≤ |ai,1(θ)|+ |ai,2(θ)|+ |ai,3(θ)|+ |ai,4(θ)|+ |ai,5(θ)|+ |ai,6(θ)|

≤
(

4K

i

)
(3K)i + K2

(
4K − 1
i− 1

)
(3K)i−1 +

K2(K − 1)2

2

(
4K − 2
i− 2

)
(3K)i−2

+
K2(K − 1)2(K − 2)2

6

(
4K − 3
i− 3

)
(3K)i−3

+
K2(K − 1)2(K − 2)2(K − 3)2

24

(
4K − 4
i− 4

)
(3K)i−4 +

(
4K

i

)
(2K)i

≤ (12K2)i + K2(12K2)i−1 + K4(12K2)i−2 + K6(12K2)i−3

+ K8(12K2)i−4 + (8K2)i

≤ 2 · (12K2)i.

We now obtain a bound for F (θn) by the help of Proposition 11.2 and Propo-
sition 11.3:

Proposition 11.4 Consider scaling P, K : N0 → N0 satisfying (39)-(40). We
have

F (θn) ≤ K4
nP 4Kn−3

n (95)

for all n ∈ N0 sufficiently large.

Proof. Recalling (92), we find

a4(θ) = −6K6 + 6K5 −K4 ≤ −K5, K = 1, 2, . . . , (96)

whereas from (93), we get

a5(θ) ≤ − 1
120

K10 +
1
6
K9 +

199
12

K8 ≤ − 1
120

K10 + 17K9, K = 1, 2, . . . (97)

by crude bounding arguments. Now, pick an admissible scaling P,K : N0 → N0

satisfying (39)-(40) and replace θ by θn in (89) according to this scaling. It is
clear by Proposition 11.2 that (95) will follow if we show that

a4(θn)P 4Kn−4 + a5(θn)P 4Kn−5
n + . . . + a4Kn−1(θn)Pn + a4Kn(θn) ≤ 0 (98)

for all n sufficiently large. With the help of (94), (96) and (97), we find

a4(θn)P 4Kn−4
n + a5(θn)P 4Kn−5

n + . . . + a4Kn−1(θn)Pn + a4Kn(θn)

≤ P 4Kn−4
n

(
−K5

n +
− 1

120K10
n + 17K9

n

Pn
+
|a6(θn)|

P 2
n

+ . . . +
|a4Kn(θn)|
P 4Kn−4

)
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≤ P 4Kn−4
n

(
−K5

n +
− 1

120K10
n + 17K9

n

Pn
+ 2 · (12K2

n)6

P 2
n

4Kn−6∑

i=0

(
12K2

n

Pn

)i
)

≤ K5
nP 4Kn−4

n

(
−1 +

− 1
120K5

n + 17K4
n

Pn
+ 2 · (12)6

K7
n

P 2
n

∞∑

i=0

(
12K2

n

Pn

)i
)

= K5
nP 4Kn−4

n

(
−1 +

− 1
120K5

n + 17K4
n

Pn
+ 2 · (12)6 · K7

n

P 2
n

· 1

1− 12K2
n

Pn

)

= K5
nP 4Kn−5

n

(
−Pn − 1

120
K5

n + 17K4
n + 2 · (12)6 · K7

n

Pn
· 1

1− 12K2
n

Pn

)
(99)

for all n large enough to ensure that K2
n

Pn
< 1. By virtue of (40), there exists a

positive integer n?
1 such that

− 1
240

K5
n + 2 · (12)6

K7
n

Pn
· 1

1− 12K2
n

Pn

= K5
n


− 1

240
+ 2 · (12)6

K2
n

Pn

1− 12K2
n

Pn


 ≤ 0

for all n ≥ n?
1. Therefore, n ≥ n?

1 implies that

−Pn − 1
120

K5
n + 17K4

n + 2 · (12)6 · K7
n

Pn
· 1

1− 12K2
n

Pn

≤ −Pn − 1
240

K5
n + 17K4

n. (100)

Also, in view of the consequence (43) of (39)-(40), there exist a positive integer
n?

2 such that
Pn ≥ 17 · (17 · 240)4 (101)

for all n ≥ n?
2. Now pick n ≥ n?

2 and assume that Kn ≤ 17 · 240. We obtain

−Pn − 1
240

K5
n + 17K4

n ≤ −Pn + 17K4
n ≤ −Pn + 17 · (17 · 240)4 ≤ 0 (102)

via (101). If on the other hand Kn > 17 · 240, we have

−Pn − 1
240

K5
n + 17K4

n ≤ − 1
240

K5
n + 17K4

n ≤ 0. (103)

Consequently, we have for all n ≥ n?
2

−Pn − 1
240

K5
n + 17K4

n ≤ 0. (104)

Invoking (100), we now have

−Pn − 1
120

K5
n + 17K4

n + 2 · (12)6 · K7
n

Pn
· 1

1− 12K2
n

Pn

≤ 0
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for all n ≥ max{n?
1, n

?
2}. This last fact readily implies (98) via (99).

The proof of Proposition 11.1 can now be completed:

Proposition 11.5 For any scaling P, K : N0 → N0 satisfying (39)-(40), we
have

lim
n→∞

1
n2β(θn)2

· F (θn)
G(θn)

= 0 (105)

under the condition (13).

Proof. Pick an admissible scaling P, K : N0 → N0 satisfying (39)-(40) and
assume that (13) holds. Invoking Proposition 11.4 and recalling (88), we find

1
n2β2(θn)

· F (θn)
G(θn)

≤ K4
n

n2β(θn)2P 3
n

Kn−1∏

`=1

(
Pn

Pn − `

)4

. (106)

Also, we have
(

Kn−1∏

`=1

(
Pn

Pn − `

)4
)−1

=
Kn−1∏

`=1

(
1− `

Pn

)4

(107)

and an easy bounding argument yields

(
1− Kn − 1

Pn

)4(Kn−1)

≤
Kn−1∏

`=1

(
1− `

Pn

)4

≤ 1. (108)

Noting that

1−
(

1− Kn − 1
Pn

)4(Kn−1)

=
∫ 1

1−Kn−1
Pn

4(Kn − 1)t4Kn−5dt ≤ 4(Kn − 1)2

Pn
,

we find

1− 4(Kn − 1)2

Pn
≤

Kn−1∏

`=1

(
1− `

Pn

)4

≤ 1 (109)

via (108). Now, let n go to infinity in this last expression: We have

lim
n→∞

Kn−1∏

`=1

(
1− `

Pn

)4

= 1 (110)

by virtue of (40) and this readily implies

lim
n→∞

Kn−1∏

`=1

(
Pn

Pn − `

)4

= 1. (111)
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Substituting (46) and (111) into (106), we obtain

1
n2β(θn)2

· K4
n

P 3
n

Kn−1∏

`=1

(
Pn

Pn − `

)4

∼ K4
n

n2P 3
n

(
K3

n

P 2
n

+
(

K2
n

Pn

)3
)2 (112)

≤ K4
n

n2P 3
n

(
K3

n

P 2
n

)2

=
1

n2 K2
n

Pn

and (105) follows from the consequence (49) of (13).

A A proof of Proposition 6.3 (Continued)

With positive integers K,P such that 3K ≤ P , we write

r(θ)
q(θ)2

=
(

(P − 2K)!
(P −K)!

)2

· (P − 2K)!
(P − 3K)!

· P !
(P −K)!

=
∏K−1

`=0 (P − 2K − `)(P − `)∏K−1
`=0 (P −K − `)2

=
K−1∏

`=0

(
1−

(
K

P −K − `

)2
)

.

Thus, an elementary bounding argument yields
(

1−
(

K

P − 2K

)2
)K

≤ r(θ)
q(θ)2

≤
(

1−
(

K

P −K

)2
)K

,

whence

1−
(

1−
(

K

P −K

)2
)K

≤ 1− r(θ)
q(θ)2

≤ 1−
(

1−
(

K

P − 2K

)2
)K

.

Now, pick a scaling P, K : N0 → N0 satisfying the equivalent conditions (39)-
(40), and replace θn = (Kn, Pn) by θ = (P, K) in the last expression according
to this scaling. We find

1−
(

1−
(

Kn

Pn −Kn

)2
)Kn

≤ 1− r(θn)
q(θn)2

≤ 1−
(

1−
(

Kn

Pn − 2Kn

)2
)Kn

.

(A.1)
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Invoking (42), we now obtain

(
Kn

Pn − cKn

)2

=
(

Kn

Pn
(1 + o(1))

)2

=
Kn

2

Pn
2 (1 + o(1)) (A.2)

for each c = 1, 2, whence

lim
n→∞

Kn

(
Kn

Pn − cKn

)2

= 0, c = 1, 2

by virtue of (40) and (42). Finally, let n go to infinity in (A.1) and use the
elementary convergence relation

(1− a)b ∼ 1− ab if ab → 0

with

a =
(

Kn

Pn − cKn

)2

, c = 1, 2 and b = Kn.

Noting that (A.2) also implies

Kn

(
Kn

Pn − cKn

)2

∼ K3
n

P 2
n

, c = 1, 2,

we readily get (47) by a sandwich argument.

B Evaluating (61)–(62)

For notational convenience, we define

Kij := [Ki(θ) ∩Kj(θ) 6= ∅].

for distinct i, j = 1, 2, . . . n. Moreover, for any non-empty subset S of {1, . . . , P},
we write

KSi := [S ∩Ki(θ) 6= ∅], i = 1, . . . , n.

In what follows we make repeated use of the decomposition (32). Beginning
with the observation

E [χn,123(θ)χn,124(θ)]
= P [K12,K13,K23,K14, K24]
= P [K13,K23,K14,K24]− P [Kc

12, K13,K23,K14,K24] . (B.3)

we shall compute each term in turn.
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To compute the second term in (B.3) we condition on the sets K1 and K2

such that K1 ∩K2 = ∅. Thus,

P [Kc
12,K13,K23, K14,K24]

=
∑

|S|=|T |=K,S∩T=∅
P [K1 = S,K2 = T, KS3,KT3,KS4,KT4]

=
∑

|S|=|T |=K,S∩T=∅
P [K1 = S,K2 = T ]P [KS3,KT3, KS4,KT4]

=
∑

|S|=|T |=K,S∩T=∅

(
P

K

)−2

P [KS3,KT3] · P [KS4,KT4]

=
∑

|S|=|T |=K,S∩T=∅

(
P

K

)−2

(P [KS3,KT3])
2

=
(

P

K

)−2 ∑

|S|=|T |=K,S∩T=∅
(P [KS3]− P [Kc

T3] + P [Kc
S3,K

c
T3])

2

=
(

P

K

)−2 ∑

|S|=|T |=K,S∩T=∅
(1− P [Kc

S3]− P [Kc
T3] + P [Kc

S3, K
c
T3])

2

=
(

P

K

)−2 ∑

|S|=|T |=K,S∩T=∅
(1− 2q(θ) + r(θ))2

=
(

P

K

)−2(
P

K

)(
P −K

K

)
(1− 2q(θ) + r(θ))2

= q(θ) (1− 2q(θ) + r(θ))2 (B.4)

as we note from (5) that P [Kc
S3] = P [Kc

T3] = q(θ) for S and T in PK with
P [Kc

S3, K
c
T3] = r(θ) whenever S ∩ T = ∅.

We now turn to the first term in (B.3). Again, upon making repeated use
of (32) we find

P [K13,K23,K14,K24]
= P [K23,K14,K24]− P [Kc

13,K23,K14, K24]
= P [K14,K24]− P [Kc

23,K14,K24]− P [Kc
13,K14, K24] + P [Kc

13,K
c
23,K14,K24]

= (1− q(θ))2 − 2P [Kc
23,K14,K24] + P [Kc

13,K
c
23,K24]− P [Kc

13,K
c
23,K

c
14, K24]

= (1− q(θ))2 − 2P [Kc
23,K14,K24] + P [Kc

13,K
c
23,K24]

− P [Kc
13,K

c
23, K

c
14] + P [Kc

13,K
c
23,K

c
14,K

c
24] (B.5)

as we note that P [Kc
23,K14,K24] = P [Kc

13,K14, K24]. Next, we find

P [Kc
23,K14,K24] =

∑

|S|=K

P [K4 = S,Kc
23,KS1,KS2]

=
∑

|S|=K

P [K4 = S]P [Kc
23,KS1, KS2]
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=
∑

|S|=K

(
P

K

)−1

P [KS1] · P [Kc
23, KS2]

=
∑

|S|=K

(
P

K

)−1

(1− q(θ)) · q(θ)(1− q(θ)) (B.6)

= q(θ)(1− q(θ))2. (B.7)

upon using (33) in (B.6).
In a similar manner, we obtain

P [Kc
13, K

c
23,K24] =

∑

|S|=K

P [K2 = S, Kc
13, K

c
S3,KS4]

=
∑

|S|=K

P [K2 = S]P [Kc
13,K

c
S3,KS4]

=
∑

|S|=K

(
P

K

)−1

P [KS4] · P [Kc
13,K

c
S3]

=
∑

|S|=K

(
P

K

)−1

(1− q(θ)) · q(θ)2 (B.8)

= q(θ)2(1− q(θ)) (B.9)

where (B.8) follows from (34).
Moreover, we also get

P [Kc
13, K

c
23,K

c
14] =

∑

|S|=K

P [K1 = S, Kc
S3,K

c
23,K

c
S4]

=
∑

|S|=K

P [K1 = S]P [Kc
S3,K

c
23,K

c
S4]

=
∑

|S|=K

(
P

K

)−1

P [Kc
S4] · P [Kc

S3, K
c
23]

=
∑

|S|=K

(
P

K

)−1

q(θ) · q(θ)2

= q(θ)3. (B.10)

Finally consider the term P [Kc
13,K

c
23,K

c
14,K

c
24]: By conditioning on the

cardinality of the intersection K1 ∩K2, we obtain

P [Kc
13,K

c
23,K

c
14,K

c
24]

=
∑

|S|=|T |=K

P [K1 = S, K2 = T, Kc
S3,K

c
T3,K

c
S4,K

c
T4]

=
∑

|S|=K

K∑

k=0

∑

|T |=K,|T∩S|=k

P [K1 = S,K2 = T, Kc
S3,K

c
T3,K

c
S4, K

c
T4]
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=
∑

|S|=K

P [K1 = S]
K∑

k=0

∑

|T |=K,|T∩S|=k

P [K2 = T ]P [Kc
S3,K

c
T3] · P [Kc

S4, K
c
T4]

=
∑

|S|=K

(
P

K

)−1 K∑

k=0

∑

|T |=K,|T∩S|=k

P [K2 = T ] · (P [Kc
S3,K

c
T3])

2

=
∑

|S|=K

(
P

K

)−1 K∑

k=0

(
K
k

)(
P−K
K−k

)
(

P
K

) ·
((

P−2K+k
K

)
(

P
K

)
)2

=
K∑

k=0

(
K
k

)(
P−K
K−k

)
(

P
K

) ·
((

P−2K+k
K

)
(

P
K

)
)2

=
K∑

k=0

ck(θ) (B.11)

as we make use of (62).
Substituting (B.4) and (B.5) (by the help of (B.7), (B.9), (B.10), and (B.11))

into (B.3), we find

E [χn,123(θ)χn,124(θ)]
= (1− q(θ))2 − 2q(θ)(1− q(θ))2 + q(θ)2(1− q(θ))− q(θ)3

−q(θ) (1− 2q(θ) + r(θ))2 +
K∑

k=0

ck(θ) (B.12)

where we have used the notation (62).
As we seek to simplify this last expression, we note that

(1− q(θ))2 − 2q(θ)(1− q(θ))2 + q(θ)2(1− q(θ))− q(θ)3

= (1− q(θ))2 (1− 2q(θ)) + q(θ)2(1− q(θ))− q(θ)3

= (1− q(θ))2
(
1− 2q(θ) + q(θ)2

)− q(θ)2(1− q(θ))2

+ q(θ)2(1− q(θ))− q(θ)3

= (1− q(θ))4 + q(θ)2
(
(1− q(θ))− (1− q(θ))2

)− q(θ)3

= (1− q(θ))4 + q(θ)2(1− q(θ)) (1− (1− q(θ)))− q(θ)3

= (1− q(θ))4 + q(θ)3(1− q(θ))− q(θ)3

= (1− q(θ))4 − q(θ)4. (B.13)

Next, we observe that

q(θ) (1− 2q(θ) + r(θ))2

= q(θ)
(
1− 2q(θ) + q(θ)2 − q(θ)2 + r(θ)

)2

= q(θ)
(
(1− q(θ))2 − (

q(θ)2 − r(θ)
))2

= q(θ)
(
(1− q(θ))4 − 2 (1− q(θ))2

(
q(θ)2 − r(θ)

)
+

(
q(θ)2 − r(θ)

)2
)
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= q(θ) (1− q(θ))4 − 2q(θ) (1− q(θ))2
(
q(θ)2 − r(θ)

)

+ q(θ)
(
q(θ)2 − r(θ)

)2
. (B.14)

Subtracting (B.14) from (B.13) gives

(1− q(θ))4 − q(θ)4 − q(θ) (1− 2q(θ) + r(θ))2

= (1− q(θ))4 − q(θ)4 − q(θ) (1− q(θ))4 + 2q(θ) (1− q(θ))2
(
q(θ)2 − r(θ)

)

− q(θ)
(
q(θ)2 − r(θ)

)2

= (1− q(θ))4 (1− q(θ))− q(θ)4 + 2q(θ) (1− q(θ))2
(
q(θ)2 − r(θ)

)

− q(θ)
(
q(θ)2 − r(θ)

)2

= (1− q(θ))5 − q(θ)4 + 2q(θ) (1− q(θ))2
(
q(θ)2 − r(θ)

)

− q(θ)
(
q(θ)2 − r(θ)

)2
(B.15)

Reporting the outcome of this last calculation into (B.12) we then get

E [χn,123(θ)χn,124(θ)]

= (1− q(θ))5 + 2q(θ) (1− q(θ))2
(
q(θ)2 − r(θ)

)

− q(θ)
(
q(θ)2 − r(θ)

)2
+

K∑

k=0

ck(θ)− q(θ)4 (B.16)

and the conclusion (61) follows as we make use of the expression (23) for β(θ).

C A proof of Proposition 11.2

Pick positive integers K and P such that 3K ≤ P . First we note that in (87)
the first and last terms are of order 4K whereas the second, third, fourth, and
the fifth terms are of order 4K − 1, 4K − 2, 4K − 3 and 4K − 4, respectively.
Therefore a0(θ) is determined only by the first and last terms and it is immediate
that a0(θ) = 0. First, second and the last terms in (87) determines a1(θ) and a
careful inspection gives

a1(θ) = −
(

3K−1∑

i=0

i +
3K−1∑

i=2K

i

)
+ K2 −

(
−

(
4
1

) 2K−1∑

i=K

i

)
= 0. (C.17)

The third coefficient a2(θ) depends only on the first three terms and the last
term of (87). Again, it is straightforward to check that

a2(θ) (C.18)

=
3K−2∑

i=1

i
3K−1∑

j=i+1

j +
3K−2∑

i=2K

i
3K−1∑

j=i+1

j +

(
3K−1∑

i=2K

i

) (
3K−1∑

i=1

i

)
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−K2

(
3K−2∑

i=1

i +
3K−2∑

i=2K−1

i

)
+

K2(K − 1)2

2

−



(
4
1

)2

·
2K−2∑

i=K

i
2K−1∑

j=i+1

j +
(

4
2

) 2K−1∑

i=K

i2




= 0.

We now compute the fourth coefficient a3(θ) and start by noting that it
depends on all but the fifth term in (87). Straightforward computation gives

a3(θ) (C.19)

= −



3K−3∑
v=1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j +
3K−3∑

v=2K

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j




−



3K−1∑

i=1

i ·
3K−2∑

i=2K

i
3K−1∑

j=i+1

j +
3K−1∑

i=2K

i ·
3K−2∑

i=1

i
3K−1∑

j=i+1

j




+ K2




3K−3∑

i=1

i
3K−2∑

j=i+1

j +
3K−3∑

i=2K−1

i
3K−2∑

j=i+1

j +

(
3K−2∑

i=2K−1

i

)(
3K−2∑

i=1

i

)


− K2(K − 1)2

2

(
3K−3∑

i=1

i +
3K−3∑

i=2K−2

i

)
+

K2(K − 1)2(K − 2)2

6

+
(

4
1

)3

·
2K−3∑

v=K

v
2K−2∑

i=v+1

i
2K−1∑

j=i+1

j +
(

4
2

)(
4
1

) 2K−1∑

j=K

j2

(
2K−1∑

i=K

i− j

)

+
(

4
3

) 2K−1∑

i=K

i3

= K4

It is clear that a4(θ) and a5(θ) depends on all of the terms in (87). For a4(θ),
we proceed in a similar manner to get 1

a4(θ) (C.20)

=
3K−4∑

l=1

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j +
3K−4∑

l=2K

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

+
3K−1∑

i=1

i ·
3K−3∑

v=2K

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j +
3K−1∑

i=2K

i ·
3K−3∑
v=1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

1Evaluating the expression (C.20) (as well as (C.21) given next) by hand is quite cum-
bersome. To avoid this, one can make use of a computer software (such as Mathematica,
MATLAB, etc.) that can perform calculations symbolically.
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+




3K−2∑

i=1

i
3K−1∑

j=i+1

j







3K−2∑

i=2K

i
3K−1∑

j=i+1

j


−K2

3K−4∑
v=1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j

−K2




3K−4∑

v=2K−1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j +
3K−2∑

i=1

i ·
3K−3∑

i=2K−1

i
3K−2∑

j=i+1

j




−K2
3K−2∑

i=2K−1

i ·
3K−3∑

i=1

i
3K−2∑

j=i+1

j +
K2(K − 1)2

2

3K−4∑

i=1

i
3K−3∑

j=i+1

j

+
K2(K − 1)2

2




3K−4∑

i=2K−2

i
3K−3∑

j=i+1

j +

(
3K−3∑

i=2K−2

i

) 


3K−3∑

j=1

j







− K2(K − 1)2(K − 2)2

6

(
3K−4∑

i=1

i +
3K−4∑

i=2K−3

i

)

+
K2(K − 1)2(K − 2)2(K − 3)2

24
−

(
4
1

)4

·
2K−4∑

l=K

l
2K−3∑

v=K+1

v
2K−2∑

i=v+1

i
2K−1∑

j=i+1

j

−
(

4
2

)(
4
1

)2

·
2K−1∑

v=K

v2




2K−2∑

i=K

i
2K−1∑

j=i+1

j − v
2K−1∑

i=K

i + v2




−
(

4
3

)(
4
1

) 2K−1∑

j=K

j3

(
2K−1∑

i=K

i− j

)
−

(
4
2

)2

·
2K−2∑

i=K

i2
2K−1∑

j=i+1

j2 −
2K−1∑

i=K

i4

= −6K6 + 6K5 −K4.

Finally, a5(θ) is given by

a5(θ) (C.21)

= −
3K−5∑
u=1

u
3K−4∑

l=u+1

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

−
3K−5∑

u=2K

u
3K−4∑

l=u+1

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

−
3K−1∑

i=1

i ·
3K−4∑

l=2K

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

−
3K−1∑

i=2K

i ·
3K−4∑

l=1

l
3K−3∑

v=l+1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j

−



3K−3∑
v=1

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j







3K−2∑

i=2K

i
3K−1∑

j=i+1

j



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−



3K−3∑

v=2K

v
3K−2∑

i=v+1

i
3K−1∑

j=i+1

j







3K−2∑

i=1

i
3K−1∑

j=i+1

j




+ K2




3K−5∑

l=1

l
3K−4∑

v=l+1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j +
3K−5∑

l=2K−1

l
3K−4∑

v=l+1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j




+ K2
3K−2∑

i=1

i ·
3K−4∑

v=2K−1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j

+ K2
3K−2∑

i=2K−1

i ·
3K−4∑
v=1

v
3K−3∑

i=v+1

i
3K−2∑

j=i+1

j

+ K2




3K−3∑

i=1

i
3K−2∑

j=i+1

j







3K−3∑

i=2K−1

i
3K−2∑

j=i+1

j




− K2(K − 1)2

2




3K−5∑
v=1

v
3K−4∑

i=v+1

i
3K−3∑

j=i+1

j +
3K−5∑

v=2K−2

v
3K−4∑

i=v+1

i
3K−3∑

j=i+1

j




− K2(K − 1)2

2




3K−3∑

i=1

i ·
3K−4∑

i=2K−2

i
3K−3∑

j=i+1

j +
3K−3∑

i=2K−2

i ·
3K−4∑

i=1

i
3K−3∑

j=i+1

j




+
K2(K − 1)2(K − 2)2

6




3K−5∑

i=1

i
3K−4∑

j=i+1

j +
3K−5∑

i=2K−3

i
3K−4∑

j=i+1

j




+
K2(K − 1)2(K − 2)2

6

3K−4∑

i=1

i ·
3K−4∑

i=2K−3

j

− K2(K − 1)2(K − 2)2(K − 3)2

24

(
3K−5∑

i=1

i +
3K−5∑

i=2K−4

i

)

+
(

4
1

)5

·
2K−5∑

u=K

u
2K−4∑

l=u+1

l
2K−3∑

v=K+1

v
2K−2∑

i=v+1

i
2K−1∑

j=i+1

j

+
(

4
2

)(
4
1

)3

×
2K−1∑

l=K

l2




2K−3∑

v=K

v
2K−2∑

i=m+1

i
2K−1∑

j=i+1

j − l
2K−2∑

i=K

i
2K−1∑

j=i+1

j + l2
2K−1∑

i=K

−l3




+
(

4
2

)2(4
1

)
·
2K−1∑

v=K

v




2K−2∑

i=K

i2
2K−1∑

j=i+1

j2 − v2
2K−1∑

i=K

i2 + v4



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+
(

4
3

)(
4
2

) 2K−1∑

i=K

i3




2K−1∑

j=K

j2 − i2




+
(

4
3

)(
4
1

)2

·
2K−1∑

v=K

v3




2K−2∑

i=K

i
2K−1∑

j=i+1

j − v
2K−1∑

i=K

+v2




+
(

4
4

)(
4
1

) 2K−1∑

i=K

i4




2K−1∑

j=K

j − i




= − 1
120

K10 +
1
6
K9 +

199
12

K8 − 34K7 +
1207
120

K6 +
161
6

K5

− 209
6

K4 + 20K3 − 24
5

K2.
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