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In this paper, we discuss the interprocedural analysis and optimizations for compiling irregular appli-cations. Speci�cally, we concentrate on applications in which data is accessed using indirection arrays.Such codes are common in computational 
uid dynamics, molecular dynamics, in particle in cell problemsand in numerical simulations [10].The commonly used approach for compiling irregular applications is the inspector/executor model [28].Conceptually, an inspector or a communication preprocessing statement analyses the indirection array todetermine the communication required by a data parallel loop. The results of communication preprocessingis then used to perform the communication. CHAOS/PARTI library provides a rich set of routines forperforming the communication preprocessing and optimized communication for such applications [32].Fortran D compilation system, a prototype compiler for distributed memory machines, initially targetedregular applications [25] but has more recently been extended to compile irregular applications [13, 22]. Incompiling irregular applications, the Fortran D compiler inserts calls to CHAOS/PARTI library routinesto manage communication [13, 21].An important optimization required for irregular applications is placement of communication prepro-cessing and communication statements. Techniques for performing these optimizations within a singleprocedure are well developed [17, 23]. The key idea underlying these schemes is to do the placementso that redundancies are removed or reduced. These schemes are closely based upon a classical data
ow framework called Partial Redundancy Elimination (PRE) [15, 29]. PRE encompasses traditionaloptimizations like loop invariant code motion and redundant computation elimination.We have worked on an Interprocedural Partial Redundancy Elimination framework (IPRE) [1, 2] asa basis for performing interprocedural placement. In this paper, we discuss various practical aspects inapplying interprocedural partial redundancy elimination for placement of communication and communica-tion preprocessing statements. We also present a number of other interprocedural optimizations useful incompiling irregular applications, this includes placement of scatter operations, deletion of data structuresconstructed at runtime and use of incremental and coalescing routines. While none of these optimizationscan be directly achieved by the basic IPRE scheme, they can be achieved through extending the IPREscheme or a using a variation of the IPRE analysis. We then discuss how the notion of program slicingcan be used for increasing the scope of IPRE. We also discuss a related issue of ordering application ofIPRE on various candidates within a single procedure.We have done a preliminary implementation of the schemes presented in this paper, using the existingFortran D compilation system as the necessary infrastructure. We present experimental results from thecodes compiled using the prototype compiler to demonstrate the e�ectiveness of our methods.While several details and examples presented in this paper speci�cally concentrate on codes which useindirections arrays, the general ideas broadly apply to all applications in which communication preprocess-ing calls are inserted and/or collective communication routines are used. We have shown in our previouswork how communication preprocessing is useful in regular applications in which data distribution, stridesand/or loop bounds are not known at compile-time [3, 5, 4, 33] or when the number of processors availablefor the execution of the program varies at runtime [16].The rest of the paper is organized as follows. In Section 2, we discuss the basic IPRE framework. InSection 3, we present several new optimizations required for compiling irregular applications. In Section 4,we discuss modi�cations and extensions required in IPRE framework, in applying it for placement of com-munication preprocessing statements in some more complex scenarios. An overall compilation algorithmis presented in Section 5. We present experimental results in Section 6. We brie
y compare our work withrelated work in Section 7 and conclude in Section 8.2 Partial Redundancy EliminationMost of the interprocedural optimizations required for irregular applications involve some kind of redun-dancy elimination or loop invariant code motion. Partial Redundancy Elimination (PRE) is a uni�ed2



framework for performing these optimizations intraprocedurally [15, 29]. It has been commonly usedintraprocedurally for performing optimizations like common subexpression elimination and strength re-duction. More recently, it has been used for more complex code placement tasks like placement of com-munication statements while compiling for parallel machines [17, 23]. We have extended an existingintraprocedural partial redundancy scheme to be applied interprocedurally [1, 2]. In this section, we de-scribe the functionality of the PRE framework, key data 
ow properties associated with it and brie
ysketch how we have extended an existing intraprocedural scheme interprocedurally.Consider any computation of an expression or a call to a pure function. In the program text, we maywant to optimize its placement, i.e. the place the computation so that the result of the computation isused as often as possible and, redundant computations are removed. For convenience, we refer to any suchcomputation whose placement we want to optimize as a candidate. If this candidate is an expression, werefer to the operands of the expression as in
uencers of the candidate. If this candidate is a pure function,we refer to the parameters of the pure function as the in
uencers of the candidate.There are three type of optimizations which are performed under PRE:� Loop invariant Code Motion: This means that if the in
uencers of a candidate are all invariant inthe loop, then the candidate can be computed just once, before entering the loop.� Redundant Computation Elimination: Consider two consecutive occurrences of a computation, suchthat none of in
uencers of the candidate are modi�ed along any control 
ow path from the �rstoccurrence to the second occurrence. In this case, the second occurrence is redundant and is deletedas part of the IPRE framework.� Suppressing Partial Redundancies: Consider two consecutive occurrences of a computation such thatone or more in
uencers is modi�ed along some possible control 
ow path (but not all 
ow paths) fromthe �rst occurrence to the second occurrence. In this case, the second occurrence of the candidate iscalled partially redundant. By placing candidates along the control 
ow paths associated with themodi�cation, the partially redundant computation can be made redundant and thus be deleted.Figure 1 explains the functionality of PRE through small code templates. In 1(a), if the in
uencers Aand B are not modi�ed inside the loop, then the computation A �B is loop invariant and can be placedbefore entering the loop. In 1(b), if the in
uencers A and B are not modi�ed between the two computationsof A�B, then the second computation is redundant and can be replaced. In 1(c), the second computationof A �B is partially redundant. This is because if foo is true, then the in
uencer A is modi�ed, and thesecond computation of A �B is not redundant (since this computation will give di�erent answer than the�rst computation). If foo is not true, then A is not modi�ed, and the second computation is redundant.In this case, additional placement of the computation A � B can be carried out to make the partiallyredundant occurrence fully redundant. This is termed as suppressing partial redundancies.We now introduce the key data 
ow properties that are computed as part of this framework. We usethese terms for explaining several new optimizations later in the paper. The properties are:Availability. Availability of a candidate C at any point p in the program means that C lies at each ofthe paths leading to point p and if C were to be placed at point p, C will have the same result as theresult of the last occurrence on any of the paths.Partial Availability. Partial availability of a candidate C at a point p in the program means that C iscurrently placed on at least one control 
ow path leading to p and if C were to be placed at the point p,C will have the same result as the result of the last occurrence on at least one of the paths.3



(a) A = ... A ...Do i = 1, 20� � �R = A * B� � �Enddo#A = ... A ...H = A * BDo i = 1, 20� � �R = H� � �Enddo
(b) A = ... A ...R = A * B� � �S = A * B� � �#A = ... A ...H = A * BR = H� � �S = H� � �

(c) A = ... A ...R = A*B� � �If fooA = ... A ...Endif� � �S = A*B#A = ... A ...H = A*BR = H� � �If fooA = ... A ...H = A*BEndif� � �S = H� � �Figure 1: Examples of functionality of Partial Redundancy Elimination. (a): Loop invariant code motion,(b): Redundant code elimination, (c): Supressing partial redundanciesAnticipability. Anticipability of a candidate C at a point p in the program means that C is currentlyplaced at all the paths leading from point p, and if C were to be placed at point p, C will have the sameresult as the result of the �rst occurrence on any of the paths.A basic block of code in a procedure is a sequence of consecutive statements in a procedure in the 
owenters at the beginning and leaves at the end without possibility of branching expect at the end [6].Transparency. Transparency of a basic block with respect to a candidate means that none of thein
uencers of the candidate are modi�ed in the basic block.If a candidate is placed at a point p in the program and if it is available at the point p, then theoccurrence of the candidate at the point p is redundant. If a candidate is placed at a point p in theprogram and if it is partially available at the point, then it is considered to be partially redundant.Anticipability of a computation is used for determining if the placement will be safe. A Safe placementmeans that at least one occurrence of the candidate will be made redundant by this new placement (andwill consequently be deleted). Performing safe placements guarantees that along any path, number ofcomputations of the candidate are not increased after applying optimizing transformations.By solving data 
ow equations on the Control Flow Graph (CFG) of a procedure, the propertiesAvailability, Partial Availability and Anticipability are computed at the beginning and end of each basicblock in the procedure. Transparency is used for propagating these properties, e.g. if a candidate isavailable at the beginning of a basic block and if the basic block is transparent with respect to thiscandidate, then the candidate will be available at the end of the basic block also.Based upon the above data 
ow properties, another round of data 
ow analysis is done to determineproperties PPIN (possible placement at the beginning) and PPOUT (possible placement at the end).These properties are then used for determining �nal placement and deletion of the candidates. We do notpresent the details of data 
ow equations in the paper.Our interest is in applying the PRE framework for optimizing placement of communication preprocess-4



ing statements and collective communication statements. The �rst step in this direction was to extend theexisting PRE framework interprocedurally. For applying this transformation across procedure boundaries,we need a full program representation. We have chosen a concise full program representation, which willallow e�cient data 
ow analysis, while maintaining su�cient precision to allow useful transformations andto ensure safety and correctness of transformations.2.1 Program RepresentationIn traditional interprocedural analysis, program is abstracted by a call graph [18, 19]. In a call graphG = (V;E), V is the set of procedures and directed edge e = (i; j) (e 2 E) represents a call site inwhich procedure i invokes procedure j. The limitation of call graph is that no information is availableabout control 
ow relationships between various call sites within a procedure. We have developed a newprogram representation called Full Program Representation (FPR). In this subsection we describe howthis structure is constructed for any program.We de�ne a basic block to consist of consecutive statements in the program text without any procedurecalls or return statements, and no branching except at the beginning and end. A procedure can then bepartitioned into a set of basic blocks, a set of procedure call statements and a set of return statements. Areturn statement ends the invocation of procedure or subroutine call.In our program representation, the basic idea is to construct blocks of code within each procedure.A block of code comprises of basic blocks which do not have any call statement between them. In thedirected graph we de�ne below, each edge e corresponds to a block of code B(e). A block of code is a unitof placement in our analysis, i.e. we initially consider placement only at the beginning and end of a blockof code. The nodes of the graph help clarify the control 
ow relationships between the blocks of code.Full Program Representation: (FPR) is a directed multigraph G = (V;E), where the set of nodesV consists of an entry node and a return node for each procedure in the program. For procedure i, theentry node is denoted by si and the return node is denoted by ri. Edges are inserted in the following cases:1. Procedures i and j are called by procedure k at call sites cs1 and cs2 respectively and there is a pathin CFG of k from cs1 to cs2 which does not include any other call statements. Edge (ri; sj) exists inthis case. The block of code B(e) consists of basic blocks of procedure k which may be visited in anycontrol 
ow path p from cs1 to cs2, such that the path p does not include any other call statements.2. Procedure i calls procedure j at call site cs and there is a path in CFG of i from the start node ofprocedure i to cs which does not include any other call statements. In this case, edge (si; sj) exists.The block of code B(e) consists of basic blocks of procedure i which may be visited in any control
ow path p from start of i to cs, such that the path p does not include any other call statement.3. Procedure j calls procedure i at call site cs and there is a path in CFG of j from call site cs to areturn statement within procedure j which does not include any other call statements. In this case,edge (ri; rj) exists. The block of code B(e) consists of basic blocks of procedure j which may bevisited in any control 
ow path p from cs to a return statement of j, such that the path p does notinclude any call statements.4. In a procedure i, there is a possible 
ow of control from start node to a return statement, withoutany call statements. In this case, edge (si; ri) exists. The block of code B(e) consists of basic blocksof procedure i which may be visited in any control 
ow path p from start of i to a return statementin i, such that the path p does not include any call statements.In Figure 2, we show an example program (which involves irregular accesses to data). The programrepresenation FPR for this program is shown in Figure 3.5



Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedgesIB(j) = .. IB(j) ..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)do 20 i = 1, nedgesC(i) = C(i) + A(D(i))20 continuedo 30 i = 1, nedgesC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodesB(i) = ...35 continueendSubroutine Proc B(X,W,IA)do 40 i = 1, nedgesW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodesX(i) = ...45 continueendFigure 2: An Irregular Code
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Figure 3: FPR for the example program
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For performing partial redundancy elimination on the full program, we apply data 
ow analysis onFPR, rather than the CFG of a single procedure. Instead of considering transparency of each basic block,we consider transparency of each edge or the block of code. The data 
ow properties are computed forbeginning and end of each edge in the program representation FPR. The details of the data 
ow analysisrequired for computing the above properties and then determining placement and deletion based on thesehas been given elsewhere [1, 2]. There are several di�culties in extending the analysis interprocedurally,this includes renaming of in
uencers across procedure boundaries, saving the calling context of procedureswhich are called at more than one call sites and further intraprocedural analysis in each procedure todetermine �nal local placement. These details have been presented elsewhere and are not the focus of thispaper.We are only interested in placement of communication preprocessing statements and collective com-munication statements. A particular invocation of communication preprocessing statements or collectivecommunication statement is considered for hoisting out of the procedure only if none of the in
uencersis modi�ed along any path from the start of the procedure to this invocation of the statement and thestatement is not enclosed by any conditional or loop.2.2 Applying IPRE for Communication OptimizationsWe brie
y show how partial redundancy elimination is used for optimizing placement of communicationpreprocessing calls and collective communication routines. We use the example presented in Figure 2 toshow the communication preprocessing inserted by initial intraprocedural analysis, and the interproceduraloptimizations that can be done.Initial intraprocedural analysis inserts one communication preprocessing call and one gather (collectivecommunication routine) for each of the three data parallel loops in the program shown in Figure 4. Wehave omitted several parameters to both the communication preprocessing routines and collective commu-nication routines for keeping the examples simple. Consider the execution of partitioned data parallel loopon a particular processor. The o�-processor elements referred to on this processor are fetched before thestart of the loop. A simple memory management scheme is used in the CHAOS/PARTI framework. Foreach data array (i.e. an array whose contents are accessed using indirection arrays), a ghost area is created,contiguous with the local data array. The o�-processor elements referred to in the parallel loop are storedin this ghost area. The communication preprocessing routine Irreg Sched takes in the indirection arrayand information about distribution of the data arrays. Besides computing a communication schedule, itoutputs a new local version of the indirection array and the number of o�-processor accesses made bythe loop. In this new local version of the indirection array, the o�-processor references are replaced byappropriate references to the elements in the ghost area. The collective communication calls also need thestarting position of the ghost area as one of the parameters. For simplicity, this detail is omitted in allthe examples.In Figure 4, we also show the program after interprocedural optimization of communication prepro-cessing routines and gather routines. We refer to loop in the main of the program (which encloses thecalls to the routines Proc A and Proc B) as the time step loop. Initially, interprocedural partial redun-dancy elimination is applied for communication preprocessing statements. Since the array IA is nevermodi�ed inside the time step loop in the main procedure, the schedules Sched1 and Sched3 are loopinvariant and can be hoisted outside the loop. Further, it can be deduced that the computation of Sched1and Sched3 are equivalent (since their in
uencers, after renaming across procedure boundaries, are thesame). So, only Sched1 needs to be computed, and gather routine in Proc B can use Sched1 instead ofSched3. For simplicity, Sched1 is declared to be a global variable, so that it does not need to be passedalong as parameter at di�erent call sites. After placement of communication preprocessing statements isdetermined, we apply the IPRE analysis for communication routines. The gather for array IA in routineProc B is redundant because of the gather of array D in routine Proc A. Note that performing IPRE on7



Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedges localIB(j) = .. IB(j) ..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)Sched1 = Irreg Sched(D)Sched2 = Irreg Sched(E)Call Gather(A,Sched1)do 20 i = 1, nedges localC(i) = C(i) + A(D(i))20 continueCall Gather(B,Sched2)do 30 i = 1, nedges localC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodes localB(i) = ...35 continueendSubroutine Proc B(X,W,IA)Sched3 = Irreg Sched(IA)Call Gather(X,Sched3)do 40 i = 1, nedges localW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueend

Program ExampleReal X(nnodes), Y(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...Sched1 = Irreg Sched(IA)do 10 i = 1, 20Call Proc A(X,Y,Z,IA,IB)if (nt .gt. 0) thenCall Proc B(X,W,IA)endifdo 50 j = 1, nedges localIB(j) = .. IB(j)..50 continue10 continueendSubroutine Proc A(A,B,C,D,E)Call Gather(A,Sched1)do 20 i = 1, nedges localC(i) = C(i) + A(D(i))20 continueSched2 = Irreg Sched(IB)Call Gather(B,Sched2)do 30 i = 1, nedges localC(i) = C(i) + B(E(i))30 continuedo 35 i = 1, nnodes localB(i) = ...35 continueendSubroutine Proc B(X,W,IA)do 40 i = 1, nedges localW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueendFigure 4: Result of Intraprocedural Compilation (left), and Code after Interprocedural Optimizations(right) 8



communication preprocessing statements before applying IPRE on communication statements is critical,since it is important to know that Sched3, one of the in
uencers of gather for array IB can be replacedby Sched1.2.3 DiscussionIn the rest of this paper, we concentrate on three issues:� We discuss three new optimizations which are useful in compilation of irregular applications. Thesethree optimizations are: placement of scatter operations, deletion of runtime data structures andusing incremental and coalescing routines. While none of these optimizations can be directly achievedby the IPRE scheme we have so far described, they can be achieved through extending the IPREscheme or using a variation of the basic IPRE analysis.� We extend the applicability of IPRE, by considering slices of candidates and performing motion ofthe entire slice. We also discuss the related issue of determining the order in which IPRE is to beapplied over di�erent candidates from the same procedure.� We describe the implementation of the IPRE framework and the extensions mentioned above usingthe Fortran D compilation system as the necessary infrastructure. We also report experimentalresults which demonstrate the e�cacy of our methods.3 Other Optimizations for Compiling Irregular ProblemsIn this section, we discuss three new interprocedural optimizations which are useful in compiling irregularapplications. These optimizations are: placement of scatter operations, deletion of runtime data structuresand use of incremental and coalescing routines. While none of these optimizations can be directly achievedby the interprocedural partial redundancy elimination scheme we have so far described, they can beachieved through extending the IPRE scheme or using a variation of the basic IPRE analysis.3.1 Placement of Scatter OperationsCollective communication routines can be broadly classi�ed to be of two kinds: gathers and scatters. Bygather, we mean a routine which, before entering a data parallel loop, collects the o�-processor elementsreferred to in the loop. By scatter, we mean a routine which, after a data parallel loop, updates theo�-processor elements modi�ed by the loop.In distributed memory compilation, a commonly used technique for loop iteration partitioning is ownercomputes rule [25]. In this method, each iteration is executed by the processor which owns the left handside array reference updated by the iteration. If the owner computes rule is used, then no communicationis required after the end of a data parallel loop, since no o�-processor element is modi�ed by the loop.Owner computes rule is often not best suited for irregular codes. This is because of two reasons: Useof indirection in accessing left hand side array makes it di�cult to partition the loop iterations accordingto the owner computes rule, secondly, because of use of indirection in accessing right hand side elements,total communication may be reduced by using heuristics other than the owner computes rule.If a method other than owner computes is used for loop partitioning, there is need for routines scat-ter op, which will perform an op on the o�-processor data, using the values computed in the loop. InFigure 5, we show an example of a code requiring scatter op routines. In the two data parallel loops, loopiteration i is executed by processor owning X(i) and W (i) respectively. Array element X(IA(i)) is modi-�ed (an addition operation is performed) in such an iteration, and in general, this can be an o�-processorreference. The communication preprocessing routine generates a new local version of the array IA, inwhich the references to the o�-processor elements are changed to references to the elements in the ghost9



Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)do 20 i = 1, nedgesA(C(i)) = A(C(i)) + B(i)20 continueendProc B(X,W,IA)do 40 i = 1, nedgesX(IA(i)) = X(IA(i)) + W(i)40 continuedo 45 i = 1, nnodesX(i) = ...45 continueend
Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)Sched1 = Irreg Sched(C)do 20 i = 1, nedges localA(C(i)) = A(C(i)) + B(i)20 continueCall Scatter add(A, Sched1)endProc B(X,W,IA)Sched2 = Irreg Sched(IA)do 40 i = 1, nedges localX(IA(i)) = X(IA(i)) + W(i)40 continueCall Scatter add(X,Sched2)do 45 i = 1, nnodes localX(i) = ...45 continueend

Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges)C Input data ...Sched1 = Irreg Sched(IA)do 10 i = 1, 20Call Proc A(X,Z,IA)Call Proc B(X,W,IA)10 continueendProc A(A,B,C)do 20 i = 1, nedges localA(C(i)) = A(C(i)) + B(i)20 continueendProc B(X,W,IA)do 40 i = 1, nedges localX(IA(i)) = X(IA(i)) + W(i)40 continueCall Scatter add(X,Sched1)do 45 i = 1, nnodes localX(i) = ...45 continueendFigure 5: Compilation and optimization of a code involving scatter operations: Original sequential code(left), Result of Intraprocedural Compilation (center), and Code after Interprocedural Optimizations(right)
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area. Modi�cations to the o�-processor references are stored in the ghost area. (Before the loops, theelements of the ghost area need to be initialized to 0, this detail is omitted from our example). After theend of the loop, collective communication routine scatter add is used to update the o�-processor elements.In the example presented in Section 2, the collective communication routine involved were the gatheroperations. For performing optimized placements, gather operations were treated in the same as thecommunication preprocessing routines. We now discuss what kind of analysis is required to determineoptimized placement of scatter ops.There are two di�erences in dealing with scatters ops as compared to gathers. We have seen so far, howthe placement of a gather operation can be moved earlier, if this can reduce redundant communication.The required condition is that the placement must be done after the last modi�cation of the array whosedata is being gathered. Thus, we need to check if the array whose data is being gathered is modi�ed.In the case of scatter ops, the placement can be done later, if this can reduce redundancies. Therequired condition is that the array whose data is being scattered must not be referred to or modi�ed. Ifthe array being scattered is referred to, then the reference made may be incorrect because the modi�cationsmade in an earlier loop have not been updated. Similarly, if the array being scattered is modi�ed, thenthe updates made later may be incorrect.Optimization of scatter ops is therefore done by applying IPRE scheme with three di�erences:� We consider a scatter operation for interprocedural placement only if none of the in
uencers ismodi�ed or refered to along any control 
ow path from the scatter's invocation to the end of theprocedure, and if this invocation of scatter operation is not enclosed by any conditional or loop.� We change the de�nition of Transparency, to check if the in
uencers of the candidate are neitherreferred to nor modi�ed.� We consider our graph, as de�ned in Section 2, with the notion of source and sink reversed. Thus,we tend to move the scatter ops downwards, if there is any redundancy to be eliminated this way.In Figure 5, the result of interprocedural optimization is shown in the right. In the procedure Proc A,the scatter operation can be deleted, since this scatter is subsumed by the scatter done later in Proc B.Scatter operations have also been used by distributed memory compilers in compiling regular applica-tions [7]. The HPF/Fortran 90D compiler developed at Syracuse University uses scatter operations (calledpost-comp writes) whenever the subscript in the left hand side array reference is a complex function ofthe index variable. The optimization described above will therefore be applicable in compiling regularapplications also.3.2 Deletion of Data StructuresRuntime preprocessing often results in construction of large data structures, which are used by otherroutines later. This includes communication schedules which store information about the o�-processorelements which need to be gathered/scattered to each other processor. Large scienti�c applications involvelarge arrays and consequently, the memory required by the data structures like communication schedulescan be large.In hand parallelizing applications using libraries like CHAOS/PARTI, it is generally useful to free thememory required by these data structures, after the last time they are used. Since the large distributedarrays themselves require large memory, it is important not to let these data structures increase the memoryusage of the program substantially. This is even more important on machines which do not support virtualmemory.If a compiler does an unoptimized placement of communication preprocessing calls (i.e. placement juston the basis of a single loop level or single procedure level analysis), then data structures can be easilydeleted after their use is over. However, this is a non-trivial problem when interprocedural analysis isperformed to do optimized placement. 11



We now describe how to determine the places where the data structures can be deleted. The key ideais to make sure that there must not be any use of the data structure along any control 
ow path startingfrom the point where it is deleted. In ensuring this, our method may not delete a data structure ever(which is equivalent to saying that it is deleted at the end of the program). The steps of our method areas follows:� Interprocedural analysis is done to determine optimized placement of communication preprocessingroutines and collective communication routines. None of the schedules are initially deleted.� We mark a placement of free(sched), immediately after each use of the sched. For the analysis here,we consider these free(sched) statements as the candidates for placement.� We determine optimized placement of these candidates, by applying IPRE analysis on the reversedgraph (i.e. FPR with notion of source and sink reversed, as used earlier for determining placementof scatter operations).� After determining placement of the these candidates, we check if the candidate is partially availableat any of the places where it is marked for placement. (The partial availability we use must becomputed on the reversed graph.) We actually place a free(sched) only if it is not partially available.The signi�cance of the last step mentioned above is as follows. In placement of candidates, PRE orIPRE analysis can do a placement at a point where the candidate may be partially available. So, if theanalysis has determined that an optimized placement of the candidate needs to be done at a point p inthe program, there may already be another placement of the candidate at one of the paths leading to thepoint p. In determining deletion of data structures, we cannot place a deletion if the schedule is going tobe used at any path starting from that point.3.3 Using Incremental and Coalescing Communication RoutinesConsider an occurrence of a communication statement. While this communication statement may not beredundant (the same candidate may not be directly available), there may be some other communicationstatement, which may be gathering at least a subset of the values gathered in this statement. The executiontime of the code can be reduced by disallowing redundant gathering of certain data elements.Consider the program shown in Figure 6. The same data array X is accessed using an indirection arrayIA in the procedure Proc A and using another indirection array IB in the procedure Proc B. Further,none of the indirection arrays or the data array X is modi�ed between 
ow of control from �rst loopto the second loop. The set of data elements to be communicated between the processors can only bedetermined at runtime, however it is very likely that there will be at least some overlap between the set ofo�-processor references made in these two loops. At the time of schedule generation, the contents of thearray IA and IB can be analyzed to reduce the net communication required by these two loops.PARTI/CHAOS library provides two kinds of communication routines for reducing communication insuch situations. Coalescing preprocessing routines take more than one indirection arrays, and produce asingle schedule, which can be used for generating the communication required by di�erent loops. In theexample mentioned above, a coalescing communication preprocessing routine will take in arrays IA andIB and produce a single communication schedule. If a gather operation is done using this schedule, thenall o�-processor elements referred to through indirection arrays IA and IB will be gathered. Incrementalpreprocessing routine will take in indirection arrays IA and IB, and will determine the o�-processorreferences made uniquely through indirection array IB and not through indirection array IA (or vice-versa). While executing the second loop, communication using an incremental schedule can be done, togather only the data elements which were not gathered during the �rst loop.12



Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,IA)if (nt .gt. 0) thenCall Proc B(X,W,IB)endif10 continueendSubroutine Proc A(A,B,C)do 20 i = 1, nedgesB(i) = B(i) + A(C(i))20 continueendSubroutine Proc B(X,W,IB)do 40 i = 1, nedgesW(i) = W(i) + X(IB(i))40 continuedo 45 i = 1, nnodesX(i) = ...45 continueend
Program ExampleReal X(nnodes)Real Z(nedges), W(nedges)Integer IA(nedges), IB(nedges)C Input data ...Sched1 = Irreg Sched(IA)Sched2 = Irreg Sched Inc(IB,IA)do 10 i = 1, 20Call Proc A(X,Z,IA)if (nt .gt. 0) thenCall Proc B(X,W,IA)endif10 continueendSubroutine Proc A(A,B,C)Call Gather(A,Sched1)do 20 i = 1, nedges localB(i) = B(i) + A(C(i))20 continueendSubroutine Proc B(X,W,IA)Call Gather(X,Sched2)do 40 i = 1, nedges localW(i) = W(i) + X(IA(i))40 continuedo 45 i = 1, nnodes localX(i) = ...45 continueendFigure 6: Use of incremental schedules. Original code is shown in left and the SPMD code (after Inter-procedural Optimizations) is shown in right
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Use of both incremental and coalescing routines reduces the net communication volume. The ad-vantage of using coalescing routines over incremental routines is that only one message is required forcommunication. This further reduces the communication latency involved.The following analysis is done to determine use of coalescing and incremental communication prepro-cessing routines. After the placement of communication preprocessing and communication statements hasbeen determined, consider two communication statements L1 and L2, which do gathers for the same dataarray.Recall the de�nition of Availability and Anticipability, as presented in Section 2. The communicationdone by the statements L1 and L2 can be done by using a single coalescing routine if the following holds:� The communication done in L1 is available at the point L2 in the program, and� The communication done in L2 is anticipable at the point L1 in the program.In this case, the communication at L2 can be deleted and the communication at L1 can be replacedby a coalesced communication. The �rst condition above ensures that the elements communicated at thepoint L1 in the program will still be valid at the point L2 in the program. If the communication at L1 isreplaced by a coalesced communication, then the second condition above ensures that, along any control
ow path starting from L1, the additional communication done will used.The second communication can be replaced by an incremental communication if the following conditionshold:� The communication done in L1 is available at the point L2 in the program, and� The communication done in L2 is not anticipable at the point L1 in the program.In this case, the communication statement at L1 remains as it is and the communication at L2 canbe replaced by an incremental communication. In Figure 6, we show the use of incremental routines.Note that the call to the procedure Proc B is enclosed inside a conditional, so the second communicationis not anticipable at the point of the �rst communication. If this conditional was not there, then thesecond communication could be removed all together and the �rst communication could be replaced by acoalesced communication.The analysis described above can be performed at two stages. After calls to communication prepro-cessing routines and communication statements has been inserted by initial intraprocedural analysis, theabove analysis can be done intraprocedurally. For this purpose, availability and anticipability must becomputed intraprocedurally on the CFG of the single routine. Next, after optimization of communicationpreprocessing routines and communication statements has been done through IPRE, another round of theanalysis described above can be done on FPR. In this case, availability and anticipability is computed onFPR.The scatter operations can also be optimized further using coalescing and incremental routines. Thedi�erence in analysis would be to consider the graph with notion of source and sink reversed and the de�-nition of transparency changed to use both Mod and Ref information instead of just the Mod information.4 Further Application of IPREIn this section, we �rst discuss how program slicing can be used for further applying IPRE in more complexscenarios. We then discuss the related issue of determining the order in which IPRE can be applied todi�erent candidates from the same procedure. 14



Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,P,Q)do 55 l = 1, nQ(l) = ...55 continue10 continueendProc A(X,Z,P,Q)do 20 j = 1, 20Call Proc B(X,Z,P,Q)20 continueendProc B(X,Z,P,Q)Integer R(n/2), S(n)k = 0do 30 l = 1, n, 2k = k + 1R(k) = P(l)30 continuedo 35 l = 1, nS(l) = Q(R(2*l)) + P(l)35 continuedo 40 l = 1, nX(l) = X(l) + Z(S(l))40 continuedo 45 l = 1, nZ(l) = ....45 continueend

Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)C Input data ...do 10 i = 1, 20Call Proc A(X,Z,P,Q)10 continuedo 55 l = 1, n localQ(l) = ...55 continueendProc A(X,Z,P,Q)do 20 j = 1, 20Call Proc B(X,Z,P,Q)20 continueendProc B(X,Z,P,Q)Integer R(n/2), S(n)k = 0do 30 l = 1, n local, 2k = k + 1R(k) = P(l)30 continueSched1 = Irreg Sched(R) C1Call Gather(Q, Sched1) C2do 35 l = 1, n localS(l) = Q(R(2*l)) + P(l)35 continueSched2 = Irreg Sched(S) C3Call Gather(Z,Sched2) C4do 40 l = 1, n localX(l) = X(l) + Z(S(l))40 continuedo 45 l = 1, n localZ(l) = ....45 continueend

Program ExampleReal X(n), Real Z(n)Integer P(n), Q(n)k2 = 0do 32 l2 = 1, n local, 2k2 = k2 + 1R2(k2) = P(l2)32 continueSched1 = Irreg Sched(R)do 10 i = 1, 20Call Proc A(X,Z,P,Q)10 continuedo 55 l = 1, n localQ(l) = ...55 continueendProc A(X,Z,P,Q)Call Gather(Q, Sched1)do 37 l4 = 1, n localS2(l4) = Q(R2(2*l4)) + P(l4)35 continueSched2 = Irreg Sched(S) C3do 20 j = 1, 20Call Proc B(X,Z,P,Q)20 continueendProc B(X,Z,P,Q)Integer R(n/2), S(n)Call Gather(Z,Sched2)do 40 l = 1, n localX(l) = X(l) + Z(S2(l))40 continuedo 45 l = 1, n localZ(l) = ....45 continueFigure 7: Compilation and optimization of a code involving multiple levels of indirection: Original sequen-tial code (left), Result of Intraprocedural Compilation (center), and Code after Interprocedural Optimiza-tions (right) 15



4.1 Use of SlicingIn all the examples presented so far, the parameters of the candidates were formal parameters or globalvariables. As described in Section 2, such a call to a candidate can be considered for placement acrossprocedure boundaries only if none of the in
uencers is modi�ed along any path from the start of theprocedure to this invocation of the candidate, and the call by itself is not enclosed by any conditional orloop.This may not be adequate for performing code motion in several irregular applications, especially theones in which data is accessed using multiple levels of indirection [13]. For such codes, IPRE can beperformed by using slices of the call to the candidates.Consider the code given in Figure 7. In the procedure Proc B, the array Q is accessed using array R,which is local within procedure Proc B. Earlier in the procedure, the array R is computed using array P,which is a formal parameter of the procedure. If the computation of schedule for communicating Q is tobe hoisted up, then the computation of the array R will also need to be moved. For this purpose, we usethe notion of program (or procedure ) slices.Program Slice. A program (procedure) slice is de�ned as a program comprising of a set of statementswhich contribute, either directly or indirectly, to the value of certain variables at a certain point in theprogram [13, 14, 34]. This set of variables and the point in the program is together refered to as the slicingcriterion. For our purpose, the slicing criterion used is the set of parameters of the candidate, at the pointin the program where the candidate is invoked. We compute slice of the procedure with respect to theparameters of candidate at the point in the procedure where candidate is called.We change the de�nition of in
uencers of the candidate, when we consider entire slice for placementacross procedure boundaries. After computing the slice, we identify all global variables and formal param-eters of the procedure which contribute, either directly or indirectly, to the value of any of the parametersof the candidate. (These are simply the global variables and formal parameters which appear in the slice).This set of global variables and formal parameters is now called in
uencers of the candidate.An interesting case is the presence of procedure calls in control 
ow from the start of the procedureto a candidate. For each such procedure call in the control 
ow path of candidate, we just examine if anyof the variables in the slice is modi�ed by the procedure call [11]. If so, we do not consider this candidatefor hoisting outside the procedure.When we use slices of the candidates, additional steps are required in �nal placement of the candidates.In placing the candidate, entire slice corresponding to candidate is placed. Note that the slice may includeassignment to a number of variables, which may also be referred to later in the procedure (even after thecomputation of the candidate). While we need to place the entire slice when we hoist the candidate, theentire slice cannot be deleted in the procedure. For this reason, when we place the slice in a new location,all variables written into in the slice (prior to the computation of the candidate) are privatized, i.e., anew name is given to them. While removing the code from the original procedure, only the candidateis removed. After the candidate has been deleted, we can perform dead code elimination to delete thecomputations which are never used later in the procedure.4.2 Ordering Application of IPREConsider the example shown earlier in Figure 4. In Section 2.2, we had discussed how we need to performthe placement decision for the communication preprocessing statements (i.e. the computation of Sched1and Sched3) before we consider the placement of communication statements. This was because thecommunication statements have the corresponding schedule as one of the in
uencers. If the in
uenceris actually computed within the procedure, then the communication statement cannot be considered forinterprocedural placement. However, if analysis for placement of communication preprocessing routinedetermines that it can be hoisted up, then the communication statement can also possibly be hoisted up.16



In general, a communication preprocessing routine may use contents of an array, which by itself iscommunicated earlier in the procedure. In Figure 7, the result of intraprocedural compilation is shown inthe center. There are four candidates in the procedure Proc B, two communication preprocessing routines(C1 and C3) and two communication statements (C2 and C4). The candidate C3 computes a schedulebased upon the contents of array S, array S is computed earlier in the procedure using the array Q. Theo�-processor references to Q made while computing array R are gathered by the statement C2. Wheninterprocedural placement of the candidate C3 is considered, we need to see if C2 can be hoisted up. Theplacement of C2, in turn, depends upon placement of C1 and similarly, the placement of C4 depends uponthe placement of C3.Because of the possibility of such dependence between the candidates, we make two important di�er-ences in the way we select candidates for placement and apply IPRE.� While computing the slice of a candidate Ci, we identify all the candidates on whose placement theplacement of Ci depends.� We perform the application of IPRE in such an order, that if the placement of a candidate Ci dependsupon the placement of candidates Ci1; : : : ; Cim, then the placement of candidates Ci1; : : : ; Cim, isdecided before applying IPRE for placement of Ci.Computing Slices. Algorithms for computing a slice, given a slicing criterion, have been presented inthe literature [34]. We make an important di�erence in the way slices are computed, since we need toaccommodate the fact that some of the statements included in the slice may themselves be candidate forthe placement. We do not present the modi�ed algorithm formally, but explain the di�erence with thehelp of an example.Consider the slice of the statement \Sched2 = Irreg Sched(S)" (candidate C3). The loop for computingcontents of the array S will clearly be included in the slice. This loop includes references to array Q, sothe statement(s) modifying array Q also need to be included in the slice. Only such statement is thecommunication statement \Call Gather(Q, Sched1)". This statement is a candidate for placement byitself (C2). In this case, we do further include the statements which modify Q and Sched1 in the slice.Any such statement will obviously be included in the slice for candidate C2. Instead, we mark a dependenceC2! C3. The signi�cance of this dependence is that if C2 is not moved outside procedure, C3 cannot bemoved above procedure either. If it is determined where C2 is to be placed, then the block of code whereC2 is placed is considered to be the last modi�cation of the array Q and Sched1. Since Q is one of thein
uencers of C3, C3 cannot be moved beyond the block of code where the placement of C2 is determined.Once we have constructed the slices for all the candidates using the method described above, we forma dependence graph between the slices. The dependence graph for the candidates in the procedure Proc Bin Figure 7 will be C1! C2! C3! C4.Applying IPRE. We now determine the order in which IPRE is applied to di�erent candidates from thesame procedure. We have described how a dependence graph can be constructed for various candidateswithin the same procedure. For simplicity, we consider only the dependence graphs which are acyclic.Topological sort is done on the dependence graph formed above for determining the order in which IPREis applied to each individual candidate. This ensures that if the placement of a candidate Ci depends uponthe placement of candidates Ci1; : : : ; Cim, then the placement of candidates Ci1; : : : ; Cim is determinedbefore performing the analysis for determining placement of Ci.In Figure 7, the code shown in the right is the result of the interprocedural placement of the slices.The candidate C1 can be moved across the enclosing loops in Proc A and the main, since the array P isnever modi�ed. The candidates C2 and C3 can then be moved across the enclosing loop in the procedureProc A. 17



f* Initial Intraprocedural Compilation *gGlobal Max dep = 0Foreach Procedure P (In topological order)Propagate reaching decomposition informationGenerate code for distributed memory machinesCreate blocks of code from basic blocks of PCompute Mod and Ref Information for each block of codeForeach Candidate C compute- Slice of C within the procedure- The list of in
uencers for C- Determine if C can be hoisted at the top of the procedureEndGenerate the dependence graphGlobal Max dep = max(Global Max dep;Max dep(P ))For i = 1 to Max dep(P )Store the list of candidates at level i in procedure PEndEndf* Interprocedural Analysis for Placements *gGenerate FPR for the programInitialize nodes of FPR with candidates for placementFor i = 1 to Global Max depApply IPRE for all candidates at level i (in all procedures)EndDo analysis for using coalescing and incremental routinesPerform analysis for determining deletion of data structuresf* Addition/Deletion of Candidates based upon Analysis above *gForeach Procedure P (In any order)Do addition/deletion of candidates based upon analysis aboveEnd Figure 8: Overall Compilation Algorithm5 Overall Compilation AlgorithmSo far, we have presented various optimizations required for compiling irregular applications. We nowdiscuss an overall compilation algorithm, to show how the optimizations are applied and how these opti-mizations interplay with the rest of the compilation process.There are three phases in our overall compilation method (see Figure 8). The �rst phase is theintraprocedural compilation as in the existing Fortran D compilation system. During this phase, we collectinformation about candidates (including their slices and list of in
uencers) and control 
ow relationshipsbetween the call sites in each procedure. The second phase performs data 
ow analysis for optimizingplacement. This phase uses only the summary information stored about each procedure in the previousphase. In the third phase, each procedure is visited again, and the decisions made about placement ofcandidates are actually incorporated in the code for each procedure.First Phase. The initial local compilation phase inserts communication preprocessing and communica-tion statements based upon intraprocedural analysis [25]. This code generation is based upon reachingdecomposition analysis [20]. Reaching decomposition analysis propagates information about the distri-bution of arrays from calling procedures to callees. In compiling languages like Fortran D or HPF, theinformation about data distribution is used by the compiler for determining loop partitioning, communi-cation and to decide upon the appropriate runtime routines to insert. The existing Fortran D compiler18



uses the call graph of the full program to determine the order in which procedures are compiled. Formost of the Fortran programs, the call graph is a directed acyclic graph. If the procedures are compiledin topological order on the call graph, then each calling procedure is compiled before its callee(s) and theinformation about data distributions is available while compiling each procedure.Three important pieces of information are collected during this phase which are used during the secondphase. We use the control 
ow graph of the procedure to compute blocks of code (see Section 2.1) forthe procedure. Then, we traverse the basic blocks in each block of code for determining Mod and Refinformation for the block of code (i.e. the list of variables modi�ed and referred to, respectively, in eachblock of code). Next, we identify all the candidates for placement in the procedure. We compute the slicesof the candidates in the procedure and �nd the list of in
uencers of the candidate. We also constructthe dependence graph of the candidates from the procedure. As shown in the Figure 8, the variableMax dep(P ) determines the maximum depth of any candidate in the dependence graph built for theprocedure P . We maintain a variable Global Max dep to store the maximum of Max dep(P ) over all theprocedures in the program. For each depth level i (1 � i � Max dep), we store the list of candidateswhich are at the level i in the dependence graph of the procedure.Second Phase. After the initial pass over all the procedures, we perform the data 
ow analysis fordetermining placement. The �rst step is to generate the full program representation (FPR) using thesummary information computed from each procedure [1]. The procedure entry nodes are then initializedwith the candidates for placement.During the �rst phase, we have stored the value Global Max dep, the maximum depth level of anycandidate in any procedure. We iterate over 1 to Global Max dep, and perform the analysis for placementof all candidates at that depth level, across all the procedures. Next, for each pair of gather routines (orscatter routines), it is checked if communication time can be reduced by using coalescing or incrementalroutines (Section 3.3). After determining placement of all these routines, analysis described in Section 3.2is applied to determine where the data structures can be deleted. All information about addition anddeletion of statements is just stored in this phase, and no actual change in the code for each procedure isdone. This phase uses only the FPR constructed in the previous phase, the information associated withblocks of code (Mod and Ref) and the information about candidates. The abstract syntax tree (AST) andother auxiliary structures associated with each procedure are not accessed during this phase.Final Phase. The �nal phase of the analysis performs the actual placement or deletion of the routines.Each procedure is visited again, and �nal addition or deletion of the candidates is done.6 Experimental ResultsWe now present experimental results to show the e�cacy of the methods presented so far. We measurethe di�erence made by performing interprocedural placement of both the communication preprocessingstatements and the collective communication statements. We have used two irregular codes in our study,an Euler solver on an unstructured mesh [12], originally developed at ICASE by Mavriplis et al. and atemplate taken from CHARMM [8], a molecular dynamics code. We used Intel Paragon at Rice Universityfor performing our experiments.The Euler solver we experimented with performs sweeps over an unstructured mesh inside the timestep loop. The data parallel loops iterate over both the edges and the faces of the unstructured mesh.Indirection arrays are used to store the nodes corresponding to each edge and each face of the mesh. Thisleads to irregular accesses to data in the major computational loops of the program. The version of thecode we worked with comprised of nearly 2000 lines of code across 8 procedures. We used two sets of input19
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5.00 10.00 15.00 20.00 25.00 30.00V 1 : Performance before interprocedural optimizationsV 2 : Interprocedural placement of preprocessing stmts.V 3 : Interprocedural placement of comm. stmts alsoFigure 9: E�ect of Optimizations on Euler solver (10K mesh, 20 iterations) on Intel Paragon.data in our experiments, a mesh having 2800 mesh points and 17000 edges, and another mesh having 9500mesh points and 55000 edges.The existing Fortran D compiler inserts appropriate communication preprocessing statements andcollective communication statements in parallelizing such irregular codes, but (before the work presentedhere) did not perform any interprocedural placement of these statements.In Figure 9, we show the performance di�erence obtained by interprocedural placements of communi-cation preprocessing statements and communication statements. Performance of the di�erent versions ofthe code is measured for 2 to 32 processors of Intel Paragon. The sequential program took 71 seconds ona single processor of Intel Paragon. A super-linear speed up was noticed in going from one processors totwo processors, we believe happens because on single processor, all data cannot �t in the main memory ofthe machine. The �rst version (V 1) is the code which does not perform any interprocedural placement.In the second version (V 2), interprocedural placement is performed for only communication preprocessingstatements. This leads to signi�cant di�erence in the performance. Third version (V 3) is further opti-mized by various placement optimizations on communication statements, this includes applying IPRE oncommunication statements and use of coalescing gather and scatter routines. On small number of proces-sors, the total communication time is small, and therefore, the overall performance di�erence due to thedi�erent communication optimizations is not signi�cant. However, when the same data is distributed overa larger number of processors, the communication time becomes a signi�cant part of the total executiontime and the communication optimizations make signi�cant di�erence in the overall performance of theprogram.In Figure 10, we further study the impact of di�erent placement optimizations on communicationstatements. Only the communication time is shown for the various versions of the code. The �rst version20
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ow-insensitive analysis for regular applications, including management ofbu�er space and propagation of data distribution and data alignment information across procedure bound-aries. In this work, Augmented Call Graph (ACG) has been introduced as a new program abstraction.This abstraction records any loop(s) enclosing a procedure call. Again, this abstraction does not allow tolook for redundant communication preprocessing calls or communication in adjacent procedure.Framework for Interprocedural Analysis and Transforms (FIAT) [19] has recently been proposed as ageneral environment for interprocedural analysis. This is based up Call Graph program abstraction and istargeted more towards 
ow-insensitive interprocedural analysis. Our implementation uses several facilitiesavailable from FIAT as part of the Fortran D infrastructure.Partial redundancy elimination was used interprocedurally by Gupta et al. [17] for performing commu-nication optimizations. An interesting feature of their work is to use available section descriptors, whichcan help with many other optimizations for regular codes. Hanxleden [23] has developed Give-N-Take, anew data placement framework. This framework extends PRE in several ways, including a notion of earlyand lazy problems, which is used for performing earliest possible placement of sends and latest possibleplacement of receive operations. Allowing such asynchronous communication can reduce communication22
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ow-sensitive interproceduralproblems. Myer has suggested concept of SuperGraph [30] which is constructed by linking control 
owgraphs of procedures by inserting edges from call site in the caller to start node in callee. The total numberof nodes in SuperGraph can get very large and consequently the solution may take much longer time toconverge. Several ideas in the design of our representation are similar to the ideas used in Callahan'sProgram Summary Graph [9] and Interprocedural Flow Graph used by So�a et al. [24].8 ConclusionsIn this paper, we have presented interprocedural optimizations for compilation of irregular applicationson distributed memory machines. In such applications, runtime preprocessing is used to determine thecommunication required between the processors. We have developed and used Interprocedural PartialRedundancy Elimination for optimizing placement of communication preprocessing and communicationstatements. We have further presented several other optimizations which are useful in compilation ofirregular applications. These optimizations include placement of scatter operations, deletion of runtimedata structures and placement of incremental schedules and coalesced schedules. We have also presentedhow IPRE can be applied in more complex scenarios, this includes use of slicing and ordering applicationof IPRE on di�erent candidates.We have done a preliminary implementation of the schemes presented in this paper, using the existingFortran D compilation system as the necessary infrastructure. We have presented experimental results todemonstrate e�cacy of our schemes. 23



AcknowledgementsWe have implemented our techniques using the existing Fortran D system as the necessary infrastructure.We gratefully acknowledge our debt to the implementers of the interprocedural infrastructure (FIAT) andthe existing Fortran D compiler. We are grateful to the members of the CHAOS team for providing usthe library and helping us numerous times during our experiments.References[1] Gagan Agrawal and Joel Saltz. Interprocedural communication optimizations for distributed memory com-pilation. In Proceedings of the 7th Workshop on Languages and Compilers for Parallel Computing, pages283{299, August 1994. Also available as University of Maryland Technical Report CS-TR-3264.[2] Gagan Agrawal, Joel Saltz, and Raja Das. Interprocedural partial redundancy elimination and its applicationto distributed memory compilation. In Proceedings of the SIGPLAN '95 Conference on Programming LanguageDesign and Implementation. ACM Press, June 1995. To appear.[3] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support for structured and blockstructured applications. In Proceedings Supercomputing '93, pages 578{587. IEEE Computer Society Press,November 1993.[4] Gagan Agrawal, Alan Sussman, and Joel Saltz. E�cient runtime support for parallelizing block structuredapplications. In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94), pages158{167. IEEE Computer Society Press, May 1994.[5] Gagan Agrawal, Alan Sussman, and Joel Saltz. An integrated runtime and compile-time approach for paral-lelizing structured and block structured applications. IEEE Transactions on Parallel and Distributed Systems,1995. To appear. Also available as University of Maryland Technical Report CS-TR-3143 and UMIACS-TR-93-94.[6] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986.[7] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y. Wu. Compiling Fortran 90D/HPF fordistributed memory MIMD computers. Journal of Parallel and Distributed Computing, 21(1):15{26, April1994.[8] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. Charmm:A program for macromolecular energy, minimization, and dy namics calculations. Journal of ComputationalChemistry, 4:187, 1983.[9] D. Callahan. The program summary graph and 
ow-sensitive interprocedural data 
ow analysis. In Proceedingsof the SIGPLAN '88 Conference on Program Language Design and Implementation, Atlanta, GA, June 1988.[10] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz. Software support forirregular and loosely synchronous problems. Computing Systems in Engineering, 3(1-4):43{52, 1992. Paperspresented at the Symposium on High-Performance Computing for Flight Vehicles, December 1992.[11] K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and optimization in thern programming environment. ACM Transactions on Programming Languages and Systems, 8(4):491{523,October 1986.[12] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation of a parallelunstructured Euler solver using software primitives. AIAA Journal, 32(3):489{496, March 1994.[13] Raja Das, Joel Saltz, and Reinhard von Hanxleden. Slicing analysis and indirect access to distributed arrays.In Proceedings of the 6th Workshop on Languages and Compilers for Parallel Computing, pages 152{168.Springer-Verlag, August 1993. Also available as University of Maryland Technical Report CS-TR-3076 andUMIACS-TR-93-42.[14] Raja Das, Joel Saltz, Ken Kennedy, and Paul Havlak. Index array 
attening through program transformation.Submitted to PLDI '95, November 1994.[15] D.M. Dhamdhere and H. Patil. An elimination algorithm for bidirectional data 
ow problems using edgeplacement. ACM Transactions on Programming Languages and Systems, 15(2):312{336, April 1993.24



[16] Guy Edjlali, Gagan Agrawal, Alan Sussman, and Joel Saltz. Data parallel programming in an adaptiveenvironment. In Proceedings of the Ninth International Parallel Processing Symposium. IEEE ComputerSociety Press, April 1995. To appear. Also available as University of Maryland Technical Report CS-TR-3350and UMIACS-TR-94-109.[17] Manish Gupta, Edith Schonberg, and Harini Srinivasan. A uni�ed data 
ow framework for optimizing com-munication. In Proceedings of Languages and Compilers for Parallel Computing, August 1994.[18] Mary Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, October 1990.[19] Mary Hall, John M Mellor Crummey, Alan Carle, and Rene G Rodriguez. FIAT: A framework for interpro-cedural analysis and transformations. In Proceedings of the 6th Workshop on Languages and Compilers forParallel Computing, pages 522{545. Springer-Verlag, August 1993.[20] M.W. Hall, S. Hiranandani, K. Kennedy, and C.-W. Tseng. Interprocedural compilation of Fortran D forMIMD distributed-memory machines. In Proceedings Supercomputing '92, pages 522{534. IEEE ComputerSociety Press, November 1992.[21] R. v. Hanxleden, K. Kennedy, and J. Saltz. Value-based distributions in Fortran D { a preliminary report.Technical Report CRPC-TR93365-S, Center for Research on Parallel Computation, Rice University, December1993. Submitted to Journal of Programming Languages - Special Issue on Compiling and Run-Time Issuesfor Distributed Address Space Machines.[22] Reinhard v. Hanxleden. Handling irregular problems with Fortran D - a preliminary report. In Proceedingsof the Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December 1993. Alsoavailable as CRPC Technical Report CRPC-TR93339-S.[23] Reinhard von Hanxleden and Ken Kennedy. Give-n-take { a balanced code placement framework. In Proceed-ings of the SIGPLAN '94 Conference on Programming Language Design and Implementation, pages 107{120.ACM Press, June 1994. ACM SIGPLAN Notices, Vol. 29, No. 6.[24] Mary Jean Harrold and Mary Lou So�a. E�cient computation of interprocedural de�nition-use chains. ACMTransactions on Programming Languages and Systems, 16(2):175{204, March 1994.[25] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD distributed-memorymachines. Communications of the ACM, 35(8):66{80, August 1992.[26] Yuan-Shin Hwang, Raja Das, Joel Saltz, Bernard Brooks, and Milan Hodoscek. Parallelizing moleculardynamics programs for distributed memory machines: An application of the CHAOS runtime support library.Technical Report CS-TR-3374 and UMIACS-TR-94-125, University of Maryland, Department of ComputerScience and UMIACS, November 1994. To appear in IEEE Computational Science and Engineering.[27] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook.MIT Press, 1994.[28] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution. IEEETransactions on Parallel and Distributed Systems, 2(4):440{451, October 1991.[29] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies. Communications ofthe ACM, 22(2):96{103, February 1979.[30] E. Myers. A precise interprocedural data 
ow algorithm. In Conference Record of the Eighth ACM Symposiumon the Principles of Programming Languages, pages 219{230, January 1981.[31] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation techniques for data partitioning andcommunication schedule reuse. In Proceedings Supercomputing '93, pages 361{370. IEEE Computer SocietyPress, November 1993. Also available as University of Maryland Technical Report CS-TR-3055 and UMIACS-TR-93-32.[32] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz. Run-timeand compile-time support for adaptive irregular problems. In Proceedings Supercomputing '94, pages 97{106.IEEE Computer Society Press, November 1994.[33] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the multiblock PARTI runtime primitives,revision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University of Maryland, Departmentof Computer Science and UMIACS, December 1993.[34] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, 1984.[35] Janet Wu, Raja Das, Joel Saltz, Scott Berryman, and Seema Hiranandani. Distributed memory compilerdesign for sparse problems. IEEE Transactions on Computers, 1994. To appear.25


