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ABSTRACT

Motivation: The Glimmer gene-finding software has been suc-

cessfully used for finding genes in bacteria, archæa and viruses

representing hundreds of species. We describe several major

changes to the Glimmer system, including improved methods

for identifying both coding regions and start codons. We also

describe a new module of Glimmer that can distinguish host and

endosymbiont DNA. This module was developed in response to

the discovery that eukaryotic genome sequencing projects some-

times inadvertently capture the DNA of intracellular bacteria living

in the host.

Results: The new methods dramatically reduce the rate of false-

positive predictions, while maintaining Glimmer’s 99% sensitivity

rate at detecting genes in most species, and they find substantially

more correct start sites, as measured by comparisons to known and

well-curated genes. We show that our interpolated Markov model

(IMM) DNA discriminator correctly separated 99% of the sequences

in a recent genome project that produced a mixture of sequences

from the bacterium Prochloron didemni and its sea squirt host,

Lissoclinum patella.

Availability: Glimmer is OSI Certified Open Source and available at

http://cbcb.umd.edu/software/glimmer

Contact: adelcher@umiacs.umd.edu

1 INTRODUCTION

The genomes of bacteria, archæa and viruses are very gene-

dense, with protein-coding regions typically comprising 90%

or more of the DNA sequence. As a consequence, the accuracy

of prokaryotic gene-finding programs depends primarily on

identifying which of the six possible reading frames contains

the true gene (Besemer and Borodovsky, 1999; Borodovsky

and McIninch, 1993; Guo et al., 2003; Ouyang et al., 2004).

The accuracy of gene finding systems in these species is very

high as compared to eukaryotic gene finders; previous versions

of the Glimmer system had a sensitivity of 99% or higher

(Delcher et al., 1999; Salzberg et al., 1998).

However, there is still some room for improvement. First,

the measurement of sensitivity relies on comparisons to well-

annotated bacterial genomes, where the best we can do is to

count how many ‘known’ genes are found by a gene finder.

Genes are considered known if they have clear homology, as

measured by amino-acid similarity, to genes in other species.

This similarity often breaks down near the 50 end of the

transcript, which also tends to be the region where gene finders

disagree on the precise position of the start codon. Thus, one

area where gene finders might still improve is in prediction

of start sites, as has been pointed out in previous studies

(Besemer et al., 2001).
A second issue is false positives, i.e. gene predictions that do

not correspond to genuine protein-coding genes. Because bac-

teria are so gene-dense, it is very difficult to say with confidence

that any gene predicted to lie in an otherwise intergenic region is

false. Fortunately, the growing number of sequenced genomes

from closely related species does provide some help with this

question, and indeed some microbial gene-finding systems rely

on database searches to identify genes (Badger and Olsen, 1999;

Frishman et al., 1998; Larsen and Krogh, 2003; Nielsen and

Krogh, 2005). If a predicted protein is not conserved between

closely related species, then evolutionary arguments can

be made that the prediction is false. A greater source of false

positives in earlier releases of Glimmer, though, came from

predicting too many overlapping genes. Because truly over-

lapping genes are quite rare in bacterial genomes, the system

should generally avoid such predictions. Here too, homology to

other species can resolve the question of which gene is correct.

Our challenge was to reduce the false positive rate of Glimmer

without sacrificing its high sensitivity (true positive) rate.
The new Glimmer, release 3.0, achieves a dramatically lower

false-positive rate, predicts many more start sites correctly, and

maintains its high true positive rate. It does this through a new

algorithm for scanning coding regions, a new start site detec-

tion module, and an overall architecture that for the first

time integrates all gene predictions across an entire genome.

In addition, a new automated training program produces

substantially improved training sets, particularly on genomes

with high GC-content.
We also introduce a new use for the interpolated Markov

model (IMM) that is at the core of Glimmer. Recent large-scale*To whom correspondence should be addressed.
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sequencing projects of eukaryotic species have inadvertently

captured the genomes of bacterial endosymbionts as a side
effect of the overall project (Salzberg et al., 2005). When a
eukaryotic species has an intracellular endosymbiont, as is true

for many invertebrates including fruit flies, mosquitoes and
nematodes, then a whole-genome shotgun sequencing project
cannot avoid capturing some of the symbiont DNA. Conse-

quently there is a need to identify and separate the DNA from
the host and the symbiont, in order to assemble the two
genomes separately (and correctly). Besides these eukaryotic

genome projects, a growing number of bacterial sequencing
projects are targeting endosymbionts that can only be grown

inside their hosts, including Wolbachia pipientis (Wu et al.,
2004) and Prochloron didemni (J. Ravel, personal communica-
tion). In these projects, despite investigators’ best efforts to

isolate bacterial DNA, a considerable amount of eukaryotic
host DNA remained in the sample and needed to be removed.
Motivated by these problems, we developed a new algorithm in

which the IMM within Glimmer is trained separately on host
and endosymbiont DNA, and then turned into a classifier to

separate the raw sequences. We report here on this new module
and its successful use in two recent genome projects.
The Glimmer 3.0 package is distributed as OSI Certified

Open Source software and is freely available at http://
cbcb.umd.edu/software/glimmer

2 METHODS AND RESULTS

2.1 Reverse scoring

The IMM scoring algorithm in Glimmer computes the log-likelihood

that a given interval on a DNA sequence was generated by a model

of coding versus noncoding DNA. This model represents the

probability of a nucleotide given a subset of positions in a

window (called the context) adjacent to the nucleotide—for details,

see (Delcher et al., 1999; Salzberg et al., 1998). Glimmer 3.0 takes

advantage of the flexibility of this algorithm by scoring all open reading

frames (ORFs) in reverse, from the stop codon back toward the start

codon, with the probability of each base conditioned on a context

window on its 30 side and the score of the ORF being the log-likelihood

sum of the bases contained in the ORF. The score is computed

incrementally as a cumulative sum at every codon position in a given

ORF. In many cases, these scores show a marked peak in value, and

furthermore this peak typically occurs near the correct start site (see

Fig. 1 for an example). The advantage of scanning ORFs in reverse is

that for nucleotides near the start site, the context window of the IMM

is contained within the coding portion of the gene, which is the type of

data on which it was trained. This results in a more precise cumulative

score at nucleotides very close to the start site, compared to a context

window on the opposite side which would intersect a non-coding

region.

As the figure shows, the cumulative IMM score steadily increases as

we move away from the stop codon at the left until it reaches a peak

and then begins to decline. The decrease occurs because the bases

upstream of the gene start codon are non-coding and produce negative

IMM log-odds scores. The figure also shows, as vertical dashed lines,

the positions of all possible start codons in the ORF. We hypothesized

that if we used the highest-scoring start codon in these plots, then

Glimmer would find a higher percentage of true start sites. This is

borne out in our experiments, described subsequently.

An important difference between this algorithm and earlier versions

of Glimmer is that, unlike those versions, which had a strong bias

in favor of longer ORFs, this algorithm chooses start sites based on

their relative scores.

2.2 Ribosome binding sites

In previous versions of Glimmer, the ribosome binding site (RBS) was

essentially ignored, even though it provides a strong signal for the

position of the true start site. We addressed this problem with a

standalone program, RBSfinder, that can be run as a post-processor on

the results of Glimmer’s analysis. RBSfinder is quite effective at finding
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Fig. 1. Scoring an open reading frame from the stop codon backwards. The stop codon is at position 0 on the X-axis and the cumulative log-odds

score is plotted as the solid line. Positions of possible start codons are indicated by vertical dashed lines. This ORF contains the fructose bis-P

aldolase gene in Escherichia coli (EG14062) and the current Ecogene verified start site is at position 1050, near the peak score. This position is an

update of the originally annotated start at position 1122.
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ribosome binding sites and adjusting Glimmer’s predictions (Suzek

et al., 2001), but we nonetheless felt that a better design would integrate

RBS evidence directly into the gene-finding algorithm. Glimmer3 now

contains this long-awaited integration.

After experimenting with several alternative algorithms, we found

that the ELPH software (http://cbcb.umd.edu/software/ELPH) was

highly effective at identifying the likely RBS in most bacterial genomes.

Input to ELPH is a specified motif length and any set of sequences,

in which it identifies likely shared motifs using a Gibbs sampling

algorithm. ELPH produces a position weight matrix (PWM) that

Glimmer3 then uses to score any potential RBS. If a substantial set of

training genes is available, the regions upstream from their starts can be

given to ELPH to produce a PWM. Otherwise, Glimmer3 can boot-

strap itself by first running without a PWM, generating a set of gene

predictions, and then extracting regions upstream of those predictions

as input to ELPH. Glimmer3 can then be re-run with the PWM to

produce a more accurate set of start-site predictions. The entire process

can be iterated as desired until a consistent PWM and set of gene

predictions result. This strategy of using a Gibbs-sampler to find

RBS motifs in an iterative fashion was introduced in the GeneMarkS

gene-finding system (Besemer et al., 2001).

2.3 Reduced overlapping predictions

Both Glimmer2 and Glimmer3 start by identifying open reading frames

(ORFs) with sufficiently high IMM scores to be processed further.

In many cases, these ORFs overlap by more than the (user-specified)

maximum allowed distance, indicating that only one of them is a true

gene. Glimmer2 uses a series of rules based on ORF lengths, ORF

scores and the IMM score of the overlapping region to attempt to

resolve these overlap cases. When the rules do not produce a clear

conclusion, however, Glimmer2 outputs both ORFs with an annotation

indicating the overlap. As a result, Glimmer2 can have a high false-

positive rate, particularly for high-GC genomes, which have large

numbers of overlapping ORFs.

In contrast, Glimmer3 begins by assigning a score to each valid start

position within an ORF. This score is the sum of RBS score plus

the IMM coding potential score plus a score for the start codon

(determined by the relative frequency of each possible start codon in the

same training set used to determine the RBS). Each possible start codon

is linked to the stop codon that terminates its ORF.

A global dynamic-programming algorithm is then used to select the

set of ORFs and start sites with maximum total score across the entire

input sequence, subject to the constraint that no overlaps greater than a

specified maximum are allowed. Specifically, the set of potential start

sites and stop positions is scanned in sorted order by location on the

input sequence. At each start or stop feature f, the score of

the maximum-scoring set of genes up to and including f is computed

as the maximum compatible prior score in any of the six reading frames

plus the score of f. Because overlaps are allowed, the value for a feature

f may, in fact, change as the result of a feature encountered after f. To

accommodate this case, our algorithm backtracks to update scores

within the maximum allowed overlap distance and adjusts the scores to

avoid double counting the score of the overlap region. Because the

maximum overlap distance is typically small compared to the average

gene length, the additional cost is usually insignificant.

In many respects this algorithm functions like the hidden Markov

models (HMMs) used in other gene-finding programs such as

GeneMark.hmm (Lukashin and Borodovsky, 1998) and EasyGene

(Larsen and Krogh, 2003). The principal differences are that small

overlaps between genes are allowed (without resort to a complicated set

of overlap states in an HMM) and that potential coding regions are pre-

scored by the IMM in the stop-to-start direction so that the scanning

direction of the algorithm effectively alternates on different segments of

the sequence. The result is that the final set of Glimmer3 predictions

contains no overlaps greater than the specified maximum, and the total

number of Glimmer3 predictions is almost always less than the

corresponding number of Glimmer2 predictions.

2.4 Improved training with long-orfs

One of Glimmer’s strengths has always been the ease with which any

user can automatically train it on a new genome. The long-orfs

program in the Glimmer system is used to create a training set of genes

from a genome by selecting ORFs above a threshold length that do not

overlap other ORFs above that threshold length. The threshold length

is computed by the program to be the value that maximizes the number

of non-overlapping ORFs produced, thus maximizing the amount of

data in the training set. For most genomes this approach is quite

effective, typically producing a training set containing nearly half of all

genes with relatively few ORFs that are not genes. In the case of high-

GC genomes (460% GC), however, the scarcity of stop codons results

in an abundance of long ORFs that are not genes. For such genomes,

the version of long-orfs in Glimmer2 produces very small output

sets, with many incorrect genes.

To overcome this problem, the long-orfs program in Glimmer3

incorporates a new routine to filter the initial set of ORFs based on

amino-acid composition. Here we wish to take advantage of the fact

that the genes in widely disparate bacterial genomes tend to use a

common, universal amino acid distribution (Luscombe et al., 2001;

Pascal et al., 2005). By comparing the ORFs found by long-orfs to a

universal distribution, we should be able to eliminate many ORFs that

are highly unlikely to be protein-coding genes. Specifically, we compute

the distribution of each ORF’s amino acids and compare it to both a

positive model derived from a large sample of microbial genomes, and

to a negative model created from alternative reading frames of those

genes. We then compute the ratio of the distance of the candidate

ORF’s distribution to the positive and negative models, and only those

ORFs whose ratio is below a user-specified threshold are passed on to

the length- and overlap-calculation stage. These distance calculations

are actually computed using the entropies of amino-acid distributions

as described in (Ouyang et al., 2004).

Table 1 compares the output of the Glimmer2 and Glimmer3

versions of long-orfs to the set of all annotated genes for a sample of

13 bacterial and archæal genomes obtained from NCBI (Wheeler et al.,

2006). Note how for the high-GC (67%) Ralstonia solanacearum

genome, Glimmer2’s long-orfs outputs only 288 ORFs, of which a

mere 55% match annotated genes. In contrast, Glimmer3’s long-

orfs identifies 1175 ORFs, 96% of which match annotated genes.

2.5 Gene prediction accuracy

In order to test the effect of the improvements in Glimmer3,

we compared it to several different sets of data, shown in the tables.

First, we compared its predictions on a sample of complete genomes to

the ‘known’ genes from those genomes. We used NCBI annotation to

determine when a gene was known, by simply removing all genes

annotated as ‘hypothetical’ from the set of known genes. Genes

assigned a function are in most cases closely homologous to genes from

other genomes, which provides independent evolutionary evidence that

these genes are real. We are aware that this method has its

shortcomings, but no other method yields nearly as many genes for

testing. This method also does not guarantee that the start codon is

correctly predicted, because homology does not need to extend for the

full length of a predicted protein in order to be considered adequate

evidence for assigning function.

Another important test of Glimmer 3.0 was its comparison in relation

to Glimmer 2.13, and we, therefore, ran both algorithms on the same set

of genomes. In Table 2 we show the accuracy results of both Glimmer2

and Glimmer3 on our benchmark genome sample. Both algorithms
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were trained and tested on the same data set of non-hypothetical genes

in an eight-way cross-validation experiment. (For each genome, the

genes were divided into eight approximately equal-size subsets. One

subset was held out for testing and Glimmer was trained on the

remaining subsets. This was repeated eight times so that each gene was

part of one test set.) As shown in the table, Glimmer3 nearly always

achieves equal or higher sensitivity than Glimmer2, but with far fewer

additional predictions, indicating much greater specificity. Glimmer3

also has far greater agreement between its start codon predictions and

those in the benchmark genomes: in 11 of the 13 genomes, it has greater

agreement than Glimmer2. For example, in Bacillus anthracis

Glimmer3 predicts 726 start sites that agree with the NCBI annotation

but disagree with Glimmer2. Note too that we cannot guarantee that

the start sites are correctly annotated for any of these genomes, but

without further laboratory evidence these are the best data available.

Table 3 compares the results of running both Glimmer2 and Glimmer3

using the output of their respective versions of the long-orfs

program to produce a training set. As before, the predictions are

compared to non-hypothetical genes in the annotation. In this case,

Glimmer2’s performance is substantially worse because of errors in its

Table 2. Glimmer3 prediction accuracy when trained on confirmed genes

Genome Glimmer3 Predictions versus Glimmer2.13

Organism GC% # Genes 30 Matches 50 & 30 Matches Extra 30 Match 50 & 30 Extra

A.fulgidus 49 1165 1162 99.7% 841 72.2% 1308 �2 �67 �59

B.anthracis 35 3132 3119 99.6% 2717 86.7% 2345 þ6 þ726 �77

B.subtilis 44 1576 1559 98.9% 1379 87.5% 2886 þ11 þ413 �539

C.tepidum 57 1292 1284 99.4% 867 67.1% 778 þ2 �33 �190

C.perfringens 29 1504 1501 99.8% 1360 90.4% 1177 �1 þ244 �28

E.coli 51 3603 3525 97.8% 3014 83.7% 942 þ16 þ693 �632

G.sulfurreducens 61 2351 2320 98.7% 1883 80.1% 1107 þ15 þ541 �380

H.pylori 39 915 908 99.2% 785 85.8% 774 þ1 þ46 �94

P.fluorescens 63 4535 4484 98.9% 3412 75.2% 1896 þ14 þ731 �704

R.solanacearum 67 2512 2468 98.2% 1922 76.5% 1091 þ72 þ646 �326

S.epidermidis 32 1650 1646 99.8% 1496 90.7% 767 þ3 þ338 �66

T.pallidum 53 575 569 99.0% 397 69.0% 568 þ3 þ55 �296

U.parvum 26 327 325 99.4% 292 89.3% 297 0 þ19 �17

Averages: 99.1% 81.1% þ11 þ335 �262

For each genome, ‘#Genes’ counts genes in the NCBI annotation that are at least 90bp long, do not have frame shifts or internal stop codons, and whose function

description does not contain the string ‘hypothetical’. Both Glimmer3 and Glimmer2 were run with the same options and training/test sets in an 8-way cross-validation

experiment on this set of genes. A prediction is a 30 match iff it has the same reading frame and stop codon as a gene. 50 & 30 matches are predictions with the same start

and stop codon as the annotation. Extra predictions are those that are not matches. The ‘versus Glimmer2’ column is the Glimmer3 value minus the corresponding

Glimmer2 value.

Table 1. Glimmer3 and Glimmer2 long-orfs output comparison

Genome Glimmer3 long-orfs Glimmer2 long-orfs G3 versus G2

Organism GC% # Genes 30 Matches Extra 30 Matches Extra 30 Matches Extra

A.fulgidus 49 2398 1083 45% 26 706 29% 18 þ377 þ16% þ8

B.anthracis 35 5308 3494 66% 194 2934 55% 160 þ560 þ11% þ34

B.subtilis 44 4095 2647 65% 21 2062 50% 21 þ585 þ14% 0

C.tepidum 57 2252 943 42% 37 438 19% 30 þ505 þ22% þ7

C.perfringens 29 2660 2111 79% 16 1885 71% 16 þ226 þ8% 0

E.coli 51 4231 2754 65% 39 1815 43% 17 þ939 þ22% þ22

G.sulfurreducens 61 3438 1432 42% 59 553 16% 61 þ879 þ26% �2

H.pylori 39 1556 1141 73% 20 831 53% 10 þ310 þ20% þ10

P.fluorescens 63 6134 2873 47% 71 579 9% 129 þ2294 þ37% �58

R.solanacearum 67 3435 1133 33% 42 157 5% 131 þ976 þ28% �89

S.epidermidis 32 2487 1797 72% 40 1480 60% 27 þ317 þ13% þ13

T.pallidum 53 1034 507 49% 7 379 37% 6 þ128 þ12% þ1

U.parvum 26 614 400 65% 0 338 55% 9 þ62 þ10% �9

Averages: 57% 39% þ628 þ18% �5

For each genome, ‘#Genes’ counts all genes longer than 90bp in the NCBI annotation after removing genes with frame shifts and internal stop codons. A prediction is

a match iff it has the same reading frame and stop codon as a gene. Extra predictions are those that are not matches. The ‘G3 versus G2’ column is the Glimmer3 value

minus the Glimmer2 value.
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long-orfs output. Glimmer3’s performance, however, is substan-

tially the same as when it is trained with annotated data, indicating that

it is likely to do well even in the absence of a pre-computed set of

‘known’ genes for training.

Table 4 compares Glimmer3 predictions to those of three other gene-

finders, GeneMark.hmm, EasyGene (Larsen and Krogh, 2003) and

GeneMarkS (Besemer et al., 2001), and shows that Glimmer obtains

comparable results. These other systems all run through web servers or by

downloading precomputed predictions, and EasyGene uses homology-

search results to help determine its parameters. In contrast, Glimmer

runs locally and offers many options for choosing parameters and

training sets, and can be run on collections of contigs from unfinished

assemblies.

Further evidence of Glimmer3’s improved accuracy is provided by

comparing its predictions to the results of recent laboratory experi-

ments to identify unannotated genes. One such experiment was

conducted on the hyperthermophilic archæon Pyrococcus furiosos by

Poole et al. (Poole et al., 2005), who used microarray expression

evidence and recombinant protein tests to examine 127 ORFs not in

the NCBI annotation. Of the 17 proteins that the Poole group were

able to confirm, Glimmer3 predicted 16, of which 14 also agreed on the

start sites.

Table 3. Glimmer3 prediction accuracy with long-orfs training

Genome Glimmer3 Predictions versus Glimmer2.13

Organism GC% # Genes 30 Matches 50 & 30 Matches Extra 30 Match 50 & 30 Extra

A.fulgidus 49 1165 1161 99.7% 873 74.9% 1332 �2 �34 �64

B.anthracis 35 3132 3125 99.8% 2751 87.8% 2419 �1 þ752 �144

B.subtilis 44 1576 1562 99.1% 1391 88.3% 3020 þ3 þ421 �724

C.tepidum 57 1292 1289 99.8% 934 72.3% 835 þ3 þ26 �400

C.perfringens 29 1504 1501 99.8% 1383 92.0% 1192 �1 þ267 �20

E.coli 51 3603 3534 98.1% 3112 86.4% 1002 þ11 þ784 �843

G.sulfurreducens 61 2351 2337 99.4% 1933 82.2% 1165 þ7 þ575 �734

H.pylori 39 915 910 99.5% 795 86.9% 788 þ2 þ57 �103

P.fluorescens 63 4535 4510 99.4% 3598 79.3% 1953 þ35 þ895 �2359

R.solanacearum 67 2512 2485 98.9% 2028 80.7% 1183 þ341 þ1044 �2184

S.epidermidis 32 1650 1646 99.8% 1514 91.8% 791 þ8 þ358 �32

T.pallidum 53 575 567 98.6% 391 68.0% 567 �2 þ50 �281

U.parvum 26 327 324 99.1% 295 90.2% 297 �1 þ21 �11

Averages: 99.3% 83.1% þ31 þ401 �608

Genomes and columns are as in the preceding table. Glimmer3 was run by using the output of its long-orfs program to train an IMM. The output of an initial run of

Glimmer3 was used to set start codon frequencies and to find a ribosome-binding-site motif. A second run of Glimmer3 using those values generated the above

predictions. Glimmer2 was trained on the output of its version of the long-orfs program.

Table 4. Glimmer3 prediction accuracy compared to other gene-finding systems

Genome versus GeneMark.hmm versus EasyGene 1.2 versus GeneMarkS

Organism # Genes 30 Match 50 & 30 Extra 30 Match 50 & 30 Extra 30 Match 50 & 30 Extra

A.fulgidus 1165 þ4 �20 �86 þ5 �25 þ119 0 þ2 �71

B.anthracis 3132 �2 -48 �134 þ13 -63 þ175 þ1 þ412 �142

B.subtilis 1576 þ2 þ280 þ87 þ15 �10 þ536 �5 �39 þ193

C.tepidum 1292 þ1 þ21 þ19 þ10 þ9 þ182 þ1 �14 þ29

C.perfringens 1504 �2 þ177 �120 �2 �8 �21 �3 �14 �139

E.coli 3603 �25 þ18 þ188 þ60 þ44 þ407 �25 �29 þ190

G.sulfurreducens 2351 þ13 þ215 þ34 þ5 �1 þ60 þ14 þ41 þ66

H.pylori 915 �1 �3 �55 þ4 �6 þ148 �1 �8 �41

P.fluorescens 4535 þ17 þ288 þ59 NA NA NA þ17 þ479 þ46

R.solanacearum 2512 þ7 þ183 þ225 þ11 þ48 þ193 �3 þ160 þ190

S.epidermidis 1650 þ3 �32 �40 NA NA NA þ6 þ204 �64

T.pallidum 575 þ2 �8 þ94 þ8 �8 þ176 �2 �18 þ90

Averages: þ2 þ89 þ23 þ13 �2 þ198 þ2 þ98 þ29

Glimmer3 predictions are as in the preceding table and each entry is the Glimmer3 value minus the corresponding value for the other gene-finder. GeneMark.hmm results

were taken from the GeneMarkHMM files downloaded from NCBI. EasyGene 1.2 results were downloaded from http://servers.binf.ku.dk/cgi-bin/easygene.search

GeneMarkS results were obtained from the server at http://exon.gatech.edu/GeneMark/genemarks.cgi None of these systems had results for Ureaplasma parvum, which

uses a non-standard translation code. NA entries indicate strains that were not available for download.
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2.6 Start-site prediction accuracy

Assessing the accuracy of start-site predictions is very difficult due to

the scarcity of reliable data about start sites. For E.coli, a substantial

number of proteins have been verified through N-terminal sequencing,

providing a highly accurate (although limited to just one species) set of

data for measuring the accuracy of start site predictions. The curators

of the EcoGene database (Rudd, 2000) have collected and annotated

878 genes (as of July 2006) from E.coli with confirmed start sites, and

we used these to measure Glimmer3’s accuracy. For comparison

purposes, we also tested Glimmer3 on three of the same data sets used

in (Zhu et al., 2004) to assess the accuracy of the program MED-Start.

All these data sets are described in Table 5.

The table shows Glimmer3 prediction results on these four data sets.

On the latest EcoGene dataset we found that Glimmer3 predicted all

but four genes, and matched the correct start site on 816 genes (92.9%).

For the latter three data sets, we also show two sets of MED

predictions: one from (Zhu et al., 2004) obtained by applying MED-

Start to Glimmer2 orfs and the other from the MED web site (http://

ctb.pku.edu.cn/main/SheGroup/MED2.htm) using MED 2.0, which

incorporates MED-Start within it. The results show Glimmer3 to be

slightly more accurate on the E.coli data sets, while on the Bacillus

subtilis data set the same as MED-Start while slightly less accurate than

MED 2.0.

2.7 Separating sequences from different genomes

Although we designed Glimmer’s IMM to model the 3-periodic

structure of protein coding sequences, it also can be employed for

more general sequence modeling. P.didemni is a photosynthetic microbe

that lives as an endosymbiont in its host organism, the sea squirt

L.patella. Because P.didemni can only be cultured in L. patella cells, it

was not surprising that in the whole-genome shotgun sequencing

project for P.didemni, a large number of sequences were from L.patella.

Such a mixture of reads from two genomes, at different coverage

densities, causes problems for genome assembly software, which typi-

cally assumes that its input derives from a single genome that was

sampled at a uniform rate. Because no reference sequences were

available (which would have allowed us to separate the sequences based

on homology), we used the Glimmer IMM to classify the two types

of sequences.

We began with an initial assembly of all 82 337 shotgun reads.

Because the genome size of the bacterium (approximately 5 million base

pairs) is much smaller than that of its eukaryote host (over 160Mbp),

the depth of coverage of the bacterium was much greater. Consequently

any large scaffolds in the assembly would, with near certainty, consist of

P.didemni sequences. Conversely, reads that failed to align with any

other reads (singletons) would disproportionately be from the larger

genome. Accordingly, we created training sets by classifying reads from

assembly scaffolds at least 10Kbp long as being from P.didemni (36 920

reads), and reads where both the read and its clone-insert mate were

singletons as being from L.patella (21 276 reads). This left 24 141 reads

unclassified.

We created non-periodic Glimmer IMMs from these two training sets

and classified sequences based on which of the two models gave a

higher score. In a 5-way cross-validation test using the initial

classification sets, the models achieved 98.9% accuracy on P.didemni

reads and 99.9% accuracy on L.patella reads. The models classified

22% and 78% of the 24 141 unclassified reads as being from P.didemni

and L.patella, respectively. One way to measure prediction accuracy on

this test set is by considering the predictions of mate-pair reads. Because

each pair comes from a single DNA template, the classification of both

reads in the pair should be the same. There were 10 500 mate pairs in

our unclassified set, of which only 207 (2%) were inconsistently

classified. Since each inconsistent pair has one correct and one incorrect

classification, this indicates 99% accuracy.

Besides the obvious benefit of removing the host sea squirt sequence

from the assembly result, separating the two types of reads produced

improvements in the quality of the shotgun assembly. The assembly

of P.didemni using the mix of all reads produced 65 scaffolds 20Kbp

or longer, with total length of 5.74Mbp. The assembly using just

reads classified as P.didemni yielded 58 scaffolds 20Kbp or longer, with

total length of 5.84Mbp. Both assemblies were run with the

same parameter settings using the Celera Assembler program (Myers

et al., 2000).

3 CONCLUSION

The latest release of the Glimmer gene-finding system is signif-
icantly improved compared to its predecessor, most notably
with respect to specificity and accuracy in predicting translation

initiation sites. A major difficulty in developing software that

Table 5. Comparison of start-site prediction accuracy

Test Set Number

of Genes

Description MED-Start on

Glimmer2 Orfs

MED 2.0 Glimmer3

30

Matches

50 and 30

Matches

30

Matches

50 and 30

Matches

30

Matches

50 and 30

Matches

EcoGene2006 878 EcoGene proteins (EcoData070306)

annotated as ‘‘Verified’’ but not

annotated as ‘‘EXCEP’’ or ‘‘MUTANT’’

99.5% 92.9%

EcoGene2004 854 Ecogene proteins used in (Zhu et al., 2004) 99.3% 92.0% 99.1% 92.0% 99.5% 92.7%

Link 195 Subset of EcoGene with

single-amino-acid or no leader

sequence (Link et al., 1997)

100.0% 95.4% 99.0% 93.3% 100.0% 95.8%

Bsub58 58 B.subtilis genes confirmed by

comparison to B.halodurans

98.3% 94.8% 100.0% 96.6% 98.3% 94.8%

The last three datasets are the same sets used by Zhu et al. to assess the accuracy of MED-Start (Zhu et al., 2004), from which the first MED values are taken. The second

come from the MED 2.0 web site, http://ctb.pku.edu.cn/main/SheGroup/MED2.htm
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can make highly accurate predictions of coding starts is the lack

of experimentally confirmed training and testing data. Despite

this limitation, Glimmer3 start-site predictions have achieved

a remarkably high success rate on the best-available dataset,

the Ecogene verified genes in E.coli.
A notable advantage of the Glimmer3 system is that it is

completely self-contained. This permits users to choose either

the long-orfs program, or any set of genes that may wish to

use, as training sets to build the IMM and find the RBS motif.

This permits the system to be used on relatively short sequence

fragments, like low-coverage draft genome assembly sequences.

If necessary, a user can even use a closely related organism as

a source of training data.

Another advantage of Glimmer3 is that it is distributed as

source code that can run on any system with a Cþþ compiler.

This enables any part of the program to be modified by the user

and allows various modules to be used for purposes other than

gene-finding, as we have demonstrated in separating target and

host-contaminant data for the P.didemni shotgun sequencing

project.
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